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ABSTRACT

My purpose in undertaking the work summarized in
this paper has been to provide the designer with the
basic information and methods with which to design ferro-
cement structures. The premise throughout the paper
is that the standard methods for analyzing reinforced
concrete are applicable. ‘

The paper begins with a description of the physical
behavior of ferro-cement experiencing a bending moment.
The strength analysis for working loads is covered, and
a method is suggested for estimating the ultimate strength.
The appendices include test data, strength calculations,
and comparisons of calculations with test results.

My particular interest is in marine applications,
hence it is my hope that this paper will permit the
rational design of ferro-cement boats.



PREFACE

The questions I hear most often about ferro-cement
boats are still: How could it float? Won't it crack?
Won't it be too heavy? This appears particularly ironic,
for although it is common knowledge that ferro-cement
small craft and full sized concrete ships have been con-
structed for some time, the naval architect who wishes
to design a ferro-cement structure to a given loading
has very little to go on. Not only is there a shortage
of strength data, but also it is difficult to estimate
the strength of different types of ferro-cement config-
urations. The naval architect needs (1) some general
qualitative data on behavior and weights, (2) quantita-
tive strength data, and (3) an analysis method for
estimating the strength of configuration for which there
is no test data.

My principal objective in this paper is to focus on
the third category, or specifically, to find an analysis
method for ferro-cement in bending.

Rather than assume that ferro-cement is a homogen-
eous material and then attempt to find an allowable stress,
I have reverted to reinforced concrete techniques. I have
used working stress analysis to estimate the stress under
normal working loads, and ultimate strength analysis for
predicting the ultimate strength.

The approach for this work has been to first test
the ferro-cement components. That is, to test the mortar,
wire mesh, and reinforcing rods separately. Secondly, to
fabricate ferro-cement specimens and test them in bending,
and thirdly, to compare the test results with the calculated
strength. The test results, calculations, and comparisons
are given in the appendices whereas the theory is given in
the main body of the paper.



In general the predictions are conservative, and the
data scatter is within the limits normally encountered in
reinforced concrete tests. Hence the methods outlined could
be used for analyzing marine structures.

In particular, one could design to the loads, if they
are known. In the absence of loading information the struc-
ture could be designed to the equivalent strength or stiff-
ness of a known successful structure of a different material.
For example, the shell of a ferro-cement boat could be
designed to the equivalent strength or stiffness of a similar
boat in fiberglass or laminated wocd. In any case, the naval
architect should be able to estimate the strength and weight
of a ferro-cement boat, and to furnish quantitative answers
to those three simple questions that he will undoubtedly be
asked.

There are a number of people who have given generously
of their time in assisting me with this work. The project
was originally suggested by Robert Allan and was done under
the supervision of Professor Amelio M. D'Arcangelo. I am
greatly indebted for the untiring help of Professors Legg
and Legatski of the Civil Engineering Department, and for
the constant encouragement of Professor Benford, Chairman
of the Department of Naval Architecture and Marine Engin-
eering. Thanks also go to Charles Canby for going through
my calculations and making helpful suggestions for the format,
and to Debbie Moore, for doing a fine job of a very difficult
typing task. The photographs 5 and 6 in Appendix E were taken
by Terry Little, and the one on page 3 was taken by Dean Runyan.
Martin Iorns, of Fibersteel Corporation, deserves credit for
his encouragement and support. Finally, a word of thanks goes
to M. Rosenblatt and Son, Inc. for assisting with the travel

expenses for the presentation of this paper.
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I
FORCE-DEFLECTION CHARACTERISTICS

The typical force-deflection curve of a ferro-cement
specimen experiencing a gradually increasing bending moment
is shown in Figure 1. The curve has three distinct parts.
The first part is in the uncracked range. It is approximately
linear, and the bending moments are gquite low. The curve
then changes slope and becomes linear again in the cracked
range. The curve changes slope a second time and becomes
horizontal.

In the first part of the curve the specimen behaves
elastically, as is suggested by the constant slope. The
steel and mortar are stressed below their yield strength
on both the tension and the compression sides of the beam.
The tensile strength of the mortar, however, is quite low,
approximately 400 1lb/in.?. Furthermore, since mortar is a
brittle material, its tensile strength is not clearly
defined. Hence, at a relatively low and somewhat unpredictable

bending moment the mortar will crack on the tension side.

i Yielding

Cracked
range
(M

Uncracked range

Deflection (D)

Fig. 1. Load deflection curve.



2 Force-Deflection Characteristics

The cracks will propagate from the tension surface toward
the middle of the specimen and will stop at the neutral
axis where the stress is zero. Figure 3 illustrates this
cracking process. These cracks form and propagate between
the uncracked range and the cracked range. As the specimen
cracks there is a load transfer. The tensile load carried
by the mortar is transferred to the steel in the tension
side, and there is a subsequent shift of the neutral axis.
With increasing load a stable situation will develop, and
the beam will again behave elastically, but in the cracked
range. The compressive strength of mortar is high compared
to the tensile strength, so the curve follows Hooke's Law
(i.e. is linear) in the cracked range. Eventually, as the
load is increased, the mortar or the steel, or both, will
reach their yield strength. If the steel begins to fail

first, the specimen is underreinforced; if the mortar fails

first, the specimen is overreinforced; and if both fail

simultaneously, the specimen is a balanced beam.

Yielding

(M

Cracked Range

Deflection (D)

Fig. 2. Load deflection curve for a
cracked specimen.
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(a)

Fig. 3. (a) Specimen is unstressed or lightly stressed and
remains uncracked. (b) Specimen is cracked to the neutral
axis and is operating in the cracked range. Cracks are micro-
scopic. (c) Specimen is failing. Cracks become visible.

(d) Photograph of actual test specimen after failure at
point of load application (right side). Cracks were made
visible with the aid of a dye.



4 Force-Deflection Characteristics

A beam which is cracked, perhaps because of some
previous loading, would not exhibit the initial stiffness
of the uncracked beam. The force deflection curve would
look like Fig. 2.



IT
WORKING-STRESS ANALYSIS

Working-stress analysis is valid in the uncracked and
in the cracked regions. Since most beams are designed to
operate in the cracked region, the analysis method will be
described for this range. With one minor modification, it
is directly applicable in the uncracked range.

The analysis of composite beams in the elastic range
is fairly simple if we assume that the strains vary linearly
from the neutral axis and are independent of the material.
In other words, at a given distance from the neutral axis,
the strains in the different materials, e.g., mortar and

steel, are equal. The stresses are then

o = ¢E (2.1)
where

0o = stress

€ = strain

E = Young's modulus

If we choose one of the materials as the reference

material, for example the mortar, we can transform the
other materials into equivalent areas of the reference

material. We then analyze the transformed beam as a

homogeneous beam by conventional slender-beam theory.



6 Working-Stress Analysis

L@

(a) (b)
Fig. 4. (a) Actual reinforced concrete beam.

(b) Transformed beam. An equivalent area of
concrete has been added to replace the steel
reinforcing bar.

A study of the reinforced beam in Figure 4 will
illustrate such transformations. We choose the mortar
as the reference material and want to replace the steel
reinforcing bar with a suitable area of concrete so that

the resulting transformed beam behaves like the original

beam.
The load carried by the steel bar is
F, = A0, (2.2)
where
FS = total force on the steel bar
As = cross-sectional area of the

steel bar

o = stress in the steel bar

We want the load carried by the equivalent concrete

area of the transformed beam to be the same:
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F._=Ag0 (2.3)

1l
i
Q

We assumed that the strain at any distance from the
neutral axis would be the same in both materials. Since
we are placing the equivalent area of concrete at the

location of the steel,

es = ec (2.4)
where

€ = strain in the steel

Ec = strain in the concrete
Since

oy = esEs (2.5)
and

Oc = ecEc (2.6)

equation (2.3) becomes

AC(ECEC) = As(esES) (2.7)
Since

EC = €S
we get

AE =AE (2.8)



8 Working-Stress Analysis

The equivalent concrete area will then be

ASES
A =
c Ec

The ratio of the Young's moduli is usually referred
to as the "modular ratio" (n),

I?:Iltlj
n

= n (2.9)
c
Having determined this, we now replace the reinforce-

ment bar with the equivalent concrete area,

A, = nA_ (2.10)
at exactly the same distance from the neutral axis. This
is sketched symbolically in Figure 4(b).
With this imaginary transformed beam, we can now det-

ermine the stresses as a function of the bending moment,

Ac
2a

Neutral
axis

Fig. 5. Dimensions of the cross
section of the beam.
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or the bending moment as a function of the stresses. In

order to do either, we must find the neutral axis of the

beam.

The neutral axis will lie at the centroid of the

transformed beam. Neglecting the tension concrete, but

not the transformed steel area, we calculate the first

moment of the area about an assumed neutral axis and set

it equal to zero. Using the dimensions of Figure 5,
aAc—c(nAs) =0 (2.11)
a(2a(b))-c(nAS) =0 (2.12)

We have the additional information that

2a+c = d

Hence
c = d-2a (2.13)

and equation (2.12) becomes
a(2a(b))—(d—2a)(nAs) =0 (2.14)

The only unknown in this equation is "a." Hence we can

solve for it:
2 - =
2a“b dnAS + 2anAs 0

(2b)a®+(2nA )a- dnA = 0
s s

=(2nA_ + /(2nA_)%-4(2b) (-dna )
a = 5 J S S (2.15)
2(2b)

i.e., we have a quadratic equation to solve in order to
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locate the neutral axis.

The bending moment and the stress are related by the

equation
—M y
o, = __Ib (2.16)
YY
where
o, = stress in the x-direction (along the

beam) at a location "y" from the neutral

axis
Mb = bending moment

Iyy = transverse moment of inertia of trans-
formed beam about the neutral axis

For the particular beam we are studying,

HH
It

Jrzyzdy (2.17)

— 2, (2a) ’b
= nAsc +———§—— (2.18)

If we know the bending moment we can calculate the

stress at any location:

cxc = — (2.19)
YY
Oxg = DOy, (2.20)
where
Ox = concrete stress
c

Oxg = steel stress
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Conversely, for any given stress we can determine the

bending moment.

For ferro-cement the procedure is the same, only

there are more layers of steel and hence the moment

equations have more terms.

Sample Working-Stress Calculation for a Ferro-Cement Specimen

(1)

(2)

(3)

(4)

(1)

The steps in calculating a ferro-cement specimen are:
determining the dimensions and properties
finding the neutral axis
calculating I
I tyy

Y
Yy

solving O, =

Dimensions and properties

Properties

Wire mesh area (A )Ll........... ... ... .04787 in.?2

Rod area ( AL ) i, .0829 in.?

Og, MOTtAr ......oiiiiiiiiiiiinnn..... ++ 5,930 1b/in.?2
o wire mesh ........ceeueuunnn... eeees 91,800 1b/in.?2
0, Wire mesh ........ Gt e e e nccenneean .. 107,000 1b/in.?2

Specific weight of mortar ( W )........ 145 lb/ft?3

1 A is the total area of the corresponding layer of

reinforcement.
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Young's modulus of mortar

E 2

c (W) 1.5 (33) (ch) 0.5

(145) 5 (33) (5930) °-5

57,400(77.007)

= 4.42 X 10° 1b/in.?

A
R 23" R

Fig. 6. Beam configuration

2 Ferguson, P. M. Reinforced Concrete Fundamentals. New
York: John Wiley and Sons, March 1966. p. 586
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3/16" Rod -k

r-.156"
J
.375"
i
ST : ! .156"
.,1:“;,;¥§:§jj,;j{;}§j'f -
Tension side —/ ?‘213"

Fig. 7.

l1.00"

3 layers of 1/2" X 19 gage

galvanized hardware cloth

Section through beam

Modular ratio

E
S

E
c

29 x 10°¢

4.42 x 10°

6.561

Transformed areas

nAa

nAr

6.561 x

.04787

.3140 in.?

6.561 x

.0829

13
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.5439 in.?2
5.561 x .,04787
= ,2662 in.?

%*
(n—l)Aw

Mortar Area

Effective area is in the compression side:

w
il

2a(6) (for a 6" wide beam)

= l2a

.1781"
N
.3593"

.17195"

r
.2907"

Aw(n)—/

Fig. 8. Section through transformed beam.

Dimensions

From Figure 8,

a = unknown
b = .5374-2a
c = .70935-2a
d = 2a-.1781

* For explanation of (n-1) see page 18.
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(2) Neutral axis

The neutral axis is at the centroid of the trans-

formed beam. Hence

Substituting from Figure 8,
ZMn.a. = 12a(a)+(n-l)Aw(d)—nAr(b)-nAw(c)
= 12(a?)+(.2662) (2a-.1781)
-(.5439) (.5374-2a)-(.3140) (.70925-2a)
= 12a?+.5324a-.04741-.2923+1.088a
-.2227+.628a
= 12a®+(.5324+1.088+.628)a

-(.04741+.2923+.2227)

= 12a%+2.2484a-.56241

Hence, ;
_ —2.2484i\k2.2484)2-4(12)(-.56241)
B 24

<1424
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fy
2a=.2848 Compression
€
N Tension
(a) (b)
Fig. 9. (a) Neutral axis location. (b) Strain distribution

through member.

(3) Moment of inertia

I = 2a
yy = ¥ dy

- (n- 2 2 2, (6)(2a)°®
= (n l)Aw(d) +nAr(b) +nAw(c) e

.2662(.1067)2+.5439(.2526) >+ .3140(.42445)?2

6(.2848) 3

+ 3

.13787 in.*

(4) Stresses and bending moments

Suppose we impose a bending moment of 2,000 in.-1b.
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Mortar compressive stress

y = .2848
s = Y
cC I
Yy
= =2,000 in.-1b(.2848 in.)
.13787 in.*
= 4,131 1b
in.
Steel tensile stress
y = -.4026
O, =n o
Yy
— -2,000(-.4026)
= 6.561 13787
= 38,318 1P
in.

Suppose we want to know what the bending moment will

be if we load the mortar to its ultimate stress.
-M = 4 ¥Y¥
b y

(5930 1b/in.2) (.13787 in.")
2848 in.

= 2871 in.-1b
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Compression Steel

As noted in the sample calculation for the 1.00-in.
ferro-cement specimen, compression steel is converted to
an equivalent mortar area by the ratio (n-1). The explanation
for this follows.3
Consider a column experiencing a compressive load (P).

Let

Ag = gross area of mortar
As = steel area
. Ac = net mortar area
P = Acoc+Ascs (2.21)
o] o]
- S _ _¢
e =5 = 3 (2.22)
s c
Solving equation (2.22) for the steel stress,
Es
0 = =— 0
s Ec c
Substituting this into equation (2.21),
P = Acoc+As(noc)
= oc(Ac+nAs) (2.23)

3 Ferguson, P. M. Reinforced Concrete Fundamentals. New
York: John Wiley and Sons, March 1966. p 42
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Since

P = o, (Ag-AS+nAS)

el
[}

ocAgtn-1) () (2.24)

Hence the modular ratio for compression steel is
(n-1). Actually it is common practice in concrete design
to use a modular ratio of (2n) for long time loads because,
after a period of time, the steel is carrying a much greater
portion of the load when the structure was new. The in-
creased load is due to concrete creep.

Analysis in the Uncracked Range

Analysié in the uncracked range would be the same as
that in the cracked range, except that a modular ratio of
(n-1) is used throughout. This ratio is used for the same
reason as that in the case of compression steel.

The end of the uncracked range is difficult to predict
because of the brittle nature of the mortar. Concrete has a
tensile strength of approximately 10 percent of its compressive
strength. Yielding, however, will be highly dependent on
stress concentrations which arise from surface roughness and
internal imperfections.
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ULTIMATE STRENGTH ANALYSIS

Yielding of Ferro-Cement

Theoretically, a ferro-cement specimen will begin

to yield when

(1) the stress in the mortar reaches the compres-
sion strength, or

(2) the stress in the steel reinforcement reaches
the yield strength, or

(3) both (1) and (2) occur simultaneously

(a) is termed an overreinforced beam,
(b) an underreinforced beam, and
(c) a balanced beam.

In an underreinforced beam the steel yields first
and there is considerable deflection before failure. The
failure process is shown in Figure 10. When the steel

Fig. 10. Failure of an underreinforced beam. (a) to (c)
shows the actual failure, and (d) shows the linearized
model.

- 20 -
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ylelds, the neutral axis moves up. This increases the
moment arm between the resultant of the mortar force (Fc)
and the steel force (Fs), which slightly increases the
load-carrying capacity. The stress distribution in the
mortar becomes nonlinear, as shown in Figure 10. Eventually
the mortar fails in compression and the entire beam fails.
The fact that the beam will undergo considerable deflection
before failing gives warning of the oncoming failure. For
this reason most land structures are underreinforced.

In an overreinforced beam the mortar fails first, as
shown in Figure 1l1l. As the outer fibers fail, the neutral
axis moves down, hence decreasing the distance between Fs
and FC and diminishing the load-carrying capacity. As a
result, the overreinforced beam tends to fail rather
suddenly.

The balanced beam is primarily of academic interest

and will not be considered here.

(a) (b) (c) (d)
Fig. 11. Failure of an overreinforced beam. (a) to (c)

shows the actual failure, and (d) shows the linearized
model.

Estimating Ultimate Strength

The usual procedure for estimating the ultimate
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strength of a concrete beam is to replace the actual stress
distribution in the mortar by an equivalent stress block,

4 id

,_" . o ,'.‘-,.'

(a) (b)

Fig. 12. (a) Dimensions of beam. (b) Stress block and
resultant forces.

as shown in Figures 10 and 11. Take, for example, the

beam in Figure 12

Fc = Acoc (3.1)
where

Ac = cross section area of stress block

O, = concrete stress in stress block

The American Concrete Institute recommends a value

of .85 Scy for oc. Hence,

F, = .85 oo A, (3.2)
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For the tension steel,

Fs = Ascs (3.3)
where

AS = steel area

os = steel stress

The yield stress is used for Oge Hence,

FS = ASYO'S (3.4)
since
IF =0
X
FS = Fc (3.5)

The depth of the stress block (a) remains unknown.

However,
Ac = ab (3.6)
where
b = width of beam
so
Fc = ,85 UCu(ab)
= Fs (3.7)

Therefore we can solve for (a):

F

- s
3 = 785005 (3.8)
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The moment arm (jd) is then

id =4 - 2

ja = d > (3.9)
and the bending moment is

M = jdFg _ (3.10)

For beams with multiple layers of reinforcing, the
procedure is similar.

Two simplifying assumptions can be made:

(1) The compression steel is neglected.

(2) All the tension steel is assumed to be yielding.

As in the previous example, we then have

F =Ao0 (3.11)
] W W
Y
where
Fw = resultant force of wire mesh
Aw = wire mesh area
owy = yield strength of wire mesh
and
F_= Arcry }3.12)
where
Fr = resultant force of rods
Ar = rod area
Oy, = yield strength of rods
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* |
Ja
o]

jd I

i __"Fr

_—-th o
(a) (b)
Fig. 13. (a) Dimensions of beam. (b) Stress block and
resultant forces.

F, = F_ + F_ (3.13)
a = T§§§Z_E (3.14)
jd =4 - 3 (3.15)
Mb = des = Moment to fail (3.16)

It should be noted that for the specimens tested,
this method predicted ultimate strengths which were less

than those actually observed.



(1)

(2)

(3)

(4)

(5)

(6)

(7)

Iv
CONCLUSIONS

The behavior of ferro-cement in bending follows the
normal load-deflection curve for reinforced concrete,

as shown in Figure 1.

Ferro-cement cracks at very low tensile stresses.
These cracks are microscopic and are shown in Figure
3 with the aid of a dye.

Reaching the ultimate strength of either the mortar

or the steel does not necessarily mean failure of the
member. Loads are transferred from the failed material
to the intact material and the behavior may remain
linear at slightly increased loads.

The point at which the ultimate strength of the weak-
est material (usually the mortar) is reached is con-
siderably below the failure point of the member.

Working-stress analysis can safely be used to compute

stresses which are due to working loads.

The ultimate-strength analysis outlined can safely be
used to estimate the ultimate strength.

Further study of the failure mechanism is clearly
needed, not to mention study of corrosion and fatigue.
Shear stresses due to bending moments should be inves-
tigated.

- 26 -
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APPENDIX A

TEST DATA



TENSILE STRENGTH OF RODS

1/4" Rod Test 1 - 2,000 1b Yield Force
3,120 1b Ultimate Force

Test 2 1,900 1b Yield Force

3,030 Ultimate Force

Average Yield Force - 1,950 1b
Average Ultimate Force - 3,075 1b

Stresses:
1,950 1b

Y 0491 in.2

1b
in.?2

3,075 1b
.0491 in.?2

= 39,800

1b

= 62,600
in.?

3/16" Rod (Rods showed no yield point)

Test 1 - 2,455 1b Ultimate Force
Test 2 - 2,550 1b Ultimate Force

Average Ultimate Force - 2,503 1b Force

Stresses:
2,503 1b

Y .0276 in.>2

1b

in.?2

90,000

- 30 -



1b

in.?2

o, = 80% o_ = 72,500
y u

TENSILE STRENGTH OF WIRE MESH

The wire mesh is 19 gage.

Diameter = .0410 in.

Area = .0013 in.?

Assuming that the proportional limit can be taken as
Oy’ and throwing out the inconsistent high value on the

plot, forces to yield are

Test 1/2 Force (1b)
1 61.2 Average force = 61.075 x
2 61.0 = 122 1b
4 62.1
5 60.0 g = —222 1b
Y ,00133 in.?2
= 91,800 2
in.?2
Ultimate forces are
Test 1/2 Force (1b)
1 70.0 Average force = 71.3 x 2
2 71.8 = 142.6 1b
4 72.8
5 70.6 o = 142.6 1b
.00133 in,?
= 107,000 —2
in.?

- 31 -
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COMPRESSION TESTS

Average o©
Force Cu
Series Specimen Curing Time (1b) (1b/in. ?)
1 1 7 days 61,000
59,000
4,760
2 l to 3 7 days 60,500
62,500
4,885
3 1l to 3 8 days 76,000
73,000
5,930
3 4 28 days 104,000
95,500
7,937
ial

Fig. 15.

P ,//—— Capping Mater

".ﬁﬁ//ﬁ— 4" Diameter

Test cylinder.

- 33 -

Mortar Mix

Cement .......... 16.5 1b
Pozzolan ........ 4.5 1b
Sand...ceieeacens 30.0 1b
Water ....... ee+.3,500 cc



Series 1, Specimen 1

P (1b) DEFLECTION (in.)
100 .0065
200 .013
300 .020
400 .028
500 .036
600 .045
700 .0605
800 .082
900 .100
1,000 .121
1,100 .141 1.375"T__
1,200 .162 1
1,300 .187
1,400 .212
1,500 .240
1,600 .274
Mortar og = 4760 _1b2
in.

Wire Mesh

1/2" x 19 gage galv.

hardware cloth. Four

layers on each side.

Rods

1/4" diameter hot
rolled steel.
itudinal rods spaced

Long-

2". Transverse rods

spaced 2".

.‘-. T SIS A SRR |
R ~{R
23.5"
Loading

Section through specimen

Compression side

+.1875

1.250

|

.500

4,250

Tension side_J//

i
l.1875

Location of reinforcement
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Series 2, Specimen 1

P (lb) DEFLECTION (in.) I I
100 .0105 ® R
200 .022 | 23.5" o
300 .031
400 .044 Loading
500 .0705
600 .080
700 .104
800 .127
900 .150

1,000 .174 I ——

1,100 198 1.185"] —g——r =
1,200 .230 T :
1,300 .268 - -—
1,400 .315 6

Mortar og_ = 4,885 ‘lbz Section through Specimen

in.

Wire Mesh :;Compression side

1/2" x 19 gage galv. — —— + -0935

hardware cloth. Four S o s .250

layers each side. %ﬁ“ SEEEES - ]

g . | .500

Rods L Ay

1/4" diameter hot ;:__,1';i ;}l‘f:.f' # $230

rolled steel. Long- T ;J// f 0915

Tension side

itudinal rods spaced
2",
spaced 2".

Transverse rods

- 35 =

Location of reinforcement




Series 2, Specimen 2 P

P (lb) DEFLECTION (in.) o o oy e e T T T

‘ = n;u
50 .002 R

100 .009

150 .014 23.5"

200 .019 _

250 .0265 Loading

300 .0375

350 . 0515

400 .068

450 .084

500 .1025

220 -121 - 1.00"

600 .1405

650 C.161

700 .185

750 .209

800 .233 Section through Specimen

850 .266

900 .292

950 .362 Yi\Compress1on side J,1563

1'000 -408 e e T — }
1,050 . 480 S e DET Y
T S A ]

- e
Wire Mesh ;foﬁfjﬁif}fgﬁif$f' ‘ .1562
. Tension sidenj/ 1'1563

hardware cloth. Three

layers each side.

Rods

Location of reinforcement

3/16" cold rolled
steel. Longitudinal
rods spaced 2". Trans-

verse rods spaced 2". 36



Series 2, Specimen 3

P (1lb) DEFLECTION (in.)

23.5"

Loading

50 .0075
100 .0215
150 .0625
200 .1275
250 .2075
300 .2905
350 .3755
400 .4545
450 .5565
500 .7075
Mortar 75"
Ocy = 4,885 —
in.

Wire Mesh

1/2" x 19 gage galv.
hardware cloth. Three

layers each side.

Rods

3/16" cold rolled
steel. Longitudinal
rods spaced 2-1/2".

No transverse rods.
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Section through Specimen

Compression side
.125

1.1562

1.1875

.1562

1.125

Location of reinforcement




Series 3, Specimen 1 P

P _(1b) DEFLECTION (in.)

( s i e
[ |
50 — . j

100 .0735 . N

150 .086 53w

200 .102

250 -124 Loading

300 .154

350 .183

400 .212

450 .238

500 .268

550 .298 -

600 .332 - 75" _;

650 .370

700 .410

750 .460 ,

800 .580 Section through Specimen

850 .700
Mortar og, = 5,930 .lbz Yi\Compression side

in. s
Wire Mesh e ;’; 1-1562
1/2" x 19 gage galv. .1875
hardware cloth. Three o P SRR e .1562
layers each side. : ”l” ~l~ -;)/.w fb,o
Tension side

Rods

3/16" cold rolled Location of reinforcement

steel. Longitudinal

rods spaced 2-1/2".
No transverse rods.
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Series 3, Specimen 2

P (1b) DEFLECTION (in.) e
/ /
50 .094 = .
100 .101
150 .107 23"
20 $1e Loading
250 .127 S
300 .147
350 .168
400 .189
450 .209
500 .234
550 .262 75w
600 .287
650 .310
700 .336 6"
750 .365
800 .400 Section through Specimen
850 .439
900 .483

Compression side

950 .575
1b { .100

Mortar g, = 3,930 7 S 1562

)
Wire Mesh

,jg1§§§{,§};.{?5,'x .375

1/2" x 19 gage galv. A NS e
e .1562

hardware cloth. Three PONIFEREN ML F SRR AP URE

layers each side. Tension side_j/ 1 .2126

Rods

Location of reinforcement

3/16" cold rolled
steel. Longitudinal
rods spaced 2". Trans-

verse rods spaced 2".
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Series 3, Specimen 3

P (lb) DEFLECTION (in.) | R S S A I IUFRAL CFUPCLA MWL VI VA BT B BT SLE R |
A
100 .061 R R
200 .069
300 .077 23
400 .085 ' Loading
500 .0925
600 .101
700 .109
800 .121
900 .136
1,000 .156
1,100 179 1 4o
1,200 .203 ]
1,300 - .249
1,400 .309
1,500 .383
: Section through Specimen
1
Mortar o = 5,930 D
u in.? , ]
Compression side

1/2" x°'19 gage galv.

Wire Mesh Yi;

hardware cloth. Three

layers each side.

Rods

1/4" diameter hot

rolled steel. Long- ' Tension side_J// f'z
itudinal rods spaced

2". Transverse rods Location of reinforcement

spaced 2".
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Series 3, Specimen 4 P

P_ (1b) DEFLECTION (in.) e
50 .032 i ‘

100 . 047 g -

150 .063 23"

200 .084 Loadin

250 112

300 .144

350 .177

400 .210

450 .243

500 .279

550 .314 ‘

600 .351 75"

650 .394 B

700 .444 6"

750 -496 Section through Specimen

800 .562

850 .756
Mortar oO¢, = 7,937 lbz Compression side

in. Ki\ .25
Wire Mesh 1.1562
1/2" x 19 gage galv. ‘.1875
hardware cloth. Three B SEERNSPURE RN, DI .1562
layers each side. .'-wl”f“*ihi.;;k'“ TO 0
Tension side :

Rods

3/16" cold rolled

steel. Longitudinal

Location of reinforcement

rods spaced 2-1/2".

No transverse rods.
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APPENDIX B

COMPUTER PROGRAM FOR
WORKING-STRESS ANALYSIS



COMPUTER PROGRAM FOR WORKING-STRESS ANALYSIS

The computer program shown on pages 47 and 48 was used
to do the stress analysis of the ferro-cement specimens by
working stress theory. The computer is not necessary for
this analysis. 1If available, however, it saves time, mini-
mizes the chance of error, and makes sensitivity studies
easy to perform. 1In this case the input consisted of the
material properties and the beam geometry, while the output
consisted of the stress-bending moment relationship as well
as some intermediate data. The program could probably be
streamlined to use computer time more efficiently. As the
program stands, it uses about 10 seconds of CPU time on the
IBM 360 computer.

Language
The computer language is FORTRAN IV.

Theory

The program uses the stress analysis outlined in Chap-
ter II. Some changes in notation were made. For example,
the layers of reinforcement have been numbered starting from
the bottom and working up. Hence we have steel areas A1'
AZ, A3, ... at distances yl, yz, ys, ... from the bottom
surface.

Another superficial change is the generalization of the

neutral axis calculation. The explanation follows.

Taking moments about the neutral axis, (see Figure 16 )

_ - 2 W -
ZMNA = (T NA) 5 + (ya NA)A3
+ (y - NA)A2

2

+ (y1 - NA)Al W = width of

- 43 -

beam



Fig. 16. Transverse section through a ferro-cement
specimen, showing nomenclature.

IM, = [T? - 2T (NA) + (NA)?] 5
+ Aay3 - AaNA
+ -
Ay - ANA

+Ay - ANA
1 1 1

_ m2W _ W w 2
= T’ - 2Ty (NA) + 3 (NA)
+Ay - ANA
3 3 3
+ Ay = A NA
2 2 2
+ A - A N
lyl 1A
= g (NA) 2 + (NA) (-ZTg -A -A -1)
3 2 1
+ (7% 4+ a y +Ay +Ay)
2 373 2% 2 171

- 44 -



d ¢ = (7253 + + +
and c ( > Aay3 Azy2 A1y1)
-bin2—4"2—"c
NA =
o W
2
_ b ¥ {p? - ouc

W

Take the plus sign.

It should also be noted that in using this program
we assume an initial neutral axis location. When calcu-
lating the transformed areas, the steel area below the
assumed neutral axis will be multiplied by the factor (n),
while the steel above will be multiplied by (n-1). 1If the
calculated neutral axis is found to be between layers of
reinforcement different from the assumed one, then we rerun
the program with the calculated neutral axis location as the

new assumed location.

Data Input

Card 1

Punch length (in.)
width (in.)
thickness (in.)
mortar compressive strength (lb/in.2)
density of mortar (lb/ft?)
E of steel (1lb/in.?)
assumed N.A. location from bottom (in.)
yield strength of steel (1lb/in.?)
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Format (8F10.4)

Card 2
Punch number of layers of steel
kode - 0 for cracked analysis
- 1 for uncracked analysis
Format (212)
Card 3
Punch area of each steel layer (in.?)
Format (8F10.4)
Card 4
Punch distance of each layer of steel from bottom
of beam, in same order as on Card 3 (in.)
Format (8F10.4)
Results

The object of the stress analysis was to determine
the stresses as a function of the material, the location
(y), and the bending moment. The stresses in any of the
component materials will vary linearly with the bending
moment as well as with (y). Let us study the stress as
a functional bending moment. We know that b = 0 at Mb =
0. Hence, if we know one more point on the curve, the
curve is defined. The computer program provides one more
point for both the steel and the mortar stress curves.

We can therefore plot stress as a function of bending
moment. Note that the curves for the steel stresses shown
on the following pages apply at the extreme fibers on the
tension side, and those for the mortar stress apply at the
extreme fibers on the compression side. Stresses at other
(y) distances can be found by changing the values in

statements 25 and 26 in the program.



47

$CCMEILE o N
1 DIMENSICN A(1C) ,ATR({10),Y(10)
2 REAL L oNAANA,I,N
3 1 REAC(S'ZOO,LOHtToSCUoHC,ES'NﬁdoSSY
Cc
C KCCE = 0 4 CRACKEC ANALYSIS
C  KCDE = 1 4 UNCRACKEL ANALYSIS L L
C
4 REAC(5,210)NC,KCDE
5 REAC(5v200)(A(J)0J=11NC)
6 REAC(5,200)(Y(J),Jd=1,NC)
C
C  E_CF MCRTAR . o
7 EC=(HC**I.5)*33*SCRT(SCU)
C
C MODULAR RATIC
8 N=ES/EC
c .
 C.__ TRANSFORMEL AREAS ) o
9 D0 11 J=1,MC
10 IF(KOCE.EC.1)G60 TO 1C
11 IF(Y{J).GT.NAA)GO TC 10
12 ATR(J)=N*A(J) o
13 GO TC 11
14 10 ATR(J)=(N-1)%A(J) o
15 11 CONTINUE
C .
C COEFFICIENTS FOR CUACRATIC FCRMULA
C
16 B==T*h
17 C=T%T%n/2 ~ L
18 DC 13 J=1,4NC
19 B=B-ATR(J) o o
20U 13 C=C+ATRJI*Y (J)
C
C SOLVING QUACRATIC FCRMULA TC FINC NEUTRAL AXIS
21 . NA= (-B-SQRT(B*B-2%W*C) ) /W
C
C MOMENT OF INERTIA
22 I=((T-NA)*%3)%/3
23 DO 14 J=1,NC i
24 14 I=I*(Y(J)-NA,*(Y(J)‘NA,*ATR(J)
C
C CALCULATING BENCING MCMENTS
25 BVSCUC=SCU*1/LT:&A) _____ L
26 BMSSY=SSY*I/((Y{1)=NA)%N)
27 IF(KCDE.EQ.O’GO_TG_IQU_H
28 BMSCUT=0.,1*SCU*I/(-NA)
C
C PRINTING OLT INPUT CATA
29 15 WRITE(6+206)T el
30 WRITE(6,201)
3] WRITE(69202)L o WoToHCoSCUSSYoES oNAA NG oKCLE )
32 WRITE(6,229)
33 B0 _16 J=1,4NC
34 16 HRITE‘b'ZBC)J’Y‘J”A‘J’QATR(J’
o — e
C PRINTING OUT RESULTS
35 WRITE(64202)ECoNyNA+I,BNSSY,BNMSCUC

36

IF(KCCE.EQ.0)GO TO 1




37
38

39
40
41
42
43

44

45
46

417
48

200
210
206
201
2C2

229

230
203

205

__WRITE(€,205)BMSCUT

GC 10 1

FORMATS

FCRVMAT (BF10.4)

FCRNAT(212)

FORMAT( "1RESULTS FOR " ,FB8l.4s' INCH SPECINEN')

FGRMAT( /o *INPUT CATA',//)

FORVAT( *LENCTE='4F1Ce3,4/y

1'WICTE = *4F10.34/,

1' CEPTE = 'FlC.54+/»

1°DENSITY CF MCRTAR = '",F10.29/
L1'ULTIMATE STRENGTH CF MCRTAR = "4F1C.0y/,

L*YIELD STRENGTH OF STEEL = *4F1C.0y/,
1'YCUNGS MODULLUS CF STEEL = *4F1Ce0,7/,
LYASSUMED NEUTRAL AXIS = ',F1Ce44/y

. 1*NUNMBER CF STEEL LAYERS = %4154/,

1'KCCE = *,I5)
FORMAT( /4*STFEL PEINFCRCENMENT CATA ',//,

1'LAYER NUMBER CISTANCE(Y) AREA
1 AREA®)

FCRMAT( 117,3F20.5)

FCRMAT{ //,'RESULTS*,//,

L'YCULNGS MOCULUS CF MCRTAR = %, F1C.04/,
1"MCDULAR RATIO (N) = 'y F1C.54/,

"1'NEUTRAL AXIS = ', F1C.5+/

L*MCVENT CF INERTIA = "4F10.54/,

1'BENDING MCMENT AT YIELC STRESS CF STEEL = '9F1l0.04/,
1*BENDING MCMENT AT ULTIMATE MORTAR COMPRESSIVE STRENGTF

1F1C.C)

FORMAT{ 'YBENDING MCMENT AT TENSILE STRESS CF MCRTAR =

ENC

' F10.2)

- 48 -
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RESULTS FOR  1.375C INCH SPECIMEN Series 1

IANPUT CATA

LENGTH= 23.500

WIDTH = 6.000

LEPTH = 1.375CC

CENSITY CF MCRTAR = 145.00

LLTIMATE STRENGTH (F MCRTAFR = 476C.
YIELD STRENGTH CF STEEL = G180C.
YCUNGS MODULUS CF STEEL = 29CCOCCC.
ASSUMED NEUTRAL AXIS_ = 0.7000

NUMBER CF STEEL LAYERS = 3

KGCE = C

STEtL REINFCRCEMENT CATA

LAYER NUMBER CISTANCE(Y) AREA TRANSFURMEG AREA
1 C.31250 0.C€38C 0.46542
2 0.5625C C.147CC 1.07237
3 1.06250 0.C638C 0.40162

RESULTS i

YCLAGS MCDLLUS CF MCRTAR = 3575264,

MCCULAR RATIC (N) = 7.29506

NEUTRAL AXIS = €.52261

MCMENT OF INERTIA = 0.50534

RENDING MOMENT AT YIELLC STRESS OF STEEL = -1C423. o

BENDING MOMENT AT ULLTIMATE MORTAR CCMPRESSIVE STRENCTE = 5317.
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Stress (o)
Steel Stress (1lb/in.2)

100,000 10,000

90,000 _;,000

91,800

80,000 [~8,000
70,000 —7,000 &
g
-
~
Q
60,000 ~6,000
Oc
u
0w
n
8 Steel Stress
50,000 [~5,000 P
T T MOTtar StT¥éss
44,760 § : |
+
40,000 (4,000 3§
=
30,000 3,000
20,000 FZ,OOO
10,000 1,00
,/_.5,317 10,423"\\l
0 1 1 I ! Ll
2,000 4,000 6,000 8,000 10,000
Bending Moment (Mb)
(in./1b)
Graph 1. Working stress as a function of bending

moment fo

r specimen 1, series 1 (1.375 in.)
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RESULTS FOR  1.1850 INCH SPECIMEN  Series 2

INPUT CATA

LENGTH= 23.500

WIDTH =  6.000 L )

DEPTh = 1.185¢C

CENSITY CF MCRTAR = 145.00

LLTIMATE STRENGTH CF MCRTAR = 4885.

YIELD STRENGTH OF STEEL = $180C.

YCUMGS MCDULUS CF STEEL = 290C00CC.

ASSUMED NEUTRAL AXIS = C.7000

NUMBER OF STEEL LAYERS = 3

KCDE = 0

STEEL REINFORCEMENT CATA

LAYER NUMBER CISTANCE(Y) AREA TRANSFGRMEL AREA
1 0.2165C C.C638C 0.45943
2 0.4665C C.147CC ~ 1.C585¢
3 0.96650 0.C638C .26563

RESULTS

YCUNGS MCDULUS CF MCRTAR = 4027152,

MCDULAR RATIC (N) = 7.20112

NEUTRAL AXIS = C.77429

MCMENT OF INERTIA = 0.39640

BENDING MCMENT AT YIELC STRESS OF STEEL = -9060.

BENDING MOMENT AT LLTIMATE MORTAR CCMPRESSIVE STRENGTH = 4715.




Stress (o)
Steel Stress (1lb/in.?2)

100,000

90,000

80,000

70,000

60,000

50,000

40,000

30,000

20,000

10,000

Graph 2.

—

10,000

9,000

Mortar Stress (1b/in.?2)

]

Mortar stresi;7

Steel Stress

I ] 1

2,000

4,000 6,000 8,000

Bending Moment (Mb)
(in.~1b)

Working stress as a function of bending

moment for specimep 1, series 2 (1.185 in.)
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RESULTS FOR _ 1.CCCC INCH SPECIMEN Series 2.

INFUT CATA

LENGTH= 23.500

WIDTH = 6.000

DEPTH = 1.cccce

CENSITY CF MCRTAR = 145.00

ULTIMATE STRENGTH CF MCRTAR = 4885,

YIELD STRENGTH OF STEEL = $180C..

YCUNGS MODULUS CF STEEL = 290G0CCC.

ASSUMED NEUTRAL AXIS = 0.6000

NUMBER OF STEEL LAYERS = 3

KODE = 0 ]

STEEL REINFORCEMENT CATA

LAYER NUMBER CISTANCE(Y) ARE A TRANSFORMEC AREA
1 0.23440 C.C4T87 C.34472
2 0.40625 C.C826C  C.55691
3 0.76555 0.04787 0.25685

RESULTS

YOUNGS MCCULUS CF MCRTAR =  4027152. -

MCDULAR RATIC (N) = 7.20112

NEUTRAL AXIS =  C.68495 -

MCMENT OF INERTIA = 0.18081

BENCING MOMENT AT YIELC STRESS OF STEEL = -5116.

BENDING MOMENT AT ULLTIMATE MORTAR CCMPRESSIVE STRENGTH = 2804.




Stress (o)
Steel Stress (lb/in.?2)

100,00Q- 10,000
o
Sy

90,000 - 9,000
80,000 - 8,000
70,000 - 7,000 “‘g.

S~ Steel stréss

—
60,000 [ 6,000

[/]

)]

o

M

+
50,000 |- 5,000 w

q

o]

e cu

40,000 |- 4,000 2
Mortar stress
30,000 - 3,000
|
20,000 - 2,000
10,000 [~ 1,0
0 1 1 ] ]
1,000 2,000 3,000 4,000 5,000
Bending Moment (Mb)
(in.-1b)
Graph 3. Working stress as a function of bending

moment for specimen 2,

series 2 (1.00 in.)
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RESULTS FOR  C.75C0 INCk SPECIMEN Series 2

INPUT CATA

LENGTH
WICTH = 6

23.500
6,000

CEPTH C.75CCC

CENSITY CF MCRTAR = 14%.00

LLTIMATE STRENGTE CF MCRTAR = 4885,
YIELD STRENGTH OF STEEL = ~ 6180¢C.
YCULNGS MCDULUS CF STEEL = 29030CCC.
ASSUMED NEUTRAL AXIS = C.4C00

NUMBER OF STEEL LAYERS = 2
KQCE = 0

STEEL REINFORCEMENT LCATA

LAYER NUMBER CISTANCE(Y) AREA TRANSFURMEL AREA
1 0.20310 C.C4787 C.34472
2 0.37500 _ C.Ce25C C.56697
3 0.5469C 0.04787 0.25€85

RESULTS

YCUNGS MCOULUS CF MCRTAR =  4C27152.

MODULAR RATIO (N) = 7.20112

NELTRAL AXIS = c.50C2

MCMENT OF INERTIA = 0.07140

BEND ING MOMENT AT YIELC STRESS CF STEEL = -2575.

BENDING MGMENT AT LLTIMATE MORTAR CCMPRESSIVE STRENGTH = 1447,
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Stress (o)

Stress (lb/in.2)

Steel

100,000 L. 10,000

90,000 [_ 9,000

80,000 | 8,000

70,000

60,000

50,000

40,000

30,000

20,000

O’sy

Mortar Stress (lb/in.2)

Mortar stress

] | |

Steel stress

Graph 4.
moment fo

1,000 2,000 3,000 4,00

Bending Moment (Mb)
(in.-1b)

Working stress as a function of ben
r specimen 3, series 2 (.75 in.)
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RESULTS FOEF CaT75CC INCH SPECIMEN Series 3

INFUT CATA

LENGTF= 23.000

WICTH 6.0C0

DEPTH = c.75cCCC

CENSITY CF MCRTAR = 14%.0C

LLTIMATE STRENGTH CF NMCRTAR = 593C.

YIELD STRENGTH OF STEEL = S180C.

YCULNGS MODULUS CF STEEL = 29(C00CC.

ASSUMED NELTRAL AXIS =  C.480C o

NUMBER CF STEEL LAYERS = 3
KCDE = 0

STEEL REINFORCEMENT LCATA

LAYER NUMBER CISTANCE(Y) AREA _ TRANSFOURMEL ARLA
1 C.C7800 0.C4TET 0.31287
2 G.2500C . c.Ce2SC Ce541872
3 0.4220C C.C4787 .21287
RESULTS B _ )
YOUNGS PODULUS CF MCRTAR =  4437C38.
MCCULAR RATIC (N) = 6.53589
NEUTRAL AXIS = Ce46245
NCMENT OF INERTIA =  0.11876
BENDING MOMENT AT YIELD STRESS OF STEEL = -4335, S
BENDING MOMENT AT ULTIMATE MGRTAR CCMPRESSIVE STRENGTH = 2449,
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Stress (o)
Steel Stress (1lb/in.?2)

100,000 {-10,000
o
Sy
90,000 - 9,000
80,000 — 8,000
- Steel stress
3]
70,000 -7,000 ¢
< ocu
Q
-
60,000 6,000 0
0
0]
N
+~
0
50,000 ~5,000 o
]
+ Mortar stress
0]
40,000 4,000 =
30,000 ~3,000
20,000 2,000
10,000 ,—l’
0 l L ! ! |
1,000 2,000 3,000 4,000 5,000
Bending Moment (Mb)
(in.=-1b)
Graph 5. Working stress as a function of bending

moment for specimen 1, series 3 (.75 in).
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RESULTS FOR  1.COCC INCk SPECIMEN  geries 3

INPUT CATA

LENGTH= 23.C0C

wIDTH = 6.000

LEPTH = 1.CC0CC B o

CeNSITY CF MCRTAR = 145.090

LLTIMATE STRENCTF CF MCRTAR = 563C.

YICLD STRENGTK CF STEEL = 5180C.

YOUNCS MCCULUS CF STEEL = 290C000C.

ASSUMED NELTRAL AXIS = 0.7000

NUMBER OF STEEL LAYERS = 3 S

KCCE = 0

STEEL REINFCRCEMENT CATA

LAYER NUMPRER ~ CISTANCEL(Y) ARED TRANSFORMEL AREA
1 C.2907¢C C.C4787 0.31287 "
2 Ce4€255 G.CE2¢C C.54183
3 C.8218% C.04787 0.2650C

RESULTS o o -

YCUNGS MCDULUS CF MCRTAR = 4437(C2¢,

MCCULAR RATIC (N) = 6.5358%

NELTRAL AXIS = C.71587

MCMENT CF INERTIA = 0.14018

BENDING MOMENT AT YIELL STRESS CF STEEL = -4611, o

BENDING MOMENT AT ULLTIMATE MORTAR CCMPRESSIVE STRENGTF = 2926.
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Stress (o)

100,000 +10,000
o
Sy
90,000 +~9,000
80,000 8,000
70,000 7,000 Steel Stress
.
.5 Ocy
60,000 (6,000 B
o)
a a
s Mortar
_550,000 —5,000 8 Stress
™~ +
Q 0
(=
= o
o 5
N =
EN
0
—~ 30,000 3,000
)
Q
el
0
20,000 2,000
10,000 +1,0
0 ! | ! I !
1,000 2,000 3,000 4,000 5,000
Bending Moment (Mb)
(in.-1b)

Graph 6. Working stress as a ‘function of bending
moment for specimen 2, series 3 (1.00 in.)
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RESULTS FGR  1.400C INCH SPECIMEN Series 3
INPUT CATA
LENGTH= 23.CCC
WICTk = 6.000
CEPTH = 1.4CCCC
CENSITY CF MCRTAR = 145.00
ULTIMATE STRENGTH CF MCRTAR = 553C.
YIELD STRENGTH CF STEEL = $180C.
YCUNGS MODULUS CF STEEL = 290G000C.
ASSUMED NEUTRAL AXIS = 0.9C00 . ) i
NUMBER OF STEEL LAYERS = 3
KODE = 0
STEFL REINFOPCEMENT CATA
LAYER NUMBER CISTANCE(Y) AREA TRANSFORMEL ARFA )
1 C.32500 0.C6380 0.41699
2 0.5750C C.147CC C.SE0TE
3 1.0750¢ 0.C638C C.35319
RESULTS . L
YCUMGS MCCULUS CF MCRTAR =  4437C3g,
MCOULAR RATIO (N) = 6.53589
NEUTRAL AXIS = C.55697
MCMENT OF INERTIA = 0.48555
BEMDING MCMENT AT YIELD SYRESS OF STEEL = -10751. o
BENDING MOMENT AT LLTIMATE MORTAR CCMPRESSIVE STRENGTE = 6499.
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(lb/in.?)

Stress (o)

Steel Stress

100,000 10,000
o
Sy
90,000 9,000
Steel stress
80,000 8,000
70,000 |_7,000 &
=
Q
Q Oc
60,000 |_6,000 = v
)]
n
8.
50,000 [_5,000 #
)
o -
I
"
40,000 4,000 g Mortar Stress
30,000 3,000
20,000 |_2,000
10,000 [L1,00
0 ] 1 | | ]
2,000 4,000 6,000 8,000 10,000
Bending Moment (Mb)
(in.-1b)
Graph 7. Working stress as a function of bending

moment for specimen 3, series 3 (1.4 in.).
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RESULTS FOR C.75C0 INCH SPECIM eries 3

INPUT CATA

LENGT k= 23.000

wIDTH = 6.000 o o

DEPTH = C.75CCC

CENSITY CF MCRTAR = 145.00

ULTIMATE STRENGTH CF MCRTAR = 7937.

YIELD STRENGTH OF STEEL = 5180C.

YCUNGS MCDULUS CF STEEL = 290000C0.

ASSUNMED NEUTRAL AXIS = 0.4800 B

NUMBER CGF STEEL LAYERS = 3 -

KODE = 0

STEEL REINFORCEMENT LCATA

LAYER NUMBER  LCISTANCE(Y) AREA TRANSFCRMED AREA
1 C.C780C 0.04787 0.27044
2 €.25000 ~ C.CE2SC - C.4€834
3 C.42200 C.C4787 Co27044

RESULTS

YOUNGS MODULUS CF MCRTAR = 51332¢E€.,

MOCULAR RATIC (N) = 5.64942

NEUTRAL AXIS = Ce47493

MCMENT OF INERTIA = .  (0.10869

BENDING MOMENT AT YIELD STRESS CF STEEL = -444G, e

BENDING MOMENT AT ULTIMATE MORTAR CCMPRESSIVE STRENGTH = 3136,
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(o)

Stress
Steel Stress

(1b/in.?2)

100,000 [ 10,00

90,000 (9,000

80,000 (8,000

70,000 (7,000

60,000 |-6,000

50,000 |-5,000

40,000 4,000

30,000 [~-3,000

20,000 - 2,000

10,000 1,0

0

O'cu

Mortar stress

Steel stress

Mortar Stress (1lb/in.?2)

] 1 1 |

Graph 8.
moment fo

1,000 2,000 3,000 4,000

Bending Moment (Mb)
(in.-1b)

Working stress as a function of bending
r specimen 4, series 3 (.75 in.).
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APPENDIX C

ULTIMATE STRENGTH CALCULATIONS



Prediction for Specimen 1, Series 1 (1.375")

— . 2
FW owyAw Aw = .0638 in.
91,800 x .0638 A_ = .147 in.2
5,857 1b Oc, = 4,760 2
in. 2
F = Op A
39,800 x .147 y = .3125 in,
5,851 1b y2 = .5625 in,
Fg = F, + F_
5,857 + 5,851
11,708 1b
FlS
a “850. b
11,708 .
.85 X 4768 % € -4823 in.
b=6ll
iy
A
a
I - - — N.A.
[ — F_
e
T |
F
(a) (b)

Fig.

17.(a) Dimensions
resultant forces.

of beam.
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(b) Stress block and



Taking moments about Fr’

ZMFr = Fw(y2 - yl) + Fr(O)
. IMp_
F
s
Evaluating:
IMp,_ = 5,857 x (.5625 - .3125)
= 1,464 in.-1b
IMpy _ 1,464
F 11,708
s
= .125 in. = h
. a
jd = (1.375 -y ) +h - 3
2
= (1.375 - .5625) + .125 -
= .,9375 - .2412
= .6963 in.
Mb = JdFs
= ,6963 x 11,708
= 8,152 in.-1b
4My,
P=
_ 4 x 8,152
P =35
P =1,388 lb

- 67 -
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Prediction for Specimen 1, Series 2 (1.185")

by
F, = 11,708 1b
(from éage 66) F [
C
F — ] a
a = _Bs 4 - ’
-830¢, - N.A.
3 L ——
_ 11,708 Jd { .
.85 x 4,885 x 6 n - "r
: r — o F_
= .4699 in f P v
h = .,125 (same as page 67) Asi 2
F
jd = (1.185 -y ) + h - 2 Fig. 18. Stress block and
i g
2 resultant forces.
= (1.185 - .4665) + .125 - =4899
_ _ .4699
= ,8435 S B
= .8435 - ,2350
= .6085
Mb = des
= ,6085 x 11,708
= 7,124 in.-1b
p = 4% 7,124

23.5
P=1,213 1b
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Prediction for Specimen 3, Series 3 (1.4")

F

S

a

Iy

.7564 x 11,708

8,856 in.-~1b

4 x 8,856

23.0

1,540

- 69 -

11,708 1b (from page 66)
F
S
.SSGCub F
11,708 - . a
.85 x 5,930 x 6 [
N.A.
.3871 in jd - -
= F
h r
.125 in. (same as I ——»—FS
page 67) | EY v
! 2
Y
- -8 1 —
(1.4 yz) + h 5 F
(1.4 - .575) + .125 - .3371 Fig. 19. Stress block and
resultant forces.

.3871
.950 - —
.950 - .1936
.7564
des



Prediction for Specimen 2, Series 2 (1")

F
w

IMp

jd

by
Oy,
91,800 x .04787 F
. c
—~— p a
4,395 1b 1 ]
: N.A.
or A, 3d o~ -=
Yy ?F
h r
72,500 x ,0829 I —_—
i W
6,010 1b — |y
y 2
1
Fr + Fy Fig. 20. sStress block and

6,010 + 4,395 resultant forces.
’ ’

10,405 1b
F

_

-850¢, b

10,405
.85 x 4,885 x 6

.4176 in.

= F x ,17185
w

4,395 x ,17185

755.3 in.-1b
ZMFr

F
S
755.3
10405
.0726
(1.000 -y ) +h - 2
. YZ 2‘

(1.000 - .40625) + .0726 - ;i%ZE
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Prediction for Specimen 2, Series 2 (1") (Cont'd.)

.4176
2

= .6663 -

= .6663 - .2088

= .4575 in.
Mb = des
= .4575 x 10,405
= 4,760 in.-1b
_ 4 x 4,760
P=—s33
P = 810 1b
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Prediction for Specimen 2, Series 3 (") L
i
y
FS = 10,405 (from page 70)
a = —._Fs_ Fc a
.8500ub -] |
_ 10,405 .
T .85 X 5,930 x 6 id -- -
o F
= .34404 in. h i F
_—
) F
h = ,0726 (from page 70) ‘ Z;, Y
by | 2
1
. a
d = (1.000 - +h -2
j (1.000 yz) h 5

= (1.000 - .46255) Fig. 21. Stress block and

resultant forces.

+ .0726 - +34404
2
= .61005 - 31304

= .61005 - .17202
= .43803

M = deS
= .4385 x 10,405

= 4,563 in.-1b

4 x 4,563
23.0

P = 794 1b

_7.2_



Prediction for Specimen 3, Series 2 (3/4")

l
Yy
FS = 10,405 (from page 70) o
Fs
a= _
.BSGCub
10,405 Fo
.85 x 4,885 x 6
= .41764 - Fy
Impossible situation F
. ——— W
(see Fig. 22) i.e. - F
overreinforced.

Fig. 22. Stress block and resultant
forces. Note that the stress block
tion is made that required to balance the steel forces
the beam will fail encroaches on the tension'steel. Since
there cannot be both tension and com-
when the stress pression at the same (y) location,
this is an impossible situation.

Suppose the assump-

block reaches the

metal rods (see ly'
Fig. 23).
a= .75 - y2 F
c
i —
= ,75 - .375 4
= .375 : _p|3d
P ﬂL_,_F
Fc = .SSOcuba v r
2 YIA —w
= .85 x 4,885 x 6 x ,375 ~ -—
= 9,343 1b Fig. 23. The assumption is made that
the beam will fail when the stress
F = F block reaches the tension steel.
s c

F = 4,395 1b

)
]

F_ - 4,396
s

= 4,948 1b
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Prediction for Specimen 3, Series 2 (3/4") (Cont'd.)

IMp, = F, (y2 - Yl) + F_ (0)
= 4,395 (.375 - .2031)

= 755.5 in.-1b

ZMFr

jd =3 +nh

M = JdFs
= .26836 x 9,343
= 2,507 in.-1b

2,507 x 4
23.5

P = 427 1b
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Prediction for Specimen 1, Series 3 (3/4")

IMp

jd

.SSOCub

10,405 (from page 70)

F
s

C
10,405

.85 x 5,930 x 6

.34405

= F (y2 - yl) + Fr

w

4,395 (.1720)

.07265

(.‘75—y)+h—%
2

.50 + .07265 - >

.4006
des
.4006 x 10,405

4,169

4 x 4,169
.0

725 1b

F ——————

|

A

jd

(0)

.34405

- 75 -

I<”

v, !

Fig. 24. Stress block and

resultant forces.

<
I

.0780

.7500



Prediction for Specimen 4, Series 3

F
S

jd

10,405 (from page 70)

F
S

.850cu5 Fo

10,405
.85 x 7,937 x 6

jd
.2571

.07265 (from page 75)

(.75 -~y ) + h - 3

.5 + .07265 - '2371
.4441
JdFs

.4441 x 10,405

4,621

4 x 4,621
23.0

804 1b
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Y,

Fig.

resultant forces.

.0780

o
N

.250

25. Stress block and



APPENDIX D

GRAPHS



Force (1b)

Calculated
ultimate
1,400 strength

Specimen 1,
series 2 (1.185")
1,200 _

Calculated
ultimate

strength
1,000

800
Specimen 1,
series 1 (1.375")

600

400

200

0 | I | |
0 1 .2 .3 .4
Deflection (in.)

Graph 1. Force plotted as a function of deflection
for large specimens.
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Force (1b)

-\- Calculated
ultimate
1,400 |— strength
1,200 (—
1,000 [
800 |—
600 —
NOTE: While testing this
400 — specimen, one of the supports
slipped at about 500 1b.
The load was released, the
support adjusted, and the
load reapplied: Hence the
initial stiffness is not
200 exhibited in this curve.
0 | | l
0 .1 .2 .3 .4

Deflection (in.)

Graph 2. Force plotted as a function of deflection for
specimen 3, series 3 (1.4").
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1,

1,

1,

Force (1b)

400}—
200p—
Specimen 2,
series 2.
000 —
O -
Calculated
ultimate
strength
800 — Specimen 2,
series 3.
Calculated
ultimate
600 — strength
400 [ —
200
[
0 l [ l l

0 .1 .2 .3 .4
Deflection (in.)

Graph 3. Force plotted as a function of deflection
for 1.0" specimens.
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Force (1lb)

800 |
Calculated
700 | ultimate
strength
600 Spegimen 1,
series 3
Specimen 4,
series 3.
500
O alculated
ultimate strength
400
Specimen 3,
series 2.
300
200
100

0 I ] | | |

0 .2 .4 .6 .8 1.0
Deflection (in.)

Graph 4. Force plotted as a function of deflection
for 3/4" specimens.
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APPENDIX E

PHOTOGRAPHS



Photo. 1. Compression test of mortar cylinder.

Photo. 2. Tensile test of wire mesh segments.
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Photo. 3. The components of a ferro-cement
specimen.

Photo. 4. A ferro-cement specimen ready for

mortar.



Photo. 5.
forcing.

Photo. 6.
curing.

Working cement mortar into the rein-

A ferro-cement specimen ready for



Photo. 8. A ferro-cement specimen set up for
testing.

Photo. 9. A ferro-cement specimen tested to
failure.





