No. 316
February 1991

LARGE-AMPLITUDE
SHIP MOTIONS
IN THE TIME DOMAIN

Allan R. Magee




LARGE-AMPLITUDE SHIP MOTIONS
IN THE TIME DOMAIN

by
Allan R. Magee

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
(Naval Architecture and Marine Engineering)
in The University of Michigan
1991

Doctoral Committee:

Professor Robert F. Beck, Chairperson
Associate Professor Klaus-Peter Beier
Assistant Professor William W. Schultz
Associate Professor Armin Troesch



ABSTRACT
LARGE-AMPLITUDE SHIP MOTIONS IN THE TIME DOMAIN

by
Allan R. Magee

Chair: Robert F. Beck

The use of time-domain analysis for predicting ship motions is investigated. In the
method, the hydrodynamic problem is solved directly in the time domain as an initjal
value problem starting from rest rather than usingithe more conventional frequency-
domain formulation.

Both linear and large-amplitude motions are considered. The large-amplitude
problem requires the body boundary condition to be satisfied on the instantaneous
position of the body while maintaining the linearized free surface boundary condition.
In the linear problem, the body boundary condition is also linearized about the
mean position of the body. Because the free surface condition remains linear, a
time-domain Green function approach can be used to solve both problems.

Results of linear time-domain calculations are presented and compared with ex-
periments. Large-amplitude computations are also performed for submerged bodies.
In both cases, the influence on the time-domain results of the singularity in the

frequency domain at 7 = 1/4 is discussed.
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CHAPTER 1

INTRODUCTION

The development of three-dimensional solutions to the ship motion problem has
evolved on two fronts: the time-domain, or transient method, and the frequency-
domain method. For strictly linear problems, that is, when both the free surface
boundary condition and the body boundary condition are linearized, the time and
frequency-domain solutions are related by a Fourier transform, and are comple-
mentary. For time-dependent geometries executing large-amplitude motions, or for
fully nonlinear problems, the time-domain approach is the most useful— frequency-
domain solutions being limited to a few special cases.

The Neumann-Kelvin approximations, in which the free surface boundary condi-
tion is linearized about the free stream by assuming a small disturbance potential,
but the body boundary condition is applied on the three-dimensional body éurface,
are considered by some to be mathematically inconsistent for surface-piercing bodies.
Such an inconsistency is not present for a submerged body which will always produce
small waves, if submerged deeply enough. The so-called Dawson techniques which
linearize the free surface about the double body flow are an alternative. (See Scragg
(1990).) Various formulations are possible, depending on the order of magnitude
assumptions about the various terms in the free surface condition.

Despite the apparent inconsistency, the Neumann-Kelvin approximations have
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2
often been successfully applied to floating bodies, in both steady and unsteady lin-
ear problems in the time and frequency domains. The results have geﬁera.lly been
encouraging for bodies which are vertical, or nearly so at the waterline. However,
less convincing evidence exists that solutions for bodies which have a large flare at
the waterline are so easily attainable. ’

Although the idea of time-domain analysis is not particularly new, it is certainly
the most logical and straightforward way to pursue solutions of increasingly more
accurate models. The fundamental solution for the time-domain Green function,
a source moving arbitrarily beneath a linearized free surface, has generally been
attributed to Finkelstein (1957), but must now also be credited to Brard (1948).
(See Ferrant (1990).) Discussions of direct time-domain solutions were presented
by Stoker (1957), Cummins (1962), Ogilvie (1964), and Wehausen (1967). Actual
solutions of the time-domain problem were performed by Adachi and Omatsu (1979)
and by Yeung (1982) for two-dimensional bodies, by Jami and Pot (1985), for the
transient motion of a sphere, and by Newman (1985), for the axisymmetric vertical
cylinder, but it was not until Liapis and Beck (1985), and Liapis (1986) that the
method was applied to ships. Subsequently, King (1987) and King et al. (1988)
developed a method of solving for both radiation and exciting forces using a non-
impulsive method, at both zero and steady forward speed and Korsmeyer (1988)
examined the transient solution up to second order at zero forward speed.

Closer to the point of this work, however, is the formulation of Ferrant (1989). A
solution was presented for submerged bodies in large-amplitude forced heave motion
in the time domain. A linearized free surface was used while the body boundary con-
dition was applied on the time-dependent three-dimensional body surface. A large-
amplitude formulation in the frequency domain for a heaving body was also given.
Beck and Magee (1990) presented a large-amplitude formulation which included the

line integral terms for surface-piercing bodies and numerical results for submerged



3
bodies. This work included unsteady forward speed as one case of the forced large-
amplitude motion problem. Lin and Yue (1990) used a similar formulation and solved
the equations of motion in the time domain to produce large-amplitude motion simu-
lations for surface-piercing bodies. The line integrals and forward speed calculations
for submerged bodies were also included in Ferrant (1990).

This so-called body-exact or exact Neumann-Kelvin formulation, which is the fo-
cus of this work, can be viewed as an extension of the strictly linear time-dependent
solutions mentioned above, or as the time-dependent equivalent of the classic Neumann-
Kelvin solution for steady forward speed. Both these solutions are contained as
special cases of the body-exact problem as limits of the amplitude of the unsteady
motions, and frequency of the surge motion, respectively, go to zero.

The analogous frequency-domain approach was begun much earlier with the two-
dimensional strip theories, (cf. Salvesen, et al. , (1970)) the rational formulation of
which was given by Ogilvie and Tuck (1969). The unified theory, was developed by
Newman (1978) and calculations were carried through by Sclavounos (1985). Yeung
and Kim (1985) also presented a more consistent slender ship formulation. Recently,
Faltinsen and Zhao (1990) and Ohkusu and Faltinsen (1990) presented a new strip
theory using different slenderness assumptions for bodies with high forward speed.
The success of these methods lies in the low computational requirements (no super-
computer is necessary) and, considering their approximate nature, the remarkable
accuracy of the results obtainable, especially at high frequencies. However, deficien-
cies are apparent in the strip theory results, and some of these will be discussed.

Korsmeyer et al. (1988) have demonstrated the convergence of zero speed frequency-
domain methods using up to 12,600 panels on a TLP. Despite the difficulties of com-
puting the required Green function, Chang (1977), Inglis and Price (1981b), Guevel
and Bougis (1982) and several others have obtained three-dimensional frequency-

domain solutions for ships with forward speed. Recent efforts in the frequency-
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domain include Nakos (1990), and Sclavounos and Nakos (1990) who used bi-quadratic
splines and Rankine sources (obviating the need for the complicated Green function)
to solve the linearized problem with forward speed. Ohkusu and Iwashita (1989) have
found an analytic form for the integral of the frequency-domain Green function over
lines and panels. This could prove promising for studies of surface-piercing bodies
with forward speed. Hoff (1990) brings to light the difficulties associated with calcu-
lations using the forward speed three-dimensional frequency-domain Green function.

Fully nonlinear three-dimensional solutions, which account for both the nonlin-
earities in the free surface boundary condition and also solve the true body boundary
condition are being pursued. They have met with some success (cf. Jensen, Mi and
Séding (1988), Cao, Schultz and Beck (1990), and Bertram (1990)). One of the
shortcomings shared by the time-dependent nonlinear solutions is the computational
power required to discretize a large portion of the free surface with a grid fine enough
to resolve all frequencies of interest. This in fact leads to another possible applica-
tion of the time-domain method— that of providing far field conditions with which
to match a fully nonlinear inner-domain solution. A combined method may be de-
veloped in order to reduce the extent of the free surface that must be paneled, and to
minimize reflections at the computational boundaries. Such a method was employed
by Dommermuth and Yue (1988) who used a linear time-domain solution in the far
field to match a fully nonlinear inner-domain solution for axisymmetric flows.

In general, complicated body shapes are more difficult to treat than smooth,
analytically defined bodies. Some of the difficulty is related to the approximation
of arbitrary shpaes with a relatively small number of flat panels. Recently, sev-
eral methods have become available to panelize arbitrary geometries. The program
PANNURBS, Harries, (1990) allows the user interactive control over the distribution
of panels which are formed as the intersection of parameter lines on a normalized

rational B-spline surface. Individual panels can be deformed and modified by drag-
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ging parameter lines around the u-v space. The program includes an algorithm for
intersecting the body surface with an arbitrary plane, such as the linearized free
surface.

Another solution is the Air Force public domain program I3G, Burtness and
Steele, 1989, which employs splines to develop a grid, and automatic smoothing
techniques to refine and modify this grid. Arbitrary geometries are easily handled.
This program has extensive capabilities, but it still requires input from the user.

The black art of paneling is still subjective, and involves choices based on the
user’s experience. Liapis (1988) has given a method for determining optimal panel-
ing, and perhaps this can guide us in determining good overall discretization param-
eters. Of course, the method of choice must be efficient enough to provide adequate

solutions without unreasonably increasing the cost of the computations.

11 Overview

The present method is an extension of Beck, Liapis and King’s work on the linear
problems. The extension allows large-amplitude motions of a body of arbitrary
geometry to be studied using a panel method. The body boundary condition is
applied on the three-dimensional, time-dependent body surface, as opposed to the
usual (linear) methods which have traditionally assumed small motions, allowing
the mean, steady three-dimensional body position to be used. As usual, the fluid
is assumed ideal and incompressible. The linearized free surface is retained, and
hence the time-domain Green function can be used. The Green function satisfies the
free surface and radiation conditions, so that unknowns need only be distributed on
the body surface. The resulting system for the large-amplitude problem is not in
fact nonlinear. Rather, it is a time-dependent linear system which at times exhibits

behavior that appears to be nonlinear. As the amplitude of motion goes to zero, the
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linear solutions for unsteady motions about a fixed or steadily moving mean position
can be recovered.

However, many of the advantages of a linear system are lost in the body-exact
formulation. For instance, the impulse-response function which can be derived as-
suming small-amplitude motions is no longer valid. The superposition theorem is
not valid for large-amplitude motions— doubling the amplitude does not double the
force. The computational burden is greatly increased because the time-dependent
geometry requires that the Green function be recomputed at every time step for the
entire relevant past history of the motion. This changes the order of computations
from O(K7r) for the fully linear problem to O(K2) for the large-motion problem,
where K7 is the number of time steps. Despite the difficulties, much interesting in-
formation can be gained by the study of such a formulation. Many of the important
features of fully nonlinear solutions can be understood with its use.

The thesis is divided into six chapters. After this introduction, Chapter 2 gives
the formulation for the body-exact problem to be solved using potential and source
distributions in the time-domain. The linear problem using the mean body position
is also formulated for completeness, as it will be referred to later. Chapter 3 gives
a description of the numerical methods, and includes a discussion of the methods
used to vectorize the Green function calculations. Chapter 4 presents results for
the body-exact problem for submerged bodies. The problems progress from simpler
examples up to some cases of arbitrary specified motion. The results are compared
with existing analytical and numerical solutions.

Before attacking the body-exact problem for surface-piercing bodies, research
was again devoted to the linear problem. Some results of calculations for a modified
Wigley hull, and some of the difficulties (for bodies with large flare at the waterline)
are presented in Chapter 5. Comparisons are made with strip theory and experimen-

tal results. Chapter 6 gives conclusions and suggestions for further research.



CHAPTER 11

THEORETICAL FORMULATION

2.1 The Body-Exact Problem

As presented in figure 1, the origin of the axis system is fixed on the free surface of
an infinitely deep, incompressible, ideal fluid, initially at rest. The z-axis is positive
upwards and the z = 0 plane corresponds to the calm water level. The direction of
motion of the body is generally in the positive z-direction. The governing equation

in the fluid for the velocity potential is the Laplace equation:
V34 (z,y,2,t) =0 (2.1)
where the velocity of the fluid is given by
U=V¢ (2.2)

The boundary condition on the free surface is linearized to yield:

8¢ o4
W—ga;—o onz=0 (2.3)

For the so-called body-exact problem, the body boundary condition is satisfied
on the instantaneous position of the body surface: .

9¢

a_n =V-.n on SB (t) (24)



8 z

(9/36)* +23/22]p=0 on z=01 y
- X
( V¢ 01
R— o
V2¢(x, ¥:2,t)=0
d
<9 =V-n-n-Véy on Sy(t)
on
Vo0
[
.
Figure 2.1: Coordinate system definition
where,
n = inward unit normal to the body surface, out of the fluid.
V = instantaneous velocity of a point on the body surface

including angular velocity effects.
At infinity, the fluid velocities must all go to zero such that:
V¢ —0 as z — —o0

Vé — 0 as R — o0

(2.5)

(2.6)

where R is the horizontal distance from the body. The motion starts from rest so

that the initial conditions are:

9¢

¢,——>0 ast — —oo

2.7)

In the usual manner, an integral equation that must be solved to determine ¢ is

found by applying Green’s theorem to the fluid domain yielding:

///dv VG~ G V) = //dS(¢——GZ¢)

(2.8)
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with the volume V bounded by S, where § = Sg U S U Sw, and Sp is the body
surface, S is the free surface, and S, is the bounding surface at infinity.

The Green function for the time dependent problem is given by

G(PQtT) = (3-2)6(t-1)+E(P.Q LT H(E-7) (2.9)

r r

where,

&(P,Q,t,7) = /:odk kgsin(\/k_g(t-T))ek@ﬁuo(kﬁ)
P = (z(t),y(t),2(1))
Q@ = ((),n(r),{(r))
r= (=0 + -0+ (-0}
ro= ((z—£)2+(y—n)2+(z+4)2)%
R = (z-&+@—n)}
§(t) = delta function

[ swrwa=r1)

H (t) = unit step function

0 ift<O
1 ift>0

It can be shown that the Green function has the following properties:

Vi@ = —4m6 (P - Q)é(t—1)
3G  8G
EZRAr

oG

G,E
VG = 0 as r — 0o

= 0 onz=_

= 0 i—1<0

Substituting the Green function into (2.8), integrating both sides with respect

to 7 and then reducing the integrals over the free surface using a two-dimensional
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transport theorem (See Appendix A for details.) results in the following integral
equation for ¢ (P,t):

bR +o [ [ 45a9@05= (F-7) =5 [, 85 (- 3) 5@

__W/_‘de//s dSQ{¢(Q,1') —G(P,Q,t,7) - G(PQ,tf) ¢(Q,f)}
(2.10)

~ g / }ﬁ(f;ﬂa {¢(Q,r) 5.G(P.Q)t,7) - G(P,Q,t,7) 5= ¢(Q,'r)} Vw (Q,7)

where I' (t) is the curve defined by the instantaneous intersection of the mean hull
position and the z = 0 plane and Vy is the two-dimensional normal velocity in the
z = 0 plane of a point on T..

It should be noted that in the linearized problem the line integrals are zero at
zero forward speed. However, for the body-exact problem the line integrals have
nonzero values even at zero forward speed unless the body is wall sided for all points
on I' for all time. If the shape or location of the waterplane changes, the line integral
terms must be included. These terms reduce to those given by King et al. (1988) for
constant forward speed. For a body which is executing an unsteady, large amplitude
maneuver in the horizontal plane, they reduce to the equation given by Liapis (1986)
in his Appendix A.

In many situations a source formulation is more convenient because it is easier to
compute the tangential velocities on the body surface. In the usual manner of poten-
tial theory (cf. Lamb (1929)), it is possible to derive the following integral equation
for the source strength on the body surface. The details are given in Appendix B.

U(P 2 //s Wl U(Q’t)a ( l) - o)

r! onp

+H /_ _dr / /S oS0 a(Q,T)E;@(P,Q,t,T) (2.11)

1 t 9 -
+m -oodT P(r)de -4 (Q’ T) Vn (Qa T) VN (Q, T) %G (P, Q’ t, T)
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Here, V, is the three-dimensional normal velocity of a point on I'(t) and o(P,t) is
the unknown source strength. The potential on the body surface is given by

(P, t)———/ 4509 (@) (—-—)-—/ dT/ 4507(Q,1)G(P.Q.t,7)

Sp(t) d
1 t -
* e /_ _dr }i 4l {¢(@7) G (Pt} Va(Q,7) Va (@,7) (2.12)

The velocity of the fluid is found by taking the gradient of (2.12) with respect to the
field point variable.

The hydrodynamic forces acting on the body due to a prescribed body motion
are found by integrating the pressure over the body surface. The unsteady pressure

is given by Bernoulli’s equation:
P - (‘” +V. v¢) ~ LIV +V Ve —gs (2.13)

The term V - V¢ has been added and subtracted. This form is more convenient
because the term in parenthesis represents the time derivative following a point on
the body. Other representations are possible, and may prove to be more useful for
the surface-piercing body. The generalized force on the body in the jth direction is

then given by:

Fi=[[ 45 p@1 @) i=12...,6  (214)

where 7n;, representing the generalized unit normal, is defined as

(nl,nz,ns) = n
(ng,ns,mg) = rxn
T = (7,7,2) (2.15)

where (Z,7,Z) are coordinates in the body axis system and j =1,2,3 correspond to

the directions of the (Z,7, Z,) axes, respectively.
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2.2 Simulations Using the Body-Exact Formulation

The body-exact formulation is primarily useful for simulations in which the equations
of motion are solved by direct integration. The input to the system would then be
the incident wave field. A suitable superposition of sine waves could be used for this
purpose. While such a simulation is not included in this thesis, it has been one of
the goals towards which this work is directed. The computer code has been written
with an eye toward this problem.

To include the incident wave field in the problem, the boundary condition (2.4)

is modified by the addition of an extra term. Thus,

8
%né =V.n— % on Sz (t) (2.16)

where, ¢o is the potential due to the incident wave field. King (1987) has shown
how to obtain the potential at any point in time and space from a time history of
the wave elevation at any point for long-crested linear waves. If the incident wave
elevation is given at the origin as (o (¢), then at any point in the fixed coordinate

system the incident wave velocity is given by:

Véo(P,t) = /_ :dr K(Pt—r) (o(r) (2.17)
where,
K = 1 {ficos(d), s0in(d), H7 [ dowettiorgin)
@ = zcosP+y sinf

B = direction of the incident waves relative to the X-axis

The latter integral can be evaluated in closed form as shown in Appendix B of King
(1987).
The solution of this boundary value problem would yield the pressure and the

total forces on the body. The equations of motion in the body-fixed system (cf.
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Falzarano (1990) or Guo (1981)) could then be integrated in time. A suitable dif-
ferential equation integrator, such as a fourth-order Runge-Kutta could be used to
time step the equations. The intermediate steps would require extra evaluations of
the Green function matrix at each time step. An alternative method for solving the
equations of motion is given by Kang (1990). Additional linear or nonlinear exterﬁal

forces such as a mooring line force or water-on-deck forces could be included.
2.3 The Linear Problem

The above body-exact formulation is for the problem in which the body boundary
condition is satisfied on the instantaneous position of the body surface. Because the
resulting system is nonstationary in time, much of the linear system theory normally
invoked in seakeeping analysis cannot be used. As stated, the body-exact approach
is most useful for large-amplitude simulations.

If in addition to the use of a linear free surface boundary condition, the as-
sumption is made that the amplitude of motion is small, a linearized time-domain
analysis may be developed for the constant or zero forward speed case. The linear
body boundary condition can be applied on the mean, three-dimensional body po-
sition. The correct body boundary condition was given by Timman and Newman
(1962), and discussed in detail in Newman (1978). The superposition theorem holds
for this system, since it holds for Laplace’s equation and all the boundary conditions.

The development which follows is given in more detail in King (1987), but is
repeated here for completeness. Either impulsive or nonimpulsive inputs can be
used. The resulting transient response can be Fourier transformed to compare with
frequency-domain representations. Liapis and Beck (1985) developed a theory for the
impulsive radiation problem. King et al. (1988) developed a nonimpulsive approach
to both the radiation and exciting-force problems. If impulsive methods are used,

certain variables may not decay quickly enough for Fourier transforms to be easily



14
taken. Limiting the frequency range by appropriate choice of the nonimpulsive input
can reduce numerical errors in the computations. See King’s discussion for the proper

choice of input.
In linear time-domain analysis it is more convenient to work in a coordinate

system fixed to the moving vessel. The total velocity potential is then defined as:
QT (.1,', Y, Z,t) = —on + Q0 (:L', Y, Z) + ¢0 ($1 Y, 2, t) + o (2?, Y, 2, t) (218)
where,

~Uoz + ® = the potential due to steady translation

. Us = the steady forward speed of the ship (2.19)
¢o = the incident wave potential
7
®(z,y,2,t) = > ¢(z,y,21)
k=1

¢7 = the diffracted wave
#1,...,6 = the potentials due to the body motions

surge, sway, heave, roll, pitch and yaw, respectively.

To meet the appropriate body boundary condition, 3®7/8n = 0 on the mean body

surface So, the following boundary conditions are specified for the various potentials:

‘Q& = Uon]_ on So

on

O¢: _  Odo

aan = ~%n on Sy (2.20)
% = e G+me G on Sg

where (i is the displacement in the kth mode of motion, and the overdot represents
the derivative with respect to time, n; is the generalized unit normal given in (2.15)

and my, resulting from the steady forward motion, is given by
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(my,mg,m3) = —(n-V)W
(mg,ms,me) = —(n-V)(rx W) (2.21)

W = V(—Uo$+q)o)

W is the fluid velocity due to the steady forward motion of the vessel in the ship fixed
coordinate frame. It represents the solution of the steady Neumann-Kelvin problem,
and the m-terms in the boundary condition (2.18) are the first order interaction
terms between the steady and unsteady components of the flow. In King (1987) this

term was approximated as
W = Ui (2.22)
In this case, the m-terms reduce to the simple form
(m1,m,,... mg) = (0,0,0,0, Uong, —Upns) (2.23)

The solution of the steady Neumann-Kelvin problem is included in the solution of
the body-exact problem by specifying a constant forward speed in the boundary
condition (2.4) and no unsteady motion.

The linearized free surface condition in the moving coordinate system is written

0 0 a
(5; - an) dr +gE¢k =0 onz=1{( (2.24)
The initial conditions for the unsteady potentials are:

Pk %’i—"—»o ast — —oo (2.25)

Because the potentials for both radiation and diffraction problems originate in the

neighborhood of the origin

Véi (z,y,2,t) = 0 on S, k=1,2,...,7 (2.26)
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It can be shown that the Green function given by (2.8) also satisfies these conditions
if the appropriate transformation is made to the moving coordinate system, King
(1987).

In developing the linear boundary value problem implied by (2.18)- (2.26), there
is an implicit assumption that the body geometry is such that the steady disturbance
potential ®¢ is small. This must be so in order to justify the linearization of the
free surface boundary condition about the free stream velocity Up. In addition, the
amplitude of motion must be small because the body boundary condition has been
expanded about the mean position of the body surface.

As with the body-exact problem, an integral equation to determine the unknown
linear potentials is found by applying Green’s theorem and using the Green function

(2.9). The final result may be found in King et al. (1988) and is

P+ [0 (2 2) = [ 5o (- 2) oot

1 rt 0 =~ ~ g
—7/_wdr//S°dSq{¢(Q,7)%G(P,Q,t-f)—G(P,Q,t—f)athﬁ(Q,T)}
(2.27)
1
“3g L fan{v3 (8@ g8 R0t -n - GRat-n 2o (a,n)
0 (@1 ZE (R0 =) -G (PRt~ Z4(@,7) |
where I'y is the curve defined by the intersection of the mean hull position and the
z = 0 plane. Details of the derivation can be found in Liapis (1986).

The linearized pressure is given by
0
§=_( % w. v¢) (2.28)
and the forces are found by integration over the body surface as:

7}
F}=—p/[g°dSQ (g-}-WVgﬁ) n; 17=1,2,...,6 (2.29)
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To avoid taking gradients along the body surface, the theorem developed by Tuck is
employed, Ogilvie (1977):

[ [ 4Sa {m; (@, 1) +n; (W - Vg)} = - # dlgn;(xn)- W (230)

where, 1 is the unit vector, tangent to the surface and lying in the z = 0 plane. This

yields
9¢ ) 74 . )
F; _-p//so dSq ; n,-+p//$o dSgém;+p 3 dig¢nj(lxn) - W (2.31)

The force in each mode j, due to motion in the mode k, can then be separated into

two components.

Fie (t) = —%gjk (t) — hji () (2.32)

where,

gir = P//S°d50¢knj i=12,...,6 (2.33)
hi = —p//sodSQ¢kmj—p£°dlq¢knj(lxn)-w k=1,2...,1

If the assumption is made that the flow is tangent to the hull at the waterline, i.e.,
W = [W]|l (2.34)
then,
(Ixn)-W=0 (2.35)

The last term in (2.33) is then zero. This holds true exactly if the double body
m-terms are used because the flow cannot penetrate the rigid free surface. If the

approximate m-terms are used, then the term reduces to
(1 X n) W= Uo Ig na (2.36)

If the body is wall-sided, then n3=0, and if it is slender, then /, is of higher order. In
any case, it seems reasonable to neglect the contribution of this term, as was done

in all the computations presented in Chapter 5.
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2.4 Equivalence of Time and Frequency Domain Coefficients

For the linear problem, the hydrodynamic forces acting on the vessel can be related
to the more traditional frequency-domain added mass and damping. The radiation
force in mode j due to an imposed motion in mode k may be written in general as

(cf. Cummins, 1962):
Fi(t) = - (ﬂjk(rk () + bieCi () + ciai (1) + /:_ t g"'K:‘k t-1)G (T)) (2.37)

where K;; represents the memory effect due to the free surface and the hydrostatic

restoring forces have been neglected.

It is shown in King (1987) that b;i is zero and c;; is a hydrodynamic force that

is proportional to the body displacement. It is given by

i = —p / /S 453 $iea m; = p }gdlo koo 3 (1 X 1) - W (2.38)

where ¢y represents the large-time limit of the potential ¢. @ has a non-zero

large-time limit because

lim ) 6¢k _
tooo On  * (2:39)

which is nonzero. The integral equation that must be solved to determine Proo 1S
given in King et al. (1988).

The factor uji represents the infinite frequency added mass and is given by
pix = p / /S dS . n; (2.40)
0
where, 1y is the solution to the integral equation

i ffssongls (-2 < [ fm (2-3) oo

For sinusoidal motions, the radiation forces are usually given in terms of the

added mass and damping coefficients. The equivalence between the time-domain
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force formulation and the frequency domain is found by substituting Ce(t) = et into

(2.37) and equating it with the frequency-domain representation:

o0 . .
[wzll-jk — Cjk — wWw /_ dr K (1) e-"‘"’] et

= [szjk (w) -_— injk (w)] ei”t (242)

Equating real and imaginary parts yields

1 foo _ ..
Ajp (W) = pjx— ;/0 dw Kji (t) sin (wt) — wL:
Bjk (w) = /0 “dw K ik () cos (wt) (2.43)

The term c;; is frequency independent. Since it multiplies the motion amplitude, it
can be added to the hydrostatic restoring force coefficients in the usual frequency-
domain equations of motion. In the typical strip theory, (Salvesen, Tuck, and Faltin-
sen, (1970)), this term does not appear. When comparing time-domain predictions
with strip theory it therefore appears reasonable to retain ¢k with the added mass.
In experiments, the hydrodynamic part of the spring constant term is sometimes
subtracted off and at other times it is not. Thus, when comparing predictions with
experiments one must take care to properly account for this term. One case of the

influence of this term on the added mass will be shown in chapter 5.
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CHAPTER III

NUMERICAL METHODS

3.1 Formulation of the Discrete Integral Equation

The principal numerical task in the time-domain method is the solution of the inte-
gral equation for either the unknown source strength (2.10) or the potential (2.11).
Because the time-domain Green function satisfies the free surface and far-field con-
ditions automatically, unknowns need only be distributed on the body surface. This
greatly reduces the difficulty of the computations, but restricts the validity of the
results to flows with small waves.

To solve the integral equations, a panel method is used in which the instantaneous
wetted surface of the body is divided into quadrilateral panels. On each panel the
unknown potential or source strength is assumed constant. A time marching scheme
is used to solve the governing integral equation in the time cioma.in. At each time step
a new value of the unknown is determined on each panel. As opposed to the linear
problem in which the components of the potential are separated into problems of
radiation and diffraction with various possible symmetry combinations, in the body-
exact problem we must deal with only one potential, whose symmetry is dictated by

the body geometry and the incident wave field. In arbitrary six degrees of freedom

20
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motion, there is no symmetry in the flow, so some computational advantages are
lost. However, the problem is thus somewhat simplified, with lower required storage.
The details of the numerical method for the linear problem may be found in King

(1987) with modifications given below.

3.2 The Potential Formulation

At each time step N, the discrete form of the integral equation for the potential

(2.10) due to large-amplitude motion can be written as

Sane = B+g) @
where,
’: = the left hand side matrix
¢f;’ = the unknown potential vector
B:,v = the right hand side vector due to the 1/r and 1/r terms
C’,],v = the right hand side vector due to the wave terms
p = the field point
g = the source point
N = the time step number
M = the number of panels

The left hand side terms involve integrals over panels of derivatives of 1/r and

1/r'. These are performed by the method of Hess and Smith (1964). The terms are:

1 7] 1 1

N

= 14+ = —_—— —_
4 * 2“/ sy dsanq (rpq r},)q) P=1

1 d (1 1
= 2—,,//54, R (— -;;;) P#4q (3:2)

Tpq
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The right hand side contains integrals of 1/r and 1/r"
q}_j; / / ds (r—m - —) ol (3.3)
For the floating body, both the 1/r and 1/r' terms must be recomputed at each
time step because of the changing body position. For the submerged body, only the
1/r' terms must be recomputed since the body moves with respect to its image. For
rotational body motions, the velocities induced by the 1/r terms must be rotated in
the earth-fixed frame.

The additional terms are in the form of convolutions.

oM = tN-l > 5 /L. dS{GN‘ o6k~ 8t GN‘} (3.4)

T k=2 ¢=1
At = Av-k 9 k| vk
i who{emor-ardal

where, Vy is the two-dlmensmna.l normal velocity in the z = 0 plane of a point on T,
and L is the number of line segments along the waterline. The temporal summation is
the trapezoidal rule with endpoints neglected. The contributions from the endpoints
are zero because G (0) = 0 and #(0)=0.

The integrals of wave terms over panels are performed by mapping the quadri-
laterals onto unit squares. Gauss quadrature is then used. For submerged bodies,
a single point integration rule usually is sufficient. By placing the collocation point
and the integration point at panel centroids, a monopole approximation can be used.
Since the wave term is symmetric with respect to integration and field points, the

number of Green function evaluations can thus be halved.
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The form of the integral equation for the source formulation in the body-exact prob-
lem is similar to the one for the potential. In its discrete form the integral equation

(2.11) is written as

M
Y DloY = ENY+FN (3.5)
q=1
where,

Dz = the left hand side matrix

a;v = the unknown source distribution

E',],V = the right hand side vector due to the 8¢/n term

F;V = the right hand side vector due to the wave terms

and the indices are the same as those given in (3.1). Thus, we have

R e

rq
= //s,,, (;; - E) P#q
EY = e 2 g (3.6)
N _ tN—l X2 SNk
e

8
_;;/dla', Vi Vit O }

The discrete form of the potential (2.12) in the source formulation is found to be

aN s (— - —)
QZ; /‘/ Tba
1 "'1 . 1 & ~
=>D (Z_;a i / ds G e i l G;:,’-*) (3.7)
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3.4 Calculations of the M-Terms in the Linear Boundary Condition

For the linear problem, the m-terms in (2.4) are calculated by two methods. The
first (and most common) is to use simplified m-terms which are computed assuming
W = —Ubi. In this case, the simplified m-terms are given by (2.22).

The second technique is to calculate the m-terms using a finite difference scheme.
The required terms, Newman (1978), are derived from the normal derivatives of the
fluid velocities due to the steady flow on the body surface. The value of the fluid
velocities on the body and in the fluid a small distance, An, away from the body
along the normal vector can easily be calculated from the known solution to the
steady Neumann-Kelvin problem, Doctors and Beck (1987). Once these velocities
are known, a simple finite difference can be used to determine the required normal
derivatives, and these can be extrapolated to take the limit as An — 0. The pro-
cedure works quite well for the semi-infinite fluid problem of the double-body flow.
However, when the wave terms are included in the computations for the gradients
of the velocities, the results are highly oscillatory, and do not converge for this finite
difference scheme. As expected, it is the panels near the free surface that cause the
difficulties. Therefore, in Chapter 5 results are presented only for simplified and

double body m-terms.

3.5 The Nondimensional Form of The Greeq Funeti

The time domain Green function given by (2.9) is written as
1 1 =
G(PQt) = (1-3)6(t—-7)+G(PQ ) H(t-1) (3.8)

By a suitable transformation, the oscillatory part, G, can be recast into a non-

dimensional form which depends on only two variables:
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é(P7 Q,t,‘l’) = %é(/" ﬂ) _ (39)
G’(p,ﬂ) = 2AwdA\/Xsin (ﬂ\/X) e Jy (/\ 1- p’)
A = kr
B = JS@-7)

b= - (2 = WirE G

ro= (@= &+ -0’ +(z+0?)*

R = (@-6'+@-n?)}
The parameter x relates the vertical to horizontal distance between source (@) and
field (P) points, and B is time like and relates to the phase of the generated waves.

The function is oscillatory for large 8 and is sharply peaked (though not singular)

for 4 near 0.

3.6 General Computational Considerations

In typical boundary integral techniques, the influence of each of the several hundred
panels on the body surface is required for each other panel. Thus, there are O(M?)
repetitive, independent calculations to form the influence matrix, where M is the
number of unknowns. The techniques used here to improve efficiency of the compu-
tations on a supercomputer are not limited to this particular problem, nor to one
class of machines, but are equally applicable to many boundary integral solutions,
(and indeed many other O (M?) methods), on a variety of vector/parallel machines.

The boundary integral formulation of equations (3.1) through (3.7) contain both
line and surface integrals, and include convolutions over the entire past history of

the motion. (Those familiar with supercomputer calculations immediately recognize
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these as long, potentially vectorizable nested DO loops.) Because of the history
dependence, over 80 percent of CPU time is spent evaluating these terms. In order to
proceed with realistic computations, fast techniques for evaluating the Green function
are imperative for adequate representation of complicated body geometries. Each
Green function evaluation is independent, and hence the calculations are subject to
vector and parallel processing.

Though many existing solutions have employed sophisticated computational meth-
ods, little has been done (until quite recently) within the field of Naval Architecture
to exploit the inherent parallelism of this class of problems. Many present-day codes
have been optimized for performance on scalar machines by minimizing memory
storage requirements and the number of operations per call. These are not the same
requirements to be met for efficient vector processing, Ginsberg (1985).

The requirements for efficient vector and parallel processing are quite similar. For
instance, there must be a large number of independent calculations to be performed,
and there should be a minimum of data movement between the procéssors and the
memory, as well as little contention for access to the data. So an algorithm which
vectorizes well may also map well onto parallel architectures.

Several impediments must be overcome in order to efficiently utilize the power
of vectorization. The first is the complicated form of the time-domain free surface
Green function which involves an infinite integral over wave number, and requires
several numerical schemes for efficient computation. Each scheme or algorithm is
in itself a sizable block of code, and choosing between these schemes requires IF
statements— an impediment to high performance on all current vector PTrocessors.

In addition, other routines which call the Green function subroutines, compute
geometric quantities, perform integrations and matrix operations must be structured
with the required sets of long inner DO loops. Hence, one is faced with writing or

rewriting large blocks of highly complex code. Fortunately, however, the 80-20 rule
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often applies, that is, an 80% improvement can be achieved by concentrating efforts
on roughly 20% of the code.

However, the curve of speed versus percent of vectorization is a steep one. In order
to reach high processing speeds, one needs to efficiently process the great majority
of operations. Optimizing just a few routines is not enough to insure good overall
performance for the entire program, as the remaining scalar code will dominate the
execution time. This is a qualitative statement of the principle of Ahmdahl’s Law,
Levesque and Williamson (1986).

The question arises as to the value of time spent optimizing in a research environ-
ment, where computer code is constantly changing. The answer depends primarily
on whether the code will be used many times or only rarely. It has been found
that once a code is vectorized, little extra work needs to be done when réwriting
to maintain the vector capability. A well-designed modular structure (with all the
implications) is the best practical solution, so that when developing new code, one
already has a good basis from which to work, and many subroutines can be utilized
without much modification.

As opposed to typical scalar machines on which optimization pays off in a few
percent speed increase, the potential gains on a vector processor, and the resulting
ability to solve problems involving large data sets and billions of operations war-
rant the extra time spent. For the time being, a clear picture of the behaviour of
many three-dimensional time-dependent problems can only be had with the better
resolution attainable with a supercomputer, and the more efficiently we use that

supercomputer, the clearer that picture will become.

3.7 Survey of Available Techniques

An example of typical scalar (or unvectorized) performance is exemplified by the code

developed by King (1987). This code was developed for use on an IBM 3090 without
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vector facility. In its original form, the algorithm for computing the time-domain
Green function contained four different expansions, with the choice of method based
on the values of the two nondimensional parameters described above. A recursive
series of Legendre polynomials which required as many as one hundred terms for
sufficient accuracy, a Filon quadrature (also recursive), a Bessel function expansion,
and a scalar asymptotic series were employed. About 75 microseconds were required
for each evaluation of the Green function and its spatial derivatives on a CRAY X-
MP. Approximately 80% of the CPU time was spent in these routines, so this was
the natural place to begin optimizing.

Several other researchers have worked on efficient time-domain Green function
calculations. Ferrant (1988) presented a method for interpolation of the Green
function. What was computationally most remarkable about this work was that
body-exact calculations for submerged bodies, and linear motion computations were
performed for a wall-sided body (a TLP) at zero forward speed on a VAX 8700—a
scalar machine.

Based on run-time statistics, Ferrant was able to assume that the value of the
parameter u was rarely near zero, where the Green function is most oscillatory.
This assumption allowed the use of a simple bi-quadratic interpolation scheme with
constant grid spacing which covered most of the ¢ range. The small x values were
handled by a method similar to King’s Legendre polynomial series, which although
costly, was rarely needed. While his assumption is generally true for the submerged
bodies which he considered, for surface-piercing bodies, in particular for long slender
ships which have forward speed, it is not the case.

In addition, for computations on a vector machine, the required IF statement to
deal with rare cases can degrade the performance of the entire computation, if not
handled properly. The rule of thumb on the CRAY is that a fully vectorized calcu-

lation runs about ten times faster than a scalar calculation with the same number
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of operations. Thus, if 10% of the operations fail to vectorize, the overall CPU time
will be 1.9 times larger than a fully vectorized version.

The present method was first described in Magee and Beck (1988b). The method
uses two regimes for the Green function calculation— an interpolation regime for
B < 10 and an asymptotic regime for # > 10. In order to reduce the data required
for the interpolation scheme, an approximation is first subtracted from the Green
function, and the remainder is interpolated over a grid using bi-cubic polynomials.

Somewhat later, Newman (1991) (actually presented in 1990) and Lin and Yue
(1990) also presented methods for vectorized time-domain Green function calcula-
tions on a supercomputer. In the interpolation regime both used a two-part calcu-
lation scheme which employed a two-term stationary phase approximation as a sub-
traction function, and a high-order Chebyshev polynomial for the remainder. Both
have proven quite sucessful and Newman has extended his method for the case of
finite depth. While these methods require little data, it is felt that the computational
burden of the two-term stationary phase approximation (which involves several calls
to the exponential function), and the fifth-order polynomials (which require more
operations than a low-order scheme) is not warranted, given the availability of vast

supercomputer memory. An asymptotic routine was used for large values of .

3.8 The Interpolation Regime

The vectorized Green function code was originally developed for the CRAY X-MP.
Because of the stringent 4 million word (MW) maximum program size on this ma-
chine (1 word is 64 bits, the default real number on the CRAY), it was necessary to
keep the interpolation data set relatively small. Similar to Newman, a first approxi-
mation is made, and this is subtracted to obtain a smoother function which can be

more easily calculated by the interpolation scheme.
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Wehausen and Laitone (1960) have shown that when both source and field points
lie on the free surface (that is, for 4 = 0), the Green function reduces to the following

form in terms of Bessel functions of the first kind:
G(0,8) =Go(B) = il {Js (@) * J_s (@) + I3 (@) J_; (@)} (3.10)
) 8\/5 4 4 4 4

where,

g
a = —

8

The form of the asymptotic expansion when p # 0 suggests a dependence on

exp(—B%u/4) so that the Green function can be calculated as
G B) = Go(B)*e /4 + G;(u,B) (3.11)

where G; (4, B) is the part which must be interpolated over the grid. The two func-
tions G (e, B) and G; (1, B) are shown in figure 3.1. As can be seen in the figure,
the simple function is a good approximation, especially near y = 0, where & (&, 8)
is most oscillatory. About 95% of the function is accounted for by the subtraction
function which is used for © <0.6.

Decomposing the function into these two parts allows a much larger grid spacing
to be used than would have been possible without the separation. However, except
for 4 = 0 (where G; = 0), the analytic approximation is not perfect, and G, is still
oscillatory. A nonuniform grid spacing with a simple dependence on p# and S was
needed to further reduce the data requirements.

The choice of this subtraction function js an important factor, and determines if
one is emphasizing an analytic or computational approach to the Green function cal-
culation. When developing the present approach, a single term asymptotic function
was tried as a subtraction function, but it was found to be a worse fit, and also to
cost more to compute than the function chosen here. The two term approximation

used by Newman would provide a better fit, but must be even more expensive.
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Figure 3.1: The time-domain green function G (u,B) and G; (#,B),
the portion which must be interpolated over the grid
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The interpolation scheme uses a bi-cubic polynomial. The interpolated part is
calculated as
- 4 4
Gi(1,8) = Y3 Cppum™ 1o (3.12)
m=]1 n=1
where (u,v) are the normalized coordinates over a grid cell.

The derivatives are calculated as

6@,- 6@, Bu
% A0 = o
8G; _ 8G; v
6,3 (”’:B) = v aﬂ (313)

The subtraction function Gy (B) and its derivatives are calculated using a similar
cubic scheme, and then multiplied by the exponential function, but the interpolation

is a function of only one variable.

3.9 Vectorization of the Calcula;

Vectorization has been achieved by moving the column loop of the influence ma-
trix calculations into the Green function subroutines. A routine which calculates a
pointer array decides which of the M Green function calls belong to which expan-
sion. Here, M is the number of unknowns. This separates the u and 8 vectors into
input subvectors for the asymptotic and interpolation subroutines. A CRAY routine
‘WHENFLT’ can be used for this purpose, but a Fortran IF-statement is nearly as
fast, is transportable, and vectorizes using the ¢ft77 compiler with the ‘—oaggress’
option.

Simple I F statements within a loop will vectorize on the CRAY. Experience has
shown that the maximum speed achievable with such a ‘conditionally vectorized’
loop is somewhat less than a fully vectorized loop. Actual performance varies with

the density of truths and with the required executable code for each branch. It is
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often better to execute a loop with all the IF’s separately so that the full speed may
be brought to bear on separate loops containing most of the computations.

The subvectors are then passed to the interpolation and asymptotic routines
which calculate the nondimensional Green function and its two derivatives in vector
mode. The results are scattered back to fill the appropriate elements of the influence
coefficient matrix. Although these subvectors will necessarily be less than M in
length, they tend to be long enough for efficient processing. In fact, the required
vector length for increased performance over unvectorized calculations is always less
than ten, and this is nearly always achieved for normal discretizations.

In general, random access to memory to fetch the polynomial coefficients has not
slowed calculations on the CRAY X-MP or the Y-MP significantly. These machines
have separate vector address registers which have their own pipelines. These proces-
sors operate independently from the floating point units, and hence do not interfere
with them. On machines without efficient indirect addressing, such as a CRAY-1,
the vector of interpolating polynomial coefficients can be compressed into contiguous
memory. This should speed the evaluation of the polynomials on such machines by
avoiding the need to access noncontiguous addresses in the loop which actually does
the calculations. However, on the Y-MP, with hardware GATHER-SCATTER the
extra overhead of doing the compression separately is usually greater than the sav-
ings obtained by having continuous addressing in the calculation loop. The preferred
method changes depending on the vector length and the density of the pointers in
each routine. Long vectors, and very skewed densities (more hits in the interpola-
tion routines) favor contiguous memory access, but only very slight differences are
detectable. Ideally, one could set up two routines to take advantage of the two cases,
but this has not been done because the potential gains do not warrant it.

A memory access bottleneck can occur when the same memory bank is addressed

twice before a suitable time has elapsed for it to be ready. The probability of two
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hits in the same bank depends mainly on the number of banks and on their speed.
On the CRAY Y-MP, with 128 memory banks, with a bank cycle time of about four
clock cycles, it is nearly impossible to have memory conflicts, unless one is accessing
memory with a stride of 128 or a multiple of that number.

The number of floating point operations per memory reference is also a crucial
factor in determining the speed at which a loop will run. One reason is that with a
larger number of operations per memory reference and such fast memory, the bank
cycle time often may elapse while processing the arrays already in the vector registers.
Nevertheless, a conflict can occur when one needs two sets of polynomial coefficients
with at least some elements contained in the same bank. For a smaller number of
subregions, there is a larger probability of having to re-access the coefficients from
the same subregion consecutively within the vector loop.

For # > 10 the asymptotic expansion of the Green function, King, 1987, was re-
tained, and the special expansion was used for # near 1.0, where the usual asymptotic
expansion becomes singular. This routine is fully vectorized.

The calculation of the infinite fluid terms is performed using the method of Hess
and Smith (1964). These routines have also been vectorized with a resulting speed
up of eight to twelve times. Restructuring was required since these algorithms con-
tain many branches. The actual speed depends on the distribution of points in the
monopole, dipole, and exact regimes for the integrals. The convolutions are also
fully vectorized, and automatic loop unrolling can be performed on these loops by

the compiler.

3.10 Evaluation of the Method

The interpolation routines are fast and accurate. They run at about 140 million
floating point operations per second (MFLOPS). The Y-MP has a maximum possi-
ble speed of 333 MFLOPS on one CPU. Between 2.6 x 10~% and 3.5 x 10~¢ CPU
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seconds are required for one evaluation of the Green function and its three spatial
derivatives— a factor of twenty to thirty less than those used by King on the X-
MP. Ferrant (1988) gives CPU times only for his entire computation, which include
large amounts of unvectorized convolutions, since these were performed on a VAX
8700. Overall, the CPU times for similar calculations are 80 to 100 times less on
the CRAY X-MP than the VAX, which seems reasonable when one compares the
potential speeds of the two machines.

The CPU times for the various Green function routines, as they were employed
in the linear time-domain program, are given in figure 3.2. The calculations are
for a modified Wigley seakeeping hull at Fn=0.0 using 240 panels on the half-body
and 256 time steps, and for the SL-7 containership at Fn=0.2, using 212 panels on
the half-body and 127 time steps. A 2 by 2 Gauss quadrature rule was used for
integration of the wave terms over panels. The Wigley hull results are presented in
Chapter 5 and those for the SL-7 are included in Magee and Beck (1988a).

The percentages of overall CPU time for the various routines are given in figure
3.3, and the MFLOP rating, as determined by the performance monitoring software
on the CRAY Y-MP, is shown in figure 3.4. The vector length has an effect on
the CPU time per evaluation, but a study of speed versus vector length will not
be included here for brevity. The optimal vector length on the CRAY Y-MP and
X-MP is not, as is sometimes stated, sixty-four (the length of the vector registers),
but rather, a larger multiple of sixty-four. Thus, 256 panels would probably produce
slightly faster times per Green function evaluation than those presented here.

The subroutine VGREEN performs the transformation between dimensional

3G 86

(z,y, 2, 1) variables and the (i, 8) space, and also the transformation from (G, e o5

to (G, ‘Z—f, -‘Z—f, %). It is to be noted that a large number of operations are required
for these calculations, but when processed in a vector loop, they are quite fast. The

routine also calls other routines which determine to which expansion each Green func-
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Figure 3.2: Average CPU time for various Green function routines

tion call belongs, and hence those routines’ CPU time is accounted for in the time
for VGREEN. Finally, the calculations of the normalized coordinates on the grid
cells for the interpolating polynomial is also included here. The routine BCUINT
performs the bi-cubic interpolation calculations of (3.13). About 100 floating point
add and multiply operations are required for each evaluation of the nondimensional
Green function and its two derivatives. The routine SUBTR calculates the nondi-
mensional subtraction function and its derivatives. The routine VGASSY calculates
the asymptotic expansion used for large 8 values.

The CPU time per Green function varies depending on the relative number of
calculations in each regime. The asymptotic form is more expensive to compute,
although it runs at higher MFLOPS. Thus, for the longer time record used for the
Wigley hull, which involves more calls to the asymptotic routine, a larger CPU time
per call is required, and a higher MFLOP rating is obtained.

Newman quotes a CPU time for his interpolation regime of one microsecond.

This includes the two-term stationary phase approximation. While this appears to
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be very fast, it does not include several other important parts of the calculations.
For instance, the CPU time for the large-3 stationary phase routines was not given.
The time to perform the transformations to and from nondimensional space was also
not included in this number. The length of the vectors was not given, nor was the
type of calculation on which the routines were timed. Furthermore, it was not even
specified on which CRAY the calculations were performed— a CRAY-2 or a Y-MP.
However, space limitations and the varying interests of the audience for which the
paper was written probably justify the omission of these important details. Lin and
Yue (1990) gave an estimate of one to three microseconds per evaluation of the Green
function and its derivatives for body-exact calculations, but it is not clear how much
overhead is included elsewhere. However, these numbers seem fairly reasonable.

The bi-cubic approximation gives a function which has a maximum €rror near
the one-quarter points of a grid cell. The error in the derivatives is a maximum near
the center. The values of the Green function and its derivatives were checked in
each grid cell at these points, along the edges of each cell, and at smaller intervals
within the cell, against the output King’s algorithms which were used to derive the
coefficients. The maximum absolute errors were found to be less than 1 x 102 for
the Green function and 1 x 10~ for the derivatives.

The accuracy of Ferrant’s interpolation scheme was not given, except that the
final results showed no significant difference when compared to results obtained us-
ing semi-analytic methods for the Green function evaluation. Since only a limited
number of Green functions can be calculated in a given amount of CPU time, there
is a tradeoff between the numerical error made in calculating the Green function
and the discretization error made in using a finite number of panels and a given
time step size. The question of global versus local accuracy has not been thoroughly

investigated.

Newman has argued that if the validation of the overall numerical method de-
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pends on convergence studies, then high accuracy is necessary. Certainly, the method
he has developed has excellent accuracy. Ideally, one would like a method that was
adaptive to the computer environment available. Greater accuracy could be obtained
by say, decreasing grid size, if memory was available. On a slower machine, some
accuracy could be sacrificed in favor of a larger number of Green function calls—
each less accurate but with a lower CPU requirement. The Chebyshev polynomials
appear to be the best choice for such an adaptive method.

The subtraction function used here requires only one call to the exponential func-
tion instead of the several required by the two-term stationary phase approximation.
A savings in the number of operations is also realized by using cubic instead of a
fifth-order polynomials. However, a small extra cost is incurred in calculating the
grid cells due do the nonuniform spacing.

The final data requirement is about 2 MW. While this may seem to be a large
number, it is well within the available memory of most present generation vector
processing machines. The coefficients are stored in a file which is read in at the

beginning of the time-domain computation. The initial set up requires less than 0.1

CPU second using BUFFER I/O on the Y-MP.

3.11 Application of Vectorized Calculations to the Linear Code

A speed increase of 32 times for the entire linear program over the unvectorized
version has been achieved for a typical calculation on the CRAY Y-MP. The case of
an SL-7 containership at Fn = 0.2 was used for a 7 degree of freedom calculation
using M = 212 panels (on one half of the body), 127 time steps and a 2 by 2
Gauss quadrature rule for each panel. Including line integral terms, this calculation
required a total of 145 x 10° Green function evaluations. The total CPU time was
3.1 x 1078 x N seconds, where N7 is the total number of Green functions required.

This number includes all the calculations from start to finish for the entire program.
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A CPU time of 14,000 seconds for the unvectorized code has thus been reduced to
450 seconds for the vectorized version, and what was once an upper limit on temporal
and spacial discretization now has rather moderate computational requirements.

The restructuring of the linear program was quite interesting. In the original
scalar code, the required CPU time was split approximately 85%/5%,/10% respec-
tively between Green function evaluations, left hand side manipulations (setting up
and solving the system of equations), and other calculations such as geometry, I/0
and convolutions. After implementing the fast Green function routines, this ratio
changed to about 10/40/50, but the whole code was nearly five times faster.

A lot of loop switching and the use of buffered I/0 then virtually eliminated the
CPU time in the general category, and the majority of the CPU was required by the
only remaining scalar code, that is, the calculation of the 1 /r terms. With about a
week’s work and some trial and error, these routines were vectorized, and the whole
code regained an almost identical distribution of relative CPU requirements, but at
a greatly reduced overall requirement.

A very fast LUD solver, LUSP, is available on the CRAY, and with the small
number of unknowns used in the present calculations (typically a few hundred), an
iterative solver was not used. The time required to calculate the infinite fluid terms—
the integrals of 1/r and 1/r' and their normal derivatives for both combinations of
symmetry was 0.72 CPU seconds for the Wigley hull. Decomposing the two matrices
required 0.14 CPU seconds. The 256 back substitutions (one for each time step)
required a total of 0.2 CPU seconds for each degree of freedom. In all, a total of 2.5
CPU seconds was spent in these parts of the calculation.

Also interesting is that the relative portions spent in each category for the body-
exact code remains more or less the same as for the linear solution. In the linear
problem the body geometry is stationary in the steadily moving coordinate system, so

the left hand side need be computed only once, with only back substitution required
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at each time step. In the body-exact code for submerged bodies, the 1/r term need
only be calculated once, but the 1/r’ term has to be recalculated once at each time
step. Since the wave term is evaluated over the past history (averaging half of the
entire linear calculation at each time step) the overall effect is to keep the same
proportions in calculations. CPU time for g;ometry calculations and convolutions
also remain approximately proportional. Decomposing the matrix is required every

time step, so this portion is increased.

3.12 Possibilities for Parallel Processing

Multitasking can be achieved by using multiple copies of the subroutines or by moving
the row loop inside the Green function routines as well. This has not been accom-
plished as of this date, and it is felt that present efforts need to be devoted elsewhere.
The autotasking compiler on the CRAY Y-MP fails to recognize nesting which occurs
across subroutine boundaries. Thus, more restructuring of the linear code would be
needed to efficiently parallel process on the CRAY. Parallelization of the Green func-
tion calculations may prove worthwhile for the nonlinear calculations. The Stellar
GS-2000 computer uses multithreading (a form of parallel processing) which allows
several tasks to execute simultaneously using some hardware separately, while shar-
ing other parts. The machine has only one vector processor, but several sets of
registers which can operate independently to overlap some operations. A speed in-
crease of about 1.5 times for 4 threads (over the single thread speed) indicates a
good potential for speed increase using true parallelism. With multithreading, the
CPU time for a typical calculation is about 10 times more on the Stellar than on the
CRAY Y-MP.

It is believed that the present method will perform well on another important
class of machines, namely, vector parallel processors such as the Alliant. The Alliant

has up to 28 moderately fast parallel CPUs and a large fast cache of high speed shared
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memory, as well as a huge, although somewhat slower RAM. By assuring that the
polynomial coefficient data base is small enough to remain within the cache, where
it is quickly accessible to all the processors, calculation speed can be improved.
The row of influence matrix calculations can be processed in parallel, with each
Processor operating on a vector or column of Green functions. All the Green functions
are independent, and we would expect very good speed from a large number of
processors. Of course, it is not reasonable to expect a linear speed increase, i.e., that
two processors will run twice as fast as one, because interprocessor communication
is necessary, and contention for some of the same data is inevitable, but speeds

approaching this ratio are obtainable with a well-designed code.

3.13 Comparison to Frequency-Domain Green Function

It is instructive to examine the form of the potential due to an isolated time-domain
source traveling below the free surface. The top part of figure 3.5 shows the time
history of the potential for a unit step function source which is created at ¢ = 0;
thereafter, its strength remains constant. The source is traveling at a depth of
z = —2 below the free surface with a Froude number, Fn = Uy/gR = 0.4, where
Uo is the steady horizontal speed, R is horizontal distance between source and field
points, and g is gravity. The field point is traveling on the free surface at the same
speed, and is located a distance R = 1 behind the source.

The potential due to an impulsive source at the same initial source point is shown
in the bottom figure. The field point is moving as in the upper figure. The top figure
corresponds to the Green function used by Korsmeyer (1988). The bottom figure is
the time-domain Green function used in this work, and is the time derivative of the
function used by Korsmeyer. Both Green functions are described in Wehausen and

Laitone (1960). The potentials have the form of typical impulse response functions:
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there is an initial large response followed a decaying oscillation about the large-time
limit.

The frequency-domain singularity at 7 = Upw,/g = 1/4, where w, is the pulsation
frequency, is also described in Wehausen and Laitone. The singularity occurs at
this frequency because the group velocity of some of the waves produced by the
translating, pulsating source matches the speed of the source. In the steady-state
limit of sinusoidal oscillations, which are assumed to have persisted for all time, these
waves do not radiate and hence a singularity occurs. In this case, the critical wave
number where 7 = 1/4 is kR = 0.3906.

The solid lines in figure 3.6 are expanded views of the oscillatory tail of the
Potentials at large time. The oscillations are at a frequency equivalent to r = 1 /4
and lead to the singular behavior in the frequency domain. Recall that the Fourier
transform of a sine wave of frequency wj in the time domain is a delta function at wo
in the frequency domain. Thus, the 7 = 1 /4 singularity appears as a decaying sine
wave at the appropriate frequency in the large-time tail of the time-domain results.

Figure 3.7 shows the real and imaginary parts of the Fourier transform of the
potential for the impulsive source, which is the frequency-domain Green function used
by some authors. This suggests that the time domain Green function could be used
for frequency domain calculations, which could be especially useful for forward speed .
problems where the frequency domain Green function is very expensive to compute,
Hoff (1990). One could calculate the Green function and its normal derivative in the
time domain, and then Fourier transform the result to be used in solving the integral
equation in the frequency domain. The procedure might not be particularly effective
because the number of Green function evaluations required to resolve the oscillations
caused by the 7 = 1/4 singularity is very large. However, the asymptotic form of the
Green function, King (1987), or Newman (1991), might be integrable analytically

for steady forward speed. In this case, the nondimensional parameters i and B are
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known functions of time. The practicality of such a method needs to be investigated
further.

The small squares in figure 3.7 are the values of the frequency-domain Green
function taken from Wu and Eatock Taylor (1987). The singular behavior of the
frequéncy~domain Green function at 7 = 1/4 is clearly visible. As can be seen, the
agreement between the frequency-domain computations and the Fourier transform
of the time-domain response is excellent except very near the singularity.

To eliminate the anomalous behavior in time-domain simulations due to the 7 =
1/4 singularity, artificial damping can be introduced into the large-time tail of the
time-domain Green function. In particular, the large time asymptotic expansion that
is used in the Green function subroutines is multiplied by e‘a(ﬁ"ﬁ“z, where « is an
arbitrary constant which determines the strength of the damping. Typical values of
a are in the range of 0.0 to 0.1. The artificial damping has the effect of forcing the
large-time tail of the time-domain Green function to decay more quickly to zero. The
dashed curves in figures 3.5 through 3.7 are the results computed using the damping.
In figure 3.5, the dashed curve cannot be seen because on the scale of the figure
the damped and undamped curves are identical. The effects of damping are clearly
seen, however, in the expanded scale of figure 3.6. In this figure, the oscillations are
substantially lower, and decay much faster.

The effects of the damping in the frequency domain can be seen in figure 3.7.
The damped and undamped curves are effectively identical except around 7 = 1/4.
In this region, the damping smoothes out the singularity. As the damping coefficient
a is reduced, the results become more and more singular. In Chapter 4, the effects

of the damping on motion simulations will be shown.
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CHAPTER IV

NUMERICAL RESULTS FOR THE BODY-EXACT
PROBLEM

4.1 Calculations for a Submerged Sphere

In order to verify the method and to determine its accuracy and convergence prop-
erties, initial calculations were performed for a submerged sphere. Analytical and
other numerical results were read‘ily available for comparison for certain specified
motions.

In order to explore the effects of large-amplitude motions, and because an analytic
solution was available, the first comparisons were for the zero frequency (9¢/0n = 0)
and infinite frequency (¢ = 0) limits of the free surface boundary condition (2.3). In
these cases the Green function given by (2.9) reduces to G = 1/r+1/r', respectively.
Since no memory effects are present, the force depends on the instantaneous dis-
placement, velocity and acceleration only, and not on the past history of the motion.
Figure 4.1 shows the nondimensional vertical and horizontal forces versus nondimen-
sional time on a sphere which is heaving sinusoidally and also has a steady horizontal
speed. The forces at the zero frequency limit is labeled ‘R.W.’ for rigid wall. The
reduced frequency of the oscillations (See Ashley and Landahl (1965) p. 247.) is

48
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Figure 4.1: Forces on a heaving sphere beneath a ¢ = 0 and 0¢/0n =
0 free surface

wR/U = 1.0. The center of the sphere is initially submerged a depth H, = 2R,
where R is the radius, and the amplitude of motion is A/R = 0.99, so that the top of
the body nearly touches the free surface at the end of the upstroke. The forces exhibit
rather interesting trends as the body approaches the rigid wall or the pressure release
surface, and tend toward sinusoidal behavior on the deeper half of the cycle. The
analytic solution, by Miloh (1977) (not shown in the figure) was obtained by solving
an infinite set of simultaneous equations for the coefficients of a series expansion in
spheroidal coordinates. In practice, the infinite equation set is truncated at a rather
small finite number, depending on the desired accuracy of the result. The numerical
results were found by solving for the force using three sets of paneling, (400, 784,
and 1296 panels on the half body). Richardson extrapolation was used to find the
limit for an infinite number of panels. The potential formulation of (2.10) was used,
and the tangential derivatives necessary to calculate velocities and hence pressure in

(2.13) were obtained by second-order finite differences in the 6 and « directions.
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The extrapolated numerical and analytic forces agree to better than three signif-
icant figures, even when the sphere is nearly touching the surface. The convergence
rate with number of panels is roughly linear for this smooth body. The convergence
rate is studied further in Section 4.2.

This study verified the geometric portion of the large-amplitude program. The
next step was to add the wave term of the Green function in (2.9), thus implementing
the finite frequency free surface condition. Both the potential and source formulation
were used to compute the vertical force on a heaving sphere using the free surface
condition (2.3). The results are shown in figure 4.2. Also shown are the results
by Ferrant (1989) who used a body-exact formulation similar to the present source
method. Ferrant’s result was taken from a table of coefficients which gave the limits
of the in-phase and out of phase components for each harmonic of the fundamental.
The time-history was reconstructed by multiplying the appropriate coefficients by
their respective sinusoidal variations. Thus, the time-domain solutions are expected
to approach this steady limit cycle after some time has passed.

The number of panels on the half body was 100, and the number of time steps per
period of the oscillation was 24. The sphere is heaving at an amplitude A/R = 0.5
from the same initial depth as the above case, the forward speed is zero, and the
non-dimensional frequency is w\/IT/; = 1. The solution obtained with the linearized
body boundary condition is also included for comparison. The body-exact solution
differs from the linear one mainly in the peaks. Its phase is slightly ahead with
respect to the linear solution when the body is near the free surface, and the reverse
is true on the deeper portion of the cycle. This is a result of the second and higher
order harmonics of the force time history which are introduced by the changing body
position. While not strictly a nonlinear phenomenon, in this case, the nonstationary
geometry captures some very important features which would be present in a fully

nonlinear solution.



51

0.300™ m———4
----- FERRANT
—— e L INEAR

A

D / ‘\ ,l \‘

% J \ '\

&) \

%

Q.

-’

~

o

= -

-0.200 T T T 4ﬁ°

T * V(G /L)

Figure 4.2: Vertical force on a heaving sphere, A/R = 0.7, K;R =
0.5,Zo/R =20

This case verified that both source and potential formulations were working prop-
erly and giving similar answers. The numerical differentiation of the potential to
obtain surface velocities works quite well for this smooth geometric body shape, es-
pecially since the required transformations between tangential and global coordinates
are known analytically. Similar calculations for an ellipsoid provided slightly worse
answers, especially near the ends of the body where geometric and flow quantities
vary rapidly— this despite the existence of a locally orthogonal surface coordinate
system for the ellipsoid given by Miloh and Patel (1973). For arbitrary geometries,
it was felt that this method was not very promising, and given the ease with which
the velocities could be obtained from a source distribution method, the potential
method for body-exact calculations was at least temporarily dropped.

Nevertheless, the superior Properties of the direct application of Green’s theo-
rem, most notably reduced effects in the vicinity of irregular frequencies for surface-

piercing bodies, are well known, Adachi and Omatsu (1979). It would be desirable
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to keep this quality of the solution method, while at the same time developing a
robust method for computing tangential surface velocities. One alternative is to dif-
ferentiate the Green function. However, the derivatives may be highly oscillatory,
compounding the already difficult problem of panel and line integrations. A linear
or quadratic variation of the potential over a panel or between node points might
allow a better approximation to be made for velocities, while still maintaining the
superior qualities of the direct method. A spline method similar to the one used by
Nakos (1990) and Sclavounos and Nakos (1990) which allows quantities of interest to
vary smoothly over the body surface could be implemented. In addition, the nature
of the time-domain problem allows one to think of time as the third variable, and
a three-dimensional spline surface (two dimensions over the body surface, and the
third in the time direction) might be useful for evaluating convolutions. While this
method has not been implemented it holds promise for future work.

Figure 4.3 shows the wave elevation versus nondimensional time predicted by
the source distribution method for a heaving sphere at zero forward speed. This
is a case that was studied by Ferrant (1989). The nondimensional wave number is
KiR = w?R/g = 0.279— a case for which the higher order harmonics produced by
the changing body position are important in determining the wave elevation. The
amplitude of motion was A/R = 0.5. The number of panels used in the c-a.lculation
was M = 100 on the half body, and 24 time steps per cycle were used. Both
linear and body-exact solutions are shown. The wave elevation versus time is shown
at a horizontal distance of D = 16.5 R. Experimental values were obtained by
Dassonville (1987). According to Ferrant, “A small difference in the starting transient
is observed, due to the smooth start of the experimental apparatus. ...At large
time, the comparison is not significant, the experiments being affected by tank wall

reflections.”

Near the middle of the time record, the agreement between body-exact calcu-
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Figure 4.3: Wave elevation versus nondimensional time for a heaving
sphere at a horizontal distance D=16.5 R

lations and the experimental values is good for the phasing, although the peak
values are over-predicted by the calculations. The linear solution misses the very
strong higher harmonics which are well captured by the body-exact solution. Fer-
rant pointed out that these harmonics in the radiated wave field are more important

at moderate frequencies than at very high or very low frequencies.

4.2 The Unsteady Forward Speed Problem

Having more or less mastered the solution for submerged bodies at zero forward
speed, the next step was to try to add forward speed. In direct contrast to the fre-
quency domain method, in which the required Green function is much more difficult
to compute, the time-domain method allows the same, relatively simple form of the
Green function to be retained for arbitrary motions, including (but not limited to)

steady forward speed. Thus, in principle, the only extra difficulty encountered with



54
forward speed is the addition of the line integral terms in (2.11). For the submerged
body, however, these are zero, and little else needs to be done than to ‘modify the
input for the specified motion.

Before combining the large-amplitude unsteady motions with steady forward
speed, a validation of the solution with only forward speed was made. The time-
domain Green function satisfies the linearized free surface boundary condition in
the moving coordinate system as does the steadily translating Havelock source. A
radiation condition which excludes upstream waves is usually invoked in the deriva-
tion of the translating source Green function by means of Rayleigh virtual viscosity
or arguments concerning integration contours in the complex plane (cf. Newman
(1977)). In the time-domain method, however, this is not necessary. If the body is
started from rest, its motion automatically causes the waves to move downstream.
Since the boundary-value problems are the same at large times, one would expect
to recover the steady state, or classic Neumann-Kelvin solution from the unsteady
time-dependent solution as time goes to infinity. However, it is difficult reach an
infinite time limit with a finite computer budget.

In practice one finds that the unsteady time-domain solution oscillates about the
steady-state limit at a particular frequency, which depends on the forward speed, and
that the oscillations decay slowly in time. For any finite time, some small oscillations
remain, although they may be made arbitrarily small by using a very smooth start.

Figures 4.4 and 4.5 show an example of calculations for a submerged ellipsoid.
The nondimensional drag, lift and moment are shown as functions of nondimensional
time. The ellipsoid has an aspect ratio of L/D = 5, and is submerged a depth
H = 0.16L at its center. The body is started from rest and reaches an ultimate

Froude number F, = Uy/+/gL = 0.35. A smooth start is used so that the velocity is
Ut) = Up(1-e") (4.1)

Note that this motion has zero initjal velocity and acceleration, but contains a jerk
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at t = 0. In this case the value of the constant ‘a’ was 0.02.

The unsteady time-domain results oscillate about a mean value, and the ampli-
tude of oscillations decay approximately as 1/¢, with a frequency such that the the
value of 7 = Upw,/g is 1/4. These results are in complete agreement with Wehausen
(1964) who investigated the effects of the starting transient on the wave resistance
of a thin ship started abruptly from rest. These figures show that even a smooth
starting transient leads to some oscillations. The more abrupt the start, the bigger
the oscillations. Such effects are often seen in towing tanks, although the oscillations
appear to die out after some time.

The results shown are extrapolated from four values of the nondimensional time
step: At = Aty/g/L = 0.25,0.2,0.125, and 0.0625. The results are shown for
three discretizations: 36 panels (12 lengthwise by 3 girthwise), 64 panels (16 by
4) and 100 panels (20 by 5) on half of the body. These are the same geometric
discretizations used by Doctors and Beck (1987). For each paneling, Richardson
extrapolation, Doctors and Beck (1987), is used to obtain a limit for zero time step
size. Extrapolation is then further employed to estimate the limit as the number of
panels goes to infinity. This method of extrapolation ignores any interaction between
the effects of time step and panel size.

Figure 4.6 is a plot of the error in the steady-state surge force (wave resistance) on
the same body with the same submergence depth versus time step size for each of the
discretizations, and figure 4.7 shows the error versus the number of panels. The errors
in figure 4.6 are taken relative to the extrapolated values in time step, and those in
figure 4.7 are relative to the extrapolated values in panel number. A log-log scale
is used in the figures. The steady-state values were obtained by averaging the last
part of the record. The convergence rate with time step is seen to be approximately
O(At?). The slope of the lines is 2.0 for the extrapolated values, and slightly higher

for the 36, 64 and 100 panel discretizations. Figure 4.7 indicates that the convergence
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rate with panel number is approximately linear for this smooth, submerged body.
The slopes of the lines are approximately 0.99 for all the time step sizes. This study
would need to be extended to other Froude numbers and to surface-piercing bodies
before complete convergence information was available.

The final extrapolated value of the nondimensional wave resistance, defined as
Cw = R/[(pgV), (where R is the resistance, p is the fluid density, g is the gravitational
acceleration, and V is the volume of the body) is Cw = 0.49 for Froude number
F,, = 0.35. Farell (1973) performed wave resistance calculations for this body, and
obtained a value of Cy = 0.52— about 6% higher. Since finer discretizations lead to
higher values of the wave resistance in this case, one would expect the time-domain
results to improve slightly with respect to Farell’s if smaller panels and time steps
were used.

The results presented in Doctors and Beck (1987) for this Froude number show
much better agreement with Farell’s results. This is because the comparisons were
made for the calculations using analytic integration of the Green function over panels,
(what Doctors called the ‘wave panel’). Since the body is at a relatively shallow
depth of submergence, the panel integrations are important for this case. Use of a
larger number of quadrature points per panel in the time-domain calculations would
probably improve the agreement.

Figure 4.8 shows a similar result. In order to save computer time, the coarse
discretization of 36 panels is used. As the above figures show, using more panels
will alter the absolute value of the forces, but the character of the curves remains
the same. For numerical investigations of a submerged body, the 36 panel ellipsoid
seems sufficient. As in figure 4.4, several values of time step are used, and the limit
is taken for a zero time step using Richardson extrapolation. The ultimate Froude
number is 0.35, and the two depth to length ratios are H/L=0.16 (the same as in
figures 4.4- 4.7) and 0.245.
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Figure 4.4: Surge force on a submerged ellipsoid started from rest
using three discretizations, ultimate Froude number

Fn=0.35, depth Ho/L = 0.16

As can be seen, the time-domain results quickly approach the steady-state values.
The large-time values for both heave and surge agree with the steady Neumann-
Kelvin results to within 0.5% even for the smaller depth of submergence. This is
a good verification for two entirely different computer codes. Both the Neumann-
Kelvin and time-domain results were obtained using the monopole approximation as
described in Doctors and Beck (1987). Hence, the agreement is quite good.

Figure 4.9 shows a greatly enlarged view of the approach to steady state for
the surge and heave forces at the deeper depth of submergence. The surge force is
expanded 125 times and the heave force 400 times. On this scale, the decaying os-

cillations are clearly visible. The steady-state results are also shown for comparison.
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Figure 4.9: Greatly expanded view of the approach to steady state
for H/L=0.245 (36 panels)
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4.3 A Heaving Ellipsoid with Forward Speed

Examples of body-exact calculations are shown in figures 4.10- 4.15. The results
are all for a submerged ellipsoid of length-to-diameter ratio of 5. The body has a
forward speed as in the calculations above, and in addition has a sinusoidal heave
motion imposed. The time history of the forced heave motion is given by:

N
G = (1 - e""z) 3 Ajsin (wjt) (4.2)

i=1

To investigate the effects of 7 = 1/4 on simulations of sinusoidal motions, figure
4.10 shows the heave force on the ellipsoid as a function of time. The body has
forward speed (ultimate Fn=0.35) and is also heaving sinusoidally at a single fre-
quency corresponding to 7 = 1/4. The amplitude of motion is A/L = 0.085 and the
mean depth of submergence is Ho/L = 0.245. In figure 4.10, the total heave force
with and without artificial damping and the contribution to the force from just the
(1/r —1/r') terms is shown. The inclusion of artificial damping in the large-time
tail of the Green function for a simple source are discussed in Chapter 3. The curves
for the total force with and without artificial damping are almost coincident. The
(1/r —1/r') terms do not vary from cycle to cycle and are responsible for a large
part of the force, particularly on the bottom of the stroke. As expected, the wave
terms make the biggest contribution near the free surface.

The difference between the total force and the (1/r = 1/r') component: is shown
in figure 4.11. As can be seen, the peaks in the force curves are growing slowly for no
artificial damping and reach constant amplitude for the case with damping. A line
is drawn through the peaks of the curves to emphasize the growth without artificial
damping. Since there is a singularity in the frequency domain response at 7 = 1/4,
it is expected that the results without artificial damping will continue to grow and
there will be no steady state solution. The artificial damping apparently eliminates

this growth. The growth rate for the case without artificial damping is extremely
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slow. Dagan and Miloh (1980) show that in three-dimensions the singularity in the
frequency domain behaves in the vicinity of 7 = 1/4 as log |w ~ w,|, where w, is the
7 = 1/4 critical frequency. While the asymptotic form of the growth in the time-
domain is not yet known analytically, it is probably on the order of log () as t — co.

Figure 4.12 presents the surge force for the 7 = 0.20 case with the same param-
eters as used for figure 4.10, except that in one case (top figure) the frequency was
lowered, and in the other (bottom figure), the forward speed was increased such that
both solutions correspond to the same 7 value. No artificial damping was used in the
computation. Several interesting features of this figure should be noted. First, as
opposed to the 7 = 1/4 case, the peaks in the unsteady force do not grow. There is
an initial starting transient and then the peaks exhibit a small oscillatory behavior as
they approach steady state. For other combinations of frequency and forward speed
the oscillatory behavior can be much more pronounced. It is easily calculated that
this oscillation occurs at the beat frequency between 7 = 1 /4 and T = 0.20. The
starting transient must induce some 7 = 1/4 response and this forms a beat with
the 7 = 0.20 force. Also shown in the figure is the approach to steady forward speed
if there is no forced heave (a replot of the curve in figure 4.8 as long dashes at small
times) and the mean of the total surge force near the end of the record (small dashes
at large times). The vertical difference between these two lines is the mean added
drag due to heave. This demonstrates an advantage of the body-exact time-domain
method: the mean shift and slowly varying forces are automatically computed, no
special calculations are necessary.

The effects of 7 = 1/4 on more general simulations are shown in figures 4.13 and
4.14. The ‘random’ motions simulations were made using a sum of five sine waves
in heave as in (4.2) with forward speed. Figure 4.13 has one component placed at
7 = 1/4 and in 4.14 this component has been eliminated. Each of the simulations

were run with and without the artificial damping. The dashed line near the axis
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is the difference between the two runs. Without the » = 1 /4 component (figure
4.13) the difference is so small it cannot be seen in the figure. For the r = 1 /4
case, the difference continues to grow. Initially, the difference is exactly zero because
the artificial damping affects only the large time asymptotic form of the time-domain
Green function. A greatly expanded view of the differences is shown in figure 4.15. As
can be seen, there are some differences between the artificially damped and undamped
calculations even for the case without the 7 = 1/4 component; however, they remain _
very small. With the 7 = 1/4 component present, the differences are much larger and
more importantly, they continue to grow. It appears that any long-time simulation
which uses the linear free surface boundary condition and includes 7 = 1 /4 forcing
will fail because this component will eventually dominate the solution. The proposed
artificial damping fix-up is simple but effective. Undoubtedly, improved methods can
be developed.

However, the effects on a simulation created by solving the equations of motion
have not been investigated. If the input to the system were waves at the r =
1/4 frequency, and the ship were free to surge, one might not expect an increasing
response as time increases. More likely, the forward speed would change, altering
some of the parameters such as frequency and the  value and diminishing the effects

of the singularity.
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Vertical force on a heaving ellipsoid at F n=0.35,7 =1/4,
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Expanded view of the total force minus the ¢ = 0 force
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CHAPTER V

NUMERICAL RESULTS FOR THE LINEAR PROBLEM

-Si Bodie

Examples of computed results using linear time-domain analysis are shown in figures
5.1 through 5.6. These figures show the nondimensional heave and pitch added
mass and damping as a function of nondimensional frequency for a modified Wigley
mathematical hull form. The Wigley form has a length-to-beam ratio of 10 and a

beam-to-draft ratio 1.6. It is vertically tangent at the waterline. The half beam is

given by the equation:

- (- @)0-6)(ou@)  w

where,

b = the half beam
L = the length

T = the draft

For the calculations, 240 panels (30 lengthwise by 8 girthwise) were used on the
half-body. The non-dimensional time step, defined as At’' = Aty/g/L, was 0.088 and
69
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the total number of time steps was 256. Figure 5.1 and 5.2 present results for zero
forward speed and figure 5.3 through 5.6 are for a Froude number of 0.3. Also shown
in the figure are strip theory results computed using a Salvesen, Tuck, Faltinsen
(1970) based strip theory (cf. Beck (1989)). The experimental results are due to
Gerritsma (19.88). No experimental results are available for Fn = 0.

The Wigley hull is fore-and-aft symmetric. Consequently, for Fn = 0.0 the
cross coupling coefficients are zero. As can be seen in figures 5.1 and 5.2, the strip
theory and time-domain results agree very well for high frequencies. For low fre-
quencies, however, there are significant differences. This is presumably due to three-
dimensional effects that are neglected in strip theory. The oscillations in the damping
coefficients in the frequency range ' = 6. — 8. are a result of irregular frequencies.
Inglis and Price (1981a) used a box barge with the same dimensions as the ship
to estimate the irregular frequencies. By this method, the first irregular frequency
occurs at 5.7 and the second at 7.9. The singular nature of the coefficients around
the irregular frequencies is not properly captured because the record length and time
step size are insufficient to give adequate resolution to the Fourier transform. This
is both a weakness and strength of the time-domain method. As with the 7 = 1 /4
singularity, in the time domain the irregular frequencies appear as oscillations in the
large-time tail and do not cause any particular problems until the Fourier transform
is taken. Because of the finite record length and time-step size, the irregular fre-
quencies are effectively filtered out. On the other hand, in the frequency domain
the results are singular and calculations in the region of the irregular frequency are
meaningless.

Figures 5.3 through 5.6 present the heave and pitch radiation force coefficients
at forward speed. It should be noted that the added mass coefficients include the
cje/w? term as discussed in Section 2.4. This is consistent with strip theory (cf.

Beck (1989)) and Gerritsma’s (1988) experimental results since only the hydrostatic
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coefficients were used in reducing the measured data to obtain the added mass and
damping coefficients. In figure 5.6, the short-dashed curve shows the pitch added
mass neglecting the contribution of cs5. In this case, the added mass is actually
negative, indicating that the cs5 term’s contribution is quite important. The solid
line was computed using the double body m-terms and the long dash curve results
from using the simplified version of the m-terms (2.25). For this smooth slender
body the different m-terms do not change the results very much.

The most prominent feature of these figures is the singularity at r = 1 /4. The
strip theory results are not affected by * = 1/4 and the experiments were not con-
ducted at such low frequencies. As previously discussed, the r = 1 /4 singularity
will affect all linear three-dimensional theories. It has also been shown to affect the
body-exact problem in random forced-motion simulations.

For forward speed the agreement between theory and experiment is mixed. For
pure heave, the strip theory appears better while for the cross-couplings and for pure
pitch the three-dimensional time-domain predictions give better agreement. For this
ship, using the double body m-terms is probably not worth the extra effort. Perhaps
the complete m-terms might improve the agreement for all modes of motion. It should
be noted that in the body-exact computations the full m-terms are automatically
accounted for. The agreement between strip theory, linear time-domain analysis, and
experiments shown in these figures is typical of the results that have been calculated
for many different ship types, Magee and Beck (1988a).

As discussed previously, the character of the curves shown in the figures around
the irregular frequencies and at r = 1 /4 is the result of the large-time tail in the
time domain. This is demonstrated by figure 5.7 which shows an expanded view
of the large-time tail of the pitch moment time-domain record for the Wigley hull
calculations. At a Froude number of 0.3 the tail is dominated by the 7 = 1/4

frequency and at zero forward speed the irregular frequencies appear. Note that the



72
zero speed tail has been multiplied by 100 in order to plot it on the same curve as the
forward speed result. The apparent beat frequency in the zero speed tail is probably
the result of interference between the two lowest irregular frequencies. We have seen
no evidence of irregular frequencies in calculations at forward speed. This might be
numerical because of the dominance of the 7 = 1/4 frequency or it might be the
result of forward speed effects.

The nondimensional exciting force coefficients in head seas for the Wigley hull
at Fn=0.3 are plotted in figures 5.8 and 5.9 against nondimensional wave number.
As for the radiation forces, there is not a significant difference between the solutions
with the double-body and approximate m-terms. However, thes_,e curves indicate the
good resolution now attainable with the fast Green function calculations. The spike

at 7 = 1/4 is visible, although it is not very pronounced.
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Figure 5.4: Pitch added mass and damping for a Wigley hull, Fn=0.3
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Before proceeding with the solution of the large-amplitude motion of surface-piercing
bodies, the linear problem was investigated further. Some difficulties were encoun-
tered in the solution for shallow bodies at zero forward speed. In particular, an
instability appears in the time-domain solution for bodies with large flare at the
waterline. The instability takes the form of an oscillation growing without bound as
time increases.

The instability appears first on panels adjacent to the free surface, and because
the equation is elliptic, eventually spreads throughout the domain. It does not appear
for wall-sided or moderately flared bodies, but increases in severity the shallower and
more flared the body. The frequency of the oscillations in the solution appears to be
related to the horizontal extent of the panels near the free surface.

An example is shown in figure 5.10 which gives the time record of the function
9ss, the integral over the body of the pitch potential due to pitch motion (see (2.32))
for the SL-7 container ship at Fn=0. The force on the body at zero forward speed is
the time derivative of this function. The half body is discretized by 212 panels, and
the nondimensional time step size is At' = .04. A 2 by 2 Gauss quadrature rule was
used for integration of the wave terms over panels, and the line integrals are zero at
zero forward speed.

The solid line shows the solution obtained with this discretization. The instability
is clearly visible as a bell-shaped oscillatory growth at large time. Also shown by the
small squares is the solution using 208 panels obtained by removing the four panels
in the stern portion of the ship. These panels have a z-normal of nearly 0.9. No
instability is visible in the 208 panel solution, and the solution does not appear to
have been otherwise affected. Figure 5.11 shows the paneling for the SL-7 using 212

and 208 panels.



83

0.0307]

8ss =pffdsdyn;

-0.020
0.000

1 T .
T=tJ% 4.00

Figure 5.10: Time-domain record (gs5) for the SL-7 container ship us-
ing 212 and 208 panels

L]
a L"

ui
emitl

aamigl

fed
-
4

Figure 5.11: Paneling for the SL-7 containership: 212 and 208 panels
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In order to study the problem further, without undue complications, a simpler
model was proposed whose solution exhibited similar characteristics. A single hor-
izontal flat square panel was run at various depths of submergence to study the
parameters affecting the solution.

Figure 5.12 shows the time domain Green function, and figure 5.13 its normal
derivative, G /dn(= 8G/ 0z) integrated over the panel. The panel is square with
Az = Ay = 0.1, and is submerged at a depth z = —0.023 (slightly less than one
fourth the length of its sides). The field point is at the panel center, and the panel
has zero forward speed.

The Gauss quadrature rule for integration over the panel varies from 1 by 1 up
to 8 by 8 as denoted in the figure. The results were computed using up to a 12 by 12
integration rule, but these are not graphically different from the 8 by 8 rule shown.
For the highest order rule, the integration has converged to four significant figures.

The solution to (2.17) for the potential function (gss) due to nonimpulsive heave
motion using the converged Green function is shown in figure 5.14 for two depths of
submergence, z = —0.023 and z = —0.025. Little difference can be seen until one
looks closely at the tail of the response (figure 5.15). Here we see growing oscillations
for the smaller depth, but a smooth decay for the deeper depth. Shallower depths
of submergence are more unstable. In figure 5.15, three solutions are shown for
z = —0.023, and one for z = —0.025. Different time step sizes and Gauss integration
rules are shown for the shallower depth, but the results have all converged to graphical
accuracy, and hence appear as one line.

Some insight into the possible cause of the instability can be gained by looking
at the frequency-domain representation of the Green function. As shown in Chapter
3, the Fourier transform of the time-domain Green function is the frequency-domain

Green function used by, for example, Wu and Eatock-Taylor (1987).
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Figure 5.16 shows the Fourier transform of the normal derivative (8G/8z) shown
in figure 5.13 for various numbers of quadrature points on the single panel. Note that
the imaginary part crosses zero at a frequency of about 25. One can easily calculate
that this frequency corresponds very closely to a wave which is the length of the
panel. This ‘negative damping’ is nonphysical, and may indicate that the waves of
this frequency are not being properly resolved by the constant strength panel. Also
note that the monopole or 1 by 1 Gauss rule is a very poor approximation to the
converged solution, but does not have a negative damping in the frequency range
shown.

Figure 5.17 shows the frequency-domain Green function integrated over a smaller
panel (Ar = Ay = 0.033), one third the size of the previous panel. The integrated
Green function is shown for several Gauss integration rules. The function obtained
using the 2 by 2 and 4 by 4 rules are almost coincident. Also, as one might expect, the
monopole approximation is much better for this panel. The solution for the potential
on this panel does not show any sign of the instability for a very long simulation.

From this study we can draw two conclusions. First, the monopole approximation
is a poor one for panels with large horizontal extent very near the free surface. How-
ever, the solution obtained using monopoles does not exhibit the unstable character
that has been seen using several quadrature points per panel. Second, the solution
for panels which are deeper relative to their horizontal extent are more stable, for
any quadrature rule except the 1 by 1 or monopole.

In view of the added expense of using a large number of quadrature points per
panel, which requires more Green function calls, it appears that for surface-piercing
bodies with large flare at the waterline, the use of monopoles may be the only method
which produces stable results. However, in order to obtain accurate results, a very
large number of panels with small horizontal extent will be required to accurately

resolve the variation of the solution over the panels near the free surface.
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CHAPTER VI

CONCLUSIONS AND SUGGESTIONS FOR FURTHER
RESEARCH

The primary conclusion from the work to date on time-domain analysis is that it is a
viable alternative to the traditional frequency-domain analysis. For linearized prob-
lems with forward speed, computations in the time domain appear to be much easier
than the equivalent frequency-domain calculations. The Wigley model six degrees
of freedom calculations for linear radiation and exciting force coefficients using 240
panels on a half-body and 256 time steps required 25 CPU minutes for Frn = 0.3ona
CRAY Y-MP. For radiation forces only, at zero forward speed the required time was
9 CPU minutes. In comparison with experiments and strip theory, linearized time-
domain analysis gives mixed results. At times the time-domain calculations compare
better with experiments and at other times the predictions are worse. For the math-
ematical Wigley hull form, the use of double body or simplified m-terms does not
seem to make much of a difference in the added mass and damping predictions.
Difficulties have been encountered in the linearized solutions for nonwall-sided

bodies when using higher order Gauss integration for the wave terms over panels.
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An instability occurs at large times which appears to be the result of inadequate
resolution of high frequency waves. The instability is the most severe for very shallow
bodies with large flare, but does not appear to affect wall-sided, or moderately flared
bodies.

Time-domain analysis can be extended to the body-exact problem in which the
body boundary condition is always satisfied on the exact instantaneous wetted sur-
face of the body. Research into the body-exact problem is continuing. To date
computations have been performed only on submerged bodies.

Calculations on a submerged ellipsoid have shown excellent agreement with a
steady Neumann-Kelvin code. In addition, the calculations have indicated the im-
portance of the frequency domain singularity at 7 = 1/4. Because of the linear free
surface boundary condition, singularities appear in the frequency domain results at
7 = 1/4 and the results grow slowly without bound in time-domain simulations.
A simple fix-up using artificial damping on the large-time tail of the time-domain
Green function is proposed. In time-domain simulations, the fix-up prevented the
unbounded growth and otherwise did not alter the solution significantly. Much more
research needs to be done on the large-time asymptotics and rates of decay in order

to obtain the exact solutions in both the time and frequency domains.

6.2 Sug_g&stions for Further Work

The present method of the exact Neumann-Kelvin problem should be extended for
the case of floating bodies. The simulation approach in which the equations of mo-
tion are solved directly in the time domain appears promising, Lin and Yue (1990).
Motion predictions could be compared directly with experimental seakeeping results
without the restrictions of small-amplitude or sinusoidal motions. Local slamming
pressures and added resistance in waves are quantities which should be well pre-

dicted by the method. Extreme motions are often the most important in design, and
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the body-exact solutions may provide important insights without the difficulties of
paneling the free surface inherent in fully nonlinear solution techniques.

Before the large-amplitude simulation can be undertaken for real floating bodies,
the discretization of an arbitrary geometry must be automatic, and hence free from
user input. This is because the underwater portion of the geometry changes at each
time step. In order to avoid difficulties such as the instability described in Chapter 5,
and to maintain the accuracy of the solution with a reasonable number of unknowns,
this process must be automated. When a program is running, one cannot simply
stop, repanelize the body interactively and then continue. The same problems exist
in unsteady nonlinear free surface problems for surface-piercing bodsies.

The problems inherent in frequency-domain Neumann-Kelvin calculations are
also present in the time domain, although they often appear to be less extreme. The
singularity at * = 1/4 has been shown to affect time-domain solutions. The effects
of irregular frequencies are also present in the time-domain solution at zero forward
speed. Existing methods such as the one proposed by Lee and Sclavounos (1989) who
used a mixed source and dipole distribution to eliminate irregular frequency effects
could be employed in the time-domain as well, if zero speed results are desired.

Methods of dealing with solutions for highly non wall-sided bodies which are
both stable and accurate need to be pursued further. The assumption of constant
strength unknowns may be partly responsible since it is inadequate to resolve the
rapidly varying solution near the intersection of the body and free surface. Results
of the study of the instability must be applied to obtain more useful results for the
difficult case of nonwall-sided bodies. Perhaps a better technique would be the use
higher-order panels or a method similar to the desingularized technique of Cao, et
al. (1990) in which the potential is allowed to vary smoothly over the body. Such
a method allows the tangential surface velocities to be calculated while maintaining

the good mathematical foundation of a direct solution of Green’s Theorem without
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also provide the benefit of getting the most use out of each (still expensive) Green
function evaluation.

Finally the application of parallel processing to Green function calculations may
allow the body-exact solution to become a practical tool for predicting flow quan-
tities of interest. It is felt that the limit of speed of the vectorized calculations is
beingl approached. Further order of magnitude increases are not foreseeable with
this method. Parallel computations, however, show potential for the same order of

magnitude speed up as was obtained by vector processing over scalar calculations.
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APPENDIX A

DERIVATION OF THE INTEGRAL EQUATION FOR
THE POTENTIAL FORMULATION

Green’s theorem applied to the fluid domain yields

///V‘W (¢V20_Gv’¢)=//sds (¢——Gg¢) (A1)

with the volume V' bounded by S, where S = Sg U Sp U Seo, and Sp is the body
surface, Sr is the free surface, and S, is the bounding surface at infinity, and G is
the time-domain Green function given by (2.9).

For a point on Sp, the principal value of the surface integral is 2« for a flat panel.
Integrating both sides with respect to time and separating the instantaneous from

the memory parts of the Green function, one arrives at the following equation:

6= [ [ 450 (6@050 (3-1) - (- 3) 2e(@0)
“5 L [ [ 350 (¢@ 0358R - 6@ 2s(@.7)
(A.2)
Far from the body, the potential dies off in such a manner that the contribution from
the bounding surface is zero. The remaining surfaces are the body and free surface.
Thus,
S () = S5 (t) + 5¢ (1

The body contribution is:
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(P =—5 [ [ dso (¢(Q,t) = (2-3)- (2-1) 3=s@)

- -/ dT/ [ 95q (4 ( Q1) 53— G(P Q,t,7) — G(P,Q,t,r)%q&(Q,r))
(A.3)
The integrals over the free surface can be reduced to line integrals around the inter-
section line of the body surface and free surface by an application of the transport
theorem. This eliminates the need to distribute unknowns on the free surface, and
greatly eases the computational burden of the problem. To proceed, one first notes

that since the 1/r and 1/’ terms cancel on the free surface, the contribution of the

free surface can be written as

R0 =5 [dr [ [ 450 (6@ 17mG (RN -E(PQLI Zo(@)
(A4)

On the free surface, using the free surface boundary condition (2.3), we have

d 0 10

ol T = (A.5)

so that this can be written as

o (P =5 [ [, 450 (¢(0.7)356 (20,41 - 6(P.017) gm0(@)

= org f //SF(T) 5, ¢(Q,r)G (P,Q,t,7) = G(P,Q,t,7) ¢, (Q,r)) (A.6)

A two-dimensional form of the transport theorem can be applied in the form

d
=/ 5 f(@r) = // 45 Tf(Q,t) +4 LW @D (AT)
where, Vy is the two-dimensional normal velocity in the z = 0 plane of a point on T.

The direction of the line integral is counter-clockwise along the outer contour, and

hence clockwise around the intersection line, as shown in figure A.1. The result is

n
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(= >

Figure A.1: Line integral contours on the free surface

Ir(Pt) = m (arg [ 450 (6@ (P - 6. (@) G(P.Q17)

- i / g )dlq Vw ((@,7) G- (P,Q,t,7) - G(P,Q,1,7) 4, (@,7))

= 5 L0 (@8 (R0T) -0 (046 (R.a.3)

B 21rg /./s,.(r- Q’T—) G, (P’ Q’t+) = ¢ (Q’To-) G (P, Q,t"'))
B 27g -/To fi:( )dIQ VN ¢(Q,T) G (P Q’t T) G(P7 Qyt, T) é- (er))
(A.8)

The outer contour at infinity does not contribute, and the integrals along the two
sides of the cut are in opposite directions. Hence, they cancel. The limits of the
temporal integration extend from Tp — € to ¢ + €, as denoted in (A.8), where T,
represents the time at which the motion begins. Subsequently, the limit as Ty — —oco
can be taken in a proper manner. Using the initial conditions (2.7) and the Green

function properties (2.9), it can be shown that the first two terms in (A.8) are zero.
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The remaining term is the line integral contribution to the potential integral
equation:
In(Pt)= —s— [(dr § dla Vi (6(@.7) & (P,Q.1,7) — G(P,Q,1,7) 4. (@,7)
F’—27l'g—oo I_,("_)QN ) T\LHy Wyl s &y by T )
(A.9)

Combining (A.4) and (A.10) yields the desired form of equation (2.10):

6045 5°¢(Q”)%(:-7) //s,(,, (:")5,%4‘(@’0

Sp(t)
— o [ar [ d5e{6@n) 520 (P07 - E(PQ4) 5 2@
(A110)

%g dr}I{ dIQ{¢(Q,r) G(P,Q,t,7) -G (P,Q,t,7) ¢(Q,r)}Vn(Q,)

By using the mean body position and transferring to a steadily moving coordinate

system, the line integral terms given by King (1987) can be recovered.
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APPENDIX B

DERIVATION OF THE INTEGRAL EQUATION FOR
THE SOURCE FORMULATION

The derivation of the integral equation for the source formulation (2.11) follows
similar steps as the derivation of the integral equation for the potential in Appendix
A. A fictitious inner flow inside the body is used to specify that no jump in the
potential occurs across the boundary, and to define the source strength. Prime (’)
variables will be used to denote quantities associated with the inner flow. The normal

for the inner flow is in the opposite sense to that used for the outer flow, i.e.,
n = -n (B.1)

By applying the same steps as in Appendix A to the inner flow potential, ¢’ one
arrives at a similar formula to equation (2.10). Since the field point is outside the

domain of integration, the left hand side of Green’s identity is zero. Thus,

et Lo 0 E)- - e

1 ¢ 9 =~ ~
I /_ ar / /SB(;)iSQ {¢’ (@,7) 6—%-G(P, Q,t,7) - G (P,Q,t,7) %,ﬁ'(q,r)}
(B.2)

’ 0 ~ =~ !
—Fg d‘rﬁ de {¢ (Qa'r) -6—7'G (Ps Q)ts T) -G (P, Q’t’T) 6_31_45 (QaT)} VN (Q7T)

where the singular contribution has not yet been evaluated. The sense of the line in-

tegral for the inner flow is counter-clockwise around the intersection line. Combining
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(B.2) with a similar formula for the outer flow potential ¢, results in:

1 1

sRy=-E[[ aso{e@n-s@nz=(t-3)

(-5 2 ven- ¢'(Q,t))}

r r

"_/ d’/ s(dso{(ﬂQ,r) ¢ (@) 35— G(P Q,t,7) (B.3)
-G (P, 5o (4(Q)7) - ¢'(Q,T))}

’ 9
o [ die {(¢(Q,f)—¢ (@) 2 (P.Q,t7)

- G(P.Q4T) 2 (B(@7) - # (@) T (@:7)

For a distribution of sources, there is no jump in the potential across the surface:

¢(Q7 t) - ¢’(Q, t) =0

Thus, we obtain

6P =g [ [ 850 (3-3) 5= (3@~ #/(@,0)

r

/_ / /S dSqG (P,Q,t,7) 5~ a (4(@:7)-¢(Q,7))  (Ba)

tirg / j{h;ﬂob; (¢(Q,7) = ¢ (Q,7)G(P,Q,t,7) Vn (Q,7)

The contribution from the line integral is

(P =g [ drf dio 3 (6@~ 8 @G (BQ6T) Vw(@,r)
(B.5)
We note that this formulation has been carried out in the earth-fixed coordinate
system. In a system fixed to the body, the time derivative includes a convective

term, that is:

=~ = —_-V.V (B.6)
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where, M represents the derivative in the moving coordinate system. Thus, we have

Ir(Pt) = 4@/ fim (m“’ V)
($(Q,7) — ¢ (Q,7) G(P,Q,t,7) Vi (Q,7) (B.T)

In the moving system the time derivative of the potential jump is zero. The gradient
operator can be applied in a locally orthogonal n — 1 — s coordinate system, with n

representing the normal, that is,

0 0 0
V.V= Va +Vlal+v’.3—s

For sources there is no jump in tangential velocity, and the only nonzero component is
in the normal direction, representing the source strength. Setting the source strength

in the moving coordinate system to be
o = —i (¢ -4 (B.8)
on
results in,

Is(P,t) = ;lr; /_;dr dlg 0 (Q,7) G(P,Q,t,7) Va(Q,7) V(Q,7) (B.9)

r'(r)
where, V], is the local normal velocity of the body surface on the intersection line
in the earth-fixed frame. Adding the contributions from the body surface and line
integrals together gives the expression for the potential in the source formulation,

equation (2.12):
$(P,t) = ——// dSa(Q.) (— -—)-—/ ar [ 450 (@) G(P,Q,t,7)

+ ZE; /_ _dr }I{ o dla {¢(@nNEPQLI}IVM@Q W@  (B10)
Taking the gradient with respect to the field point variables of the above ex-
pression gives the fluid velocity. Dotting this with the normal gives the expressions
necessary for the source integral equation (2.11). For an unsteady maneuver in the
horizontal plane, the terms reduce to those give by Liapis (1985) in his Appendix A

for this case.
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