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ABSTRACT

THE NUMERICAL STABILITY OF NONLINEAR FLOATING BODY
CALCULATIONS

by

Jong-Hwan Park

Chairperson: Armin W. Troesch

The numerical stability of nonlinear body-wave interaction problems is inves-
tigated by applying potential flow assumptions to oscillating, non-wallsided two-
dimensional and three-dimensional axisymmetric bodies. This body-wave interaction
problem is solved using a mixed two-step Eulerian-Lagrangian method. In the first
step, Laplace’s equation is solved to determine the unknown potential values on the
body and the unknown derivatives of the potentials on the free surface. In the second
step, free surface boundary conditions are applied using the results of the first step to
find the evolved free surface location and new potential values on the new location.
Each step has particular mathematical characteristics (elliptic or parabolic-like), so
that each step requires different numerical schemes. Consequently, the numerical sta-
bility of this body-wave interaction problem contains the characteristics of both of

these two steps.
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The major contributions made to this body-wave interaction problem are the
effects of the various parameters (i.e. time increments, panel length, etc.) and the
different forms of the Boundary Integral Method (BIM) on numerical stability and
accuracy. The far-field truncation requirement is met by matching the linear outer
solution to the nonlinear inner solution at the truncation boundary. The intersection
point is traced by the extrapolation method with a special boundary condition at
the intersection point. To determine the evolution of the free surface according to
a Lagrangian model, a regridding scheme is utilized to prevent the concentration of
the Lagrangian markers in the vicinity of high gradients.

A parameter for the numerical stability of free surface waves, the Free Surface
Stability (FSS) number, is defined as a function of the time step size and the dis-
cretized panel length. The various stability regions are investigated by changing the
FSS number, Green’s function constant c, and numerical schemes. A nonlinear sta-
bility analysis is also compared to the results of the linear stability analysis for a

number of specific conditions to study the effect of nonlinear boundary conditions.
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CHAPTER1

INTRODUCTION

As the knowledge of mankind increases, the eagerness to analyze nature deepens.
Scientists try to understand everything from the atom to the universe. Attempting to
understand complex phenomena, they start with a specific problem, simplify it, and
draw conclusions. Then they move on to more and more general and complicated
phenomena, from single degree to multi-degree, from particle to continuum, from
one dimension to N dimensions, from linear to nomlinear, by relaxing the physical
assumptions and constraints. In the analysis of nature, the computer, which is
the product of the development of science and mathematics, provides many more
possibilities. It has extended broadly the possible limits of engineering and scientific
solutions.

One of the complex problems which has been recently addressed in hydrody-
namics is the “impact problem”. The problem arises in ocean-going vessels or fast
boats when the hull impacts the free surface. The impact problem first emerged in
the stress analysis of seaplane landings [von Karman(1929) and Wagner(1931)]. The
problem was approximated analytically by von Karman(1929) and modified by Wag-
ner(1931). These approximations became the basic references for many subsequent

investigations.



With the advent of computers, it became possible to study the impact problemn
much more effectively. Computer calculations allowed people to see nonlinear effects
by simulation and to propose nonlinear solutions that do not exceed the permissible
engineering range of error. The introduction of computers facilitated “a method of
calculation by means of an electronic computer of the non-lifting potential flow about
arbitrary three-dimensional bodies” [Hess and Smith(1964)]. This method marked a
breakthrough in computational fluid dynamics.

In an effort to solve the nonlinear free-surface wave problem, Longuet-Higgins and
Cokelet (1976) presented a mixed Eulerian-Lagrangian method. The mixed Eulerian-
Lagrangian method is comprised of two separate calculations, one in the Eulerian
sense and the other in the Lagrangian sense. This method advances in time individ-
ual particles on the free surface following the solution of an integral equation. Using
a technique similar to that of Longuet-Higgins and Cokelet(1976), Faltinsen(1977)
solved a nonlinear body-wave interaction problem. In this problem, Faltinsen added
a two-dimensional body which interacts with the free surface. He assumed that the
body intersects the free surface and oscillates harmonically in the vertical plane. He
also treated the far-field radiation problem as the flow induced by a dipole located at
the center of the body. This far-field model is the first term in an expansion of a lin-
ear time-dependent free surface Green function. Vinje and Brevig(1981) determined
a numerical method for the time simulation of two-dimensional surface-piercing bod-
ies of arbitrary shapes. They used the exact free-surface boundary condition and
considered finite depth effects. They solved the problem using the Cauchy integral
theorem to calculate the complex potential and its derivatives along the boundary.
Baker et al.(1982) treated a two-dimensional nonlinear free surface problem in wa-

ter of finite depth with appropriate dipole (vortex) and source distributions. They



solved the resulting Fredholm integral equations by iteration.

- Dommermuth and Yue(1986) developed a numerical method for nonlinear three-
dimensional axisymmetric free surface problems using a mixed Eulerian-Lagrangian
scheme. They used Rankine ring sources with Green'’s theorem, a boundary integral
formulation. Kang(1988) investigated nonlinear interactions between the free surface
and three-dimensional axisymmetric floating bodies in water of infinite depth. He
performed the numerical calculation for wallsided axisymmetric bodies.

Addressing and solving this numerical free surface impact problem, three major
difficulties are encountered :
- numerical stability,
- far-field closure, and
- body and free surface intersection.
Each problem is described briefly in the following sections and the related research

and the methods used in this thesis are introduced.

1.1 Numerical Stability

The numerical stability problem, which is the primary concern of this thesis, oc-
curs in any numerical iteration scheme and requires careful treatment. When the
impact problem is solved using numerical calculations, there are a number of difficul-
ties to cope with, some of which are the accumulation of numerical error and memory
limitation. The accumulation of numerical error can cause serious errors which con-
taminate the numerical results or cause the results to diverge. This is defined loosely
as numerical instability. To prevent this numerical instability, numerical schemes
should be chosen carefully and operated within a proper parametric range.

Longuet-Higgins and Cokelet(1976) observed “sawtooth instabilities” on the free
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Figure 1.1: An example of the sawtooth instability observed by Longuet-Higgins and
Cokelet for a steady progressive wave in deep water computed by Pade
approximants for Stokes’s series (smooth curve) and the corresponding
time-stepped profile (unsmoothed). Number of segments, N = 30. The
profiles are compared at times (a) t = 0, (d) t = 7. [Longuet-Higgins
and Cokelet(1976)]

surface when they followed the time history of space—perio;iic irrotational surface
waves as can be seen in Figure 1.1. This sawtooth instability was found when a
deep water progressive wave of finite amplitude was marched in time. The authors
claimed that this instability was due, partly, to physical reasons and they applied a
smoothing technique to remove it.

Faltinsen(1977), in the numerical solution of two-dimensional nonlinear transient
problems, found that his solution procedure sometimes became invalid before the
surface waves had reached the far-field boundary. To demonstrate this phenomena,

he performed the calculation varying the size of the far-field boundary b. In the
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Figure 1.2: The vertical force acting on a heaving circular cylinder, an example of the
instability observed by Faltinsen. ‘b’ represents the far-field boundary
coordinate, and ‘a’ the radius of the cylinder. [Faltinsen(1977)]

calculation, he fixed the length of the free surface elements to —17rza. As shown in
Figure 1.2, the force is rapidly growing in negative values for the case of b = 3.24.
This behavior contrasts with that shown in Figure L.1. In Figure 1.1, the error has
a sawtooth shape as if a high frequency wave-like error is superposed on the onset
flow contrary to Figure 1.2, where the error appears to grow exponentially. These
two figures suggest that numerical errors can either grow exponentially when the
error magnification factor is greater than 1.0 and pure real, or grow with changing
phase when the error magnification factor is complex and has a modulus greater than
1.0. Analogous types of error growth will be shown during the investigation of the
eigenvalues associated with the matrix stability analysis in Chapters III and IV.

Similar to Longuet-Higgins and Cokelet(1976), Baker et al.(1982) also encoun-

tered this numerical instability which occurred when the local waves were steep.



They used a smoothing operator to reduce the effect of the instability. They also
found that this instability was reduced remarkably by the use of a dipole distribution
rather than a vortex distribution.

There are also some researchers who observed no such numerical instability. The
instability was removed by Roberts(1983) in his analysis of a body-wave interaction
problem using Fourier spectral representations for the position and potential of a free
shear layer. The modeling was accomplished by a simple modification of the highest
(even) Fourier mode. This method of instability removal was also reported by Dold
and Peregrine(1984) extending the idea of Vinje and Brevig(1981) with the addition
of the higher time derivatives of the complex potential in the Eulerian step. Using the
resulting time integration scheme, they found no apparent short-wavelength insta-
bility. Another numerically stable scheme was given by Casulli and Cheng(1990) in
their discussion of the stability and error analysis for some finite difference methods of
the one-dimensional shallow water equations which consist of a system of quasi-linear
hyperbolic equations. They showed that the explicit Eulerian-Lagrangian method
with fixed grid is unconditionally stable when the Courant-Isaacson-Rees method is
used as a time-stepping scheme.

Dommermuth and Yue(1986) and Dommermuth et al.(1988) claimed that the
instabilities are not physical and closely related to the accuracy of the velocity calcu-
lation for the free surface particles. They postulated that when the mixed Eulerian-
Lagrangian scheme is used, the high-wavenumber instability is caused mainly by the
concentration of Lagrangian markers in the region of higher gradients. This concen-
tration of the markers, they said, caused a local Courant condition to be inevitably
violated for a fixed time step as the waves steepened. They developed a regridding

algorithm wherein a new set of equally spaced Lagrangian points on the free surface



is created each time step. This regridding algorithm has the disadvantage of the
loss of resolution near the region of high velocity gradients where Lagrangian points
would otherwise concentrate. Kang(1988) speculated that the numerical error at the
intersection point propagates and could generate saw-tooth instabilities.

Fewer researchers have actually established stability criteria. Yeung(1982) inves-
tigated the stability criteria using a simplified von Neumann analysis. He assumed
é(z,y,nAt) to be of the form ¢e’*=t*v where k is a wave number; thus ¢} = k¢™.
His calculation for the numerical stability criteria is simple and easy to follow. How-
ever, his stability criteria is independent of the panel length Az and independent of
the various boundary conditions.

Dommermuth et al.(1988) derived the numerical stability criteria using a ‘lin-
earized von Neumann stability analysis’. They also assumed ¢j = k¢". By this
assumption and a Taylor-series expansion, they found the stability criteria for the
explicit fourth-order Runge-Kutta scheme and the fourth-order multi-step Adams-
Bashforth-Moulton predictor-corrector (ABM4) scheme.

In this thesis, an effort is made to find the neutrally stable region or conditionally
stable algorithm in the numerical calculation of the impact problem

- utilizing a Green function constant,
- managing the far-field condition, and/or
- applying the regridding algorithm on the free surface.

A new stability parameter is introduced: the Free Surface Stability number (FSS
(At)?
Az
the gravity force. This FSS number contrasts with the stability parameter of Ye-

2
ung(1982) (f = kg(—Aét—)—) and the Courant condition of Dommermuth and Yue(1986)

1 842
(a1 < 70

= ng ) where At represents the time-step size, Az the panel length, and g



The FSS number of this thesis is defined as the ratio of (At)? and Az, and
the effect of the ratio on the numerical stability is investigated. The spatial and
temporal increment, Az and At, represent the basic parameters of a numerical code
for the elliptic partial difference equation and for the parabolic partial difference
equation respectively. This is based on the idea that the free surface problem is a
combination of two types of partial differential equations: Laplace’s equation and
the free surface boundary condition equations. The two different stability criteria
derived by Yeung(1982) and Dommermuth et al.(1988) are compared with the results

of this thesis in Chapters III and IV.

1.2 Far-field Closure

In addition to numerical instability, the proper treatment of the far-field condition
is another difficult problem. If there is no interaction with a body, the free surface
problem is sometimes solved by the assumption of periodicity as done by Longuet-
Higgins and Cokelet(1976). However, this periodicity can hardly be applied if a body
is introduced into the problem. A simple way to alleviate this difficulty is to make
the computational domain as large as possible so that the far-field truncation effect
can be ignored. The disadvantage of this approach, though, is that it consumes time
and money and is limited by computer size.

Faltinsen(1977), in solving two-dimensional numerical free surface motion with
an oscillating body, used the method of matching the numerically generated nonlin-
ear inner solution to an outer solution with a Rankine dipole at the origin. Since
this Rankine dipole solution does not consider wave effects, it is valid only until a
propagating wave nears the far-field boundary. Dommermuth and Yue(1986) posed

a far-field closure by matching the nonlinear computational solution to a general lin-



ear solution of a transient radiated wave. Kang(1988) derived the three-dimensional
axisymmetric form of Faltinsen’s matching scheme.

In this thesis, Kang(1988)’s far-field closure is applied and the effect of the far-
field condition on numerical stability is investigated. In Chapter III, it is shown that

the far-field closure conditions produce different regions of stability.

1.3 Body and Free Surface Intersection

As a body is introduced onto the free surface, several significant difficulties such
as the calculation of potential values near the intersection point and the locus of the
intersection point must be confronted. The calculation of potential values involves
singular integrals which need special treatment. Kang(1988) analytically deleted the
logarithmically singular terms before numerical calculation. He also found that the
continuity of the potential and the velocity of water particles at the intersection point
is automatically satisfied on the wallsided body assuming that the intersection angle
is fixed to 90 degrees.

In this thesis, the intersection point is traced using a non-uniform parametric
Lagrangian polynomial interpolation scheme with the control point in the center of
the panel. By this treatment, the potentials for the non-wallsided body are calculated

and the initial stage of the forming of a jet is observed.

1.4 Research Objectives

The investigation for the stability analysis starts with the linear “near-field”
boundary value problem, which is the simplest modeling of the free surface problem.
The linear “closed boundary” problem is dealt with next and finally the linear “far-

field” boundary problem follows. Each of these problems is described in Chapter III
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with the numerical stability results. The panel method is used to solve the field
equation, a limiting form of Green’s second identity. In the determination of the new
free surface location and new potential value of a boundary point, various kinds of
the finite difference methods are used. The numerical stability characteristics of each
of these numerical schemes are studied. For some simple cases, the stability region
is analytically derived as a function of the FSS number. In each case, analytical or
numerical stability regions are found as a function of the FSS number and cAz, where
c is the Green function constant. Simulations of these cases are performed to confirm
the boundaries of the stability region. The effects of the various time marching
schemes and body shapes on stability are also investigated. Stability regions are also
compared with previously published results such as Yeung(1982) or Dommermuth
and Yue(1986).

In Chapter IV, the numerical stability of the nonlinear free surface problem with
a two-dimensional or three-dimensional axisymmetric body is solved. This is done
with a nonlinear free surface and with the nonlinear free surface boundary conditions.
The stability region of the nonlinear problem is compared with that of the linear
problem. The effect of ¢ (the Green function constant) and the effect of numerical
schemes, by varying the FSS number, are also considered. The influence of decreasing
deadrise angle on jet formation is investigated. High tangential velocities, near the
intersection point create difficulties in the accurate modeling of jets. In Chapter V,

the results of this thesis and the direction of future work are discussed.



CHAPTER II

FORMULATION OF THE PROBLEM

In this chapter, basic assumptions made in the analysis of the problem are re-
viewed. After the review, the governing equation (i.e. Laplace’s equation) is dis-
cussed and relevant boundary conditions are described. A brief explanation of various

numerical schemes is given including the ones used in this thesis.

2.1 Governing Equation and Boundary Conditions

Figure 2.1: Coordinates and geometry of the free surface problem

11
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The coordinate system used in this work is depicted in Figure 2.1. The figure rep-
resents an infinitely long two-dimensional symmetrical body, or a three-dimensional
axisymmetric body, either of which is forced to oscillate vertically on a free sur-
face. The body shape is arbitrary and the body motion can be cyclic or linear with
constant velocity in the 2z direction.

The free surface is given by F(&,t) = 0, where &(z, y, z) is the position vector in
the right-handed coordinate system. In this system, the z axis is defined as positive
upwards, while the y axis represents the calm water level. The origin is at the
intersection of the vertical centerline of the body and the undisturbed water surface.

The fluid is assumed to be incompressible and inviscid, and the flow is assumed
to be irrotational. Given the above assumptions, the velocity potential ¢(Z,t) can
be introduced and the velocity of a fluid particle can be expressed as the gradient
of this potential, written as #& = V¢. Surface tension at the free surface is assumed
negligible and thus not considered. Finally, the water is considered to be sufficiently

deep to ignore bottom effects and the surface is assumed to be initially at rest.

With the several assumptions stated for the mathematical model, the governing
equation is now introduced — Laplace’s equation:

o Governing equation (Laplace’s equation)
Vi¢=0 in the fluid domain (2.1)

where V2 is the Laplacian operator. Laplace’s equation is another form of the conti-
nuity equation expressed with the velocity potential. The equation is a statement of
conservation of mass and thus there is neither creation nor destruction of fluid inside
the domain.

In order to solve the impact problem, Laplace’s equation must satisfy the following
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boundary conditions :
- the kinematic free surface boundary condition,
- the dynamic free surface boundary condition,
- the body boundary condition, and
- the far-field boundary condition.

The first two conditions — the kinematic free surface boundary condition and the
dynamic free surface boundary condition — are applied on the free surface, which is
composed of a certain set of water particles. The kinematic free surface boundary
condition means that the normal velocity of a water particle on the free surface is
the same as the normal velocity of the free surface itself. In another words, once a
particle is on the free surface, it remains there. The kinematic boundary condition
is @

o Kinematic free surface boundary condition

D(z —n)
Dt

= (% +Veé-V)(z—1)=0 on z = 7(z,y,t) (2.2)
where I)D_t is the substantial(material) derivative. This kinematic condition is used to
trace the free surface as a function of time.

The dynamic free surface boundary condition is obtained from Bernoulli’s equa-
tion which assumes that the pressure on the free surface must be atmospheric. The
right-hand side constant C(t) of Bernoulli’s equation is absorbed into the potential
¢(Z,t) and the value of the time-independent constant is set to equal the atmospheric

pressure, P,. The dynamic free surface boundary condition is stated as :

e Dynamic free surface boundary condition

4 d¢ l 2 =
ot +5IVel +92=0 (2.3)
D 1

— —D‘?' = —gn + §v¢' V¢ on z = 71(3, yvt)' (24)
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By this dynamic condition, the value of the potential on the free surface is deter-
mined.

Having described the two free surface boundary conditions, the body boundary
condition is introduced next. Under this condition, a fluid particle can not penetrate
the solid-body surface, rather it remains in contact with the surface. Thus, the
normal velocity of the particle on the body surface is the same as that of the body
surface :

¢ Body boundary condition
V.-i=Vé-i on the body Sg(z,y,2,t) =0 (2.5)

where V is the velocity of the body and V¢ is the velocity of the fluid particle on
the body. The unit normal vector i is directed outwards from the domain of interest
i.e. into the body.
The fourth boundary condition, the far-field condition, is defined for the un-
bounded far-field. The normal velocity far away is assumed to tend to zero :
o Far-field condition
g—;—f—»Oa.s lr| — o0 (2.6)
where |r| is the distance from the origin. This far-field condition is one of the more
difficult conditions to apply properly. For the two-dimensional problem, especially,
this condition needs to be treated carefully. The far-field truncation effect, properly
considered, makes the computational domain finite.
The above four conditions along with the governing equation constitute a well-
posed boundary value problem. Specific solutions can be obtained analytically as in

the case of infinitesimal amplitude motions and waves, or numerically as in the case

of large amplitude motions and waves. One of the methods used in this thesis to
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solve Equations 2.1 ~ 2.6 is numerical simulation. Simulation times are short enough
so that waves generated by the body never propagate to the far-field boundary. This
short time scale approach will allow for the calculation of the potential values and

the pressure on the body during impact or the first few cycles of transient motion.

2.2 Method of Solution

In this section, several methods for solving the governing equation and the four
boundary conditions stated in Section 2.1 are discussed. There are a number of
approaches for doing so and the typical one used with moving boundaries is the two-
step approach. In the two-step approach, the governing equation is solved first on a
temporarily fixed boundary, and then the free surface boundary equations are solved
to determine the new boundary position and the values of the normal derivatives on
that boundary. These two steps are iterated as a function of time. Each step can be
solved in the Eulerian sense, where all the physical values are calculated at the spatial
points, or in the Lagrangian sense, where all the physical values are calculated along
the path of the moving water particles. There are thus two steps, and the option of
using either the Eulerian sense or Lagrangian sense for each.

Typically, solutions of the impact problem with a moving boundary use the Eu-
lerian sense in Step 1 and the Lagrangian sense in Step 2. This strategy was intro-
duced by Longuet-Higgins and Cokelet(1976) (who termed it the ‘mixed Eulerian-
Lagrangian method’), and it is now in frequent use. This numerical approach is
adapted in this work, but with different numerical schemes in each step. In Step 1,
the governing equation using the Boundary Integral Method (BIM) is solved; and

in Step 2, the free surface boundary conditions are satisfied using several different



16

time-stepping schemes. Below is a brief summary of how the two-step method works.

o Step1:

Solve the governing equation to get the normal derivatives', ¢,", on the
free surface with the given boundary condition using the BIM. The bound-
ary condition can be given as Dirichlet type, Neumann type, or Cauchy type
(combination of Dirichlet type and Neumann type). In this step, the governing
equation which has elliptic partial differential equation characteristics is solved

in the Eulerian sense.

o Step 2:

Apply the kinematic free surface boundary condition to get the new loca-
tion of the free surface n™*! using ¢," and ¢". On the new free surface, get the
new boundary value ¢"*! from the dynamic free surface boundary condition.
In this step, the new location and new boundary values are obtained in the

Lagrangian sense.

These two steps are depicted in Figure 2.2 and these steps repeat as time contin-
ues. Several numerical solvers for step 1 including the BIM are introduced in Section

2.2.1 and solvers for step 2 in Section 2.2.2.

2.2.1 Governing Equation Solver

Currently, there are various numerical methods used in Step 1 to solve Laplace’s
equation. Four of these methods including the BIM are described in this section with

an assessment of their respective benefits and limitations.

1The superscript n in ¢, represents the (n) time step whereas the subscript n means the normal
derivative of ¢.
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tn+1, ¢n+1,1'|n+1 /
/

step 2

n n stepl n

t“,q) N — o,

Figure 2.2: Mixed Eulerian Lagrangian method

Finite Difference Method

The Finite Difference Method (FDM) is well described in Richtmyer and Mor-
ton(1967) and Anderson, .Tannehill and Pletcher(1984). The FDM is based on a
very simple concept, the ‘difference’. The partial derivatives appearing in the equa-
tions are replaced by finite differences. This method is well-established and easy to
implement. The FDM is the most suitable method for rectilinear boundary-shaped
domains. However for the free surface problem, which has a free boundary on the
free surface, this method is not really suitable. The FDM can be developed by grid
generation mapping of an arbitrary shape into a simple rectilinear one. However,
this introduces the complexity of the mapping function. The principle deficiency of

FDM, with regards to this thesis, is its inability to follow moving boundaries easily.
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Finite Element Method

Introduced and developed in the 1960’s, the Finite Element Method (FEM) has
flourished in the field of structural stress analysis of complicated geometries. The
FEM requires that the problem to be solved be stated in a variational form. Extensive
reviews of the FEM in fluid flow problems have been given by Shen(1977), and
Norrie and de Vries(1978). The FEM describes the arbitrary boundary geometry
with the introduction of curvilinear or isoparametric elements [Yeung(1983)]. The
usual procedure starts with subdividing the domain of interest into a mesh of finite-
sized subregions. Each subregion is made of many elements and the elements can be
essentially any shape, which allows great flexibility, enough to handle most kinds of
geometry. For time dependent boundaries, determining time dependent elements is

time consuming.

Spectral Method

The field of spectral methods in fluid mechanics is still very much in the develop-
ment phase. The spectral-boundary technique is very accurate when the geometry is
very smooth and simple (like a circle or an ellipse) and when the nodal spacing is uni-
form [Huh(1991)]. To improve accuracy, the known and unknown boundary values
and the boundary shapes are expanded in a global Fourier series using an arclength
parameter, resulting in an exponentially accurate solution. So, for the simple wave
case which has periodicity on the free surface, the spectral method is proper. But,
for contours with corners such as the body-wave interaction problem which has an
intersection point, this method is inappropriate due to the large number of Fourier

terms required for accuracy.
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Green'’s Identity and the Boundary Integral Method

Despite their respective merits, the above three methods are not well suited for
solving the impact problem. They require vast amounts of computer time and mem-
ory to solve for all of the domain values — values not directly related to the problem
here. In contrast, the BIM solves for the potential values and the derivatives on the
moving boundary efficiently - values needed to calculate the pressures or forces acting
on the body. The BIM uses the information (the potential values or the derivatives
of the potential) only on the boundary. In the impact problem, the potential values
are given and the normal derivatives of the potential values are unknown on the free
surface (a Dirichlet boundary condition). The normal derivatives are known and the
potential values are unknown on the body (a Neumann boundary condition). With
known boundary values on the body and the free surface, the governing equation is
solved to obtain the unknown pairs, respectively. To solve Laplace’s equation, the
velocity potential ¢(%,t) is introduced in the fluid domain by the incompressible, ir-
rotational and inviscid assumptions (See Section 2.1). This velocity potential #(Z,1)
describes the fluid disturbance at time ¢ in space Z.

The mathematical derivation for the BIM begins with the divergence theorem.

///V-VdV=//fi-Vds 2.7)

where V is any vector that is continuous and differentiable in the volume V (in this
thesis, V is the fluid velocity), and the unit normal 7i is the outward normal vector.
This theorem states that the total increase of the volume of fluid is the same as the
total flux through the surface. The divergence theorem is applied to Green’s first

identity (Equation 2.8), and hence produces the integral equation, Green’s second
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identity (Equation 2.9).

V. (GV4) =GV + VG- V¢ (2.8)

/ / / ($V2G — GV$)dV = / (¢-aa—f - Gg%)ds (2.9)

In two dimensions, the volume integral becomes a surface integral and the surface
integral becomes a line integral. The fluid domain V' of interest is surrounded by a
body surface Sg, free surface Sy, free surface)at infinity Soo, and the other far-field
contour including bottom S, (See Figure 2.1.).

Two quantities are introduced in Equation (2.9), ¢ is defined as the velocity
potential which satisfies Laplace’s equation, and G as the solution of the Poisson

equation in the fluid domain :

V¢ = 0 and (2.10)
ViGEE = ~8E-H=-22 (2-D) @.11)
=:7(:)2 (3- D) (2.12)

in the fluid domain.

The solution of Equation (2.11) or Equation (2.12) can be obtained by applying
Fourier Transforms or by successive integrals. Another solution G* can be obtained
by adding any analytic homogeneous solution to the particular solution, Equation

(2.13) or Equation (2.14). One such set of analytic solutions are given as follows:

G (3;€)

1. . =2 1
1 1 1
wEog i 07D (214

——y—



z,t)

G* (;€)

VG (%)

Substituting Equations (2.10) ~

1 1
—-—-(lnr +1lnc)= —E-;Inrc (2- D)

=G+2) (3-D)

1(E-8
wg-gp D)
128-8 3
wg-gp O D

potential in two dimensions is expressed as

/(¢———G )dl

(2.15)

(2.16)

(2.17)

(2.18)

The Green functions G and G*, are both solutions of the Poisson equation. G*
has an arbitrary constant Inc which will be important in the stability analysis in
Chapters ITI and IV. In the equations above, Z is the field point, E is the source point
and c is some constant used to normalize the two-dimensional Green’s function.
(2.18) into Equation (2.9), new surface integral

equations for the potential ¢ of the point & in domain V’ are produced. The velocity

(2.19)

= ] {¢(E¢)M B&nm lz—el} a (@2)

)

aG*

-Jié

|z - £J?

If G* instead of G is used in the integral equation,

.9¢
——Go)dl

(2.21)

= -/ {«ﬁ(&’,t)’“‘(‘)'(” 8, 2 ez - E|}dz (2.22)

|z - &I
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and in three dimensions,

20 = n(e) E-8 9z, L

@) = - Jf {¢<e, iy TRt Gkl e|} s (223)
- i) -E-8 04z

w30 = - [/ {¢(e,t) o an(e,)(li_ R )}

As & approaches the boundary, the potential value on the boundary is derived in

a principal value integral form such as

4z = —;‘,-f{«s@,t)"(‘l’ Co8 4 S@omie- el}dz (2:24)
6@ = -gf{az,nf-‘%%z—‘l % & lnclw—el}dl (225)
and in three dimensions,
e BB E-D) B0, 1
¢(mat) = _27r {¢(Est) li—gla an(eat Ii"‘gl} ds (2'26)
4@ = —él;ﬁ{es(z,t)’—’i%—f%‘;f—) HENGg 1)} i

(2.27)

where Z and E € S, and i is an outward unit normal vector.

This equation says that the velocity potential ¢ at (&, t) can be expressed in
terms of the boundary values only, without any information from inside the volume.
In other words, the BIM reduces the space dimension by one which is the essential
benefit of the BIM. For the free surface problem, this method is adequate since
the physical values of interest are usually only on the boundaries. For each case,
one of the Equations (2.24) ~ (2.27) will be used in the numerical computations of
Chapter III and Chapter IV.

——
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2.2.2 Time-Stepping Schemes

Once Laplace’s equation is solved in the fluid domain, the normal derivatives of
the potentials on the free surface and the potentials on the body surface are obtained.
With this information, the two free surface boundary conditions determine the new
location of the free surface for the next time step and estimate the potential on the
new free surface. The new location and the new potential on the new location are
used as a boundary condition of Step 1, and the result of Step 1 is used for the next
Step 2, and so on.

For this time-stepping procedure three different Euler methods are chosen; specif-
ically the explicit, implicit-like, and implicit Euler methods. Three different fourth-
order Runge-Kutta methods are also selected which are the explicit, implicit-like,
and Kang’s modified method [Kang (1988)]. These different numerical methods are
used for comparison of the numerical stability characteristics. Detailed numerical

stability concepts and their relationship to the time-stepping schemes are explained

in Chapter III and Chapter IV.



CHAPTER III

LINEAR NUMERICAL STABILITY
ANALYSIS AND ITS APPLICATIONS

In this chapter, the basic concept of the numerical stability analysis and its
application to free surface, water wave problems will be discussed. The free surface
boundary conditions (Section 2.1) are linearized. Various time stepping algorithms,
such as the different Euler schemes and modified fourth-order Runge-Kutta schemes
are employed. Two numerical stability analysis methods are introduced in Section
3.3. The numerical stability of the impact problem is investigated for three cases
with linear boundary conditions and mean surface geometries. The three different
cases are :

- near-field open boundary problem,
- closed boundary problem, and
- far-field open boundary problem.

In some instances, it is possible to determine an analytic solution for a stability
region. The stability regions for each case are searched using one of the two numerical
stability analysis methods. For some typical cases, time simulations are performed
to verify the numerical stability regions. All stability regions are related to the Free

Surface Stability parameter (FSS number), far-field closure treatment and the Green

24
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Function constant c.

The analysis of these simplified problems is meant as a first step in understanding
the more complex behavior of the nonlinear problems described in Chapter IV. The
validity of the method will be demonstrated by comparing estimated stability bound-
aries with analytical values and the results of numerical simulation thus making the

extension to the nonlinear analysis straightforward.

3.1 Linear Free Surface Boundary Conditions with Time-
Stepping Schemes

It is not possible to obtain an analytic solution for the stability analysis of the
ponlinear free surface boundary conditions with nonlinear free surface geometry.
Therefore, the numerical stability analysis begins with the linear boundary conditions
and linear geometry using the assumption that the nonlinear effect on stability is
small in the limit of small wave slope. This hypothesis will be tested in Chapter
IV. It is also assumed that the influence coefficient matrix is not changed during the
time interval of interest. Within these assumptions, the characteristics of the linear
stability study become the basis for the nonlinear stability analysis.

For the analytical and numerical investigation of this free surface flow prob-
lem, the more commonly used simple Euler schemes and fourth-order Runge-Kutta
schemes are selected for time integration. Once the fluid domain is disturbed by the
oscillation of a body, the free surface is deformed following the free surface condi-
tions. These conditions are also used to estimate the potential ¢ on the deformed
free surface at every time step.

The linear equivalent of the boundary conditions is obtained as shown below :
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o Kinematic boundary condition

D(zD-t- m _ 0 linearize ne=¢s on z=0. (3.1)

o Dynamic boundary condition

Dé _ 1

12 linearize ¢ =—gn on z=0. (3.2)

The subscript ¢ means the derivative with respect to time and the subscript z means
the derivative with respect to z. Other researchers are using different forms of this

free surface condition. See Yeung(1982) for a comparison.

3.1.1 Simple Euler Schemes

The linearized forms of the free surface boundary conditions are given in Equa-
tions (3.1) and (3.2). The various Euler difference approximations for these equations

are shown below :

¢ Explicit scheme

nn _ nn—l _ n-1
At z
¢n+l - ¢n
& T
o grio2gr 4 gnt = —g(Bt)’ R, (3.3)

o Implicit-like scheme

”n - Tln—l _
A = % '
¢n+1 — ¢n atl

— s = —9

At

= gt — 24" + 9" = —g(At)? ¢2. (3.4)
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The kinematic boundary condition is applied explicitly in both of the schemes.
In the dynamic free surface boundary condition however, each scheme uses a
different stage of the value of 7 to update the potential ¢. Thus, the combined
boundary conditions have different forms on their right-hand side as shown in

Equations (3.3) and (3.4).

e Implicit Scheme

ﬂn_ﬂn—l
oyt
¢n+ - ¢n

& - o

= g2t = gAY’ g
In the implicit scheme, ¢, at the (n+1) time step is used in the calculation of
¢ at the (n+1) time step.
3.1.2 Fourth-order Runge-Kutta Scheme

This scheme requires the calculation of several intermediate steps such as i
and 17""'%. Thus four iterations of the boundary value problem accompany each time
step:

1
gt = "+ E(kl + 2k; + 2k3 + k4) (3.5)

1
1']ﬂ+l = 7]" + ‘6—(11 + 212 + 213 + 14) (36)
where k; and [; are the intermediate increments of ¢ and 7 respectively, or

ki, ka, k3, ly, 12,13 : half time predictor

kq,ls : full time predictor.
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1. Simple explicit scheme

In this scheme, all the intermediate d¢ (such as ki, k2, ks or k4) and dn (such as
Iy, Iy, I3, or 1) are calculated from the previous values. The increments k; and
I, are calculated from the values of the (n) step. k; and I, are calculated from

the values of the k; and [; intermediate step, and so on in a similar fashion for

k3 and 13, and k4 and 14.

2. Implicit-like scheme

In this scheme, dn is calculated first at each intermediate time step and is
used to get d¢. Therefore, the increment /; is calculated first and k; later.
This scheme has implicit characteristics compared to the explicit scheme even

though ¢ or 5 for the (n + 1) time step are calculated explicitly.

3. Kang’s method

This is the method Kang(1988) used in his thesis for the calculation of the
nonlinear three-dimensional oscillation problem with a wallsided body. This
is very similar to the simple explicit scheme except that the calculation of the

intermediate steps k3, k3, and k4 are slightly different.

Refer to the Appendix C for more details about the fourth-order Runge-Kutta
schemes. The appendix includes the derivation of the general fourth-order Runge-

Kutta algorithm and the discretized forms of the above three schemes.

3.2 Solution of the Boundary Value Problem

To apply the free surface boundary condition in the Lagrangian step of the two-
step method, the unknown ¢," on the free surface is calculated using the Boundary

Integral Method (BIM). The BIM starts with Green’s second identity and results in
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an integral equation for the potential on the boundary. The potential ¢(Z) on the

boundary point £ of domain V is depicted as ;

8(Z) = - /(¢——G )dl (3.7)

where G is the Green function of Equation (2.13) or Equation (2.14) in Chapter II.
Poisson equation.
Discretizing the surface with panels (3-D) or line segments (2-D), the potential

¢ at the (z) panel or segment is approximated as ;

6@ =-{4 [ Goias- Gy [ cvar) ©5)

Az 6n,

#; : known on the free surface

% : unknown on the free surface
3

and

where $

¢;or (32); : one is known and the other is unknown on the re-

maining surfaces Sp, Siottom, and Se (3-D) or £p,

{ Lyottom, and Lo, (2-D).

In the linear problem, %3 — %—f on the free surface. These thesis will consider
three types of enclosing surfaces. The first used in the near-field, open boundary
problem (Figure 3.2) has vertical boundary surfaces £, on both sides, the bottom
surface £yortom at infinite depth, and the free surface £r. Second, the closed boundary
problem (Figure 3.8) has the body surface £z, the far-field bounding surface £, the
finite bottom surface &yoit0m, and the free surface £r. The last surface, used in the
far-field, open boundary problem (Figure 3.22), has the body surface £5 (2-D) or S5
(3-D), far-field truncated surface £o (2-D) or S, (3-D), far-field bounding contour
£. (2-D) or S, (3-D), and the free surface £r (2-D) or S (3-D).
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In matrix form, Equation (3.8) can be expressed as

) ( -‘ [ q(.\
Aij g—gt:¥= B; |3 ¢

or ( w 1¢ ) i 1( )
: e | [c?

181=| ¢ [y¢([=| @11 |)¢

LEA L p \;J L g L.J

where the first m entries in the left-hand column are the unknown potential or
unknown normal derivative values on the bottom boundary £yost0m, body boundary
£g, and the far-field boundary £, and the rest of the entries in the left-hand column
are the unknown normal derivatives of the potential on the free surface £r. The [C]
matrix is the multiplication of the [A]™! and the [B] matrices (i.e. [C] = [A]7}[B]).

A subset of the above matrices is made by retaining only the terms needed to

complete the time step on the free surface :

_g_£ ._:_W _Z_S or ¢ ¢
" o= [letliet] | 6 =17 . +1C74 (3.9)
N . / 3 a¢
= C:J 5 C;'j . )i Or @; 3.10
j=2f;a. ¢ * j=r§].s. (( an) ¢ ) ( )
= [C"] ¢ + f (3.11)

where [C*] is the subset of the influence coefficient matrix [C] which is related to the
free surface only. Cj; is the influence coefficient of the (7) free surface panel to the (z)

free surface panel. The column {f} is the multiplication of C¥; and the known values
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of ¢; or (%ﬁ) ; on all surfaces except the free surface. In this way, it acts as a forcing
function. This summation form, Equation (3.10), is substituted to the Equations
(3.1) ~ (3.4) to study the numerical stability characteristics of the different time
stepping schemes. Yeung(1982) and Dommermuth et al.(1988) ignored this step by
simply assuming that ¢," = k¢" before performing a numerical stability analysis. By
ignoring this step, their results do not include any relationship between the solution
of the boundary value problem and the boundary conditions. In particular, Yeung’s
stability analysis is only a function of time step size At. However, as shown later in
this thesis, the stability characteristics have an important relationship between the
panel size, Az, the surface geometry, and the boundary condition type, in addition
to the time increment.

As an example of the matrix formation, if @, is given and ¢ is unknown on the

boundaries excluding the free surface, [A;;] and [B;;] then become

¢ 1 , \
- é _ 1 . é
3 2liit
As'j \ : = fA,,. %G;':'dlj - fAz‘j Gt'jdlj 1 — 4 (312)
bn én
I AN i .
( 3 4 \
[ 1] % ' R
~1r;
By |[{—( = Jae; Gidly | = faz; S2ddl; | 5 —t (313)
¢ ¢
. : J ) i SR

Each component of [A;;] and [B;;] matrices is calculated by an integration on the

panel segment with the Green function G or its normal derivative 2. I;; is the

identity matrix.
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3.3 Numerical Stability of Mixed Eulerian-Lagrangian Method

The impact problem deals with the body striking the fluid at relatively high veloc-
ities. Real fluids have very complicated characteristics such as viscosity, turbulancy,
compressibility, etc. which generally are simplified through mathematical modeling.
The mathematical model of the problem should contain the problem’s essential char-
acteristics. Existence and uniqueness should be satisfied but not necessarily proven
for the modeling to be valid. After the model has been formed, the solution can
be determined through analytic calculatioﬁ, numerical analysis, or experiment. By
solving the idealized problem from which non-essential effects have been removed, a
fundamental understanding of the governing physics is possible.

Now, focusing on the model analysis and its resulting stability characteristics,

there are three possible ways for instabilities in the numerical results to occur :
1. The physical problem has inherent instabilities.

2. In simplifying the physical problem to the mathematical model, mathematical

instabilities can be created.

3. In converting the mathematical formulation to a numerical formulation, nu-

merical instabilities can be generated.

If the instability is sufficiently investigated to insure that it is due to item 3, the nu-
merical instability can be removed or avoided by selecting certain parameter ranges.

In this work, the panel method is selected for the solution of Laplace’s equation
and several Euler schemes or fourth-order Runge-Kutta schemes are used for the
time-stepping evolution. Thus, the combinations of this proposed methodology are

going to be investigated for numerical stability. Figure 3.1 shows the stencil for the
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numerical calculation of the free surface flow problem. To find ¢ at the (j) panel
on the (n + 2) time step, the values of ¢ on all boundaries at the (n 4+ 1) time step
are needed. This reflects the combined nature of the elliptic and parabolic partial

differential equations associated with the mixed Eulerian-Lagrangian method.

Figure 3.1: Stencil of the numerical method for the free surface evolutions. Example
shows the stencil for the Implicit-like scheme

3.3.1 von Neumann Analysis

There are two well-known methods to investigate the numerical stability of time-
stepping algorithms. The first, and most direct, is the von-Neumann analysis ([3],[53])-
A numerical calculation produces a numerical solution, N. The numerical solution

N is considered to be composed of the exact value, D, and an error, €. The error,
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€(Z,t), can be assumed to be written as a series of sine and cosine terms. The
ratio between the error at the (n) time step and the error at the (n + 1) time step
is defined as the magnification factor, G. The magnification factor G(= f;;—,?—) for
the (j) point in the computational grid should be less than 1 in magnitude for the

numerical algorithm to be stable. It follows, then

N=D+¢ (314)

where

N : numerical solution computed using a real machine with finite accuracy,
D : exact solution of the equation, and

€ : error in the numerical solution due to round-off.

For the free surface problem then, the potential ¢ is considered to be composed of
an exact value, @ezact, and the numerical error, £(z,t). The numerical error, &(z, t),

can be expressed as a Fourier series expansion :

¢ = Pezact + (2, t) (3'15)

e(z,t) = Y bm(t) eme = 3 eetm® (3.16)
m=1 m=1

E? = eanAteikmjAz (3.17)

‘a’ may be complex and ky, is real.

Applying Equations (3.15) ~ (3.17) to the linearized free surface boundary con-

ditions using the Euler scheme results in

¢t=—
T — be=—g4.

/1] =¢z
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g+t — 26" +¢m! = —g(At)" 4] (3.18)

]

4= n—1 for the explicit scheme

where { vy=n for the implicit-like scheme.

| 7= n +1 for the implicit scheme
The potential derivative ¢7 on the free surface (i.e. the right-hand side of Equa-

tion (3.18)) is obtained through the application of the BIM in Equation (3.10) such

| $nj or &; ¥
{4} = [iC%IC"]) 4 ——¢——— L e LY (319)
L )
and  ¢] = $lu +€] (3.20)

where {¢}" is the potential derivative of the (i) panel on the free surface at the (n)
or (n + 1) time step and [C”] is the submatrix related to the free surface potential
{¢;}". The submatrix [C®] forms the equivalent of an external exciting function
{f}" through the multiplication of the known values. Substituting Equations (3.19)

~ (3.20) into Equation (3.18) and cancelliﬁg common terms yields the equation for

c:‘:1 ) .

the magnification factor G (=

G* — 2G + (1 — a) = 0 ( Explicit scheme)
{ G* - (2+ @)G +1=0 (Implicit — like scheme )

{ (1 -a)G* —2G +1=0 (Implicit scheme )
where a is a function of discretized panel length, Az, time-step size, At and the

Green function constant, c.
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The solution of the quadratic equation for the magnification factor G above has
two roots. These two roots can have pure real values or complex values and the
moduli of the roots are associated with the following stability characteristics :

If|G]>1, then the time stepping algorithm is unstable.

If|G]=1, then the time stepping algorithm is neutrally stable. (3.21)

If |G| <1, then the time stepping algorithm is stable.
If one modulus of the two roots is larger than 1, then the scheme is not stable and
is called to be ‘unconditionally unstable’. If the larger one of the two roots has the
modulus 1 in some region, the scheme is said to be ‘neutrally stable’ in that region.

In this neutrally stable region, the error is neither growing nor dissipating. If the

moduli of both roots are less than 1, then the scheme is said stable.

Applying the von Neumann numerical stability analysis to the linearized free

surface boundary conditions
¢ = —gn

7"=¢3

using the fourth-order Runge-Kutta Explicit scheme results in the following equa-

tions. Refer to Equation (C.8) in Appendix C for the next derivation.
§ = ¢ — gAL" + £(dm + dna + dns)}
5 =g gt + T @R HERT) G2)
g2 = g+ _ gAt{p™t 4+ %t-[(cﬁ,)'{*% +@NY + () (3.29)
Subtract Equation (3.23) from Equation (3.22) , then
oo agn 4 gr = O gy gt a5

e @ F )Y (329)
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The magnification factor associated with Equation (3.24) becomes a fifth-order
algebraic equation even though (4, 7+2 jg assumed to be a function of ¢"*2. It may
not be possible to get the analytic solution for the various roots. The other modified
fourth-order Runge-Kutta schemes also have similar fifth-order algebraic equations
for which the roots must be found. Consequently, the von Neumann analysis to
determine the stability region for the fourth-order Runge-Kutta scheme is completed
numerically. The magnification factor G has the same characteristics as explained

before in Equation (3.21). If any modulus of the five roots is larger than 1, the

scheme is unconditionally unstable.

3.3.2 Matrix Stability

The disadvantage of von Neumann’s approach is that it does not directly include
the effects of the boundaries, and therefore gives only approximate stability criteria.
A more general, but more computationally intensive way to establish stability criteria
is the Matrix Method ([53]). This method will now be applied to the two free surface

boundary conditions :

ée=—gn

ne=¢:=[C"l¢+].

The discretized system of the two boundary conditions can be written in matrix
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form
, ynil - T/, \® ¢ ®
é é 0
{ Y = D;; Y+ (3.25)
n U] f
\ * p L b \ t s \ * P

where [D] is a (2N x 2N) matrix and N represents the number of panels on the free
surface. If any one of the absolute values of the 2 * N eigenvalues of [D] is larger
than 1, then the marching scheme is unstable (See [3].). The formation of the [D]
matrix is decided according to the choice of numerical schemes. It follows that the
eigenvalues of the [D] matrix have a meaning very similar to that of the roots of the

magnification factor G in the von Neumann analysis.

(1) Explicit Euler scheme

The difference equations using the explicit Euler scheme is as follows ;

g™ = " —gAty" (3.26)

N
™t o= "+ ALY CI S (3.27)

=1

or combined into matrix form :

. n+4l [ 1 , \ 7 ¢ \ N
s | 1 0|-gat 0 |[g 0
: 0 . 0 .. : :
1—» = {—b) +8—} (3.28)
1 0
1 ALCS n f
. ") | 0 Te i\ .y )

As can be seen in Equation (3.28), the [D] matrix of the explicit Euler scheme is
composed of two identity matrices, one —g At * [I] matrix, and the At[C*] matrix

which is a subset of the [C] matrix. The [C*] matrix is a result of the BIM and plays
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the most important role in the [D] matrix.

(2) Implicit-like Euler scheme

The difference equations using the implicit-like scheme are as follows :

¢n+l —_ ¢n -g At "n+l (329)
N

™ = "+ At z C*¢; + " (3.30)
j=1

with a matrix representation of

- 1¢ 7“+1 8 1., \ P ¢ \ N
1 0 jgAt 0 é 1 010 O é 0
0 0 0 0
<{— = : =2 +<{—
0 0|1 O 1 0
U] ALC” 7 f
..0 e 0 ‘.'. \EJ 0 T Y L )

To construct the [D] matrix of Equation (3.25) using the implicit-like Euler scheme,
the inverse of the matrix on the left-hand side of the above equation should be mul-
tiplied on both sides. The [D] matrix for this scheme also includes the [C*]matrix

and this [C*] matrix has a large influence on the eigenvalues of the [D] matrix.

(3) Fourth-order Runge-Kutta schemes

The difference equations using the fourth-order Runge-Kutta schemes start with
g™t = "+ %(kl + 2k; + 2k3 + ky)
o= "+ %(11 +2l+ 203+ 1)
All the intermediate values are represented as the summation of the influence co-
efficient matrix [C*] and the forcing function. Each element of the [D] matrix is

composed of triply summed expressions. The detailed procedure for the derivation

and formation of the [D] matrix is in Appendix C.
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3.4 Near-Field Open Boundary Problem

n
< —>
n
2
| T
| 1.
} |
L l_bitif.’ﬂ _______ i

Figure 3.2: Model for near-field open boundary problem

With the numerical stability analysis methods described in Section 3.3, the nu-
merical stability region for various cases is now investigated. As an initial step, the
simplest example of the stability analysis in the free surface problem is considered.
This example is defined as the Near-Field Open Boundary Problem. Figure 3.2
shows the computational domain and the coordinate system of this example. The
fluid volume, V, is surrounded by the free surface, £r, and the far-field boundary,
£, on both sides. The water depth, &, is .considered to be infinitely deep. This is
the simplest example where the stability analysis can be performed. The closed form
solution to this Near-Field Open Boundary Problem contains many of the stability
characteristics of the more complicated free surface problems. The potential and its
normal derivative, ¢ and ¢,, on both side boundaries are given as the solution of the

plane, progressive wave moving from left to right. On the free surface, the potential is
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initially given and the derivative of potential, @¢n, is unknown. The potential on the
free surface satisfies the kinematic and dynamic boundary conditions and in domain
V, Laplace’s equation. The unknown ¢, on free surface is calculated by the BIM
and the new potential ¢ on the free surface is calculated by free surface boundary
conditions. The analytic solution to plane progressive waves and its derivatives are

shown below :

é(y,z;t) = Re{Aer*ev=0} = Ae** cos (ky — wt) (3.31)
¢, (y,2;t) = —kAesin(ky — wt) (3.32)
$:(y,2;t) = kAe* cos(ky — wi) (3.33)

where k is wave number, w is the wave frequency, and A is the amplitude of the
potential ¢. The free surface is divided into a number of panels, and an initial ¢ is
given on that surface. The boundary value problem is solved to get %& on the free
surface, which is next used to calculate the new potential values of the free surface.

The modified Green function is used in the solution of the integral equation. In
the following sections, the effect of ¢ (an additional constant in the Green function) on
the stability of the free surface problem is investigated with different Euler schemes
to find the stable region. The analytic form of the numerical stability region is
derived as a function of ¢. Numerical simulations for specific cases are performed
to check whether the numerical stability region obtained analytically coincides with
the results of the simulation by varying ’—'L‘(gﬁ and cAz. The comparison shows a
very good coincidence between the analytic results and simulation.

The general solution for the velocity potential is

DU § 2 By M_l
#(&,1) = —~ :,+:,,+z.{¢"“") Inclz - &+ @0 = }df- (3.34)
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Substitute Equations (3.31) ~ (3.33) into Equation (3.34) and the far-field integral

becomes

= { }ag
= oo sm(ka + wt) / “Hln({c(y + a)}* + {c(2+ ¢)})d(

+’;—:~ sin(ka — wt)/o e X In({e(y - a)}2 + {c(z+ ()}’)d{
+£y+_“)£cos(ka +wt) / ~ il d¢
(y+a)* +(z+¢)?

_),c
sl | o o

(y)

(3.35)

The free surface and the body integrals are

_% /,F{ }dé = effect from other panels on the free surface
+ self induced effect

1 .
-= /l'a{ }dé = 0 (no body introduced)

3.4.1 Single Panel

For this case, only one panel of length Az = 2a is used on the free surface and
the field point is at the origin, the center of the panel. Applying the von Neumann
stability analysis to the kinematic and dynamic boundary conditions, the numerical
stability equation is obtained as a function of magnification factor G and the analytic
form of the stability region can be derived. The control point & is located at the

center of the panel.
z =(y,z) =(0,0)

From Equations (3.31) ~ (3.33) and (3.35),

_% /:.,,{ Vit = Zrécos(wt){sin(ka)ln(ca)-—si(ka)}
_1 l,{ }d¢ = —%—f—(ln(ca)—l)% z)
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where si(ka) is the sine integral (pp. 231 ~ 232 [1]) and c is the Green function
constant. Then, Equation (3.34) becomes

s@n=-1f {m(e, ) Inclz ~ &+ €, t)l‘-%_(—‘}l—,‘l} v
- -2-’? cos(wt){sin(ka) In(ca) — si(ka)}
2 tn(ca) - 1}% z)
o $(0,0) = FG(1) - Auge(0,0) (3.36)

where A;; = -2${ln(ca) —1}and FG(1) = —%/’;{ }d§.

Therefore, the unknown -g-f(0,0) on the free surface is

FG(1) _ ¢(0,0)

0¢ _
an(o’o) - Au Au

(3.37)

This solution %f(o, 0) from the BIM is used in Step 2, the time stepping of the kine-

matic and dynamic free surface boundary conditions.

(1) Explicit Euler Method
Equation (3.37) is introduced into the right hand side of the combined free surface

boundary condition explicitly :

=2 4 FG1) _ ¢
=—g¢; = — - 3.38
a1 y¢f A a7 (3.38)
and the stability equation becomes
___mg(At)? -
G*-2G+{1 2a(in(ca) — 1)} =0 (3.39)

For this scheme to be stable, Equation (3.39) must have two roots which satisfy

the condition on the magnification factor, |G| < 1.

e fca>e: One of the two roots of |G| is larger than 1.

(no region for stability)
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e fca<e: The forms of the two roots of G are 1+ (some complex number).
Therefore, at least, one of two roots of |G| is always larger than 1.

(no region for stability)

There is no region where the modulus of both roots are less than or equal to 1 for any
value of ca. Therefore, the Explicit Euler Method is unconditionally unstable for

this problem.

(2) Implicit-like Euler Method

The difference form of the free surface equations become
¢n+2 —- 2¢n+1 + ¢n _ FGn-l-l(l) 3 ¢n+1

2a
Thus, the Implicit-like Euler Method is conditionally stable.

= —q¢"t! = - 3.40
2 n+1
or ¢n+2 — {2 _ g(At) }¢n+l + ¢n - g(At)zFG (1) (3_41)
An A
Following the von Neumann analysis, the stability equation is
2 _ rg(At)® _
G*-{2+ Fa(in(ca) — 1)}G' +1=0 (3.42)
So, the stability region is defined by the following relation :
2
(8 o _4(lnca—1). (3.43)

(3) Matrix stability of the implicit-like Euler method

For this single panel case, the matrix stability analysis shows the same equation
as that of the von Neumann analysis for the stability region. Applying the matrix
stability analysis to the implicit-like Euler method using Equations (3.29) ~ (3.30)
and (3.37) gives :

¢n+l — ¢n - gAt nn-}-l

FG(1) — ¢

n+1 = "+At
n n An
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or in matrix form

n4l - . W n , ‘ n
1 gAt 1 0 0
9 1 _ *1 101 (3.44)
0 1 jLn | -4 1]Un) LS
n+l - . 1 n . n
é 1 —gAt i olf¢) 0]
= = > + < > (3.45)
" 0 1 L _]AT‘I- 1 1 J \ f J
1+ '-(Aéﬂ: —gAt
with [Dij] = " . (3.46)
At 1
An

The eigenvalues of [D;;], A, satisfy the equation

(1+g—(f‘—1¥)—t-—,\)(1-x)—-"—(A;A—t)i=o (3.47)

which is identical to Equation (3.42).

The solid curve of Figure 3.3 shows the analytic stability region for the case of
a single panel on the free surface. The horizontal axis represents the value of ca
and the vertical axis represents the FSS (Free Surface Stability) number. Several
time simulations were performed to confirm the analytical curve of Equation (3.43)
shown in Figure 3.3. The background markers show the simulation results of the
potential value on the free surface by varying the conditions of two parameters, ca
and FSS number. For each condition, the potential value was checked as to whether
it diverged or not for up to 200 time steps. These results coincide very well with the
analytic curve. A fundamental conclusion of this example is that the stability of an
algorithm may be changed by redefining the Green function. This will be shown to
be true for some, but not for all the cases considered in this work. Generally, for
open boundary problems the stability can be influenced by c. As will be shown, for

closed boundary problems, the stability is independent of c.
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3.4.2 Multiple Panels

Now the number of panels on the free surface is increased. The length is kept the

same as that of Section 3.4.1, 2a = NAz where N is the number of panels on the

free surface. The analytic form of the stability curve is derived and time simulations

of this problem confirm the stability region.

y

| B I N [ 1
y(n) F |

Figure 3.4: Multi-panels of near-field open boundary problem.

The values of the y ordinates on the free surface are

a _a(l1=N) _Az(1-N)
N N 2
2an a a(2n—1-N) Az(@2n—1-N)

y(1) = —a+
_a+

y) = —e+t{ oy N 2

where y(n) is the location of the (n) control point. See Figure 3.4.

The solution for the velocity potential is

#(y(n)) = %[ 2sin(ka) cos(wt)In % + sin(ka + wt)In(2n — 1)

+sin(ka — wt)In (2N + 1 — 2n)]

ka(2n —1)

— )

ka(2N +1—2n)
N )

+£[ sin(ka + wt) FG2(

+ sin(ka — wt) FG2(

-
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+ cos(ka + wt) FGl(kLm—:,;l—))

+cos(ka — wt) FG1(FABN +1 = 2n)y

N
2 3¢ (25 — 1)
—_,-2 (n+1- J)[ln -1 + ln (21 )21_3]
% N-(n-l) ¢ ' (2J - 1)21-1
-5 ,-2:3 5—(J+n—1)[ln— ln(2 3)21_3]
— 22 2 (m S~ 1)
where
' FG1(z) = ci(z)sin(z) — si(z) cos(2)
FG2(z) = —ci(z) cos(z) — si(z)sin(z)
‘ %’ = Az — ka = kN2Az
and si(z) and ci(z) are the sine and cosine integrals respectively
k (See pp. 231 — 232 of [1])
Rewrite ¢(y(n)) as
Hy(m) = FCln) —Aimab() - Al(..-n ba) = AuTn 1)
i)
—Aub;(n) - A“E;(n +1) - = Al(N_,H.l)-é%(N)
(3.48)

where

FG(n) = -‘3—[ 2sin(ka) cos(wt) In %Ia_ + sin(ka + wt)In(2n — 1)

+sin(ka — wt)In (2N + 1 — 2n))

ka(2n — 1)
N )
ka(2N +1 —2n)
N )
ka(2n — 1)
—~ )
ka(2N +1 —2n)
t Loy

+$[ sin(ka + wt) FG2(

+sin(ka — wt) FG2(

+ cos(ka + wt) FG1(

+ cos(ka — wt) FCI(
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and
Au = -ga—{ lnf—g - 1}

1
Ap = —N-—{ln—ﬁ'—l-l-zln33}

- B 1, @n=D"
Ain = { Iz -1 +3 SIn (2n 3)2»-3}
1)3N-1
A = Tv? l“’ﬁ -1+ 21“ (2N 3)2N-3}
Equation (3.48) can be described in matrix form,
A Aw Ae o Aw || RO 1 [ Few-é0 |
An  An A A 2(2) FG(2) - ¢(2)

e

A

Az An Ag - Aw-n | 8(3) ¢ FG(3) — ¢(3)

| Ay Ayw-n Aw-a) An | | BN | | FG(N)— ¢(N) |

[ 2s1) | [ FGQ) | [ 4) |
2(9) FG(2) 6(2)
or } 8s(3) p=[471) FG@) - [4714 40)
| Z4(N) | | FG(N) | | $(N) |

This 22 at the (j) panel is substituted into the combined linearized free surface
boundary condition. In the linear analysis, 3; ¢ is used {or 2, The location index will

appear as a subscript from now on, that is g(i)= (5%)‘,, FG(i) = FG..

(1) Explicit Method for the (j) panel, von Neumann analysis

The difference form of the free surface equation for the multi-panel case becomes

¢;}+2 -9 ;_H-l + ¢'.; _ .
( At)2 - —g¢zj
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#1 - 241 + 4] - g(At)’}_‘,(A-‘ ) = —g(A° 3 (A7LFGR)

m=1 m=1

(3.49)

Substituting ¢ = @ezact + €(z, t) into Equation (3.49) above gives the equation for
the magnification factor G as
G? -2G;+{1- g(At)’(Aﬁle"(j‘l)p + A;-',le"'(j'z)p +---

A + A7+ + AR NP} = 0

2

The solution of the above quadratic equation is easily shown to be

Gj = 1% /g(At)2(Ale-iU-18 + Azle-ili-18 +...) (3.50)

where B = kAz, and k is a wave number related to the error. Equation (3.50) shows
that the magnitude of at least one of the two roots is greater than 1 (|G| > 1).

Therefore, no region of stability exists. Similar to the single panel problem in
Equation (3.39), the explicit Euler method for the multiple-panel also is uncondi-

tionally unstable.

(2) Implicit-like Method at the (j) panel, von Neumann analysis

The free surface difference equation for the implicit-like method becomes

¢;_t+2 ¢n+l + ¢n

@A) —g¢ot! (3.51)
$1t? — 2471 —g(AL)? Y (A;,f.d’;‘;‘) + ¢} = —g(At)? Z (A7mFGRH).
m=1 m=1
(3.52)

In Equation (3.51), ¢,; at the (n + 1) time step is used instead of ¢,; at the

(n) time step as in the explicit scheme. The equation for the magnification factor is
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derived by the substitution of ¢ = @.zqxt + € into Equation (3.52) :

G? - {2+ g(At)* (A5 e U8 4 Ajle i-D8 4 ...

+A;} + A7 P+ + AN G +1=0 (3.53)

J

For the numerical scheme to be stable, the magnitude of the two roots of Equation
(3.53) should be less than or equal to 1.

Therefore, the region of the stability is defined by

> wor gy e
= g(At)’ < fyl(—::)m ifg=nx (354)

= g(At)? < =——7 if0<p<.

mu1 (47 c08(m=3)B)
The implicit-like Euler method for the multi-panel is also conditionally stable.
Refer to Appendix D for the detailed procedure to find the region when both roots
have a magnitude less than or equal to 1.

The stability region for the third panel of twenty is shown in Figure 3.5. Each
curve represents the stability lines for # = 0, x/2, =, respectively. The wave number
B is related to the wave length of the numbered round-off error, ¢(z,t), Equation
(3.16). Since ¢ is assumed to be random, no one characteristic wave number can be
identified. Hence, for the scheme to be stable, |G| must be less than 1.0 for all 8.
Figure 3.6 shows the stability regions of the five panels on the free surface. As shown
on Figure 3.6, the stability region is changing along the free surface with the lowest
FSS number in the middle of the free surface. For the free surface problem to be
stable, the minimum FSS number should be chosen from Figure 3.6. Inspection of
Figure 3.6 suggests that the more stable panels (i.e. the panels whose stability is

less sensitive to round-off error) are located near the truncation boundaries. For the
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STAB. REGION for 20 PANELS ot the Jrd PANEL
15.0
4 ﬁ =0
§ 10.0 -
: B=7
£ g, P=T
0.0
-5.0 — T T T T T |
0.0 0.5 1.0 1.8 2.0 2.5 3.0
co

Figure 3.5: Stability region for a multi panel case of the Near-Field Open Boundary
problem. This figure shows the stability region for the third panel of a
twenty panel free surface domain. The normalized wave number J varies
from 0 to 7. The curves are drawn to satisfy Equation (3.54). The time
marching is based upon the implicit-like Euler scheme.
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Near-Field Open Boundary Problem, instabilities associated with numerical errors
should initiate near the center and propagate towards the sides. This observation
will be verified for the more general problems discussed in the following sections. See
Figure 3.17 in Section 3.5.2.

Simulation results are plotted in Figure 3.7 for several typical conditions and
the results verify the curves shown in Figure 3.5. To ensure the analytic stability
region, Equation (3.54), time simulations for the free surface problem are performed
by varying ca and FSS number with twenty panels on the free surface. If the time
simulation goes up to 200 time steps without the potential diverging, ‘o’ is marked in
the tested condition. Otherwise ‘*’ is marked. The simulated stable region of Figure
3.7 falls within the area bounded by 8 = 0 and 8 = x, Equation (3.54).

Figure 3.6: Different stability regions for 5 panels on free surface (z axis : ca, y axis
: free surface, z axis : F'SS number). The curves are drawn to satisfy
Equation (3.54).
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3.5 Closed Boundary Problem

r 4
S
I nord s |
Vo=0 w
I ¢ 0r o
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= ¢n01'¢ ¢n4 -rT

Figure 3.8: Model for the closed boundary problem.

In this section, the complexity of the model is increased to include unknown

potentials or derivatives on finite far-field or bottom boundaries. The model geometry

and the coordinate system are depicted in Figure 3.8. The free surface boundary

condition is imposed on top and ¢ or ¢, on the other sides. For the purpose of

simulation, the initial conditions on the free surface and other boundaries are given

as those of a plane progressive wave. This may be thought of as the far-field solution

to the wave maker problem.

The stability criterion is considered for the following cases :

1) Change the non-free surface boundary condition type (¢or g;‘: ).

2) Use von Neumann analysis and Matrix analysis.
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3) Use the several kinds of different time-stepping schemes (Euler schemes

and fourth-order Runge-Kutta schemes ).

4) Consider various shapes like triangles, rectangles and polygons.
Time simulations are performed to illustrate the behavior of each. For a number of
special cases, stability boundaries corresponding to time simulation results are com-
pared with the stability boundaries predicted by eigenvalues of the matrix method.
Instability types are studied relative to the complex value of the maximum eigen-
value. The accuracy of the numerical simulation is also checked as a function of wave

number.

3.5.1 Square Panel

A square panel is considered as the simplest case for the closed boundary problem.
One panel is located on the free surface, one panel on the bottom, and one panel on
each side. The geometry of the boundary and its coordinate system is shown in Figure
3.9. The boundary value problem is solved with the mixed Eulerian-Lagrangian
method. Both a von Neumann stability analysis and a matrix stability analysis are
applied in this section. The results of the analytic analysis for the numerical stability
are checked with the numerical simulations, varying FSS number (’-"-(AA?Q?-) and cAz.

The equations below represent the case of ¢ given on the free surface and ¢,
given on the other sides. The approach is quite general and the results for other
combinations of ¢ and ¢, are shown in Ta.ble 3.1 and Figure 3.16.

Following Equation (3.8), the solution for the potential is
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Figure 3.9: Geometry of the square panel of the closed boundary problem. The
potential ¢ is given on the top panel and ¢ or ¢, for the other panels.

b= —Z(nca-1) 52 ‘”‘
13¢2
T On
6¢3
7I'

L1, 134,
= ) " x on

2a( Inv5ca—1 +;

2a( ln\/gca—1+;

—24(Inv5ca—1+ %ta.n'l 2)

tan™!2)

tan™! 2)

or more generally

a ¢1 6¢2 a¢ 6 ¢4

b= Ap— +B¢s+C5 -+ B+ C5 -+ Déa+ E5- (3.55)

¢2= B¢+ 06;1 aa¢2 + Dés + E?fs + Bés + Cif‘ (3.56)

¢s= B+ C‘?‘ + D¢y + E?’ ‘?3 + B¢y + C‘?‘ (3.57)
9¢ d¢2 045 | 49

$4= Dp1+E-—+ B+ 05~ +Bbs+C5 -+ A5 (3.58)

where

A= __2_a( Inca - 1)
T
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B= -l-ta.n“Z
x
C= __2;a( ln\/gca—1+%tan"l2)
2. 1
D= rtan 2
1
= —27¢1(ln\/5-ca—1+21;a,n‘l 5)

Rewrite Equations (3.55) ~ (3.58) in matrix form for the case of ($1, #n;, Pnss Pne)
known and (¢nn ¢27 ¢31 ¢4) unknown, then

1 9 \ f \
‘5?.‘ T 1l &
é: o
Au \ = B"" 4 dda }
¢3 on
L d . . )
k ¢4 J \ -b!: J

and multiplying [A]™" on both sides to find

[A]7'[A] = [1]

[4]7'[B] = [C]

4 h 4 1
%%." [ 1 $1
é: o

4 =1 cy; |
b | £

L 1] o
\ ¢4 J \ _81: 4
where the unknown o

4
normal velocity is = Bn Cuéhr + J__z_:zcli ni (3.59)

Equation (3.59) is an analytic solution form for 32 on the free surface assuming
that the given potential on the free surface and the normal derivatives on the other
surfaces are constant over each panel or segment. Applying the free surface bound-

ary conditions advances the potential value on the evolved location which for the
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linear problem remains in its mean position. The form of the linearized free surface

condition is repeated here as
bt = —9g%s- (3.60)

Recall that for the linearized problem, the term 2;=2 Chj ¢ of Equation (3.59) plays
no role in determining the stability characteristics. It acts as an exciting force in
the stability equation. In the following subsections, Equation (3.60) is solved with

various numerical schemes when Equation (3.59) is substituted into ¢;.

(1) Explici; Euler scheme
The free surface difference equation for the closed boundaries become

: 4
T+ - 247% 4 6] = —g(A){Cud] + 3. Chj 4}

=2

Following a von Neumann stability analysis yields the quadratic equation for the

magnification factor
Gfl -2G +1= —g(At)20u
or G?-2G+ {1+ g(At)*Cu} =0.
There is no region where |G| < 1. Therefore, no stability region exists. So, the

explicit Euler scheme is unconditionally unstable for the square panel of closed

boundary problem.

(2) Implicit-like Euler scheme

The difference equation for the implicit-like Euler scheme is

4
T+ - 2074 + 67 = —g(AP{Cudi™ + L CudL] (361)

=2
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which has the associated quadratic equation for the magnification factor

G? - 2G +1 = —g(At)*CuuG

or G- {2—-g(At)’Cnu}G+1=0.

The stability region is

g(A

t)?
5 Cn <2 (3.62)

0<

Therefore, the implicit-like Euler scheme is conditionally stable in the region where
the Equation (3.62) is satisfied. Refer to Appendix D for the procedure to find the
stability region of Equation (3.62)

Table 3.1 is the list of the stability regions according to the various boundary
condition types for the square panel. This table shows that the boundary condition
type can play an important role in determining the numerical stability limit. It also
implies that the stable region shown by Dommermuth and Yue (i.e. FSS < 8)
sometimes could be unstable. The notation (@1, $n2, $3, $4) means ¢ is known on
the panels 1,3, and 4, and ¢, is known on panel 2. Here, panel 1 represents the
free surface. The stability limit for each boundary condition type is also graphically
shown on Figure 3.16.

Time simulations for the square panel are performed for the various ranges of
ca and FSS number and typical results are shown in Figure 3.10. For each case,
the values of ca and FSS number are fixed and a time simulation is performed. If
the simulation continues successfully through 200 time steps, a ‘o’ is marked for the
test condition. If the simulation diverges, a ‘*’ is marked. For the simulation with
a (1, Paz, $3, $4) boundary condition, the results show good comparison with the
analytic stability region of Figure 3.16.

Figure 3.11 is the case for a very small FSS number with small cAz. In this case,
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square ponel b (cdx=0.001,FSS=0.4) ot 1, method 2
1.5+
1.0
0.0
-1.0 ' 1 N T T | |
0.0 50.0 100.0 150.0 200.0
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Figure 3.11: Time simulation of the square panel. Boundary conditions given as
(A1, Png, $3, $4) with implicit-like Euler scheme for time marching. ke =
0.001, FSS number = 0.4.

the simulation shows a high accuracy with stability. Keeping ¢ Az small, the F'SS
number is increased to the stability limit to investigate the transition phenomena
from a stable to unstable region (Figure 3.12). Figure 3.12 shows the sawtooth con-
tamination on the crest and trough of the sine curve. With an incremental increase
in the F'SS number, the simulation diverges drastically as in Figure 3.15. Four test
conditions for Figure 3.11 ~ 3.15 are marked as circles in Figure 3.16. Figures 3.13
and 3.14 illustrate that the stability does not necessarily guarantee accuracy.

Figure 3.16 shows the various analytic stability regions according to the different
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Figure 3.12: Time simulation of the square panel. Boundary conditions given as
(1, Pnas #3, $4) with implicit-like Euler scheme for time marching. ka =
0.001, FSS number = 7.180.
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Figure 3.13: Time simulation of the square panel. Boundary conditions given as
(61, Pnz, 3, $4) with implicit-like Euler scheme for time marching. ka =
1.1, FSS number = 0.01.
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Figure 3.14: Time simulation of the square panel. Boundary conditions given as
(¢1, @nas $3, #4) with implicit-like Euler scheme for time marching. ka =
1.1, FSS number = 7.180.
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Figure 3.15: Time simulation of the square panel. Boundary conditions given as
(61, Bn2» $3, $4) with implicit-like Euler scheme for time marching. ka =
0.001, FSS number = 7.185.
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Case | Boundary Condition Type | Stability Limit (FSS number)
1 1, b2, b3, 4 5.47
2 61, $na; b3, 44 7.18
3 1, $n2, 3, Bra 8.14
4 1, Gn2, Pn3, P4 10.70

Table 3.1: Stability limits of the square panel with different boundary condition
types. “Boundary Condition Type” represents the known boundary val-
ues on each panel. The implicit-like Euler scheme is used for these result.

boundary conditions. The analytic stability region is also compared with the stability
region of Yeung(1982), and Dommermuth and Yue(1986). Figure 3.16 has three
different curves. One of them is the stability curve by Yeung(1982). He performed the
numerical stability analysis for various types of numerical schemes. In his analysis,
he assumed the unknown potential derivative ¢, on the free surface to be the product
of the wave number k and the potential ¢. By substituting k¢ for ¢, and performing
a von Neumann analysis, Yeung obtained stability regions for various numerical
schemes. In Figure 3.16, the curve of FSS = 2r [ka is Yeung’s stability limit which
is independent of the panel length Az and boundary conditions. Dommermuth and
Yue used fourth-order Runge-Kutta scheme for the time marching and derived the
stability region to be FSS number < 8. Their stability region is independent of the
boundary condition type.

Figure 3.14 and Figure 3.15 show results that are consistent with Equation (3.62)
but contradictory to Yeung’s curve. The test conditions of Figure 3.14 are outside the
stability region according to Yeung’s analysis, but the simulation result indicates that

time integration is not unstable even though the accuracy is poor. On the contrary,
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lka=0.001 ka=1.1

Figure 3.16: Analytic stability region of the square panel in the closed boundary
problem using the implicit-like Euler scheme for time marching. ‘o’

represents the test condition for Figures 3.11 ~ 3.14 respectively.




69

the test condition of Figure 3.15 is inside the stability region according to Yeung’s
curve, but the simulation result shows clearly that it is unstable. Figure 3.16 shows
that the simulation could be stable if the test condition of Figure 3.15 is performed
with different boundary conditions such as (¢1, @2a, $3, P4n) OF (b1, P2n, $3n, P4)-
Another curve, ka = 7 /2 is the spatial nyquist limit which is from the condition
kAz < 7. The last curve, FSS = x3/2ka is the temporal nyquist limit which satisfies
the condition wAt < 7. The nyquist conditions do not change the stability charac-

teristics of the problem but have a strong influence on the accuracy of the calculation.

(3) Implicit Euler scheme

The difference equation for the implicit Euler scheme is
$1*? — 2974 + 97 = —g(At)’ ¢} (3.63)
or substituting Equation (3.59) for ¢,

¢ {1 + g(At)’Cn} — 267" + 67 = —g(A1)? Y Cygrt? (3.64)

non f.s.

In a manner similar to that described above, the quadratic equation for the

magnification factor becomes :
G*{1 + g(At)’Cn} -2G +1=0

The stability region is determined by
Cn >0 Ol'.
—4 < Cpy y(At)’ < -2
where the implicit Euler scheme is conditionally stable. Results similar to those

shown in Figures 3.10 ~ 3.16 were found for the implicit Euler scheme.
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(4) The previous three schemes were evaluated using the von Neumann stability
analysis to find the stability regions. For this square panel case, an analytic matrix
stability analysis can be obtained also. Following Equations (3.44) ~ (3.47) in Sec-
tion 3.4.1, the stability equation is identical to those for the von Neumann analysis.
Refer to Appendix C for stability results c;f the fourth order Runge-Kutta scheme.
The explicit fourth-order Runge-Kutta scheme has approximately double the range

of the FSS parameter of the implicit-like Euler scheme.

3.5.2 Polygonal Domain with N Panels on the Free Surface

Much of the problem formulation and the resulting mathematical equations are
the same for the polygonal domain with N panels as for the multi-panel case of
the near-field problem (Section 3.4.2). However, the [A] and [B] matrices are quite
different. Instead of one panel on each side as in Section 3.5.1, N panels are located
on the free surface and a number of panels may be on each side. The geometry of
the domain is shown in Figure 3.8. The top of the domain is the free surface.

Recall that the solution for the potential may be expressed as:

. 0G;; 04;
$:i(&) = —Z{‘ﬁ"/u, aﬁj’dl,'— ai /As,_ Gijdl:'}
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or
1 3 ( 3
ﬁ %5 r = C,'j ﬁ o
\ J L \ )
where
¢ : W
o = 0
N \ J
= Z C:7¢J + Z C‘SJ ' (¢] or ¢n,‘ ) (366)
i=f.s. j=non f.s.

With this solution from the BIM, the linearized combined free surface boundary con-

ditions can be satisfied.

(1) Explicit Euler scheme
Substitute Equation (3.66) into the right-hand side of the explicit Euler scheme

as shown below to find,

b = —9¢z,
g1 — 2674 + 47 = —g43;,

N
¢ — 21 4 47 = —g(A{ 3 Cinbit L Chn (40 or 420},

m=f.s. m=non f.3.

or finally

N
oIt — 2474 + ¢7 + g(AL) Y Cindn=—9(At) 3 Cin- (4 or ¢7,)-

m=f.a. m=non f.s.

(3.67)
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Following the von Neumann stability analysis, the quadratic form of the magnifica-

tion factor equation is

N -
G —2G; +1+g(AN( Y Ciné™ ) =0 (3.68)
m=f.s.
with roots
N
Gi=1% |—g(At)X( 3 Cineim-9)F) (3.69)
m=f.s.

where B = kAz, and k is the wave number of the Fourier component of the error.
The magnitude of least one of the two roots is larger than 1 (|G| = 1 ); therefore, no
region of stability exists. The explicit Euler scheme is unconditionally unstable
for the multi-panel closed boundary problem. Similar to the near-field and single
panel closed boundary problems, the pure explicit Euler scheme, thus, does not have

any stable region.

(2) Implicit-like Euler scheme

The difference equations for the multi-panel implicit-like Euler scheme are

¢+ — 207t + 67 = —g4;
81 207 4 47 =
(At { if Gttt + X Ol or i21))
or

N
grt? — 24714 g(AL? Y Cradnl + 4=

m=f.s.

- g(At)} X G- (dn" or G010

m=non f.s.

Based upon a von Neumann analysis, the quadratic form of the magnification factor
equation is

N
G} - {2-g(B}( Y Cined™)}C;+1=0

m=f.s.
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At the (j) panel, the magnification factor G; is easily shown to be

g(At)? . ilmei
G,'=1—-—(—2—-)—(2 ije( J)ﬁ)

m=f.s.

2

:!:\J —3(—&—)2( ffj Cjneitm-9P) + 22%‘—%( f; Crnetm=i)2  (3.70)
m={.s. m=f.s.

The region for the stability can be numerically calculated. Therefore, the implicit-
like Euler scheme is conditionally stable in the region where Equation (3.70) is
satisfied. Equation (3.70) can be used to search for the stable region of each panel
on the free surface. For each panel, the local maximum F'SS number is calculated
and the smallest F'SS number among the local maximum FSS numbers is taken to
be the stable limit for entire free surface. Table 3.2 shows the distribution of the
maximum FSS numbers along the free surface panels. A right triangular domain
was selected as an example and the boundary condition was given as the potential
derivatives (¢,) on the longest slanted side. On the free surface and on the vertical
side, potentials were given as shown on Figure 3.18. Forty panels were located on
the free surface, nine panels on the vertical side, and forty-one panels on the slanted
side. Panels on the free surface are numbered from the right as 51 to the left as 90.
Table 3.2 reveals that the stability limit is greater near both edges and smaller in
the middle. This is consistent with the results for the multi-panel near-field open
boundary problem (See Figure 3.6 of Section 3.4.2.).

Figure 3.17 is the time simulation result corresponding to the example of Table
3.9. This simulation was performed with the right triangular domain, the same
boundary condition and the implicit-like Euler scheme as in Table 3.2. The FSS
number was fixed at 4.685 which is a stable number for the edges and an unstable

number for the middle panels. The figure shows a growth in the error of the potential

on the middle and the effect propagates to the edges. Figure 3.17 is typical of figures
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40*9*41 RIGHT TRIANGLE: (20011) BOUNDARY CONDITION

with Implicit-like Euler scheme
**************************************************

panel no. 51 : FSSmax = 0.50327953521990E+01
panel no. 52 : FSSmax = 0.46935572888574E+01
panel no. 53 : FSSmax = 0.46657763639911E+01
panel no. 54 : FSSmax = 0.46647364292390E+01
panel no. 55 : FSSmax = 0.46654495985777E+01
panel no. 56 : FS&SSmax = 0.46645214740659E+01
panel no. 57 : FSSmax = 0.46653739332471E+01
panel no. 58 : FSSmax = 0.46646326873699E+01
panel no. 59 : FSSmax = 0.46652636309610E+01
panel no. 60 : FSSmax = 0.46647314596044E+01
panel no. 61 : FSSmax = 0.46651773814673E+01
panel no. 62 : FSSmax = 0.46648066659406E+01
panel no. 63 : FSSmax = 0.46651111359308E+01
panel no. 64 : FSSmax = 0.46648658877095E+01
panel no. 65 : FSSmax = 0.46650572343171E+01
panel no. 66 : FSSmax = 0.46649158698483E+01
panel no. 67 : FSSmax = 0.46650099898935E+01
panel no. 68 : FSSmax = 0.46649613650187E+01
panel no. 69 : FSSmax = 0.46649653730346E+01
panel no. 70 : FSSmax = 0.46650058975132E+01
panel no. 71 : FSSmax = 0.46649201553847E+01
panel no. 72 : FSSmax = 0.46650525951354E+01
panel no. 73 : FSSmax = 0.46648711199720E+01
panel no. 74 : FSSmax = 0.46651049612333E+01
panel no. 75 : FSSmax = 0.46648142506205E+01
panel no. 76 : FSSmax = 0.46651677654242E+01
panel no. 77 : FSSmax = 0.46647435023243E+01
panel no. 78 : FSSmax = 0.46652480804577E+01
panel no. 79 : FSSmax = 0.46646470102447E+01
panel no. 80 : FSSmax = 0.46653522313344E+01
panel no. 81 : FSSmax = 0.46644836160268E+01
panel no. 82 : FSSmax = 0.46654442871698E+01
panel no. 83 : FSSmax = 0.46641023690973E+01
panel no. 84 : FSSmax = 0.46656975490966E+01
panel no. 85 : FSSmax = 0.46661354209918E+01
panel no. 86 : FSSmax = 0.46850759928442E+01
panel no. 87 : FSSmax = 0.47774251888542E+01
panel no. 88 : FSSmax = 0.52561249903248E+01
panel no. 89 : FSSmax = 0.72196326036770E+01
panel no. 90 : FSSmax = 0.19254511994784E+02

Table 3.2: Maximum FSS number along the free surface on the triangular domain.
Boundary conditions given as ¢ on the free surface, ¢ on the vertical
boundary, and ¢, on the slanted boundary. Implicit-like Euler scheme,
c=1.0.
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Figure 3.17: Free surface simulation for the triangular domain. Boundary conditions
given as ¢ on the free surface, ¢ on the vertical boundary, and ¢, on
the slanted boundary. Implicit-like Euler scheme. F'SS number=4.685.
c=1.0.

which are on the verge of instability.

(3) Euler scheme with matrix stability analysis

The equation for the matrix stability analysis is shown in Section 3.3.2. The
eigenvalues of the [D;;] matrix are calculated to see whether any one of the moduli
of the eigenvalues is larger than 1. It is unstable if [D;;] has an eigenvalue whose
magnitude is larger than 1.

(4) Fourth-order Runge-Kutta case using matrix analysis

With N panels on the free surface, the time simulation of the free surface problem
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FSS Eigenvalue
20 * 10 rec. | 40 * 9 » 41
1.0 1.0 (1) 1.0 (r)
2.0 1.0 (r) 1.0 (r)
3.0 1.0 (r) 1.0 (r)
4.0 1.0 (r) 1.0 (r)
5.0 1.0* (r) 1.0 (r)
5.028 | 1.002 (r) | 1.026 ()
5.03 | 1.004 (r) | 1.029 (r)
504 | 1.017 (r) | 1.042 (1)
510 | 1.008* (r) | 1.118 (1)
5.12 1.12 (r) 1.144 (r)
5.2 1.22 (r) 1.243 (r)
5.4 1.46 (r) 1.488 (r)
60 | 222(r) | 225 ()

Table 3.3: Magnitude of maximum eigenvalues associated with rectangular and tri-
angular shaped domains, which have 20 panels and 40 panels on the free
surface respectively. Implicit-like fourth-order Runge-Kutta scheme.
represents the conditions of Figure 3.19 and Figure 3.20. ‘(r)’ denotes real

eigenvalues. c=1.0.
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Figure 3.18: Geometry of the domain tested in Figures 3.17, 3.19 ~ 3.21 and Tables
3.2 and 3.3.

is performed. The two types of polygonal domains selected for the stability analysis
are depicted in Figure 3.18.

Table 3.3 shows the calculated numerical stability regions which were performed
with the matrix stability analysis for the selected rectangular domain and the trian-
gular domain. The numbers in the table represent the magnitude of the maximum
eigenvalues. Also indicated are whether the maximum eigenvalues are pure real
or complex. An implicit-like fourth-order Runge-Kutta scheme was used for both
cases. For the rectangular domain with 20 panels on the free surface, the magnitude
of the maximum eigenvalue becomes larger than 1.0 when the FSS number is over
5.028. For the triangular domain with 40 panels on the free surface, the magnitude
of maximum eigenvalue also exceeds 1.0 for similar values of the F'SS number.

A time simulation for the potential ¢ is done for two typical cases marked as
‘*’ on the table, Figures 3.19 and 3.20 show the transition from the stable region
to the unstable region. Figure 3.21 shows the distribution of eigenvalues in the
complex domain for F'SS number = 3.0 and F'SS number = 5.1. For the case of the

FSS number = 5.1, one of the eigenvalues is out of the unit circle which causes the
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c=1. , FSS=5.0 with LINFS3 RK4-2 (2111)

1.5

phi

0.0

-0.5

i

"1.5 L] ] T T T 1
0.0 100.0 200.0 300.0
time

Figure 3.19: Time simulation of the potential on the first free surface panel for the
multi panels case. 20 * 10 rectangular domain. (41, ®n2,¢3,d4) type
boundary condition. Implicit-like fourth-order Runge-Kutta scheme.
FSS number = 5.0, and ¢ = 1.0.
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c=1. , FSS=5.1 with LINFSI RK4-2 (2111)

40.04

20.0-

phi

0.9

-20.0-

—40.0 T T T T T T T T T 1
0.0 20.0 40.0 0.0 80.0 100.0
time

Figure 3.20: Time simulation of the potential on the first free surface panel for the
multi panels case. Same as Figure 3.19 except the F'SS number is
increased slightly. 20 * 10 rectangular domain. (¢1,¢n2, %3, ¢4) type
boundary condition. Implicit-like fourth-order Runge-Kutta scheme.
FS8S number = 5.1, and ¢ = 1.0.
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Eigenvalues for 20410 rectongular domain

o : FSS=5.0
s ; FSS=5.1

Im. EV.

v v T T T T T T
-1.5 -1.0 -0.5 0.0 0.5 1.0 1.9
Real EV.

Figure 3.21: Eigenvalues of the matrix stability analysis with the unit circle for ref-
erence. Comparison of the eigenvalues between F'S.S numbers 5.0 and
5.1. ¢ = 1.0, 20 * 10 rectangular domain. Implicit-like fourth-order
Runge-Kutta scheme. (1, $n2, 3, #4) type boundary condition.
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instability manifested in Figure 3.20.

3.6 Far-Field Open Boundary Problem

Figure 3.22: Model for the far-field open boundary problem.

Sections 3.4 and 3.5 discussed the near-field open boundary and closed boundary
problems respectively. As a third example, the far-field boundary problem is intro-
duced. This far-field open boundary problem, which has the body on the free surface
and an infinitely distant far-field, is the same as the impact problem boundary. The
free surface boundary conditions and the body geometry are assumed linear and the
numerical stability analysis is performed for the various stability parameters.

The fluid is bounded by the free surface Sr and S, by the rigid body Sg, and by
the bottom and far-away contour S.. The surface S changes to a line contour, ¢, in
the two dimensional problem (Figure 3.22). The radiation condition, which treats the
infinite distance far-field boundary, is considered following Faltinsen’s method for the
two dimensional problem and Kang’s method for the three dimensional axisymmetric

problem. The effect of ¢ and the truncation boundary on the numerical stability is
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carefully investigated. The accuracy of the numerical scheme is checked with the
continuity equation (conservation of mass).

Two methods of free surface gridding are used for the far-field open boundary
problem :

1. regular spacing ( constant panel length )

2. cosine spacing ( Near the oscillating body, the free surface has cosine spacing;
away from the body the segments are of equal length. For the nonlinear problem,
this panel length is fixed during any one individual time-step.).

This investigation is essentially numerical. The complexity of the boundary value
problem, including boundary conditions and time-stepping algorithms, restricts sta-
bility analysis to numerical studies. Forlthe Far-Field, Open Boundary Problem,
several different types of exciting functions on the body can be considered. These
include forced oscillations starting from rest or impulsive motion with constant ve-
locity. In this thesis, only the result for the forced oscillations starting from rest is
discussed. Various numerical schemes are investigated for the matrix stability anal-
ysis. The time simulation of the wave surface evolution or the potential value on the
free surface is performed to verify the limits of the stability region. The numerical
stability investigation and its simulation results for two-dimensional body and for

three-dimensional axisymmetric body are discussed in the following sections.

3.6.1 Two-Dimensional Forced Oscillation Starting from Rest

The forced oscillation of a body piercing the free surface has been numerically
investigated using the various time-stepping schemes and the results are presented
here. The modified Green function was included in the formulation. The effects

of the constant added to the Green function and the non-dimensional free surface
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Figure 3.23: Forced oscillation for the far-field open boundary problem.

stability parameter F'S.S number (= 1'9-(ﬁ)—) on the stability region were observed.

The body on the free surface is assumed to be symmetrical. Hence, the number of
the unknown values on the free surface and the body is half of the whole number of
panels on the domain surface. Only the right-half of the domain is considered from
now on and the number of panels represents the number on the right-half domain
surface. The body geometry and the coordinate system for this section is illustrated
in Figure 3.23.

When Z is on the free surface, the integral equation for two dimensions is

- 1

_ 1 (Z2—§) , 04 = .
$(Z,t)= - lB+l“{¢(€, )————'+an(£,t) lnc|@ £|}dl

{ }dl. (3.71)

and when & is on the body

aE0= - {¢<€, 0

I+l

AE)-E-8 0 1nc5-“}dz
S @ nelE -

—% ]{B{ ydl. (3.72)

Following Faltinsen(1977) for the two-dimensional case and Kang(1988) for three-
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dimensional axisymmetric cases, the far-field truncation limits will be derived. The
behavior of the potential ¢ in the far-field is considered to be the same as the value
of a vertical dipole at the origin of the coordinate system. The strength of the
vertical dipole is determined by matching it to the value of %f on the last panel at
the truncation boundary.

The free surface is divided into two parts; one inside the truncation limit and the
other outside the truncation limit. Hence, the integral for the potential ¢ over the

free surface can be expressed in the two-dimensional case as

a¢ a L2 _a_¢L_ -_a_ o0 -a_¢-— i
/f...{?a?" ﬁ}G‘"‘/e,{an' ¢an,}Gdl+/b {62’ az,}adz (3.73)

where G is the Green function, b is the distance from the origin to the numerical
truncation boundary, and £r is the actual computed free surface for z < b. The
analytic approximation of the truncation boundary effect for the two-dimensional

problem by Faltinsen(1977) is :

o0 a¢ a — e © A = pf
/b {51-17— EL—'} log|z—£|dz~/b ?loglm——fldz (3.74)

where A is the strength of the vertical dipole at the origin. In a similar way, the
contribution of the integration from —oo to —b is calculated and summed to Equation
(3.74) for the approximate truncation boundary effect.

Table 3.4 shows the numerical stability results with the changing parameters c
and FSS number. This analysis was performed with 10 panels on the half wedge-
type body which has 45 degree slope (i.e. 45 degree wedge half angle) and 20
panels on the free surface. The explicit fourth-order Runge-Kutta scheme was used
for this analysis. The numbers in the table represent the maximum modulus of the
eigenvalues in the matrix stability analysis, so that the condition which has the value

larger than 1 is unstable and the condition which has the value less than or equal
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c 0.01 0.1 1.0
FSS “ w/ | wle | w/ w/o w/ w/o
1.0 || 1.0(c) | 1.0(c) | 1.144°(r) | 0.9999*(c) | 1.067(x) | 1.117(r)
2.0 | 1.0(c) | 1.0(c) | 1.209(r) | 0.9999(c) | 1.096(r) | 1.169(r)
3.0 | 1.0(c) | 1.0(c) | 1.262(r) | 0.9999(c) | L1.112(r) | 1.211(r)
4.0 | 1.0(c) | 1.0(c) | 1.308(x) | 0.9999(c) | 1.138(x) | 1.247(r)
50 | 1.0(c) | 1.0(c) | 1.350(x) | 0.9999(c) | 1.156(r) | 1.280(r)
9.0 0.9994* (c)

10.0 1.255%(c)

Table 3.4: Magnitude of maximum eigenvalues associated with the forced oscillation,
far-field open boundary problem. 45 degree half angle, wedge-shaped two-
dimensional body on the free surface with 10 panels on the body, 20 on
the free surface. Wave number k=0.3927. Explicit fourth-order Runge-
Kutta scheme. ‘+’ represents the conditions of Figure 3.19 and Figure
3.20. (r) and (c) denote real or complex eigenvalues respectively. w/ :
with truncation effect, w/o : without truncation effect.

to 1 is stable. The stable region is observed by varying c from 1.0 to 0.1 to 0.01.
The results suggest that the proper manipulation of ¢ in the two-dimensional Green
function controls the numerical stability for this linearized problem. The possibility
of stability control for other problems with specific numerical schemes is worthy of
further investigation. In Table 3.4, the cases which are selected for a time simulation
and eigenvalue investigation are marked with an ‘¥,

The effect of the treatment of the truncation boundary on the stability was also
investigated. For the two-dimensional problem, Faltinsen(1977)’s single dipole ap-
proach is followed where %ﬁ on the free surface outside the truncation limit is consid-

ered as the same function as a single dipole at the origin. Considering this truncation
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effect, different influence coefficient matrices with correspondingly different stability
regions are calculated.

Eigenvalue and simulation results shown in Figures 3.24 though 3.29 reflect the
differences in the various cases. As can be seen in Table 3.4 and Figure 3.24 and
Figure 3.25, the maximum eigenvalue of 1.144 is pure real and while the maximum
eigenvalue of 1.255 is composed of a real and imaginary part. Figure 3.25 implies a
diverging error with fluctuation while Figure 3.24 implies an exponentially diverging
error. In Figure 3.26, the truncation effect was included following Faltinsen’s con-
cept and Figures 3.27, 3.28, and 3.29 are the results which do not include Faltinsen’s
truncation effect. Figure 3.26 and Figure 3.27 are similar to the types of instability
shown in the Introduction. The case of Figure 3.26 has the maximum modulus of
eigenvalue 1.144, but it is pure real and the case of Figure 3.27 has a maximum
modules of 1.255, but it is complex. It follows that the behavior of the instability
can be predicted by the complex number of largest eigenvalue. Dommermuth and
Yue(1986) and Dommermuth et al.(1988) mentioned that the so-called Courant con-
dition, (At)? < -18;%’-, (or FSS < 8) should be satisfied for the stability of the free
surface problem when the linearized fourth-order Runge-Kutta scheme is used. This
stability condition by Dommermuth and Yue clearly does not apply for the results
shown in Table 3.5 and Figures 3.24 through 3.29. The reason is that their stability

analysis was based simply on the Courant condition and on the assumption that

¢z = k.



87

/
Eigenvalues of test cose for the open-boundory problem
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Figure 3.24: Eigenvalues of the forced oscillation, far-field open boundary problem.
45 degree half angle, wedge-shaped two-dimensional body on the free
surface with 10 panels on the body, 20 on the free surface. Explicit
fourth-order Runge-Kutta scheme. ¢ = 0.1, ‘0’ represents the eigenval-
ues for FSS number = 1.0 with the truncation effect.
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Figure 3.25: Eigenvalues of the forced oscillation, far-field open boundary problem.
45 degree half angle, wedge-shaped two-dimensional body on the free
surface with 10 panels on the body, 20 on the free surface. Explicit
fourth-order Runge-Kutta scheme. ¢ = 0.1, ‘o’ represents the eigenval-
ues for FSS number = 9.0 and ‘x’ for F'SS number = 10.0 without
the truncation effect.
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Figure 3.26: Time simulation for the forced oscillation, far-field open boundary prob-
lem. 45 degree half angle, wedge-shaped two-dimensional body on the
free surface with 10 panels on the body, 20 on the free surface. Explicit
fourth-order Runge-Kutta scheme. ¢ = 0.1, FSS number = 1.0 with
the truncation effect.
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Figure 3.27: Time simulation for the forced oscillation, far-field open boundary prob-
lem. 45 degree half angle, wedge-shaped two-dimensional body on the
free surface with 10 panels on the body, 20 on the free surface. Explicit
fourth-order Runge-Kutta scheme. ¢ = 0.1, F§S number = 1.0 without

the truncation effect.
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Figure 3.28: Time simulation for the forced oscillation, far-field open boundary prob-
lem. 45 degree half angle, wedge-shaped two-dimensional body on the
free surface with 10 panels on the body, 20 on the free surface. Explicit
fourth-order Runge-Kutta scheme. ¢ = 0.1, F'SS number = 9.0 without
the truncation effect.
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Figure 3.29: Time simulation for the forced oscillation, far-field open boundary prob-
lem. 45 degree half angle wedge-shaped two-dimensional body on the
free surface with 10 panels on the body, 20 on the free surface. Ex-
plicit fourth-order Runge-Kutta scheme. ¢ = 0.1, FSS number = 10.0
without the truncation effect.
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3.6.2 Axisymmetric Forced Oscillation Starting from Rest

In this section, a three-dimensional axisymmetric body is forced to oscillate on
the free surface. As in Section 3.6.1, only the half-body and half of the whole domain
surface is used by symmetry. The slope of the inverted cone has a 45 degree angle
(i.e. 45 degrees half angle). The three dimensional modified Green function is used
to formulate the integral equation of the BIM.

As a far-field closure, the truncation effect is considered by the method of Kang(1988).

The integral for the potential ¢ over the free surface in the three-dimensional case is

f.r [gfl’,—(;sail]aads—/ [§¢' ¢an]Gad3+/ [8¢ ¢6z’] s
(3.75)

where G® is the three-dimensional Green function which, through the advantage of
axisymmetry, is integrated analytically in 6 direction, r, is the radius of the numerical
truncation boundary and Sp is the actual computed free surface for 7 < 7o.

The truncated far-field effect can be integrated approximately with the distribu-
tion of potential from single dipole method. The potential on the free surface outside

the truncation limit can be expanded by the Taylor series as :

Bz =)= #lz=0) +n3elz =0)+ - (3.76)
$(z=0) =0
a¢, N_l_

t3¢ t 1
So, to the first order, ¢ (z = n) becomes approximately

bo = om0~ [ g~ (3.78)

B 3 b
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Substituting Equation (3.78) into Equation (3.75) and comparing the order of
magnitude with the assumption of large r,, the following analytic approximation for
the truncation boundary effect at the boundary point & is derived. For a detailed

derivation of G?, refer to Section 4.1 :

0¢ 0|
/ [5;7 - 62’] G dr’

L To0¢ 0 dr'
g —'2‘;’6;(7'0)/ d9/ r3(r'? — 2rr! cos 0 + r2 + 22)1/2 (3.79)
To 6¢ 4p1E(m) 24,2y 2r
2 ) | (A2 — 0} 4 ) = (gt~

where

L = / log m — rm
Vit 422 4 r\/l—_:ﬁ
L— 1 log (r? 4+ 2%) — rrov/l — u? + \/(r2 + 22)(r2 — 2rrov/T —u? + 12 + zz)du
0 (r? 4 2%) + rrov/1 — u? + \/(r2 + 23)(r2 + 2rrov/1 — u? + 12 + 22)

Equation (3.79) is an analytic approximation of the truncation boundary effect

for the three-dimensional axisymmetric problem. As can be seen in Equation (3.79),

the truncation effect is represented as a function of the unknown value %f at 5.

The various stability regions are investigated with respect to
e the Green function constant,

e the far-field closure,

e the F'SS number, and

e the various numerical schemes.

Table 3.5 shows the numerical stability results for two-dimensional cases with
the same conditions as the three-dimensional cases (10 panels on the half-body, 90

panels on the free surface, wave number & = 0.1309, amplitude A = 1.0, and the
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FSS {w/ {wlo| w/ w/o w/ | w/o w/ w/o

1.0 (| 1.0] 1.0 | 1.127 | 1.0(c) | 1.041 | 1.086 | 1.027(r) | 1.043

2.0 1.0 1.0 | 1.184 | 1.0(c) | 1.058 | 1.124 | 1.038(r) | 1.062

—_—~ |~~~

3.0 [[1.0 1.0 [ 1.230 [ 1.0(c) |1.072 | 1.154 | 1.046(r) | 1.076

40 | 1.0| 1.0 | 1.270 | 1.0(c) |1.083 | 1.179 | 1.054(r) | 1.088

5.0 1.0} 1.0 |} 1.307 | 1.0(c) | 1.093 | 1.203 | 1.060(r) | 1.099

9.0 1.0(c)

10.0 1.275(c)

Table 3.5: Magnitude of maximum eigenvalues associated with the forced oscillation,
far-field open boundary problem. 45 degree half angle, wedge-shaped two-
dimensional body on the free surface with 10 panels on the body, 90 on
the free surface. Wave number & = 0.1309. Explicit fourth-order Runge-
Kutta scheme. (r) and (c) denote real or complex eigenvalues respectively.
w/ : with truncation effect, w/o : without truncation effect.

same numerical scheme) to study the effect of three-dimensions. Table 3.6 shows
the numerical stability results for the three-dimensional axisymmetric case. The
distribution of the eigenvalues for the three-dimensional axisymmetric case of F'SS
number = 10.0 are plotted in Figure 3.30.

In the analysis, it is found that the far-field closure consideration is not a major
factor for the stability analysis in the three-dimensional axisymmetric case. In two-
dimensions, as already shown in Section 3.6.1, the stability region can be altered by
the Green function constant and the stability region is very sensitive to the far-field
closure condition. The sensitiveness to the far-field closure is quite reasonable in the

two-dimensional case. Wave energy propagated from the body is not diminished in
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1/c 10.0 1.0 0.01 0.0

FSS w/ | wjo | w/ w/o w/ | w/o | w/ w/o

1.0 1.0 | 1.0 | L0 1.0 1.0 | 1.0 | 1.0 1.0
! ! ! ! ! | l l {
9.0 1.0 | 1.0 | 10 1.0 1.0 | 1.0 | 1.0 1.0

9.33 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

10.0 1.275 | 1.275 | 1.275 | 1.275(c) | 1.275 | 1.275 | 1.275 | 1.275(c)

11.0 1.755 | 1.755 | 1.755 | 1.755 | 1.755 | 1.755 | 1.755 | 1.755

12.0 2.307 | 2.307 | 2.307 | 2.307 |2.307 {2.307 | 2.307 | 2.307

Table 3.6: Magnitude of maximum eigenvalues associated with the forced oscillation,
far-field open boundary problem. 45 degree half angle cone-shaped three-
dimensional axisymmetric body on the free surface with 10 panels on
the half-body, 90 on the free surface. Explicit fourth-order Runge-Kutta
scheme. (c) denotes complex eigenvalues. w/ : with truncation effect,
w/o : without truncation effect.
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the far-field for two-dimensions and thus far-field closure is much more important
than in the three-dimensional case. In Figure 3.30, critical eigenvalues (i.e. |A| > 1)
with or without the boundary condition are nearly the same whereas phase differences
for some non-critical eigenvalues (i.e. |A\] < 1) are detected.

The effect of the Green function constant is also very weak in the three-dimensional
axisymmetric case. However, a distinct stability region can be seen by the F'SS
number which has a boundary at F'SS number = 9.334. This is compared to the
necessary stability boundary for plane progressive waves mentioned by Dommermuth
and Yue(1986), F'S.S number = 8.0.

The numerical stability criteria is highly dependent on the choice of the nu-
merical time-stepping scheme and the choice of the field equation solver. Several
runs with implicit-like fourth-order Runge-Kutta schemes and Kang’s fourth-order
Runge-Kutta scheme were performed and no stable regions were found. In the
implicit-like Runge-Kutta scheme, the modulus of the maximum eigenvalues con-
verged to 1.0 in the limit as the 'S.S number went to zero. Hence, for the very small
numbered range of the F'SS number 0.0 ~ 0.5, an implicit-like method may also be
admissible in the calculation of the impact problem for a short time calculations.
Figures 3.31 and 3.32 show the distribution of eigenvalues for the three-dimensional
axisymmetric body when the F'SS number = 0.6 and when F'SS number = 3.0 re-
spectively. The magnitude of the maximum eigenvalues is 1.005 for F'SS number
= 0.6 and is 1.2 for F'SS number = 3.0 (1.0002 for F'SS number = 0.2, 1.002 for
FSS number = 0.4). These two figures indicate how the maximum eigenvalues are
changing with increasing F'SS number.

The linear stability analysis discussed in this chapter has laid the foundation for

understanding the nonlinear calculations. Effects on numerical stability, such as time
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Figure 3.30: Eigenvalues of the forced oscillation, far-field open boundary problem.
45 degree half angle, cone-shaped three-dimensional axisymmetric body
on the free surface with 10 panels on the half-body, 90 on the free sur-
face. Explicit fourth-order Runge-Kutta scheme. ‘*’ represents 1/c =
0.0 and with the truncation effect, ‘o’ represents 1/c = 1.0 and without
the truncation effect. F'SS number = 10.0.
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differencing schemes, boundary formulations and temporal and spatial discretizations
have been investigated. While these findings may have to be refined in the cases of
steep, breaking waves or jets due to impact, the next chapter will demonstrate that

the linear results are valid for moderately nonlinear wave calculations.
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Figure 3.31: Eigenvalues of the forced oscillation, far-field open boundary problem.
45 degree half angle, cone-shaped three-dimensional axisymmetric body
on the free surface with 10 panels on the half-body, 90 on the free
surface. Implicit-like fourth-order Runge-Kutta scheme. ¢ = 1.0 and
FSS number = 0.6. Maximum modulus of the eigenvalue is 1.005.
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Figure 3.32: Eigenvalues of the forced oscillation, far-field open boundary problem.
45 degree half angle, cone-shaped three-dimensional axisymmetric body
on the free surface with 10 panels on the half-body, 90 on the free
surface. Implicit-like fourth-order Runge-Kutta scheme. ¢ = 1.0 and
FSS number = 3.0.



CHAPTER IV

NONLINEAR NUMERICAL STABILITY
ANALYSIS

Figure 4.1: Problem domain of nonlinear analysis

In Chapter 3, the numerical stability analysis is studied with the linear free surface
boundary conditions and with a linear body shape. This linear analysis is applied
to several examples to see how the stability region changes with the FSS number,
the Green function coefficient ¢, and the far-field condition.

With the basic knowledge of the linear numerical stability analysis firmly estab-

lished, the nonlinear numerical stability analysis for the forced oscillation problem

102



103

is examined with two-dimensional and three-dimensional axisymmetric body on the
free surface. The analysis is performed with nonlinear free surface boundary con-
ditions. This analysis is applied to the impact problem of the two-dimensional and
three-dimensional axisymmetric body. This nonlinear impact problem uses the same
coordinate system as that of Figure 2.1, but with the body and the free surface
location changing with time (See Figure 4.1).

Most of the problem solving procedures are the same as in Chapter 3 (linear
analysis) except that the boundary conditions are nonlinear. The Boundary Integral
Method (BIM) is used for solving Laplace’s equation, and the fourth-order Runge-
Kutta schemes are used for the time-stepping procedure with nonlinear free surface
conditions. At each time step, the body and the free surface shape are regridded
using modified Lagrangian polynomials!. The fourth-order Runge-Kutta schemes,
however, assume that the influence coefficient matrix does not change during the

intermediate steps.

4.1 Formulation

As mentioned in Section 2.1, there are one governing equation (Laplace’s equa-

tion) and four boundary conditions for the impact problem. :
o Governing equation (Laplace’s equation)

Vig=0 in the fluid domain, (4.1)

¢ Kinematic free surface boundary condition

D(z—1)
Dt

11t’s original name is the non-uniform parametric blended Lagrangian polynomials.

=249 V- =0 onz=nleyy, (42
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e Dynamic free surface boundary condition

9¢

—+5+ LIVeP + g2 =C(t)
D milvevs on z=n(mut) (4.3)
Dt 2 1J ?

e Body boundary condition

V-i=Vé¢-# on the body, and (4.4)

o Far-field condition

¢n — 0 as |r| = 0. (4.5)

Laplace’s equation is solved on the boundary shape which moves at each time
step. Free surface boundary conditions are applied to the free surface with the
nonlinear terms included. The water depth & is assumed to be infinitely deep.

Due to the nonlinearities, a number of factors have to be considered in addition
to the previously described linear numerical stability analysis:

- the body-wave intersection point, and

- the regridding algorithm.
At each time step, the matrix stability analysis is performed and compared with the
results of the linear stability analysis to investigate the effect of nonlinear calcula-
tions.

With the aid of Green’s second identity and Laplace’s equation (Equation (2.1)
and Equation (2.9)), the integral equation for the potential is derived on the free

surface and the body :

$(Z,t) = - /(¢—-G )ds (4.6)
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Using the advantage of axisymmetric bodies, the above equation is integrated ana-

lytically in the angular direction :

#(3,1) = _// d9¢dl+// Gr d06¢ (4.7)
b’ .04
s ot o
where
G = 2"-i-do -1r—1—K(m) (4.9)
a@s  _

&t /o an'(41rR
= (z—z)E(m)n,:

Tp1p?
1 14(r— r') S Bt
+41r[ oA Lim)+ ,,(E( ) — K(m))| n, (4.10)
P o= (r-r)Y=(z-2)° (4.11)
pio=(r+r)=(z-2) (4.12)
~1-2
"o I (4.13)

In Equation (4.10), K(m) and E(m) represent the complete elliptic integrals of the
first and the second kind respectively. The source point (r,2') is defined as the
position of the ring source at coordinate X=(r",0,2') and the field point (r, z) as the
position of the control point.

As the field point £ in Equation (4.6) approaches the boundary of the domain
V, a principal value integral equation for the potential on the boundary is obtained.
This principal value integral equation and the four boundary conditions result in a

unique solution.
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4.2 Far-Field Closure

As mentioned briefly in the Introduction, the far-field closure treatment is im-
portant in the body-wave interaction problem and several approaches have been
proposed. One of them is the use of the periodicity characteristics of waves when
there is no body on the free surface by the assumption that the waves are propagated
periodically without any dispersion or dissipation. This periodicity, however, can not
be applied easily to the body-wave interaction problem.

In this thesis, the potential in the far-field is considered as that of a single vertical
dipole at the origin of the coordinate system. This vertical dipole is designed to have
a strength so that the nonlinear inner solution matches the linear outer solution at
the truncation limit. Thus, this artificial dipole strength at the origin is changed
every time step according to the normal derivative of the potential at the truncation
limit. This single dipole method, when used in the initial value problem, is valid
until the traveling wave arrives at the truncation boundary.

The surface of the domain V is composed of body surface Sg, free surface inside
the truncation limit Sr, free surface outside the truncation limit Se., and far-field
surface S;. Among them, the effect of far-field surface S, can be ignored by the as-
sumption in Equation (4.5). The effect of the free surface outside the truncation limit
S.. for the three-dimensional axisymmetric case is derived in Section 3.6. Rewriting,

the truncation boundary effect at the boundary point Z is :

9 _ 0| ey
/r., r [a' ¢az,]G dr
~ 129 Lt
T 270z ro)/ ‘M/ r3(r'? — 2rr' cos 0 + r? + 22)1/2

33¢ 4p1E(m) 2 2 2r
2% 0 |(ARE) - 20) 74 2) - Pt~ 1)

(4.14)
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where

I _/110 \frz-i-zz—r\fl—-u’d

1= )b g\/r’+z’+r'\/1—-u2 v

I /ll . (r? + 22) — rroV/1T — u? + /(2 + 22)(r] — 2rroV/1 — ul+r? 4+ z’)d

2= (s) Uu.
0 T (r2 4 22) +rroVT — w4 f(r? + 2%)(rd + 2rro V1 - u? +r? 4 22)

Equation (4.14) is an analytic approximation of the truncation boundary effect

for the three-dimensional axisymmetric problem. The effect of the truncation limit

on the numerical stability region is studied with this equation.

4.3 Intersection Point

In the body-wave interaction problem, the domain boundary is composed of two
major parts of the computational surface — the body surface Sp and the free sur-
face Sp - and these two surfaces meet in one line. (This line is referred to as the
‘intersection point’ hereafter, since this thesis examines only the two-dimensional or
three-dimensional axisymmetric problems.).

In a simplified mathematical model, the intersection point is represented as having
a sharp corner which may not be in keeping with physical reality. (The effect of
surface tension will certainly act to reduce ‘sharp corners’.) The sharp corner induces
a jump in the physical value and introduces singularities into the mathematical
calculations. To eliminate these singularities from the mathematical model, the
body and the free surface can be designed to meet tangentially at the intersection
point. This could be achieved by requiring the first panel of the free surface to have
a higher-order shape. Such a design is beyond the scope of this work and is an
extension for further study.

At the intersection point, the body boundary condition, usually given as a Neu-

mann type (derivatives of the potential), meets the free surface boundary condition,
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usually a Dirichlet type (potentials). The confluence of these two boundary condi-
tions causes a weak singularity in the integral equation. This weak singularity on
the intersection point has a global influence and causes numerical difficulties for the
nonlinear problem.

Kang(1989) derived the analytic calculation for the removal of the singularity
by ordering the integrand in the integral equation and cancelling out the singular
terms which are of the lowest order. He performed the calculations of the impact
problem by assuming that the body meets the free surface with a 90 degree angle
at all time. However, as the vertical velocity of the body increases or the frequency
of the oscillating body becomes higher, the intersection angle between the body and
the free surface can not be assumed to be at a right angle.

In this thesis, the position and the potential of the computational surface is
calculated at the center of the panel in the BIM. By locating the control point at the
center of the panel, the logarithmic singularity at the intersection point is removed.
However, locating the control point at the center introduces the difficulty of tracing
the intersection point where the continuity condition is satisfied. The kinematic

continuity condition at the intersection point is, as illustrated in Figure 4.2,

(¢n)F = (&s)B-sin(fy —02) + (¢n)B - cos (6 — 6;) (4.15)

(6)F = (@s)B-cos(0y —0;) — (da)p - sin(fy —02) (4.16)

where  (¢s)r : normal velocity of the water particle on the free surface,
(¢,)F : tangential velocity of the water particle on the free surface,
(¢n)5 : normal velocity of the water particle on the body, and

(¢s)B : tangential velocity of the water particle on the body.

The tangential velocity of the intersection point is determined by the modified
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Figure 4.2: Intersection point configuration

Lagrangian polynomials interpolation scheme. The normal velocity of the intersec-
tion point is determined by the body boundary condition to be the same as the
normal velocity of the body. Note that the normal velocity of the body is calculated
by

tn+1

dz = /t sdt (4.17)

”
dz - |€n|

$nlisn) = — (4.18)

rather than from the time derivative of the body oscillation.
The steps in Equations (4.17) and (4.18) prevent a possible discrepancy between
¢.(¢) dt - |€;| and dz where ¢,(¢,n) represents the normal velocity of the (z) surface

panel at the (n) time step.
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4.4 Regridding Algorithm

As a first step to solving the impact problem, Laplace’s equation, which is the
governing equation of the domain, is solved with the BIM numerical scheme. The
first step determines the unknown values on each boundary; potentials of the water
particles on the body and the potential derivatives of the water particle on the free
surface. This information (¢ and -g-f) of the particles is used to find the evolved new
locations of body and free surface, and to find the new potential values of the new
free surface location using free surface boundary conditions.

As time marches, this mixed Eulerian-Lagrangian method inevitably causes the
Lagrangian control points to be concentrated on the crest of the free surface wave
where the gradient of the potential is large. This concentration induces the panel
length to become smaller and smaller. Eventually it falls below the required length to
satisfy the local Courant-Friedrichs-Lewy(CFL) stability condition. This condition
is the necessity condition for a numerical stability; the time step dt should be decided
so that the control point does not move out of the domain of dependence in time
marching. It is practically impossible to reduce the time step dt to keep the CFL
condition if the panel length becomes smaller and smaller due to the concentration
of the Lagrangian markers.

To prevent the concentration of Lagrangian markers on the top of the free surface
wave, a regridding algorithm is introduced in time-step iteration. This idea of using
a regridding algorithm to remove the instability of the mixed Eulerian-Lagrangian
scheme was suggested by Dommermuth and Yue(1988). They mentioned that the
numerical scheme instability is eliminated if they keep the CFL-like condition such

8 Az

as, At2 _<_ ;-—-.
g
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In this thesis, a regridding algorithm is used to remove one possible cause of
pumerical instability. After solving the governing equation using the BIM, the new
locations of the body and the free surface are calculated using the body and free
surface boundary conditions. A new location of the body-wave intersection point
is also calculated to get the wetted body length. Starting from the new body-wave
intersection point, the total arc length of the free surface is calculated. The free
surface is then regridded to have constant panel lengths. For the portion where
the high gradient potential exists, more panels are allocated to prevent the possible
loss of accuracy due to the regridding algorithm. After the regridding procedure,
the new location of the control points and the potential values on the new control
points of the free surface are recalculated. To investigate the numerical stability
region relative to a F.SS number, the time step dt is tuned to keep the F'SS number

constant according to the panel length dz at every time step.

4.5 Pressure Calculation

As the body starts to move from rest, the body experiences a changing hydrody-
namic force imposed on it. The fluid force is estimated by the pressure integration
over the wetted surface. An exact force prediction leads to reliable structural analysis
for safe design of ship structures.

The equation for the pressure calculation on the body is derived from Bernoulli’s

equation for inviscid, incompressible, and irrotational flow.

P 99 1

; = —E—§V¢-V¢—gz
= B V.43V (4.19)

where V : velocity of the body

V¢ : velocity of the particle
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To get ‘-:-f on the body, Kang’s scheme is used which was extended to the three-
dimensional case from the two dimensional case (Vinje and Brevig(1982)). He derived
the body boundary condition for the boundary value problem of % and solved %
using boundary value problem with the boundary conditions on the free surface and
on the body.

On the body, the normal derivative of % is derived using rigid dynamics and a

vector identity :

d
23 = 79
- —v¢+v¢ 4
= (g V¢+(V V)V¢)+V¢ (@ x /) (4.20)

&

2 . (va¢+V(V Ve) +3 x Vo) +Vé- (& x A)

= iV ( + V.Vé)=1- (gt‘
- an( dt
where
ai ‘Z’)—" (aﬁ+ax?-axm), (4.21)
Vr : translational velocity of body,
& :rotational velocity of body, and
& : rotational acceleration of body.
So,
3G = i - %‘% = 1n,0,. (4.22)

Since V - V¢ satisfies Laplace’s equation, % also satisfies Laplace’s equation.
With Laplace’s equation and the various boundary conditions, the boundary value

problem is solved for % on the body and Z (%) on the free surface. Once % on
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the body is obtained, the pressure on the body is calculated with Equation (4.19).
Equation (4.19) is composed of three parts — the unsteady time varying pressure
component, %, the dynamic pressure component with the nonlinear term, V. Vé -
§V¢ . V¢, and the static pressure term which is proportional to depth, —gz. Figure
4.3 shows the dynamic pressure distribution on the body for the test case of Figure
4.5, which is the oscillating body with amplitude 0.5. The ratio of the dynamic
pressure including the nonlinear term to the static pressure is approximately 1% ~
3%.

In Figure 4.3, the origin or left side represents the tip of the cone which is the
deepest point and the right side represents the intersection point to the free surface.
The horizontal axis is the body surface, the y axis is time, and the vertical axis is
the magnitude of pressure. The real length of the wetted body along the y axis
is not constant, but the wetted body length is adjusted to be equal for plotting
purposes. The magnitude on the left side of the figure is smaller than that of the
right side which suggests that the water particle velocity near the surface is larger in
magnitude than that farther from the surface. This effect is partly from the nonlinear
term in the pressure calculation, V- V¢. The undulation frequency of the dynamic
pressure in time (Figure 4.3) is twice the oscillating frequency of the body. The
reason for this phenomena can be found from the mathematical form for this figure,
(—f} .V¢ — Vé-Vé). In Figure 4.3, the amplitude of the undulation on the left
side is less than that on the right side reflecting the effects of depth of the water.
Another phenomena which can be observed is a small phase difference between the
bottom and the free surface. The bottom leads the phase and this phase difference
is not found in the other terms of the pressure.

Figure 4.4 shows the distribution of the unsteady term, %. The same plotting
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technique as in Figure 4.3 is used in this figure. The undulation frequency is the
same as that of the body. The magnitude of the values are about eight times the

values of the dynamic pressure. There is no phase difference in this figure.

XMIN = 6.8200000E-02 XMAX = 1.296600
YMIN = 0.0000000 YMAX = 12.85220
ZMIN = -0.4170000 ZMAX = 0.1451000

Figure 4.3: Pressure distribution on the body due to dynamic term (—‘7 -Vo¢ -
Vé-Vé). Two-dimensional wedge-shaped body with 45 degrees dead-
rise angle. 10 panels on the body and 90 panels on the free surface.
Amplitude=0.5, k = 0.1309, FSS number=1.0, ¢ = 0.02, without the
truncation effect. Explicit fourth-order Runge-Kutta method.

The intersection point is the location where the total pressure is changed from
positive to zero. So, the total pressure at the intersection point acts as a checking
device for the jet-formation. If a part of the body becomes unwetted below the

intersection point for some reason (Figure 4.11), the total pressure of that part was
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XMIN = 6.8200000E-02 XMAX = 1.296600
YMIN = 0.0000000 YMAX = 12.85220

BODY

Figure 4.4: Unsteady term of the pressure distribution on the body (%‘f). Two-
dimensional wedge-shaped body with 45 degrees deadrise angle. 10 pan-
els on the body and 90 panels on the free surface. Amplitude=0.5,
k = 0.1309, FSS number=1.0, ¢ = 0.02, without the truncation effect.
Explicit fourth-order Runge-Kutta method.
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revealed to be a negative value.

4.6 Stability Results

In Chapter III, both the Euler schemes (second order) and the fourth-order
Runge-Kutta schemes are used in the fundamental study of the numerical stabil-
ity for various cases. In this section, only the fourth-order Runge-Kutta schemes are
used for the numerical calculations and the investigation of the stability regions. The
Runge-Kutta scheme has four intermediate steps between one time step calculation
of the free surface n and the potential ¢. Using the Runge-Kutta scheme for the
potential on the free surface 7, the influence coefficient matrix values are assumed to
be fixed in the intermediate steps. However, the body and the free surface locations
are updated at each intermediate step.

The numerical procedure for the nonlinear simulation of the oscillating body-wave
interaction problem is shown in Figure 4.12. The body is oscillating with frequency
w on the free surface or moves down with the constant velocity into the water. The
free surface evolves following the nonlinear free surface boundary conditions from
an initially calm water level. At each time step, the evolved free surface is used
for the calculation of the new influence coefficient matrix for the BIM. The locally
linear numerical stability analysis is performed while the potential is calculated with
nonlinear boundary conditions. The numerical stability analysis, therefore, reflects
the nonlinear boundary condition effects in a global sense even though the analysis
is locally linear.

Table 4.1 shows the two-dimensional nonlinear stability analysis. The numbers in
the table represent the maximum modulus of the eigenvalues during the simulation.

The maximum modulus is calculated at each time step since it is changing due to
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nonlinearities.
The test conditions are initial depth of body : 1.0,
body oscillating amplitude : 0.5,
z = —0.5sinwt,
wave number k£ = 0.1309,
number of panels on the body : 10, and

number of panels on the free surface : 90.

The test conditions above are set to be the same as in Section 3.6.1 for comparison
with the linear results. The Green function constant effect is also investigated and
it acts as a control parameter. When c is 1.0, no stability regions are found for
any FSS number. But when c is 0.01, this scheme becomes conditionally stable.
In the nonlinear analysis, the magnitude of the maximum eigenvalues is found to
vary slightly relative to the linear results. Thus the stability range in the linear
analysis is almost the same as the range in the nonlinear analysis. In nonlinear
calculations, the variation of the stability area is less than 1 % with respect to time.
This implies that the nonlinear effect on the numerical stability analysis by the
nonlinear boundary condition is not so critical. This also supports the idea that the
linear stability analysis is valid for the nonlinear calculation of the mildly steep wave
problem unless a jet is formed with high entrance velocity of the body into the water
or low deadrise angle of the body.

These results show that the linear stability analysis is a good first estimate of
the nonlinear stability properties. The computer time used for the simulation and
eigenvalues calculation in one case of Table 4.1 is about 70 minutes CPU time on a
‘Stella GS2000° graphics super computer.

Figure 4.5 and Figure 4.7 show typical examples of the stable and unstable sim-
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c 0.01 0.1 1.0
FSS “ w/ | w/o w/ w/o w/ w/o
1.0 101 1.0 |1.040 ~ 1.041 | 1.086 ~ 1.078 | 1.026 ~ 1.027 | 1.043 ~ 1.041
20 111.01 1.0 |1.058 ~1.057 | 1.124 ~ 1.117 | 1.038 ~ 1.035 | 1.043 ~ 1.062
30 1.0 1.0 |1.072~1.069 |1.154 ~ 1.148 | 1.050 ~ 1.048 | 1.076 ~ 1.073
40 [l10] 1.0 |1.083 ~1.081|1.179 ~ 1.178 | 1.061 ~ 1.060 | 1.105 ~ 1.101
50 110/ 1.0 |1.093 ~1.088 | 1.203 ~ 1.202 | 1.072 ~ 1.071 | 1.113 ~ 1.111

Table 4.1: The maximum modulus of the eigenvalues from the nonlinear time simu-
lation results of two-dimensional wedge-shaped body case with 45 degrees
deadrise angle. 10 panels on the body and 90 on the free surface. Explicit
fourth-order Runge-Kutta method. ‘w/’ represents ‘with the truncation
effect’ and ‘w/o’ represents ‘without the truncation effect’

ulations. The left edge of the figures is the location of the wedge-type body which
has 45 degrees half-wedge angle. Figure 4.6 and Figure 4.8 are wider plots of Figure
4.5 and Figure 4.7, respectively. They include the behavior of the potential near
the far-field truncation limit. The horizontal axis in the figures represents the wave

profile as time changes and the vertical axis the time step (Figures 4.5 ~ 4.8). The

panel length Az is A/90 (= 0.533) and the time step size At is \[Az - FSS/(xg)
(~~ 0.132 for Figures 4.5 and 4.6, and ~ 0.228 for Figures 4.7 and 4.8). For the
unstable case in Figures 4.7, 4.8, and 4.10, the time step size At is /3 times lager
than that for the stable case (Figures 4.7 and 4.6). Thus, the far-field values are
soon contaminated and the error propagates quickly. Figure 4.10 is the potential
distribution for the case of Figure 4.7. In the figure, the horizontal axis represents
the free surface, and the vertical axis the potential values. The potential values drop

exponentially as time increases. It occurs as the wave generated by the oscillation of
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the body propagates to the truncation boundary. It is imagined that the unstable
characteristics of the condition are manifested by the reflection of the waves at the
truncation limit.

In Figure 4.9 and Figure 4.10, the horizontal axis represents the free surface from
the intersection point to the far-field truncation limit. The actual length is changing
at each time step due to the change of the intersection point. In these figures, though,
all the free surface lengths are fixed to the initial lengths for the purposes of plotting.

Table 4.2 shows the stability analysis of the nonlinear axisymmetric case. The
test condition is set to be the same as that of Section 3.6.2 for comparison. Most
of the stability criteria is confirmed to be the same as the linear result when the
FSS number is under 7.0. As the FSS number exceeds 7.0, the free surface in
the vicinity of intersection point forms a jet-like behavior and the stability region
disappears. This table again confirms that the linear stability analysis is valid for
the nonlinear calculation of the moderately steep wave problem until a jet is formed.

Figure 4.11 shows a jet-formation near the intersection point for decreasing dead-
rise angle. Near the intersection point, the free surface forms a parallel surface to the
body separated by a very narrow distance. This creates the sharp turn on the free
surface geometry near the body. The narrow distance between the body surface and
the jet surface causes difficulties in the numerical calculation by the source distribu-
tion method since the influence coefficient matrix has large off-diagonal terms. For
the sharp corner on the free surface near the body, the proper curve-fitting scheme
should be carefully chosen. The analytic solution of the similarity solution for the
jet could be a good alternative for the jet shape near the body. This jet formation
near the body is observed in the nonlinear analysis which is not captured in linear

simulations. Once the jet is formed, the influence coefficient near the jet becomes



120

Time

120.0

100.0

80.0

60.0

40.0

20.0

0 5 10 15 20
y

Figure 4.5: Free surface elevation of the nonlinear simulation, stable case. Two-
dimensional, oscillating wedge-shaped body with 45 degrees deadrise an-
gle. 10 panels on the body and 90 panels on the free surface. Ampli-
tude=0.5, k = 0.1309, FSS number=1.0, ¢ = 0.02, without the trunca-
tion effect. Explicit fourth-order Runge-Kutta method.
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Figure 4.6: Free surface elevation of the nonlinear simulation with the far-field limit,

stable case. Two-dimensional wedge-shaped body with 45 degrees dead-
rise angle. 10 panels on the body and 90 panels on the free surface.
Amplitude=0.5, k = 0.1309, FSS number=1.0, ¢ = 0.02, without the
truncation effect. Explicit fourth-order Runge-Kutta method.
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Figure 4.7: Free surface elevation of the nonlinear simulation, unstable case. Two-

dimensional wedge-shaped body with 45 degrees deadrise angle. 10 pan-
els on the body and 90 panels on the free surface. Amplitude=0.5,
k = 0.1309, FSS number=3.0, ¢ = 0.02, with the truncation effect.
Explicit fourth-order Runge-Kutta method.
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Figure 4.8: Free surface elevation of the nonlinear simulation with the far-field

limit,unstable case. Two-dimensional wedge-shaped body with 45 de-
grees deadrise angle. 10 panels on the body and 90 panels on the free
surface. Amplitude=0.5, k = 0.1309, FSS number=3.0, ¢ = 0.02, with
the truncation effect. Explicit fourth-order Runge-Kutta method.
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Figure 4.9: Time simulation of the nonlinear potential value distribution, stable case.
All the test conditions are the same as Figure 4.5. Two-dimensional
wedge-shaped body with 45 degrees deadrise angle. 10 panels on the
body and 90 panels on the free surface. Amplitude=0.5, £ = 0.1309,
FSS number=1.0, ¢ = 0.02, without the truncation effect. Explicit
fourth-order Runge-Kutta method.
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Figure 4.10: Time simulation of the nonlinear potential value distribution, unsta-
ble case. All the test conditions are the same as Figure 4.7. Two-
dimensional wedge-shaped body with 45 degrees deadrise angle. 10
panels on the body and 90 panels on the free surface. Amplitude=0.5,
k = 0.1309, FSS number=3.0, ¢ = 0.02, with the truncation effect.
Explicit fourth-order Runge-Kutta method.
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1/c 10 0.01 0.0

FSS “ w/ | wjo|w/|wlo|w/|w/o

1.0 " 10} 1.0 |1.0{ 1.0 |10 1.0

{ R EEEEER
70 [[1.0]1.0 |10} 1.0 |10 LO

8.0 " stable but soon blow up

9.0 “ unstable

Table 4.2: The maximum modulus of the eigenvalues from the nonlinear time sim-
ulation results of three-dimensional axisymmetric case with 10 panels on
body, 90 on the free surface. Explicit fourth-order Runge-Kutta method.
‘w/’ represents ‘with the truncation effect’ and ‘w/o’ represents ‘without
the truncation effect’

Jet-formation near the Intersection point

n
0.42 slope =30 4.0 5.0
0.0
- 0.4
-0.8-
2.0 40 y 60 8.0

Figure 4.11: Jet-formation at the intersection point. ‘slope’ represents Ay/Az. Two-
dimensional wedge-shaped body with 45 degrees. FSS number = 5.0
and ¢ = 1.0.
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large causing numerical overflow. For a better calculation of the impact force, a

proper treatment of the jet needs to be investigated intensively.

START

Data Reading

*4——— Initial Geometry

Initial Boundary Conditions

"

Influence Coefficient Matrix [A] [B]

(= ) ‘
Dt Laplace Equation Solver

Dt =8N Pressure, Force Calculation

\ _/ *

Time Stepping Solver

Interaction Point

©

Figure 4.12: Flow chart of the numerical procedure for the nonlinear impact problem.
The numerical stability analysis is locally linear, but the time simulation
is nonlinear.
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Fig. 4.12 continued : Flow chart of the numerical procedure



CHAPTER V

CONCLUSIONS AND FUTURE WORK

The goal of this study is to better understand the complex behavior of body-
free surface interaction problems, specifically the hydrodynamics associated with
intersecting, non-wallsided bodies experiencing large amplitude motions. As a body
moves through the free surface, there are several important factors to consider when
predicting forces and motions. These factors include entrance angle, shape of the
body, and entrance velocity. For large entrance velocities or large degrees of flare,
the body will experience an impact-like behavior which induces a jet to be formed
at the body.

Due to the nonlinearities in the body and free surface boundary conditions, this
problem is generally only tractable through computation or simulation. Previous
studies have encountered numerical instabilities restricting the usefulness of this
method. Either the simulation program stops due to floating point difficulties or
smoothing techniques are applied raising questions about the validity and accuracy
of the computed values.

The purpose of this work is to examine the fundamental causes and solutions sur-
rounding numerical stability and instability. Analytic determination and evaluation

of stability regions have been completed leading to closed form solutions for stability

129
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criteria. These criteria have been supported by numerical time simulations.
Initially, simple models for the hydrodynamics are developed yielding basic infor-
mation on the importance of various parameters and algorithms used in the problem
solution schemes. This approach gives confidence in numerical results when closed
form analytic solutions are not available. The approach is to increase the level of
complexity of the model to finally include the fully nonlinear body and free surface

boundary conditions.

5.1 Conclusions

Following the fundamental study of the numerical stability analysis methods,
three different boundary problems with increasing degrees of complexity are exam-

ined. The different problems dealt with in this thesis are :

1. The near-field boundary problem with one panel on the free surface.

2. The near-field boundary problem with N panels on the free surface.

3. The closed boundary problem with one panel on the free surface (square
panel).

4. The closed boundary problem with N panels on the free surface (polygonal
shape).

5. The far-field open boundary problem for two-dimensional or three-
dimensional axisymmetric bodies (linear forced motion problem).

6. Nonlinear far-field open boundary problem for two-dimensional or three-

dimensional axisymmetric bodies (nonlinear forced motion problem).

Linear boundary conditions are used for the cases 1 ~ 5 and nonlinear boundary

conditions are applied for case 6.
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From these case studies, this thesis specifically shows :

o The effects of the Green Function constant c, Free Surface Stability (FSS)
number, the number of panels N, panel length Az, and time step size At on

stability

The Green function constant ¢ acts as a numerical stability moderator for the
open-boundary problem. As shown in Table 3.4 and Table 3.5, the stable region
for the implicit-like fourth-order Runge-Kutta scheme is created by changing
the value of c. The value of ¢ which changes the unstable region to the stable
region is dependent on the far-field truncation limit when using a fixed number
of panels on the free surface. This truncation boundary is expressed in terms
of the wave number k. The limit is calculated as the wave length traveling
with the group velocity for two periods of time. Two examples for the stability
regions for changing Green function constant ¢ is shown in Tables 3.4 and 3.5.
The wave number k of Table 3.4 is 0.3927 with 10 panels on the body and 20
panels on the free surface and the limit value of ¢ is 0.1. The wave number
of Table 3.5 is 0.1309 with 10 panels on the body and 90 panels on the free
surface and the limit value of c is 0.02.

Table 5.1 shows the maximum eigenvalue results for Table 3.4 only with a
different wave number, k = 0.1309 which is the same as the case of Table 3.5.
In Table 5.1, the stable region is limited to ¢ = 0.02. This result shows the
main factor in the limiting value of ¢ is the truncation boundary represented
by the wave number k. The wave number k is used to determine the far-field
boundary limit which directly affects the panel length for a fixed number of

panels.
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c IL 0.02 0.1 1.0
FSS " w/| w/o w/ w/o w/ |w/o

—————
— — = —— —

1.0 1.0(c) | 1.09(r) | 1.191(r) | 1.058(r)

2.0 1.0(c) |1.129(r) | 1.281(r) | 1.083(r)
3.0 ﬂ 1.0(c) |1.160(r) | 1.354(r) | 1.102(r)
4.0 1.0(c) |1.187(r) | 1.419(r) [ 1.119(r)
5.0 1.0(c) 1.479(r)

9.0 0.9999(c)

10.0 [| 1.255(c)

Table 5.1: Magnitude of maximum eigenvalues associated with far-field open bound-
ary problem. 45 degree half angle, wedge-shaped two-dimensional body
on the free surface with 10 panels on the body, 20 on the free surface.
Wave number £=0.1309. Explicit fourth-order Runge-Kutta scheme was
used. (r) and (c) denote real or complex eigenvalues respectively. w/ :
with truncation effect, w/o : without truncation effect
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The FSS number is defined by the panel length Az and the time step size At
(1"%:—)2-) It is found that the numerical stability region is determined roughly
by the choice of the numerical scheme and the boundary condition type. For
example, the N panel near-field boundary problem has a value of FSS ~ 5.0
as its stability limit for the implicit-like Euler scheme; the square panel closed
boundary problem has a value of FSS ~ 7.180 as its stability limit for the
implicit-like Euler scheme with the (¢, ¢», ¢, ¢) boundary condition; and the
polygonal domain closed boundary p.roblem has a value of FSS ~ 4.685 for
the implicit-like scheme with the (@, #n, ¢, ¢) boundary condition. The N panel
polygonal shapes are essentially independent of the domain geometry for large

N. A number of boundary problems are tabulated with boundary conditions,

numerical schemes, and stability limits in Table 5.2.

For a fixed time step At and a fixed free surface length £;,, , the combined effects
of the panel length Az and number of panels can be studied by increasing the
number of panels. This induces two important phenomena. First, increasing
the number of panels results in small k - Az, increasing the level of accuracy
of the calculation. Concurrently, increasing the number of panels increases the
FSS number so that the numerical scileme approaches the stability limit. This
situation is illustrated by the square panel cases with four different conditions

(Figures 3.11 ~ 3.16).

Now, consider the case of At and Az being reduced with the same ratio r in a

fixed £4,., such that

F$S,==QL | Fss,

—— T r,
Fss, = w2 | FS5:

then the FSS number becomes smaller with the ratio r, so that the numerical
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Boundary Boundary Numerical Stability Limit

Problem Case Condition 'Scheme used (FSS number)

N panel near-field || ¢(free surface) | implicit-like Euler | ~ 5.0

square panel closed || ¢, én,¢,¢ implicit-like Euler | ~ 7.180

polygonal closed &, b, 0,0 implicit-like Euler | ~~ 4.685

polygonal closed “ O, On, 0,0 implicit-like R.K. | ~ 5.0

polygonal closed O, Ony®, 9 explicit R.K. ~14.3

far-field 2-D and é(free surface)

3-D open (linear explicit R.K. ~ 10.0
¢n(body)

or nonlinear)

Table 5.2: FSS number for the various boundary conditions and numerical schemes.
The first variable on the boundary condition column is for the free surface.
For the polygonal closed boundary problem case, 20 panels, 40 panels, and
90 panels on the free surface were tested. R.K. means the fourth-order
Runge-Kutta scheme.
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Author(s) Wﬁz k-Az At FSS number
Longuet-Higgins

2x /30 | 27/30(=0.209) | Az/V, 2.632
and Cokelet (1976)
Faltinsen (1977) xa/14 | 0.57/14(=0.112) | 0.16y/a/g 0.358
Dommermuth

/40 | 27/40(=0.157) | T/40 0.494
and Yue (1986) '
Kang (1988) /80 | 2x/80(=0.079) | T/100 0.079

Table 5.3: FSS number for the test conditions of various published papers. A is the
wave length, T is the wave period, and V} is the group velocity of wave.

scheme is more stable. Also kAz is reduced with the ratio r, so that accuracy

becomes higher.

o Comparison of the previously published papers’ test conditions

To be in a stable region, the F'SS number should be kept small, whereas k- Az
should be kept small for accuracy. For reference, the FSS number of the
other paper’s test conditions are calculated and compared in Table 5.3. All
the test conditions are in a fairly low FSS numbered area. Due to the lack
of information about the numerical schemes used, it is not possible to check
whether the test conditions are in the stable range or not. However, Faltinsen’s

scheme seems to be unconditionally unstable since his examples were unstable

for very small F.$S number (=0.358). Refer to Figure 1.2.

o Conditional/unconditional stability and instability for various time-stepping

schemes
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For the simple cases such as one panei in a near-field boundary problem, or the
square panel in a closed boundary problem, the analytic form for the stable
region is derived. As the panel number increases or as complexity is added,
the stability region is investigated numerically. As shown in Sections 3.4 ~
3.6, the explicit Euler scheme is unconditionally unstable and the other
schemes, such as the implicit-like Euler, the implicit Euler, the explicit and the

implicit-like fourth-order Runge-Kutta schemes are conditionally stable.

The effect of radiation conditions

The radiation condition is an important consideration in two-dimensional nu-
merical analysis. In the far-field open boundary problem, the effect of the
truncation limit plays a significant role in the stability analysis. However, in
the three-dimensional problem, there is no apparent effect observed for the
cases studied in this thesis. Faltinsen’s method for the radiation boundary
is approximately valid until the wave propagated from the body reaches the
boundary. A typical example of the far-field contamination is shown in Figure

4.8.

The effect of nonlinearities

For an explicit Runge-Kutta scheme, moderate nonlinearities do not produce a
significantly different stability region when compared to similar linear problems.
The effect of two-dimensional versus .three-dimensional problems

Two-dimensional and three-dimensional bodies have significant differences in
numerical stability region when an explicit fourth-order Runge-Kutta scheme is

used. The numerical stability region becomes larger in three dimensions. In the
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three-dimensional case, the numerical stability region is essentially independent

of the Green function constant c.

Problems associated with jet-like behavior i.e. near-singular behavior of G(P,Q)

for two panels parallel and close to each other.

Stability is a less important issue here. Exceeding certain limits of entrance
velocity or deadrise angle will produce a jet-like behavior. The free surface
near the body and the body surface itself will form parallel panels. For source
distributions, these parallel panels induce a near singular behavior on each
other. In this situation, the near singular behavior dominates the problem and

another BIM, such as normal dipoles or vortex distributions, is suggested.

Future Work

Force calculations of nonlinear three-dimensional azisymmetric body-wave in-

teraction problem

For bodies of decreasing deadrise angles, calculate the impact force acting on
the body and compare it with experimental results and with other numerical

results. This will be the base study for the jet consideration.

The treatment of the jet at the intersection area

The main criteria for jet formation should be investigated. Before the jet
criteria is met, no special treatment is needed. After the jet criteria is passed,
a number of possible treatments should be seriously examined for validity.
Vorus(1992) examined two-dimensional jet flow calculations in the planing hull
impact problem. Using the assumption of zero-gravity waves, he extended the

similarity solutions of Dobrovol'skaya(1969) and Hughes(1972). Considering
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gravity and finding the transition region from no-jet flow to jet flow within
a certain parameter ranges will be necessary to make real progress with this

problem.

Far-field accuracy study with the analytic solution of the Cauchy-Poisson prob-

lem

Expand the Cauchy-Poisson solution in an asymptotic way with large distance r
and small time ¢. The obtained asyml;totic solution can be assumed to be valid
outside the truncation boundary in the impact problem. As time continues,
the far-field solution can be obtained by evaluating the convolution integral.
This far-field treatment, which is a function of time and space, will increase

the accuracy of the results presented here.

Analytic desingularization at the intersection point for the non-wallsided body

using Kang’s method

A special treatment is needed for the singular integral near the intersection
point when the body is not wallsided and Kang’s (1988) method is used. If
the control point of the BIM is located on the nodal point, it is very difficult
to remove the weak singularities at the intersection point and still satisfy the

kinematic continuity conditions.

Ezpansion to arbitrary three dimensional bodies

The impact force calculation with a three-dimensional body and three-dimensional
free surface geometry can be considered with or without the forward speed of
a ship. To solve this problem more accurately, the three-dimensional spray-

sheet also should be intensively investigated in the spray-jet region. For the
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stability analysis of the general three-dimensional impact problem with three-
dimensional free surface geometry, the matrix stability analysis presented here

is valid within the no spray-jet criteria.
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APPENDIX A

Nomenclature

: phase( kAz)

: panel length

: time interval between time step

: velocity potential of the ith location at the nth time step

: source point (¢,7,()

. {free surface elevation of the ith location at the nth time step

: exciting frequency

induced influence coeflicient

. Green function constant (G3p = Gap +1Inc)



ci(z)

FSS

lbottom ) Sbottom

lB,SB

I3, Sy

loos Seo

S

: Free Surface Stability Number (=

: magnification factor (=
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: cosine function

: exciting force

rg(At)? )
Az

: forcing term of the ith location at the nth time step

: Green function

n+l

)

: wave number

: 2-D, 3-D bottom boundary

: 2-D, 3-D body surface boundary

: 2-D, 3-D free surface boundary

: 2D, 3-D near-field/far-field boundary extended to infinity

. outward unit normal vector to the domain boundary 9}



si(z) :

]

<t

8
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sine function

: velocity of the fluid particle

: velocity of the body

: field point (z,y, 2)
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APPENDIX B

Modified Equation for the Euler Scheme of the
Free Surface Problem

The potential value at (n+1) and (V —1) time step can be expanded as a Taylor

series,

(at)? ., . (At (At)‘

¢‘n+1 = ¢" + Atdy + 1 w + 3! we T P t+
o = ¢
2 3 4
¢"—1 = ¢""At¢? (At) ¢u (At) ¢m (At) ;‘m“""
4
g —2gn 4 g0 = 002+ B g 4 (B1)

(1) Explicit Scheme

The linearized combined free surface boundary condition is

b = —g7"" (B.2)

¢n+1 —_ 2¢n + ¢n-—1

= (At)2 = —g¢:—l
At)? _
= ¢;;+£T22_ R
_ At 2
- g - 4 (B.3)



145

(2) Implicit-like Scheme

P = —g¢7 (B.4)
2
= = —9¢; — (—%';‘)—ﬂlm +--- (B.5)

Original Equation (B.2) is changed to Equation (B.5) because the second time
derivative of ¢" is substituted to a finite scheme. Equation (B.5) has to be changed
again due to the choice of the solution method of ¢} and the additional term surely
includes the Az and spatial derivative related terms.

For the exact modified equation, ¢, should be expressed as a distribution of
¢ which is a result from the BIM. The solution of the elliptic equation has the
characteristics that the domain of influence is the while. Thus, ¢, will be expressed

with all ¢’s on the boundary.
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APPENDIX C

Analytic Calculation for Fourth-order
Runge-Kutta Method

Suppose that the differential equation Z—Z = f(z,y) is to be solved and that the

values of the function y(z) are known. Then, y(z + k) can be expanded using the

Talyor expansion and Ay is expressed as the order of A.

Yo +h) = ()4 h(E)+ oy () oo (1)
By = ye+h)—y(@) = e + oy (e) 4 @)+ (G
= A+ 2+ )

3
+%{fzz + 2fa:vf + fwf2 + fv(fz + f - yf)} +oe (C'3)

Ay also can be expressed as a combination of ky, k3, ks, and kq.
Ay = aky + bk; + cks + dk,
where
kb = hf(z,y) (C.4)
k, = hf(z+mh,y+mk))=hf(z+mh,y+mhf)
= h(f+mhfe+mhffy+--) (C.5)
k3 = hf(z+nh,y+nk)) =h(f+nhfe+nkfy+--) (C.6)

ks = hf(z+ph,y+pks) = h(f +phf: + pksfy +---) (C.7)
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From the h identity in the equations between Equation (C.3) and Equations (C.4)

~ (C.7), variables a, b, ¢,;d and m, n, ,pis decided from the system of equations

below ;
1)h identity :a+b+c+d=1
2)h? identity :bm+en+dp=1/2
' bm? + cn? +dp* =1/3
3)h® identity P /
{ cmn+dnp=1/6
bm® + cnd + dp® = 1/4
cmn®+ dnp® =1/8
4)h* identity | ¥ /
cm’n + dn’p = 1/12
L dmnp = 1/24
a=1/6 b=1/3 c=1/3 d=1/6
m=1/2 n=1/2 p=1
so that

1
Ay = -G'(kl + 2k2 + 2k3 + k4)

kh = hf(z’y)

_ Ak
ko= b +g0+3

h ks
k3 = hf(2+ 2)y+_2_)

k4 = hf(:t + h’y +k3)
Variable k is used for the intermediate value of dynamic free surface boundary

condition, and another variable [ is used for the value of kinematic free surface

boundary condition. Thus, fourth-order Runge-Kutta scheme can be written as;

1
ot = "+ 'G'(kl + 2k; + 2k3 + k4)
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n4l

1
n = 9"+ 6(11 + 2+ 213 + 1y)

C.1 Method 1 : Explicit Scheme

The intermediate increments of ¢ is defined as k;, k;, ks, and k4, and the inter-
mediate increments of 7 is as lj, I3, I3, and l;. As shown in the equation below, k;
and l; are calculated using the information at the (n) time step, k; and [; using the
information at k; and l; intermediate step, k3 and I3 using the information at k; and
I, intermediate step, and k4 and I using at k3 and /5 step. Applying the Explicit

fourth-order Runge-Kutta scheme to the linear free surface boundary conditions are;

%% =g %!gl = ¢;
k, = —gAtg™ X h= At¢:

ntl
ky = —gAt(n™ + ¢r AL X =4t )

ks = —gAt{n™ + (62718} X Iy = (g,
ke = —gAt{n™ + (¢771),A1} Iy = At(47)s

g"tt = ¢"+-1-(k1+2kz+2k3+k4) (C.8)
= - "’A‘{sn nt A+ @+ ()
= ¢"- gAt{sn b+ by + 1) (C.9)
o= n"+§(11+212+213+14) (C.10)

2 (¢:+%)l, and (¢:+%)2 is calculated from the boundary value problem (BVP)
and substituted into Equations (C.8) and (C.10).

Ftt=¢7 - ’Q(At)2 2{3‘0:5 - -.q(/-\t)2 23 CCi; )47

j=1 k=1

— gAt[q} —-y(At)’Z( 1)

=1
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- -—g(At) [FPP + 2FPI% = —g(At)2 Z CiFPF]  (C11)

i=1

where

FPr= 3 C- ((g%),- or ¢,~))

j=nonf.s.

as shown in Equation 3.10,

N
w=n 4 a3 o - L8 (3" C3CE,)67)

j=1 i=1 k=1

- Loanpy gy + WS GAPY S5~ a0

j=1 1=1 k=1

g(At . opn
ZC'J'FPJ'

1=1

At) S cr Pt (C.12)

j=1

+ —{ FP" 4+ 4FPME 4+ FPrvt -

Figure C.1: Fourth-order Runge-Kutta method on the free surface

Previous calculations are used for the time step procedure. It is explained below

step by step.

09 on
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Step1;
dd = ky = —gAtqg" dyp =L =At4]
n, 41 . dm
" + 5 at 9" + =
Solve boundary value problem (BVP) to get new (¢,)'1'+%
Step 2 ;
n dnl ’H’%
dé; = k3 = —gAt(n" + —2—) dn, = I = At(¢,);
n d¢2 n d’h
<+ 5 at 9" + 5
Solve BVP to get new (¢,);+%
Step 3 ;
n s 472 ntd
d¢3=k3=—gAt(7] +—§'—) dﬂ3=l3=At( z2)2
¢" +dés at 9" +ds
Solve BVP to get new (¢,)3*!
Step 4 ;

doy = kg = —gAt (7" + dns) dny = la = At (¢, 3t
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¢n+l = ¢" + %(kl + 2k; + 2k3 + k4)

‘ gt =gt 4 %(l1 + 2l + 23+ L)

As a last step, solve BVP to get new ¢7*?

C.2 Method 2 : Implicit-like Scheme

In this Implicit-like scheme, one of the two intermediate increments are used for
the calculation of the other in the step. As shown below, [ is calculated using the
information of the (n) time step and I, is used for the calculation of k;, I3 used for

k,, and so does I3 and 4.

S =—gn w=¢
k, = —gAtqg® N\ h=Atd]

by = —gAt{nm + ()8 N b= At
ks = —gAt{n" + (¢z+2)2 At} N h=At (¢=+2)2
ky=—gAt{n" + (¢:+’ $sAt} o lg=At(41M)s

1
¢n+1 = ¢"+ ..(k1 + 2k; + 2k3 + k4)

= - "A‘ 9B o + At + (0 + (6 H)al)
= ¢- “’At 9AL tonm 4y + Iy + 1} (C.13)
™ o= gt + 6(’1 + 2+ 2+ 1) (C.14)

N N

¢l =7 — -g(At)’}: ¢"——(g(At RO SACHTA

Jj=1 Jj=1k=1
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N
- 48(g(At)’)"(222: & 2 Cir Cry)d5

Jj=1k=1 p=1

N N
- gAt{n} ——g(At)’Z_;( i)+ (y(At)’)’(X_;kZ_; aCiim}

(g(At)’)3 E(E chp 515 }

i=1 k=1 r=1

1 n+i n * ntl
- 39(A)'[FR; 2——.Q(At)zﬂ’ g (Q(At)z)ZZC'jFPj ’

j=1

- (g(At)’)“Z ZC FP (C.15)

=1 k=1
where
7]
FP= Y C§- ((a—z)j or ¢5))
j=nonf.s.

as shown in Equation 3.10,

w4 Ay 0 - LSS e

Jj=1 J—l k=1

(y(At)’)’(E Z ik Z CinCri)d3}

j=1k=1 p=1

- —g(At)’E tJ”J ( At)2)2 E(Z kaJ)nJ

Jj=1 =1 k=1

- (g(At)’)SZ(Z kECk, pi) 1

J=1 k=1 p=1

N
+ ——{FP" +4FPME 4 FPPY _ g(A? Y O PPN

j=1

NUCURS, U o (CopFt (cs)

=1 k=1
As an example, in the square panel case which has one panel on the free surface

(Section 3.5.1), ¢"t! and ™*! are obtained from Equations (C.15) and (C.16),

n+l n n

Dy D
¢ _ 1 D é + h (©.17)

1 D3y Dy U] fa
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where

1 1
Dy =1~ 59(At)'Cu — gg’(At)‘c’ - -—g"'(At)“Cu

1
Dy = —gAt{l - §g(At)2Cu + ng’(At)‘Cu - 'g‘éga(At)ecu}
At)?
Dn = At{Cu b gﬁﬁ_)_clzl + agg (At)‘}
1 1
Dyp=1- '2‘9(At)20u + -1--2-.<12(At)4 - —gs(At)GCu

C.3 Method 3 : Kang’s Method

Kang’s method is closely following the Explicit scheme. The difference is that, in

his method, k3, k3, and k4 are calculated with the accumulated wave height 1 which,

seemingly causes the numerical instability in the time simulation.

k = —gAtn"

ky = —gAt{n" + ¢“é€}

ks = —gAt{n" + 6120 + (65N lt}

ky = —gAt{n" + 4] ——+(¢1‘+=)1 +(¢2‘+’)z
I = Atg?

L= At(grt),

b= At(gr ),

Iy = At(¢7)s

where
N
@ = oy + )+ PR
J—l
@) = o6+ By By g e

j=1

=3
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n+d - X "y kl: k2.i ; n+l
(6:7%) = 2 Cij(47 + + ksj) + F P,

J=1

o7 2 5éi+ FPP

1=1
Using equations (C.8)—(C.10), we can have the form for ¢"*! and 5™*1.

H=¢r - 6.‘J(At)2 2{5 - ".‘I(At)2 Z wCri 147

j=1 k=1

- gAt[n? - ézy(At)’ Z(C.-‘,-n;‘)]

i=1

- —I%g(At)’[5FP,-"+5FP,-"+%— LA S CLEPr] (C.18)

J=1

where

rrr= 5 oy (Ghyes)

j=nonf.s.
as shown in Equation 3.10,

N
=g + AY 2 Ci; 95 — ".‘J(At)2 Z(E CxCi;)95}

j=1 k=1

= 35007 S Cynp + (oA (S CaCE)]

j=1 J=1 k=1

N
+ ——{ FP? + 4FPM5 4 Fprl - g(At)2 S C;FPp
i=1

(At)z 98Y)” S~ o pprt) (C.19)

j=1
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APPENDIX D

Calculation of the Stable Region by von
Neumann Method

In the numerical stability analysis for the Euler scheme, the equation of the
magnification factor is second order algebraic equation. This equation has two roots
and the magnitude of the roots determines the stability. The roots for the second
order algebraic equation can be calculated easily using the well-known formula for
the root. The stability region is defined as the area where the magnitude of the both
roots be less than or equal to 1. In this appendix, the ways for finding the stable
region are discussed. The first one is simple algebraic calculation, but can not be
used for the higher order algebraic equation. The second method is applicable to the

higher order.

D.1 Simple case

G*-(2+p)G+1=0

G=2+pd:\/p7+4p
2

1. p>0 :  No region for the two roots to have G < 1.
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2. p<0

o If p*+4p >0, then p should be less than —4.(p < —4)

2 +p*+4 VP +4

where @ means some positive value.

Therefore, one of them will be surely less than —1 which results in |G| > 1.

o If p?+4p <0 , then p should be less than 0 and greater than —4.

(-4<p<0)

G=14R4 Y B

2 2
So, the stability region for |G| <1 is

—-4<p<0

D.2 Miller’s Method

Follow the method of Miller for the stability region calculation ([60]).

G*-(2+pG+1=0
fO)y=X=(2+p)2+1
FA=A—(2+p)r+1

£ = 30 ) = 7O FO)

(D.1)
(D.2)
(D.3)

(D.4)
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f(G)

GZ- (2+p)G+1=0

Figure D.1: Algebraic equation of f(G) =0

where f()) is the equation with the complex conjugate coefficient of {(A) and
is the complex conjugate of p.
There are two possible ways for f(A) to have the stable criterion where the mod-

ulus of A is less than 1.

(1) |7(0)| > |£(0)| and zeros X of fi(}) are such that [A| <1

fol=1] s
FOl=1

No region for the stability

17(0)1 # 1£(0)]

(2) fi =0 and zeros of £ should satisfy |A| < 1.
¢ i=HN-2+pPA+1-N+(2+pA-1}=p-p=0

So, the imaginary part of p should be identically zero.
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af _
s>r=1+2

2

For the magnitude of A to be less than or equal to 1,
—-4<p<l

For example, if p = g(At)? /A1 which is from the Implicit-like Euler method for

one panel near-field open boundary problem, then

2 2
L oA mg(Atf

= An  2a(lnca-1) "

-4

Thus, the stability region should satisfy,
' )

ca<e and

rg(at) -
| T o < —4(lnca 1)‘
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