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ABSTRACT

The level crossing problem is treated and the first excursion probability is
presented for the case of a cyclostationary random process. A new method is
then introduced, where the cyclostationary process is replaced with an
equivalent stationary random process. The latter is defined to either (1) render
exactly the same upcrossing rate at a given threshold as the time averaged
upcrossing rate of the cyclostationary process, or (2) have an envelope process
with the same upcrossing rate as the envelope of the cyclostationary process.
Both these processes are assumed to have the same probability of upcrossing
a specific threshold. An analytical expression is derived for this upcrossing
probability for a certain form of a cyclostationary process and compared with
existing results. The agreement between this approach and the "exact" but
time-consuming "Markov approach" presented in earlier work of the authors is
found to be excellent.

1. INTRODUCTION AND BACKGROUND

In previous work [Nikolaidis, Perakis and Parsons,1985,1987], a
probabilistic torsional vibration analysis of a marine diesel shafting system has
been introduced. An important feature of that problem is that the excitation
statistics are varying with time. For example, when viewed on a time scale
shorter than the combustion cycle time, the mean and standard deviation of the
gas torque are higher at the time of combustion of the air-fuel mixture than at
any other time within the combustion cycle. Therefore, the excitation is a
cyclostationary ([Franks, 1969], [Ogura, 1971], [Gardner and Franks, 1975],
[Papoulis, 1983]) random process. A statistical model for the cylinder excitation
that takes into account the cylinder-to-cylinder and cycle-to-cycle variability has
been developed [Nikolaidis, Perakis, and Parsons, 1985]. The cylinder gas
torque is modeled as an amplitude modulated process with amplitudes which
are jointly Gaussian stationary processes [Nikolaidis, Perakis, and Parsons,
1989].

The vibratory shear stress at a resonance, R(t), has been modeled as a
Gaussian random process of the form [Nikolaidis, Perakis and Parsons, 1985,

1987]:

R(t)=X(t)coswt+Y(t)sinwt, (1)
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where X(t) and Y(t) are Gaussian stationary processes with known statistics and
w=pa, is the resonant natural frequency of the shafting system, where p is the
resonant order of the excitation Fourier representation and w, is the singular
frequency of rotation of the shaft. Finally, the frequency content of X(t) and Y(t)
is low compared to w. Process R(t) is stationary [Nikolaidis, Perakis and
Parsons, 1989]. We will also assume here that the means of processes X(t) and
Y(t) are zero. For nonzero mean processes the methods presented here can
easily be adjusted. We can, in addition, assume that random variables X(t) and
Y(t) are independent at time t. If they are not, we can easily transform them to
the principal axii, where they will be independent. If, in addition to the above
assumptions, it is also true that:

R, (=R, (0) and Ry (-=-Ryy (1),

then it can be shown that R(t) is also a stationary random process [Nikolaidis,
Perakis and Parsons, 1989).

The level crossing problem for a general random process remains
unsolved. Results for certain special cases of stationary processes have been
found ([Blake and Lindsey, 1973], [Nikolaidis, Perakis and Parsons, 1989)). In
some cases, independence of the local maxima of the random process is
assumed ([Rice, 1944, 1945], [Cramer and Leadbetter, 1967], [Ochi, 1973]). In
one other case, the mean frequency of upcrossings is calculated and, a
theorem by Cramer [Cramer and Leadbetter, 1967] which states that the
number of upcrossings of a random process is a random variable that is
asymptotically Poisson distributed as the threshold increases is used [Naess,
1982]. In some other cases, the local maxima of the process are assumed to
form a Markov Chain ([Epstein, 1949], [Robert, 1968], [Ochi, 1979], [Naess,
1983]). The nonstationary case has also been examined ([Lin, 1970],
[Vanmarche, 1969], [Yang, 1972], [Yang, 1973], [Krenk, 1979]).

The two approaches to the level crossing problem for a cyclostationary
process of the form of equation (1) have been developed and compared in
[Nikolaidis, Perakis and Parsons, 1989]. The first approach approximates the
maxima of the process with the values of its envelope process at the time these
maxima occur and assumes that these constitute a discrete-time Markov
process. The second approach, on the other hand, is based on the assumption
that the maxima of the process are approximately equal to the corresponding
maxima of the envelope process and that the envelope crossings form a
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Poisson process. By the latter, it is implied that the maxima of the envelope
process are statistically independent.

In this report the same level crossing problem, for a cyclostationary random
process of the form of (1), has been considered, but it is treated in an alternative
way. This is motivated by the computationally intensive nature of the earlier
cyclostationary process results. Since it is relatively easy to find the probability
that a stationary Gaussian random process crosses a specific level within a
prespecified time interval, we will define a stationary process as "equivalent" to
the original cyclostationary one using two different approaches.

In the first, hereafter called "direct approach”, the expected upcrossing rate
(for a specific threshold) of the original cyclostationary process is calculated and
then averaged over the specified time interval. The "equivalent” stationary
process is then defined as having an expected upcrossing rate equal to this
value. We finally assume that both the original and the "equivalent” processes
have the same upcrossing probability. In the second, hereafter called the
"envelope approach”, the "equivalent" stationary process is defined as having
an upcrossing rate (for a specific threshold) equal to the expected rate (for the
same threshold) of the envelope of the cyclostationary process. The upcrossing
probabilities of these two processes are, again, considered equal. In both
cases, this probability is estimated for a process of the form (1), that satisfies all
our assumptions (and is therefore stationary) using the Markov approach, as
developed in{Nikolaidis, Perakis and Parsons, 1989].

2. DIRECT APPROACH
2.1. Expected upcrossing rate for a given threshold

The expected upcrossing rate for a specified threshold p, is [Rice, 1944,
1945):

+
Vo =[° xfm(po,x)dx,
o (2)
where fgg{r,r) is the joint pdf of the process and its derivative.

To evaluate Vp,. We first derive an expression for frerr). {R(t),t=0} and

{R(t)t=0} are zero-mean, jointly Gaussian random processes, since:
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E[R(t)] = E[X(t)]cosawt + E[Y(t)]sinat,

HRw) = Xt cosat + EY(1)]sinat - oEX(t)] sinat + wE[Y(Hcosa,

and both {X(t),t=0} and {Y(t),t=0} have been assumed to be zero-mean,
stationary, Gaussian random processes.
The autocorrelation function of R(t) is:

R t,t,) = EIR()RE)]
= Ryx(t1 - tacosatcosat, + Ryx t1 - tasinat,cosaty + (3)

+ Ryylt; - ticosatsinat, + Ryy(ty - tisinatsinat,

By differentiating (3) with respect to t2, we get:
oRmg(tyt
—-F;—(lé = Rpalt1td = Rxx(ts - tacosatcosat, -
2
- @Ryt - ticosat sinwt, +
+ Ryx(t1 'tdSinOI1C°SO.t2‘ (Dnyx(t1 "tdSin(d15in0x2+ (4)
+ Ryyt1 - ticosat sinat, + @Ryt - thcosatcosat, +

+ Ryy(t; - tisinat sinat, + oRyyf(tq - tAsinatcosat,
By differentiating (4) with respect to t;, we get:

°R__(t..t)
ZRR12 R ott)=
8t18t2 RR' 12
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= Ryx(t - tjcosatcosat, - @Ryx(t - tAsinatcosat, -

- ®Rgx [ty - tjcosat,cosat, + 0)2Rxx(t1 - tJsinat,sinat, +

+ Ryx(t{ - t3sinat cosaty + wRyx(t - tdsinwt,sinat, -

- @Ry (t1 - tasinatssinat, - (OzRyx(t1 - tcosatsinaty +

+ Ryy(tq - ticosatsinat, - @Ryy (ty - tsinat sinat, + (5)
+ WRgy(t4 - tacosaticosat, - cozR)'(\‘({h - tasinatcosat, +

+ Ryylts - tasinatsinat, + @Ryy(ty - ticosamtsinat, +

2
+ 0Ryy(t; - tdsinatcosat, + @ Ryylts - ticosat,cosmt,
Hence:

2 2 , 2
or = E[R()R(1)] = Rer(t.t) = 0ycos wt + oysin o,
°§= E[RMRE)] = Regftt) =

22 22

2 2 2. 2 . 2 2
= gxcos wt + oysin wt + ® oySin wt + ® ocos wt

and:
. 2 2
opi = E[R()R()] = - woysinmtcosat + woysinatcosat =

= [(G\Zr - 0)"2)/2] wsin2at,
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since °x5< = cw =0 and we assume that, at time t, random variables X(t) and

Y(t) are independent and, therefore,
Oxy = Oxy= Oxy = Cxv="0.
We, now, define the correlation coefficient as:
P=Pra= GR%Roﬁ , -1<p<t (6)
Finally:

2 rt f2
fri(r,t) = 1 exp) -—1 { rr .7,
2roroiV 1-p° 1-p2\20;21 OROR 202

We can now evaluate:

+
vpo = jo"‘xfn,;‘(po.x)dx

If we define:
1 Po 1 PPo
ai= » az= )
1 -p2 ZGZR 1 -p2 CROR (7)
ag= 1 ___1_ c= 1

Then:

fm(po.f) =C exp [— (a:,fz- af+ a1)]

The exponent becomes:
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2 a,. 2 a a a, \2

2 2: 2 2
~aalr -—rj-a cQall -~ —T+ +ajgl=—| -a1=
3( a:,) ' 3[ as (33)] 3(233)

-
/ARt

Therefore:
2'!

_a
"p: =[xt (pox}x=cexp [as(a}éa,)a : 31] f5 xexp ("2(1 iéa:)a) dx =
as) |

oot - ,-exp[‘ ;/ . } o
+cex;{a3(a%a3)2-a1]zia%fo“ex;{ k- T ;/ ;) dx =

- codfaftu)e-a] 2s g[(z(é/aj)]
oo (520 22— ,p[ (z(ffj)ld

2ag” «/EE e

ol ol
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oo+ 2
2(2a3)% a3( }/ J - a‘]

where a, a, a, and c are given by (7).

Cc
= '2—a—3' exp(- ad

2.2. Expected upcrossing rate for the "equivalent® stationary process

In order for our random process {R(t),t >0}, as defined by (1), to be
stationary, the assumptions of section 1 must be satisfied. In this limiting case:

Hr=0
Rre(0) = 0& = 02 cos?ut + o7 sinut = 6%

Moreover, [Crandall and Mark, 1973]:

2
e el p( o )
Po 21: R 2RpR(0) (9)

where Rggr(t) is the autocorrelation function of (stationary) process {R(t),t >0}
given by:

Rer(v) = E[R(t+7R(1)] =

= E[[X(t+7)cosa(t+t) + Y(t+ysina{t+y][X(t)cosat + Y(t)sinat]] =

= Ryx{1)cosaft+t)cosat + Ryxt)sinaft+t)cosat + (10)
+ Ryy(t)cosa(t+T)sinat + Ryysinw(t+1)sinat

Since X(t) and Y(t) have been assumed independent at t=0, hence
Rxx(0)=Ryy(0) and Rxy(0)=Ryx(0)=0, (10) then yields:
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Rer(0) = Ry 0)cos at + Ryy(0)sin Gt = Ryx(0)

By differentiating (10) twice, we get:
R;n(‘t) = R;(x(t)cosw(tﬂ)cosai -20 R;(x(t)sinm(tw)cosai -
2
- ® Ryy{t)cosat+rcosat +
+ Ryx()sina(t+jcosat + 20 Ryy(t)cosalt+r)cosat -
2
- Ryx(t)sina(t+t)cosat +
+ Ryy{t)cosat+Dsinat - 20 Ryy{t)sina(t+Dsinat -
2
-® Ryy{rcosat+rsinut +
+ R;y(t)sinm(tw)sinat +20 R'Mt)cosco(tw)sinmt -
2
-® Ryv)sino(t+r)sinat
When 1=0,
Rxv(0) = Ryx(0),
Ryx(0) = -Ry(0) = Ry{0) = -Ryy{0) = 0,
Rxv(0) = - Rxy(0) = - E[X(t) Y(t)] = - E[X(t)] E[Y(t)] = 0 = Ryx(0)
and:
Ryx(®) = Ryy(~1), hence Ryy(t) = Ryy(~1) and Ryx(0) = Ryy(0),
But, for R(t) to be stationary, conditions of section 1, also, imply:

Ryy(®) = - Ryy(-©), OF Ryey{t) = - Ryy(-1) oF

(11)
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Ryy(0) = - Rxy(0), and
Ryy(0) = Ryx(0) = 0.
Hence, at 1=0, (11) yields:

Rre(0) = Rod0) - @ Ryd0)

Then by substituting this into (3), we obtain:

y 2
v +-;-_1_ mz_Rxx(O) expl-Po 2
Pos 2K 2 20
X X (12)

We now integrate (8) over the given time interval T, to get the average
(over time) expected upcrossing rate for the prespecified threshold p:

- 1
Vo t=x ST v, * (et
[« - ocC

(13)
This integration has been performed numerically.

3. "ENVELOPE" APPROACH

3.1. Expected upcrossing rate for the envelope process

As mentioned in [Nikolaidis, Perakis and Parsons, 1989], the expected
upcrossing rate of a threshold is given by:

vPo =5 Xfpé;(po’x)dx (15)

where foi(- ,- ) is the joint pdf of the envelope process and its derivative.
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in [Nikolaidis, Perakis and Parsons, 1989], an expression is derived for

Vpo , in the general case, where p(t) is the envelope of a nonstationary

+
process, even though R(t) is not. In this case "po is given by [Nikolaidis,

Perakis and Parsons, 1989]:

+ 2 2
p * E
v, =" ° exp|-5F
PO Io { 3/ 1/2 1/2 p[ +88’]
@r)/2 [A'174B (16)
2 2 2
poM 1 FLE M M’
expl—5 F + —+ -11- } do,
1 1 3 ’ ’ 1

where A’ is the following covariance matrix of the random vector process

{{X(t), Y(1), X, \'((t)}T,tzo}:

2
Ox Oxy 0 oOxy
2
o f Oxy oy oxy O
A= 2 ’
0 oy Ox Oxy

2
oyx 0 oxy Oy

(17)
with:
, 2 ’ . 2 14 2 ’ .
B’ =pgy(hggSin O +1A,,C08 O -Ag,sin20),
D’ =-A33p,SiN20 + A 4, p,SiN20 + 24 5, p,COS2V,

L4 2 r r 2 ’
E’ =-X3pSiN20 +2A 3 iyp, Sind + 2114p°coszt‘} - 2) 14 Ryp L£OSD -

4 2 . 2 ’ ’ 2 ’
=2hp3P o SIN D +2h 55 Py Ky SINY + Ay p,, SIN2D - 24 5, yp LCOST,
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’ 2 14 . 2 ’ .
F'=R1(pCOSD - py) + Apo(p,ySind - Ry) " + 24, (pCOSY - y)(pSIND - py), |
G = 2113p°cos2ﬂ =20 131y COSD + A4 SIN2Y - 2 14 hy SIND + A5, SIN20 -

(18)

’ L4 ’

H =24, cos’d + x“sinzx‘} +Ag,Sin29,

2
L'=H- D'/ ,
4B’
M’= G" D'E/ ’ ’
2B

Aij’ being the elements of the inverse of the covariance matrix A’ and @ the
probability distribution function of the "Unit Normal" random variable.

In this limiting case, conditions for stationarity hold, in addition to the
assumptions made in section 1.

Since we assume that X(t) and Y(t) are independent at time t, then:

Oxy = Rxy(0) = E[X(t)Y(t)] = E[X@)}E[Y(1)] = 0
Similarly:

Oxy=Oxy=0Oxy=0
And:

0= Rii(0) = - Ripd0) = - Rind0) = Ryy= ¢

Consequently, the covariance matrix becomes:
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2
ox 0 0 O

2
0 ook 0 O
A= 2
0 0 og O
2
0 0 0 oy

The determinant of the above is:
, 4
| X = (ox0R)

And the inverse of the covariance matrix:

Y2 0 o o
Ox
o Y2 o o
"= o

0o o0 1/03( 0

1
o o o /e
ox
(19)

Therefore, by substituting the elements of (19) into the (18), cofficients, B’
through M', become:

2
B’=p/2
Ox
D'’=E’'=0

2
F’=p7/2
o

X

-

H =

Q
. N
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=H 81/2
Ox
M=0

Subsequently, (16) becomes:

2
+ 1 Po
Vo exp —|dd =
o2 (2u)/2’oxo ("/ x)( ) [ °§]
2
= PoOx exp - ‘:"o2 =
‘V/EJ?O‘X 20y (20)
/ 2
po 'RXX(O [_1_ Po ]
vor Rxx(O) 2 Ryx(0)

Since we assumed that, at time t, X(t) and Y(t) are independent, normal
random processes, the following relations hoid:

Oxy=Oyx=0,
oxy= EIX() (0] - E[X()] EIY()] = EDX(\] E[V()] - EIXONENVD] =0 (59

Oxy=Oxy=0

Therefore, the covariance matrix (17) becomes:

2
ox 0 0 0
0o 00
(o]
A= Y
0 0 o 0

0 0 0 oy (22)
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The determinant of this diagonal matrix is,
|A’|=c)2(o)2-(o$o$ (23)
while the inverse matrix is:
1/0)2( 0 0 0

0 1/6’2,0 0

-1
A1 = ]
0 0 /2 0
Ox
1
0 0 0 /02
Y (24)
By substituting (24) into (18), we get:
, .2 sin’ cos®®
B’ =p, >t —— |
Ox Oy
: sin29 sin29
D =-po 2 +p° 2 ’
Ox Sv (25)
2 2 .
E=0, F= p°°°2‘°‘2"+p°s':2° ,
oX oY
2 2
. ,_ COSO sind
G'=0 , H'= Tt —>
Ox Oy

U=H-D'Y ., M=0

Hencs, (16) is simplified as follows:
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2
v b= — Po exp[- F'/z]dﬂ
oc 72 oy VBT
(2n) "2oxoyOXOY (26)

where B’, L, F’, are functions of 9, given in [Nikolaidis, Perakis and Parsons,
1989].

4. CALCULATION OF THE UPCROSSING PROBABILITY

Our problem is to derive an expression for the probability that random
process {R(t), t=0} exceeds a specified threshold, p,, at least once during a time
interval [0,T]. The assumptions set forth in section 1 still hold for R(t).
Furthermore, we assume that R(t) is twice continuously differentiable.

By setting the upcrossing rates, in either (12) and (13), or (20) and (26)
(pending on the approach we follow), equal to one another, we get:

v, *=vy, Yorv, *
Pos Poc Poc (27)

(Relation (27) contains on the left side the autocorrelation of the
"equivalent" stationary process and on the right side the autocorrelation
functions of {X(t), =0} and {Y(t), t>0} that form the original process, which are
known.)

Wae will try to solve (27) for Rxx{0) and Rxx{0), the subscript "s" denoting
that {X,(t),t>0} is such that the random process {R(t).t=0} is stationary.

Hence, we will estimate the upcrossing probability of a stationary random
process {Rg4(t),t>0}. This is distributed as N(0,0x), at time t, since it is a
combination of two zero-mean normal random variables.

The autocorrelation function Ryx (t) can be evaluated using (27). (We may
observe that (27) has two unknowns, Ryx(0) and R"xx (0), and we only have

one equation. However, we may -assume a certain form for the autocorrelation

function, an approach that is developed later in this report in section 5. This will
provide the additional required equation.
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The envelope p(t) of a stationary random process [Nikolaidis, Perakis and
Parsons, 1989), is defined as the square root of the sum of the squares of the
process and its Hilbert transform:

Rq(t) = X4(t)sinat - Y g(t)cosat,

Rg(t) is ®/2 out of phase with Rg(t). Then:
p) = VX2 + Y2 ) (28)

The local maxima of Rg(t) can be approximated by the values of the
envelope process p(t) at the time they occur [Nikolaidis, Perakis and Parsons,
1989]. The first and second order statistical properties of the envelope random
process have already been derived ([Epstein, 1951] [Nikolaidis and Perakis,
1985]).

The Markov approach we will use here to estimate the upcrossing
probability is based on this envelope approximation. The procedure is the
same as described in detail in [Nikolaidis, Perakis and Parsons, 1989]. It results
in:

P[Upcrossing in[0,T]]=1-cbv-1 , (29)
where:
C = JPe fonipP)dp (30)
1

=< S toemplP 1 P2AP AP 2, (31)
T

AYARE (32)
= 2%

= (33)

The above is derived after considering a discrete-time, two state Markov
process taking values at time steps 0, 1, 21,... A step is defined to occur when
the envelope process does not exceed the threshold p,, while the other when it
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does. The Markov property is then assumed. (Since R(t) is narrowband, the
time interval between two successive local maxima is approximately constant
and denoted by 1.) The rest of the symbols were defined previously.

(In the same paper it is also argued that, if the local maxima of R(t) are
assumed independent, then (29) becomes:

P[Upcrossing in[0,T]]=1-¢V , (34)
which leads to an overestimation of the upcrossing probability.)
5. EXAMPLE
As an example, we will assume that normal processes {X(t), t=0} and {Y(t),
t>0} have, in addition to zero means, covariance (and , consequently,

autocorrelation) and cross-covariance (cross-correlation) functions given by
[Nikolaidis, Perakis and Parsons, 1989}:

Ryx{(Tt) = Ryx(0) exp[-mz]
Rey(®) = Ryy(0) exp x| (35)

2

Cxy(t) = Cxy(0) exp [-m ]
A reasonable value for x is x = 0.1 [Nikolaidis, Perakis and Parsons,
1989]. Since att = 0, X(t) and Y(t) have been assumed independent, we

conclude from (35), that:

ny(‘t) =0, forall © (36)

and, therefore, X(t) and Y(i+t) are orthogonal and, as zero-mean Gaussian
random processes, independent for every O<t<ee.

In addition, we assume that the autocorrelation function of X(t) is also
given by a similar expression:

2
R {9 = R ) exp - x| (37)
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By differentiating (37) twice, we get:

, 2
Rxx () = -2KT Rxx(0) exp[- KT ] (38)
and,
» 2 2 2
Rxx (7 = -2k Rxx (0) exp [- KT ] +(2x7) Rxx (0) exp [- KT ]= (39)
= (21(1:2 - 1)2x Rxx 0) exp [- mz]
Therefore:
RyxJ0) = -2k Ryx {0) (40)

The left side of (27) then becomes:
p ,\/ — X exp|- P: =v, *
°Y 7Rxx[0) 2Rxx,(°)] Poc (41)

where Vp°: is known and must be calculated using the autocorrelations of the

original process {X(t), =0} and {Y(t), 1=0}.

In fact:
03 = Rig0) = - Ry0) = 2K Rx(0) . (42)
2 ”»
oy = Ryv(0) = - Ryy(0) = 2x Ry\(0) , (43)

both (42) and (43) having been derived similarly to (40).

Then, using (25), we obtain:

2
_gg[ sin’s . cos’d
2x | Rxd0) * Ryx(0)]

BI
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D'—-Bﬂ sin29 sin29

2k [Rxd0) Ryy(0)

F'=p2 [coszﬂ . sinzﬁ]
°|Rad®) * R0} (44)

2 ]
2xp,

L'=H'-D’7 P 2-0'7
48’ (ZKpo) 48’

or the equally useful (and less complicated):

2 2
B =p% [sm L R0 ) AMO)] ,
e P in29 _sin2®
D’ = %K[sm /qxx(o) sin /RW(O)] , (45)
F = 2 coszﬁ +sin2ﬂ
=Po Ryx(0) Ryy(0)]
F’ 2
L = -D’
(2xp§) A ).

We now solve (41) for R (0).

H’ = 1 coszﬂ smﬁ F
2x | Rxx(0) R0 |

We observe that (41) can be written alternatively, by denoting 62=Rxx,(0),
as:

2
Po Y2k Pol o, .

Po \
o xp[‘ ’] °y{x ,or @1

- g



21

X exp [-x2]=v ,
if we set:

x=F (V2 o)

and:

v=v, * /%
Poc 2x

Let us examine for a minute (41°). We, eventually, want to solve it for x. If
we plot:

h(x) = X exp{ - xz]

(see figure 5.1) we see that it has a maximum. This can easily be found by
differentiating h(x). The first derivative is:

h(x) = exp[- x2]+ x(-2x) exp[-x ] exp[ ] 1- 2x
This becomes zero only at X = 1/.,—2-

The second derivative is, then:
h”(x) = - 2x exp {- xz] - 2xzexp[- xz]( -2x)- exp[- x2] 4x =
=-6x exp [— xz] - 4xsexp[- x2] =

—-2xexp[ ]3+2x)

- . . . 1
This is always negative for any x>0 (including x = /‘{E). Therefore, at

1 . .
X= /{—2— we indeed have a maximum.

There, the value of h(x) is:
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W4z)= 75 5] 7as -

We can conclude from the above and by looking again at fig. 5.1, that
h(x)=v was two solutions (that must be calculated numerically), when:

v<(2e)” ,
one double solution, when:
V= (2e)'1 ,

(this is the point x that maximizes h(x), i.e., x = 1/@) and no solutions, when:

V> (29).1

These values of v correspond to:

/21( /7—
+ = funkind K
vpoc M T < en °’

v+ K

Poc en

and,

K

+
v > en

poc
To solve (41") numerically (when such a solution actually exists) we search
in both intervals (0, 1/171 and (1/{2—, ). Therefore, we generally find two

solutions for x. The corresponding values for ¢ are:

Oy o= Po
1,2 {2—)(1.2

(o=p, inthe case, where the x; = x2=1/ﬁ)
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We define, then, as o of the ~gquivalent" process, the:

Po

0=%2 2 x, (46)

1
since x;, which belongs to the interval (0: /1'2'), is not suitable for two reasons.

First, it takes values in a very small interval so the (numerical, at least) results
acquired may lack accuracy, and second, its value is so small, at times, that it
returns unreasonably high values tor the variance of the "equivalent” random
process. (Note that when there is no solution, we cannot apply this approach.)

Assume, now, that this solution is:

025 Rxxs(o) = g{x, Po vp + [Rxx(O), Ryy(O), po]‘}
ocC (47)

Then, (37) yields:
2 2
Rxxs(t) =G0 oXp [- Xt ] (48)

Therefore, we now have to find the upcrossing probability for a threshold p, of a
stationary process {Rg(t), t>0}. At any time t, R,(t) is a random variable,
distributed as N(0,c) and given by:

R(t) = X(t)cosat + Y (t)sinat , (49)

where {X(t), =0} and {Y4(s), s>0} are zero-mean, stationary, Gaussian random
processes independent for any t, 20, with identical autocorrelation functions
given by (47). This probability, as previously discussed, is given by (29).

From [Mikhalevsky, 1982], we get the following, for our example (setting
pxy=0, ox2=0y2=02 and px=jy=0):
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2 2

1 P
foufp) =5 xR 5| 5 + 5 | o de =
2ro 26 20 (50)

2
= p/2 expL- p/ 2 ’ pZO
c 20

This, as expected, is a Rayleigh distribution.

From [Nikolaidis and Perakis, 1985], we get the second order pdf for the
envelope process:

PiP2 1 .
fp(t)p(t+':)(p1rp2) = ———2——7/— jo"”‘foz" exp[- 7 (A +Bcost, + Csind +

4n |Ax| 2
+ Dcos29 , + Esin29, + Fcosd, + Gsind, + Hcos29, + Isin28,+  (51)

+ Jcosd €08, + Ksind cosd, + Lsind sind, + Mcosd,sind,) ] dd,d9,,

P1P220,

where:

A= N pRig+ WE Xy, + 200 Ay + 2hyg I+ 20 Iy +
+ Kypp 212 + 12y, + 2y + 2hy WP ¥ R P52 4

+ 12 Ayy + 20, iy + P2, J2 + Iy,

B=-2 - - -
l" Hx P4 2>~12uyp1 2x1311xp1 27\'1411\(91»

C=-2A -2 - -
12uxp1 lazp'Yp‘ 212311)( P1 2X24uyp1,
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"2, . 2 T2
. 2. /2, E=
D=h priz-,,py Ay P (52)

F=-21; Ky pz- 23\.2’3 Hy pz- 213’3 Hy p2- 27«3’4 HyP,»

G =-22'1’4 Hx pz- 212’4 Hy pz- 2)':;4 My pz. 214'4 Ky pz ’

H= 1.3'3 py2r2- x; po2/2,

I=)~3'4 p22 J =211'3 P1P2s K=212’3 PiP2 s L=2L2'4 P1P2 >

M= 21.“‘)1p2

and Ljj are the elements of the inverse [Ax], [Ax] itself being defined as:

Cx(0) Cxv(0) Cx(t) Cyx(1)
(] - Cyx0) Cy{0) Cxy(t) Cy(7)
X7 cx9 Cxv()) Cx(0) Cxy0)
| Cvd) Cy(1) Cx(0) CXO)

(53)

with:

Cyi9)=E :(X(t+1:) - (X0 - ux)] ,

Oty = E[[¥(tsn)- ) (v -1

Cxd®) =E[[X(t+3) - ) (Y0 -y
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Cru(m) = E[[Y(t+m) - y) (X0 - )]

For our example, where {X(t), t=0} and {Y(t), =0} are zero-mean, independent
(for any time t), stationary, Gaussian random processes with identical
autocorrelation functions given by (47) (and zero cross-correlation function), we

get:
2 2
Cx(t)=Rxx (1) =0 exp[-m ] » Bx=0
2 2
Cy(1)= Rws(t) =0 exp[-m: ] » By=0 (55)

Cxy (%) = Rxy, (1) = Cyx (1) = Ryx,(1) =0,

Therefore, by defining ry = Rxxs(t)/c2 , We obtain:

2 2
c O0ro O
2 2
0 ¢ 0o
Ax = 2 2
rrc 0 ¢ O
2 2
0Oro 0 ¢
(56)
The determinant of this matrix is:
8 2
|Ax] = & (119
(57)

After some algebra, we find that the inverse of the covariance matrix is:
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1 Me
e T R
6(1-!‘1) 0(1'r1)
1 Mt
o —— o0
-1 02(1 - r,z) 02(1 - rtz)
[af " =
-—r 0

r
2 - 0 2 1
(4] (1 -rf) o (1 -r,z)

g 1
A Fhoa)
i) Zr-r2)
(58)
With A;=4;, foreveryij=1,234,
’ ’ ’ 14 2 2 _l
A1 = A22 = A33 = A44 =[0 (l—ft )]
(59)
A2=A4=A23=2A34=0,
I3 ’ 2 2 '1
113 = 124 = 'rr (o) (1 'r“ )]
After the above observations, (52) becomes:
0 2 o 2
A 1 . 2 ’
2 2 2 2
G (1-ry G (1-ry
B=C=D=E=F=G=H=1=0, (60)
ar
JeL=-tPiP2 Mmoo .
2 2
c (1 - Ty )

Finally, (51) becomes:
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Am pz_ qz+ a%b?

B = 2(pq + ab), (69)
C= p2+ qz- a2- bz.
D=-2(ap+bq)
and I,(z) is the mth order Bessel function of an imaginary argument.
In our special case, we get:

m=a=b=0,

Hence:

jo"”‘ exp[pcosf}2 + qsim‘}z] dd, = 2xl () (70)

But, again from [Gradshtein and Ryzhik, 1965], we find:

lolor) = Jo(exp[g- i ]u). -g<arga s 172

(here arga. = 0), where J, is the 0th order Bessel function. It can also be found
[Gradshtein and Ryzhik, 1965]:

[exp[( )] ] M“) [e""{(y) ]

2 k)® (71)
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Since:

exp{(%) i ] - cos(%) v sir{%) =i,

we get:

"2k

oo S0 s = B

(%)

" o (k (72)

Therefore, (67) yields:

l=f2"21|: (az) 45, =2n (oy)z
° o () -° (k)

0

Hence, (64) finally becomes:

[ '1P1P2

; dpdpym —2P2 _ oudl. Py Pty 2011

(t+o)p@) P PEP2= ’

o o t- rz) 20(1-c3 & (k)*
PpP220. (73)

Now, we can integrate (73) over py and p, from 0 to p,, to get b. But, first,
we will rewrite (73) in a more convenient form:
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2k ( 2)2k+1 2 ) 2
r p1p p1 + 2 _
fp(t+t)p(t)(p1p2) Z[ ] 2 ” oxpl- —5——| =

20 (1 r,) <s(1-r1 (ki) 20 (1-r1)

=k§_:°°IO12k+1P 2k+1exp[ yp1]QXp[ ypz] p,pzzo 74)

where:

2k
Iy 1 1 _B 2k

[252(1-r2)]2k W o'f1-rd 7 bed

LT P K ) 75

Cy=

And:

bod 2] 2k+1 2] 2k+1
fo"t=f°"~=fp(t+1)p(t)(P1,P:_:)dp1dpz=kzoCk(_f@»ex;{-yp,k1 * dp1lfopoexr{-'yp2]p2 +dp2)=1

-3 cul
"Zb - (76)

Then,

__fmp exp[ ) ]d(p -—fp"(pz) exp[ w ]d(p (t=922°)

1, 2k
=—[pPo t oXxp-vytidt, k=0,12,..
2f° p[ 7] (77)

This can be found to be [Gradshtein and Ryzhik, 1965]:
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where:

I _b-x+05
=T !

Ea-x-0.5

=2

The term yp,2in (80) is usually large enough to allow us to write:

- 2
k
1292 tow+apr (P P 2) dp 1P, = LZE {'* [1- {13 +¢('1)]> '
0 “0 (2'» k=0
where:
2
k-, +0.5
|2§ ’
[ 2
Wo
2
_ "Wo -0.5

and ®@(-) is the Unit Normal pdf N(0,1).

A
If we take the limit of (80) as P, — °°, we find that since poexp[-yp°2] -

0, for any A, the term inside the brackets tends to (1/2) (kl/%+1) and the infinite
sum becomes:

14y (81)
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While the first term of (80) yields as po — =, B/(2y)2. Combining the above,

we get:

f:"fop"fp(tn)p(t)(" 1’P2) dpdp, =lim [P Pefosapm (p pP2)dp dpo=

Po

_B Bre B

| 472 ’ 472(1 - rtz) i 472(1 - rtz) (82)

Substituting in the above p and y from (75), we conclude that:

S )
ay(1-ed) so (t-rH1-r)

which verifies that, indeed, fp(tﬂ)p(t)(phpz) is a valid pdf.

=1,

Finally, the probability of at least one upcrossing in the interval [0,T] is
given by (29).

Using the above results, we developed a computer code and ran several
different cases. Specifically, we varied the variances of {X(t),1=0} and {Y(t),t=0},
the threshold p, and the frequency .

We used the same data as in [Nikolaidis, Perakis, and Parsons, 1989] in
order to compare our results. Hence, the variances were selected in such a
way that the RMS of the process (defined as: [(ox2+0y2)/2]12) remains constant,
equal to 5 ksi. Therefore, the variances ranged in the set:

{(25,25), (20,30), (15,35), (10,40), (5.45)}, (in (ksi)?),
the threshold, in the set:

{20, 22.5, 25, 27.5, 30, 32.5}, (in ksi)

and the frequency, in the set:
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"exact” Markovian approach, for which results were available, so that we could
compare the two approaches. An almost entirely analytical solution was
derived, involving an infinite summation. We ran a numerical example and
compared the results with the ones of [Nikolaidis, Perakis, and Parsons, 1989].
The agreement was excellent.

The main problem of this method and generally of all reliability
approaches) is to determine the number of terms in the infinite summation that
are required for an accurate result. We can overcome this by keeping a
"sufficiently long™ number of terms before truncation. In the above example, for
instance, we kept 30,000 terms. The increase in computational effort is
negligible.

What is very important is that while the exact "Markov” approach
[Nikolaidis, Perakis, and Parsons, 1989] is computationally very time
consuming, ours is much more efficient and equally accurate. Therefore, at
least for the range of frequencies tested it is a preferable approach.
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9. APPENDIX
Probability of upcrossing a specific threshold, for different variances and
frequencies.



PROBABILITY OF UPCROSSING A SPECIFIC THRESHOLD

Frequency: 15.00000

Threshold: 20.00000

Var(x) Var(y) UpcrRate EquivVar Up Probab
25.00000 25.00000 0.239E-03 .250E+02 .3786E+00
20.00000 30.00000 0.339~03 .262E+02 .4904E+00
15.00000 35.00000 0.632E-03 .287E+02 .7165E+00
10.00000 40.00000 0.111E-02 .315E+02 .8918E+00
5.00000 45.00000 0.177E-02 .342E+02 .9714E+00
Threshold: 22.50000

Var (x) Var(y) UpcrRate EquivVar Up Probab
25.00000 25.00000 0.322E-04 .250E+02 .6160E-01
20.00000 30.00000 0.567E-04 .266E+02 .1061E400
15.00000 35.00000 0.138E-03 .295E+02 .2394E+00
10.00000 40.00000 0.295E-03 .325E+02 .4433E+00
5.00000 45.00000 0.545E-03 .356E+02 .6623E+00
Threshold: 25.00000

Var (x) Var(y) UpcrRate Equivvar Up Probab
25.00000 25.00000 0.332E-05 .250E+02 .6512E-02
20.00000 30.00000 0.772E-05 .269E+02 .1509E-01
15.00000 35.00000 0.252E-04 .301E+02 .4859E-01
10.00000 40.00000 0.667E-04 .334E+02 .1237E+00
5.00000 45.00000 0.146E-03 .366E+02 .2510E+00
Threshold: 27.50000



Var({x)

25.00000
20.00000
15.00000
10.00000

5.00000

Threshold:

25.00000
20.00000
15.00000
10.00000

5.00000

Threshold:

25.00000
20.00000
15.00000
10.00000

5.00000

Threshold:

25.00000
20.00000
15.00000

Up Probab

- - - —

.5172E-03
.1678E-02
.7559E-02
.2516E-01
.6476E-01

Up Probab

.3162E-04
.1509E-03
.9664E-03
.4196E~02
.1341E-01

Up Probab

.1494E-05
.1104E-04
.1031E-03
.5932E-03
.2365E-02

Var(y) UpcrRate EquivVar
25.00000 0.265E-06 .250E+02
30.00000 0.857E-06 .272E+02
35.00000 0.386E-05 .306E+02
40.00000 0.129e-04 .341E+02
45.00000 0.339E-04 .375E+02

30.00000

Var(y) UpcrRate EquivVar
25.00000 0.163E-07 .250E+02
30.00000 0.77SE-07 .274E+02
35.00000 0.494E-06 .311E+02
40.00000 0.214E-05 .347E+02
45.00000 0.686E-05 .383E+02

32.50000

Var(y) UpcrRate EquivVar
25.00000 0.776E-09 .250E+02
30.00000 0.571E-08 .277E+02
35.00000 0.530E-07 .315E+02
40.00000 0.304E-06 .352E+02
45.00000 0.121E-05 .390E+02

Frequency: 25.00000
20.00000

Var (y) UpcrRate EquivVar
25.00000 0.239E-03 .250E+02
30.00000 0.339e-03 .262E+02
35.00000 0.632E-03 .287E+02

.3796E+00
-4914E+00
.7172E+00



1€.00000 40.00000 0.111E-02
5.00000 45.00000 0.177E-02
Threshold: 22.50000

Var(x) Var(y) UpcrRate
25.00000 25.00000 0.322E-04
20.00000 30.00000 0.567E-04
15.00000 35.00000 0.138E-03
10.00000 40.00000 0.295E-03
5.00000 45.00000 0.545E-03
Threshold: 25.00000

Var (x) Var(y) UpcrRate
25.00000 25.00000 0.332e-05
20.00000 30.00000 0.772E-05
15.00000 35.00000 0.252E-04
10.00000 40.00000 0.667E-04
5.00000 45.00000 0.146E-03
Threshold: 27.50000

var (x) Var (y) UpcrRate
25.00000 25.00000 0.265E-06
20.00000 30.00000 0.857E~-06
15.00000 35.00000 0.386E-05
16.00000 40.00000 0.129E-04
5.00000 45.00000 0.33%E-04
Threshold: 30.00000

Var (x) Var(y) UpcrRate

.315E+02
.342E+02

.250E+02
.266E+02
.295E+02
.3258+02
.356E+02

.250E+02
.269E+02
.301E402
.334E+02
.366E+02

.250E+02
.272E+02
.306E+02
.341E+02
.375E+02

EquivVar

.8920E+00
.9715E400

Up Probab

.6199E-01
.1067E+00
.2404E+00
.4443E+00
.66322+00

Up Probab

.6576E-02
.1522E-01
.4892E-01
.1244E+00
.2519E+00

.5243E-03
.1698E-02
.7632E-02
.2536E-01
.6517E-01

Up Probab




25.00000 25.00000 0.163E-07
20.00000 30.00000 0.775E-07
15.00000 35.00000 0.494E-06
10.00000  40.00000 0.214E-05
5.00000 45.00000 0.686E-05

Threshold: 32.50000

Var(x) Var(y) UpcrRate

25.00000 25.00000 0.776E-09
20.00000 30.00000 0.571E-08
15.00000 35.00000 0.530E-07
10.00000 40.00000 0.304E-06
5.00000 45.00000 0.121E-05

Frequency: 50.00000

Threshold: 20.00000

Var (x) Var(y) UpcrRate

25.00000 25.00000 0.239E-03
20.00000 30.00000 0.339E-03
15.00000 35.00000 0.632E-03
10.00000 40.00000 0.111E-02
5.00000 45.00000 0.177E-02

Threshold: 22.50000

Var(x) Var{y) UpcrRate

25.00000 25.00000 0.322E-04
20.00000 30.00000 0.567E-04
15.00000 35.00000 0.138E-03
10.00000 40.00000 0.295E-03

5.00000 45.00000 0.545E-03

.250E+02 .3218E~04
.274E+02 .1533E~03
.311E+02 .9788E-03
.347E+02 .4241E-02
.383E+02 .1353E-01
Equivvar Up Probab
.250E+02 .1527E-05
.277E+02 .1125E-04
.315E+02 .1047E-03
.352E+02 .6012E-03
.390E+02 .2393E-02
EquivVar Up Probab
.250E+02 .3804E+00
.262E+02 .4922E+00
.287E+02 .7180E+00
.315E+02 .8924E+00
.342E+02 .9716E+00
EquivVar Up Probab
.250E+02 .6224E-01
.266E+02 .1070E+00
.295E+02 .2410E+00
.325E+02 .4451E+00
.356E+02 .6639E+00

g



Threshold: 25.00000

Var (x) Var(y) UpcrRate
25.00000 25.00000 0.332E-05
20.00000 30.00000 0.772E-05
15.00000 35.00000 0.252E-04
10.00000 40.00000 0.667E-04
5.00000 45.00000 0.146E-03
Threshold: 27.50000

var (x) Var(y) UpcrRate
25.00000 25.00000 0.265E-06
20.00000 30.00000 0.857E-06
15.00000 35.00000 0.386E-05
10.00000 40.00000 0.129E-04
$.00000 45.00000 0.339E-04
Threshold: 30.00000

Var (x) Var (y) UpcrRate
25.00000 25.00000 0.163E-07
20.00000 30.00000 0.775E-07
15.00000 35.00000  0.494E-06
10.00000 40.00000 0.214E-0S
5.00000 45.00000 0.686E-05
Threshold: 32.50000

Var (x) Vary) UpcrRate
25.00000 25.00000 0.776E-09
20.00000 30.00000 0.571E-08

Equivvar Up Probab
.250E+02 .6615E-02
.269E4+02 .1530E-01
.301E+02 .4913E-01
.334E+02 .1248E+00
.366E+02 .2526E+00
EquivVar Up Probab
.250E+02 .5284E-03
.272E+02 .1709E-02
.306E+02 .7676E-02
.341E+02 .2548E-01
.375E+02 .6544E-01
EquivVar Up Probab
.250E+02 .3250E-04
.274E+02 .1546E-03
.311E402 .9860E-03
.347E402 .4267E~-02
.383E+02 .1360E-01
Equivvar Up Probab
.250E+02 .1546E-05
.277E+02 .1137E-04



1£.00000 35.00000 0.530E-07
10.00000 40.00000 0.304E-06
$.00000 45.00000 0.121E-05

Frequency: 75

Var (x) Var(y) UpcrRate

25.00000 25.00000 0.239E-03
20.00000 30.00000 0.339e-03
15.00000 35.00000 0.632E-03
10.00000 40.00000 0.111E-02
S.00000 45.00000 0.177E-02

Threshold: 22.50000

Vvar (x) Var(y) UpcrRate

25.00000 25.00000 0.322E-04
20.00000 30.00000 0.567E-04
15.00000 35.00000 0.138E-03
10.00000 40.00000 0.295e-03
5.00000 45.00000 0.545E-03

Tareshold: 25.00000

25.00000 25.00000 0.332E-05
20.00000 30.00000 0.772E-05
15.00000 35.00000 0.252E-04
10.00000 40.00000 0.667E-04

5.00000 45.00000 0.146E-03

.315E+402 .1057E-03
.352E+02 .6058E-03
.390E+02 .2409E-02
.00000
EquivVar Up Probab
.250E+02 .3806E+00
.262E+02 .4924E+00
.287E+402 .7181E+00
.315E+02 .8925E+00
.342E+02 .9716E+00
EquivVar Up Probab
.250E+02 .6230E~-01
.266E+02 .1071E+00
.295E+02 .2412E+00
.325E+02 .4453E+00
.356E+02 .6641E+00
Equivvar Up Probab
.250E+02 .6623E-02
.269E+02 .1531E-01
.301E+02 .4918E-01
.334E+02 .1249E+00
.366E+02 .2527E+00

= ———



Threshold: 27.50000

Var (x) Var(y) UpcrRate EquivVar Up Probab
25.00000 25.00000 0.265E-06 .250E+02 .5292E-03
20.00000 30.00000 0.857E-06 .272E+02 .1712E-02
15.00000 35.00000 0.386E~-0S .306E+02 .T7686E~02
10.00000 40.00000 0.129e-04 .341E+02 .2551E-01
5.00000 45.00000 0.339eE-04 .375E402 .6549E-01
Threshold: 30.00000

Var (x) var(y) UpcrRate EquivVar Up Probab
25.00000 25.00000 0.163E-07 .250E+02 .3257E~-04
20.00000 30.00000 0.775E-07 .274E+02 .1549E~03
15.00000 35.00000 0.494E-06 .311E402 .9875E-03
10.00000 40.00000 0.214E-05 .347E402 .4273E-02
5.00000 45.00000 0.686E-05 .383E+02 .1362E-01
Threshold: 32.50000

Varx(x) var(y) UpcrRate EquivVvar Up Probab
25.00000 25.00000 0.776E-09 .250E+02 .1550E~05
20.00000 30.00000 0.571E-08 .277E+02 .1140E-04
15.00000 35.00000 0.530E-07 .315E+02 .1059E-03
10.00000 40.00000 0.304E-06 .352E+02 .6068E-03
5.00000 45.00000 0.121E-05 .390E+02 .2412E-02

Frequency: 100.00000

Threshold: 20.00000

var (x) Var (y) UpcrRate Equivvar Up Probab
25.00000 25.00000 0.239E-03 .250E+02 .3807E+00
20.00000 30.00000 0.339E-03 .262E+02 .4925E+00



15.00000
10.00000
5.00000

Threshold:

25.00000
20.00000
15.00000
10.00000

5.00000

Threshold:

25.00000
20.00000
15.00000
10.00000

5.00000

Threshold:

25.00000
20.00000
15.00000
10.00000

5.00000

Threshold:

-——— - -~ -

35.00000 0.632E-03 .287E+02
40.00000 0.111E-02 .315E+02
45.00000 0.177E-02 .342E+02
22.50000
Var(y) UpcrRate EquivVar
25.00000 0.322E-04 .250E+02
30.00000 0.567E-04 .266E+02
35.00000 0.138E-03 .295E+02
40.00000 0.295E-03 .325E+02
45.00000 0.545E-03 .356E402
25.00000
Var(y) UpcrRate EquivVar
25.00000 0.332E-05 .250E+02
30.00000 0.772E-05 .269E+02
35.00000 0.252E-04 .301E+02
40.00000 0.667E-04 .334E+02
45.00000 0.146E-03 .366E+02
27.50000
Var(y) UpcrRate EquivVar
25.00000 0.265E-06 .250E+02
30.00000 0.857E-06 .272E+02
35.00000 0.386E-05 .306E+02
40.00000 0.129E-04 .341E+02
45.00000 0.339E-04 .375E+02

30.00000

.7182E+00
.8925E+00
.9716E+00

Up Probab

.6232E-01
.1071E+00
.2412E+00
.4454E+00
.6642E+00

Up Probab

.6626E-02
.1532E-01
.4919E-01
.1249E+00
.2528E+00

Up Probab

.5295E-03
.1713E-02
.7689E-02
.2552E-01
.6551E-01



Var (x)

25.00000
20.00000
15.00000
10.00000

5.00000

Threshold:

25.00000
20.00000
15.00000
10.00000

5.00000

Var (y) UpcrRate
25.00000 0.163E-07
30.00000 0.775E-07
35.00000 0.494E-06
40.00000 0.214E-05
45.00000 0.686E-0S

32.50000

Vaz(y) UpcrRate
25.00000 0.776E-09
30.00000 0.571E-08
35.00000 0.530E-07
40.00000 0.304E-06
45.00000 0.121E-05

Equivvar Up Probab
.250E+02 . 3259E~04
.274E+02 .1550E-03
.311E+402 .9880E-03
<347E+02 .4275E-02
.383E+02 .1362E-01
Equivvar Up Probab
.250E+02 .1551E-05
.277E+02 .1140E-04
.315E+02 .1059E-03
.352E+02 .6071E-03
.390E+02 .2413E-02
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Logarithm of the probability of upcrossing threshold p, (in ksi)
versus frequency ® (in rad/sec), for x=0y=25.0 ksi.
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Figure 5.2(b)
Logarithm of the probability of upcrossing threshold p, (in ksi)
versus frequency  (in rad/sec), for Gy=15.0 ksi and oy=35.0 ksi.
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