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ABSTRACT

Cables play an important role in ship operations,
whether in anchoring, in docking, in towing, or in passing
through locks. The frequent casualties that result from
cable failure attest to the need for a better understanding
of cable dynamics. This paper explains analytical techniques
that can be used to assess the adequacy of cables of all
types. The classical methods for treating static conditions
are reviewed. Then dynamic conditions are analyzed in recog-
nition of transient loads applied to cables (e.g. the surging
of a ship at anchor). Water resistance and cable elasticity
are also recognized. The paper concludes with a numerical
example showing how the foregoing principles can be applied

to a typical situation of a ship at anchor.
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INTRODUCTION

The term "cables" in shipbuilding and marine fields is
understood to imply steel wire ropes, chains, synthetic ropes
and cables made from the hemp or other plants which have
tough fiber. Their main application is in mooring, towing or

anchoring.

Analysis of the forces acting in cables is an important
problem of the design of ships' outfitting and mistakes in
calculations often have disastrous consequences. There is no
need to give many examples because some of them are known to
every naval architect. It is enough to mention that according
to U. S. Coast Guard annual casualties figures in 1969 nearly
600 ship casualties had the failures of anchor, towing and
mooring equipment as primary cause or contributing factors to

cause of casualty.

The main properties of the above listed cables are as

follows:

flexibility - ability to bend without resistance,

strength - characterized by breaking or test load,
weight - always given per unit length of the cable,

elasticity - defined for given load by the elongation

of cable related to its initial length.
The nonlinearity of the elasticity with
respect to the load makes the problem of

its account a very difficult one.

Analysis of the forces or stresses in cables can be divided
into two parts: static and dynamic. Static solution involves

fewer parameters and less complicated mathematical tools. 1In



many cases it gives satisfactory results and helps on the

basis of accumulated experience to make correct decisions.

Unfortunately this approach is not always possible,
particularly when solving comparitively new problems, such
as deep sea mooring, towing in open sea, etc. The solution
of the dynamic problems gives as a by-product a better
understanding of known but unexplained facts. At the same
time we have to mention that dynamic analysis always follows
the static solution as a first initial step.



PART I: SUMMARY OF STATICS

The three main problems that form the static solution

of cables are:

1) Equilibrium of heavy flexible cord.
2) Equilibrium of heavy flexible cord in uniform
stream.

3) Equilibrium of non-uniform heavy cord.

The solution of the first problem gives the well known

catenary equation

y=?]tz—3/cas/z ”;;x— /) (1)

where To - horizontal component of tension (Figure 1)

vy - weight of cord of unit liength

by T

Figure 1

The main features of the catenary form are:

1) The horizontal component of tension is constant.



2) The minimum magnitude of cord tension is equal to

the horizontal component of tension To'

3) The tension at a given point of the cord is linearly

related to the y coordinate at the same point

= +
[=T.+¢Y (2)
The length of the cord (with respect to the origin O) to the

point with coordinate (y) can be given as

=%1//_J‘7:_5/)2__2(%/ (3)

If we rearrange the coordinate system as indicated in

Figure 2 the equation (/) may be transformed as follows

y= 22 5//76 gf; sink J (?Zx) (4)

’

where 2 - distance between two points of support.

Z y S

Figure 2

Formula e

27T,
o= W 2T (5)

gives the relationship between S, T, £ and Y.

For the part of the catenary curve restricted by two



supporting points (xlyl) and (x .Y, ) [Figure 3] we can write

x, A
cost JTTZ — cosr r?; bl (6)
Sinh 7_:2 — Sink 7‘? ,f
| ¥
4 f
5
H
s i
Z
z, x;
Figure 3

The solution of this system with respect to x and x

x, = 7;522/%/“27-(54-/-/)]2 55+: S+H)}
2///27 (s+)]+ 5 + 57 (5”’//(

For a given value of (x2 - xl) = 2 these equations can help

to f£ind one of the three parameters: S, H and TO when the

other two are known.
T
When the relation —% is large, equation (1) can be replaced

by a simpler formula

_ 2
y——é—i(xf—x) (8)

The horizontal component of the tension then can be found

as L5

ré (9)
Voy(5-¢)

o



The equilibrium of a heavy, flexible cord in a uniform stream

can be described by system of differential equations

TSing + d (TSin p)

47 = ply
where C—Cf—-yol from /?=6’//%‘yi{5”‘773

resistance coefficient

cl

mass density of water

diameter of cord
The solution follows as
T =T, + YY (usingT=TOwheny=0) .

From the second equation

ZJ@SIB /- Pq/{Z_{./ 4//{2_/_/ (11)

r=¢ RAGsp-1+Vyjz+/




where A =

<|Q

To obtain the constant C we can apply the surface boundary
condition
T cosf = Po

where Po - horizontal force acting upon the ship.

For the case of non-uniform stream with a given stepwise
velocity distribution the configuration and tension of the
cord can be found as a combination of solutions for the depth
intervals with constant speed. (qu‘sj

R RIS TR~

Figure 5

The analysis of formulas (2), and (11) shows that to
a very large extent the tension depends upon the cable weight
and the vertical distance between the supporting points. The
most rational type of cable from this point of view is one

with the constant stress

6 = = Const (12)

|



Using (12) we can establish a relation between the tension

(T) and y (weight of the unit length of cable)

R
7= 6F =% (13)

where 2 - is a coefficient, which can be easily calculated
for each type of cable.

The differential equations of equilibrium can be written

T . . AB_ [
z;_f’ dg——fosz/s

or, taking into account (13)

ar . B
2/ 2y

as

(14)

’ZC%?/S (15)

a’y_
The final results of solution are given as:
4
T=¢Ce
-z
6&%6-= 626? 4
o (16)
=L -
J=z

cos (zax + (’3)
S=ttn (%Y1 )+,

, C and C are constants, which can be found
3 L

where C1' C2
accordingly to the boundary conditions of the particular pro-

blem to be solved.



PART II: THE DYNAMICS OF CABLES

In actual conditions of marine application cables for the
most part are subjected to dynamic loading due to oscillations
and jerks that are unavoidable when mooring, towing, etc.
Using the simplified mathematical model we can replace the
motion of real ships by the fluctuation of one of the cord
supporting points. Taking into account the high order of
forces causing ships to heave and pitch we can accept the
assumption that the parameters of the motion of supporting
point are independent of the cord motion parameters. Very
frequently the displacements of the supporting point can be
thought of as small in comparison to the length of cord. This
enables us to make several additional useful assumptions. One
of them is that the displacements of the cord from position of
its static equilibrium are small and we can use the static

configuration as a form of cables involved in dynamic motion.

We must mention another important assumption. For a cord
hanging freely between two supports positioned on the same
level we assume that the "suspension" (distance from the lowest
point of cord to the level of supports) is small. This assump-
tion is justified because we are interested in the load combi-
nation which produces the maximum stress. The corresponding
maximum static tension invariably leads to the small suspension.
This assumption leads to considerable mathematical simplifications
such as

—~ 7~
Cosp =0, 2S~ax 7o . (17

Let us evaluate the range of suspension values where we can
accept this assumption without losing much accuracy. Using
the simplified equation of cable form



5/=217:; [fx-xz)

(18)
we can see that the tangent of B
_dy _ L
lop = 7% =27 (6-2%)
with maximum value
_ 2
ZLf/émax _ 27, (19)
If we denote the suspension as Ymax’ then from (18)
7€
L= - (20)
8 Ymax
Substituting Ty in (19) we get
ZL — 4/_9/%%
3 Prax .’
or
—
l/ / - —y — Z/gmax
2
Ceﬁv;%mx €

Taking into account comparitively small influence of the

parts of cable near its supports and accepting 10% inaccuracy
Ymax
1 L

0 to 0.167,(5). This is quite sufficient for all practical

the above mentioned assumption is valid for

in the range
purposes. Let us now prove that the case of the cord with

small suspension or "flat cord" is most interesting from

the point of dynamic also.

10
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Figure 6

When the point of support moves horizontally with certain
speed (in Figure 6 the right point B moves the right with
speed Vz) all points of cord acquire the speed with distribution
of its vertical components as shown in Figure 6. The relation
between VZ and amplitude meaning of cord speed (V point A) can

be established on energy basis
4
o I Ao
Ly =y vsin BF e, (21)

/4o of . , . . .
where Zféﬁﬂ'zf- approximately described the distribution of
the vertical components of cord speed. After integration

l
7:yz' = ’nyjz— (22)
with the help of (20) we get

y= B o 2y 2

= =Y — (23)
¢ Asy%ax 57 ﬁ@mx

Ymax

Note that when is decreasing,the vertical speed of the
cord increases with a corresponding increase in resistance
and inertia forces.
Summarizing,
1. The change in cord tension has neglected effect upon forces

which generate cord oscillation.

11



2. The static form of cord may be used to describe position

of the cord in dynamic motion.

3. We shall consider the flat cord, whose suspension is

small in comparison with length.

A. Motion of flexible, non-elastic cord generated by

fluctuation of supporting point

The given displacement of supporting point can be
resolved in vertical and horizontal parts. Let us investi-
gate the motion caused by each component seperately. We

might as well start from the vertical motion of support.

Al. Considering the balance of forces acting on an infinite-
simal cord element with displacement y(x,t) from its static

position we have

¢ 2 =« 5—922 (24)

where a = V7ZZ. and q - acceleration of freely rolling
body. When t = 0 we may assume linear distribution of ver-

tical speed therefore the initial conditions are

y/t=o=__0 ; 5// ZAJY_ZZ:_ | (25)

The boundary conditions

T
y/x,o =0 ; yhz /éSn%;,z (26)

where T and h - period and amplitude of support motion.

Solution of (24) can be found as a sum

y=10- Uo

where Uo - arbitrary function satisfying given boundary condition.

12



For example Z[o = f(’rj&n _‘%@‘:—‘ to obtain y(xj may be used the
form of cord in limit condition, when T + o

U = ?xS/}z %"Z‘

3

and y = 4/__/_2_5' Q”ZL (27)

After substitution in (24) we get

2, 2
Lo T w2y,

The function U can be introduced as a sum of free and forced

oscillations. The final result of solution ig

5}027!?‘

o= Z [2- Sin W), + 275;”@;‘ < 7'-/5/0———- (29)

razm L2 . oxt

where @ = Z£Z%% - L= zZ

” Z . Z X/e ,C.
The average meaning of inertia forces is

Sr i
-Z g Y 2z -
Qv = (30)
S

where j}t - the second derivative with respect to time.

The additional tension due to inertia forces is
v S
AZ ~ AT— 74 / /{ yma (31)
ymax

A2. Let us now consider the effect of horizontal displace-

ment of supporting point. The solution of this problem in
full details practically is outside the reach of contemporary
mathematical methods. Without losing much generality we may

13



accept several new assumptions:

1. The relation between vertical speed of cord mid-

point and horizontal speed of support is limited by

_ 1
V=545

2. Only vertical component of cord motion must be

taken into account.

With the account of all mentioned, the differential

equation of cord motion can be written as

0% 2y
5—{2_ zax=+f(xzy (32)
where J((x‘ Zy = — atz and Yo function of forced

motion of cord.

The initial and boundary conditions are

Yoo Y9

The solution may be found in the form

y(xt) = > T H)sin 2F @
After substituting (33) in (32) we obtain
ST @)+ wy T ()] sin 55 = ) e

if for the expression inside brackets we have

T +w' T,(8) = %

l
Q

where

Fol8) = £ [ H2) Sin m2E e

14



then z
L) =4 [ A @) sna, (b-2) 2,

Assuming that y_(x,t) = ASin 2772Lf/j we get
j,l7/zf = 2_/2_ Z) Sin 2zf/f[/&n””ra/x(35)

If, for instance GY?/// 5b7——- then for all n # 1 the
integral in the last expression is equal to zero, and

ﬁc zy - Zﬁ g—.szaZ‘ W Stre £ 2772‘

7z 5//2153 (36)
'~(%2)"
where w = an
l:

B. Motion of suspended cord with account of water resistance

In the above solutions it has been taken for granted
that air resistance has negligible effect on the parameters
of cord motion. More frequently we have to steady the behavior
of submerged cable when water resistance substantially affects
its form and tension. Here again the cases of horizontal and

vertical motion of the cord supporting point are treated

separately.

Bl. With the account of all previous assumptions and neglecting
the inertia forces, the equation of cord motion generated by

vertical fluctuation of its support can be written as

2i=E _ o ed L
axz / 7 =¢ (37)

This equation describes the motion of cord in close
proximity to the position of its static equilibrium, where
inertia forces are small. Comparably small change of the

15



speed in mentioned period justifies the linearization of
the resistance
2
oYy 2 oY

o = % 52 (372)

with corresponding adjustment of coefficient a?

For the initial and boundary conditions

9{=0=0}' _QZ=O= yZd———AS/rz%?f (38)

the final solution of (37a) can be written as

y= QAZ Kdn 5(/7 z /’w” 5,? 2722‘ 272(_05 ]72“ 27,-—4/:,7(39)

s e (T e

7

W, ='7§z-

The numerical analysis of the solution (39) indicated that
for the practical range of parameters To’ £, d only very
small part of the cord (approximately 1/20 of length) near

the point of support is involved in motion.

Consequently the cord motion generated by vertical
fluctuation of the supporting point doesn't cause the sub-

stantial change of tension and may be neglected.

B2. Let us now consider the role of horizontal fluctuation

of the support. Similarly to the previous case for all parts
of cord we will take into account only vertical components of
motion, assuming for the vertical speed the following distri-

bution

nx

U = 75‘"’7 (40)

The differential equation of the cord configuration for the

16



moment when V reaches its maximum value is

&% 72
daf/f 07_ 5//222725—7{‘— (41)

After integrating this equation twice, we have
Ix  x? [ 2722) d"/ar x/
4= = 4 T 332 /= ]+ 2 Zz/(42)

where the following boundary conditions were used

y =0, when x = 0 = &

VTP

QX = 0, when x =

ymax

e

Introducing ¢ = as a "form parameter", where

= when x = &
Y = Ypax -2

instead of (42) we have

96=J_(_C’f:_z re

T.\ 714 +7
(C”Z _ /cyzl_/_ re
A x (74 X G sz

The second form of the sum represents the static tension of the
suspended cord (To st) therefore

2
cU°l
=  —_—
7: 7:52" ///Z',x (44)
After replacing v by (23) we have
cl 2
7: = 7:52‘ + 270 3 //Z- (45)

Several numerical examples of calculation were made for the

17



practical problems of towing and mooring. They indicated that
figures given by formula (45) are far outside the breaking load
limits for all existing wire ropes and chains. The careful
analysis suggested that only one assumption - non-elasticity

of the cord - may be taken as a reason for the above controversy.
In fact, all types of existing cables are stretchable enough to

cover considerable part of displacement of the supporting point.

B3. Effect of elasticity on the cord tension

In view of the fact that the assumption of rigidity leads
to an unrealistic result we can suggest that the displacement
of cord supporting point may be represented as a sum of two
components: stretch of the cord and change of its configuration.
These two parts are tightly interconnected, because the stretch
of cord is always the result of the increase of tension caused

by change of form and corresponding water resistance.

Let us denote the speed component related to the change
of form as V, and the second component due to the cord stretch
as VS. The additional tension (AT) can be expressed as
follows:

{
al = 2670953 /‘]”)2 (46)

Cord elongation

S -
A5=07—<‘5dz (47)

where S - length of cable
& - modulus of elasticity

Assuming that S = [

c ZZ a2

= — = 48
S 23 270642 AF (48)

18



and finally the sum of VS and V must be equal to V

4

U+ ¥ = VA

dU*
Va =2 - (49)

M E = G
where

_ c/

M= 270 2°&d 2 (50)

For the most part, the function at the right hand side of
(49) is periodic with T as time of full cycle. Because the
maximum value of AT is the center of our interest, solution
may be limited to the interval of time when the distance
between supporting points increases. Within this interval
the speed VZ is positive and it changes from O to its maximum
value and back. Assuming the linear dependence of the speed
on time we can write two separate equations

1/‘.;_/% a{#z %l , 0< 1< %L

V+/u //— 4"7 i 7,‘<£'L (52)

(51)

The first equation can be solved using the substitution

V=47

The final result is

7?; /%y/jz’“ /} /i (53)

v
%

v _ /. ’ (54)
a2 4’5’+/—/,

4

The maximum ratio according to (53) is when t =

o A

where

y= 2n%
T

19



The second equation (52) after substitution V? = y can be

presented in general form
y'= H)y % g/xjy + A(%)

_ [hA)T”
9=/ e “'

Omitting all intermediate operations the final result may
be presented as
z"‘“”" 'g}ﬂz‘”/
(ﬂé-/ — (’ exp [ V4¥-/ f | £4
T = }”>02:ﬁ(55)
(¥z* i
25+ Z+ /

with solution

/—4_?—/} /_2902+/—W/ (56)
C [2%z+/+//‘_‘_‘j[%+z+/os, (P<qzs)

where z=_[.__/
U YL

The constant C may be obtained using the initial condition

for the second interval:

z=—'—— /m_// = 0.

Unfortunately the solution doesn't establish the direct
relationship between the speed ratio %e and time. This ratio
depends upon parameter ¥ and time, its maximum value is depen-
dent only on parameter 59. The corresponding inter-relations are

presented in Figures 7 and 8 in graphical form.

20
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After obtaining the maximum magnitude of speed related

to change of form Via we can find the maximum additional

xl
dynamic tension

21



PART III: SOME PRACTICAL CONSIDERATIONS

Any calculating method would be of no use without two
elements -- the forces acting on the system and corresponding
safety factor. This study was initiated after an unrealistically
large safety factor was obtained when the conventional anchorage
problem was analyzed from the static point of view. When the new
techhique described here was applied to this problem the safety
factor was within practical limits and what was even more
important,it was almost constant for the whole range of ship
size covered by the Rules for construction of Register of
Shipping of U.S.S.R.:

T
- =20+ 23 (57)
T e
where Ty ~ breaking or test load,
Tmax = Tst. + ATmax .

The length of towing cable may be taken as distance
between ships. The dynamic component of towing cable tension

can be obtained as

Ts
2z %

/

sl =

where 2.2 - safety factor.

Using expression (55) and the magnitude of dynamic tension
AT the speed ratio %E may be found and consequently can be
calculated for all possible combinations of T and h for the

previously given wind speed.

In 1949 A. N. Krilov introduced the assumption that the para-

meters of ship motion in vertical longitudinal plane are equal

22



to the period and amplitude of water particles involved in
wave motion. Acceptance of this assumption here leads to 3

conservative mistake, which is bigger for bigger ships.

For the calculations of Tmax were taken the following
conditions

wind speed - 50 knots |,
deepness - 80-100 m. ,
head sea with the wave length equal to the length of

ship.

When applying given above safety factor (sf), we guarantee the
same reliability standard as accepted by contemporary con-
struction rules for anchor cables.

Towing cables - Application of the method described here may

help to solve two main problems of towing: determination of
possible wind and sea conditions when using towing cable with
given diameter; and determination of the size of towing cable

for given sea and wind conditions.
In the first case the following calculation procedure
may be given:

1) Definition of the towed ship resistance as a function

).

of its speed and speed of wind (TSt

2) Towing cable form parameter can be found using

expression (8 ).
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APPENDIX

Calculation of anchor chain tension

(numerical example)

Ship particulars: Length L = 120 m.
Breadth B 14 m.
Draft D 7.5 m.
Block coefficient § = 0.73 (CB)
B = 0.96 (cM)
80 m.

Sea deepness Hs

According to the Rules for ship construction of Register of
Shipping of the U.S.S.R., a ship must be provided with an anchor

chain:

length 2 x 250 m.

53 mm (y = 52 kg/m)

diameter d

1) To obtain the static tension and form of anchor cable we

assume that

25 m/sec (approx. 50 knots),
3 km/h (v 2kn)

Vo - wind speed

speed of current

I
-
n
<

N

Wind pressure Ry w Sf

0.0001

modified ship front area

where kw
S

£

S, = SS + 0.3S

£ h

Ss -~ front area of superstructures (95 m?)

24



Sh - front area of ship's hull above waterline (49 m?2)

= 2
Sf = 110 m

Vw - effective speed of the wind.

Taking into account 50% increase of speed in the gust (Vq)

U, = Zﬁ'p/;-+jfi(€é9 -+-:§ (%%%/z = 30 er

Finally
Rw=g/9f-
Hull resistance can be calculated using simplified formula
BDy-*?

Ko =8 —7

where A - numerical coefficient (A ~ 400)

P5=23f

With the account of propeller resistance Rh = 2.7 t.

Force acting on one anchor chain

7; j— _fi%étgfy — 6;3-t-

The suspended length (length of chain without its part on the

bottom) is
S = Hs Y j?%; + /) = 160nm.
S

The configuration of suspended part of chain is described by the

g=:§@%§?-d==waﬁ:é%—9)

The calculations are given in the table

equation

25



Yx ¥x Yx _
x To ch 75 ch 75 =1 Y
30 | 0.25 |1.0314 0.0314 3.8
60 | 0.50 |[1.1276 0.1276 15.3
90 | 0.75 |[1.2947 0.2947 35.4
120 | 1.00 {1.5431 0.5431 65.2
150 | 1.25 |1.8884 0.8884 107.5
1

The form parameter 2 = T35

The maximum static tension

T = T+yH = 105

2) The additional dynamic tension

Vs
ATl =
270 a¢ 3
clod
where C = ; for the chain the resistance coefficient
c'd = l.Bc where Bc - the size of link
(0.053 m - 36)
C =97

The coefficient of elasticity Ed? can be obtained on the
basis of the chain test results. The relative elongation for
the test load (78%f for the chain under consideration) is equal
to 5 - 5.5%.

So the elasticity factor £d% = 1.560,000 kg. And finally

The parameters of the motion of supporting point (ship bow)

are T = 8.75 sec, V, = 49 m/sec.

[4

Speed ratio (Figure§ ) z— = 0.64
4

2
AT 87096949/ /0 785
270 = 27200 A

26



The safety factor

is in acceptable region.

27



The University of Michigan, as an equal opportunity/affirmative action
employer, complies with all applicable federal and state laws regarding
nondiscrimination and affirmative action, including Title IX of the
Education Amendments of 1972 and Section 504 of the Rehabilitation
Act of 1973. The University of Michigan is committed to a policy of
nondiscrimination and equal opportunity for all persons regardless of
race, sex, color, religion, creed, national origin or ancestry, age,
marital status, sexual orientation, gender identity, gender expression,
disability, or Vietnam-era veteran status in employment, educational
programs and activities, and admissions. Inquiries or complaints may
be addressed to the Senior Director for Institutional Equity and Title
IX/Section 504 Coordinator, Office of Institutional Equity, 2072
Administrative Services Building, Ann Arbor, Michigan 48109-1432,
734-763-0235, TTY 734-647-1388. For other University of Michigan
information call 734-764-1817.





