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There are three things that are too amazing for me,
four that I do not understand:
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CHAPTER 1

INTRODUCTION

The problem considered here is the determination of the forces and fluid motions due to
waves coming in contact with a ship or a body that is either fixed or moving on an infinite
sea. The approach employed is direct three-dimensional calculation of the fluid motion
treated as an initial value problem in time. The work is referred to as taking place in the
time domain to contrast it with more traditional f;equency-doma.in calculations. Frequency-
domain methods are very difficult when a body has a steady forward speed, and it is hoped
that time-domain methods will prove advantageous in those problems.

The second half of this century has seen growing interest in and rapid development of
the study of ship motions due to waves. The pioneering work of Haskind (1946) introduced
the concept of dividing the problem into components that could be considered individually.
This decomposition separated the fluid flow into three distinct components: the steady
flow due to translation, the flow caused by the body’s motions, and the flow due to the
diffraction of the incident wave. Each component offered a simpler problem to address.

The earliest attempts at determining the force due to waves were restricted to simple
hydrostatics. The approximation of the force due to waves as the buoyant force due to still
water taking the shape of a wave is still used by some to determine the bending moments
on a ship due to waves (Comstock 1967).

The first significant improvement is credited to both William Froude (1861) and Krylov,
a Russian naval officer (Kriloff 1896). Their approximation of the force due to a wave is
simply a surface integration of the pressure due to a sinusoidal wave that is assumed not
to be diffracted. The pressure is given by the linearization of Bernoulli’s equation. The
force determined by this method is referred to as the Froude-Krylov force. In the range of
wavelengths where the waves are much longer than the body dimensions, this approximation
is accurate enough. The Froude-Krylov force represents the force due to the incident wave
in the absence of the body, and it is corrected by the force due to the diffracted wave system.
In general, the Froude-Krylov force is much the larger of the two.

Haskind first showed that the exciting force on a fixed body due to sinusoidal waves

may be determined by the solution of the radiated wave problem, that is, the wave system



due to the sinusoidal oscillation of the body about its mean position. These results have
been extended by Newman (1965) to the case of a moving ship. The relation between the
radiated wave potential and the exciting force is referred to as the Haskind relation.

By using the Haskind relation, it is possible to determine the ship motions using only
the solution to the radiation problems. Because of this fact, greater effort has been given to
the solution of the forced oscillation radiation problem than the diffraction problem. The
Haskind relation can only give forces on an entire body and cannot be used to determine
sectional force. It also cannot be used for the determination of relative motion where the
wave elevation for the diffracted wave is required. Thus, the solution of the diffraction
problem has practical application as well as scientific interest.

Historically, as has been the case for the radiation problem, solutions have been pursued
for regular sinusoidal waves. As is the case for solution of the radiated wave problem,
solutions have been pursued that employ an asymptotic approximation. Newman (1964)
showed that a long wave approximation gave the trivial result that the first-order solution
was simply hydrostatics. Much work was done with a short wave approximation, with some
success. See, for example, Faltinsen (1971), Maruo and Sasaki (1974), and Troesch (1976).

The most recent theory is the unified theory by Sclavounos (1984), which is valid for
a broad range of wavelengths. Until now there has been no known, fully three-dimensional
approach to the solution of the diffraction problem at forward speed. Inglis and Price
(1981) and Chang (1977) developed three-dimensional solutions using an integral equation
for the radiation problem. Their approach could have been employed for a three-dimensional
diffraction solution, but no such results are known.

It should be noted that the fully three-dimensional theories referred to here are three di-
mensional in the sense that body boundary conditions are met on the body surface. Any of
the theories thus far, including the one developed here, require simplifications and approx-
imations that are only valid for ships or bodies whose shapes produce small disturbances.
Any body that produces large waves must be considered in terms of many nonlinear effects,
which greatly complicate any practical analysis.

The consideration of using time-domain methods was first discussed by Cummins (1962)
and Ogilvie (1964). Most such solutions to radiation problems have been two-dimensional.
They have been accomplished by several researchers, such as Adachi and Ohmatsu (1980),
Yeung (1982), and Newman (1985). The most recent work is that of Liapis and Beck (1985),
who performed fully three-dimensional calculations on ship shapes with steady forward
speed.

The success of these attemnpts has led to the consideration of a direct solution to the
diffraction problem by using time-domain methods. An important aspect of this solution
is the determination of a suitable body boundary condition for an initial value problem.
Traditional regular wave boundary conditions as employed in the frequency domain have

the unacceptable property of being nonzero for all time with no suitable initial condition.



The choice of an appropriate incident wave boundary condition is developed in Chapter 3.
The concept of considering ship waves as the input to a linear system directly in the time
domain was first discussed by Davis and Zarnick (1964) and Breslin, Savitsky, and Tsakonos
(1964). They were primarily interested in experimental ship motions determinations, but
first introduced the concept of an impulsive wave, which is used here also.

The work here builds on that of Liapis and Beck, who succeeded in solving a three-
dimensional solution to an integral equation similar to that of Ogilvie (1964). The approach
employed generalizes the integral equation to one that is valid for an arbitrary body bound-
ary condition. This allows the same integral equation to be solved for both radiation and
diffraction problems. Liapis and Beck considered an impulsive displacement of the body.
Here the option of solving the radiation problem for a nonimpulsive motion is considered
in Chapter 4.

The work of Liapis and Beck confirmed that of Adachi and Ohmatsu (1979), which in-
dicated that an integral equation solving for an unknown potential rather than an unknown
source strength gave better results. As in the frequency domain, irregular frequencies were
shown to exist. The approach used here follows their conclusions, and an integral formula-
tion that has the fluid potential as its unknown function is the only approach considered.

Wehausen (1967) developed Haskind relations for the initial value problem, relating the
impulsive radiation solution to the wave exciting forces. His results were for a fixed body
only, and no analagous relationship for a steady translating body is known. The results
from the Haskind relation may be compared with those from the direct computation of
the diffraction potential. Both experimental and theoretical results from frequency-domain
calculations can be compared by Fourier transformation. Results from all of these methods

are compared in Chapter 6.



CHAPTER I

MATHEMATICAL PROBLEM FORMULATION

2.1 Boundary Value Problem

The problem under consideration is discussed with reference to the coordinate system
shown in Figure 2.1. The solution is developed using a linear formulation. The domain
consists of the fluid bounded by the free surface, which is linearized to the plane z = 0; the
body surface; and an enclosing contour at infinity denoted by Sy, So, and S, respectively.
The surface normal is taken with the positive sense out of the fluid domain. The body is
advancing with steady forward speed Up in the +z direction.

The fluid is treated as incompressible, inviscid, and irrotational, implying the existence
of a velocity potential. The body shape is considered as arbitrary. It must be assumed,
however, that the body shape is such that a small disturbance results. The velocities

produced by the body’s presence in the fluid may be separated into three distinctive parts

written as:
Yr(z9,2t) =Ver(zsy,21)
where
®r(z,y,2t) = —Upz+ Bo(z, 9, 2) + do(z, 9, 2,t) + B(z,9,2,¢)
and

—~ Upz + ¥ represents the potential due to steady translation

4’:-0 represents the incident wave

7
B(z,9,2,1) = )iy, 21) (2.1)
=1
k=T is the diffracted wave
k=1,2,...,6 are the potentials due to the body motions
surge, sway, heave, roll, pitch, and yaw, respectively.

This decomposition of the potential into separate components greatly simplifies the
analysis that follows. The decomposition was first performed by Haskind (1946) and is
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Figure 2.1 — Reference Coordinate System

consistent with the linearization of the governing equations. Physically, the decomposition -
ignores the interaction of the waves produced by the individual components.
The potential must meet the following conditions:

V3@ =0,
—a& =0 on Sy,
n

and the linearized free surface boundary condition for the unsteady potentials is

d 0

2
d
(37:_ an_i) ¢k+95;¢k—00n 2=0,

with g being the acceleration of gravity.

The inflow velocity was approximated as Uj in the linearization of Bernoulli’s equation.
This assumption eliminates the interaction between the various potentials except an inter-
action of the steady flow with the body boundary condition mentioned later. In addition,
Newman (1964) has shown that the appropriate free surface boundary condition for ¢7, the
diffracted wave, is an inhomogeneous form of the boundary condition given. The additional
term, which is due to the interaction of the incident wave and the steady flow, has been
neglected in this development, as it was by Newman (1965) when he developed the Haskind
relations for steady forward speed.

The unsteady potentials will be considered as initial value problems with the conditions
that

éx(z,9,2,t) 0 t— —o0 k=1,2,...,7



and
Véi(z,9,2:t) =0 on Seo k=1,2,...,7.

The body boundary conditions for the various potentials on Sy are

od
T = Uom
9¢1 _ _9¢o
9n  On (2-2)
%?'k'=nk§.k+ Mk k=1,2,...,6
n

where n, represents the generalized unit normal defined as
(r1,n2,n3) =n
(ng,ns,n6) =1X 1
r=(59,2)
(m1, mg, m3) = —(n- V)W
(my, ms, mg) = —(n- V)(z x W)

W =V(-Upz+ ®o).

¢k represents the displacement in the kth mode of motion, and the overdot represents the
derivative with respect to time. The m; terms represent the only interaction with the steady
flow.

The conditions on the radiated wave potentials (k = 1,2,...,6) as given result from
the linearization of the complete normal body boundary condition on the instantaneous
body surface to the mean underwater body surface S;. The development for this form
was first discussed in Timman and Newman (1962) and described fully in Newman (1977).
This linear approximation is an important consideration, because meeting the correct body

boundary condition on the instantaneous body surface would be extremely difficult.

2.2 Formmlation of an Integral Equation

Liapis (1986) has shown that an integral equation may be derived for an unsteady po-
tential with the initial conditions that =0 ¢ < 0 and d¢/9t=0 t < 0. The development
here is analagous.

Applying Green’s theorem to the fluid domain,

/f dV (¢V*G - GV?¢) / ds (¢—;—Gg‘:) (2.3)



The volume V is bounded by § where § = S; U Sy U S and
1 1 ~
G(P,Qt—7)= (; - 7) §(t-1)+ H(t-1)G(P,Q,t—r)

G(P,Qt—-1)= /0 ” dkv/kgsin (V/kg(t — 7)) ) Jo(kR)

P=(zy,2)

Q=(&m,5)

r=((z- O+ (y-n?+(z-9)"*

/= (- 2+ -0+ (z+)7)" (2.4)

1/2
R=((z- €+ Uo(t=7)*+ (v - n)?)
o0

5(t) = delta function where / 5(t)f(t) dt = f(0)
H(t) = unit step function

=0 t<0

=1 t>0

with the properties that

ViG = -4x§(P — Q)6(t— 1)

8 3\? 3
(—-—Uo—) G-rg-a—z-G—O onz2=0

at oz
G,a—G=0 t-7<0
ot

VG—=0 r — co.

The Green’s function G represents the potential at point P and time t due to an
impulsive disturbance at point @ and time 7. The integral form was derived by Wehausen
and Laitone (1960), and the form as given was employed by Liapis.

Integrating (2.3) with respect to 7 from —oo to oo and employing the properties of G
yields

t F.) ;]
o(P,t) = —Zl;/;w dr//sds [¢(Q’T)3_nG(P’ Q,t—r71)— G(P, Q,t—r)5;¢(Q,r) .

The contribution to the integral on S, is zero since V¢ and VG go to zero at infinity.
The contribution from S; may be reduced to a line integral about the waterline of the

body. From (2.1),
8 8 1/9 a\?
a_n'_a'-§<5?_ U°5§> on 5.
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Figure 2.2 — Free Surface Bounding Contour

The free surface contribution is then

3 10 3\?
=23, "'//s ds["‘("'“r' U°ae> G- G( 9ar U%) "]‘

Liapis has shown that this contribution may be reduced to
1 t
b=- [ & § w[U36G - 466 - Uo(46. - 4.
AG J-oo r .

where I is the intersection of the body surface Sy and the free surface Sy and represents the
only nonzero contribution from the contour L enclosing S; as seen in Figure 2.2.

The complete integral equation may now be written as

spo=-p [ & / [ s [panZarat-n-arat-nie@n)

- o [ f a[Be@nGHP Q-1 - @NGP - 1)
- U°(¢(QI T)Gf(Pl Qt- T) - ¢¢(Q,T)G(P, Qt- 1'))] . (25)

This integral equation gives the potential at any point P in the fluid as the integral of
the potential over Sp and I', the intersecting line between the body and the free surface.
Liapis has shown that this formulation is equivalent to the traditional frequency-domain
formulation if d¢/dn is sinusoidal.



Taking the limit as P — Sp and integrating the part of G involving §(r) with respect

to 7, the integral equation becomes

¢(Pt)+—//d5¢o,t)aq(-——)— f/ s(2-3)Zs@

1 dr //; ds [¢(Qﬂ') G(P,Qt-r1) - G(P,Qt- r)-‘?—¢(Q,r)] 2.6

1

% ). drf dr; U2 (6(Q,7)Ge(P, @t ~ 1) - $¢(Q7)G(P, Q,t — 7))

- U0(¢(QrT)Gf(P: Qt- T) - ¢f(Q;T)G(P, Q,t— T))] PesSs.

It is implied that the singular contribution to the surface integral on the left-hand side has
been removed.

This integral equation is a Fredholm integral equation of the second kind in space
and a Volterra integral equation in time. The unknown potential ¢ may be determined

numerically as discussed in Chapter 5.

2.3 Consideration of Body Boundary Conditions

The integral equation as formulated in (2.6) is applicable for any arbitrary motion
provided d¢/0n — 0 as t — —oo. The integral equation might thus be used to determine
the potential, from which the forces or other pertinent information for some specific motion
may be computed. The cost of numerical computation makes it prohibitive to consider this
calculation for an arbitrary motion. Therefore, it is advantageous to choose a motion for
solution of the integral equation that will give as much information as possible about the
system response.

The choice by Liapis of an impulsive body boundary condition is a natural choice since
it represents an input of constant amplitude at all frequencies simultaneously. However, it
does include infinite velocities at the initial time, which must be handled by generalized
functions. Since it is often not pertinent to know the response at very high frequencies, it
might be desirable to consider inputs to the system that contain only lower frequencies of
excitation. Included in this work is the consideration of that particular option and its effect
on the results of radiation potential calculations. Chapter 4 explains how a nonimpulsive
input is used to derive useful information about the system.

The choice of a boundary condition for 8¢7/9n is an important consideration. A steady
sinusoidal input would not only provide little information, it would also not allow the
potential ¢7 to satisfy the condition that ¢ — O t — —oo. The most desirable boundary
condition is one that will provide information at all frequencies of incident waves. This
suggests that the velocity due to a wave of impulsive elevation is an appropriate choice.
The derivation and discussion of the physical nature of such an incident wave is discussed
in Chapter 3.
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2.4 Determination of Forces

Of primary interest in this problem is the determination of the forces produced by the
wave-body interactions of the incident, radiated, and diffracted wave systems. The force in

any of the six modes of motion is given as

Fi(t) = // dSp(P,t)n; 5=12,...,6 (2.7
So
where p(P,t) = the pressure that may be computed in keeping with the linear formulation
as 96
p(Pt) = —p5 —pW-V¢ (2.8)
and
d¢
F}(t) = -p// ds [a— +W- V¢] n;. (2.9)
5o t

If sectional forces are desired, it becomes essential to determine V¢. This may be done
by taking the gradient of (2.5), but this is difficult and may be avoided if total forces are
the only results desired.

Employing the theorem derived by Ogilvie and Tuck (1969) and explained in Ogilvie
(1977):

J[. 45 tmsp+ ms(m - )) = - § dtbnexn) 7. (2.10)
5 r

Combining (2.8), (2.9), and (2.10) yields

Fit) = -p/%ds%nj+p/_/%.d5¢"y+pfr depn;i(L x n) - W.

Defining
9jk(t)EP// dS ¢in; ji=12,...,6
/ k=1,2,...,7 (2.11)
"f*(‘)E"”//so"s‘hmf-”f; dpinjx n)- W T o b
we may write the force in mode j due to excitation in mode k as
d
Fa(t) = _‘a—tgjk(t) = hj(2). (2.12)

The force determined here is then the force due to the motion ¢i(t) chosen to determine
3y/dn.



CHAPTER III

DETERMINATION OF TIME-DOMAIN WAVE PRESSURE AND VELOCITY

3.1 Determination of Velocities and Pressures Due to an Impulsive Wave

at Zero Forward Speed

The time-domain response to a linear system may be written in the form
o0
f(t) = / K(t—r)A(r) dr (3.1)
—00

where
A(t) is an arbitrary input
K(t) is the impulse response function
f(t) is the system output.
Consider such an operator for the velocity due to an arbitrary long crested incident

wave, that is, the vector function K(P,t) with the property that
o0
V(P = [ K(Pt-r)olr) dr (32)
—oo0

where ¢o(t) is the arbitrary wave elevation measured at the origin of the coordinate system
in Figure 2.1.
To determine K(P,t), consider the input ¢o(t) = et For this example, ¢o is known
and given as .
Bo(P, 1) = =2 Hem) it

where
w = zcos B + ysin B

k=w?/g.

The angle of the wave propagation direction with the positive z axis (7 represents headseas)

is represented by 8.

11
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This may be easily seen since the linearized wave elevation is given as

§0(P;t)=—l§;—to onz=0

p .
— ik gt (3:3)

For the origin z,z,y = 0,
s‘o(P, t) = s'o(t) = Wt
In this case,
tcos S o
Vgo(P,t) = | fsin B | weke™) ehot, (3.4)
ki
Substituting ¢o(t) = € into (3.2) yields

w . . m -
Véo(P, t) =/ K(P,t—r)e“ dr = e""/ K(P,t)e~ ™" dr.
—oco -0

Equating (3.3) and (3.4) and dividing by ! yields
oo . ‘ico& ﬂ .
/ K(P,r)e™ ™ dr = | jsin B | wes), (3.5)
—o0 ki

Defining the Fourier transform pair

fo) =710 = [ s

_ 1 e . (3.6)
0= 7w) = o= [ ) o
with the property that =17 f(t) = f(t), we may apply 7~ to (3.5) giving
icos B ) .
K(P,t)=7"1{ |jsinf | wes=®) 3 (3.7)
ki

Because K(P,t) must be real, it must be noted that (3.5) requires the right-hand side
to be complex conjugate symmetric with respect to w. This means that the right-hand side
must be artificially extended to be complex conjugate symmetric in the negative frequency
range. The physical implication is that K(P,t) is only valid for waves with positive w, that
is, waves traveling in the +4 direction. When the right-hand side of (3.7) is extended to be

complex conjugate symmetric, it may be rewritten succinctly as

icos B )
K(P,t) = %Re { [,s:ﬂ} /0 w Mz @) e*"‘m} (3.8)
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where Re implies taking the real part of the expreésion.

The pressure due to an arbitrary wave may be derived in an analagous fashion where

p(P,t) = /oo P(P,t = 7)0o(r) dr. (3.9)

-0
Substituting ¢o(t) = ¢** with the linearized pressure given as

— _,9% _ ke
p(P,t) = P75, = PIe

iw) gt

yields
[+ o}
/ P(P,t)e ¥ dr = pgerE—)

—-00
Extending the right-hand side to be complex conjugate symmetric and Fourier trans-

forming gives

p(Pt) = -’;r—g Re {/ M=) e"“’tdw} . (3.10)
0

The characteristics and physical significance of K(P,t) and p(P, t) should be considered.
These functions represent impulse response functions as the term K(t) in (3.1). The impulse
is an impulse in wave elevation at the origin of the coordinate system at ¢ = 0. The response
is the velocity or pressure due to this wave.

The integrals in (3.8) and (3.10) may be calculated analytically. The details of their
derivation are given in Appendix A. Values of p(P, t) have been plotted in nondimensional
form in Figure 3.1. It may be noted that p and K are not causal in the traditional sense,
that is, X and P are not = O for t < 0. This condition is a result of the fact that water
waves are dispersive.

The development here is very similar to the Cauchy-Poisson problem as discussed in
Lamb (1932). The Cauchy-Poisson problem deals with an initial disturbance of impulsive
nature at the origin, while a propagating disturbance with the property that the wave eleva-
tion becomes impulsive at the origin is derived here. While it would seem that the velocity
and pressure should go to zero at large distances in the direction of wave propagation, this
is not the case. This was explained in Lamb:

One noteworthy feature in the above problems is that the disturbance is propagated

instantaneously to all distances from the origih, however great. Analytically, this might

be accounted for by the fact that we have to deal with a synthesis of waves of all possible
lengths, and that for infinite lengths the wave-velocity is infinite. It has been shewn,
however, by Rayleigh that the instantaneous character is preserved even when the water
is of finite depth, in which case there is an upper limit to the wave-velocity. The physical
reason of the peculiarity is that the fluid is treated as incompressible, so that changes
of pressure are propagated with infinite velocity. ... When compressibility is taken into
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account a finite, though it may be very short, interval elapses before the disturbance

manifests itself at any point.}
For traditional linear systems a noncausal system could be considered physically unreal-

istic. In this case, the implication of noncausality is simply that the effect of this disturbance

is felt throughout the fluid before the wave elevation at the origin is affected.

3.2 Determination of the Froude-Krylov Impulse Response Function

We may integrate the pressure given by (3.9) over the body to determine a Froude-
Krylov impulse response function. Writing the Froude-Krylov force for a body at zero

speed with surface Sp in mode j as

Fal) = [ 45 p(P,m,

= / /S OdS /_ : drp(P, t — 7)o(r)n;
=/_: dr¢o(r) /Lodsi(P;t—T)"j

Kio(t) = //so dSp(P, t)n;,

and defining Ko as

the force becomes o
Fol) = [ Kt 1)olr) .
As an example, Figure 3.2 is a plot—:;' the nondimensional Froude-Krylov impulse re-
sponse function in heave, K3o(t), and sway, Kzo(t), for a half-submerged sphere with ¢o(t)

measured at the sphere center.

3.3 The Use of K As a Boundary Condition for the Diffraction Problem

Since (3.2) gives Vgo(P,t) for an arbitrary wave ¢(t), it is worthwhile to consider the
use of K in the boundary condition for the diffracted wave. That is,

O¢7 _ 0¢o _ _ /°° _
Py P Véo=—n _w_K(P;t 7)5o(t) dr.
Now let ¢o(t) = 6(t). For this case:
31 _
i K(P,t).

The integral equation (2.6) may then be used to determine the potential due to this
incident wave. Thus determined, ¢7 represents the diffracted wave potential due to an im-
pulsive incident wave as discussed in the previous section, and the diffracted wave potential

due to an arbitrary incident wave measured from the origin is

$1(P,1) = /_ : B2(P, ¢ — r)co(r) dr.

1 Lamb (1982: 394)
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Figure 3.2 — Nondimensional Froude-Krylov Impulse Response Functions

To determine the diffraction forces, (2.12) may be employed with Up = 0;

Fin(t) = = o-g(t)

where

) =s [[ s 41(P,m,

= ,,/L:sni /_: dréz(P,t — 1)go(r)
=o [ aai [[ LA

Or, defining K7 as the diffraction force impulse response function,
. -
Kq(t) = ~P3; // dS ¢ (P, t)n;.
So

The force may be written as

Fiz(t) = /;: dr Kjz(t — 7)so(r). (3.11)
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The total force due to the incident wave may now be written as

F[j(t) = /;: dr [I{j-](t - T) + I(jo(l - T)]go(T). (3.12)

3.4 The Determination of the Spatial Shift of Wave Elevation

Pursuing the same approach used in the previous sections for determining pressure and

-velocity due to the incident wave ¢o(t), consider ¢(z, y, t) with the property that

(59,0 = [ §lat = 1)lr) b (5.13)

Let ¢o(t) = ¢, and, substituting into (3.13),

o0
/ S5, 4t - )6 dr = MM E(z,5,7) = §(5, 9, )
- 00

(2, 9,1) = e e

@ = zcos B + ysin 8.

Substituting and cancelling the term ! yields

F(zyt)y=e™
~ 1 oo . .
g(z,y,t)=—Re {/ e_*wcwtdw};
n 0

with the restriction that ¢o(t) represents a wave traveling in the +/ direction as in the case
of the velocity and pressure determinations.
Alternatively, the elevation at the origin may be written as

0o
fO(t) = / ?l(x: yt- T)g(z: Y T) dr

—0o0

1 . ‘ (3.14)
Yz, 9,t) = ;Re {/ e""“’e""dw}
0

where ¢! represents the transformation of the wave elevation at an arbitrary point back

to the origin.
In practice, (3.13) may be more easily determined using the property of Fourier trans-

forms that

g(z: Y, t) = -7_1{7?-75'0}

We may thus write
¢(z9,8) = FH{e ™ T}

with e"% extended to be complex conjugate symmetric in w.
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Figure 3.3 shows a plot of the Froude-Krylov impulse response function for a sphere in
heave with the coordinate shift zo = z— 5R, yo = y, and 2 = z. Plotted on the same graph
is the Froude-Krylov impulse response function calculated for ¢g at the origin of the original
coordinate system, with ¢o(t) shifted to the point z = 5R by (3.14). Thus, it is possible to

determine the Froude-Krylov force on the body due to the wave elevation at any point as
©0

Fo() = | Kt~ el

- 00

e ”~
o) = [ Mot = (e ) b

-0

o0 o0 ~
F}O(t) = / dT/ doI{jO(t - r)g_l(z: y. 7 - a)f(zi Y, 0))

) —00

defining o
Ko(n 3,0 = [ Kolt =08 (z,9,9) &
—00

o0
F'J'O(t) = / 'KiO(z; y,t— T)S’(.’L‘, Y, T) dr.
-0

The same technique may be used for any impulse response function based on wave elevation

at the origin to shift the input to a different point on the free surface.

3.5 The Determination of an Impulsive Incident Wave for Steady Forward Speed

Impulse response functions for the pressure and velocity due to an incident wave in a
steady translating coordinate system may be derived in a manner similar to those derived
for zero forward speed in the previous sections. There are several important considerations
that are unique to the case of a translating body and must be considered.

The first consideration is that of the input wave elevation ¢o(t). For the previous case
we considered ¢o(t) as the arbitrary wave elevation at the coordinate system origin. For a
body with forward speed, the wave elevation measured at the body fixed origin differs from
the wave elevation measured from a fixed point in space. The wave elevation as measured
from the ship fixed origin will be denoted by ¢o(t). The wave elevation at a fixed point will
be denoted by a prime when it differs from ¢o(t). The notation for the forward speed case
will then be the same as for the previously derived zero speed case. The zero speed results
may be considered a special case of the forward speed results, with Uy = 0. For a body
with steady speed Up and waves traveling in the +8 direction, the two elevations are

() = Re{e"}
§0(t) = Re {e—t'katcosﬁeiut},

which may also be written as
¢o(t) = Re {e“*}
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Figure 3.3 — Nondimensional Froude-Krylov Impulse Response Function
for a Spatially Shifted Input

where

we=w — kUscos 8.

For a time invariant linear system, the response to an input at frequency w is an output

at frequency w,, with phase and amplitude changed by the system. Because of the shift in

frequency caused by the forward speed, it is essential to deal with a time varying system if

¢5(t) is chosen for input. The determination of ¢o(t) from ¢;(t) is discussed in Section 3.7,
but for the current discussion it will be assumed that ¢p(t) is known, so that the frequency

of the input is w,.

Following a development similar to that in Section 3.1, consider K(P,t) such that

o0
Véo(P,t) = / K(P,t ~ r)o(r) dr.
—o0
Considering an input ¢o(t) = €*¢, (3.15) may be written

[~
Véo(P, t) = c“""/ K(P,r)e™™¢ dr.
)

(3.15)

(3.16)




For this case, V¢o(P, t) is given by
Vo (P, t) = wekr=@) giwet, (3.17)
Equating (3.16) and (3.17),

o0
wetz—) =/ K(P,r)e""“’ef dr.
-0

Making the same extensions of the left-hand side in the negative encounter frequency
range as were made for the zero speed case in the previous section and Fourier transforming

with respect to w, yields

tcos B s
_K_’(P,t):;rl-Re js}?ﬂ /0 wekemi@) gloet 4, 5 (3.18)
1

This integral may be calculated analytically. The results are given in Appendix A.

The impulse response function for pressure may be derived in an analagous manner

with the result given as
1 o0 .
?(P,t) = - Re {/; ek("“")e"'"dw,} . (3.19)
The evaluation of this integral is also given in Appendix A.

3.6 The Consideration of Following Seas with Steady Forward Speed

An important consideration in regard to the input ¢o(¢) is the distinction between head
seas (1/2 < B < 3x/2) and following seas (—x/2 < B8 < n/2). The plots of frequency of
encounter versus wave frequency (Figure 3.4) show that for head seas the wave frequency
w is a single valued function of w,, while it is a multiple valued function of w, for following
seas. Physically this ambiguity arises from the fact that with following seas there are two
wavelengths that are overtaking the ship and one wavelength that the ship is overtaking,
all having the same frequency of encounter. The frequency of encounter for the wave
being overtaken is negative. However, the Fourier transform of ¢p(t) distinguishes between
negative and positive frequency only by a change in phase. The point measurement of
the wave elevation from the moving coordinate system in following seas does not contain
complete information about the wave system. '

A viable method of dealing with this problem is to divide the input into three different

parts written as

3
() = D_ som(t)
m=1
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Figure 3.4 — Nondimensional Encounter Frequency Versus Wave Frequency

where ¢o,(t) represents the incident wave due to a restricted range of wavelengths,

Am = 27/ km

9
4U% cos? B

g
<k € ————
2 U cos? 8

<k3 < oo.

0<k <
9
4U% cos? B
9
Ug cos? 8

Each of the inputs ¢p,,(t) contains no waves outside the range prescribed above. This
approach is also used in frequency-domain approaches; see, for example, Price and Bishop
(1974).

Three separate impulse response functions may now be written for the velocity and
. pressure. The total velocity and pressure may then be written as the sum of the three

components and is

3 %)
Vo)=Y [ KulPt = r)som(r) & (3.20)
m=1Y ~%

3 [+ <]
p(P,t) = E : / Pm(P, t — 7)om(7) dr. (3.21)
m=1" %



To determine the impulse response functions, consider
9
< —
4Upcos 8

9
> ———
¢~ 4Ugcos B

§0m=e'i”“ O<w,< o0 m=3

Som = €9 0< w, m=1,2

om=0 w m=1,2

for this input

-

[icos 8 o
Véom = |jsinf | wmetmE= et =1 2
-3 ki -l
[ 3cos 8] _ '

= |jsinf | wm ehm(s— ) g=iwet
ki

Pm = pgetmlz=) gluet

m=3

m=1,2

— pgekqn(z-iw) e—idgt m=3

g 4Uqg cos 8
= — (1~ 1—__Q___
“1 2U0cosﬂ( - g w,)

g 4Upcos B
=——7 _(1+44/1- o2l
“2 2Uo¢°$ﬂ( d e)

_ 9 4Upcos 8
wg __2Uocosﬂ (1+\/1+ 7 wc)

k= wh/g.

(3.22)

(3.23)

(3.24)

Substituting (3.22) into (3.20) and (3.21), equating with (3.23), and Fourier transform-

ing yields

3cos g ] 9/4Ug cos B .
K.(P,t)= 1lr Re < |7 s}g B /(; Wy etm(z—) glvet g,
1
[3cos B8] reo o
Re{ |jsing / W emETT) glwet g, m
i 0

9/4Ug cos B N
Pm(P,t) = gwg Re { / ghm(s—i@) givet dw,} m
0

1l
| =

P9 % ) i
_—_-;Re{ / eh»(m).g-»m,} m=3
0

where wm, and km are given by (3.24).

1,2

It is important to note that for whatever quantity is the output of a following seas

input, the three parts of the input must remain separate until the quantity is calculated
for each of the three parts. Only then may the parts be summed to give the total. While
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there are three wavelengths with the same encounter frequency, the problem is that their
spatial variations of potential, elevation, velocity, and pressure are entirely different. For
this approach it is necessary to solve three separate integral equations to determine the

diffracted wave for the case of following seas.

3.7 The Transformation of Wave Elevation from the Fixed to the
Moving Coordinate System

An important question that arises is the determination of ¢(t) given ¢g(t), which are

the most commonly available data. The linear transformation may be written
oc
so(t) = / h(t — 7,7)5(r) dr, (3.25)
—00
letting ¢5(t) = €“* and substituting

[+ <]
so(t) = e""‘/ h(r,t —r1)e™™" dr. (3.26)
—00
For this case, ¢3(t) is given by
§o(t) — e—ikUOtcosﬁeiwt-
Equating (3.25) and (3.26) gives
[ ]
¢ *Uptcos f _ / h(r,t —r)e™™" dr. (3.27)
-0
Fourier transforming both sides and extending the left-hand side to be complex conjugate

symmetric as required by (3.27) yields
hit—r,7) = 1 Re {/ ¢~ *Uor cos § giu(t—1) dw} . (3.28)
n 0

The shift of the wave elevation from the fixed to the moving coordinate system is thus
analytically possible, but in practice (3.25) may be very difficult to compute. Using the
properties of the Fourier transform, (3.25) may be rewritten as

so(t) = 7 H{FhF g},

with the Fourier transforms taken with respect to w.

From (3.27),
Fh= e~ *Uptcos

Therefore, (3.28) may be rewritten as
1 ot ;
go(t) = - Re {/ %(w)e—ﬂcvotcosﬁewt dw}
0

(3.29)
= %Re {?{,(w)ei""dw} .



24

For head seas,
we=w — kUpcos B

— g _ 4Upcos 8
w —_—ZUocosﬁ (1 vV1+ 7 w,)

Substituting (3.29) gives

o(t) = %Re {/ow __gi)ﬂ__eugt dw,}.

1- %—’chosﬂ

For following seas,

1 9/4U0 cos B =t .
som) = *Re{ [ flom) _tay,} m=1,
L 0 1- —gQw,,.cosﬂ

o -
- -}Re {/ $olwm) e““’“dcu,} m=23
0

1- Egj-Qt.u,,,cosﬂ

(3.30)

where w,, is given by (3.24).
It may be noted that (3.30) is singular at the upper limit of integration for the m = 1,2
cases. The sum of §o, (t) + $o, (t) is not singular at w, = 9/4Up cos . Consider

2

2 9/4Ugcos 8 = .
> som(t) = % Re {/ > Solom)__ gt d‘*’e}'
m=1 0

2V,
m=11— —2wmcos B

Looking at the singular terms

Solw1) + Solwz)
1- ?L:Q_wl cosf 1- 2—?wzcosﬂ

we may substitute the value of w; and w; from (3.23) yielding
So(wz) = Solw1)

/1 _ 4UQgcot;ﬂwe

Since the limit as w, — g/4Upcosf of wy —wq = d, So(wz2) = So(w1) — 0. L’Hopital’s
rule may be applied to find the limit. That is,

lim Solws) = Solwn) _ lim 2 [So(w2) — Solw1)]
we — g/4Upcos B \/:T_ ‘UQ:“pwe we — g/4Upcos B % 1 - 4UQ:°°ﬁw,
= 2—d—§0(w) evaluated at w = g

dw 2Upcos B’

For practical calculations the limit of each integral taken independently will be half of the

limit of the two combined.
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3.8 The Determination of a Spatial Shift of Wave Elevation in the
Steady Translating Coordinate System

For the head seas case, a completely analagous development to Section 3.4 may be used
with a transform of coordinates:
w -~
g(z; Y, t) = f S.(zl yt- T)S.O(T) dr
-0

where

~ 1 R .
f(zr Y, t) = =Re {/ e—’b eet @e}
x 0]
or  ¢(ey,0) =7 [ R

where 7, denotes that the Fourier transforms are taken with respect to w, and e %% is

extended to be complex conjugate symmetric with respect to w,.
For the case of following seas, the nonuniqueness with encounter frequency cannot be
ignored, and ¢p(t) may be handled in three separate parts as in the case of velocity and

pressure impulse response functions.

3.9 The Use of K As a Boundary Condition for the Forward Speed
Diffraction Problem
A parallel development to that in Section 3.3 can be used to determine the diffracted

wave potential due to an arbitrary incident wave.
The body boundary condition is given as

6¢7 —a¢o /::
rr = —p. ——n. - )
. 3n n-Véo=—-n : K(P,t - r)5o(r) dr;

letting ¢o(t) = 6(r),

'a'a'¢:7 =—n- }_{(P, t)
- (3.31)
¢7(P) t) = / ¢7(Pl t— T)S.O(T) dr.
—oo
Employing (2.11), the diffraction force due to an arbitrary wave is
Fr(t) = —472(8) = hjz (1)
where
gi7(t) = p// dS ¢7n;
% (3.32)

hiz(t) = —p//sodswmj- p]i dlnip7(€ % n)- W.

Substituting (3.31) into (3.32) and interchanging orders of integration,

Frl) = [ drkia(e - niolt) &
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where

a ~ ~
K'j7(t) = —p(—g—t //; dS¢7nj-+-p/./S dS¢7m,-
0 0

_ (3.33)
+ p](; den;jg7(€ X n)- W.

Defining the Froude-Krylov impulse response function for steady forward speed as

Kolt) = //sodS'i(P, )n,

where P(P, t) is given by (3.19), the total force due to the incident wave for a body with
steady forward speed may be written

F]j(t) = /:: dr [I(j-](t— 1') + K}o(t - T)]go(T).

3.10 Comparisons with Traditional Frequency-Domain Forces

For harmonic waves, the exciting forces due to an incident wave are typically written

in the form
Fi(t) = Re {X;(w)Zo(w)e™"} (3.34)

where X;(w),{o(w) are complex and
¢o(t) = Re {Go(w)e™}. (3.35)

Substituting (3.35) into (3.12) for the zero speed case yields

P = Re { [ [Kalt =) + Kl = )5} &}

—00

= Re {go()e [ [Ka(r) + Kolr)] "

-0

(3.36)

Equating (3.34) and (3.36) real and imaginary parts gives

%) = [ [Kalr) + Kolr)] o ar

-0

X_,(w) = 7I{j7+ ?I(,o
The forward speed case differs by the employment of w, throughout, giving
Xj(we) = 7 Kjz + FKio. (3.37)

Thus, the exciting force in the frequency domain may be determined at both zero and
forward speed from the Fourier transform of the impulse response functions for the Froude-

Krylov and diffraction forces, based on a wave of impulsive elevation.



CHAPTER IV

THE USE OF NONIMPULSIVE METHODS IN THE DETERMINATION OF SYSTEM
RESPONSE CHARACTERISTICS

4.1 Nonimpulse Methods

Liapis and Beck (1985) employed a fictitious velocity for the specified body motion
in the radiation problems. The velocity was ¢x(t) = () where ¢(t) = H(t). Because of
the singular nature of the velocity, the responses proportional to ¢; and ¢; were handled
separately. A benefit of this method is that from on; input the response at all frequencies is
determined simultaneously. This can also prove to be a disadvantage because the resolution
in time must be sufficient to determine properly the response at high frequency. This
problem is common in digital signal analysis, where high frequency content is aliased to
lower frequency if the sample period is too large.

The boundary condition developed in the previous chapter for the diffraction problem
contains no infinite velocities, and thus there is no need to consider separately responses
proportional to generalized functions as was done by Liapis and Beck. This fact suggests
that if a specified motion in the radiation modes could be formed that contains a broad
range of input frequencies but a finite amplitude, the radiation and diffraction problems
could be solved by a consistent method. If the specified input for the radiation modes does
not contain frequency content outside the range of interest for the particular problem, the

results might be improved.

4.2 The Choice of a Nonimpulsive Input

An input is desired that has a finite maximum and a sufficiently broad frequency con-
tent. By considering the Fourier transform of the input, several things may be noted. Let
¢(t) be the specific input, with the Fourier transform given as

$(w) = 7¢(1)

where the definition of the Fourier transform is given by (3.6).

27
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First note that for ¢(t) = 6(t), ¢(w) = 1; that is, an input of impulsive nature contains
all frequencies with equal amplitude. Conversely, a sinusoidal input in time has a Fourier
transform represented as an impulse and contains frequency content at one frequency only.

Finally,

00 = [ 410 de= g(o0) = s(~oo),

-0
which is to say that the zero frequency content of the signal is given as the integral of the
input. The implication of this fact is that if the chosen input has a zero final displacement

there is no zero frequency content.
These facts suggest that a transient and peaked velocity with nonzero final displacement

is the best choice of input. The input

{0 = /2

meets these qualifications. The Fourier transform is given by
w) = e,

with

(0= [ ia=1

-0
This choice of input has the useful characteristic that for a — oo the behavior is identical
to that of the input ¢(t) = §(t). It may also be seen that by variation of a the frequency

content may be easily controlled.

4.3 The Determination of Frequency Domain and Impulse Response Behavior
for Zero Forward Speed

First consider the solution of the integral equation (2.6) with Up = 0 and

ad .
% = naGe(t)

s(t) = \/ge—dz-

The force due to this input is given by (2.12) and may be written as

Fi(t) = - g (t)

)= [[ a5t

The formulation of Cummins gives the force as

(4.1)

Fat) = =mie() - [ Kale = )tr) e (4.2)



where p; represents the infinite frequency added mass and Kj; contains the memory of the
fluid response. The impulse response function Kji(t) may be found by equating (4.1) and
(4.2) as

oo
~ie(t) '/0 Ki(t — 7)si(r) = —gie(t)-
Rearranging and Fourier transforming gives
F{am — mise} = F KT
w7 {gix — nise} = T KT,

and solving for Kj; produces

() = 71 { iu?{gj;; BikSe} } . (4.3)

For the input example ¢x(t) = V¢ re

w7 { g — I‘jk\/;:e—dz}

Kjk(t) =7 e-w2/4a

(4.4)

The time-domain formulation may be compared with the traditional frequency-domain

representation as follows. For ¢(t) = e,
Fal(t) = [sz_.,-k(w) - L)le,(w)] e,

neglecting the hydrostatic restoring force term Cj. Substituting gi(t) = ¢t into (4.2) and
taking the limit as t — oo gives

fwpip — ¥ K et = Fa(t).
Equating these two expressions gives
w2”jk -~ WKy = szjk(W) — w Bj(w). (4.5)
Equating real and imaginary parts produces
1 (=]
Aj(w) = pj — ;_/; Kji(t) sin wt dw
o0
B_.,-g(w) = / }(j),(t) cos wt dw,
0

which is the result given by Liapis and Beck. From (4.5) and the (3.6) definition of the

Fourier transform,
1
Ajr(w) = pix + — Im {7 Kin}

Bj(w) = Re {7 K}
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where Im implies that the imaginary part is taken.

It may be noted that in (4.4) while the term e~+*/4¢ becomes exponentially small
for w — o0, wWF{gp - yjk\/;/_we"‘z} represents the memory response to an input with
frequency content given as e_“’z/ e On physical grounds it may be argued that the term in
braces is also exponentially small for large frequency. From (4.3) and (4.4) it may be seen
that

w? {-‘b’k - #f"\/ge_“z} = {0 (Anw) — mix) + Ba(w)} /%2,

Substituting this form into (4.4) gives
Kip(t) = 771 {iw (4in(w) = px) + Bpw) } -

The term pj; represents the infinite frequency added mass, so the first term goes to zero
for w — oo. It is well known that the infinite frequency limit of a body oscillation on the
free surface is an infinite fluid problem with no waves, so the damping term Bj(w) goes to
zero for w — co. Thus, the Fourier transform in (4.5) can be computed. In practical terms,
a discrete Fourier transform would not be expected to produce this limit correctly, and it
becomes essential to assume that the right-hand side of (4.5) goes to zero at some maximum
frequency. This fact provides insight on the determination of an appropriate value of a so

that valid results are obtained at frequencies of interest.

4.4 The Use of a Nonimpulsive Input in the Diffraction Problem

It is worthwhile to consider using a nonimpulsive input for the diffraction problem in a
similar fashion to the input for the radiation problem. In Chapter 3 an appropriate diffrac-
tion boundary condition was determined for ¢o(t) = 6(t). Consider now a nonimpulsive

input of the same form as in the previous section; that is,

co(t) = \/ge-“’. (4.6)

The velocity due to this wave may be found using (3.2):
o0
Véo(P, t) = / K(P,t — r)0(r) dr.
-0

Fourier transforming produces
K V¢0 =7 K F $0-

Substituting 7 K from (3.5) and ¢ = ¢~w?/40 gives
tcos B

FVgo = | jsin | M=) gw?l4a,
ki
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Extending to be complex conjugate symmetric and inverse Fourier transforming gives the

result
1 icos B oc ' .
F17V¢o = Veo(P,t) = —Re { | jsin8 / wekz=i@) gmwi/ta g, 4 (4.7)
ki 0
Then 36 ”
7 = —-—B = - .
I = o n-Veo(P,t)

where ¢7 represents the potential due to the incident wave given by ¢o(t) = v/a/ Te~%
The force due to the diffracted wave is given by (2.12) as

i d
Fp(t)= —gn(t) = —pa// dS ¢n;.
So
Equating this expression with (3.11) gives
[ o]
~il)= [ Kt =r)ole) o
—Q0C
where ¢o(t) is given by (4.6). Fourier transforming produces
—wFgir=FKp7 .

Therefore, ]
-w?g,v
Fo
-1 [ w7 g
Kip(t) =771 {—'—?50 : } :

It was shown in Section 3.10 that the exciting forces were given as

7Kj7 =
(4.7)

Xj(w) = T Kjo + T Kjz

in the frequency domain. Therefore, the exciting forces and the impulse response function
for the exciting force may be found from the determination of the forces due to a nonim-
pulsive input. It should be noted that as in the previous section, F¢o = ¢~9?/48 5o that the
response must be assumed zero for some maximum frequency if the calculations of (4.7) are
to be performed practically.

It may be noted that the boundary condition for the nonimpulsive diffracted wave differs
from the impulsive wave only in the term e~wi/a, Thus, in the limit as a — oo the impulsive
wave is recovered. The physical difference in the two waves is that the nonimpulsive wave
does not contain the shortest wavelengths at finite amplitude. Since the shortest waves
take an infinitely long time to pass the length of the body, it is probable that the integral

equation may be more easily solved for the nonimpulsive input.



4.5 Nonimpulsive Inputs for the Forward Speed Radiation Problem

4.5.1 Equating of Impulsive and Nonimpulsive Forces

A nonimpulsive imposed motion may be used for the forward speed radiation problem

as it was used in Section 4.3 for the zero speed problem. As in (2.2), let

o ]
% = mGr(t) + mugi(t)

S(t) = \/ge“'2 (4.8)
gk(t) = K:o 5;),(7) dr.

As for the zero speed case, the force due to this forced motion is given by (2.12) as

Fi(t) = —gia(t) — hsl(2)

gik(t) = p / /S ) dS gy (4.9)
hix(t) = —p/AOdS¢kw - pf} dbpeni(€x n)- W,

and ¢ represents the solution to (2.6) with Uy # O and d¢;/dn given by (4.8).
Cummins shows that the force may be written

Fi(t) = —ninsa(t) — dude(t) — cinsu(t) — f_ ; K (t - 7)6a(r) dr. (4.10)

The function Kj;(t) represents the memory as in the zero speed case. The constants uj; and

bjx were shown by Liapis and Beck to be

Bjk = ﬂ/[gods¢1kw
bk = P[/'/Agodslkzk'y - /:/SOdSlﬁumj - fr dliprini(£ X n) ﬂ}

Physically, c;i represents the infinite fluid Munk moment plus an additional contribution
to the Munk moment due to the presence of the free surface at steady forward speed.
The potentials ¢;; and t2; meet the following boundary conditions:

Y, ¥u=0 onz=0

Vi, Vo — 0 at o©

OYue _ (4.11)
3n =n on So

Othar _

—_——=m on Sp.
on
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These are both solutions to the integral equation

el (-3 =2 [ C)

It may easily be shown that the first two terms of b;x sum to zero using Green’s theorem,

which states
//[ 4V [V 22 — V4] = f as [ma—'”l ¢2a¢1} (4.12)

Since y; and g are harmonic in the fluid domain V, the left-hand side is = 0. § is given
by SoU Seo U Ss. On S, ¢1 = ¢ = 0, and on Seo, d91/0n = O¢3/3n = 0. Thus, (4.12) may

be rewritten as

//sodS[M,.—'p,,;,-]:o,

with dv;/dn and 912/ n given by (4.11) above. Therefore, b;x may be rewritten as simply
bix = -Pf;: dlprini(€ X n) - W.

. The potential 4, represents the infinite frequency limit of the radiation problem where
no waves are produced. t; is zero on the free surface so that b;; is zero for the vertical
modes heave, pitch, and roll. For the other three modes the potential is singular at the
free surface and body intersection. However, for all modes the damping must go to zero at
infinite frequency, and thus &; must go to zero for the horizontal and vertical modes. The
term bj;; will be dropped from further expressions for the force.

To relate the force due to a nonimpulsive motion to the general expression for the force
(4.10), consider the motion ¢(t) given by (4.8).
Equating (4.9) and (4.10) gives

—p5xsk(t) — cirs(t) — /_ ; Ki(t — 7)6u(r) dr = —gin(t) — hu(2). (4.13)

Taking the limit as ¢ — oo of this equation, assuming the limit as ¢ — oo of Kji(t) = 0,
gives
— g(t) — hu(2).

To determine c¢j, the large time limit of the radiation forces must be found.

T = t— o0
4.5.2 The Large Time Limits of the Radiation Forces

To consider the limit as ¢t — oo of g;x(t) and hjx(t), consider the potential ¢(t). Since
3¢1/9n becomes independent of time for ¢t — 00, ¢ must become independent of time for
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t — 00. The limit for ¢; may be found from the integral equation (2.6) for the radiation

problem

éx(P,t) + —// dS éx(Q, t) (— - —) //sOdS —(Q, 1) ( )

_1 dr// ds [¢(Q,f) (P:Q"")’G(P’Q’t—r)'_¢k(q'r)] (4.14)

+Er1—g- drf dn UO (G(P Qt 1‘)¢€(Q,T) ¢(Q;T)G€(P Q,t—r))

+Uo($(@ )G (P, @t~ 1) — GP, @t — 1)pr(@7))]

where

Ody .
3 = nSi(t) + mise(t).
Using ¢(t) from (4.8), note that

Iim 3¢k

= my,.
t— oo an k

It may be observed that for two functions, f(t) and g(t), the convolution may be rewrit-

ten as

4 oo
/ f(t)g(t —r) dr = / f(t—r1)g(r) dr.
Jd —~00 0
If f(t) and g¢(t) have the properties that

lim fiy=c

imoo  o(t)=0, (4.15)

then - - .
om o [Tre-nane=c [ a0 e

Noting that ¢; and 3¢,/ n meet the condition for f(t) in (4.15) and G(P, @ t—r) meets
the condition of g(t), the limit ¢ — oo of (4.14) may be written

e [t -2 [ (-
—_//sods [4,,@/ %gdt_m"/o Gdt] (4.16)
+m£ dn U2 [¢m€/0 Gdt"¢koo/0 Ge dt]:

where use is made of the fact that

%qs,m—»o for t— o0

w a ~ ~ e d
/ = Gdt= G(o0) — G(0) =
s ot
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Since in general,

0o © o7
/ Gdr #0 and / a—GdrqéO,
0 0 on

lim

t— o0

(P, t) = dreo(P) # O

lim

f— oo 9ik(t) =P/:/S0ds¢koo"j

hix(t) = —p/fsodsmoony —pfi: UProoni(€ X n) - W.

Since ¢io is independent of time g;x(c0) = O, the force may be written as

lim

t— oo

lim

Fip(eo) = | | — hal(t) = —cqn,

—

so that
Cik = -P//s ds¢koomj_l7f; dprooni(€ X n) - W.
)

It may be shown that the term Kj;(t) as defined in Liapis and Beck (1985) has the limit

lim -
t o oo Krlt) = ek — &G # 0

where

Gk = —p -//s dS Yaem; — P£ dltporni(€ x n) - W.
0

The formulation of Liapis and Beck implies that K; — O for ¢ — oo by taking the
Fourier transform without regard to the large time limit. Ogilvie (1964) states in his
Appendix B that, in fact, the term does go to zero. It may be shown that if their K;(t) — 0
for large time, the free surface boundary condition is not met. The result is analagous to
neglecting the terms involving fo°° Gdr and fo°° a'é/an dr in (4.16). Their formulation may
be corrected as follows by subtracting the large time limit and adding it to ¢;;. Denote the
terms Kj(t) and c;;, which are given by equation 36 of Liapis and Beck, as 7(,-;‘(t) and C,
respectively. The following substitutions,

~ lim ~
K(t) = Kiu(t) — , ' Kinlt)

lim

() =G+, Kalt),

oo

may be employed in their equation 40 to produce the correct results for the added mass

and damping.
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4.5.3 The Fourier Transforms of the Radiation Forces

To determine the added mass and damping and impulse response functions for the
radiation modes, (4.13) must be Fourier transformed as in Section 4.3 for the zero speed

problem. Rearranging and Fourier transforming (4.13) gives
F{a + hie — miae — caase(t)} = 7 KT . (4.17)

From the form of ¢x(t) and the previous discussion, it may be seen that the limits of the

terms on the left-hand side are

i =0
Hirse(t) = 0O
lim
t— oo cirsi(t) = cji

hix(t) = i,

so that the term in braces goes to zero for ¢t — co.
The added mass and damping may be determined as in Section 4.3 for zero speed to be

1
Ajk(w) = pjx + - Im {7 Kj}

(4.18)
Bjx(w) = Re {7 Ku}.
Dividing (4.17) by 7¢; gives
7 {9k — minse + hix — cinge} _ F{Ka). (4.19)

7{}
Equation (4.19) may be used in conjunction with (4.18) to compute the added mass
and damping from the nonimpulsive input case. It may be shown as was discussed for the
zero speed case that the high frequency limit of the fraction in the left-hand side of (4.19)

goes to zero.

4.6 A Nonimpulsive Input in the Diffraction Problem with Forward Speed

An incident wave with a nonimpulsive elevation was considered for the zero speed case
in Section 4.4 and can be developed along similar lines for the forward speed case.
Consider an input ¢o(t) where the incident wave velocities are given by

Véo(P,t) = /‘—00 K(P,t - 7)s0(r) dr.

Fourier transforming with respect to w, produces

F Vo = 7. K750

icos B _
= 5s}3ﬁ weHs= =g, (we)
1
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where 7. K is given by (3.18). Let ¢o(t) = v/ a/7re“"2; then ¢p(w.) = e~w#/43 and

1 [ icos 8 oo - . .
Veo(P,i) = TRe | Gsing | [ wermim el g, o

% 1 ki | o
While it may not appear obvious from this formula, the integral is very difficult to evaluate

because of the encounter frequency w? in the exponential term.
A better choice of input is ¢o(w.) = ¢~w?/48 where we =w — kUycosB. For this case,

1 1cos 8 0o ' .
Vgo(P,t)= ~Re { |jsinf / wekz=iw) gmw/dagluet g, 4 (4.20)
ki 0
1 O 2 .
$o(t) = = Re { / e /“e""“dwe} :
n 0

The integral equation (2.6) may now be solved for ¢7 where
d¢7

and

Bn = —n-Vgo(P,t)
from (4.20).
The force due to the diffracted wave is then given by (2.12) as
Fi(t) = —9;2(t) — hr(2) (4.21)
where N

()= [[ aserm,

hjz(t) = —p/_[sodstﬁvﬂy - pfr dedrni(L X n)- W.
Equating (4.21) with the expression for the force given by (3.33) yields
~aa() - k) = | Kinle = n)olt)
and Fourier transforming produces -

—weFogix — Fehix = T Kiz Feo.

Therefore, )
?Kjﬂ — —WeleGik — }'ehyk
) Feso
. 4.22
Ky = 7! {-wefegjk - -"Fehjk} (4.22)
? ¢ Feso '

As was shown in Section 3.10, the exciting force in the frequency domain is given by

Xi(“’e) = -79KJ'0 + ?31(17'
Therefore, it is possible to determine the frequency-domain representation or time-domain
impulse response function for the diffraction forces at steady forward speed from a non-
impulsive input. Equation (4.22) requires that the numerator goes to zero more quickly
than F¢o does. Therefore, a must be sufficiently large so that the exciting force may be
considered zero in the range that ¢~w?/48 becomes small as discussed in Section 4.4 for the
zero speed problem.



CHAPTER V

NUMERICAL METHODS

5.1 The Integral Equation

Equation (2.6) can be solved using a numerical scheme. The approach used here is
very similar to that of Liapis and Beck (1985). The basic concept is to discretize the body
surface Sp into panels that approximate the surface and assume the potential ¢ constant
on each panel. The boundary condition ¢/dn is known, and the function &(P, Qt-—r)
is given in terms of an infinite integral. The evaluation of G and its derivatives follows the
same basic approach as Liapis (1986); details are given in Appendix B. The integrals over
the panels can then be performed partially numerically and partially analytically so that
the equation reduces to a system of simultaneous algebraic equations, with the unknowns
being the potential strength on each panel. The integral equation is a Volterra integral
equation in time and is solved by a trapezoidal integration scheme. A consistent approach
was used for zero and forward speed as well as for all modes of motion. The most general
development is given here, with the zero speed case included by setting Up = O in the final

result.

5.2 The Approximaticn of the Body by Discrete Panels

The approach given by Hess and Smith (1964) is used to discretize the body surface
into plane panels. Points on the body surface are chosen as corners of the panels. In areas of
compound curvature it has been noted that the panel cannot pass through the chosen corner
points, so that the panel vertices approximate those of the input data in a least squares
sense. Hess and Smith’s development includes all the details of the determination of the
pertinent geometric quantities for these panels. The direction of the unit normal chosen by
Hess and Smith is opposite to that employed here and must be taken into account.

38
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5.3 The Discretized Integral Equation

The integral equation (2.6) includes line integrals of a form that cannot be readily

evaluated. The line integral terms are

219/ drf dn ¢kaG 3¢k 219/ drf dn ¢k oG - G?ﬂ] (5.1)

The unknown terms are d¢;/3€ and d¢;/7. Liapis has shown that for a wall-sided body

the term

- f e =-f st z)+fdn¢k L+ ansilene ) 62

which does not include derivatives of the unknown potential and is more easily determined
numerically. It is assumed that most bodies of interest are wall-sided or nearly so at the
waterline.

The line integral contribution results from the application of Stokes theorem on the free
surface. The line integral is properly evaluated on the free surface. However, the potential
is not known on the free surface. The value at z = O is approximated here by a linear
interpolation of the constant potentials on the panel that meets the free surface and the
next panel directly below it. Because the intersection of the body and free surface represents
a singular line, the implications of this approximation are not a.ltogether obvious.

The second term of (5.1) was integrated by parts by Llapls to give

Vo /* }( oG
ol dr rdr)dn‘ar. (5.3)

Alternatively, this term may be integrated by parts as

ngf fd" ¢"8_G_Gaatk] - / fdncam

+— f dn[4(P, )G(P, Q,0) — $i(P, —00) G(P, @, )]
ngJr

where the second term on the right-hand side goes to zero because of the initial conditions
on ¢; and the characteristics of G. The final result is

/ o f T (5.4)

Either of these forms may be used, but (5.4) requires numerical differentiation of ¢
with respect to time. However, it has been found that better results are produced when
the form (5.4) is used rather than (5.3), because ¢4 is a slowly varying function. Although
a’é/ar is known analytically, it becomes large near ¢t = 0 and amplifies errors in .



40

The line integral (5.4) is computed as follows:

d¢; _ Up f / atbk
/ fdcar‘wgz dn | G+

where M' denotes the number of panels on the free surface.
Approximating the derivative of ¢; as

0¢x . Pk(tnr1) — daltn-1)

or 2At
and integrating using a trapezoidal rule gives
N-1
/ dr Ga¢k ~ Atz Gty - t”)¢k(tn+1)2Afk(tn—1). (5.5)

The end weights of the integration are not included because the end terms are O.
It was found that this trapezoidal integration scheme was not accurate enough for G

with ¢t — 7 small, because of the magnitude and oscillatory nature of G near the free surface.
The line integral may be approximated more closely by dividing it into two parts as

/ d~5¢k /‘N‘dGacﬁ 'dG¢k

or tye or

Using the approximation given in (5. 5) for the first part,

tars —
/'N & Gt—aj’—""—‘At Z Sew - ¢k(tn+1) Biltn-1)

—00 2At
1 Sr(tnv=+1) — Drltn=-1)
+ ZAtC(ty ~ tn-) S .

The sum may be rewritten as
N“-l

= Z G(tw — ta)pa(tnr1) — E G(tn ~ ta)pr(tn-1)

N*-2
=3 S~ Bt~ te)gult) — & 3 Bt — tmea)bults)
n=2 n=1
N*

=z Z $u(ta) (Gt = ta-1) = Gltw — tas1)] + 5 G(tN — tye_1)i(tne)

n=2
+§a(tN — tye—2)Pr(tne—1) — EE(tN — ta)dx(t1).

Noting that from the initial conditions ¢(t1) = 0, assuming ¢; constant across a panel,

and combining terms gives
N a¢,, N2 ” .
f dq/ dr G = Z bi(ta) [fr dnG(tn — tn-1) “ﬁ dn G(tn — tn+1)
n=2 i i
~ 1 -~
+ fr inCltn ~ tye-)altwe-1) + 3 . 1Ctw = tre-1)n(t)

+i fr,- dna(tN — ty) [Baltae 41) = Sx(tn+-1)]-
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The integral from ty+ to t may be evaluated more accurately as follows. Let d¢:/dr

be assumed constant over the interval At and given as

00k _ drltns1) — daltn) .
ar At '

substituting gives

“'a¢k E ¢k(tn+1) ¢k(tn) fnt1

tN- tn

drG(P,Q,ty — 7).

To compute the line integral, ¢; is assumed constant along the panel, and Gaussian

quadrature is used to evaluate the integral in time. The result is

f( in /t 55 L Z [4(tms1) — 4(2a)] f dn / ar&(P, Q tn — 7).

Using this development for (5.4) .and the line integral terms given in (5.2), the integral
equation (2.6) in discretized form is

M
Y Ami[da(tn)), = Bml(tn) m=1,2,...,.M (5.6)
=1
where
M = number of quadrilateral panels
N = current time step

éx(tn)|. = value of the potential ¢.(P,t) on the ith panel at ¢y
]

mi=1 —UdSnV 0 qu/‘ thN T i=m
27rgAt 4 ( ) !
__ V ___ - ;
[/dS tf dr)/ ter(tN r) 1£¥m

By = BY + BY

BS,})— { // ——— ¢k(Q;N)

+ ’2-“_: Z //‘ds G(P, Q tn - t,.)%m(o, t,.)}

+§{A‘U2 Z}( dnG(P, Q, tn - t,.)—dn(Q, tn)}

=1
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B® = _Z{At Z/ dS¢k(Q, tn) G(P Q,tn — t,.)}

i—2

—): A‘U° Zm(o,tn)[f dn (e c)if 3?)

+ § #B5 e

M -
- ;rU_;’z_:{% Z ¢k(Q;tn)f.d’7[AG’(tN— tn+ At) — Cltn — ta — AL)]

+ Nz_:z ¢k(tn+1) $x(tn)] f‘ / &3P, @, tn — 1)

n=N*

+ Howe 1) + ¢k(t~'+1)] f inG(tw — twr) + 38r(tne) § dnBltw = tye-1)

¢k(tN—1) f
IN-1

M' = number of panels that intersect the free surface.

er(P Q tn — T)}

The initial conditions on the potential and on the Green’s function are ¢(P,t;) = O and
G(P, Q,tn — ty) = 0, so that the endpoints of the trapezoidal integration (n=1,n = N)
are zero and the half weights are not included. The contribution to B( ) due to the term
involving 8¢;/3r has been manipulated into a form that is simpler to calculate numerically.
The term Bg) includes the unknown potential ¢, while the term BS,}) includes known
functions only. The term BS,} ) may therefore be computed more efficiently by a fast Fourier
transform convolution than by the direct convolution as shown. Because ¢(tx) is unknown,
all terms involving it have been moved to the left-hand side of (5.6). It may also be noted
that the left-hand side matrix is independent of time and needs to be inverted only once.

5.4 The Green’s Function Integration over Panels

The assumption of a constant potential over a panel leaves surface integrals of the

following forms to be evaluated:

L= /dS ———)
’F//“S'a—,,;(%'%)
13_/ d.S' G(PQ, r)

L = ds — t—r1).
4 f [ 4552 8RQ =)
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The integral I, has been evaluated analytically by Hess and Smith, who give a very
complete development of its evaluation with a multipole and simple source approach given
for large r. The integral J; may also be calculated analytically for the radiation case where
8¢/dn is constant across the panel. For the diffraction problems this is not the case, and
a bilinear mapping and Gaussian quadrature method as employed by Liapis (1986) and
discussed in Appendix B is used. It was found that when r is small it is important to
determine the terms involving (1/r — 1/¢') accurately. 8¢/dn is assumed constant when r
is small, so I; may be evaluated analytically. The integrals /s and I; are both computed
by the coordinate mapping and Gaussian quadrature method. For the diffraction problem,
d¢/dn is not constant across a panel and must be included in the integration. For the
radiation problems, 9¢/3n is constant and may be taken outside the integrals Ij, Is, and
1.

5.5 The Numerical Determination of Forces

The forces on the ship due to the potential ¢; may be computed by (2.7):

Fa(t) = -ggwk(t) = h(t)

9jk=P//;ods¢k7lj
hjk=_P/[90dS¢k”5—P£ deprni(€ X n)- W.

Using the discretized body shape and potentials, these may be rewritten as

M
9ik(ta) = PZ [¢k(tn)]’- [n]s A

=1

M
hik(ts) = —p Z[¢k(tn)].- A; [myl;

M
-0 _[#u(ta)]; & [ns)i [(£ x m) - W],

=1
where
A; = area of ith panel
[n;)i = nj on ith panel
[m;]; = m; on ith panel
¢; = waterline length of ith panel
[(Q X n)- ﬂ]‘.= (€ x n) - W on the ith panel.

The derivative of g;x(t) with respect to time may then be taken numerically to obtain the
force Ff(t).



CHAPTER VI

NUMERICAL RESULTS

6.1 The Results of Zero Speed Calculations

Calculations on a Sphere

The theory as developed was first tested on a half-submerged sphere. The sphere was
approximated by 65 panels on a quarter of the submerged body, exploiting the sphere’s
two planes of symmetry. The use of symmetry planes for the diffraction problem requires
that the diffraction boundary condition be divided into appropriate symmetric and anti-
symmetric parts; the resulting potentials are summed. Four potentials must be solved for
two planes of symmetry. However, this approach is much more efficient than multiplying
the number of panels by four without the use of symmetry planes. Figure 6.1 shows the
nondimensional diffraction impulse response functions for both heave and sway. These re-
sults can be compared with frequency-domain results by Fourier transform as in (3.37). The
diffraction force is computed from the Fourier transform of Kj7, as well as by the Haskind
relation, using the results of Liapis (1986). These are compared with the results of Cohen
(1986), who used a multipole expansion, which, in the limit of infinite terms, is exact for
the special case of the sphere. The resulting amplitude and phase are shown in Figures 6.2
and 6.3 for heave and Figures 6.4 and 6.5 for sway. Good agreement is shown throughout
the frequency range. It is believed that the slight variation is due primarily to the panel
definition of the sphere. The panels tend to be very narrow near the bottom of the sphere
due to the simple paneling scheme used. Thus, as the number of panels increases, the body
shape is more closely modeled, but the numerical accuracy becomes worse.

To verify the approach of using impulse response functions to determine forces due to an
arbitrary wave, a direct convolution of a sum of sine waves was performed. The frequency

domain gives

Fift) = hn{ng(wn)e“"‘}

4



45

where w, represents an arbitrary frequency. The force from the time-domain approach is
given by (3.12) as -
RO = [ dr[Kale=r)+ Knle=n)]ste)

where

N

¢o(t) = Im {Z e"w"'}.
n=1
The chosen wave is plotted in Figure 6.6. For the time-domain formulation, the wave

begins and ends as in the figure. For the frequency domain, the wave system is assumed
to have always existed. Thus, the time-domain approach is expected to have a beginning
and ending transient. The results are in Figure 6.7 and show excellent agreement. The
sine waves are of unit amplitude, and the forces are scaled accordingly. The relationship
with the frequency-domain method has thus been verified. The time-domain approach also

demonstrates the capacity to deal with transients.
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Calculations on a Wigley Hull Form

The exciting forces were also determined at zero forward speed for a Wigley mathe-

matical hull with the hull shape given by the formula

z\? 2z\? 2z\? z\?2 z\8 27\ 2\ 4

5= (1" (?) )(1‘ ('E) )(“0-2(7) ) + (?) (1‘ (?) )(1‘ (7—:) ) :
The hull was approximated by 120 panels on half of the body. The heave and pitch
impulse response functions for the Froude-Krylov and diffraction forces are plotted to show
the character of the curves. Since the body is fore-aft symmetric, the heave and pitch
Froude-Krylov force impulse response functions are symmetric and antisymmetric, respec-
tively. The diffraction impulse response functions show no such symmetry. These impulse
response functions are Fourier transformed as in (3.37) to give the frequency-domain excit-
ing force. The results are compared with the strip theory of Salvesen, Tuck, and Faltinsen
(1970). As may be seen from the impulse response functions, the exciting force is dominated
by the Froude-Krylov force, and there is good agreement between the two approaches. Since
the body is symmetric, the Froude-Krylov force is either in phase or 90 degrees out of phase,
so that the phase is determined from the ratio of the diffraction force to Froude-Krylov force.

The phase shows good agreement also.

6.2 The Results of Forward Speed Calculations

For the forward speed calculations two approximations have been made. The first is to
neglect the steady perturbation velocities due to steady translation. The body boundary
condition term m for the radiation problem becomes simply m = (0,0,0,0, Uons, — Uons).
This approximation does not simplify the calculation of the unsteady problems but was
made because a reliable method of determining the steady perturbation potential was
unavailable. A parallel approximation is made in the evaluation of the pressure from
Bernoulli’s equation for force calculations. The steady velocity vector W is approximated
by W = (-0,,0,0).

Diffraction Calculations

The diffraction force calculations were performed for the Wigley hull as in the previous
section. For the forward speed results, recent experimental results by Gerritsma were
used for comparison. These results were made available through private correspondence.
Calculations were performed at Froude numbers 0.2 and 0.3 for head seas. Some calculations
were performed for non-head seas, but no experimental results are available for comparison.

The results from strip theory calculations are also included. Good agreement is seen
for the slower case, with the results appearing a bit worse for the higher speed. In general
the results appear better than the strip theory calculations. The current pitch phase results
appear to be mirrored about -90 degrees compared to Gerritsma’s experiments. Results
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from other ship shapes indicate that the phase of the pitch exciting force increases from
-90 degrees rather than decreasing, as given by Gerritsma. Private communications with
Gerritsma indicated that he could find no errors in his preliminary results. It may be noted
that strip theories tend to give results that go from -90 degrees at infinite wavelength to a
larger negative phase angle for shorter waves, opposite to what most experiments indicate.

The current method follows the trend of increasing phase angles with shorter wavelengths.

Radiation Calculations

Radiation calculations were performed at both zero and forward speed to determine
the effect of using a nonimpulsive input as was discussed in Chapter 4. For comparison
with the zero speed impulsive results of Liapis, the same Series 60 Cp = 0.7 discretization
used by Liapis and Beck (1985) was employed, with 108 panels on the half body. The
heave memory function Kss(t) is plotted in nondimensional form for both a nonimpulsive
input where ¢3(t) = me'“‘z and an impulsive input where ¢3(t) = 6(¢). The impulsive
results are taken from Liapis and Beck, with the nondimensional time-step size given as
At = At\/g/L = .06263. For the nonimpulsive input, At' = .1565 and a(L/g) = 10.204. It
may be noted that the nonimpulsive method gives a smoother curve with a larger time-step
size. The added mass and damping as determined by the two methods are comparable with

the nonimpulsive approach, giving a slightly smoother curve.
To perform the Fourier transforms of the radiation forces computed directly in the time

domain at forward speed, it was shown in Chapter 4 that the value of the large time force,
cjx, must be determined. For the simple choice of m used in this work, only the pitch and
yaw modes have a nonzero value of m; and thus a nonzero value of ¢x0. The function ki (t)
defined in (4.9) was shown to go to cj at the limit of infinite time. However, the numerical
solution shows oscillatory behavior, and this limit is difficult to determine. Because of the
simple choice of m, the limit may be obtained in an alternate fashion as follows. Integrating
(4.14) with respect to t gives

[_ dtéi(P,t) + —/ dt // dS $x(Q, ¢) (— - '1';)
=_ dt/s dsa¢*(q,t) (___1.)
0

=30 ““f “‘f/ "S[es(q,r)aG(P Qt-1)-G(P,Qt- ”a¢"(""’]

+2—ﬂ’-; /;oo dt '/_w d‘l’£ d"[Uo G(P, Qt— T)¢5(Q,1’) - ¢(Q,r)G€(P, Qt- ,.))
+Uo(¢(Q,7)Gr (P, Qt —17) — G(P,Q,t- r)¢,(Q,,-))] )

Exchanging orders of integration and making the substitution

¢(P) = /—oo dtéi(P, t)
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¢k(P)+—// dSokanQ <___) 2“//50 3¢k (‘“%)
Iy =
+%£dnvé[¢ke/0 Gdt—¢,‘/0°°z;€d,],

which is the same integral equation as that for ¢ given by (4.16) with m; replaced by

yields

63;,/ dn. For the simple choice of m given, it may be noted that

362 / 0¢2 f°° s
Bn . dt an = - dt na¢a = ng

and

an o On

Thus it may be shown that o
€6 — — Uof dt’lzz(t)
—o0

[+ <]
Ces = -Uo/ dt hez(t)
-0
[+ o]
c35 = Uo/ dthss(t)
—o0

)
css = o / dt hss(t).

The constants c;; were found to be more accurately determined by this method than an
attempt to determine a large time average value directly from hix(t).

Forward speed calculations were performed for the Series 60 ship at Froude number
= 0.2, with 176 panels on half the hull. Results are plotted for heave and pitch added mass
and damping. While the curves plotted here are somewhat smoother than those of Liapis
and Beck, there is not significant improvement over their results. Fairly close agreement is
shown with Inglis and Price’s results (1981), which were determined by a frequency-domain
approach analagous to that employed here in the time domain. The results plotted here are
those referred to by Inglis and Price as method IP2.

Some experimental results for the horizontal modes are available in Vugts (1971). Re-
sults are presented from Inglis, as well as strip theory results, for comparison. While the
agreement with Vugts’s experiments is not particularly good, the agreement with Inglis
and Price’s computational method is good for most of the frequency range. This fact lends
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credence to the argument that the mathematical model may neglect some fundamental
physical effect, such as viscosity or the nonlinearity of the free surface boundary condition.

Finally, results for the heave, heave-pitch cross coupling, and pitch added mass and
damping are presented for the Wigley mathematical hull used for the exciting forces. Ex-
perimental results were made available by Gerritsma. The results are plotted for Froude
numbers 0.2 and 0.3. The agreement with the experiments is generally good, with improve-
ments over the strip theory results in almost all cases. The pitch results are the worst, with
the higher Froude number giving particularly poor agreement for the pitch added mass.
The pitch curves show an unexpected lack of smoothness. Changes in time-step size and
panel number seemed to have little effect on these results. The explanation for this is not
altogether clear. Several possibilities exist. The first is that the line integral terms cannot
be determined as accurately as desired because of the difficulty of determining the potential
or its derivatives at the free surface. A second possibility is that the approximation of the
steady perturbation velocity by the free stream causes the errors. Inglis and Price found
that if the steady perturbation velocities were included, they would have to be determined

quite accurately or worse results might occur.
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CHAPTER VII

CONCLUSION

The initial objective to solve the problem of the diffraction of waves due to a ship at
zero speed and steady forward speed directly in the time domain has been achieved. The
results allow the forces due to an arbitrary wave on a ship to be calculated in a deterministic
sense. By the use of Fourier transforms, the technique employed here has been shown to be
consistent with more traditional frequency-domain methods. It has also been shown that
nonimpulsive motions for radiation problems may be employed to determine responses to
impulsive motions. Because of this, a consistent method may be used to solve the radiation
and diffraction problems for any of the six modes of motion.

While the time-domain approach employed here may be considered more general than
the three-dimensional frequency approach, it is important to note that the basic physical
assumptions are much the same. The fluid was considered as inviscid and irrotational, and
the problem was linearized with respect to the free surface boundary condition, the body
boundary conditions, and the pressure evaluations employing Bernoulli’s equation.

The work completed here may be considered as a generalization of previous work and
includes the computation of the diffracted wave potential at forward speed due to an ar-
bitrary wave. No other work is known that develops a fully three-dimensional solution to
the diffraction problem. The results obtained appear reasonable and agree most closely
with those of Inglis and Price (1981), who employed the same basic assumptions but in a
frequency-domain formulation.

Much of the time gained by the use of the simpler Green’s function available in the
time-domain approach is lost in the computation of convolution integrals. The convolu-
tion integrals as developed here are simply numerous multiplications and additions that
should be very amenable to calculation by modern vector and parallel processing comput-
ers. The computation of the necessary Green’s function remains the greatest difficulty with
the frequency-domain approach. On the other hand, the time-domain Green’s function is
much simpler and could be made less time consuming to compute by more sophisticated

methods or polynomial approximations.
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An additional advantage of the time-domain approach is the ability to consider unsteady
forward speed or a ship maneuver. In these cases, the frequency-domain approach cannot
be applied. The time-domain solutions discussed here demonstrate the validity of this
approach for an arbitrary motion about the equilibrium position at steady forward speed.
The extension to unsteady forward velocity is not unrealistic and was discussed in detail by
Liapis (1986).

The theory as developed thus far allows for the determination of all hydrodynamic
forces necessary to compute the linear ship motions. The motions may easily be computed
by Fourier transform as in Chapter 6 or by direct numerical solution of the differential
equations of motion. By that approach it would be possible to include other linear or
nonlinear effects into the analysis, such as a nonlinear mooring line force.

An important area needing further research is the asymptotic behavior of the radiation
impulse response functions. If valid expressions could be developed for large time in the
various modes of motion, numerical computations could be truncated when the asymptotic
range was reached, which would save computer time and storage and improve accuracy.

The computational scheme could certainly be improved, and possibly the area worthy
of most consideration is that of improving accuracy without decreasing time-step size. One
possible solution might be to return to the integration of the Green’s function over At
intervals. This was done analytically by Beck and Liapis (1986) for the zero speed case but
could be done numerically for the forward speed case.

A topic needing further research not only in this problem but also many related ones
is the evaluation of the line integrals produced by the application of Stokes theorem. The
singular line at the intersection of the body and the free surface is not well understood.
Common practice has been to evaluate the potential on the free surface as if it were on the
body just below the free surface. Because of the proximity to the singular line, this approx-
imation is not expected to produce accurate results. In addition, the physical significance
of the line integral contribution is not clear; hence, the effect of neglecting or improperly
evaluating the line integrals is not at all obvious.

The inclusion of the actual steady wave due to the translating ship instead of the free
stream as was discussed in Chapter 6 is an area needing further research. The difficulty
does not really lie in the steady wave being included in the current formulation but in the
actual calculation of the steady wave potential and, possibly more important, the velocities
due to the wave and wake system combined.

There is value in pursuing linear theories that attempt to reduce further the required
assumptions, as was done here. The knowledge gained from doing so includes understanding
the effects that a linear theory, no matter how complete, cannot model. The need to
understand nonlinear influences, especially those that make significant contributions, is

great, and it remains a challenge for further research.
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APPENDIX A

THE EVALUATION OF IMPULSIVE PRESSURE AND VELOCITY FOURIER
TRANSFORMS

In Chapters 3 and 4, the pressure and velocity due to impulsive and nearly impulsive
waves were derived in terms of certain Fourier transforms. These Fourier transforms will

be evaluated here. The integrals have the following forms:

(P t) = ”;3 Re { / dw eH27) e“"} (4.1)
0

1 tcos B o0 S

K(P,t)=—-Re{ |jsing / duww M5~ gt (4.2)
m z‘- 0
and, with forward speed,
(P, t) = ”;‘l Re { / dw o2~ e""e‘} (A.3)
0

1 iCOSﬂ ) . .

K(P,t) = = Re ¢ |jsin8 / dw g €M) et 4 (A.4)
ki 0

The evaluation of the forward speed integrals (A.3) and (A.4) is more easily performed
by a change.of variables. Since

we=w — kUgcos

d‘)g = (1 - -&g—dUoCOSﬂ) dﬂ,
substituting gives

[+ <}
(P t) = ‘-’:-’ Re { / dw (1 - -2‘91 Up cos ﬂ) Ha—ilw+Ugtcos F)] e""‘} (A.5)
1]

iCOSﬁ 00
K(P,t) = 1—1|_-Re { [js@np] /; dw(l - %Uocos ﬂ)weﬂ'-ﬂw“fo““ﬁ)le‘"‘} . (A8)
ki

It may be noted that all of the required integrals then have the following form:

o0
I(c, b)) = / e (@F 42 gy (A.7)
0



where .
a=-2+ -t-(w + Uptcos f)
g 9
it
= —-5,
Abramowitz and Stegun (1964) give the following integral (7.4.32), which may be used
to evaluate Ip:

— (az2+2bs+c) =l\/—"2 ( )
fe dzr A erf \/—z+\/_ + constant

with the restriction that o # 0. Letting ¢ = 0 and taking derivatives,
O [ e g _g / ge-(@s24202) 4

ab

—(as? +2b5) ___‘_”\/-f 12 /a ( _”_)
/ze dz 7\ 3t erf \/E:H-\/E

1 ®/a,~(a?+26+b2/a)

2a
% e~ (et +2b2) 4o — _/z2e—(azz+2bz)dz
~(az2+2b2) __:L\/'{_ b /a ( L)
/zze dz V3t erf \/Ez+\/a
a2t (Ve )
+'2? erf \/_2-4-\/—_
+ %(5 - a_bz) ebz/ae—(asz+2be+b2/a)'

Now the integrals must be evaluated on the interval [0; 0]. Consider the function erf(z)
for large arguments. Abramowitz and Stegun state (7.1.16)

erf(z) = 1 for

Z— 00

Here z = \/az + b/\/a. For z— oo, consider only arg vaz

arg(z)| < Z— (4.8)
a= -3 - l(w + Uptcos B).
Since z < 0, a is in the right half of the cornplex plane so that

lim
2 <
£ 00 a.rg\/_z+\/— y

Using the limit (A.8) for erf(z), the three definite integrals become

/‘00 —(a22+2bz)dz___\/__ /e _ \/_52/0 rf( )
[t emgg = [T b Rt (49)
o]
—(as?+252) ___\/E(i ___)(b’/a_ 2o (2 )__"_
/(; Pe dz s\= +2a2 e erf(\/a_) 7t
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The three integrals can then be written recursively as

_1 /7 2 (_”_)
I = 2\/:e erfc 7o
L = ——b-Io + la

a 2

L= —£I1 + lC!I().
@ 2
The error function may be related to the function w(z) by (7.1.3) of Abramowitz and

Stegun,
w(z) = 7 erfc (—12),

so that Iy may be rewritten as

1 [m 1
Io(a, b) = 5 ;w<ﬁ)
Thus, (A.1), (A.2), (A.5), and (A.6) may be rewritten as

P(P, 1) = % Re {Io(a, b) - ?-I-]°—°°—S_Ezl(a, b)}
icos 8 ’ Uo20
K(P,t) = ~Re { [f s;nﬂJ (e - 22228 1, )) }
ki

where .
a= —g + g(w + Uptcos B)

b=-2

3

o) = [Ze

s.o(t) = ;r]; Re {/o e—w2/4ceiu¢t d’)e}

For the nonimpulsive wave case,

at zero forward speed and

at steady forward speed.
The velocity may be computed easily by the substitution
L —
a=a+ yre
Then (4.7) and (4.23) become

icos 8
V¢0(P, t) = %Re { I:j Siﬂ] (Il(a', b) - ﬂ;.ﬁ]z(a', b)) } Up 2 0.

The function w(z) may be calculated numerically in a straightforward manner. The
algorithm employed in the numerical analysis was developed by Gautschi (1969).
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APPENDIX B

THE NUMERICAL EVALUATION OF G

The oscillatory part of the Green’s function a(P, Q, t — 1) given by (2.4) is unavailable
in closed form and must be calculated numerically. Because its computation represents a
significant portion of the computational effort, the approach used here must be considered
carefully. The method employed here closely follows that developed by Liapis (1986).

The Green’s function as written is a function of the two spatial points P and @ and time
t — r. By appropriate substitutions it may be reduced to a function of two nondimensional
parameters for evaluation.

From (2.4) G is given as
~ o
G(P,Qt-1)=2 / dkv/kgsin (Vkg(t — 7)) ¥5F$) Jo(kR).
0

The substitutions

A=k

p=y[50-n

p=- (”") = 1/\/1+R’/(z+:)§

'

r'=\/(z-€+ Uo(t"f))z'*‘(y"l)z“’(z'*'f)z

yield

G= 2&/“, AVAsin (BVA) e 24 o (AV1 - p?).
0

To obtain the derivations of E;, the chain rule may be applied to this parametrized form
as follows. Let

G(P,Qt-1)= @&(m)

so that

G(u,B) = 2/0°° dA\Vsin (BVA) e Jo (AV1 - ). (B.1)



Bessel Function Expansion
/ P

1.0 >
.98 Filon Integration
T
K . . . .
Series Expansion Asymptatic Expansion
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Figure B.1 — Regions for Green’s Function Evaluations

The derivatives are

The determination of a(p,ﬂ) may be computed by various methods depending on the
values of p and B. Figure B.1 shows the regions for the different evaluations.

Series Expansion

For small 8, sin (ﬂ\/X) may be expanded in an infinite series and the terms integrated
individually to give Legendre polynomials. The result is

B 6) = 28| Pu(k) — B Pa(u)8® + S Ps(u)B* — TP + ... (B.2)

and is convergent for 4 in the range shown, if double precision and a sufficient number of
terms are used.



78

Asymptotic Expansion

For large values of 4, an asymptotic form may be employed. The details of the derivation

are given in Liapis. The final result is

B(u,B) = ['I';g - - -+
e-\ﬂ/’gﬂ ((1 —i2)1/4 sin (ﬂ2 Z_ = %ﬂ)
* 280 —1/.42)3/4 °°s(ﬂz\/f4_—7 B g)
"B —luz)"/* ; (ﬂz\/l_—j -7)
" 86%(1 i;,;2)5/4 Si“(ﬂz\/z—v - %)

T Ba _9“2)3/4 °°S(ﬂ2 i— b Z20—)
24 cos(ﬂzm - g))] +0(877)

B a 1 2

where

0 = sin~1(p).

Filon Quadrature

For u > .7, the exponential factor in a(p,ﬁ) decays rapidly enough that a numerical
integration scheme is applicable. G may be rewritten as

Gu,8) =2 /0 = dAsin(8VA)e ¢ [\/XJO(A\/I — p?)

- \/—g(l — u2)/4 COS</\\/1T[J_2- %)]
L ¢~F*#/4 gin (ﬂ——2 i_ ut + Eﬂ)

T 2

where 0 = sin~?(u). The first term of the asymptotic expansion for Jo has been added,
subtracted, and integrated anmalytically to improve the accuracy of the integration. The

B =/1-u?

_ B
T T

substitutions
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give

—_—

G= -—4-—/0 dk k sin(‘yk)e-"z“"v 1-u? \kJo(kz) - \/% cos(k2 - 1)]

(1- w278 1
2 -1l
LB stungy (E___ Vi-p? ﬁ)
(1 - u?)1/4 4 2

To compute the integral, the factor in brackets is computed in advance at equal intervals
and stored as f(k). The integration is performed from O to k = k where

kf(k)e~=wIV1=% < 1077,
By setting the term
ke—k%/ - [k.fo(kz) - \/gcos (k2 - g)] = ke—“z“/ v 1—"2f(k) = g(k),

the integral may be rewritten as
(.7
/ dkg(k) sin ~k.
0

Approximating g¢(k) by parabolas over the intervals Ak = h, Abramowitz and Stegun

give the Filon integration rule as

/: g(k) sin vkdk = h{a(vh)Szn + BCYR)S2n-1]

1+cos?yh sin2vh
e =2 - wir)

sinyh cosh
Alrk) = 4((711)3 } (~/h)‘)’

or for small vA

_ 2 2(vh)? _ 4(ah)* | 2(7h)®
*=3%t 715 105 ' 37T
p=d_ 200h)* | (R _ (9R)°

3 15 210 11,340
n
Sin= Y g(kai)sin(vka)
=1
" .
San-1= D _ g(kzi—1) sin(vkzi-1)
=1

where k; = hi.
The terms due to the endpoints have been left off for the sake of simplicity, since those
at the endpoint k = O are zero and « is chosen so that no significant contribution is made

by that endpoint.
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All of these forms are not valid in the region where 4 = 1. The asymptotic expansion
is singular, as well as the recursion relation for the Legendre polynomials P,(u). The filon
quadrature is no longer accurate because the exponential decay is too rapid. In this region
a different form is needed. In general, expanding the J, Bessel function as a power series is
unacceptable because the resulting integrals are divergent. However, in the case of u near
1, a valid expansion may be developed.

Substituting k* = X into (B.1) gives

Gu,B) =4 /0 " R sin(Bk)eE /8 Jo (KT = u?). (B.3)

The Bessel function has an accurate polynomial approximation in the range 0 < z< 3,
given by Abramowitz and Stegun (9.4.1) as
5
I 2n
Toz) = an ()

n=0

where
=1 a; = —2.2499997

az = 1.2656208 a3 = —.3163866

aq = .0444479 as = .0002100.
To employ this, consider the argument of the Bessel function
KBv1-pu?<3.

The integral (B.3) may be rewritten as
a(p,ﬁ) = 4/ dk k? Sin(ﬂk)e—kzﬂ.lo(kzv 1— u?)
0
+4/ dk K sin(BK)e 8 Jo (/1= uf) -

where the largest possible value for x, employing the expression above, is

3

K= .
1-p

For K\/1-u? > 3,
| sin(8R)Jo(PVI= ) |< %

so that the second integral may be bounded by

fw dk k2 sin(BK)e = Jo (B V1 = 1) |< Ly
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This integral may be bounded by

o0 o0
/ dk ke ¥ < / dk k2 ehem = =78 (f s 2y ——2——>
p . poorkp? o (kp)®

- 2“(E+ni;ﬂ+(7ci_)")' (B.4)

The first term is the largest and, assuming p constant, has a maximum at x = 1. For
p > .98 and k > 3.8827, the error for truncating the integral (B.3) at « is given by (B.4) as

so that

* 2
/ dk K sin(Bk)e~F 4 Jo (K /1 — p?

E e o gx 1077,
2p

Substituting the polynomial approximation for the Bessel function into (B.3) gives

G, B) = 42 ( "2> /0 " dk K sin Bke™E¥, (B.5)

The integrals may be evaluated by use of the form given in Appendix A.
Defining the integral I, as in (A.7) as

[
In(e, b) =/ o e oz +2ba) dz,
0

a recursive relation may be developed by integration by parts:

n—1 2
—K pe—2bn

= /“ z,ne—(a:2+2bz) dz = K
0

1 [* 2
+ —/ dzf(n — 1)z 2= — 2b2" 1”7

Kt - 2b (n=1)
= Be 2bc _ _ o
= —2a°ﬁ T ot g e
Letting
a=p
2b= _iﬂl

[ n—1 . 4 -
/0 dk k" sin Bke~F# = Im {-fﬂe'"’“e'ﬂ“ + %1,._, + (“2“ 1) I,,_,}.

It may be noted that the first term when multiplied by the coefficient in front of the
integral (B.5) may be ignored, that is,

2n+1 2 .

()" { }
K
2u

(T i
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By the choice of x, (v/1 — p?/3)x? =1, so that

/. — 2 2 2n
I ( = ) £ et Im {e7P*} iS z'c_ue"‘z“ <8x1077.

3 2
Thus,
30,9) =43 an( L) 1 (fra) (B5)
n=0
where )
I(a, b) = %1,._1 + (-'12{#—1)1,._, (8.7)

and a =u, b= —18/2.
The integrals I and I; for the limit of integration x may be shown to be equal to
the integral with infinite limit as in Appendix A, within the accuracy of the rest of the

expansion. Thus, they may be written as

1
Il(a, b) = %‘i:fo(a, b) + ‘2—‘;

The recursion relation (B.7) breaks down numerically for large 8. In that range, an
expression may be found using the asymptotic form of the error function. The final result

is

2n
San+2(n, )

2 / )
G, ) = —4 ) (Y2
=0
2 12(2u)  90(2u)? | 840(2u)®
==+ +
g? g® A7 A7
9,450(2u)*  124,740(2p)°
ﬂll + ﬂls +-...
720  20,160(2u) = 453,600(2u)?
-+ +
ﬂ'l ﬂ9 ﬂll
9,979,200(2u)%  2.270268 x 108(2u)*
+ ﬂls + 515
5.6042636 x 10°(2u)°
+ BT +...
3,628,800  2.395008 x 10%(2u)  1.0897286 X 1019(2u)?
- ﬂu pg13 + ﬂls

S4n+2 (”': ﬂ) =

n=0

n=1

+... =2,

(B.8)
The expression is valid for 8 > 10. It may be noted that in the limit as 4 — 1, only
the first term in the sum remains in (B.6) and (B.8). Thus, the proper limit is obtained,
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which is lim 0o 2
g 1 G(u,B) =4f0 dk K e sin(Bk)
=4Im {k(e,b)}
where
a=1
_iﬂ.
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APPENDIX C

LINE AND PANEL INTEGRATIONS

The integral equation solution requires the numerical integration of various functions
along lines and over surfaces. The evaluations are performed by mapping the integrations

onto standard regions and using a Gaussian quadrature scheme over the standard region.

Line Integrations

The line integration is performed by linear mapping onto the line segment —1 to 1. The

typical integral is of the form
b
f dnF(n,§).
a

To perform the integration, let n = (1 — z)a+ (1 + z)b and § = (d€/dn)n where d§/dn
is constant on the interval a to b. Letting F(z) = F(n(z),£(n)),

§ arng=252 [ wFe

where (b— a)/2 represents the Jacobian of the linear mapping.

A Gaussian quadrature scheme
1 Mo
/ dzF(z) = Z w; F(z;)
-1 =1

is employed where
w; = Gaussian weights
z; = Gaussian points
M = number of integration points used.

The Gaussian weights and points are taken from Abramowitz and Stegun (1964). Because
of the oscillatory nature of the Green'’s function being integrated, 12 to 16 Gauss points were

typically taken along one panel.
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Figure C.1— Panel and Mapped Region Coordinate Systems

Surface Integrations
The integration over a panel is done in a way similar to that along a line and follows
the same approach as Liapis. The panel discretization scheme of Hess and Smith, which
is employed here, uses plane panels with a local coordinate system as in Figure C.1. The
quadrilateral is mapped on a 2 X 2 square as in the figure. Typical integrals are of the form

f/s dS F(,n)

panel
where £, are mapped onto the square region by

€ = Nyzy + Nozp + N3zz + Nyxg

n = Niy1 + Nay2 + Nsys + Nays
Ny = (191 -)
N = %(1 —2)(1+y)
N3 = %(1 +z)(1+y)

Ny=Z(1+2)(1-y).
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Writing F(z,y) = F(&(z,9),n(z, y)), the integral over the panel may be written

/ / dSF(¢,n) = f f dzdyF(z,y) a((fi;

*panel

where 3(£,1)/8(z, y) is the Jacobian of the transformation. Employing a Gaussian integra-

tion rule in two directions, the integral may be performed numerically as

Mz My
/ / dzdy F(z, y) f,')) = Z E w; wi F(zi, yi) Z((i' Z))

=1 j=1

where

w; are the Gaussian weights

z;, y; are the Gaussian points

M, = number of points in z direction

M, = number of points in y direction
as in the previous section on line integrations.

It was found that for both line and surface integrals it was better to use fewer integration
points with more panels, rather than many integration points on large panels. The reason
for this is that greater numbers of panels allow the potential to vary more smoothly over

the body surface. For the analysis done here, a 2 X 2 quadrature was employed.
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