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ABSTRACT

The effect of a vertical barrier or lip on the wave
generating capability of a pneumatic wavemaker is analyzed.
For lip immersion approaching zero, the wave amplitudes
approach the values predicted by Stoker in 1957. For finite
lip immersion, wave amplitude is generally reduced below the
amplitude from a wavemaker with no lip, but under certain
conditions the amplitude can be greatly increased by the
lip. Numerical results are presented.

These results are used to show that the effect of
sidewalls will be generally negligible in predicting the
added mass and damping per unit length of a long air-cushion
vehicle with sidewalls (captured-air-bubble vehicle). Such
effects then being neglected, the added mass and damping are
computed as functions of frequency and conditions of static
support. The amplitude and phase of the mean free surface
motion under the vehicle are also computed. It is found that
the surface motion can actually be exactly opposite to that

expected from quasi-static considerations.
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PREFACE

At a meeting of the H-5 Panel of the Society of Naval
Architects and Marine Engineers in June, 1969, I heard Dr.
John Breslin®* discuss a current problem of air-cushion-vehicle
(ACV) research, viz., the prediction of the added-mass and
damping coefficients of an inverted box heaving on an air-
water interface. The air trapped under the box suffers a
variable pressure, causing waves to be generated on the free
surface. The hydrodynamic response causes a reaction on the
box (again through the captured air). It is this reaction
which one needs to know in order to calculate the motions
characteristics of the vehicle.

One aspect of this problem is very similar to a problem
which I solved several years ago. In 1962, I was concerned
with the effect of a vertical barrier or lip on the wave
generating capability of a pneumatic wavemaker. It was
immediately clear that the sides of the box containing the
captured air bubble would have effects qualitatively similar
to the effects of the wavemaker lip. The earlier calcula-
tions indicated, in fact, that such effects would be rather
unimportant in the range of parameters relevant to the ACV
problem. This conclusion alone seemed to be of sufficient
significance to warrant publishing the calculations. Further-
more, the conclusion justifies using a very simple mathemati-
cal model for the air bubble and its interaction with water
and vehicle.

It then proved possible to formulate and solve completely
the two-dimensional problem of predicting the added-mass and
damping coefficients of the vehicle. It would be only a
modest extension of these results to use them as the basis for
a strip theory for predicting the motions of an idealized

ACV. This last step is not carried out here; only the 2-D

*
Director, Davidson Laboratory, Stevens Institute of
Technology, Hoboken, N. J.
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(strip) results had been obtained when the effort was
terminated at the beginning of July.

I am greatly indebted to two people for the computa-
tions on which this report is based:

Mrs. P. M. Monacella performed the wavemaker computations

in 1962 at the David Taylor Model Basin. This was a very
complicated task, involving, for example, many incomplete
elliptic integrals. It is an indication of the thoroughness
of her work that it was possible after nearly seven years to
retrieve her papers from the files and immediately use them!

Mr. Young Tsun Shen performed the added-mass and

damping coefficient calculations on the computer at the
University of Michigan. He delivered the results to me
(hand-checked) less than twenty-four hours after I stated
the problem to him.

One is very fortunate to be able to work with people

such as Mrs. Monacella and Mr. Shen.

T. Francis Ogilvie
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INTRODUCTION

This report presents the solutions of several problems
involving oscillatory pressure distributions applied on the
free surface of infinitely deep water. A considerable part
of this work was done in 1962 as part of a project to opti-
mize the pneumatic wavemakers at the David Taylor Model Basin.
(See Figure 1). Accordingly, attention was centered then on
the problem of predicting the waves generated by a sinusoid-
ally varying pressure field applied uniformly over a section
of the free surface. The results were never published, be-
cause the problem did not appear to have widespread interest.
However, the calculations now possibly have new value in a
problem involving the motions of an air-cushion vehicle.
Therefore we are presenting these calculations here, along
with their extension and application to the air-cushion-

vehicle problem.

AN NN

Figure 1

In the wavemaker problem, the simplest mathematical
model has been discussed fully by Stoker (1957): A sinusoidal-
ly varying pressure is applied to a segment of the free sur-
face, and the resulting water motion (including radiated
waves) is computed; the usual assumptions of linearized water-

wave theory are made.
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Perhaps the most important deficiency of this mathe-
matical model is the neglect of the barrier which is neces-
sary physically in order for a pressure field to be applied
on a restricted region of the free surface. In our original
study in 1962, the main goal was to predict the effect
of the wavemaker lip on the efficacy of the wavemakers. The
lip is nothing more than a vertical barrier plate which
penetrates the free surface. The generalization from Sto-
ker's problem consisted solely of introducing the mathemat-
ical equivalent of such a barrier.

The results of these calculations are presented in
Figures 7 and 8. It is found that:

a) The amplitude of the generated waves goes to zero
as va approaches an integer multiple of 7 , where v
is the wave number of the generated waves and a 1is the
width of the wavemaker (the region to which the pressure is
applied). This result was found in the simpler problem
described by Stoker. (See Equation (9) in the next section.)

b) The barrier generally reduces the amplitude of the
generated waves, especially if the corresponding wavelengths
are smaller than or comparable with the immersion of the
barriers. This result was to be expected. '

c) If the generated waves are much longer than the
wavemaker width, the amplitude of the generated waves can
be considerably augmented by the presence of the lip.

What is perhaps more surprising is that the maximum amount
of augmentation increases as lip immersion increases. How-
ever, the range of wavelengths in which this phenomenon
occurs becomes smaller and smaller as lip immersion
increases, and the range moves in the direction of longer
and longer waves.

d) For small lip immersion, there can even be an
augmentation in the amplitude of short-wavelength waves.
This effect is very pronounced if the value of va is just
slightly greater than = . Again, the augmentation is great-

er, although over a smaller range of wave-lengths, for



increasing values of lip immersion.

The results described in c¢) and d) above suggest that
there is some kind of resonance phenomenon occurring.
Calculations have not been made for the free-surface motion
under the wavemaker, but one may suppose that the surface
oscillation is rather violent, much more so than one might
expect on the basis of Stoker's analysis. Otherwise, the
barrier would serve only to reduce the amount of energy
which could escape from the wavemaker in the form of radiated
waves. Qualitative observations with a pneumatic wavemaker
at the University of Michigan indicate that the resonance
hypothesis is plausible.

This unexpected behavior will possibly not be predicted
accurately by the theory, since the latter is based on the
hypothesis of an ideal fluid. Because of this hypothesis,
the theory predicts infinite velocity around the barrier
edge. One may expect this unreasonable prediction to lead
to errors which are primarily local in scope if the ampli-
tude of motion is quite small. A more rational, but still
qualitative, condition is that free vortices should not
wander far from the sharp barrier edges if the analysis
is to have any relevance to the physical problem. Violent
motion around the barrier certainly precludes a quantita-—
tive application of the theory; how far the qualitative
predictions are invalidated can hardly be predicted.

A simple extension of the wavemaker analysis allows
one to solve another class of problems: Computation of the
reflection and transmission of waves incident broadside on
a pair of vertical surface-piercing barriers. The analysis
is carried out here, although no numerical results are
presented. This problem has been solved in a different way
by Levine and Rodemich (1958).

If we add to the wavemaker considered here its image

with respect to the wertical axis, the problem becomes nearly



equivalent to the problem of a heaving, very long air-cush-
ion vehicle. As an idealization, we consider a box of
infinite length, with base and two sides, inverted over the
water, oscillating vertically. The air trapped under the
box will undergo oscillatory compressions which have the
same effect on the water as the varying pressure in the
wavemaker. We cannot immediately relate the pressure fluc-
tuations to the box motions, since the pressure will de-
pend also on the response of the water surface. Nevertheless,
it will be shown how the problem can be completely solved,
ending finally with simple formulas for the added-mass

and damping coefficients for the box. A set of curves is
presented, showing how these coefficients depend on va

and on the static conditions of support of the box. (Note
that a 1is here the half-beam of the box.) See Figures

10 and 11.

Our analysis for the inverted-box problem is based
on Stoker's simple mathematical model for the wavemaker.
This was largely a matter of expedience, because the corres-
ponding calculations for the wavemaker-with-lip problem
would have been quite lengthy. However, it should be ob-
served that the latter would not be strictly appropriate
either, because the sides of the box oscillate along with
the base of the box, whereas the edges of the barriers are
fixed in the wavemaker problem.

Nevertheless, the detailed calculations presented for
the wavemaker-with-lip problem serve an important function
in suggesting the nature and extent of sidewall effects.
For va < 1 (which implies wavelength > 2ma ) and
b/2a < 0.1 , the wave-producing capability of the wavemaker
is essentially unaffected by the lip. It is probably
reasonable to assume that, under the same condition, the
box sidewalls do not greatly affect the force on the box
base. The conditions of interest in the air-cushion-ve-

hicle problem are not likely to be excluded by these



restrictions, and so the analysis should provide a valid
guide to the magnitude of the oscillatory force on the box
base.

A word of caution is necessary about the application
of these results. They have a strong similarity in nature
to the stripwise added-mass and damping per-unit-length co-
efficients that are commonly used in ship-motion theory.

It is well known that strip theory provides a reliable
basis for approaching the prediction of ship motions, and
so it is tempting to use these results in the same way for
predicting the motions of an air-cushion vehicle. However,
a number of reasons can be cited for believing that this
will not be a straightforward matter; for example:

1) There is a strong coupling between stations, because
the pressure of the cushion is approximately constant with-
in any single chamber under the vehicle. By contrast,
each cross-section of a ship is initially fixed geometrical-
ly, and interactions between stations come about only
through hydrodynamic effects and through the rigid-body
dynamics of the ship.

2) The pressure is here assumed to vary only with the
enclosed volume, in accordance with the adiabatic gas law.
The use of this law is perhaps not unjustified, but there
are certainly other very important factors which affect the
pressure, such as the response of the fans to variable back
pressure and the leakage of air at the bow and stern (and
possibly under the sidewalls).

For such reasons, the analysis herein is not present-
ed as a method for computing the stripwise added-mass and
damping coefficients for an air-cuéhion vehicle. That will
be a more complicated problem — if indeed the strip approach

can be used at all with any reasonable validity.



THE FOUR BASIC PROBLEMS

In this section we present the solutions of four basic
problems:

(1) An oscillating pressure field applied to a segment
of the free surface.

(2) An oscillating pressure field applied to a segment
of the free surface, the segment being bounded by vertical
barriers of specified depth.

(3) Horizontally symmetric standing waves which can
exist in the presence of the barriers of problem (2).

(4) Horizontally antisymmetric standing waves which
can exist in the presence of the barriers of problem (2).

Problem (1) was solved many years ago by Stoker (1957),
and we only quote his results here. The solution satisfies
the condition that there be only outgoing waves at infinity.

For problem (2), we obtain a particular solution, with-
out regard to the existence of any prescribed conditions at
infinity. The solution will represent standing waves, not
outgoing waves, at great distances from the region of the
applied pressure. However , the solution can be combined
with the solution of problem (3) to yield an appropriate
outgoing-wave solution.

The solutions of problem (3) and (4) can be combined to
provide the solution of the problem of incident waves on a
pair of barriers. See Levine and Rodemich (1958) for a dif-

ferent method of solution.

(1) Oscillating pressure on the free surface

Let there be a pressure distribution on the free surface

P sin ot , |x| < a ,

p(xlt) =
(1)

0, x| > a .



See Figure 2. We seek a velocity potential, ¢(x,y,t) ,
satisfying a) the Laplace equation in y < 0 and b) the

following free-surface boundary condition:

A T x| < a ;
pg
¢y = V¢ = -(1/pglp  (x,t) = (2)
0o, x| > a,
where v= wz/g . It is convenient to write the potential in
the following way:
¢(x,y,t) = ¢1(X,Y) sin wt + ¢2(x,y) cos wt .

- p(x,t) = P sin wt

[’//S L. p(x,t) =0
i { /'\/
2y | 2y -

X

Figure 2

Then the boundary conditions on ¢l and ¢2 are:

¢1 -V¢1=0, —® < x <® , y=20; (3)

I
o
-e

-wP/pg , |x|<a, vy

6, - v, =
2y 2 (4)
0, |x|>a, y=o0.

We require that the solution represent outgoing waves as
|x| -+ » and that the fluid velocity vanish as y » -«
The solution, as given by Stoker (1957), is:



vy

¢l(x,y) -(2P/pw) sin va e COS VX (5)

¢2(x,y) = Re{f(z)} - (2P/pw) sin va e¥Y sin vx ; (6)

the complex potential, £(z) , is given by:

4

f(z) = =-(wP/mpQg) e V2 ./r dt el\)t log %&3 ’ (7)
c a

oo

where, for y < 0 , the contour is always taken around the
left side of the cut between z = -a and 2z = +a ; see
Figure 3. We take the principal branch of the logarithms:

-7 < arg (t+a) < +m .

!
J |

Figure 3

The free surface deflection is given by:
nix,t) = (w/9) [¢,(x,0) sin wt - ¢,(x,0) cos wt ]
(8)
-(1/p9) p(x,t) .

As x > + o , this reduces to:

n(x,t) = (2P/pg) sin va cos(wt+vx) + 0(1l/x) . (9)



For |x| < a , we find that:
n(x,t) = [-P/pg + (w/g) Relf(x-i0)}

-(2P/pg) sin va sin vx] sin wt

+ [(2P/pg) sin va cos vx] cos wt . (10)
If this problem is taken as a mathematical model for a pneu-
matic wavemaker, Equation (9) provides a means of predicting
the amplitude of waves which will be generated. The model
is admittedly rather crude. Besides the usual restrictions
of linearized water-wave theory, the model leads to singular-
ities at the edges of the wavemaker. However, these singular-
ities are very weak, and so one may hope that the resulting

errors are quite local in scope.

(2) Oscillating pressure field between barriers

This problem introduces a presumably better mathemat-
ical model for the same physical situation considered in the
above problem. If a uniform pressure field is to be applied
on a segment of the free surface, it will be necessary in
practice to enclose that segment within walls penetrating
the free surface. Therefore we study the problem depicted
in Figure 4. There are two barriers of zero thickness located
at x = +a , extending from above the free surface to a depth
b below the undisturbed free surface. The oscillating
pressure field is applied between the two barriers. We
may consider that the y -axis is replaced by a solid wall,
and so we seek a solution which is symmetrical about the
y —-axis.

It should again be noted that the solution to this prob-
lem is still not an entirely satisfactory solution of the
physical problem. There will be singularities at the lower

edges of the barriers, implying fluid velocities which vary
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in magnitude inversely with the square root of the distance
from those edges. Thus the solution will have meaning only
if the effects of the edges are really local.

We shall seek a particular solution of the problem, not
concerning ourselves with the radiation condition — for the
moment. In problem (3), below, we shall find a solution
of the homogeneous problem ( p(x,t) = 0 ) which can be com-
bined with the solution of the present problem to represent
the outgoing-wave solution appropriate to the wavemaker prob-
lem.

We shall show that a particular solution can be found
if we take the form of the velocity potential to be:
¢(x,y) cos wt . The free-surface boundary condition will be

the same as Equation (4):

-(uw®/pg) , IXI <a, y=20
b - vé = (11)
o, x| >a, y=0.

~e

There will now be a boundary condition on the barriers:

and a similar condition on the negative y -axis, either
because we require a symmetric solution or because we con-

sider the y -axis to be a rigid wall:
¢, =0, x=0, y <0.

These two conditions are equivalent to setting the stream
function equal to a constant on each of these boundaries.
We are always free to add a constant to the stream function,

and so we may as well set

{12)

<
I
o
b
)
o
<
A
o



-11-

where ¢ (x,y) 1is the stream function which is the complex
conjugate function to ¢(x,y) . The value of the stream
function on the barriers is not necessarily zero, but, if

we can find a solution which does satisfy the condition:
vy =0, X=ia,-b<y<0, (13)

that solution will serve perfectly well as our particular
solution. In fact, we can find such a solution, and so we
impose (13) as a boundary condition of our problem.

We expect singularities at the lower edges of the bar-
rier, and, as usual in such problems, we demand that the
singularities be as weak as possible. It turns out that we
must allow square-root infinities in the velocity, and so
we have the condition that:

1/2 x =4+ a ,

|Vé| be bounded near —

— 2 2
kx+a) + (y+b) ] v =-b.

We require that the velocity be bounded everywhere else in

(14)

the lower half-space and that the velocity vanish as y » -« .

To solve this problem, we use the "reduction method"
(See Stoker (1957) or Wehausen and Laitone (1960)), car-

rying out the actual solution in an image plane which is ob-
tained from the physical plane by a simple conformal mapping.

To begin, we state the problem in terms of functions

of a complex variable. Let

(15)
(@/pg) £,(2) = d(x,y) + iv(x,y) ,
The boundary conditions can be stated in terms of f2(z)
as follows:
1, Ixl <a,y=0;
Im{fé(z) + 1\)f2(z)} = (11')

0, |x| >a, y =20

e
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Im{fz(z)} =0, x=0, y<0; (12")
Im{fz(z)} =0, x=+a, -b<y<0; (13")
|z - (+a-ib) | |fé(z)| bounded near z = +a - ib . (14")

In place of (12') and (13'), we note that we can write:

Re{fé(z) + ivfz(z)} =

|
o
-

x=0, y<0; (12")

i
=]
o

i

Re{fé(z) + ivfz(z)} +a , b <y < 0 . (13")

We can now define a new function on which the boundary con-

ditions are gquite simple:
g,(z) = £5(2) + ivE, (z) . (16)

Since gz(z) is just the same as the expression in braces
in (11'), (12"), and (13"), the boundary conditions on
gz(z) involve simply the values of its real and imaginary
parts. The essence of the "reduction method" is the deter-
mination of this simpler function, g2(z) ; when this has
been accomplished, we reinterpret the definition of gz(z) ’
Equation (16), as a differential equation to be solved for
f2(z) .

From (11') and (16), we have the condition that
Im{gz(z)} = 0 on the real axis outside of the wavemaker
segment. By the Schwartz reflection principle, we can then
continue g2(z) analytically into the upper half-plane

according to the prescription:
gz (E) = 92 (ZS

This in turn implies that Im{gz(z)} =31 on the cut, that
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is, on y =+ 0, |x| < a . Thus, Im{gz(z)} has a jump
in its value across the cut in the complex plane. The
conditions on the vertical axis and on the barrier can be
continued unchanged into the upper half-plane, since
Re{g,(z)} is an even function of y .

The generalized conditions on g2(z) are now the fol-

lowing:
Im{g,(z)} = + , y =40 , [x| < a; (18)
Im{g,(z)} = 0, y=0, |x| >a; (19)
Re{gz(z)} = 0, x=0, =0 < y< o ; (20)

Re{gz(z)} = 0, X=+a, -b<y<+b . (21)

In addition, from (14') and the analytic continuation, it
is apparent that g2(z) may be expected to have square-root
infinities at the four edges of the extended barriers, that
is, at (+a,-b) and (+a,+b) . ‘

The g2(z) -problem can be reduced to an even simpler
one by a Schwartz-Christoffel transformation:

2_2

= -~
2 2 2 2 : (22)
(z -a )(z -8B )

To make the mapping unique, we integrate (22) as follows:

T (t2—Y2)dt |
z(z) = 2 2 2 2 T (23)
0 \&t -a )(t -B)

It does not matter what contour we follow in this integration,

Q-IQJ
WY IN

provided we do not cross the two cuts in the ¢ =-plane which
are the images of the barriers in the 2z -plane. Figure 5
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shows some corresponding points in the two planes. Various

properties of the mapping are discussed in Appendix A.

AY N\

-a +a ‘/x
A B| D E FI H I
C G
Figure 5a
LT,
(¢
-8 -y -a a Y 8 £
ad @ -® & < P —— =
A B C D E F G H I
Figure 5b

We define two functions of <7 :

G, (5) = g,(z(2)) ; (24)

F,(5) = £,(2(2) . (25)

The simple boundary conditions on are, of course,

g, (2)

retained by Gz(c) in the mapping, and so, corresponding

to (18)-(21), we have:
Im{G,(c)} = +1 n=+0, [ <a; (18')
Im{Gy(g)} =0, n=0, [E] >8; (19"
Re{G,(z)} = 0 , §=0, =0 < <o; (20")
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Re{G, (1)} =0, n=0,ac<]|g] <B. (21')
It is not so obvious =-- but nevertheless true -- that:
|z + Y|lG2(C)| is bounded near ¢ = + vy + i0 . (26)

The points mentioned in (26) are the images of the barrier
ends and of their reflections about the real axis.

With the boundary conditions now expressed in terms of
values of the function Gz(c) on the axes only, the problem
is easily solved by the methods discussed by Muskhelishvili
(1953) . The solution is:

o
e (o) - - L WgP-od) ®-8%) (Podae
2 " r2-y2 ) -0 [ o=t (87-tD) |
o (27)
2 Mz2-e?) (%-8%) (£2-y2)at
ST z2-vy2 0 (£2-22) | (a2 2) (8%-t%H | M2
(27")

This solution is not mathematically unique, but, following
Muskhelishvili, we can show that the other possibilities
violate conditions necessary at infinity. The correctness
of these expressions can be verified by use of the Plemel]
formulas (again, see Muskhelishvili), without the necessity
of deriving solutions.

From the definition of gz(z) , Equation (16), we obtain
a differential equation for Fz(c) :

ag

£5(2) + ivfy(2) = Z=Fi(5) + iVF,(Z) = g,(z) = G,(2) .

Slightly rewritten, this is:
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dz dz

Fi(z) + ivaf F,(2) = ac G, (2) . (28)

The general solution is:

. z .
£,(z) = Fy(2) = e ivz(z) ./; oivz(t) dz G, (t) dt + K,

-i0 dt

where K2 is a complex constant yet to be determined. The
lower limit of the integral in the solution has been arbi-
trarily set for later convenience. The contour of the inte-
gration must not cross the real axis between + B , because
this is a branch cut of the integrand.

From Equation (12'), we find that:

Im{Kz} =0,

and from Equation (13') it follows that:

-1 0-10 dz
K2 = (1/v) - (sin va) j;—iodt It sin v[a—x(t)][Gz(t)-i]
(29)
Thus, the solution for fz(z) is:
£ (z) = e V2 jﬁg dz _ivz(t)
2 . dt = e G, (t) + (1/v)
0-i0 4t 2
1 a-10 dz
+ (sin va) j- dt 3t sin v[a-x(t)][Gz(t)—i]
0-i0

(30)

This is the complete solution of problem (2).
We shall need to know the behavior of the solution as

x > +» . From Appendix A we have that:

z =17+ 0(1/2) as |z| » = .
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Figure 6

We deform the contour of integration in (30) as shown in
Figure 6. The integral along C3 vanishes as the radius of
C3 increases to infinity, leaving only the integrals along
Cl and C2 . The first of these contours can be shrunk
down to the real axis, and the properties of Gz(c) and

z(z) can be used to simplify the integrals. The result is
the following:

Re{fz(z)}’b VY [A2 cos vx + B2 sin vx], as x * + ® ,

3
where B
A, = (2/v) (cos va - 1) + D, cos va + E, + Ky v (31a)
B2 = (2/v) sin va + D2 sin va , (31b)
[B-10
L dz vy (t) -vy (t)
D, = dt ¢ G, (t) [e -e 1, (31d)

“oa-1i0
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(i
_ dz -vy (t)
E2 = J dt 3t G2(t) e . (31le)
0

(The result for x + -» follows from the symmetry of the
problem.) The velocity potential and the free-surface dis-

turbance are given by:

¢(x,y,t) = (wP/pg) Relf,(z2)} cos wt ; (32)

[ (VP/pg) Re{fz(x-iO)} - (P/pg)] sin wt , |x|<a ,
n (x,t) =
(VP/pg) Re{f,(x-i0)} sinwt , x| > a .
(33)

(3) Symmetrical standing waves in presence of barriers

The geometry of the boundaries is the same as in the
previous problem; see Figure 4. However, we now assume that
the pressure distribution is identically zero over the whole

free surface, and so the free-surface boundary condition is:

Again we seek a solution which would be appropriate if there
were a rigid wall on the vy -axis, and so we again require
that:

y=0, x=0, y<©0, (34)

where 1y 1is the stream function conjugate to ¢ .
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On the barriers, we again have that ¢x = 0 , or the
equivalent, that ¢ is a constant. It will not do now to
set ¢ = 0 on the barriers, for it can be shown that the
only possible result would be the trivial one that ¢ equals
a constant (everywhere). Therefore we must take a non-zero
value for ¢ on the barriers. Since the problem is linear
and homogeneous, it does not matter what value we take, and

so we choose the convenient value:
p=-1/v, x= a, =b<y<o0. (35)

From equation (34), it is apparent that ¢ must be odd

with respect to x , and so we can extend (35):

}]

v =+ 1/v, x=+ea, -b <y <0. (35")

The solution procedure is just the same as in problem

(2): We define the complex potential:
£4(2) = ¢(x,y) + iv(x,y) ,

and the reduced function,
g5(z) = £3(z) + ivf3(z) ;

we map the =z -plane onto a ¢ -plane by the same conformal
transformation as before; we use the methods described by
Muskhelishvili (1953) to find g3(z(c)) = G3(C) ; finally
we use the definition of g3(z) as a differential equation
which we solve for f3(z) .

The function G3(§) is found to be:
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8
G4(2) = - 1 ngz_az)(cz_sz) Jf (tz'Yz)dt
7 2.2 2 (o] (t2oa?) (82-%) | 172
=0
+f (t2-y%)at
-8 (t—C)|(t2—a2)(82-t2)|1/2 (36)
B
_ 2 Vigt-e?) (cz—sz)f (t2-y% at ,

m 22 o (22| (t2-a2) (821 |12

The Plemelj formulas may be used to show that this function
satisfies the necessary conditions: Re{G3} = + 1 on the

right and left barriers, respectively, Im{G3} = 0 on the
undisturbed surface, and Re{G3} = 0 on the vertical axis.

The solution of the differential equation gives us:

S,

3 ’

z
£,(z) = Fy(z) = e~1vz () J[elVZ(t) %% G,(t)dt + K
0

(37)

where the complex constant K; , is found from conditions
(34) and (35') to be:

o

K3 = (sin \)a)_l (1/v) - J[ sin via-x(t)] %% G3(t)dt .
0 (38)

This is a purely real number, just as was K2 .

At great distances from the barriers, we can derive

the following asymptotic estimates:

Re{f3(z)} 4 [A3 cos VX * B, sin vx] , as x > 1= ,

(39)
where

3 COs va + E; + Ky , (39a)
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; (39Db)
B3 S D3 sin va ,
B-i0
_ dz x vy (t) _ _-vy(t)
Dy = -[ dt zxlG5(t) - 11le e 1, (394)
a-1i0
f#a (®)
_ dz -vy (t (39e)
E3 = j dt 3T G2(t) e .
0

The velocity potential and the free-surface disturbance are
given by:

ol [ M cos wt
¢(x,y,t) = Relfy(z)} | o S50 ot ? (40)
n(x,t) = (w/g) Relfy(x-i0)}-| N SIn vt (41)

where M and N are arbitrary real constants.

(4) Antisymmetrical standing waves in presence of barriers

For a problem with symmetrical geometry, such as we are
considering here, it can be shown that any solution can be
represented as the sum of an even part and an odd part. In
problem (3), we found a solution in which the wave elevation
and the velocity potential are even in x , and the stream
function is odd in x . Now we find the solution in which
the wave elevation and velocity potential are odd, the stream
function even. As in problem (3), there is no applied pres-
sure field, and so the problem is linear and homogeneous.

The free-surface condition is again:

¢_\)¢=Or Y=Or - ©® < x < oo
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On the axis of symmetry, we set:
¢ =0, x=0, y <0 . (42)

On the barriers, the stream function is again a constant, of
course. Since Y is even in x , the constant is the same
on both barriers, and we choose the following convenient

value:
v = -1/v , x=+4a, -b<y<O0. (43)
The steps all proceed just as before. We use the

definitions of problem (3), replacing the subscript
3 by 4 . The solution is:

G, (2) =% \/(c —o )(c -8%) f [ (t —y )dt
¥y (t-0) | (£%-a?) (82-t2) | /2

We can integrate this soluticn or we can use the method ex-

plained in Appendix A to show that a much simpler representa-

tion is possible:

Gy(t) =1 - 37 - (44)

The solution for the complex potential, f4(z) , is then:

4

_=ivz ivz(t) {dz _ .

f4(z) = e {‘/-e [dt l] dt + ik, , (45)
‘o

where K, is given by:

o
K4 = ~-1/v - (cos \)a)—1 jr sin v[a-x(t)]ldt . (46)
: 0
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The asymptotic form of the solution is:

Re{f4(z)} n VY [iA4 cos Vx + B, sin vx] , (47)
where
A, = D, cos va , (47a)
B4 = D4 sin va + E4 + K4 + 1/v , (47b)
B-10
D, = - at VY (B vy (t)y (47d)
o-1i0
E, = - are VY U®) (47e)
0

The velocity potential and the free-surface disturbance are
given by the same expressions as in the previous problem if

f3 be replaced by £, .

4

WAVEMAKER WITH A LIP

We now consider the wavemaker problem in which a sinu-
soidally varying, uniform pressure is applied to the part of
the free surface between the barriers. Actually, a rigid wall
is assumed to be located at the vy -axis, and so we admit
only solutions for which ¢ is constant on the vertical axis.
The solutions of problems (2) and (3) satisfy this condition,
and all we need to do is superpose these solutions in such
a way that the radiation condition is satisfied, that is,
that the sum represents outgoing waves as Xx > +* .

Let the solution be:

d(x,y,t) = Re{f2(z)} cos wt + M Re{f3(z)} cos wt

+ N Re{f3(z)} sin ot .
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We use the asymptotic expressions given in (31) and (39),

and we find then that the solution has the proper form

only if:
) A,A; + B,By
M= - > s
A3 + B3
N = “A3By t AyB,
5 7 .
A3 + B3

The asymptotic form of ¢(x,y,t) is then:

A2B

A

- A,B

¢(x,y,t) v cos (wtFvx)

2 e\’y[ By
+ B

w NWw
w Nt

+ A

5 sin (wt?vx)] ,

and the amplitude of the generated waves is:

!AZB - A

Qle

3 3By
> >
A3 + B3

In Figure 7, the wave amplitude, h, is plotted against
va = 2ma/A , where XA 1is the wavelength; the ratio of lip
immersion to wavemaker width, b/a , is a parameter. The
curve for b/a = 0 is a graph of the function |sin val;
from Equation (9), this is the wave amplitude (non-dimen-
sionalized) from the Stoker model of the wavemaker, in
which the lip is not represented.

Stoker pointed out the interesting fact that the theory
predicts no radiated waves if va is an integer multiple
of m . The same fact is clearly true for any value of b/a,

although our formulas are indeterminate under these conditions.
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For va < ® , the curve for the case b/a = 0.0477 cannot
be distinguished from the sine curve which corresponds to
b/a = 0 . However, for larger ranges of va ,'the curves
are distinctly different, and the difference increases in
the following humps. The very small lip, corresponding to
b/a =~ 1/20 , apparently magnifies the amplitude of short
waves which are generated. It may also be noticed that the
humps in the response curve for b/a = 0.0477 become
succesively more skewed. It is not unreasonable to suppose
that these humps farther out to the right eventually take on
the appearance of the humps at the left for larger values of
b/a .

For long waves (va » 0), the effect of the lip in
amplifying the waves is quite evident with the larger values
of b/a . We did not consider it worth the computer time
to try to obtain enough points to fill in all of these
curves. Under the conditions of violent motion that must
prevail near these peaks, it is, in fact, somewhat difficult
to take the theory seriously at all. However, the trends
are quite clear from Figure 7.

In Figure 8, the effect of the lip is shown in a dif-
ferent way. For a given frequency (or wavelength) of gen-
erated wave, the influence of lip size on wave amplitude
is quite apparent here. For each wavelength, the amplitude
at the left is the no-lip value; in each case, the amplitude
increases and then decreases. Note however that we have
included only the longer waves in this figure. The largest
value of va 1is 1.50 , corresponding to a wavelength
A =~ 4.2a . This restriction was made because it seems to
include the practical range of wavelengths that one would
try to generate with a pneumatic wavemaker.

In using these calculations, it would be desirable to
be able to predict the immersion of the lip which is neces-

sary if the wavemaker is to produce waves of specified wave-
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length and amplitude. This is not a straightforward mat-
ter at all, however, for the analysis is based on linear-
ized water-wave theory, which implies, among other things,
that all physical dimensions in the problem, including lip
immersion, must be large compared with wave amplitude. 1In
practice, we may expect that the lip immersion should be

at least equal to the wave amplitude; such an estimate is
probably a lower bound on 1lip size. 1In Figure 8, an extra
curve is shown which passes through the other curves at the
points at which b = h for a wave amplitude equal to 1/20
of the wavelength. Thus, for va = 0.15 , the wavelength
is 2ma/0.15 = 42a — a very long wave indeed. If this
wave has amplitude/length ratio of 1/20, the amplitude

will be about 2.la , and this gives a lower limit on b/a
of 2.1 . It should be noted that the "amplitude" here is
a single amplitude, that is, half of the crest-to-trough
distance, and so a 1/20 amplitude-to-wavelength ratio is
exceedingly large.

Although it may not be possible to use these results
quantitatively for deciding upon lip immersion, Figure 8
does show the way in which lip size must be increased in
order to produce longer and longer waves of constant max-
imum slope. What is perhaps more important is the following:
If the lip size is chosen so that large amplitude long waves
can be produced, then it will be practically impossible to
produce short waves. Some compromise is clearly necessary.

Only experiments can show what is the best compromise.

WAVES INCIDENT ON TWO BARRIERS
Let there be incident waves from the left having unit

amplitude and frequency ww . Once again, we have the two
barriers shown in Figure 4. 1In order to find the velocity
potential valid throughout the fluid, we need only to combine

the symmetric and antisymmetric solutions of problem (3) and
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(4). Thus, let:
d(x,y,t) =P Re{f3(z)} cos wt + Q Re{f4(z)} cos wt
+ R Re{f3(z)} sin wt + S Re{f4(z)} sin wt .

We use the asymptotic estimates of f3(z) and f4(z) from
(39) and (47) :

Re{f3(z)} PN 4 [A3 cos Vx # Bj sin vx]
as X +* + ©

Re{f4(z)} n eV [iA4 cos vx + B, sin vx]

When these estimates are substituted into the assumed expres-
sion for the velocity potential, the result should represent:
(1) the incident wave (of unit amplitude) plus a reflected
wave, as x * - ® ; (2) a transmitted wave, as x > + ® .

If we now set:

(w/g) P = Ay/(A5+B3) (u/g) R = =B/ (A5+B3) ;

(w/9)Q = "A4/(A‘Z+Bi) ; (w/g) S = B4/(A2+Bi) ,

the wave disturbance at infinity is given by:

, [ 3585 ap-mg
n(x,t) v sin(wt-vx) + sin(wt+vx) | 5 +
2 A2+B2 A2+B2
3’73 474
A_B A B
+ cos (wt+vx) 5 3 32 + 5 42 ; X > - 3
A3 + B3 A4 + B4
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A3—B§ Ai-Bi
ni(x,t) v sin(wt-vx) Sl—— ~ o
A_+B A,+B
3 73 4 74
A.B A B
+ cos (wt-vx) 23 %f . 24 g ; X >+ »
A3tB3 AytBy

This result clearly satisfies the requirements set.
Since the incident wave has unit amplitude, we can
define the reflection coefficient as the magnitude of the

reflected wave, R , given by:

211/2
X - (AjA, + B3B,)
- 2.2, .2 .2 ‘
(A5+B3) (Ay+B))

Similarly, the transmission coefficient, T , is given by

the amplitude of the transmitted wave:

B 21 1/2
. (A3B4 A4B3)
2,.2 2,..2 :
(A3+B3)(A4+B4)
A simple algebraic check shows that T2 + R2 =rl- s

FORCE ON AN OSCILLATING INVERTED BOX

This problem is really just a slight variation on the
wavemaker problem: let the oscillating pressure be caused by
the heave motion of an inverted box, as shown in Figure 9.
Assume that the base of the box is at a height:

h(t) = h0 + H cos(wt + €) . (48)

The sidewalls of the box extend downwards sufficiently

far so that their edges are always immersed. The only ad-
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ditional problem here is to find the relation between h(t)

and p(t) , the pressure applied to the free surface.

by

£(4///‘h(t) = hO + H cos (wt+eg)

«—— -3 ——»

b

| - X
/// b + H cos (wt+g)
<i

p(x,t) = P sin wt + p0

Figure 9

We shall ignore the hydrodynamic effects of the box sides,
other than assuming that the sides provide a physical boun-
dary on the region of the oscillating applied pressure.
Under this assumption, the problem reduces to the previous
problem (1) (Stoker's problem). If we knew the pressure un-
der the box, we could immediately write down the complete
solution of the linearized free-surface problem. Most of
our effort goes into relating the motion of the box with
the amplitude and phase of the applied pressure.

The free-surface conditions are:

P
P ¢t gn P, y=20;
¢y -, = o, y =0,
For |x| >a , p = Piem = atmospheric pressure. For

|x| < a , we shall assume that the pressure is given by
the adiabatic gas law, and so we must calculate the volume
of air enclosedbetween the box and the free surface. For
|x] < a, let:
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Py - P
- _ -0 atm
"o ST " %Bg ! (49)
+a
n cos (wt+d) = (1/2a) [n(x,t) - nyl dx , (50)

-a

where Po is the static pressure under the box. Clearly,
Ny gives the static depression of the free surface, and
n cos (wt+s8) gives the space average of the oscillatory
depression of the free surface. By the adiabatic gas law,
the pressure varies inversely with the volume raised to
the Yy power, where Yy = 1.4 for air. We can write the

adiabatic gas law as follows:

- h. - n Y
_ 0 0
p_po _—
h0 - no + H cos(wt+e) - n cos(wt+s§)
-
1 (wt+g) il (wt+8) Y
=p + = cos (wt+e) - — cos (wt+ .
0 hp=np hy=ng

Since we assume that the problem can be linearized in all
other aspects, we may as well assume here that the oscilla-
tions have small amplitude, in which case the last equation

can be approximated by:

P * P, [l - H—%—— [ H cos(wt+e) - N cos(wt+8) ]] .
0™ "o

Let us now define the oscillatory pressure in a way which

suggests immediately how the problem reduces to the previous

problem (1):
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P sin wt P - Py
YPy

)

B [H cos(wt + €) - n cos(wt + 6)] . (51)

Thus, the problem is actually identical to problem (1),
except that we cannot simply specify P . We shall have to
relate P to the parameters which describe the motion of
the box, viz., to H and ¢ .
The procedure is as follows:
(a) Solve problem (1) for arbitrary P .
(b) calculate n , § , as functions of P .
(c) Find H , ¢ from the gas law, as functions of
P, Y, Pg ¢ h0 , etc.
(d) The oscillatory force on the box is 2aP sin wt .
With H and € known as functions of P , the
force can be related directiy to the amplitude
and phase of the box motion.
(a) The solution of problem (1) has already been given.

The particular quantities we need are (from (10) and (7)):

n(x,t) - Ng = [—Eg— (1 + 2sin va sin Vvx)

+ gnRe{f(x-iO)}} sin wt

+ [%% sin va cos vx} cos wt , for |x|<a ;

z
f£(z) = - L& 71V2 Jr at eVt 10g %52 ’
C

joo

with the contour of the integral as specified previously.
(b) Let g(x) be the standard function:

g(x) = [ u e *Ydqu ,
0 u’+1
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This function is frequently used in treating sine and cosine
integrals (See Abramowitz and Stegun (1964), 5.2.13). It has
the great virtue that it can be computed very easily. 1In
Appendix B, we show that the mean oscillatory water elevation

under the box is given at any instant by:

= _ 2P ; .2
n cos(wt+d) = Sgva L sin“va cos wt (52)
+ %? [-27 sinva cosva + C + log 2va + g(2va)]sinwt] .

Here, the constant C 1is the Euler constant, C = 0.577216 .
( ¢ is usually denoted by Yy in modern literature, but we
reserve the latter for the specific-heat ratio.)

(¢) From the definition of P , Equation (51), we solve

for H cos(wt+e) :

ho=ng -
H cos (wt+e) = - P sin wt + n cos(wt+§)
PqY
h,.-n :
= sin wt |- 0 0 + ——l——[—zn sinva cosva
PoY Tpgva
q
+ C + log 2va + g(2va)]J
+ cos wt [ sinzva] .
pgva ]

We can also write this quantity as follows:

H cos(wt+e) = H [cos € cos wt - sin € sin wt 1 .

Thus we can solve for H and ¢ from the following relations:

7 (53a)
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h -n
B sin € = 0 0 + 1

P PyY Tpgva

[2m sin va cos va

(53b)
- C - log 2va - g(2va)] .

(d) First, let us observe the following:

Height of box base

I

H cos (wt+e) + hO ;

Velocity of box

-wH sin(wt+e) ;

Acceleration of box = —wzH cos (wt+e) .

We assume that the oscillatory force on the box base can be

written as the sum of inertial, damping, and restoring-force

components:
Oscillatory force = - m[—wzH cos (wt+e) ]
- N[-wH sin(wt+e)]
- ¢[H cos(wt+e)]
= cos wt [mwzH cos € + NwH sin € - cH cos €]

+ sin wt [—mwzH sin € + Nw cos € + cH sin €]

But the oscillatory force can also be written: 2aP sin wt .
Equating these two formulas for the force, we can solve for

the coefficients:

mw2 -c = - ——22—7 % sin ¢ ; (54)
(H/P)
wN = —2a _ % cos £ . (55)

(H/P) 2
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In the usual language of ship-motion theory, m is the added
mass, N is the damping coefficient, and c¢ is the restor-
ing-force coefficient, all expressed per unit length of

ship.

In order to define m and c¢ uniquely, we must make
another arbitrary definition. We shall assume that c¢ 1is
the restoring-force coefficient which would be applicable if
the water responded only statically to the applied oscilla-
tory pressure. If this were the case, we would have the

following equivalents of steps (a), (b), and (c):

(a') n(x,t) - ng = -(P/pg) sin wt ,
(b") n cos (wt+8) = -(P/pg) sin wt .
h.—-n
00 1 .
c' H cos (wt+e) =-—= + =— { P sin wt .
(c'") cos ( ) Doy g

Combining these, we obtain:

\
H =
9 cos £ = 0
$ for static responses.
h,-n
= s8in € = 0 0 + L
P PgY ol
/
(d') Oscillatory force = 2aP sin wt = - ¢ H cos (wt+e)
= ¢ H sin ¢ sin wt ,
since cos ¢e =0 . Now H, P, and c¢ are all positive

constants, and so sin € = +1 , which implies that € = 7m/2
Thus,
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2a
h,.-n *
0 '0 + 1

PyY Pg

c = 2aP/H = (56)

Now we can return to the dynamics problem, using the
above value of ¢ 1in the expression for (me_C) to yield

a unique value for the added-mass coefficient:

2
2a p 2a H sin € . (57)

og(ho-no) gv(H/P)z P
PoY

m =

va[l +

The quantities H/P and (H/P)sin € must be computed
from Equations (53). It is easily checked now that all
quantities in the expressions for m and N are known.
Since the neglect of the sidewalls is probably justi-
fied only for long waves (low frequencies), it is worth-

while to obtain simplified formulas for m and N which

are valid asfmptotically as w > 0 . The results are:
2
N 4pa”w 5 ,
r pg (h-n N
I 0o’
O " Teey |
0 as w > 0 .
2
o 2pa” [3 - 2(C + log 2va)]l .
r pg(h,-n.)
ﬂ[“_o_o_]
PoY |

Figures 10 and 11 show how m and N vary with a ,
for various constant values of the parameter pg(ho—no)/poy
The latter is dependent only on the static conditions of
operation. As va + 0 , the added mass, m , approaches
infinity logarithmically, and the damping coefficient, N ,

approaches zero linearly with w .



-38-

4

. >om\ﬁoc10£vma JO sonieA sSnoTIea I03

eA  JO UOTIOUNI © SB JUSTOTIIS0D SSeuwl peppy 0T 2aInbrd

D¢
07c 81 9°l vl A o'l 8’0 90 #'0 20
0l f—_]
0 P
90 _— /ﬂ/
\ / N
vo . //
) \\\\l\\\\L!|||w — lIIII N
¢0
3] AN
© AIIIIIIII A///L”/
\
/

1’0

)

€0

o

S0

90

L0

06t



-39-

d »om\AOCIosvma JO sonTeA SnoTIeA IOJ

/ ea  JO uoTiOoUNy B S jJusIorIIeoo Hutdweg T Sanbrta
D¢
0z 8°L 9'l 14 2l o'l 80 90 ¥o <0 0]
L0
g = —
) e T — © N.o
vo- 2= 90 =1 T 55\,
AIIHHMMMIIIII IIIIM””A////
V///M/ FON_ N g
///, S0
AN\
S\
L°0
/ -0dmi
80

/

60

0l



~-40-

There is nothing startling about these results. If
the box is very close to the water surface, so that the
enclosed volume of air is relatively small, the added-mass
and the damping coefficients are large, at least for low to
moderate frequencies. It should be noted, incidentally,
that the calculation for the case pg(ho—no)/poy =0 1is
really meaningless, since we earlier assumed that ho—no
was large compared with the amplitude of oscillation of
the box and of the free surface.

In evaluating the motions behavior of the box, it may
well turn out that the most important effect to be considered
is the difference in the restoring-force coefficient, in
comparision with that of a solid body. If ho-n0 is zero,
the restoring-force coefficient is ¢ = 2apg , the same
value that one obtains for a solid body of beam 2a .

From Equation (56) it can be seen that the actual value of

¢ 1is always less than 2apg .
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Appendix A

The Conformal Mapping

The conformal mapping given in Equation (23) has the

following properties:

(a) There is no magnification of the scale at infinity.

(b) The origins in the two planes are images of each
other.

(c) The real axis in the ¢ -plane (for n = -0 )
corresponds to a contour in the 2z -plane along the
undisturbed free surface and around the under sides
of the barriers. Se Figure 5.

From Figure 5, it is obvious that:

(t2-y?)at

=0 .
L1 P-a?) (82t |

Therefore, the constant Yy 1is given by:
B B

2 - jf t2at J( dt :
L le?=a®y @4 |12 /] e?-a?) (87t |2

Then a and b can be found in terms of o and B :

o
.- J[. (Yz'tz)gt
0 | (a%-t%) (82-t%) |1/2

;
b = f (Yz_tz)dt .
Ll E2-a?) 8%-eH |12

The procedure used in the numerical analysis was to choose
o and B arbitrarily, then find y , a , and b . (This

accounts for the rather odd values of b/a .)
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A fact which is used several times in the text (in
finding asymptotic estimates at infinity) is the following:
z(g) - ¢ = Q(1/%) as g > ® .
The proof is as follows:

Fyxom Equation (23), we can write:

C
2
Z(a)-§=[ tZ‘Y - 1] at .
0 Lit?-0?) (+2-8%)

The integrand is single-valued for |t] > B , and so it can
be expanded in a Laurent series about t = 0 . We find then
that the integrand is 0(1/t2) as t » « , and so

lim [z(g) - T ] exists if we take a path along, say, the
E;ger imaginary axis. Furthermore, we could evaluate the
limit for, say, ¢ ~ °°'eie by following the same contour
along the upper imaginary axis and then following a circular-
arc contour from arg ¢ = /2 to arg ¢ = 06 ; as the radius
of this arc approaches infinity, the contribution to the

integral from the arc approaches zero. Therefore,

lim [z(g) - ¢ ] exists and is independent of 60 .
c+wele
Finally, calculate this limit for arg ¢ = -m/2 by following

the contour indicated in Figure 12. The part along the real
axis contributes nothing. (y was chosen to make this so.)"
Then,
-j o0
lim  [z(g) -t} = t -y
e 0 ie2-o2) (28
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i o0

r

j A -1 at
. \/(tz_az) (£2-32)

(by a change of variable)

= - lim [z(7) - T] .
Lrice

However, the limit at the start of this calculation
equal to the limit at the end, since the limit does

depend on 6 . Therefore, the limit is zero.

4
e le
»$
v
Tag ]

Figure 12

is also

not

We can now also write 2z(¢) in the following way:

c

(2.2
z(z) = ¢ + Y -1 dt
V(£2-a2) (£2-82)

e}

Since the integrand is O(l/tz) , the integral is
which was to be proven.

o(1/z) .



-45-

In problem (4), a particularly simple solution was found,
as given by Equation (44). This solution can be obtained by
a very tedious integration of the solution which results from
using the methods of Muskhelishvili, but the following proof
of equivalence is much easier:

The quantity:

dz
ac [G4(C) - 1]

is single-valued on the two cuts in the ¢ -plane. It is thus
analytic in the whole plane except possibly at the ends of

the cuts. But at these ends it is less singular than a

simple pole. Therefore these singularities are removable,

and the function is analytic in the whole plane. The quan-
tity is bounded at infinity, and so it must be a constant.

The value of the constant may be found by evaluating the
gquantity as ¢ + « , and we find that:

This shows the equivalence of the two solutions.

It is interesting to note that the quantity

dz
5 leg(@) - 11

is analytic in the neighborhood of the right-hand cut in the
z -plane, but not on the left-hand cut.
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Appendix B

Calculation of 10 cos (wt+§)

For the inverted-box problem, we need to know the average
height of the water at any instant under the box. For |x|<a ’

the local surface elevation is given by (Equation (10)):

nix,t) = [-%E (1 + 2 sin va sin vx) + % Re{f(x—iO)}] sin wt

[%g-sin va cos VX ] cos wt ,

x-1i0

wP -ivx ivt t-a
—_— e dt e logm,

the contour integral being taken along the path shown in
Figure 3. The whole purpose of this appendix is to sketch
the rather tedious calculation of the average of n(x,t)
over the interval between x = -a and x = +a . Obviously,
the trouble comes only from the integral of f(x-iO)..

The integral of f£f(x-i0) -‘can be transformed once by an

integration by parts:

a a-io0
. _ P -iva ivt t-a
dx f(X 10) = ﬁ_p—w' e o dt e 109‘ t+a
_ —a .
l(XJ
-a-i0 a
iva ivt t-a a-x .
e c dt e log Ta dx [log 3Tx 117] .
ie -

The first two integrals on the right-hand side are contour

integrals, taken along the standard contour. The third inte-
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gral is readily evaluated; the logarithm term yields nothing,

and the other term is trivial. We have now for the integral

of f(x-i0) :

; dx f(x-i0) = 27ia + I, - 12

Tipw 1 y

a-io0
_ -iva ivt t-a |
Il = e [ dt e 1og -t-_;; H
C
100

-a-i0
I, = V@ at eVt 109 2 .
C t+a

Figure 13.

The first of these, Il , is taken along the contour C
counter-clockwise around the cut in the plane. We deform
this contour into the sum of three contours, C1 ’ C2 , and
Cy , as shown in Figure 13, and we denote the respective
contributions to I1 by Ill ’ 112 , and I13 . A change

of variable and a simple integration yield for the first:
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l -iva
Ill =5e [r - 2 £(va)] ’

where f(va) 1is a standard function related to the sine

and cosine integrals (See Abramowitz and Stegun (1964),
Equation 5.2.12):

oo

=vau
f(\)a) = f __e_.z_____d'i .
u“+1

0

For the second, we can perform the following manipulations:

a
-iv (a-t) a-t .
12 -jr dt e [log Py + lﬂ]
0

H
i

1
= % (1-e"*V3) &+ a-]r ds e *V3% 10g s
0

1 .
- a ’/- ds e—lva(l-s) log(1l+s)
0

= %(1-e'l”a) + % [-g - si(va) - i Ci(va) + i(C+logva)

+ %[i log 2 - ie 2 V3{ci(2va) - ci(va)

+ i si(2va) - i si(va)}] .

The last equality follows from fundamental properties of
the si and Ci functions. The third integral, 113 ’
can be evaluated by the method of residues after a partial

integration:

A
!
d

-
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I _ _ A4mi e—iva sin
13 > va .

The sum of the three parts is:

1, =% |- si(va) - i Ci(va) + i(C + log 2va)

—e” V2 [2f(va) + 4mi sin val

_ie~21Va i (ova) - ci(va)+i si(2va) - i si(va)]

The second integral, I2 , 1 broken into two parts,
corresponding to the two contours Cl and C2 shown in

Figure 14 . The first of these, taken along the upper

imaginary axis is quite similar to Ill :

_ 1 iva
121 =5 e [T - 2f(va)] .
51
C,
— S P
—a X
Figure 14.

The second integral, 122 , can be shown to be 112 plus
an elementary function, where the bar denotes the complex

conjugate of the indicated quantity. The result is:
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_ T _ Jiva 1i_m™ _ . .
122 =3 (1 e ) + 5 { > si(va) + i Ci(va)
_i(C + log 2va) + ie?1¥@ {ci(2va) - cCi(va)

-i si(2va) + i si(va)}] ,
J

and, for 12 , the total is:

A

[% - si(va) + i Ci(va) - i(C + log 2va)

1
[Ci(2va) - Ci(va) - i si(2va) + i si(va)ll .

-

+ i e21\)a
We now combine these partial results to obtain for the

integral of f(x-i0) :

a
. _ P . .
Jr f(x-i0)dx = TIowv [ 2miva + 2i[C + log 2va + g(2va)]l
iva

- 4mie” sin vaJ .

We have again used the fundamental relations between the
Ci and si functions and the standard auxiliarylfunctions

f(va) and g(va) given in Abramowitz and Stegun (1964).
Finally, we obtain for n cos (wt + §) :

2P

1 cos (wt+d) = 5533

[5% [C + log 2va + g(2va)]

- sin va cos va] sin wt

2P [sinzva] cos wt .

pgva

This equation implies then that:

n cos § = 2P sinzva ;
ogva - ’
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Q:::::~—- < n 1is in phase with (-p) -

160

140

AN

™~

120

N

100

80

“

n

lags (-p) by 90°

+

60

1.00

0.75

0.50

1.0

Vv a

2.0

Phase
Also, amplitude of generated waves at

Figure 15. Average surface elevation under box:
and amplitude.
infinity.
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N sin & = 2P {sin va cos va - —i—[c + log 2va + g(2va)ll .

pgva 2 m

Figure 15 shows the results predicted by these formulas.
The mean amplitude of the surface displacement in the wave-
maker, n , is actually less than the amplitude of the
generated waves under a considerable range of conditions.
The latter amplitude has been denoted by h in the figure;
the curve is the same as the basic sine curve corresponding
to the case b/a = 0.0 in Figure 7. It should not be
implied, of course, that the surface elevation is uniform
across the width of the wavemaker. The quantity n is the
mean amplitude of motion in the wavemaker. The amplitude
of surface displacement could be much greater locally
than indicated by the value of n .

Figure 15 also shows how the mean surface motion in
the wavemaker lags behind the exciting force. At very low
frequency, the surface moves downward as the pressure
increases, so that there is a 180° phase difference between
surface position and pressure. For higher frequencies, the
surface motion lags more and more. At a value of va Jjust
a short distance off the figure toward the right, the surface
motion will be exactly in phase with the pressure, which

means that the surface moves upwards as the pressure increases.
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