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SUMMARY

This report presents a computer program and numerical
examples comcerning automated optimum design of statically
indeterminate structures with specified comfigurations. The
analysis of thé structure is formulated according to the dis-
placement method. Cross-sectional shapes and sizes are
selected as free variables. Weight or cost may be selected
as object funection. l

Computer times required to solve moderately complex
problems may easily become excessive; hence, it is mandatory
to seek methods to

a) improve the strategy of the search for the optimum
b) reduce the numerical computations required in each
step during the search.

Several avenues for further research on these questions
are outlined.
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1. INTRODUCTION

During the first fifteen years of the computer-age great
efforts have been made to computerize the analyses of engineer-
ing structures. It is, however, only recently that comparable
efforts have béen made in the more important and difficult
field of computer aided design. Recent developments of time
sharing systems combined with remote terminals using tele-
typewriters as well as_graphical devices have stimulated,
tremendously the interest in man-machine modes of operation,
by which the user may interact with the computer and thus
more successfully use it as a design tool. Already computer
capabilities exist which allow the designer to solve struc-
tural problems by communication with the computer through
graphical displays only |1|. This type of computer usage
will become increasingly important in the years ahead.

Indeed, ‘it is'believed that in the forseeable future most of
the complex design problems of practical life can be solved
efficiently only through some sort of active interaction
between computer and designer.

In spite of this, we are Presently also experiencing
a rapidly growing interest in fully automated design capa-
bilities that only require the designer to state his problem
whereupon the computer does the complete désign. No conflict
arises in these apparently opposing trends. The future
designer will, while interacting with the computer, want to
administer a library of programs that automatically perform
various parts of the design job. The task of the designer
himself should primarily consist of supérvision, establish~
ment of priorities between conflicting requirements and
other types of decision making.

In this paper some aspects concerning the development
of fully automated design capabilities are dealt with., It
is understood that such automated design capabilities should
be able to derive the best structure, judged by certain pre-
scribed criterion. Hence any feasible solution is not
accepted as the final design. A number of algorithms and



programs have recently been developed to solve different
types of design problems of this kind. The search for the
optimum is usually performed by means of some methematical
prograﬁming technique. References |2-%| present examples
of the application of linear, nonlinear and dynamic pro-
gramming, respécfively.

2. PRESENTATION OF THE DESIGN PROBLEM

The following discussion is limitted to designing plane
frames and beams. Extensions to three-dimensional frames
and grillages pose no extra theoretical difficulties. Cases
in which the geometry of the structure in terms of span
lengths and member incidences is fixed are studied. Again
these limitations can be removed at the expense of.complica-
ting the problem'slightly. The structure will be analyzed
by means of the theory of elasticity.

The aim is to develop automated procedures by which
to select the cross-sectional properties of the members
of frames such as those shown in Fig. 1. While in Fig. la
the members are prismatic, Fig. 1lb shows an example of non-
prismatic members. Here the members may be described by
means of the section properties at two or more sections and
a prescribed variation between these sections.

Some typical cross-sectional forms are shown in Fig. 2.
For the T-sections (Fig. 2b,d) it may be assumed that the
area of the plate flange is fixed since it is usuélly deter-
mined from considerations other than the frame action. Hence
the sets of free variables for each of these sections may
in most cases be selected as indicated in the respective
figures. The number of variables for eash member type vary
between two (for the glued laminated beam) and four (for the
reinforced concrete beam with rectangular cross-section). .
In many instances practical or economical considerations may
require that several members be identical. Hence the number
of member types may be considerably less than the total
number of members.
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A member type array such as
would éxpress the following requirements (see Fig. la):

Members 1, 6 and 11 are of type 3
", 2, 7 and 12 " L " u
" 4, 9 and 14 " v " 2
" 3, 5§, 8, 10, 13 and 15 are of type 1.

The structure under consideration should be designed
for a multiple of loading conditions. Stresses and deflec~
tions are required to stay within certain specified limits.
Buckling of columns should be considered. Secondary require-
ments such as. upper and lower limits on dimensions should
also be provided for.

The goal is to derive the optimum design according to
some prédetermined criterion. 1In aircraft and space vehicles
minimum weight structures are often sought. In civil engineer-
ing designs minimum cost of construction is usually the goal.
Aesthetical considerations also should receive proper atten-
tion, but this is probably easier to achieve by the intro-
duction of proper restrictions rather than by trying to in-
corporate such items into the object functlon. In ship-
building, both weight and cost must be considered simultaneous~
ly since excess of weight means reduced efflclency of the
ship in terms of load carrying capacity.

Nonlinear programming methods have been used with
considerable success to solve various problems of structural
optimization |3,5|. A discussion of some methods of search-
ing for the optimum is presented in reference |6|. It should
be noticed that the search generally requires a large
number of sllghtly different structures to be studied. The
number of different structures that must be investigated in
order.to find the optimum generally will increase with the
square of the number of free variables. For each step in
the search a fairly complete analysis of the structure has
to be performed to determine (at least approximately) maximum



stresses and deflections. As the structure itself increz.ucs
in complexity the number of variables - and hence the number
of steps in the search, as well as the amount of computations
required to determine stresses and deflections in each step -
increase rapidly, to the point that the available methods
easily become impracticable. Therefore, algorithms which
reduce as far as possible the number of steps required as
well as the amount of computations involved in each step must be
sought. These questions are discussed further in Section 3
and 4. The attention is now turned to the possibility of
decreasing the number of free variables. It is suggested
that this can be rather efficiently accomplished hy means

of the following two-stage strategy:

Stage 1. After the set of initial design variables has been
selected the structure is analyzed for all loading
conditions. Now each member type is treated separa-
tely and the optimum cross-sectional shape is
determined for the force distribution initially
determined. Since this optimization only involves
two to four variables and no new analysis of the
force distribution, it requires only moderate
computer time. Restrictions on overall displace-
ments of the frame are disregarded at this stage.

Stage 2. Next all the member cross-sectional shapes are
fixed with shapes as determined in stage 1, and
there remains only one variable for each member
type. This stage then involves a search for the
optimum combination of member sizes. As the ratios
between the different member sizes change, the
internal force distribution in the frame also
changes. Thus, this stage involves numerous re-
analyses of the structure.

Admittedly the two-stage strategy does not necessarily
yield the true optimum for the problems initially started.
However, if the initial design is not too remote from the
final result, the solution obtained should be close enough



to the optimum for practical purposes. An even better
result could be obtained if the end result were then used
as the .initial design in a new cycle involving stages 1 and
2. This approach would probably still be considerably more
efficient than .a straightforward, simultaneous treatment of
all the variables. '

3. SEARCH FOR THE OPTIMUM
Mathematically the optimization problem may be formulated
as follows |6]:
optimize m = (Y, ooy yn) _ (1)
subject to the conditions:

hj(y1 .'... n, Ox... at) = 0 j = l .."‘t (2)

u
[

g;(y, ... Yps O1:e.0,) 2 i cee my (3)
where '
Y1 «+« ¥, = the design variables

the behaviour variables

g, ...'ot
Eq. (1) presents the criterion, also called the object
function. Eqs. (2) and (3) correspondingly represent the
analysis equations (equilibrium and compatibility conditions)
and the restrictions (stress and deflection limitations etc.),
also called the constraints. The inequalities (3) divide

the design space into a feasible region, where Eqs. (3) are
satisfied, and an unfeasible region.

In practical structural design problems the optimum
solution will always be located on the border of the feasible
region, i.e. one or several of the stress and deflection
limitations ete. will govern the design. This characteristic
about the optimum design has been utilized by many investi-
gatoré who have developed search procedures by which to
travel as closely as possible along the boundary between
the feasible and unfeasible regions. While this approach

is ideally suited for linear programming problems, consider-



able difficulties arise when the gi-functions are highly
nonlinear, as in most cases of structural design. Rather
than trying to solve the above described constrained mini-
mization problem, it has been found advantageous to trans-
form the original problem into that of minimizing the fol-
lowing function:

PUy, ++v Y5 01 +-» Oy rk)
n

c

1
= f v ee T + b
(Y1 yn) rkizl gi?yl...yn,cl...ot) ()

for a sequense of decreasing values of the parameter Ty

The second term on the right-hand side of Eq. (4) may be
interpreted as a penalty term which tends toward infinity

as soon as one or several of the gi-functions approach zero,
i.e., as one approaches the border of the feasible 'region.
Starting the search inside. the feasible region, the penalty
terms provide the means to stay inside, if a suitable search

technique is used.

Until now the equality conditions expressed by Egs. (2)
have been disregarded. Theoretically they could be treated
in the same manner as the inequalities by adding the following
new penalty term to the right-hand side of Eq. (4)

T
-3, 2
jzlrk hj(yl...yn, Opeeedy)

By a suitable selection of rk-values it might be possible

to force the hj-values close enough to—zero at the minimum
value of the P-function to regard Eqs. (2) as satisfied.

In this approach both design variables (y,...yn) and behaviour
variables (01---°t) must be considered as free variables.
Egs. (2) usually will not be satisfied for the trial designs
prior to reaching the optimum. The great advantage in this
method is that it does not really matter much whether Eqs.
(2) are linear or nonlinear. Therefore, this method should
be equally well suited to handle cases with nonlinear as
well as linear structural behaviour. One of the major dis-
advantages lies in the great number (n+t) of free variables.



Furthermore, practical experiments seem to indicate that
the available algorithms are inefficient when equality
‘constraints are present. If Eqs. (2) are linear it seems
to be most efficient to solve these equations directly to
obtain

oy = ck(yl...yn) k=1l...t (5)

thus eliminating t free variables. This problem is discussed
in the next section of the paper.

Once the problem has been transformed into a sequence
of unconstrained minimizations, numerous search techniques
exist to chose between. Some of these utilize gradient
dlrectlons, while others do not require the evaluation of
gradlents. In either case the search is successively per-
formed along a number of different directions Sl, such that

i+l _ i i
y =y o+ Ais . (6)
where
¥ = the n-dimensional vector of design variables
S* = the i-th direction @
At = the i-th step length
= the i-th starting value

y =the design vector corresponding to the minimum
of the: ob]ect function along the current
direction Sl

The search along any particular direction $* is one-
dimensional and to locate the minimum point along this
direction does not pose any theoretical problem. It is,
however, 1mportant that the step length A . be found with
as few trial p01nts as possible. The Golden Section method
of search described in {6 recognizes this fact. A combina-
tion of the Golden Section search and quadratic interpolation
has been applied. Quadratic interpolation is used whenever
the search is performed at some distance from the constraints
(see Fig. 3a). If a constraint is encountered (see Fig. 3b),
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the value of the function at this point (P3;) becomes very
large. A Golden Section method of search is then more suit-
able than the quadratic interpolation.

1
P
P
1
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A A, A A s!
|
o
| Restriction
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|
|
I
I
|
1
\ A, N g s'

FIG. 3. Search for minimum along a line.

The basic differences between various methods of search
lies in the manner by which the directions s are created.
Kowalik |6| describes in detail two different methods, both
of which have been applied with success to problems of
structural optimization, i.e., '

a) A method employing conjugate .directions which does
require the evaluation of gradients (the Variable
Metric method).

b) Powells Direct Search method, which does not require
the evaluation of gradients.
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One of the principal problems common to all of the avail-
able methods lies in the-greaf number of evaluations of the
'P-function (4#) which are required. Powell's method in combi-
nation with standard methods for finding the minimum along
a line may be expected to call for about 10n funetion
evaluations for each response surface (v x~value). Here, n
is the number of free variables. The number of response
surfaces may typloally be four to 5iX.

A comparable estimate would suggest that the number of
function -evaluations using the variable metric method might
be approximately 10n to 15n for each response surface. In
addition, in this method it is necessary to find the vector
of gradients to the response surface at approximately 1.5n
points. If the gradients are determined by means of the
forward difference method,

~_P(y+Ayi)-P(y)
z 5,

-%— iz 1l...n N

y=y

This requires additionally 1.5n? function evaluations since,
to find ‘the gradient vector
g = {g,... giene gn}
. y=y
n function evaluations for points around Y will have to be
evaluated.

Each function evaluation requires, strictly speaking,
that the analysis equations (4) are established, and then
solved again for a new set of design variables. For highly
redundant structures this part of the algorithm easily
becomes very time consuming and every effort must be made
to minimize the time required. Physically the pfocedure
outlined above corresponds to a large number of analyses of
slightly modified structures. Quite often the modification
involves change of only one of the member types of which the
frame consists. This is true when gradients are evaluated,
and also for a considerable proportion of the steps involved
in Powell's method (dlrectlons $! and $? in Fig. 4). But a



-12 -

number of steps are also taken along other directions, which

usually involve changes in several or all of the variables

simultaneously. In the next section different approaches to

the modification problem are discussed.

ygl

Y1

FIG. 4. Search directions.

4. MODIFICATION TECHNIQUES

4,1 Introduction

Assume that the frame under consideration has been

analyzed for a basic set of dimensions using the displace-
ment method, such that the inverse of the stiffness matrix

is known, and
r =

where

» 5 o X 3
U]

K~IR ' (8)

an mxf matrix of nodal point displacements

-an mxm stiffness matrix

an mxf matrix of nodal point loads
number of degrees of freedom
number of loading cases

The cross-sections of one or more of the members in

the frame are
new stiffness

next changed by certain amounts such that the
matrix for the structure is
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Km=K+dK ‘ (9)

Since inversion of matrices is rather time consuming, the
goal is to find an expression for K;l without inversion.
Formally the matrix dK may be written as follows (see
Appendix I)

’Z‘T

dk = a-k. a. (10)

151 1'in7d

where
kiné change in the stiffness matrix of member (i)
a; = a matrix related to the geometry of the structure
M = total number of members in the frame

In the following we shall present four different approaches
to the solution of the modification problem.

4.2 Method 1 - Mathematical Approximation

One of the most straightforward methods is to make the
following series expansion

(K + a7t = k14 k1T (-akk™ly3d (11)
i=1
and retain only two terms on the right-hand side of the
equation, '
KL= (k+ a0 ¥kt - klakk? (12)

Figure 5 compares the changes in some typical member end

forces and stresses of the frame shown in Fig. la, as

found by means of Eq. (12) and the exact values. In this
example the design variables AF, AW and H (see Fig. 2) of
members 1, 6 and 11 were increased simultaneously, as indicated
along the abscissae in the figure, while the other members
remained unchanged.

The frame was loaded by two combinations of evenly dis-
tributed vertical loads on the floors and horizontal nodal
point loads. For a five percent increase in the member
properties mentioned above,corresponding to approximately
16 percent increase in the moments of inertia, the maximum
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error in stresses calculated on the basis of results obtained
using Eq. (12) was less than 2.5 percent. For the points
with high stress levels the errors were considerably smaller.

A serious objection toward Eq. (12) is that the evalua-
tion of the right-hand side in its present form is as time
consuming as the inversion. However, the computational
work can be considerably reduced if only one or a few of
the members of the frame have been modified. Let us assume
for a moment that only member (i) has been changed, and that
this member is connected to nodes S (Start) and E (End). In
this case dK may be written as follows:

[ | ! N
] i

_______ 4___-_-__-__--4-;_-_--
ipSS ipSE Ty
1 P

dKi = 1 1 (13)

i i

= TREE T

. I‘

{(bi ) :bi 2
] ]
l i
| { J

L r, r

where the bi-matrices are of dimension (kxk)
k = number of degrees of freedom for each node
r, identifies the first position in the displace-
ment vector (r) of terms associated with the
displacement of nodal point S, and
» correspondingly refers to the first position
of the terms related to nodal point E.

It may be shown that in this case
K™lak k™1 - BIbSSB, + 287b3EB, + BIbEEB, (14)
where

B, is the submatrix of K-l consisting of the same
rows that b?s covers in dKi (dimension kxm)

B, is the submatrix of K™l consisting of the same
rows that bEE covers in dK;.

While the direct evaluation of the left-hand side of Eq.(14)
requires m® multiplications, use of the expression on the
right-hand side reduces this number to 3(k+m)km. Additional
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reduction is achieved in both cases by taking advantage of
the resulting product being a symmetric matrix.

If more than one member is changed, Formula (14) must
be used repeatedly, since

K™rakk™t = k7rak, k™1 + K7lak, K7L 4 ... (15)
where dK = dK; + dK, + .... (16)

4.3 Method 2 - The Initial Strain Technique

The initial strain technique has been applied extensive-
ly to problems involving modifications of structures |7].
Let us assume that element (i) is modified such that its
stiffness matrix is changed from k; to k;+k; - In order to
study the effect of this change, a fictitious initial strain
condition is applied to this element, and the magnitudes
of the strains are adjusted such that the effect on the
displacements of the structure are the same as those of the
structural modification. In Appendix I the resulting inverse
of the stiffness matrix for the modified structure is shown
to take the following form:

K;l = k™1 - k" Lakxt (17)
where
_ .7
dk = a:q; a. (18)
and
q;, = (I +k; a.KtaD)7hk, | (29)

I is a 2kx2k unit matrix.

Note that Eqs. (17-18) are exact. Also, it is interesting
to note that if the second term in the paranthesis of Eq.
(19) is neglected, the same approximation is obtained as
that presented in Section 4.2~ These results are discussed
further at the end of the next section. |
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4.4 Method 3 - The Parallel Element Technique

If the stiffness of member (i) of a frame is increased
by a certain amount (kin), the effect of this change on the
rest of the structure is the same as if a new member of stiff-
ness k. were inserted parallel to the original member (i).
Algebraically the sum of the stiffnesses of the original and
the new element produces the desired stiffness of the modi-
fied element. In Appendix I this approach is shown to yield
exactly the same equations (17-19) as the initial strain
technique.

Hence, the approximation of Expression (12) is exact
as long as the modified stiffness matrix 9, (Eq. (19)) is
used instead of kin in formula (10). To find QG5 it is
necessary to invert a matrix of dimension (2kx2k) but this
is a relatively easy task. '

If more than one member has changed the total modifica-
tion must be treated in several steps, each involving the
modification of one element only.

4,5 Method 4 - Gauss-Seidel Iterations

Since the nodal point displacements for the almost
similar unmodified structure are known, an iterative solution
of the equations of equilibrium may be quite efficient.

The stiffness matrix of the modified structure is written in
the following manner

K, =L+D+U _ | (20)

where

D is the diagonal matrix [d,... d;... d. ] and
L and U are the lower and upper matrices, each
with zero terms along the diagonals.

The nodal point deflections (rq).may then be determined
by means of the following scheme of iterations

nrg =R - Urg - quj'l Q=1,2 ... m (21)

where j is the current iteration cycle and rg is the vector
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of nodal point displacements for the unmodified structure.
This method has the following advantages when compared with
the ones presented earlier.

1. The method is equally well suited whether one or
more members have been modified.

2. Although the method yields approximate results, any
desired degree of accuracy can be obtained, and in-
accuracies from previous modification analyses are
not carried aiong, as when the method outlined in
Section 4.2 is used.

4.6 Choice Between the Methods

Numerical experiments will be necessary in order to
judge the relative efficiencies of the methods presented
above. _However, the following results can reasonaﬁly be
expected.

If a gradient method os search is used, the evaluation
of gra&ients involves a series of modifications, each repre-
senting a change of one member type only. (This may .mean that
more than one member is changed.) The change Ayi (see Eq.
(7)) in any one member may be arbitrarily small, say one
percent of the original value. Method 1 should be ideally
suited to evaluate the effect of such changes.

When the gradients have been found, the search will
usually follow a direction which involves a simultaneous
change in many or all of the members. Under such. conditions
Method 4 is probably suitable.

Therefore, a combination of Methods 1 and 4 may possibly
be efficient if gradient methods are used.

When Powell's method of direcf search is used, the same
combination of methods will probably also prove satisfactory.
It may, however, be necessary to make complete reanalyses at
certain intervals to correct for the accummulating inaccuracies
of Method 1 for large series of steps along the coordinate
axes. Method 2 or 3 may become superior to Method 1 in this
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case because it would give exact results, and henée, should
not require complete reanalyses.-

It should be noted, however, that since the search for
the optimum solution is constantly performed at some distance
from the constriaint surfaces, high accuracy of analysis is
not a critical requirement when Powell's method is used. The
requirements with respect to éccuracy are believed to be more
severe for gradient methods. l

5. PRESENTATION OF COMPUTER PROGRAM AND NUMERICAL EXAMPLE

A computer program has been written that automatically
performs the two-stage optimization described in the
Section 3. This pilot program applies Powell's'Dipect
Search method. The analysis of the redundant structure is
carried out according to the matrix formulation of the dis-
placemgnt method. In the second stage of optimization a
complete new analysis of the structure was only made whenever
the relative change in the magnitude of the vector of vari-

ables,
T g2y}
Iyl = ¢ IyH (22)
i=1
was over U4 percent since the previous complete analysis.
Here,
y; = design variable i
n = number of free variables in stage 2.

If this.relative change was less than one percent no new
determination of force distribution was undertaken. For
intermediate values the effect .of member changes was deter-
mined by means of the approximate.wrelationship given by

Eq. (12)..

In its present form the program assumes prismatic
members and checks member end stresses at all of the nodes.
For each member the stresses are also checked at the point
of zero shear, or at midspan if there is no point of zero
shear. In order to make the program useful for practical
purposes some modifications must be made such that member
end stresses are calculated at the critical sections rather
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than at' their theoretical end points at the nodes. For

frames such as the one presented. in the following numerical

'example, additional stiffnesses due to brackets and over-

lapping of adjoining members should also be incorporated.

Fig. 6a shows an outline of a typical transverse frame

in a tanker of approximately 150,000 tons displacement.

‘This frame was designed by means of the program with the

foilowing assumptions.

1.

2.

Loading conditions. Four separate conditions as

'shown in Figs. 7a-d.

Member types. Five different member types as shown
in Fig. 6b. Members of type 2 have symmetrical
I-sections of the type shown in Fig. 2a, while all
of the other members have cross-sectional shapes
such as the one shown in Fig. 2b. Plate flange
areas are given as input.

Support conditions. The frame as well as the
loadings are symmetrical and the frame is assumed
to be supported in the vertical direction on the
ship sides (A) and the longitudinal bulkheads (B),
see Fig. Ba.

Allowable stresses. To compensate approximately
for the fact that member end stresses were computed
at the nodes rather than at some distance away
from the nodes, the allowable stresses were selected
rather high, viz.:

1800 kp/cm? in tension and compression

1200 kp/em? in shear
Object function. In the present case weight mini-
mization was sought. For all members with plate
flanges, the weight of stiffeners on the webs
was accounted by the following formula

W_ = vA

<
W - for H/tw. 50

(23)

ww

- = .- 2 Loy
YAw{l + 10 (H/LW 50)*} <cor H/tw> 50

where
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FIG. 7a Typical Frame Loading.
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 Loading Condition 3 - Light Draught , Full Side Tanks

FIG. 7c Typical Frame Loading.
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Loading Condition 4 - Docking with Empty Tanks.

FIG. 7d Typical Frame Loading.
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W, = weight of web per unit length
¥ = specific weight of steel
t, = web thickness

These formulae are only meant to incorporate
approximately the trénd of increased volume of
stiffeners with increased slenderness of the webs.
For beams with a symmetrical cross-section an upper
limit on H/tw'was prescribed as part of the input.

A summary of input dimensions as well as the obtained
solution is presented in Table 1. Fig. 8 presents an outline
of the resulting design and also shows the governing normal
stresses. In loading condition 1 the maximum shearing stress
in member 10 was 1170 kp/cm®. When the search procedure
was discontinued after 10 minutes of computing timg, the
optimum-was not completely reached, as can be seen from the
fact that the maximum stresses were still lower than the
allowable values for severai member types. The output from
the computer showed that the initial design presented as
input did not represent a feasible solution. All of the
dimensions of members of type 4 had to be increased by
4.3 percent in order to enter the feasible region of the
design space. A corresponding increase of 16.3 percent was
required for members of type 5.

6. CRITICAL EVALUATION

The numerical example just presented demonstrates that
it is possible to develop computer programs for completely
automated design of medium sized frame structures. Multiple
loading conditions are treated simultaneously with little
extra effort. In the present exampie deflection and'buckling
limitations were not incorporated, but this could have been
done easily and might have yielded interesting results since
a fully stressed design would not necessarily be the optimum
in that case.
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It' may be questioned whether in the example presented
the search really proceeded tbward the truly optimum solution
judging by the established criterion. The consistency of
the results could have been studied by means of several
parallel runs using different initial designs. This was not
done for the present example, but for several smaller design
problems of a similar type such reruns showed that although
the resulting designs might differ slightly, the final values
of the object function varied little, provided that the
number of steps in the different loops of the search pattern
and the convergency criteria were properly chosen.

It is estimated that full convergency of the ‘example
presented with the selected convergency criteria would have
required less than 15 minutes of computing time on the IBM
360/67 computer. Although this time would not be too bad,
it shows that for.problems which are considerably larger
the computer costs couldAeasily become excessive. However,
there are many promising possibilities of increasing the
efficiency of the presently available program. These include

a) Improving the search techniques by means of one or
several of the following means:
1) Use of some type of gradient directions
2) Selection of optimum combinations of step
lengths, maximum number of steps and other
convergency criteria
3) Intelligent usage of extrapolation techniques.

b) Improving the efficiency of the.techniqueé of analysis
and reanalysis of the redundant structures. Several
alternative modification techniques are available,
and their relative advantages should be studied.
Optiﬁum use should also be made of available informa-
tion about sparseness and bandedness of the matrices
in order to reduce the number of arithmetic operations.

Through further work along these ‘lines the computing
time can be reduced considerably, thus making it feasible
to solve design problems which are cbrrespondingly larger
than that treated in the numerical example presented here.
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APPENDIX. I

Matrix Formulation of
Two-Dimensional Frame Analysis

A. The Beam Element

- & -~ -

The frame is considered as a system of beam elements
which are connected at the ends. Ih the present, derivations
straight beam‘elements with uniform cross-sections are
considered. Shear deflections are disregarded, but could

easily have been incorporated by a slight expansion of the
program.

For each beam element a local cartesian coordinate
system is selected, - the x-axis coinciding with the neutral
axis (or any other desired longitudinal axis) of the beam.
The plane of the.frame coincides with the x~y plane.

-e

’

FIG. I.1 Beam Element - Definition of Positive
Directions (Three Degrees of Freedom)

Fig. I.1 shows beam element i. This element is connected
with other members of the frame at the nodes S (Start) and
E (End). The end displacements of the beam are described
by means of the vector

Vi ='{V1, v2’ V,, V,‘,. Vs, 'Vs}i (Isl)
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where v,- v, are related to node S and v,- v, are related
to node E as shown in Fig. I.l1. .The corresponding end force
vector is

S; = 18,5 S35 Sy» 8,5 Sg» S¢} (I.2)

and the stiffness matrix (ki) reiating end forces to end
displacements is

k; = | EA/2 0 0 ~EA/% 0 0 (2.3)
0 12EI/4*® -BEI/&® 0 -12EI/&% -BEI/A?
0 =-BEI/%% L4EI/% 0 6EI/%22 2EI/%

-EA/% 0 0 EA/% 0 0

0 -12EI/%® 6EI/Aa? ) 12EI/%} BEI/AL?

0 -BEI/%2 2EI/% O 6EI/L% U4EI/R

such that
S: = k,v. _ (I.4)

When a continuous beam on unyielding supports is
analysed, only end rotations need to be considered, and the
problem reduces to one of a single degree of freedom at each
node (as compared with three degrees of freedom in the case
just presented).

FIG. I.2 Beam Element - Definition of Positive
Directions (One Degree of Freedom)
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In the case of one degree of freedom the end displace-
ment and the end force vectors are selected, as shown in
Fig. I.2, such that

V.

1 = lvys vl (I.1a)

S; = 18,, S} (I.2a)

i
and the stiffness matrix reduces to

k; = [4EI/%  2EI/g (1.3a)

2EI/% YEI/ 4

In the present study we have considered three different
types of cross-sections, as shown in Fig. I.3.

Code (JS) E (0]

l I

Type : H

Notations: H

Beam height

>
u

W Web area
= Area of regular flange
Area of plate flange

>
Hh
w o

FIG. I.3 Types of Cross-Sections and Notations.

The external load on the beam element may be one of the
types shown in Table I.l. The fixed end member forces acting
on beam (i) are denoted

F_
;=

F F

st = (sf, sf, sf, sf, sf, sE) (1.5)

in the case with three degrees of freedom, and correspond-
ingly



in the case of one degree of freedom.

F F
S. = {5;, S
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(I.5a)

In equation (I.5a)

the vector Sz only contains the fixed-end moments.

TABLE I.1 Types of Beam Loadings Considered

Type of load Code NOLX) Input
(IND) L
y
Py
21 -1 P,
y
. — P
Py ; 2 L4 0} 2 Py» P,
yi
P X 0 {1 p,» V(1)
L v()
Y|
P
'P(i)
| : X +1| max.4| P(1)..P(i)
Ly | v(1)..v(i)
vii)
i
*)NOL = No. of load values that must be specified.
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B. Frame Topology and Nodal Point Displacements

In the case with three degrees of freedom the displace-~
ments of an arbitrary nodal point (j) may be described by
the nodal point displacement vector

rj = {rl’ T,, r3}j - (I.6)

where r,, rzland ry are displacements in the global coordinate
directions 1, 2 and 3, respectively, see Fig. I.y.

FIG. I.4 Simple Frame

Let
r={r,, r,... Pyees Pyol (I.7)

be the vector comprising all nodal point displacements
(JO = rio. of joints), and

R = {Rl’ Rznn. Rj e Rjo} (1.8)
correspondingly denote all nodal point loads. Further

v = {vl’ vz, v’ltc vM} (Iog)

S = {Sl’ Sz’ s,-oo SM} . (Iolo)

be the collection of all member end displacements and member
end forces (M = no. of members).

The topology of the frame is uniquely determined by
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means of the matrix'a, which relates member
to joint displacements

v = ar

This equation may also be written as follows

v = Jv,|=]a,|r
v2 a 2
M| |%M

C. Derivation of Stiffness Matrix for the S

Applying the principle of virtual work

end displacements

(I.11)

(I.11a)

tructure

the following

relationship between nodal point loads and member end forces

is found
R = als
From Eqs. (I.4%) and (I.9~10)

S = rklg kzoou kM_lV
or

S = kv
where

k = rk;’ k2 v kMJ

is a diagonal matrix.

Egs. (I.11), (I.12) and (I.13) now yield

R aTkar = Kp

where
K = aTka

is the stiffness matrix for the structure.
also be written as

K =

T
a.k.a
i 11"

i

"

1

(I.12)

(I.13)

(I.13a)

(I.14)

(I.15)

(I.16)
Eq. (I.16) may

(I.l6a)
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A substantial saving in computations can be achieved
by partitioning the matrix ﬂi’as.shown below. Consider beam
element i in Fig. I.5. The member end displacements may be
expressed by the following equation (see Eq.(I.11a))

vi = Iai[ aiz LI N ) ais e 00 aiE . .'ol rl (I-l?)
r,
s
>
where
S = node at the start of member i

E

node at the end of member i

With k degrees of‘freedom at each node, the submatrices 2;5
have the dimension (2k, k), while r, denoting the displace-
ment of node j is of dimension (k, &), where & is the number

of loading cases considered.

E

FIG. I.5 Typical Frame.
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In'Eq. (I.17) all submatrices a;. are nullmatrices
except for j = S and j = E. Hence Eq.(I.17) may be written
in the following compressed form

V. = a, (I.17a)

i _ 1SrS +

8e"E
Correspondingly each term in the sum on the right-hand side
of Eq. (I.1l6a) may be written as follows

— } : -
—————  Bbndeetabedin ettty 2ottt ) S
| ¢SS 1 SE Row k(S-1)+1
P L P 1
T - 1 i
2;Ks3; = ; | (1.18)
---- '%"“"'"""“'""‘{"“""" =
1Ry Ny
] ]
] t
1] 1
L l* 1’ ]
Column Column
k(S-1)+1 k(E-1)+1
where
ss _ T
K™% = ajgkiasg
SE _ ES.\T _ .T
EE _ T
K{i™ = ajpkja;p

In the derivations just given the k first node displacements

Pyeeely refer to node 1, the nexgsvalggs Pre1c e Tok to node
K:

i? "1
(kxk). They may be added directly into the stiffness matrix

K of the structure as shown in Eq. (I.18).

2, and.so on. The submatrices K _etc. are of dimension

D. Equilibrium Conditions

Using Eqs. (I.5) and (I.12), the following expression
may be derived for the unbalenced nodal point forces caused
by the loads on the members

RE = aTsF (1.20)

The effective nodal point loads are then
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RE = R - RY (1.21)

The corresponding nodal point displacements may be found
by the substitution of RE into the left-hand side of
- equation (I.1l5):

RE = kr : (I.15a)

E. Supports

The K-matrix of Eq. (I.l5a) is singular since not until
now have any support conditions been imposed on the structure.
A certain number of support constraints are available, such
that

rq =0 for g = ISUP(I), I =1, 2, ... LLS

where

LLS = total number of zero displacement conditions

ISUP(I)= an array of integers corresponding to the
numbers of the displacements that are
required to be zero.

For a frame with k degrees of freedom at each node,
JO nodes and LLS zero displacement conditions, the total
number of unknown nodal displacements is

KJLS = k.JO - LLS (I.22)

The equations of equilibrium expressed by (I.15) are now
rearranged such that thbse corresponding to zero displace-
ment conditions are grouped together below the others. This
is achieved by means of a series of interchanges of rows and
column.X)

If the array ISUP(I) is arranged such that ISUP(I)>ISUP(I+l),
I=1...(LLS-1), this interchange can be performed in the
following way.

Interchange row ISUP(I) with row (k.JO+1-I), I = 1,...LLS
Interchange column ISUP(I) with column (k.JO+1-I),
I=1,...LLS

x)01:}1er' methods are also variable, by which this interchange

is omitted.



- 40 -~

After completing this procedure Eq. (I.15a) may be
written as
R L rr (I.23)
L N| {0
where
= Null matrix

0
Rps» Kp and rp are the reduced load, stiffness and
nodal point displacement matrices, respectively.

RS = Support reaction matrix

From Eq. (I.23)

RR = KRrR (I.24)

from which

r

-1
g = Kg'Re (I.25)

and

- -1
R = MKR RR (I.26)

X
i

Mr

F. Determination of Member End Forces

The vector {rg, 0} must be arranged into the original
sequence by a number of row interchanges before member end
forces the displacement are determined.

Having obtained the nodal displacement vector (r),
member end displacements and member end forces are finally
obtained by means of the following equations

+ a;pr (I.27)

V. = a.,r = a e'E

i i iSr

S

w
n

F
i ki'i + Si (I.28)
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G. Effect of a New Member on Displacements and Forces

€ | b.

FIG. I.6 Typical Frame with New Member i

In the following an expression is derived for the
change in force distribution in the frame shown in Fig. I.6a
caused by the addition of an extra member (i), such as shown
in the figure. Assume that this new member has a known stiff-
ness expressed by the matrix kin' Furthermore the analysis
of the original structure is assumed to have been performed,
and the flexibility matrix

F=xt - (I.29)
for this structure is known.
Let

Y = {Y,, Y,, Yy, Yy Yg, Y¢l (I.30)

be the vector of statically indeterminate forces acting

upon the newly introduced member (i). The end displacements
of member (i) may be expressed according to Eq. (I.27) in
terms of the nodal point displacements of nodes S and E only.
The effect of the new member on the original structure may
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easily be computed since the forces Y may be regarded as

external loads. According to~Eq. (I.20) these forces are
transformed to generalized nodal point loads by means of

the relationship

_ 2,7
R° = aiY (I.31)

The generalized forces introduced into the rest of the
structure are then given by the expression

Y . -1 - - -1 7T
So = kv = kar = kak Ro = -kakK aiY

or

(%)
H

T
-ZaiY .. (I.32)

where

Z = kak?!

The resuiting member end forces caused by the external loads
R as well as the modification are then found from the
following expression

S = kak"'R + S, = Z(R - al¥) (I.33)
and correspondingly the member end displacements

v=kts = ak iR - aly) (I.34)

The end displacements of the new member are
= ¢Tly -
Vin © kinY = finY (I.35)
where

fin = the flexibility matrix of the new member.

The conditions of compatibility between the new member
and the adjoining original structure requires that

?Tvin + ng =0 (I.36)

where

Y is a set of virtual end forces on member (i) and

S is a corresponding set of end forces in the
original structure.
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Introduction from Egs. (I1.33-35) into (I.36) yields,
after some rearrangement

- -1 -1
Y= (f, + aiK a ) Ta;K "R (1.37)
or
Y = L (I.38)
where
_ 1. T7,~-1
q, = (f, + aiK a;) (I.39)
is a reduced "stiffness" matrix for the new member, and
- = -1
Vig = 4T = aiK R (I.40)

is the matrix of end displacements computed for the new
member (i) when disregarding its own contribution to the
stiffness matrix of the structure.

The resulting member end displacements may now be found
by back-substitution

-1 T -1,
ak (R - aiqnaik R)

v

and since

vV = ar
r = (k"1 - Kk lakk™ LR
or
r = KR (I.41)
m
where
Kt o= KT - K TrakkT* (I.42)
dK = alqn i (I.43)

In summary the analysis of the modified structure then
involves the evaluation of q, and Vi accordlng to Egs.
(I.39-40) and dK and K- according to Eqs. (I.43-42). By
means of Eq. (I.42) the flexibility matrix of the 'entire
structure has been updated in such a manner that we are
immediately ready to perform other modifications if required.
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By means of an adressing scheme (similar to that out-
lined under Section C) the computational effort involved in
establishing the matrices

-1, 7T T,
aiK ?i and ayq a;

may be reduced éubstantiall&. Note that the analysis of the
modified structure only requires the inversion of a matrix
of dimension equal to that of the flexibility matrix of the
new member (Eq. (I.39)). Yet, the procedure just outlineé
yields the exact solution for the modified structure.

H. 1Initial Strain Approach for Modification Analysis

Consider a statically indeterminate structure for which
an analysis has been completed by means of the displacement
method, such that the relationship

r = K'IR (T.44)

is known. The cross-section of member (i) is now changed
such that the member stiffness is increased by kin‘ The
inverse of the modified stiffness matrix is sought such that

. -l
rt = Km R (I.u5)

yields the displacement matrix (r') for the modified structure.
To this end fictitious inditial strains are applied correspond-
ing to member end displacements Hi on element i. The magni-
tude of Hi is selected such that the resulting effect on the
total displacements is the same as :that of the structural
modification.

The initial strains in member (i) produce the following

fixed end member forces

F = -
Sig = ~kiH; (I.46)

which according to Eq. (I.20) correspond to the following
unbalanced nodal point forces

e —al
Ry = -azk.H, (I.47)
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The nodal point displacements under external loads (R)
combined with initial strains are then according to Egs.
(I.21) and (I.1l5a)

. -l _
r'o= KTHR - Ry
or - .
rt o= KR + azkiHi) (I.48)

The end displacements of member (i) are given by the formula

- - -1 T
v -.air' = aiK (R + aikiHi) (I.u49)

and the corresponding member end forces

In the modified structure the following relationship must
hold _ v

S; = (kg + kg dvy | (I.51)
Hence Hi must be selected such that

Cky + k; vy = ki Cv; = HY)

or

By introduction from Eq. (I.u49),
. -1 ' -1,T\-1 -1
H, = ki (1 + kinaiK ai) k. a;K R
which with Eq. (I.48) yields
e _ y=lpe _ T -1,T,~-1 -1
rt o= K{I - a;(1 + k; a.K "az) "k, a:kK IR (I.52)
Introducing in Eq. (I.52) the following notations
Q= (1+ kg a.KTa]) Tk, (1.53)
and
. T
dK = ajqa;
Eq. (I.52) may also be written in the same form as Eq. (I.ul),
where again
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K;l = k™1 - klakkt (I.54)

Expression (I.53) is identical to (I.39) since
- -1
kin - fin
and

A"1s™l = (aB)?

where A and B are two arbitrary matrices.





