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INTRODUCTION

Many of us have grown so used to living with compound interest
that we have forgotten its underlying principles. In particular, those
of us who deal in long-term investment decisions often grow too accus-
tomed to the simplifying assumption of annual compounding. When con-
fronted with situations in which non-annual compounding must be under-
stood, we often find ourselves confused. All of us tend to be too un-
thinking about the mathematics of compound interest. The purpose of
this paper is to stimulate clear thinking about non-annual compounding
and to suggest when and where its application may be worth the trouble.

SYMBOLS AND ABBREVIATIONS

CR : capital recovery factor
e : base of natural logarithms = 2,718
1 : see ry
k : an artificial constant
LL : log log
1n : natural log
M : compounding periods per annum
N : number of years
P : investment, principal, present worth
BX : residual debt X years before end of loan period
AM : annual returns in M uniform, equally spaced amounts
A_ : annual returns with continuous cash flow
Tyt effective interest rate per annum
Ty ¢ nominal interest rate per annum associated with M
compounding periods per annum
r : nominal interest rate per annum associated with continuous

8

compounding
F : future amount
(CA-i%-N) : single compound amount factor for an interest rate of
i% per compounding period and N compounding periods
X : years before end of loan period
o : infinity

I. SINGLE PAYMENT RELATIONSHIPS

GENERAL REMARKS

Suppose a usurous banker offers to lend you $10,000 for 20
years at 1l2-percent annual interest, but forgets to stipulate in writing
that the interest is to be compounded annually. That is, you find yourself
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with an agreement to repay the loan with simple, rather than compound,
interest. This is a most unusual arrangement because simple interest

is essentially illogical in that it gives insufficient emphasis to the
time-value of money. That is, we must concern ourselves not only with
how much rent is paid, but when. Simple interest ignores the when.

At the end of the 20-year loan period, you would owe him an
amount equal to the rent per year (12 percent of the principal) mul-
tiplied by the number of years--plus, of course, the principal:

F=NiP+ P

F="P1+0Ni)

F = $10,000 (1L + 20 x 0.12) = §3hzOOO
where

F = future sum

N = number of years

i = interest rate year

P = principal

Now, if our friendly banker had been more perspicacious, he
would have specified annual compounding and you would have owed him

F=(CA-i% - N)P
F = (CA - 129 - 20) 9.646 x $10,000 = $96,460

where
(CA - i% - N) = single compound amount factor for an interest
rate i per compounding period and N com-
pounding periods
. AN
(CA - i% - N) = (1 + i)

Note that we have defined CA 1in such a way that we can use
our standard interest formulas and tables for periods other than yearly.
Suppose our banker had asked for 12 percent interest per year but com-
pounded semi-annually. Now our interest rate per compounding period
is cut in half but the number of periods is doubled. Let us see how

much you would owe at the end of 20 years:
F = (CA - 6% - 40) 10.286 x $10,000 = $102,860

Or, for compounding quarterly:



F = (CA - 3% - 80) 10.641 x $10,000 = $106,410
and for compounding monthly:
F = (CA - 1% - 240) 10.87 x $10,000 = $108,700

We can see that shortening the compounding period progres-
sively increases the future amount, F. The rate of increase, however,
is declining. When carried to the ultimate frequency, we find we are
compounding continuously. Using methods we will develop later, we
would find the limiting future amount to be about §11025OO.

Table 1 summarizes the future amounts obtained in each case
above,
TABLE 1

INFLUENCE OF FREQUENCY OF COMPOUNDING ON AMOUNT OWED
AFTER 20 YEARS FOR A $10,000 LOAN AT 12 PERCENT ANNUAL

INTEREST
Compounding Period Future Amount
(without compounding) $ 34,000
annual 96,460
semi-annual 102,860
quarterly 106,410
monthly 108,700
(continuous) 110,500

DISCRETE NON-ANNUAL COMPOUNDING

By now you will understand that, although we have used the
same annual interest rate in each case, we have not given equal welght
to the time-value of money. Annual interest rate (or nominal rate as
it is often called) is clearly a worthless measuring device when non-
annual compounding is involved. There is no other finite unit of time
that would be any better. Because the year is an arbitrary unit, some
purists prefer continuous compounding--which also yields neater mathe-
matical manipulations in certain applications. We shall stick to the
year as our standard, however. The year is as good a time periocd as
any, and all of us are in the habit of calibrating our Jjudgment of fair
rates on this arbitrary unit of time. What we need then is an artifi-
cial annual interest rate that can be applied to non-annual compounding
after borrower and lender have agreed upon some time value of money



calibrated on the standard annual basis. Conversely, this artificial
annual rate can be used to compare two or more loan plans involving
differing payment periods. We call this artificial annual rate
effective interest and abbreviate it here as r,. We define effective
interest as the interest rate that, if compounded annually, would pro-
duce the same future amount as that produced by the same principal
compounded non-annually at a given nominal rate. This definition is
admittedly a tough one to follow, so let us illustrate what we mean.

In the earlier example, we showed that a $10,000 principal
would grow to $108,700 if compounded monthly at 12 percent nominal rate
for 20 years. What interest rate compounded annually would give us the
same amount? If we find this, we will have the effective rate, r,. This
will give us an exact idea of the time-value of money implied in the
terms of the loan. We know the principal (P) and the amount owed (F)
after 20 years at an unknown annual interest rate compounded annually
(rl). In equation form we have

F = (CA - rl% - 20)P

$108,700 = (CA - rl% - 20) $10,000

_ $108,700 _
(ch - £,% - 20) = §_i6f665 - 10.870

also,
(1 + ry)29 = 10.870

A little jiggery pokery with the LL scale of your slide rule
will show that r equals 12.65 percent. If you do not communicate
with LI scales, you can reach the same conclusion by plotting values of
CA versus interest rate from your interest tables, or you can use
logarithms if so inclined. In any event, our conclusion is that a
nominal 12 percent rate compounded monthly is equivalent in value to a
12,65 percent rate compounded annually.

Figure 1 illustrates the general case, It plots the growth
of future amounts (F) under three different loan plans, all based on
the same time-value of money. Since all plans have the same time-value
of money, the future amounts will all be equal at the end of each year.
(They will differ slightly at other times but that detail ordinarily
need not concern us.)

At this point we must define a few abbreviations, To help
purge our minds of old confusions, we shall eschew the abbreviation 1
because its meaning tends to be ambiguous in this context. We have



_F=(l+rl)NP
S <F=(1+1M,M)MNP
l\ F = NTew p

compounding - compounding
annually continuously
compounding
semi-annually

0 1 N
Years )

Figure 1. Growth Pattern for Future Amounts with
Different Compounding Periods but Same

Time-Value of Money (Note: letters in
circles are proportional values).
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already defined ry as the effective interest rate., Remember that
this is our basic measure of the time-value of money. It is the rent
money per year as a percent of the amount owed, compounded annually.
If non-annual compoubding is used, the nominal interest rate (rM) is
given on an annual basis but 1s always divided by the compounding
periods per year (M) before using. As can be seen in Figure 1, the
nominal rate describes the initial slope of the line to which it
applies. As mentioned earlier, our standard interest formulas and
tables can be extended to cover non-annual compounding if we substitute
ry/M for i and MN (the number of compounding periods) for N (the
number of years). Thus, the standard equation for CA

ca = (1+ )Y
becomes

r
CA = (1+D—/}’I-)Ml\T

You may recall that we applied this equation, without having spelled

it out, when we calculated the future amount owed on a $10,000 loan for
20 years at 12 percent nominal interest (rM = 0.12) compounded semi-
annually (M = 2):

M
F=(CA - vl MN)P

r
M _ 0.12 06

|
1l
1
@]

2 x 20 = Lo

=

I
(cA - 6% - 40) = (1 + ﬁM)MN - 10.286

F = (CA - 64 - 40) 10.286 x $10,000 = $102,860 (as before)

(CA - 6% - L4O) can also be found from interest tables. Look
up the value for 6 percent annual interest and LO years. It is,
fundamentally, the factor for 6 percent interest per compounding period
and 40 compounding periods.

Now let us look again at Figure 1. We can generalize that
the future amount, F, at the end of the nth year is:

( M
F=(1+ )MV
M ) P



For annual compounding, M = 1, so we have

N

F:(l'l'r P

1)

But, since by definition F 1is the same in each case:
IM\MN
L+ g™ P
r M
(1 + )

(1 + rl)N P

]

]

(L + rl)

This leads to the general equation for effective interest rate:

r
M\M
r o= (L+ gD -1 (1)
If the effective rate is specified and we want to find the nominal rate,
we can rearrange equation (1) as follows:

o L
¥ (1 + Tl)M -1 (1a)

Let us try equation (1) on the earlier problem of finding
the effective rate for a 12 percent nominal rate compounded monthly:

I‘M = 0.12

M=12

r

M 0.12

ﬁ_ =5 = 0.01

rl—

!
>
+
=<’
=

]
|_J

r

]

L= (1+0.01)™ -1 =1.1265 - 1 = 12.65 percent

which agrees with the previous value and furnishes pragmatic proof of
the validity of equation (1).

Note that the effective rate, r_, is not affected by the
number of years involved. It is also wor%h noting that equation (1)
is applicable to those rare cases where compounding periods are greater
than one year. If, for example, compounding occurs on alternate years
and the nominal rate is 12 percent:
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r =0.12

M

r

M 0.12

=T = 0,24
2

r
r = (1 + ﬁM)M -1=(1+ 0.24)1/2 - 1=1.11% - 1 = 11,4 percent

In a case such as this, the future amount, F, when compounded biannually
at 12 percent would be the same as with 11l.4 percent compounded annually.
This would be true only at the end of every other year, however,

Here is another example., Suppose you are offered a loan at
1 percent a week, compounded weekly. What is the effective rate of
interest?

|

= 0,01

2 =

= 52

r, = (1+ %M)M - 1=(140.01)%2 -1 =(1.01)°2 - 1 =1.68 - 1

68 percent
Run, don't walk, to your nearest Better Business Bureau.
CONTINUOUS COMPOUNDING
Next let us take the extreme case and derive the effective

interest rate for continuous compounding. Egquation (1) bears a re-
semblance to the expression for e, the base of natural logarithms:

e =(l+ %)k as ko o (2)

We next arbitrarily generate this relationship:

M

T
M

k

[
|

then

M= er



Substituting into equation (1):
r
_ “Myr k
r, = (1 + i MY -1
1
r) = (1 + E)er -1

With continuous compounding, M approaches infinity and r  approaches
r_. We can then substitute e from equation (2) into the above:

I‘l = eroo_ 1 (5)
efw = rp+1 (34)
Te = 1n(l + 1ry) (3B)

If we substitute the value of r. from equation (3) into the
standard expression relating future and present amounts, we have:

F=(1+ rl)N P (l+efo- 1)V poMop (30)
which is shown in Figure 1.

Let us now return to our initial problem and solve for the
future amount when a loan of $10,000 is compounded continucusly for 20
years. Equation (3C) gives us

F = eTwp - 2,718 20 X 0.12 $10,000 = 2.7182-% $10,000 =
11.05 x $10,000 = $110,500
which is the amount shown in Table 1.

The term r describes the slope of the continuous compounding
line (see Figure 1) at the origin. This is the nominal annual rate for
continuous compounding. It is sometimes called the "force of interest."
Equations (3), (3A), and (3B) relate this nominal rate to the effective
rate., TLet us illustrate the use of these equations next by finding the
effective rate (rl) for a force of interest of 12 percent:

To = 0,12

r) = efw - 1 = (2.718)0'12 -1=1,127 - 1 = 12,7 percent

This means that 12 percent compounded continuously is equivalent in
value to 12.7 percent compounded annually.
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Next we can illustrate these principles by solving for the
force of interest (r_ ) corresponding to an effective rate of 12 percent.

0.12

i

T

efow = ri+1=012+1=1.12

(2.718) w = 1,12

r, = 11l.33 percent

Figure 2 shows how nominal rates and effective rates vary for
different compounding periods,

Admittedly, there is little practical use for continuous com-
pounding applied to single-payment loans. The ideas, however, are
necessary to the analysis of the realistic situation of virtually con-
tinuous cash flow from a business venture. That topic forms part of
the next chapter.

ITI. MULTTPLE PAYMENT REIATIONSHIPS

GENERAL REMARKS

In many business investments, cash returns occur almost con-
tinuously. Obviously, $1,000 per year flowing back in a continuous
stream is more desirable than $1,000 collected at each year's end., Most
investment decision-makers ignore this difference and simplify their work
with the standard assumption that all cash flows are concentrated at
the end of the year during which they occur. This simplification is
usually safe since it applies to cash flowing out as well as in, More-
over, any resulting error applies in equal measure to all alternatives.
Nevertheless, there are occasional situations where continuous compounding
deserves careful analysis., For example, one investment opportunity
might involve daily cash returns while an alternative opportunity would
oduce periodic returns at annual intervals. 1In deciding between these
two, you would want to know how to convert them to the common basis of
effective interest. The purpose of this chapter is to lend such under-
standing.

When we pay or collect periodic returns that include interest
payments, we are using compound interest. That is, we recognize not
only how much rent money is due, but when.
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DISCRETE RETURNS

We shall start with uniform annual returns, then look at
increasingly frequent returns, and finally tackle continuous returns.
Figure 3 shows how uniform annual returns reduce a debt to zero over a
given period of time. Two cases are shown: one with interest charges,
and one without. The latter corresponds to simple straight-line de-
preciation; for our purposes we can look upon it as the limiting case
of capital recovery at zero interest. The other pattern is more general
and is the one we want to study. Notice that the debts remaining at
any time in the two plans coincide nowhere except at the extreme terminal
points, at beginning and end of the loan period.

Figure 4 shows two payment plans, both based on the same time-
value of money, (which was not the case in Figure 3). One plan has
annual payments, the other semi-annual. Remember that we have specified
that the time-value of money be the same in each case. This requires
that the amount still owed at the end of each year (after periodic
payment) be always the same. The semi-annual payment plan can achieve
this requirement at a lower nominal rate simply because the lender
gets some of his money back sooner, In Figure 4, the term AM is a
uniform annual amount returned in M equal payments. The amount of
each payment is AM/M. As was the case with single payments, our
interest equations can be generalized by mentally converting i to
an interest rate per compounding period and converting N to the number
of compounding periods. That is, substitute rM/M for i and MN for
N in our standard equations and tables.

Now suppose we have an annual payment plan involving an
interest rate r, and we want to find what annual interest rate (r )
would be appropriate for a second payment plan involving more frequent
returns (M per year). We want to keep the time-value of money the same
in each case. Figure 5 shows the first year's debt pattern for the two
plans (assuming for the moment that M = 2). At the end of the first
year, just before making the year-end payment, the debt for the annual
payment plan will be

F=(1+ P
(1)

Now if we pretend for a moment that the borrower in the second plan had
been unable to make his payment at the end of the first six months, his
debt would have started to increase at that moment by the extent of the
interest owed. In short, his debt would have compounded. And, remember-
ing that the time-value of money is held the same for both plans, his
debt at the end of the first year would by definition be the same as

for the first plan., The compounded amount would be
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DEBT
A
REPAYMENT WITH
INTEREST
|
L _Jd1 A=1I[cr]P
REPAYMENT j
|
INTEREST '
P
A= X
| 1
0 years N

Figure 3, Debt Reduction With and Without Interest.

DEBT

annual payments

-1
-
¥ L—1 1

==
|

=7
semi-annual __j/r r_—_,—————q
=

payments = I

%:(CR-;M-M\I)P

0 years N
Figure 4. Debt Reduction with Annual
and Semi-annual Payments,
Time=Value of Money Held
Constant.
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Figure 5. Debt Reduction During First Year.

DEBT
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Figure 6. Debt Reduction With Different Frequency of
Repayment But All With Same Time-Value of
Money.
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'M\M
M

and since

we have

r
M\M
14+ r )P=(1 4+ —
( 1) L+ P

all of which is exactly the same as with single-payment plans. There-

fore our derived relationships are also the same as before:

I‘l = (l + ;‘—M)M -1 (l)
§7M=<l+r1>1/M-l (18)

Tet us convince ourselves of the validity of the above by
working out three debt patterns and plotting the results. Suppose we
start with a $10,000 debt, a 20 percent ammual interest rate (rl),

a two-year life, and uniform annual payments.

A= (CR -1, - NP=(CR-20% - 2)0.6545 x $10,000 = $6545

1

An accountant would do this:

End of Debt at Interest Payment Reduction Remaining
Year Start of Year Due In Principal Debt
1 $10,000 $2000 $6545 $hsks $5455
2 $ 5,455, $1090 $6545 $5155 0

Line A in Figure 6 shows the debt pattern calculated above.

Next, let us look at the same debt and the same time-value

of money (rl = 20 percent) but with payments every six months (M = 2).

= 0.20

M

r
1
r
M
o (l+ I‘l)

(1+0.20)2 -1 2 (1.2) /2 - 121,096 - 1 = 0.09

1l

T
(CR - ﬂ¥ - M)P = (CR - 9.6% - 4)0.3127 x $10,000 = $3127

gl&? :le?



In tabular form we have:

End of Year

Period
1 0.5
2 1.0
3 1.5
i 2.0

Debt at
Start of
Period

$10,000
$ 7,833
$ 5,457
$ 2,854

-16-

Interest
Due

$960
$751
$52L
$273

Payment

$3127
$3127
127
$3127

Reduction Remaining
in Debt
Principal
$2167 $7833
$2376 $5u57
$2603 $2854
$2854 0

Line B in Figure 6 shows the debt pattern calculated above.

Finally, let us try it with quarterly payments:

0.20

(1 + rl)l/M -1

1l

]

1.0466 -1 = 0,0466

(1 + 0.20)% _ 12 (1.2)/% 1

(CR - 4.66% - 4 x 2)0.1526 x $10,000 = $1526

In tabular form we have:

End of Year
Period

.25

.50

.75
1.0
1.25
1.50
1.75
2.0

O3 OV =W N

These figures provide Line C in Figure 6.

payment period.,

Debt at
Start of
Period

$10,000
8,940
7,831
6,670
5,455
4,183
2,851
1,458

Interest
Due

$L66
lay
365
311
254
194
133
68

Payment

$1526
1526
1526
1526
1526
1526
1526
1526

Reduction  Remaining
in Debt

Principal
$1060 $89Lo
1109 7831
1161 6670
1215 5455
1272 4183
1332 2851
1395 1458
1458 0

Clearly, as

M increases
we approach Line D, the locus of the residual debt at start of each
Line D, then, applies to continuous compounding.

Note
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that it is not a straight line. Before investigating continuous re-
turns, let us illustrate how equations (1) and (1A) can be used when
returns are known and we want to derive effective interest rates.

Suppose we have two investment opportunities and must choose
between them. FEach has a first cost of $10,000, and a five-year life
and zero disposal value., Alternative A returns $3000 at the end of
each year. Alternative B returns $29OO per year in equal amounts
($1450) every six months. We want to find for each case the effective
interest rate (rl) as our criterion of desirability.

Alternative A

(CR - ry% - 5) = $3,000/$10,000 = 0.30
From plots of CR versus interest rate:

ry = 15.3 percent

Alternative B

r =
2 _M__$1,450
(CR - 5= - 2x5) = 55~ = {57500 = 0-145
as before:
To
5 = 7.4 percent

Applying equation (1):

r
r) = (1 + M—B"[)M -1=(1+ 0.07l+)2 - 1 = 15.7 percent

Conclusion: Alternative B is slightly better. ©Note in the above that
we did not succumb to the temptation of finding the nominal rate (rM).
Remember the dictionary definition of nominal: "being so in name only."
Its numerical value ( in this case 14.8 percent) is, by itself, a
totally useless number,

CONTINUOUS RETURNS

Next we shall look at the extreme case of non-annual uniform
returns: the continuous cash flow. From a practical point of view,
daily net cash flow from a business venture would approximate this case.
We want to learn how to find the effective interest rate (rl) for a
given continuous cash flow produced by a given investment. We can most
readily do this by starting with a known interest rate and then solving
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for the corresponding annual return. If you will recall, our general
equation for periodic returns is:

r
(CR - M—M- MN)P

M
M
where

Ay = returns per year subdivided into M equal amounts
M = payment periods per year
N = years in the loan or investment
P = investment or loan

Ty = nominal annual interest rate

In the above, AM/M represents the cash return per period and rM/M
represents the interest rate per payment period.

Going back to our fundamental equation for capital recovery
factor, we have:

r r
M 1 + M)MN
CR = Ty
——MN _
(1+M) 1
1
also éﬂ
M
therefore
A T r
M M—-< M)

P14+ MY _
M
cancelling 1/M from each side and multiplying by P:

T
M\MN
_ I‘M(l + M—)

- o 4
(1+M_M.)W-1 ®

With continuous compounding, M approaches infinity and we
can re~-introduce the concept of:

e = (1+ l/k)k as ko o
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If we set k = M/r_
where
r, = nominal annual interest rate for continuous compounding
then,
M=rk
and
(T+ MM = (14 r_frk) N
= (1 + 1/k)TN
= erOCN

Substituting into equation (4) and converting all M subscripts to «
to indicate the extreme case of continuous compounding, we have:
TodV
To, €

ho= g P (5)

and, as developed in the chapter on single payments:

I‘l = efeo - 1 (5)
We now have another of those equations in which knowing X
we can find Y, but not vice versa. The practical approach, of course,
is to make a parametric analysis, assuming a methodical series of
X's and plotting the resulting values of Y. We are then ready to work
in either direction. This has been done with equations (3) and (5).
Figure 7 is the result. We can illustrate its use with a simple
example: Find the effective interest rate (r.) for an investment of
$10,000 that returns $2800 annually in a contInuous stream for five years.

N =5
P = $10,000

A= $ 2,800

(R = ?,—” =$I%ﬁ% = 0.28

r.= 15.3 percent (from Figure 7)
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We can check this procedure by inverting the problem. Let
us stipulate an effective interest of 15.3 percent, an investment of
$10,000 and a five-year life. If the returns are uniform and continuous,
how much must they be per annum?

rl = 15,3 percent
P = $10,000
N =5

el = T, + 1 =0.155+1=1.153
therefore,

T 0.1423

00

Applying equation (5):

4 Tw el p _ 0:1423 (1.153)°

® el L g (1.153)° -1
0.28 $10,000 = $2800

$10,000

Since $2800 was the annual return that we used in the previous example,
the validity of our equations is confirmed.

GENERAL, EQUATION FOR RESIDUAL DEBT

To complete our understanding of uniform, non-annual periodic
returns we should develop the general equation for the locus of the
residual amounts owed at the beginning of each payment period. As we
have shown, this curve is in fact the residual debt line for continuous
compounding. We shall refer to the residual debt as BX’ where X 1is
the number of years remaining in the loan period.

Holding the time-value of money constant, the residual amount
(EX) could be paid off in uniform periodic amounts (AM/M) calculated in
the classical manner:
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Equation (6) is a simple, convenient tool which hardly needs
clarification with a numerical example. Quite simply, the residual
debt equals the initial debt multiplied by the capital recovery factor
based on the initial life of the debt and divided by the capital re-
covery factor based on the remaining life. ©So we can now move on to
the case of continuous compounding. First we substitute the basic ex-
pressions for both CR's above:
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Equation (7) may be used where nominal interest rates are
given, equation (8) where effective rates are given. Equation (7
may be more convenient than equation (6) when nominal interest rate per
period (r, /M) or number of periods (MNV or MX) are not conveniently found
in interest tables. With continuous compounding
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1+ r /MM - eré (9)

Substituting into equation (7):
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which is the general equation for the locus of residual debt.

Here is a sample problem., A $1000 debt is to be paid off in
uniform amounts every six months over a three-year period. The effective
interest rate is 12 percent. What is the residual debt after the
payment at the end of the first year?

M=2

N=3

P = $1000

T = 12 percent
X=2

Applying equation (8):

_(1+0.12)% -1
(L+0.12)2 - 1

P $1000 (1 + 0.12)°72

2

1.254 - 1
P2 T.50F -1 $lOOO (l. 12) = §70l¥

Next, suppose the payments are quarterly. If our relation-
ships have been correctly developed, we should find the same residual
debt. This is implied by equation (8) which does not contain the
variable M. But, just to prove our point, let us convert rl to rM and
try our luck with equation (7).

rM/M =(1+r) M (14)
/M = (1.12)9°% - 1 = 0.0286

then
P, = (1.0286)° - 1 $1000 (1.0286)"

(1.0286)2 . 1

.254 -
(check)
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Finally, we can assume continuous compounding and try equation
(10). First we need to find the value of e’w:

T

e =1+ 1
efe = 1,12
2
1.12° - 1
Fx = —= $1000 (1.12)
b
1,127 - 1
1,254 - 1
Py = Tho5 =T $1000 (1.12) = g7ok

(check)

Admitting that the three precisely identical answers are per-
haps more a matter of lenient middle-aged eyes than good slide rule work,
nevertheless, the three identical outcomes prove that you can use any
one of a number of different equations when faced with this sort of
problem.

ITT. ANNUAL AND CONTINUOUS RETURNS IN COMBINATION

In making investment decisions, we may often find combinations
of continuous and annual cash flows., We can illustrate how to handle
these by working a simple problem,

Suppose you are offered the sale of a ferry boat that has an
estimated remaining life of ten years. The city government will give
you a contract of $200,000 per year to carry all the municipal vehicles
that come along. The $200,000 will be paid in a lump sum at the end of
each year, In addition, you will have a daily income from general users
amounting to $500,000 per year. There will be daily operating costs
amounting to $150,000 per year, The annual bill for repairs, and in-
surance (both paid in lump sums) will be $100,000. The net disposal
value at the end of ten years will be $750,000. You want to earn an
interest rate of 20 percent before taxes, How much should you pay for
the ferry?

When an interest rate, such as the 20 percent above, 1s
stipulated without further qualification, we always infer that an effective
annual rate is implied,

=
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20 percent

' = rl + 1 =1.2
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therefore,
roo = 0, 1825

Our net periodic annual amounts are:

City contract $200,000
Repairs and insurance  ($100,000)
Net $100,000

Our net continuous amounts per annum are:

Income $500,000
Operating costs ($150,000)
Net $350,000

If we discount all future amounts to the present, using appropriate
interest rates, the net total figure will tell us how much we can afford
to invest.

Present

Ttem Worth
Periodic returns: $100,000( SPW-20%-10) 4,192 = $ 119,200
Continuous returns: $350,000( SPW-18.23%-10) 4,459 = $1,561,000
Disposal: $750,000( PW-20%-10)0,1615 = $ 121,100
Net present worth = $2,101,300
rounded to 2,100,000

In the above calculation, the present worth of the continuous
returns is found using the nominal interest rate (18.23 percent) and
treating the returns as annual. The SPW is found by taking the recipro-
cal of the CR for 10 years and 18.23 percent interest. Another way of
doing it would be to use Figure 7, taking the reciprocal of the CR for
the 20 percent effective interest rate.

IV, CONCLUSICNS

At this point, the most appropriate thing to do is to repeat
the assertion that the assumption of annual compounding is usually a
valid simplification in long-term investment decisions. Nevertheless,
there may be times when decisions will be between alternatives, one of
which has continuous cash flow characteristics, while the other has
widely spaced periodic returns. In these instances, an understanding
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of the mathematics of non-annual compounding becomes important., This
knowledge is also useful in everyday affairs such as in quarterly or
monthly installment plans.

There are several inherently confusing aspects of non-annual
compounding. For this reason, we must be more than ever careful in
our semantics, Any meaningful discussion in this area must be prefaced
with a review of the thoughts behind the key words.

An important concept is the realization that our standard
interest formulas are not confined to annual compounding., Our standard
interpretation has perhaps given us the mistaken notion that interest
rates are always per annum and that compounding periods are always years.
We have learned here that the standard interpretation represents only a
special case of the general relationships.

The single-payment concepts clearly show that frequent com-
pounding requires lower nominal annual interest rates than would be
needed to maintain the same time-value of money with infrequent com-
pounding. In short, interest rate by itself is no measure of the time-
value of money; it must be modified with a specific compounding period.

The ultimate frequency of compounding is reached when we com-
pound continuously. This is not merely a mathematical concept, because
daily returns from a business enterprise approach this condition.

The logic applied to non-annual uniform returns is derived from the
simple case of single payments. We have stressed the capital recovery
aspects of uniform returns but the ideas could be easily turned in the
other direction to analyze sinking funds, etc,

An economic analyst should be able to deal in both nominal
and effective interest rates. He should understand how to handle both
discrete and continuous returns, and how to find their equivalent interest
rates based on annuval compounding. These are the topics discussed in
this paper. Understanding them is seldom easy, but careful thought and
repeated practice can produce facility in the useful application of
these ideas.
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