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CHAPTER I

INTRODUCTION

During the last twenty years there has been growing
interest in numerical methods for calculating the wave
loads on fixed structures and the oscillatory motions of
vessels. The first analyses were limited to bodies of
special geometry such as submerged circles, spheres and
ellipsoids. Another special case of body shape that has
been studied extensively is that of a slender ship using
various techniques from perturbation theory. Despite its
utility, this analysis gives very poor results near the bow
and the stern of a typical ship where the slenderness
assumptions are no longer valid. Furthermore it cannot be
used for typical offshore structures. The advent of large,
high-speed computers led to the development of numerical
methods that removed the geometrical restrictions of the
earlier methods.

In all these models the problem is formulated in the
frequency domain leading to equations that have meaning
only if the body motions are strictly sinusoidal in time.
In more general situations, such as a ship performing a
maneuver with varying speed, the frequency-domain approach

is meaningless. An alternative to the frequency-domain



approach is to formulate the problem directly in the time
domain. The solutions in the frequency domain and time
domain can be related through the use of Fourier trans-
forms. For any particular problem involving only zero for-
ward speed, one formulation or the other may be more con-
venient. However, for problems involving forward speed it
appears that the time-domain approach requires much less
computational effort and can be easily extended to more
general cases.

Cummins (1962) and Ogilvie (1964) first discussed the
use of time-domain analysis to solve unsteady body motion
problems in the presence of a free surface. The zero for-
ward speed problem is examined in detail by Wehausen (1967,
1971). The method of analysis is based on the work of
Finkelstein (1957), which is expanded on in both Stoker
(1957) or Wehausen and Laitone (1960).

Few results using time-domain analysis are available
and they are all for zero forward speed. Direct solutions
in two-dimensions are presented by Adachi and Ohmatsu
(1980), Ikebuchi (1981) and Yeung (1982). Two-dimensional
time-domain analysis was also used by Daoud (1975) and
Yeung and Kim (1984) as part of the development for
slender-body theories of ships with constant forward speed.
Ursell (1964) and Maskell and Ursell (1970) developed solu-
tions in the time domain for a floating semi-circle using

the Fourier transform of the frequency-domain solution.



The same technique was used by Kotik and Lurye (1968) for a
floating hemisphere. Lin (1966) developed a mathematical
formulation of the time-domain problem with forward speed.
His formulation leads to equations that are very compli-
cated and are not amenable to numerical computation.

Recently, Newman (1985) has used time-domain analysis
to determine the impulse response function for a right cir-
cular cylinder. Because of the axial symmetry of the prob-
lem he was able to use "ring sources" and reduce the prob-
lem to solving a one-dimensional integral equation at at
each time step.

The work presented here is the next step in the con-
tinuing development of the time-domain analysis method. A
mathematical model has been developed to analyze hydro-
dynamic problems involving three-dimensional bodies of
arbitrary shape moving at a constant forward speed. The
basic assumptions are that the fluid is inviscid and incom-
pressible and that the flow is irrotational so that poten-
tial theory is applicable. In this work consideration is
only given to the radiation problem where a body moving at
a constant forward speed is forced to oscillate around a
mean position in otherwise calm water. The extension of
the theory to include nonconstant forward speed and curved
trajectories is in principle straightforward and is de-
scribed in Appendix A.

The mathematical formulation of the problem is



presented in Chapter II. The flow created by the body
motions is represented by a singularity distribution on the
body surface. Green's theorem is used to derive integral
equations for the singularity strength at each point of the
body. In order to decouple the hydrodynamic problem from
the unknown body motion an impulse response function is
defined similar to what Cummins (1962) and Ogilvie (1964)
initially proposed. 1In Chapter III, numerical techniques
based on panel methods are used to solve the integral
equations and find the hydrodynamic forces acting on the
body. The body surface is approximated by an ensemble of
plane quadrilateral elements of constant singularity
strength. The integral equations are satisfied at
collocation points giving a system of algebraic equations
which are solved for the singularity strengths.

Computed results for the cases of a sphere, a right
circular cylinder and a Series 60 ship are presented in
Chapter IV. The numerical results using a source distri-
bution or solving for the velocity potential directly are
compared with analytic results in both the time and the
frequency domain. The influence of the so called irregular
frequencies on the results is also discussed. After com-
puting the impulse response function, the dynamic equations
of motion may be solved for any initial conditions. As an
example, the heave displacement of a sphere which has been

released from an initial displacement at time t=0 is com-



puted and compared with experimental results. Finally,
Chapter V summarizes the contributions of this dissertation

and offers suggestions for further work.



CHAPTER II1

MATHEMATICAL FORMULATION

II.1 The Boundary Value Problem

The axis system shown in Figure 1 is used to formulate
the linearized problem in the time domain. The axis system
is fixed to the mean position of the ship and travels in
the positive x~direction with constant velocity Ug . The
z-axis points upward and positive x is toward the bow.
The x-y plane is coincident with the calm water level and
the origin is at midship. The ship is undergoing small
unsteady motions around its mean position in otherwise calm

water.

Sz

Figure 1. Coordinate System and Control Volume



It is assumed that the fluid is incompressible and
inviscid and that the flow is irrotational. To set up a
linearized problem it is assumed that the fluid distur-
bances due to the steady forward motion and the unsteady
oscillations are small and can be separated. 1In this case

the total velocity potential can be written as
o = -Ugx + ¢o(x,y,2) + ¢(x,y,2,t) (1)

where the term (-on + ¢o(x,y,z)) is the potential due to
the steady translation of the vessel and the potential
¢(x,y,z,t) contains all the unsteady effects. In the
fluid domain, each of the potentials must satisfy the
Laplace equation subject to boundary conditions on the free
surface, the body, at infinity and appropriate initial con-
ditions.

The free surface condition is linearized on the
assumption of small elevation. Furthermore the effect of
the steady wave is neglected so that the boundary condition

on the radiation potential reduces to

9 ) 9
(== = Ug=-)26 + g--¢ = 0 on z =0 (2)
at 9xX 9z

where g = acceleration on gravity. The kinematic

boundary condition on the hull can be linearized to give

3 6 .
-— = 2 (nggx + mggx) on Sg (3)
n k=1



where

So = mean underwater hull surface

nx components of generalized unit normal

out of fluid domain

(ny, ny, n3) =

|3

(ng, ng, ng) =r xn
r = (x, ¥y, 2)

tx = amplitude of unsteady motion in six degrees of

freedom
(z1, z2, t3) = linear translation along the Xx,y,z axes
respectively
(z4. 5, te) = rotational motions about the Xx,y,Zz

axes respectively

myx = gradients of the steady velocities in the normal

direction
(my, mp, m3) = -(n*V)W
(mg, m5, mg) = -(n*v)(xxW)
W = velocity vector due to steady translation

= V(=-Ugx + ¢o)
and the overdot represents differentiation with respect to
time.

The unsteady problem is coupled to the steady problem
because of the presence of the steady velocity vector W
in the body boundary condition. By assuming that the
bodies of interest are slender, the perturbation of the

steady flow field due to the ship is neglected giving



W == Uoi . In this work, this simplification will be made.
This assumption reduces m to:

m = (0,0,0,0,Uy n3 ,-Ug n3)

Since an initial value problem is being solved the

gradient of the radiation potential must vanish at in-

finity. 1In addition the initial conditions of

ad
¢ =0 , -- =0 for t <0 (4)
ot

must be imposed.

II.2 Derivation of the Integral Equation

At this point we must note a very important peculiar-
ity of the problem. Since the ultimate goal is finding the
hydrodynamic forces on the hull, we only need the values of
the potential ¢ and its derivatives on the hull. The
values of ¢ inside the fluid domain are of no interest.
This feature combined with the fact that the fluid domain
extends to infinity explains why finite difference or fi-
nite element techniques are rarely used in this type of
problem. What is considered more efficient is replacing
the body by a suitable distribution of source singular-
ities. The source potential is also known as a Green func-
tion and will be denoted here as G . The source strength
at each point may be determined by solving a Fredholm inte-
gral equation of the second kind over the body surface.

For this problem the appropriate Green function represents

an impulsive source below a free surface and is given as:
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1 1
G(P,Q,t-1) = (- - ;-)G(t - 1) + H(t - 1)

x 2f dk /Kg sin(/Kg(t - 1)) ek(z+Z) g (xR)
0

= (3 - ET)G(t - 1) + H(t - 1)G(P,Q,t-1) (5)
where P = (x, y, z) 1is the field point
Q = (g, n, z) 1is the source point
r2 = (x-¢€)2+ (y-n2+ (z-1g)?
r'2 = (x - €g)2+ (y -n)?2+ (z+7z)2
R2 = (x - £ + Ug(t - 1))2 + (y - n)2
§(t - t) = delta function
H(t - 1) = unit step function
=0 t-1 < O
=1 t-1t > 0

The Green function represents the potential at the
field point P and at time t due to an impulsive source
at the point Q suddenly created and annihilated at time
t . This source acts like an underwater disturbance which
generates a Cauchy-Poisson type wave system as represented
by the é(P,Q,t—T) term. The integrated form of (5) is
given by Wehausen and Laitone (1960) as the potential for a
source of arbitrary strength movinglbelow a free surface.
It is easily shown that the Greeh function solves the

following differential system:
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V2G = -4n §(P - Q) 6(t - 1)
9 9 ]
(-- - U--)ZG + g--G=0 onz =20
at ax az
G
G, -- =20 for t <0 (6)
ot

Applying Green's theorem to the fluid volume shown in

Figure 1 and enclosed by SUS/AJSfAJS, Yyields

JJ[Lev2G - GV2¢] AV = jj(q;39 - Gii)ds (7)
Vv S an on

Integrating both sides of (7) with respect to t from O~
to t* and using the properties of G(P,Q,t-t) and the
fact that ¢ satisfies the Laplace equation everywhere in

the fluid domain gives:

t -—
¢(P,t) = - —— [ &t [[ as (e(Q,T) 29&8;915_:2
- G(P,Q,t-1) 3359:_1)) (8)
anQ

There is no contribution to the right hand side from
the surfaces at infinity because both G and ¢ vanish at
infinity.

The contribution to (8) from the surface integral over
the free surface can be reduced to a line integral about
the waterline of the vessel. From equation (2) it is found

that the free surface boundary condition gives

] 9 1 3 ]
— = - =- - (== ~Uy--)2 onz=20
on 9z g 39T 9k
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Hence the contribution to (8) from the free surface

may be written:

1t d 3
= m—— —_—— - -—)2 -
oF P é dt éé ds [¢(Q.1) (aT ang) G(P,Q,t-1)
3 3 .,
- G(P,Q,t-1) (== - Ug==)"e(Q,1)] (9)
9T &

¢p may be separated into two parts which can be reduced

independently as follows:

¢p = 01 + ¢F2 (10)
1 t
¢p1 = ——- [ dt [[ as [e(Q.,1) G (P,Q,t-T)
4ng 0 Sy

= G(PlQlt-T) ‘DTT(Ql T)]

1 t 3
= - fj das f dt -- [Q(Q'T) GT(PIQIt—T)
4ng Sf 0 3T

- G(P,Q,t-1) ¢.(Q,1)]

= ——— ff ds [O(Q,‘l’) GT (P‘lQlt"T)
4ng SF

t
- 6(P,Q,t-1) ¢, (Q,7)] | (11)
0
where the subscript denotes differentiation with respect to
the given variable. Because of the initial conditions on

¢ and G the last expression equals zero. The ¢&p2

term is
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1 t
¢Fp = —-—- é dr ds [Uo2 (¢Ggp - Gégg)
Irs é£ [ £e 33
- 2Uo (QGET - G@ET)]
Integrating one half of the last term by parts with respect

to 1t gives:

1 t
® R d ds U 2 oG - G¢
F2 = ;== é T éé [Uo2 (eGgg gg)
- Uo (8gGr = Ggog + ¢Ggq - Gogq]
1 t 3
= - d’r dS - U 2 (QG - Q G)
Tng § O L] 98 35l0o% (ace = o
- Ug (8G; - .G)] (12)

Applying Stokes' theorem to the last form of (12) yields

1 t
¢p2 = - —-——- dg dn [Up?2 (¢Gy - &.G)
reeall GLUN LN -
-Uo (8G; —¢.G)] (13)
where T = intersection of the mean hull surface and the

plane =z 0O . The positive sense of the line integral is
in the counter-clockwise direction.

The final result for ¢ at a point in the fluid is

t 3
¢(P,t) = - == [ dt [[ dS [#¢=- - G=--]
So n an
. 1 ftd [ dn (Vo2 (Ga¢ QaG) u (a¢G aG))
- —— T —— - - - - - o_-
4ng 0 T " °© ] © T 9T
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Although equation (14) is derived for constant forward
speed along a straight trajectory, it may easily be gener-
alized for arbitrary speed and trajectory (see Appendix
A).

In the usual manner of potential theory equation (14)
can be reduced to a pure source distribution of density
0(Q,1) Dby considering the interior flow and subtracting it

from equation (14). The final result is:

. 1 t
Q(P,t) = - - f dr ff ds G(P,Q,t—r) U(QlT)
4r 0 So
U2 t
- === [ dt [ dn ¢(Q,7) n3 G(P,Q,t-1) (15)
4ng 0 r

where nj); 1is the x component of the normal vector.
For the case of steady state oscillation of frequency
w at constant forward speed, equation (15) can be reduced
by setting o(Q,t) = o(Q) eiwt ., Making the substitutions

and interchanging the orders of integration it can be

found:
1 t .
8(P) = - =- [[ a@S o(Q) [ dr elwt G(P,Q,t-1)
T So 0
Up? t .
- ——— f dn U(Q) nj f dr elwT G(P,Q.t-T) (16)

4ng T 0
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As t » o Wehausen and Laitone (1960) show that the
time integration of the Green function reduces to the usual
Green function for a source translating with constant for-
ward speed and sinusoidal strength. 1In this case equation
(16) is identical to the form of the potential used by
Chang (1977).

An integral equation for the source strength may be
found by differentiating (15) with respect to the normal on
the body and setting it equal to the body boundary con-

dition. Thus, we may write:

3¢ o(P,t) 1 t 3G
——= = = ===mees - == [ d7 [[ 45 o —---
ang 2 47 So an,
2
U™ t 3G
- =-- [ dtr [dn o n} =-=-- (17)
479 0 r anP

II.3 Decomposition of the Problem by Introducing the

Impulse Response Function

Since the body boundary condition is represented by
the sum of six individual components, it is useful to
divide the potential into six individual problems each of
which satisfies:

9% .
o= = mkok + Mk (18)

The coefficients my as defined in (3) contain the in-
fluence of the steady velocity field on the body boundary
condition.

One feature of the problem which complicates its
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solution is that the right hand side in equation (18)
involves the unknown body motion. That is, the
hydrodynamic problem is coupled with the dynamics equation
of the body.

A method of decomposition is to model the ship as a
linear system, the input being the ship motion in each of
its six modes and the output the generalized hydrodynamic
force. Contrary to the infinite fluid case, where the
fluid motion stops when the body stops, in our case the
presence of the free surface causes the linear system to
have memory. As is widely used in many similar cases, it
is possible to define an impulse response function for each
mode of motion. This impulse response function completely
characterizes the linear system model since the hydro-
dynamic force due to an arbitrary motion may be found by
linear superposition.

In order to define the impulse response function, con-
sider the ficticious case where at t = 0 the ship jumps
instantaneously from O to 1 in the kth mode. This jump
is impulsive, so that the velocity is &k = §(t) . The
force exerted on the body by the surrounding fluid for this
special case of motion is the impulse response function.
Due to the waves generated by the body motion this force
persists indefinitely in time.

We now proceed to formulate the hydrodynamic problem

which results from this impulsive motion. The velocity
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potential, which we denote by ¢k , must satisfy the body

boundary condition:

9k
;;— = nxés(t) + mgH(t) (19)

The body boundary condition (19) suggests that the poten-
tial ¢x can be decomposed into an impulsive and a memory
part such that:

¢k (P,t) = V1x(P)s(t) + Xxx(P,t) (20)

If we set

Iv1lk

-——- = nyx on Sgo (21)
an

3 Xk

——= = m on S

an k ©

then the body boundary condition (19) is satisfied for all
time.

The integral equations which must be solved to deter-
mine Vj;x and Xx are found by applying integral equation
(14) on the body surface and substituting equations (20)
and (21). Gathering terms proportional to &(t) gives an
integral equation for V¥j;x and the remaining terms yield
an equation for Xy . The details of the derivation may be

found in Appendix B; the final results are:

1 3 1 1
vik(P) + == [[ A8 y1x =—==(- - ==)
27 So anQ r r'
1 1 1
= - as (- - -- 22
27 éf (r r') Tk (22)

o
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1 P 1 1
Xk(P,t) + 5- ff ds Xx ---(- - —-'-)
T So ano r r
1t 36(P,Q,t-1)
+ == dt dS Xy =——=—————a—eao
27 é éé k anQ
Uo? 't 3G 3%k
* o= dt dn (Xgx-- - G---)
2n1g {) { ¢
2 ftd [ dn X 26
- 2 T n 9%
9 0 T k 91
1 ([ as (1 1 )
F— - - m — - -——
2n S({ k r r'
1 t .
+ == [ dr [f d mg G(P,Q,t-1)
2'|'|' o So
l -
+ =- [[ ds nx G(P,Q.t)
21|' SO
1 9G(P,Q,t) (23)
- - ds y1x —-------- 23
27 éi Y1k anQ

The Vj;x problem describes the fluid motion during
the impulsive stage and may be interpreted as an infinite

fluid problem satisfying

Vix = 0 on z =20
CAS BN
-=—— =n on S

an Xk o}

VVix » O at o
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The Xx potential represents the motion of the fluid
subsequent to the initial impulse and can be considered as
composed of two components. The first results because of a
change in body orientation due to the impulse in velocity.
After the impulse in velocity the body will have a unit
displacement in the kth mode, which, in the presence of the
steady velocity flow field, results in a change of fluid
velocity on the body surface. In order for the body
boundary condition to remain satisfied this change must be
cancelled out. Therefore, 3Xx/3n must have the value my
on the body surface for all t > O .

The second component is the result of the impulsive
velocity (the Vjx problem) inducing a disturbance into the
flow field which in subsequent times will propogate as a
wave motion away from the body. Consequently, Xx will
satisfy the complete free surface condition for t > O

At t = 0 Xx will meet the following initial conditions

Xk = 0 on z =0
9Xx 3V1k
—== = =g--=-= on z =0
ot 9z

To aid in computational efficiency it is convenient to

explicitly identify the two components of Xx as

Xx(P,t) = ¥ (P) H(t) + Xk(P,t) (24)
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In equation (24) the V¥ox(P) function represents the value
of Xk during the impulsive phase of the motion. It

satisfies the following boundary conditions:

3P2k
————-— = mk on So
an
Yok = O on z =20 (25)

Vy2k *» O at =
In order for Xk to meet the proper boundary conditions it
is not difficult to show that Xx(P,t) satisfies the

following conditions:

x =0 at t =0

39Xk d b1k

——— = egem——— on z=0at t =20
ot 92

871{

--= =0 on Sg for t > O

an

((a Uoo-)? + go ) (X + ) =0 0
- - - - = on z =
at  Cax 93z Tk T ¥k
for t > O (26)
From the boundary conditions on the free surface and the

integral equation for Xx it can be shown that

3 2Xx vk
———— = —ge——- onz=0 t=0 (27)
3t2 az

The integral equation for Vox(P) is found by taking
the limit of the integral equation for Xx (equation (23))

at t = 0 . This gives
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1
v2k(P) + o= [[ dS y2x(Q) —==(- - -37)
S

o) Q

1 as (l 1 )
= —— m - - -
27 éi k r r

Subtracting (28) from (23) gives the following

integral equation for Xyx(P,t) :

— 1l — 3 1 1
Xg(P,t) + == [f dS Xy —-=-(- - -=)
27 So anQ r r
t — aé(PIQlt— )
+ == [ dar [[ as Xk 932 r=aETI7
TO So anQ
Un? t el 2%

+ == [ dr [ dn (Xx =%
_— . n em = @
219 0 £ 2k
Uo t _ 3G(P,Q,t-1)

- -- [ dr [ dn Xgx-=——=—=-—---
™9 0 T T
1 ot - .

= -- [ dr [f ds my G(P,Q,t-1)
2n 0 So
1 .

+ -- [[ ds ng G(P,Q,t)
2n So
1 3G(P,Q, t)

= 57 [] 48 ik —mmgo-mes

T So Ing
1t 3G(P,Q,t-1)

-5z [ dt [[ 48 yox ==—-==-----

™0 So anQ

(28)

(29)

The potential for an arbitrary forced motion in the

kxth direction is found as the convolution of

¢k(Plt)

with

the velocity of the motion. Using equations (19) and (24),
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the expression for the velocity potential due to arbitrary
motion becomes:
t .
¢ (P,t) = é dr ¢x(P,t-t)zx(1)
= y1k(P)zk(t) + w2k (P)gk(t)
t .

+ é dr Xx(P,t-t)zx(t) (30)
where the integral equations which must be solved to find
v1k(P) , y2x(P) and Xx(P,t) are given by (22), (28)
and (29) respectively. We must show that ¢x(P,t)
satisfies the body boundary condition, the free surface

condition, and the conditions at infinity for all t .

Taking the normal derivative of ¢x on the body we

find:
3%k _ Y1k (pP) . (t) + 3Y2k (P) (t)
an an °k an 2
t aik(p,t)

+ [ dr gk (t=1)==mmmmmm
0]

nx ik(t) + mx gx(t)

where the last equality follows by substituting the normal

o 31k 3 y2k axXk
derivatives «==- , ==== , -—= with their values. This
an an an

proves that the potential ¢x satisfies the body boundary
condition. It also satisfies the condition at infinity
since y1x ., W2k . Xk satisfy it.

On the free surface 2z=0 we compute the terms in the
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boundary conditions:

320y 320k 320y 3tk
fhuz sl 2y s g - =
.- aXk .
= vik (P) gk(t) + y2x(P) zk(t) + === rx(t)
t=0
< - a2y, (t-1) .
+ Xx(0) gx(t) + [ dr --Ek-;—-- zx (1)
O
%y1x - 32y
+ U2 ——eee zx(t) + U2 ——-Z= rx(t)
ax ax

+ U2 [ dt —==—=—mm- tx(t) -
o 3x2
31k vk 3%k (0)
= 20U ==== gx(t) = 2 U ===5- zr(t) = 2 U —===== gk (t)-
t 32Xk (t-1) 9
- 2U [ dr ——=====—m zx(t) + g -——- zx(t)
o axXat 9z
a¢2k t a-ik(t"'f) .
+ g -——= gx(t) + g [ dr —=-—=--- k(1)
3Z o 9z

Rearranging terms we write:
32¢x 328x 320 3dx

meem 4 U2 oo = 2 U === 4+ g === =
at2 9x2 axat oz

= y1x (P) cx(t) + vax(P) zx(t) + Xx(0) zx(t)



24

3%vox V1K - P2k .
+ U2 ————- tx(t) = 2 U ==== gy (t) + —-—=- gx(t)
3 x? X X
39Xk (0) axXx | . Iv1k
- 20U ------ g(t) + {--= | zx(t) +g —-== zx(&)} +
X ot 3Z
t=0
t 32Xk (t-1) 32Xk (t~-1) 32Xy (t-1)
+ | dt {====m———- 4+ Ul mwrmmm———e -2 U ——==emme +
o ot? 9x? 3Xat

3Xk(t-1) dY2k .

+ g (Fmmmme + ==22)) ()

9z 9z

The first eight terms each equal zero from conditions
(25) and (26). The sum of the two terms in braces is zero
from condition (26). Finally the integral term equals zero
from condition (26). Consequently the right hand side is
zero and the potential ¢y satisfies the free surface
condition (2).

The form of the general potential (30) can be directly
compared to the formulation developed by Ogilvie (1964,
equation (11)). Ogilvie has four potentials V¥ix ., Xix
Vox , and Xgx . His V3 and Vyx are identical to the
presently defined V3x and Vox . Ogilvie's memory
potentials, Xj3x and Xox , have been combined into the
present Xy . In fact, as we show in Appendix C

t
Yk = X1x + J dr Xox . (31)
0
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After determining the hydrodynamic forces acting on the
body, Ogilvie uses an integration by parts to combine the
effects of X1x and X2x 1into a single memory function
Kjkx - In the present work, X1x and X2k have just been
combined at an earlier stage of the development. Integral
equation (29) for Xk can be obtained by combining the
integral equations which would have to be solved to deter-
mine Ogilvie's Xjx and X3x . The advantage of the
present formulation is that it saves computational effort,

since only one integral equation needs to be solved.

II.4 Pressure and Force Calculation

The unsteady pressure in the fluid is given by the
linearized Bernoulli equation:

adx
p vy pPH Vox (32)

The forces acting on the body are found by integrating
the pressure over the instantaneous underwater hull sur-
face. However, it is much more convenient to be able to
integrate the pressure over the mean position of the hull.
To do this, the pressure is expanded in a Taylor series
about the undisturbed hull position and integrated.
Furthermore, because of the waves on the free surface and
the motion of the hull, an additional contribution is ob-
tained from a line integral around the waterline of the
undisturbed hull. The details of this derivation may be

found in Ogilvie (1964). The resulting expressions for the



26

forces involve the usual pressure integral terms over the
undisturbed hull surface given in equation (33) and extra
terms involving products of the steady perturbation
velocities and gradients of the unsteady potential. These
extra terms are generally assumed small and neglected.
Apparently, there are no numerical results to verify this
assumption. Since the extra terms increase the complexity
of the expressions for the hydrodynamic forces acting on
the body, and because they will all equal zero under the
simplifying assumption made for the numerical calculations
presented in this paper, the extra term will be left off in
the subsequent derivation. The reduced expression for the

linearized forces acting on the body is

ij(t) = -p [[ dS p nj
So
9ok
==p [[ 48 -=-nj - p [[ AS (W'Vex) nj (33)
So at So

The second term of (33) involves derivatives of the
$x potential, a quantity which is difficult to evaluate.
This gradient of the potential may be eliminated using the
following theorem developed by Tuck and presented in
Ogilvie and Tuck (1969) (or see Ogilvie (1977)):
[[ ds [mjex + nj(W-vex)] = - [ de nj éx (2xn) W  (34)
So r
where 2 = unit vector tangential to the waterline curve

r . For wall-sided vessels (g¢xn) =k , the unit vector in
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the z-direction. Applying (34) to the second term in (33),
the expression for the unsteady forces acting on the hull

is:

9%k
Fix(t) = =p [[ dS === n3y + p [[ dS &x mj
j s 8l 3
+ p [ de nj #x (2xn) W (35)

r
Equation (35) can be reduced further by using the form of
¢x given in (30). The final expression for the unsteady
force acting on the body in the jth direction due to

arbitrary motion in the kth direction is

Fyk(t) = -ujkck(t) - bjkik(t) - cjkzk(t)
t .
- é dr Kyx(t - 1) zx(r) (36)
where
¥ ik =p [[ dS y1k nj
So
bjx = o[ [J @S y2x nj - [[ dS y1x mj
So ' So
- [ dr 1k nj (&xn) W ]
T
cjk = e[ -[[ dS y2x mj
So
- [ d2 y2x nj (&xn) W ]
r
axk(Qlt)
Kik(t) = p[ + [[ dS ---=-"m- ng
So 3

[ @s Xx(Q,t) mj

de ny Xx(Q,t) (2xn) W ]

3 N—
0
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Equation (36) is in a form useful for the calculation
of ship motions because all of the coefficients are inde-
pendent of the past history of the unsteady motion. The
coefficient ujk 1s a constant depending only on ship
geometry, bjk and cjkx are constants which depend on
ship geometry and forward speed. In the equations of
motion for the vessel the cjk term adds to the hydro-
static restoring force coefficient. The pjk and bjkx are
part of the added mass and damping terms respectively. All
the memory of the fluid response is contained in the
function Kjx(t) , which is dependent on ship geometry,
speed, and time.

The coefficients ujk . bjkx ., cjk and Kjk can be
directly related to the more usual frequency-domain
coefficients. Consider a motion amplitude of the form

gx(t) =0 t <0

= elut ¢t 5 0 (37)
Substituting the motion (37) into the force equation (36)
and taking the limit as time goes to infinity yields

Fyk(t) = [w2pjk - iwbjk - cjk

- émdt ive~lwT Kyx(r) Jelut (38)

In the frequency domain, the hydrodynamic force on the body

for sinusoidal motion is given by

Fijk = [w2Ajk(w) = iwBjk(w) = Cjx ]elwt (39)
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where

Ajk(w) = added mass coefficient in the frequency

domain

Bjk(w) = damping coefficient in the frequency
domain

Cik = restoring force coefficient

Equating the real and imaginary parts of (38) and (39)
gives the following expressions for A4x , Bjk , and Cjx
in terms of the time-domain coefficients:

1l
Ajk(w) = ujk - - é dr Kykx(t) sinut
w

Bjk(w) = bk + éodr Kjk(r) coSwT

Cjk = cik (40)
As can be seen from equation (40), ujx and bjkx are the
frequency independent parts of the added mass and damping
respectively. All frequency dependence of the added mass
and damping are contained in the memory function Kjk .
The coefficient Cjx is a frequency independent modifi-

cation to the hydrostatic restoring force coefficient.

I1.5 The Integral Equation for a Source Distribution

The same type of decomposition, which has Jjust been
developed for the potential method, can also be used for
the source distribution technique. The development exactly
parallels the potential method. Therefore, only the final

expressions will be given here. Similar to (20) and (24)
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the source strength and potential are decomposed into

and

Uk(Plt) =

v1x (P)

Y2k (P) =

where

Xx(P,t)

ak(P) =

Bk (P)

Yk(Plt) =

Yix: Y2k,

ak(P)s(t) + gx(P)H(t) + Yx(P,t) (41)
1 4 1 1 )

- 5 ég $ ax(Q) (= - =7
1 a 1 1

e ég S Bk(Q)(; - ;7)

1 t

- = £ dr [[ ds yk(Q,1) G(P,Q,t-1)

47 So
Us? t )

- =-= [dtr [dn n1 yx(q,t) G(P,Q,t-1)
479 0 r

1
- = If dS Yk(Q) G(P,Q:t)
47 So
1t -
- =- [ dat [[ ds Bx(Q) G(P,Q,t-1)
4r 0 So

(42)

part of source strength due to impulsive
velocity in kth direction

part of source strength due to displacement
in xth direction

time dependent part of source strength due

to motion in the kth direction

Xx = same meaning as in (20) and (24)
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The integral equations for ax , Bk and yk are found by

gathering terms after substituting (41) into (17) and using

(19). The final results are:
ax(P) 1 3 1 1
- =57 = 3o [/ 88q ax(Q) --=(= - -7) = nk (43)
v SO anp r r
e /] 4 (Q) i (1 ) (44)
- T = - Sq 8xtlQ) ===(= = -=) =mg
2 41 So anp r r
Yk(P,t) 1 ff 4s Yol ) 9 (1 :
- memmmm— - —— Q Yx(Q,t) --—-(- - --
2 4 So ang r r
1 t 3
- oq f dr ff dSQ Yk(QIT) --=-G(P,Q,t-1)
4n 0 SO anp
U02 t 3
- LT = f dr f dn nlYk(QlT) -_-G(PlQlt-T)
1l a
= —- [[ dSq ax(Q) ---G(P,Q,t)
4n SO anp
1 t 3
+ =- [ dt [[ dSq Bx(Q) ---G(P,Q,t-1) (45)

The source strength at any time for a prescribed
motion is found by a convolution of o¢x and the motion
velocity as follows.

t .
J.(P,t) = [ dt ox(P,t-1) z(1)
k 0

ak(P)z (t) + Bx(P)c(t)

t (]
+ é dr vyx{(Q,t-t)z(1) (46)
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The hydrodynamic forces acting on the body, the added
mass, the damping and the hydrostatic restoring forces are

found by substituting equations (42) into (36) and (40).



CHAPTER III

NUMERICAL METHODS

III.1 Approximate Representation of the Body

Surface by Plane Quadrilaterals

The integral equations for the potential method (eq.
(22), (28) and (29)) or the source method (eq. (43), (44)
and (45)) are solved numerically using a panel method. The
body surface is described by a set of input points in the
three-dimensional space. It is then replaced by an
ensemble of plane quadrilateral elements each one defined
by four input points. The first general routine for the
technique was developed by Hess and Smith (1964). In their
manner, the vertices of each panel are identified by the
local numbering 1, 2, 3, 4 ordered in the clockwise
direction. The two diagonal vectors are formed, the vector
Ty from point 1 to point 3 and the vector T3 from point
2 to point 4. The normal vector on the panel is taken as

the cross product of the diagonal vectors:

In areas of compound curvature the four input points are
not on the same plane. For those elements, the vertices of

each panel are constructed by defining a plane

33
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perpendicular to the normal vector and passing through the
point whose coordinates are the averages of the coordinates
of the four input points. The vertices are then obtained
by projecting the input points on that plane. By this
construction the resulting plane quadrilateral vertices are
the closest to the input points in the least squares sence.
Most bodies of interest possess at least one symmetry
plane. It is only necessary in that case to discretize the
non-redundant fraction of the body. The remaining part is

obtained by reflecting the panels.

III.2 Numerical Solution of the Integral

Equations for ik, V2k

After approximating the arbitrary body surface by
plane quadrilaterals, the unknown potential (or source)
distribution is discretized by assuming a constant poten-
tial (or source) strength over each quadrilateral. This
assumption reduces a continuous potential (or source) dis-
tribution over the body into a finite number of unknown
potential (or source) strengths one for each quadrilateral.
The integral equations are satisfied at collocation points
giving a system of algebraic equations which are solved for
the unknown potential (or source) strengths. It has been
found (Hess and Smith (1964) or Doctors and Beck (1985))
that the location of the collocation point on each panel

does not influence the results significantly. In this
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work, the collocation points are chosen as the null point
on each panel, that is the point, where the self-induced
velocity on each panel is zero in its own plane in an
infinite fluid.

In the presentation which follows only the numerical
solution to the potential method will be discussed. The
techniques used in the source method are very similar and
therefore will be omitted.

The integral equations (22) and (28) for V¥j;x and
wzk contain no memory terms. Assuming constan£ values
for Vijx and Vox over each quadrilateral, equations (27)

and (28) may be discretized as:

M
I Aim (Vgqx)m = (Bg)i i = 1,2,...,M
m=1 q=1,2 (47)
where
M = number of quadrilateral elements

(Vqk)m = strengths of V ., VYox over the
gk’/’m 1k ) 3

mth element

Aim =1 i=m
= i— J] 48 nyp - V(1 - l—) i#tm
27 g r r'
Sm = surface area of mth quadrilateral
Ny = unit normal vector to mth quadrilateral
r? = (x5 - £)2 + (yi - n)2 + (25 - z)?
r'?2 = (xj - £)2 + (yi - n)2 + (2 + )2

Xj,¥Yir.zj = coordinates of the ith collocation point
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1 M 1 1
1 M 1 1

(B2)j =-- 1 JJ a8 (= - ==)(mk)p
21 m=1 Sm r r

(nk)pm (mx)p are defined in eq. (3)

III.3 Numerical Solution of the Integral Equation for Xji

The Integral Equation (29) for Xyx(P,t) is a Voltera
Integral Equation with respect to time. In order to solve
it, a time stepping method must be used. This requires
approximating the time integrals by a quadrature rule.

A different rule is used in the cases of zero and
nonzero forward speed the reason being that in the case of
zero forward speed the time integral of the Green function
may be evaluated analytically.

The two different quadrature rules lead to different
discretized forms of the integral equations. They are

separately presented in the next two sections.

III.3a Case of Zero Forward Speed

For the special case of zero forward speed mpx = O
from (3). Consequently 2k is identically zero from eq.
(25). Also the line integral terms vanish identically
since they are multiplied by Uy . As a result equation
(29) simplifies to:

1

1 3 1
Xx(P,t) + == []dS Xy === (= =~ ==
k 27 éj k dng (r r'
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1 t 3&(P:Q:t-1)
+ -- | dt J]as Yk ———————————
21 o So ang
1 - 1 3G(P,Q,t)
= == /JdS nx G(P,Q,t) = == |[dS Y1)y =—===—ee- (48)
27 So 2n So ang

The integration over time can be done using a mid-
point rule in which the value of the potential is approxi-
mated by the average value of the function over the inter-

val. Thus, equation (48) is written

1 - 2 1 1
Xx(P,t) + == J]ds Xx(Q,t) ==-(= - ==)
27 So anQ r
N Xy(Q,tn)+Xx(Q,tpn-1) tp 5 .
+ - JJ das { ). [ ------------------- ]'J dt --—- G(P,Q.t-‘r)}
2t s, n=1 2 th-1 Mg

1 3 . 1 -
= - ~-- |Jds ¥y -—- G(P,Q,t) + == J)aS n) G(P,Q,t)
27 g5y ang 27 g (49)

The time integrals of the Green function memory part
é can be performed exactly. As can be seen from equation
(5) in the case where Uy, = 0 , the argument R of the
Bessel function Jg is independent of time and only the
factor sin(vYkg(t-t1)) contains time. As a result in this
case the time integral of the Green function may be found

as:

t2,
] G(p,Q,t-1) ar
tl

t2 * —_ — k(z+z)
J dr [2] ak Ykg sin (/kg(t-1)) e Jo (KR) ]
t1 0

2] dk [cos’kg(t-t3) - cosrkg (t-t;)] e k(Z-H;)Jo(kR)
0
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The time stepping is started at tg = O where Xx equals
zero. At each subsequent time step only Xx(P,ty) is
unknown; all other values of Xx(P,t) (i.e. Xx(P,ty-1),
Xk(P,tN-2) +e.., Xx(P,0) ) are known. By gathering terms,
equation (33) may be rewritten to yield an equation for the

unknown Xx(P,ty) at the latest (ty) time step:

Xk(P,ty) + 1 ds Xx(Q,ty) 2 (l . )
k(P,tN 72 éi k(Q,tN g T T
1l 1 tN 3 -
+ == [[ a8 =:Xx(Q,ty) [ dt --- G(P,Q,t-1)
27 s 2 ty-1 39
1 2 . 1 ~
=- 5 [fas ¥y --- &(P,Q,ty) + 5z [[ds nx G(P,Q,ty)
T So anQ T So
1 1 _ tN - I
- = fde - Xk(Q,tN_l) I dt ==~ G(P,Q.t - T)
2n So 2 tN-1 anQ
1 N-1 -x-k(Qltn)""Yk(Qatn-l) tn 9 -
- == [fas { ] [-=m—=====mmmmmmmeo 1/ dr --- 6(P,Q,t-1)}
27 sO n=1 2 tn—l anQ

(50)
At each time step equation (50) may be solved using the
same type of panel discretization used to solve for ik -
v2x + The linear simultaneous equations which must be
solved are:
M

21 Ajm (Xx(tN))m =Bi 1i=1,2,...,M (51)
m=
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where M number of quadralateral elements
N = number of time steps
(Xk(ty) )m = value of Xy(P,ty) over the mth panel at

the ty time step

1 tN 3 . .
Ajm =1 + —— [fas | dt --- G(P,Q,t - 1) i=nm
4 5p ty-l 9nq
1 1 1
= == [[dS np V(- - ==)
27 Sm r r
1 t 3 .
+ -- f[ds [ dr --- G(P,Q,t - 1) i #m
47 5n  ty-1 Mg
1 M- - .
Bj = - - y (¥x)m [fAS np*VvG - (nx)y [f AS G
T om=1 |_ Sm Sm
1 tN ~
+ = (Xg(tN))mS[ @S {J dr np vG(P,Q.,ty - 1)
2 tN-1
N-1 (Xx(tN) )m+(Xx(tN))m tn ~ N
+ z ( ------------------- )f dr Em'VG(PIQItN - T)}

A very useful property of (51) is that for constant
time step size the kernel matrix, Ajnp , is independent of
time; it need only be computed once at the beginning of the
calculations. In fact, the first terms of Aj, are
identical to the kernel used to solve for yjx and have

been determined in that part of the computation. Since
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Ajm 1is independent of time, the kernel matrix and does not
have to be inverted at each time step. For a sufficiently
large number of panels this property results in a signif-
icant computational advantage over the frequency domain
formulation where the kernel matrix has to be inverted for

each frequency.

ITI. 3b Case of Non-zero Forward Speed

In this case the time integration of the Green
function cannot be done exactly.
A trapezoidal rule is used to evaluate the convolution

integrals with the result that:

1 - 3 .1 1
Xx(P,t) + == || ds Xx(Q,t) ===(= - =-)
27 54 3ngy T r

At N, _ 3G(P,Q,t-tp)
+ == ) J] ds Xx(Q,tp) ==—-=-m——---

N, Uo? _ 3G(P,Q,t-tp)
+ J At [ === ] dan (Xx(Q,tp) —========env

~ 37k(Q,tn)
- &(P,Q,t-tp) =——mmmmmm-

Uo 3G(P,Q, t-tp)

+ - dr Xx(Q,tp) ——--=-——-——--
ng % k(Qstn) ot

1 . 3G(P,Q,t
- J J das (nkG(P,Q,t) - wlk ——-(.——__...).
2n So an
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st T . 2G(P,Q, t-ty)
+ == 3 ff (m G(P,Q,t-tp) - Vg -—--c------- )
21 n=1 S, 3ng
(52)
where At = constant time step size and the prime on the

summation symbol denotes that 1/2 weights are to be used
for the end points of the trapezoidal integration rule.

The time stepping is started at tgo = O where Xx
equals zero. At each subsequent time step only Yk(P,tN)
is unknown; all other values of Xx(P,t) (i.e.
xk(P.ty-1) + Xx(P,tNy-2) . ..., Xx(P,tg) ) are known.
Gathering terms, equation (48) may be rewritten to yield an
equation for the unknown Xy(P,ty) at the latest ( ty )
time step:

1

7 1 - 3 1
Xk(P,ty) + =- [[ @S Xx(Q,ty) ===(- - -=)
27 So ny T r

+ 2% 11 as Xl ty) a6(P,Q.0)

4t 54 9Ny

2 -
st Vo - 3G(P,Q,0)
+ == [ === (f an (Xx(Q,ty) ---———-—--
21[9 T

+ - dn Xk(Q,ty) ----==---
ng{-n N ot
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1 . aG(P,Q, ty)
= =~ [[ ds (mG(P,Q,ty) - V¥1x -—-7o-----
21 5, R
at N, .
+ == 1 [[ (mx G(P,Q,ty-tn) (53)
2 n=1 S, ‘
3G(P,Q,ty-tp)
- 2k _---—;; ——————
Q
At N-1 - BG(P,Q:tN-tn)
- = z f[ das xk(Q:tn) -------------
N-1 UGl - 3G(P,Q, ty~tp)
- At —=- dn Xxx(Q,tp) —-———-=—————=-
nzl [ 2ng (£ n 3E
. 3x(Q,tp)
-G PIQIt -t ) --------
( N-tn e )
Uo _ 3G(P,Q, ty-tp)
+ - d X (Q,t ) ------------
1g {. n TkiEetn at

Because 3Xyx/3t is difficult to evaluate numerically,
the term involving it is simplified based on a method used
by Guevel and Bougis (1982). The term may be resolved into
its components in the local g-n-s coordinate system as

shown in figure 1 and then reduced as follows:

ax . 3xX .
f dn -- G = f dn (n+i) -- G
T 3E T = =" an
axX . ax .
+ f dn (s°i) -- G + [ dn (g-i) - G (54)
r as T ot

The first term is zero because 3X/an = 0 on the body

surface. For a wall sided body (s*i) = 0 and the second
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term equals zero. For the computed results in this paper,
this term has been neglected for all cases based on the
assumption that most bodies of interest are wall sided over
most of their length. The third term can be integrated by

parts to eliminate 3X/ag :

) 3Xx(Q,tp)
J @ G(P,Q,t-tp) ——=———=—-
r 38
_ 3G(P,Q,t-tp)

= - | dn Xx (Q,tp) —-—=--=-===-—- (£-1) (55)

T ag

B ) 9
- | dr Xx(Q,tp) G(P,Q,t-tp) -- [(2.1i) (2.3)]
T aL

At each time step equation (49) is solved using the
same panel discretization used to solve for V¥ix . Vox -
The line integral is evaluated by subdividing T into a
series of straight line segments. The strength of Xx on
a line segment is assumed equal to the strength of the
panel below it. The system of equations which must be

solved at each time step has the form:

? Ajim (Xx(tNy))m =Bf i=1,2,...,M (56)
m=1
where
M = number of quadrilateral elements
N = number of time steps
(X (ty) )y = value of Xx(P,t) on the mth

panel at the ¢ty time step
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By = >= ! { ((ax)m [[ dS G(P,Q,ty)
27 m=1 Sm
8G(P,Q,tN)
- (Y1x)m ff d§S -------—-- )
Sm anQ
at N, "
+ == 1 [ (m)y [ @s G(P,Q,ty-tp)
21 p=1 Sm
aG(P,Q,ty-tp)
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m o)
- aG(PlQrtN—tn)
- [] a8 (Xx(tp))p ——cz——-==-—== }
an
m Q
N-1 Ug®
- ——= (X (t *
r%* At nz [2‘“’g ( k( n))m
aG(P,Q,ty-tp) aG(P,Q, ty-tp)
x ([ an (mmmosmmeme- R =)
Tm* 0 aL
+ [ G(P,Q,ty-tp). d[(g-i)(2-3)])
Tn*
Up - 3G(P,Q,ty-tp)
+ =2 (gleg))g* [ dn —mmmmmmmmee =]
Tg Tm* ot
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Assuming that the variations along the waterline of the
direction cosines of % are small, the term involving them
in Bj 1is neglected. Note that for Ajyh the line inte-
gral terms in large brackets are only used for panels on
the free surface. Furthermore, m* denotes that only the
panels on the free surface are used in the summation for
the line integral terms.

In the derivation of the above, use is made of the

fact that

G(P,Q,0) =0

3G(P,Q,0)

_________ =0
an

8(-3(P,Q,O) 9 1l

_________ = 2g —— = (57)
ot az r'

Again the coefficient matrix Ajn 1is independent of
time. As in the zero speed case it is inverted only once

at the beginning of the computation and then stored.

II1.4 Numerical Evaluation of the Influence Coefficients

The evaluation of the coefficients A, B in the
linear systems (47), (51) and (56) involves the surface
integrals of the infinite fluid (%) and memory (é)
parts of the Green function and their space derivatives,
over each quadrilateral. The integrals of the infinite
fluid (E) terms are evaluated using the methods of Hess

and Smith (1964). In their manner, a local coordinate
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system (x',y',z') 1is assigned to each element such that
the element lies on the plane =z'=o and its centroid is
the local system origin. Then they replace the integral
over the quadrilateral panel by the sum of four integrals
over infinite strips, each strip being defined by one side
of the panel. These integrals may be evaluated

analytically giving the following exact formulas:

3 1 4 y'a+1-Ys ryg+rp41-dyg
J) 5z () as = - ] m-misecs In (==p======

IxX r e=1 dyg reg+rg4+1+dy
/] 3 (lJ as g X'g+1-Xg re+ry+1-dg

- - = ) mmemeema-m—— n |[—~—eecccca-

3y r 2=1 dy ro+rg41+dy

3 1 4 mgeg+1-hg+l
I ;7 (2) as = | [tan-l(-2-fo---22- )

3z 'r =1 Z' g+l

mgeg-hg
- tan=1 (-2t )]
z'ry

where
dy = [(xg41-%4)2 + (yg+1-yy)2]2/2

(Yo+1-¥2)/ (Xp41-X3)

mg
Ty = [(x'-x0)2 + (y'-y;)2 + 2"2]1/2

z'2 + (x'-x5)2

€

hy = (y'-yg) (x'-xy)

The above exact integration formulas involve inverse
tan and log functions whose evaluation is computationally

time consuming. They are used only for values of r less
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than twice the element maximum diagonal. For the values of
r greater than four times the diagonal, the influence of
the quadrilateral is approximated by a point source located
at its centroid. For intermediate values of r a
multipole expansion is used.

The surface integrals of the memory term (é) and its
space derivatives are evaluated using coordinate mapping
and Gauss quadrature. The arbitrary quadrilateral is first
mapped into a unit square by a bilinear transformation. A
Gauss product rule of any desired order is then used to
numerically evaluate the integral. The details of the
calculation are presented in Appendix D.

The line integral terms are evaluated by a one-
dimensional trapezoidal rule along the waterline.

The development of a numerically efficient and
accurate method to evaluate é(P,Q,t-r) for arbitrary
values of P,Q and t-t is of key importance in the
efficiency of this numerical method. For each time step,
the evaluation of é and its derivatives is performed
MZxNg times where M is the number of panels and Ng the
number of Gauss integration points on each panel. The most
obvious choice to compute the Green function is numerical
integration. This approach however, requires a major
computational effort and must be avoided whenever a more
efficient algorithm can be developed. More efficient

numerical techniques have been developed and may be used
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for any combination of P,Q and t-1 except for the
special case R=z=r=0 . For this case é is unbounded
since the integral in eq. (5) doesn't exist. This case
however never occurs in the computation scheme.

From equation (5) G 1is:

- bt — k(z+z)
G (P,Q,t-1) = 2 ] dk vkg sin(v/kg (t-1))e : Jo (kR)
0
An equivalent form more convenient for numerical evaluation
is obtained by making the substitution A=kr' where

r'2 = (x-£)2 + (y=-n)2 + (z+z)2 giving:

- g ® _ _ =-A

&=2 --- | ar /% sin(8/%) e © Jo(A/I=3%) (58)
Yr'3 0

where

B = v/g/r’ (t-1)
z+3 1

Bo=m (om2) = mmmmmZmmm—ee
r' Y1+ R¢/(z+g) <

Except for the multiplicative factor 2/;?3 . G is
only a function of the two parameters p and 8 . The
parameter u relates the depth of submergence to the hori-
zontal distance R and ranges in value between 0 and 1.
The parameter 8 is related to the phase of the generated
waves.

For the special case uy=0 which corresponds to having
both the source and the field points on the free surface,

G may be expressed in terms of the Bessel functions of
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orders * 1/4 and * 3/4 . The final form is given by

Wehausen and Laitone (1960) eq. 22.21:

N g T 33 82 82 BZ 82
S = 2 o5 G G) * 95,5709 5, (5))
For the special case u=l , the Bessel function Jo

is equal to 1 and the integral giving G is a Fresnel
type integral. The final expression for é , in that
special case, may be found in Abramowitz and Stegun (1964)
eq. 7.4.7.:

2
- g -g2/4 8/2 t
G=- -=- {((-2+82) e J e dt) -g}
vr's 0
Efficient algorithms for evaluating the Dawson

integral

dat

-g2/4 g/2 t2
e J e

0
are given by Cody, Paciorek and Thacher (1970). The
algorithms that they use are well behaved for all real and
positive values of 8 .

Returning now to the general case one may observe that
because of the sine and the Bessel function, the integrand
is highly oscillatory and ordinary quadrature formulas are
inappropriate. Depending on the size of the two non-
dimensional parameters u and B8 , different techniques
are used to evaluate the integral (58). For u greater

than .7 a Filon integration rule is used. For values of
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p less than .7 either a power series expansion or an
asymptotic expansion are used depending on the value of g
as shown in Figure (2). The sections that follow describe

the three algorithms used to evaluate G .

e [/ L L LSS S LSS

Filon Quadrature

0.80

u=1l//1 4+ R’/(z + g)’
0.40 0.60

Series Expansion Asymptotic
Expansion
81
=
Sp{n 15.00 30.00 45.00 agnn 75.00 90.00 lqsun lgmnn
S+ e + -+

~

Figure 2: Computational Domain for G

Filon Quadrature Rule.

For yu greater than .7 the exponential factor in
the integral (58) causes the integrand to decay fast enough
that a numerical quadrature formula may be used

efficiently. 1In order to truncate the oscillatory tail of
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the Bessel function we add and subtract the leading term of

its asymptotic expansion. This gives:

. g - - —Au,
G=2 =--- [ dx sin(gv/1) e u[/A Jo(AvI-u?)
/r'3 0
1 2 m
- ———————— - cos(AvI=pZ - =)]
(1-p2) /4% Jq 4
2 1 ® . ~A m
+2 23 T [ dx sin(gv/1)e ucos(x/T:EY - =)
Yrr'3 (1-42)1/% O 4

The second integral can be evaluated analytically with

the final result:

) g = e
G =2 =--- [ dx sin(gv/1) e "[/x Jo(Av1-y?)
/r'3 O
2 n
- = (1-p2)"1/% cos(avI-uZ - -)]
vu 4
2g 8 -82u/4 B2/1-uZ 34
+ -2 - e sin(======= -=)
Jr'3 (1_u2)1/u 4 2

where o = sin~1(y)

By setting
k2 = a/yIT-yZ , vy = g/(1-p2)1/b

B g 1l © -k2y//1-32
G =4 -—-- cmmeemeeo [ dk k sin(yk) e
Jr'3d (1_u2)3/4 0
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2
[k Jo(k2) - - cos(k2-7/4) |
/u
29 1 -g2u/4 g2/1-p?2 38

. sin(======- + --)

/rr'3 (1-p2)l/4 4 2

g 1 ® ~ku/VT-uZ
= 4 e e dk k sin(yk) e £ (k)

e
Jr'3 (l_u2)1/k 4 2

The infinite integral is truncated at a value X=Kpax

where the factor
-ki//T:FT
k £(k) e
is less than 10~/ . The finite integral is then
subdivided into 2N subintervals of equal length h where
h is chosen equal to 0.05. In order to save computer

time, the function

2  {
f(k) = k Jo(k2) - - cos(k? - -)
Yn 4

is evaluated only once and tabulated for the integration
points X=nh (n=0,1,2, ... .)

The partial integrand
2
k¥ /¥I-u?
g(kx) = kf(k)e

is then approximated by a parabola obtained by
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interpolation at the mesh points. The resulting integrals
of the form

k2
] (c3k2+4cik+cg)sin(yk)dk

ki
may be evaluated analytically leading to a formula similar
to that first presented by Filon (1929):

4 o oo [- a1 g(kmax) cos(vkmax) +
Yr'3 (1-p2)3/%

+ a2 Syp + a3 Sap-1])

2g B -82u/4 B2/I-uZ 3¢
Jr'3 (1_u2)1/k 4 2
The constants a3, a2, @3 are defined as:

(62 + 5 siné cos§ - 2sin?s)/63

a] =
a2 = 2 [6(1l+cos26) ~ 2sinécoss /63
a3 = 4 (sin§ - 6§ cosé)/é3
where
§ = y°*h

The sums Sjyy and S2N-] are given by the formulae:

Say = g(2h) sin(2hy) + g(4h)sin(4hy) + .......
1 »
+ 5 g(kpax) sin(kpaxY)

S2n-1 = g(h) sin(hy) + g(3h)sin(3hy) + .......
+ g(kpax-h) sin((kpax-h)y)
Formula (59) retains uniform accuracy even when Yy is

so large that many oscillations occur within the step size
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h=0.05 .

Series expansion.

Following Lamb (1932), for small values of B8 the
sin(B8vY)) factor may be expanded into a power series to

produce:

1
- g ® -Au = (8Y1) (-1)
G =2 --- [ darx e Jo(a/I-uZ) VYA | ———mmmmmmmee—e-
/r'3 0 n=1 (2n-1)1!

Using the formula

n =-ip
] 2 e Jo(Av1-yZ) dx = n! Pp(u)
0

where Pp(u) 1is the Legendre polynomial of order n , each
of the terms of the power series may be integrated

analytically with the final result:

21
G = 2/g/r"3 g [Py{u) - == P(n) B2
31
31 41
+ —-= P3(u) B* - -= Pg(n) B® + ...] (60)
51 71

Using double precision and enough terms, this series
has been found to have an error less than 10-% for the
region shown in Figure {(2). The Legendre polynomial
Po(n) 1is evaluated from Pp_3(u) and Pp_3(u) using the

forward recursion formula.

Asymptotic expansion

For large values of B8 the series expansion (60) of

G converges very slowly and there is a loss in accuracy
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due to roundoff errors. In this case, it is more efficient

to develop an asymptotic representation of G in negative
powers of g8 . Replacing the Bessel function Jo by its

integral representation and reversing the orders of

integration gives:

2 g x/2 ® _ _ =(u-ivI-uyZcosy¢)
- ---Re [{ d¢ [ dx /x sin(Bvir)e
5 /r'3 -n/2 0

G =
where Re denotes that the real part of the above must be
taken. The inner integral can be expressed in terms of the
Dawson integral (Abramowitz and Stegun (1964) eq. 7.4.7)
with the complex argument

(z = R Bttt bttty )
2 /(py-i V142 coss)

o _ _ =x(p-ivI-yZcosy) DDAW(Z)
[ dxv/x sin(gvi)e = e — e -
0 (p-ivI-yZ2cos¢)3/2
2 22 A
- e —— e DDAW(Z) + ==—--————e———a (61)
(u-iv1-pZcosg¢)3/2 (u-i/l—uzcos¢)3/2

where DDAW is the Dawson integral defined as
-Z2 Z g2
DDAW(Z) = e [ e dt
0

Because y has values between 0 and 1, when the
nondimensional parameter g8 1is large, the complex argument
Z of the Dawson integral has a large modulus. As a result
it may be approximated by the large argument expansion of

the Dawson integral (Gauchi 1970):
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~Z2
1 1 3 15 e
DDAW(Z) = == 4+ ——=== + === 4 ==== + ..., = ==—=-=-
22 22z3 23z53 2427 2i
(62)
Substituting (62) into (61) we may write:
® _ _ =A(y=iv/T=u7Z cosy)
[ dx /A sin(g/Ar) e =
0
— =Z2
1 1 3 15 /m e
= [(1 = 22Z2) (== + ==== + —=== + ———= + ..., = —=——-- )
2Z 2273 2325 2477 2i
+2] / (v - i/T-32 cos¢)¥/? =
1 3 45
= [- _——— - - - - - ¢ o o
273 2Z5 2327
— =22
/1 e _ ,
- (1-222) —=—mm=- ] / (u - i/I-4Z cosg)?/2  (63)
2i

Replacing the inner integral

expression (6l) for G gives:

from (63) into the

2 g /2 1 3 45
G=- =--=Re | dp [= === = === = —=—=
m /r'3 -r/2 223 225 2327
_ -z2
/n e
- (1-222) ——eeee- (g = iv1-uZ cos¢)3/2
2i
2 g x/2 4 48
= - ---Re [f d¢ [- == - == (y-iv/1-yZ cosy) -
n /r's3 —11'/2 83 85
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180 —
- 57- (u—i/l—u COS¢)2 T e s e

v
- 5% ((u-ivT-u< cos¢)~3/2 - 282(u-ivI-u?Z cos¢)~5/2)

g 4 48y 360 )
- - mam o e = T 3 -1 o s 0 -
yr's ( g3 g5 B/ (3u5-1) )

n
N
|
|
—

1 g n/2
-Re[ - -—] d¢((u—i/l-uz cos¢)—3/2
YTi /r'3 -n/2

4(u-iv1-u?Z cos¢)
- 282 (u-iv¥I-p<Z cos¢)-5/2) e 1] =

g 4 48y 360
= 2 moz [(= == = === = === (3p2-1) ...) -

/r'3 ( 53 35 B/

L n/2 -3/2
-Re [ -- | d¢[(u-iv1-uZ cos¢) -
/Ti O
82
=572 4(u-iv/I-u< cosé¢)
- 282 (u-iv1I-u< cos¢)] e 1] (64)

The main contribution to the integral term comes from

the neighborhood of the end point ¢=0 where the
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exponential is stationary. A systematic series expansion
around that point gives the asymptotic behavior of the
integral for large B8 . The details of the asymptotic

analysis may be found in Appendix E. The final result is:

- g 4 481y 360
'/r'3 83 85 87
_82 4
e w/ g2/1-puZ 38
+ = (e sin( ===—===- + —-)
Y2 (1-p2)i/u 4 2
1 g2/T1-u? ]
+ mrm——e—e——- cos ( —=—==—==—- - =)
28(1_u2)3/k 4 2
1l B2yI-u< 38
+ ~mm—e—————— sin( -===-=- - ==)
B3 (1-2)3/ 4 2
9 B2/1-y< 580
S — sin( —m=-——o - ) -
883(1-p2)5/4 4 2
9 B2y1-yu< 76
- eemem—e———— cos( —=—==w- - ==)
BS(1-u2)3/4 4 2
24 B2y1~p? 580
+ —mmmmmmee—o cos( -—----- - —=))] + 0 (877) (65)
85(l_u2)3/h 4 2

where

8 = sin~1(y)
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Because of the exponential factor emBzU/4 the
contribution of the integral term is significant only for
small u , that is close to the free surface.
An asymptotic series equivalent to (65) has been
derived by Newman (1985) by first expanding the Bessel
function Jo for large arguments and evaluating the

resulting integrals by the method of stationary phase.



CHAPTER 1V

NUMERICAL RESULTS

IV.1 Numerical Evaluation of the Force Coefficients

in the Time and Frequency Domain for a Sphere, a

Cylinder and a Series 60 Ship.

IV.l.a Case of Zero Forward Speed

A sphere in heave was chosen as the first test problem
for the numerical method. Figure 3 shows the nondimen-
sional memory function K(t)/pénR3 , for a heaving sphere
versus nondimensional time, t/g/R , where R is the
radius of the sphere. The solid curve is obtained by
Fourier transforming the frequency-domain results of
Barakat (1962). The asterisks and crosses show the
numerical results using the source or potential methods
respectively. For the numerical results only 12 panels
were used on 1/4 of the body. This small number of panels
illustrates the errors associated with the numerical
solution.

Figure 3 illustrates that even with a small number of
panels either the source or potential methods give
reasonable results. One of the major problems of this
method is the oscillatory tail which occurs in the memory

functions at large times. This oscillatory component

60
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persists indefinitely in time and as Figure 3 indicates,
is much smaller for the potential method than for the
source method.

Adachi and Ohmatsu (1979, 1980) examined the two-
dimensional problem and showed that the oscillatory error
in the time domain is the equivalence of the irregular
frequencies in the frequency domain. The irregular
frequencies in the frequency domain are eigensolutions of
the interior problem. They satisfy the linearized free
surface condition and a Dirichlet condition ¢=0 on the
body surface. At these resonant frequencies wj the
solution in the frequency domain has a singularity of the
type l/m-mj . The Fourier transform of this singular
error’gives the effect of each irregular frequency in the

lwit
e J
time domain as == . In fact, as the present

2i

calculations indicate only the lowest eigenfrequency
affects the solution. Hulme (1982) gives the lowest
irregular frequency for an oscillating sphere in heave as
w] = 5.01 rad/sec . The oscillatory error in Figure 3 has
an approximate frequency of 5.03 rad/sec that is very close
to w3 .

Adachi and Ohmatsu show that using the source method
the oscillatory error cannot be eliminated regardless of
the number of panels or the size of the time step.

However, using orthogonality arguments they show that

analytically the potential method has a solution which is
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free of the oscillatory error. Numerically this might not
be the case because of computational errors, but at least
the potential method should converge to the proper solution
given sufficient numerical accuracy.

Figure 3 verifies that the potential method does
indeed give a better solution. For the same number of
panels and time step size the potential method has a
significantly smaller amplitude of oscillation (£*) than
the source method. The potential method also appears more
accurate over most of the range. Thus, even though the
potential method requires slightly more computational
effort than the source method, it seems to be worthwhile.

Figure 4 presents the same results as figure 3 except
that the numerical calculations were made using the
potential method with 65 panels on the 1/4 sphere and a
nondimensional time step of aAt* = At/g/R = 0.05/g/R .

The agreement between the analytic result and the calcu-
lations is now excellent. The amplitude of the oscillatory
error is not zero, but it is small enough for practical
calculations. The amplitude of the oscillatory error could
be made smaller by taking more panels and a smaller time
step.

Figures 5 and 6 show the added mass and damping as a
function of nondimensional frequency for a sphere in heave.
The numerical results were obtained by Fourier transforming

the results of figure 4 according to equation (40). The
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analytic results are from Barakat (1962). It should be
noted that even though there is a small oscillatory error
in the tail of figure 4, because of the discretized form of
the Fourier transform it does not affectlthe added mass and
damping predictions.

Figure 7 presents the nondimensional memory function
for a right circular cylinder in heave. The radius to
draft ratio (R/T) is 2.0. The solid curve was computed by
Newman (1985) using ring sources and a one-dimensional
integral equation. The results computed by the present
three-dimensional theory were obtained using a cosine
spacing of 31 panels on the bottom and 25 panels on the
side of a 1/4-body. The nondimensional time step was again
At* = .05/g/R . The slight difference between the computed
results and those of Newman are apparently due to the
difficulty of properly modeling the flow around the sharp
corner where the bottom meets the side. The best agreement
was obtained by using a cosine spacing of the panels and by
placing a small panel at an angle of 45° in the corner,
rather than having the side and bottom panels meeting at
right angles.

Figure 8 shows the nondimensional memory function for
a sphere in sway. The numerical results were computed
using 37 panels on a 1/4 sphere and a nondimensional time
step of At* = .05/g/R . The analytic curve was obtained

by an inverse Fourier transform of the frequency domain
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results of Hulme (1982). As with the heave results, the
agreement is again excellent.

Finally, the method was used to calculate the added
mass and damping of a Series 60 ship forced to oscillate in
heave and pitch. The Series 60 model is a parent form
(L/B = 7.0, B/T = 2.5, LCB/L = 5% forward) for the
Cg = 0.70 series. This model has been tested by Gerritsma
(1966) and Gerritsma and Beukelman (1964). In addition,
Chang (1977), Inglis (1980) and Inglis and Price (1982)
have presented numerical results using frequency-domain
calculations.

As Figure 9 indicates, at large times there is an
oscillatory component similar to that observed in the case
of a sphere in heave. As in all the other cases, the
potential method has less oscillatory error than the source
method. The oscillatory error may be further reduced by
increasing the number of panels and time steps. The final
discretized model that was used in the computations is
shown in Figure 10. There are 108 panels on the half-body.
The panels are smaller near the ends because these areas
are critical for the pitch calculations.

Figures 11-13 show the nondimensional added mass and
damping coefficients ( Ajx and Bjx ) for the Series 60
ship as a function of non-dimensional frequency. Five
different sets of data are presented. The solid lines are

the results computed by time-domain analysis using the
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potential method presented in this paper. For the
calculations 108 panels on the half-body were used and the
time step size was At* = 0.6264 . The small-dash curves
are the experimental results of Gerritsma (1966) for zero
forward speed and Gerritsma and Beukelman (1964) for a
Froude number of .2 . The large-dash curves are strip
theory results. The strip theory results were computed
using the coefficients of Salvesen, Tuck and Faltensen
(1970) and a source distribution technique to solve the
two-dimensional problem. The results computed by
three-dimensional methods in the frequency domain using
source panel techniques are shown as crosses and asterisks.
The crosses are the results of Inglis (1980) for zero
forward speed and Inglis and Price (1982) for a Froude
number of .2 . The results are for their IP2 method which
corresponds to the method presented in this paper. The
asterisks were presented by Chang (1977). Chang's re-
sults are plotted in dimensional form and no model length
or density are given in the paper. To nondimensionalize
Chang's results a model length of 10 ft (3.048 m) was used.
Note that not all of the coefficients were plotted by
Chang.

Figure 11 shows the added mass and damping in heave
for zero forward speed. As can be seen all the results
agree reasonably well. For the added mass the present cal-

culations fall between those of Chang and Inglis. The
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singularity in Inglis' results around w* = 5.0 is the
irregular frequency in the frequency domain calculation.
The time domain calculations also exhibit erratic behavior
in this region. Similar to the case of the sphere the time
domain predictions may be improved by increasing the number
of panels amd time steps.

Figure 12 presents the cross-coupling coefficient
between heave and pitch. At zero forward speed A3g =
A3 and B3s = Bg3 ; thus only A3s and B3s are
plotted. The differences in the computed values of
A3 , B3s and As3 , Bg3 are less than 3% in all
cases. The cross-coupling coefficients are the most
sensitive measures of the numerical accuracy of the program
because they involve taking the differences between the two
ends of the model, which have been exaggerated due to a
multiplication by the lever arm. The reason Inglis'
results are so much larger than the others is not Xknown.
Note that both the present results and the experimental
results cross zero and become negative.

The pitch added mass and damping is presented in
figure 13. As with heave the time-domain curves are not
smooth at high frequencies due to a presumed small number
of panels and too big a time step size. Similar to A3s ,
Inglis' results for Aggs are too large around the peak

values.
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IVv. 1.b Case of Non-zero Forward Speed

In solving the forward speed problem two simplifi-
cations have been made. The first is that m has been
approximated by

m = (0, 0, O, 0, +Ugn3, -Ugnj) (66)
The approximation (66) is equivalent to neglecting the
effects of the steady perturbation velocities on the body
boundary condition. This approximation was made because of
the difficulty of determining ¢5 . The use of the com-
plete value for my ,as given in equation (3) would not
alter the time-domain computer program; it would mearly
'require different input values.

The second simplifying assumption is that in the com-
putation for the hydrodynamic pressure the steady velocity
vector, W , can be approximated by the free stream-vector:

W = (-Ugy, O, 0) (67)
This assumption is consistant with neglecting the steady
perturbation potential in the body boundary condition. The
elimination of the steady perturbation velocities in equa-
tions (66) and (67) greatly eases the computational burden
but it does not affect the time-domain analysis procedure.

The added mass and damping coefficients for the ship
moving at a constant forward speed of Froude number equal
to .2 are shown in figures 14 and 15. The computational
time for these results is almost the same as for the zero

forward speed case. The additional calculations which
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must be made to include the line integral terms has very
little effect on the total computer time. Arbitrarily
deleting the line integral term from the calculations
alters the results a maximum of 20%. Most of the altera-
tion to the memory function curve due to the effect of the
line integrals occurs around the peak of the curve and at
large time.

The forward speed results all suffer from oscillations
in the memory function at large time. This is the same
problem as discussed in reference to figure 9. The same
paneling was used for both Fp = 0 and Fp = .2 . While
the paneling was sufficient for the zero speed case, it
apparently needs further refinement in the forward speed
case. 1In addition the time step size and maximum time for
the calculations has to be adjusted in order to improve the
predictions. As can be seen in figures 14 and 15 the
oscillations in the tail of the memory functions has lead
to oscillations in the added mass and damping coefficients.

The heave added mass and damping is shown in figure
14. For the added mass all the results agree reasonably
well; the damping shows a much larger spread between the
various predictions. The hook at high frequency in the
time-domain analysis curve is false and is the result of
the oscillatory tail.

The pitch added inertia, pitch damping, and heave-

pitch cross-coupling curves all show strong influences of
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the oscillatory tail and need further investigation. When
compared to the other theoretical calculations and to the
experiments the time-domain predictions all have the
correct magnitude, but the curves are not smooth. As an
example, figure 15 shows the added mass and damping in
pitch. The time-domain curves are not shown in the low
frequency range because the results in that region depend
on the arbitrary method of closure of the memory function
at large time. A closure technique was necessary because
the computer run was inadvertantly stopped before the
memory function return to zero. Lack of time and computer
funds prevents a re-run. As can be seen the results are in
the proper range. The oscillations and low frequency
results can be improved by better numerical techniques at

large time.
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IV.2 Motion of a Freely Floating Sphere

As an example of the use of the impulse response
function, the problem of the transient motion of a floating
sphere in heave is investigated. The sphere is in
equilibrium floating on its meridian. At t = 0 it is
assumed to be released from a small initial displacement in
heave. The velocity of the sphere at t = 0 1is zero.

The equation of motion for the sphere is

Mz3(t) = -pgAz3(t) + F33(t) (68)
where
M = mass of sphere
2

= p x SnR3
R = radius of sphere
A = waterplane area of sphere

= gR2
z3(t) = heave amplitude
F33(t) = vertical hydrodynamic force acting on the

sphere.
Using equation (36) and bringing all terms to the left-hand
side of (68) the following integral-differential equation

for the heave motion can be found:

t

(M + u33)z3(t) + [ dr K33(t - 1) ;3(1) + pgAz3(t) =0
0
(69)
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subject to 3(0) h

0

£3(0)
Equation (69) could be solved by a time-stepping
numerical scheme. However for this simple problem it is
much easier to use the standard Laplace transform tech-
nique. Taking the Laplace transform of (69) and solving

for the Laplace transform of the heave motion ;; yields

s(M +'u33)h + K§3(S)h
z*(s) = ==, e e (70)

where s

Laplace transform variable

c;(s) = Laplace transform of g3(t)
K;3(s) = Laplace transform of K33(t)
h = initial displacement of sphere

The actual time history is found by taking the inverse
transform of (70). As shown in Kotik and Lurye (1964,
1968), because ¢(t) and K33(t) are zero for t < 0,
the Laplace transform can be evaluated using Fourier
transforms with s = iw . For the numerical results
presented in figure 16 a Fast Fourier transform routine was
used to compute the transforms and their inverses.

Figure 16 shows the nondimensional heave displacement
(z3(t)/h) versus nondimensional time (tv/g/R) for a
sphere released from an initial displacement h . The
results computed by the techniques presented in this paper

agree with those of Kotik and Lurye to within the accuracy
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of their graph. Kotik and Lurye also used the Fourier
transform technique, but they find the added mass and
damping analytically using asymptotic methods and the
Kramers-Kronig relations.

Also shown in figure 16 are the results of a simple
experiment carried out at the Ship Hydrodynamics Laboratory
of The University of Michigan. A .508 m diameter sphere
was suspended over the towing tank and released. The
sphere model was built with wall sides from the waterline
upward. The heave motion was measured by a sonic wave
probe placed over the model; a technique which gives a
resolution in vertical heave motion of .25 mm. The
analogue signal for the heave displacement was digitized at
a rate of 101 samples per second and stored in a computer
for subsequent data analysis. The model was released by
the cutting of a thin suspension wire. The precise
starting time was obtained by examination of the digital
record, which showed a small "blip" when the wire was cut.
The starting time was thus known to within ¥ .005 of a sec.

Several initial displacements were run. Within
experimental accuracy the responses were linear with h up
until about a 2.5 cm initial displacement. The results
showin in figure 8 are for an initial displacement of 2.51
cm. As can be seen the agreement between theory and
experiment is excellent. The experimental record was

stopped after tYg/R = 32.00 due to wall reflections
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causing changes in the response. As can be seen in figure
16 the experimentsl results agree extremely well with the
analytic predictions made by the methods presented in this
paper or those of Kotik and Lurye (1968).

Bailey, Griffiths and Maskell (1976) conducted similar
experiments but on spheres of 5 and 10 cm in diameter.
They measured the vertical displacement from photographs
taken at 18 frames per second. Bailey et al did not
compﬁre their results to the analytic predictions of Kotik
and Lurye (1968) but a simple comparison shows they do not
agree very well. The peak amplitudes in their experimental
curves are lower than the analytic results by 10 to 35%.
The phases can not be compared because Bailey et al do not
list the nondimensionalization used for the time scale.
Presumably the results of Bailey et al are low because of
the small sphere diameter and the effects of viscosity and

surface tension.
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CHAPTER V

CONCLUSIONS

The use of time-domain analysis has been shown to be a
viable alternative to the frequency-domain approach for
solving the radiation problem. As compared to a frequency
domain formulation, the time-domain technique can be
extended from zero to constant forward speed with only
minor modifications. The computer time for the forward
speed case is only slightly larger than the zero speed
case. On the other hand, the extension of the frequency
domain solution to include forward speed is very difficult.
Furthermore the present method may be extended to the more
general case of nonconstant forward speed and a curved
trajectory.

The major disadvantages of the time domain analysis
are all related to the behavior of the memory functions at
large time. Related to the irregular frequencies in the
frequency domain, an oscillatory error appears in the tail
of the time-domain memory function as it approaches zero at
large time. By solving for the velocity potential
directly, the oscillatory error can presumably be made as
small as necessary by using time steps and quadrilateral

elements which are sufficiently small. Unfortunately, this

87
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greatly increases the computer time. Variable time step
size and/or asymptotic analysis can make this analysis more
efficient for practical calculations. Finally, in order
for this method to be complete the diffraction problem must
be formulated and solved in the time-domain. This requires
determining the diffraction force exerted on a stationary

body by some kind of transient wave input.
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APPENDIX A

Extension of the theory to Ship Maneuvering.

The theory developed in Chapter II may be extended to
include a more general case of an unsteady maneuver of a
surface ship. Although the analysis for this case follows
a similar manner, the computational effort increases
considerably. Also in this case, viscous effects are
important and neglecting them may affect the results
significantly.

It is convenient to employ a coordinate system Oxyz
fixed to the ship. Since the path of a surface ship is
restrained to the horizontal plane, the coordinates X(t)
and Y(t) of O and the heading angle ¢ define its
position at any time as shown in figure Al. 1In order to
convert the equations to the moving axes we first need to
find the relationship of the moving frame Oxyz to a
coordinate frame OgXpYoZo fixed in space. This

relationship between the coordinate frames is:

x = [x5 - X(t)]cosy + [yo - Y(t)lsiny
y = - [xo - X(t)Isiny + [yo - Y(t)Icosy

Z = Zp (Al)
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Figure A-1l: Coordinate System for a Maneuvering Ship

Using the relations (Al) we may write the free surface

condition in the moving frame as:

9 3 9
(- - £f1(t) —— - £2(t) --)2 ¢ + g
at ax 3y
where
93X aX
£1(t) = = == = - [ - -- cosyp + Xsiny--
at ot
ay X
fa(t) = = == = - [ - -- siny + Xcosy--
3t at

¢
-- =0o0on z =o0
9z
(A2)
aY 3y
- == siny - Ysiny--]
ot ot
Y 3y
- == cosy - Ysiny--]
at It

Since the ship follows a prescribed path £;, f; are

given functions of time.

In the special case of a straight
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X Y
trajectory by setting -- =Ug, =- =0 and ¢ = 0 the
st at
free surface condition (A2) simply reduces to equation (2)

of Chapter II.

For this problem the appropriate Green function is:

1 1l
G(PlQ:tlT) = (" - "") G(t"‘l’) + H(t"'l')
r r'
© . k(z+z)
x 2 [ dk vkg sin(vkg(t-1) e Jo(kR)
0
(A3)
where
P = (x,y,z)
Q = (E:n:c)
r2 = (x-g)2 + (y-n)2 + (z-g)2
r'2 = (x-g)2 + (y-n)2 + (z-g)?2
t t
R2 = (x-g + [ £1(1)dt)2 + (y-n + [ f2(1)dr)2
T T

The integrated form of G 1is given by Wehausen and Laitone
(1960) as the potential for a source of variable strength
following an arbitrary path. Note that while in the
special case of constant forward speed one may express G
a function of t-t , in this more general case this is no
longer true. As a result, in this general case the linear
system which is used to model the ship motions is no longer
time invariant.

As in the case of constant forward speed applying

Green's theorem to the fluid domain gives:
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1t 3G(P,Q,t, 1)
$(P,t) = - —— | dt [] as (e(Q,1) ====m—mm——-
47 o S anQ
_ ae.a,t,ry 2289:7) (A4)
3nQ

The contribution from the integral over the free surface on
the right hand side of (A4) may be reduced to a line
integral. From (A2) on the free surface z=0 we have:

9 9 l1 3 ] ]

— = === = (== = £f1(1) - - £2(1) --)2

an 9z g 9T ¥3 an

In view of the above, the contribution to (A4) from
the free surface is:

1 t 9 3 3

¢p = === | dt JJ as [e(Q,1)(-- - £1(1) == = f2(1) --)2
4n1g O SF 9T 9E an

G(PlQ:t:T)

9 ] 9
- G(PloltlT)(-_ - fl(T) - = fZ(T) __JZ ¢(QIT)]
9T 3& an
= ¢p] + ¢p2 + ¢F3 + Or4 (AS5)
where
1 t '
4ng O SfF

G(PlQltrT) QTT(Q:T)J

1 t 9
= --- ) das | dt -- [¢(Q.,1) G.(P,Q,t,T)
4ng Sg o) 9T

G(P,Q,t,T) QT(QIT)]
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t
1
= ——- [[ as [e(Q,7) G (P,Q,t,1) - G(P,Q,t,1) ¢,(Q,1)]
471g Sp
0
(n6)

Assuming zero initial conditions for ¢ and ¢, the

last expression is zero at both limits. The ¢p3 term is:

1 t
dp2 = ——- f dr ff das (f12 GEE > - f12 Qgs G
47g O Sf

+ £22 G0 - £22 ¢, G)

1 t 9
= ——— f dt ff das [flz - (GE¢ - QEG)
47g O Sg 9E
9
+ £22 -- (Gp¢ - ¢,G)]
an

Applying Stokes' theorem we get:

1 t
¢p2 = - ——= f dr [flz(‘l’) f dn (GEQ - ‘DEG)
47g O T
- £22(1) [ dg (Gu¢ - ¢,G)] (A7)
r

Where T is the intersection of the mean hull surface
So and the plane z=0 .

The ¢rp3 term is:
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1 t
bp3 = —- [ dt [[ S (<fy Gge # = £1, Gg @
4rg O Sy

+ £ 97 G+ f17 06 G - £1 Ggoo ¥ f1 0g¢ G - £2 G @

- £20: Gy ¢ + £2 8,7 G+ f20 &7 G - £2 Gpy & + £2 ¢p¢ G)

Integrating by parts with respect to time gives:

1 t 3 9
dp3 = ——- f dr ff das (—Q - (fl GET) + G -~ (fl QET)
4ng O SF R T

- £] Ggq® + £1 #g,G

3 3
- ¢ -=(£2 Gp,) + G —=(f2 &) - £2 Gy ¢ + f2 ¢,, G)
9T 9T

1 t

g F

+ £ ¢gr G + f2 ¢ G, - £f2 &, G - £2 Ghp ¢ + £ ¢nr G =

1t d
= ——= [ dt [[ @S [-£1 -- (G ¢ - ¢, G)
4xg O SF 9L
d
- £f3 == (G; ¢ - ¢, G)]
an

Again the above expression may be simplified by using

Stokes' theorem:
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1 t
¢p3 = === | dt [£f1(1) | dn (G; & - &1 G)
47g O T
- f5 (1) | dg (Gr & - & G)] (A8)
r
Finally the ¢pq term is:
1 t
0pg = ——- | dt |] dS (2£1f) Ggp ¢ - 2f1f3 ¥gp G)
47g O Sf
1 t ] 9
= ——= | dat [ as 2f1f3 [-- (Ggs) - -- (#p G)]
41g O SF 9g an
Stokes theorem gives:
1 t
¢p4 = ——— | dtv 2f1(t)f2(1) [J dn Gge + | AE &, G]
4ng O r r
Integrating the last integral by parts gives the
result:
1 t
¢pg = --- ] dt 2f3(t)f2(1) [J dn Gg ¢ + | dE Gn ¢]
4n1g O Iy T (a9)

Combining equations (A4), (A5), (A6), (A7),
we may express the potential at any point P

domain as:

1 t 9G 90
¢(P,t) = - ——— | 4t JJ A (& -- - G --)
4ng O So on an

1 t ¢ G

+ ===/ dt | dn [£12(7) (G - - & —-)

4ng O r ok 98

(A8) and (A9)

in the fluid
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3¢ 3G 3G
- £1(1) (G —— - & —=) - 2 £1(1)E2(1) & -]
91 9T 9E
1l t 3¢ 3G
- ——-= [ dar [ dg [£22(1) (G — - & --)
47g O r an an
3d 3G oG
- £2(1) (G —— - & -=) - 2 £1(1)E2(1) & -] (A10)
9T 9T an

This expression states that the fluid flow resulting
from an arbitrary maneuver of the ship may be represented
by a distribution of sources and dipoles over the mean hull
surface S, and the line T which is the intersection of
So Wwith the plane 2z=0 . The special case of a ship
moving at a constant forward speed in the x direction may
be recast by setting £3(r) = Uy and £f3(1r) = 0 . 1In that
special case equation (Al0) becomes identical to equation
(II.14) which was used in the numerical computation scheme.

Equation (Al10) may be reduced to a pure source
distribution of density o¢(Q,1) Dby defining a ficticious
interior flow and subtracting it from the orignial equation
(Al0). The final result is equivalent to equation (II.1l5):

1 t
$(P,t) = - -- [ dr [[ as G(P,Q,t,1) o(Q.,T)
4n O So
1l t
- === [ dtr £12(1) [ dn n1 G(P,Q,t,1) o(Q,7)
47wg O r
1 t

+ ——— I dr fzz('l') f dE n2 G(PlQltlT) G(Q:T) (All)
499 O T
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Where nj,ny are the x and y components of the normal
respectively.

The mathematical model described in this Appendix may
be used to analyze the flow pattern created by a ship
maneuver. In this general case however, since the ship
speed and direction changes with time, an impulse response
function can no longer be used. The method appropriate for
this case, is to solve the hydrodynamic problem in
conjunction with the dynamic equations as an initial wvalue

problem.
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APPENDIX B

Derivation of the Integral Equations for the

components of the potential y1x , Xx -

In equation (20) the potential is written as the sum
of two parts:

ok (P, t) = y1x(P)s(t) + Xx(P,t) (B1)
Substituting ¢y (P,t) from equation (Bl) into the

governing equation (14) gives:

1t
V1x(P)s(t) + Xx(P,t) = - —— | dt [) ds [(vix 6(1) + Xx(1))
3 1 1 3G(t-1)
(=== (= = ==)8(t=1) + ——==——- )
anQ r ' anQ
1 1 _ 3V1k 3 Xy
((= = ==) §(t=1) + G(t=-1)) (==== 8(1) + ——=)] +
r' r' BnQ anQ
1t 1 1 _
+ ——= [ dt | dn {U2[((- - --) &(t=1) + G(t-1))
4nrg O T r r'
d IXk(P, 1)
(== vix(P)s (1) + ——=—=-—- )
9 L3
3 1 1 3G(t-1)
= (== (= = ==) §(t=1) + —===mmm ) (vix 8(7) + x¢ (1))] -

9 1 r' 9
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1l 1l
- Ug [((= = ==)&(t-1) + G(t=-1)) (
r r'
1 1 3 3
- ((= = ==)== &8(t-1) + — &
r r' at 9T

The line integral terms may

b1k - 8(t-1) + & xx(1))-
T 9T

t=1)) (vix 6(t) + xx(1))]}
(B1)

be simplified by observing

that on the free surface E - ET = 0 and ¢1x = 0 . This
r r
gives:
1 t
p1k(P)6(t) + xx(P,t) = - == [ dr [[ a5 [(y1x 6(7) + Xxx(7))
47 O So
3 1 1 3G(t~-1)
x (=== (= = ==) §(t-1) + ——==—u-
anQ r r' anQ
1 1 3P1k Xk
= ((= = ==) 8(t-1) + &(t-1)) (=== (1) + ===)]
r r' anQ anQ
1t axx(t) 3G(t-1)
+ === [ dt [ dn [Upg2? (G(t=-1) =====m = ————=w- Xk (1))
4xg O 9 X3
. axx(t)  36(t-7)
- Up (G(t=1) ====mm = ——mmeee Xk (1)) (B2)
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In order to get an integral equation for the values of
the potential on the body surface let P approach the body
surface. Then, as is well known, the surface integrals
have a §(¢1k5(1) + Xx(t)) contribution. The final
result is that the 4r becomes a 2r and the surface
integrals are assumed to exclude the singularity. Since

3P1k CRS S

---- =nx and --- = mg from equation (21)

an an

equation (B2) becomes:

1t
v1k(P)6(t) + Xx(P,t) = - == [ a1 [[fas [(wix 6(t) + Xx(7))
27 O So
] 1 1 3G(t-1)
x (=== (= = ==)&6(t=-1) + ——===—- )
anQ r r' anQ
1 1 )
- ((= = ==)§(t=1) + G(t-1))(nk6(1) + mk)] +
r r'
1t axx(1) 3G(t-1)
+ ——== [ dt [ dn [Ug? (G(t-1) =—===-= = ———=——- Xx(t)) +
47g O r g 9E
- axk(1) 3G(t-1)
- Uo (G(t=1) ====m= = —=————- Xk(1))] (B3)
3T 9T

Collecting terms proportional to §(t) gives an
integral equation for yjx and the remaining terms yield

an equation for Xk . The final results are:
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1 9 1 1

v1k(P) + -= [[ dS y1x -== (- - --)
21I' So anQ r r.

1 1 1
= -= [ dS (- - ==)ng (B4)
21 Sp r r'

1 3 1 1
Xk(P,t) + == [f ds Xx(t) === (- = —==)
27 So ong r r'

1 t 3G(P,Q,t-1)

+ -- [ dt [f @ xk(1) —-——=—==———-
21!' o So Q

U2 t _ 3G(t-1) axx(t) _
+ ——= [ dr [ dn (Xk(1)~====== = —=——-- G(t~-1)) -
27g O r g 3¢

Uo2 t aG(t-1)  axk(r) _
- ——= [ dtr [ dn (Xx(1) ==m==== = ——m——o G(t-1)) =
27rg O r
(BS)

1 1 1 1t .
= - [[fd mg (- = ==) + == [ d7r [[ dS mx G(t-t) +
So r r' 27 O So

1 1 3G(pP,Q,t)

+ -- [ &8 nx &(P,Q,t) - - [[ dS g1k =—~===——m-
2Tl’ So 2.". SO Q

It should be noted that in deriving equations (B4) and
(B5) use has been made of the relations:

t
J dt £(1) s(t-1) 6(1) = £(0)s(t)
0

t
[ dt £(x) &s(t=-1) = £(t)
0
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where f(t) 4is an arbitrary function of time. It is
implied that the integration limits are from 0~ to t* .
Alternatively, in order to avoid expressions involving
products of generalized functions, one could obtain
equations (B4) and (B5) in two steps. The first step is to
substitute G from equation (5) into Green's theorem
equation (14) and evaluate the integrations with respect to
time. The second step is to use:
ok (P,t) = v1x(P)s(t) + Xx(P,t)
and separate the terms proportional to &(t) from the
other terms. The final equations are the same as equations

(B4) and (B5).

Because —=—---- is difficult to evaluate numerically

the term involving it is reduced by an integration by

parts:

t Xk (1) t axg(r) _

[ dar dn ~===-- G(t-t) = [ dn [ At ===-—- G(t-t) =

0 r T r 0 T

. R t aG(t-1)
= [ dn G(t-1) Xx(1) - [ an [ dt Xg(1) ——==--- (B6)
r r 0 ' aT
=0

The boundary term vanishes since Xx(0) = 0 on the

free surface, and G(0) = O .

In view of (B6) the integral equation (B5) may be
rewritten as:

1 ) 1 1
Xg(P,t) + == [[ dS Xy (t) === (- - --)
2'" So anQ r r'
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1 t aG(P:Q:t-T)
+ ——= [ dr [[] d8 Xg(1) —-——=z=——=m-
2n O So ang
Ug? t 3G(t-1)  aXxg(r1)
+ —== [ dt [ dn (Xk(1)=m===mm = ——--=- G (t-1)) -
2ng O r g 3E
Up t 3G(t-1) 1 1
- -= [ dat [ dn X(1) =—=-=== === [[ a8 mg (- - --)
ng O r T 21 Sg . r r'
1t . 1 .
+ -— [ dt [ as mg G(P,Q,t-1) + -- [[ dS nx G(P,Q,t) -
2n O So 21 Sq
1 3G(P,Q,t)
- == [[ aS w1k ---z=--- (87)
21\' So an'Q

The integral equations (B4) and (B6) are the final

equations (22) and (23) for the components of the potential

¢lk and Xk .
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APPENDIX C

Derivation of equation (31) relating the present

formulation to that of Ogilvie (1964).

In order to prove this relationship we start with the
integral equation for the potential for X2x as given by

Ogilvie (1964):

1 3 1 1
Xox (P,t') + -- []ds Xk (Q,t') === (- - -=) ¢
27 So dng r r°
1 t! 3
+ —— J dt J/ds Xox(1) =--- G(P,Q,t-T)
21 O So ang
1 3G(pP,Q,t') 1 )
= -=]]as y2x ---p------ + -- ]Jas mx G(P,Q,t')  (Cl)
21 S dnq 21 Sg

Integrating both sides with respect to time from O

to t we get:

t 1t 9 1 1
| Xo(P,t')dt' + —— | dt'[Jas Xzx (Q,t')==- (- = ==) +
0 2r O So dng r r'
1t t! y
+ ——= ] at' | dr JJdas Xgk(t) -=-- G(P,Q,t-T)
21 0 0 So ang
1t aG(p,Q,t")
= - -= | dt' ]]ds ¢y =-=-==-=---
1t i
+ -- ) dt' |]Jds mx G(P,Q,t"') (c2)

2n O SO
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Interchanging the order of the spatial and the time

integration on the left hand side we may write:

t 1 t 3 1 1
[ Xox(P,t')at' + —— [fdsS([ Xox(P,t')dt') —--= (= - -=)+
0 21 So 0 anq r r'
1 t t 3
+ -- [fds [ dt' [ dr Xgkx(t1) =--- G(P,Q,t'~-7)
2r So O 0 ang
1t aG(p,q,t") 1t .
= - —= [ at' [[ yox -—=—=———-- + -- [ dat' [[fdas mx G(P,Q,t')
2n O So anQ 27 O So
(c3)
Look at the term
t t" 3
I=[fds [ adt' [ dr xgpk(1) --- G(P,Q,t'~-1)
So 0 0 ing
Setting 1t' = t'~-1 this term may be rewritten as:
t t' 3
I =/ fds [dt' [ dr' X (t'=-1') --=- G(P,Q,1")
So 0 0 ang

Interchanging the two time integrations yields:

t t! 3
I=Jfas [ar' [ d&t' Xz (t'-t') —== G(P,Q,t') =
SO (0] T anQ
t aG(p,Q,t') t

]
—
—

o7}
n
—
o7
A

---------- [ at' Xox(t'-t)
S0 0 anQ T’



Setting 1" = t-t' and t" = t'-t' we may write:
t aG(PIQIt-T“ ™"
I=[fd [ drt" —----mmm-oeo [ at" xp (") (c4)

Returning to the integral equation (C3) we substitute
the integral term I from (C4):
t 1 t 9 1 1

[ Xox(P,t')at' + -= [[aS([ Xzk(P,t')dt') === (= = -=)+
0 2r S O ang r r'

1 t aG(p,Q,t-1) T
+ o= [[dS [ dr mmmmmm-mee- ([ at' xzx (t'))
27 So 0 anQ 0
1 t é(p,Q,t') 1t
+ -— [ dt' [[fdS ypx ———=----- + -- [ at' [ ds mx G(P,Q,t')
21!' 0 So anQ 21|' 0 So

(c5)

The integral equation for Xjx is:

1 3 1 1
X1x(P,t) + —- [[ dS X3x(Q,t) --= (- - -=) +
2w So ang r r'
1 ¢ 36(P,Q,t-1)
+ -- dr' ds Xix(t) =—=—=—==-————-
she
1 &(p,Q,t') 1 i
= - =[] d8 y1x =====-=-- + -- [[ ds nx G(P,Q,t)
2." SO anQ 21' SO

(ce)
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Adding (Cé6) to (C5) gives:

t
[X1x(P,t) + é Xox(P,t')dt"']

1 t 3 1 1
+ == [] a8 [X1k(P.,t) + | Xox(P,t')at'] === (- - ==)
2% SO 0 anQ r rl

1 t 3G(P,Q,t-1) T
+ -- ) a8 | dt =m=mm-mmoe- [X1x(P,t) + | Xpx(P,t')dt']
21 S 0 Ing 0
1 ) 1t 3G(P,Q,t-1)
= - JJ ds nk G(Plo;t) - - J dt JJ ds q)zk -----------
21 S, 21 0 So 9ng
1 aG(p,Q,t) 1 t .
- == J] a8 y1x —==—=—--- + -- | dt [J as mg G(P,Q,t-T)
2n So ang 2r 0 So
(c7)
t —
If we set X1x(P,t) + | Xox(P,t')dt' = Xx(P,t) then
0

the above equation (C7) becomes identical to the integral
equation (29) which proves the equivalence of the the

present formulation to that of Ogilvie (1964).
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APPENDIX D

Integration over an Element

To evaluate the elements of the kernel matrix in
equations (51) and (56), the influence of a plane quadri-
lateral panel on a collocation point P must be deter-
mined. Following Hess and Smith (1964), to each panel a
local coordinate system is assigned such that the quadri-
lateral lies in the plane z* = 0 . As shown in figure
D.1, the coordinates of the four corner points of the
quadrilateral in this coordinate system are (x1%*,y1*).
(x2*, y2*), (x3*, y3*) and (xg*, ya*).

In order to integrate numerically over the quadri-
lateral element it is convenient to transform it into a
standard region. For the numerical work presented in this
paper the standard region was chosen as a square defined by
(-1,-1), (-1,1), (1,1), and (1,-1) (see figure D.1l).

The coordinates of a point x*,y*,z* can be expressed
as a function of g*,n*,z* by the following transformation

x* = Nj(E*,n*)x1* + No(E*,n*)xo*

+ N3(E*,n*)x3* + Ng(g*,n*)xg*

y* = Ni(g*,n*)y1* + Na(g*,n*)yo*

+ N3(E*,n*)y3* + Ng(&*,n*)yg*

z* = %
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A = Jl"
y* n*

Ny (-1,1) (1,1
(x3,y3) 2 3 )

(-1,-1) (1.-1)

Figure D-1: Coordinate Mapping of Arbitrary
Quadrilateral into a Square

where N (1 - g)(1 - n)

1
Ny = Z(l - E)(L + n)

1l
N3 = Z(l + E)(1 + n)

1
Ng = Z(l + £)(1 - n)

(x4*,y4*,0) = coordinate of the jth vertex of the
quadrilateral.
The integral over the quadrilateral can then be

written as
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[[ F(x*,y*,z*)dx*dy*

Sm
(x*,y*)
= [ Flx*(g*,n*), y*(g*,n*),¢c*) | ——=-2=-- dg*dn*
Sm D(g*,n*)
(D2)
D(x*,y*) . .
where | ===—=—-- is the Jacobian of the above
D(E*In*)
transformation.

The integral (D2) may be evaluated numerically by

applying a product rule:

D(x*,y*)
[f F(x*(g*,n*), y*(g*,n*),c*) | ——=-Z T2 | de*an*
Sm D(E*l n*)
M M - * ok
g n D(x*,y*)
= I I ([F(x*(g*,n*), y*(g*,n*),¢*) | -——=-=-- Jw 3wk
j=1 k=1 J k D(g*,n*)

(D3)
where wj,wx are the t* and n* integration weights
respectively.

In general, it is more accurate to subdivide the body
into a large number of panels with a 2 x 2 Gauss rule
instead of fewer panels with a higher order integration
rule.

For the present calculation a 2 x 2 Gaussian rule is
used for most of the panels. Only for certain panels
adjacent to the free surface for the Series 60 hull case a

4 x 4 rule was required.



112

APPENDIX E

Asymptotic analysis of the integral term in equation

(64).

Define by F the complex integral:

1 n/2
F=-—J d¢ [(u-ivT-uZcos¢)~3/2 - 282(u-i/1-uZcos¢)~5/2]
/Yri 7
g2
x erp(= ——=—-——m——————e (E1)

4(u-ivI-pZcos¢)

The integral term appearing in equation (64) is the
real part of the complex function F . Due to the presence
of the large parameter g 1in the exponential, the major
contribution to the value of the integral comes from the
neighborhood of the point ¢=0 . At that point the real
part of the complex function (u-iv1-pZ)-~! that multiplies
B2 in the exponential has a maximum. The asymptotic
behavior as B+« of this integral may be obtained by using
Laplace's method. Following this method, we first expand
the integrand in a series expansion around the point ¢=0 .

First replace cos¢ Dby its Taylor expansion around zero:
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1 € =372 iv’l--u2 $2
F=-—=[d¢ [(p-ivI-u7?) (1 + ——mmmmmmeee
/ri O 2(p-iv/I-32)
1/I=nZ ¢ 1/ T 46 i/T=5Z 48  -3/2
S 4 mmmem e = e —————

41 (y-iv/I-p72) 6l (y-1/1-y2) 81 (u-ivI-y2)

=572 ivI-u?Z ¢2 iyI-yZ ¢4
- 282(y=-iv/1-u7?) (1L 4+ =——mmmmmoom = mm—m—memeo e
2(p-ivI=y2) 41 (p=-iv/1-y?2)

x exp [-82 [(u-ivT=p2Z) (1 + —---mm=-=m-
z(u-iv/l-u 2)

ivI=pZ ¢t iyT=y2Z 46 i/I-p7 ¢8 -1
41 (p-ivI~y2Z)  6l(p-ivIT-p2) 8l (u-ivI-yu?)

(E2)
Note that since only the immediate neighborhood of O
contributes to the integral we can replace the upper limit
r/2 with a small number ¢ . This change of the upper
limit introduces only exponentially small errors. It is
natural to require that the asymptotic expansion of F

does not depend on ¢ . Using the binomial theorem

expression (E2) may be written as:
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1 ¢ -3/2
= -== [ d¢ [(u-iv/I-u?)
Tl
(1 3 i/I-y7 42 ivI-uZ ¢4
2 2(p-i/I-y?) 4l (p-ivI-y?)
i/I=y7Z 46 ivI=y?Z ¢8
6! (p-iyI-y7?) 81(u—i/l-u2;)
15  i/I-37 ¢2 ivI=pZ ¢4

61 (p-ivI-y72) 81 (p-iv/T-u2)

105 i/1I-p? ¢2 ivI-u?Z ¢t

48 2(pu-ivI-472) 41 (y-iy1-372)

ivI-u? 46 i/T-uZ ¢8 3
_________________________ +
6l (py-ivi-u2) 81 (y-ivyI-y2)
-5/2

2 82 (y-ivT-y2)
. 5 iyI=pZ 42 ivI-yZ ¢t

2 2(u-ivI-y?2) 4l(u-i/1-u;)
ivI=yZ 46 i/T-uZ ¢8

6l (pu-ivI-372) 8l (u-iv/I-372)
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35 ivI-pZ ¢2 ivI-yZ ¢t
+_._ ________________________
8 2(u=-ivI-32) 41 (y-ivy1-372)
ivI=y7Z ¢6 ivI=pZ ¢8 2

d e me—m——— - ——————— . ———

6l (p-ivi-y2) 81 (u-iv/I-y7?)

315 i/I=37Z 42 iyI=pZ ¢

48 2(u=-ivI=372) 41 (py~-ivy1-y2)

ivI=pZ ¢6 iyI=yZ ¢8 3

61 (y-iy1-y2) 8l (u-ivI-y2)

i/l-u2 ¢“ l/l-uz ¢6 l/l—uz ¢8 -1
- e # = mmmmmmmmmmmm m mmmmee—ooee )1 ]
41 (y-iv1-32) 61 (pu-iv/1-32) 81 (p-ivyT-y2)
(E3)

The exponential term may be also expanded around ¢=0 with

the result:

1 c -3/2
F= = [ d¢ [(u-i/T=52)
Yri O
3 ivIi-u?Z 2 ivI—pZ ¢4
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6l (u-ivI-p?) 81 (p-ivI=y?)

ivI-u? ¢6 ivI-pZ ¢8 2

6! (u-ivI-u?2) 81 (p-ivI=y?)

48 2(u-ivI=y?) 41 (y-ivI=372)

6l (pu-ivI-y72) 81 (pu-ivI-y2)

-5/2
2 g2 (p-ivI-y?)

6! (u-ivi-u?2) 8l (y-ivI-y2)

8 2(u-ivI-y2) 41 (p-ivI-y2)
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ivi-p? ¢8 ivI=yZ ¢8 2

6l (u-ivI-y2) 81 (pu-ivI=y2)

6l (pu-ivI-u7?) 8l (u~-ivI-y2)

] = mmcmcmccee (e = e —————
[ (u—i/l-uz) (4l(u-i/l-u2) Gl(u-i/l—uz)

41 (y-iv1i-u?2) 41 (y-iv/I-y72) 81 (u-iyI=y2)

2(pu=-ivyI-p2) 4l(y-i/I-y72) 6l (pu-i/I-37)

iv’l-u2 o i/l-u2 $6 iv/l-u2 66 2

41 (y-ivI-y72) 41 (p-ivy1-32) 81 (pu-iv/I-y2)

g2 i¢2p2
---------------------- (E4)
(p=-iv1I-32) e 2(u-ivy1-y72)2
i¢?
= - memmme—ee————— . The variable t 1is real on

2(u-i/l-u2)2

the steepest descent path. Expression (E4) for F may be
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rewritten as:

32
He
e e -g2¢2 -3/2
F = ~—=—-—= [ dt e [¥c
A i O
3i uodt*  8i 16
x (1 = = /T75Z (ibet? + —m=mm = == w58 - —— w78
2 31 6! 8!
15 ule*  si 16
- —= (1-p2) (iMgt? + mmmmm = == w%t® o - 7?2
31 6! 8l
105 3/2 3 si 16
+ o—m= (1-p2)  (iMet? + —mmme o = %8 - - w788
48 3l 6! 8l
-5/2
+ ...) = 282 Hg
5i et 8i 16
x (1 = - yT=5Z (ibot? + —m—m= = —— u%¢® - —— u 7e?)
2 31 6! 8!
35 e si 16
- = (1-p2) (ibgt? # mmemm o o= u%ef - - TR
3l 61 8l
315 3/2 ueldt*  si 16
#oo=oi (1-y2)  (ibgt? 4 —ommm = == B5EE o o n 783
48 31 61 81
+ oo-)] [l - iszll-uz (_ ----- + -------
31 6!
- iNcZE - - ue® - i ucteS)

41
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8% (1-u?2) uo2t*  simnge® -
- ——————- - ———— + ——————— - iug‘t
2 3! 6!
8 4,6 Y 2
41

where we have set yu - i/I-yZ = ¥g

The most convenient way to evaluate the integral (E5)
is to extend the integration region to infinity that is
replace € by « . Again the change of upper integration
limit introduces only exponentially small errors and does
not affect the final asymptotic series. The procedure of
first replacing the upper limit by a small number ¢ , then
Taylor expanding around the lower integration limit and
finally replacing the upper limit ¢ by « is probably
the most convenient way to obtain the asymptotic series for
F . A complete description of this method may be found in
Bender and Orszag (1978) .

After replacing ¢ by =« in (E5) and collecting
terms the resulting integrals may be evaluated analytically

using the formula:

« 3 ... (2n-1)

O
o
[/7]
Q
/)]
il
(NEEER
-

The final result after taking the real part of the

resulting expression is:
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-2 4
e 8u/ B2y1-u? 30
Re {F} = - -  ( ——===-—-- sin( -===--- + --)
Y2 (1-u2)1/4 4 2
1 B2y1I-y? 6
+ e cos ( =====w= - =)
28(1_u2)3/l+ 4 2
1 B2YyI-n~? 36
+ ——mm——————— sin( -—-===== - -- )
83(1_u2)3/k 4 2
9 B2y1-uZ 58
- e sin{( ———-—=== - -- ) -
883(1-u2)5/l+ 4 2
9 g2yI-u? 70
- eem———————— cos( ======= - -= )
g5(1-p2)3/4 4 2
24 B2y I-pu? 58
4 ——mmmm—m - cos( ——==—-= =~ -- ))] + 0 (877)
B5(1-pu2)3/4 4 2
where

9 = sin~1(n)

(EB)



REFERENCES

121



122

REFERENCES

Abramowitz, M., and Stegun, I.A. (1964). Handbook of
Mathematical Functions, National Bureau of Standards,
Washington, D.C.

Adachi, H. and Ohmatsu, S. (1979). On the influence of
irregular frequencies in the integral equation solu-
tions of the time-dependent free surface problems.
Journal of Engineering Mathematics, Vol. 16, No. 2,
pp. 97-119.

Adachi, H. and Ohmatsu, S. (1980). On the time dependent
potential and its application to wave problems.
Proceedings 13th Symposium on Naval Hydrodynamics,
ONR, Washington D.C., pp. 281-302.

Bailey, D.J., Griffiths, D.J., and Maskell, S.J. (1976).
On the Experimental Observations of a Heaving Sphere.
Schifftechnik, Bd. 23, pp. 31-48.

Barakat, R. (1962). Vertical motion of a floating sphere
in a sine-~-wave sea. Journal of Fluid Mechanics, Vol.
13, pp. 540-556. Also corrections in an unpublished
report entitled "Forced periodic heaving of a semi-
immersed sphere."

Bender, C.M. and Orszag, S.A. (1978). Advanced
Mathematical Methods for Scientists and Engineers,
McGraw-Hill Book Co.

Chang, M.-S. (1977). Computation of three-dimensional
ship-motions with forward speed. Proceedings Second
International Conference on Numerical Ship Hydro-
dynamics, University of California, Berkeley,
pp. 124-135.

Cody, W.J., Paciorek, K.A. and Thacher, H.C. (1970).
Chebychev Approximations for Dawson's Integral Math.
COHIE., VOl. 24' ppo 171-178.

Cummins, W.E. (1962). The impulse response function and
ship motions. Schiffstechnik, Vol. 9, pp. 101-109.




123

Daoud, N. (1975). Potential flow near to a fine ship's
bow. Report No. 177, Department of Naval Architec-
ture and Marine Engineering, The University of
Michigan.

Doctors, L.J. and Beck, R.F. (1985). Numerical aspects of
the Neuman-Kelvin Problem. Submitted for publication
to the Journal of Ship Research.

Filon, L.N.G. (1929). On a Quadrature Formula for
Trignometric Integrals. Proceedings of the Royal
Society Of Edinbourgh, Vol., 49, pp. 38-47.

Finkelstein, A.B. (1957). The initial value problem for
transient water waves. Communications on Pure and
Applied Mathematics, Vol. 10, pp. 511-522.

Gautchi, W. (1970). Efficient Computation of the Complex
Error Function. SIAM Journal of Numerical Analysis.
VOl. 7, ppc 187_1980

Gerritsma, J. and Beukelman, W. (1964). The distribution
of the hydrodynamic forces on a heaving and pitching
shipmodel in still water. Report No. 22, Shipbuilding
Laboratory, Technological University of Delft, Delft,
Netherlands.

Gerritsma, J. Distribution of hydrodynamic forces along
the length of a ship model in waves. Report No. 144,
Shipbuilding Laboratory, Technological University of
Delft, Delft, Netherlands.

Guevel, P. and Bougis, J. (1982). Shipmotions with forward
speed in infinite depth. 1International Shipbuilding
Progress, Vol. 29, No. 332, pp. 105-117.

Hess, J.L., and Smith, A.M.0. (1964). Calculation of
nonlifting potential flow about arbitrary three-
dimensional bodies. Journal of Ship Research, Vol. 8,
No. 2' PP 22-44.

Hulme, A. (1982). The Wave Forces Acting on a Floating
Hemisphere Undergoing Forced Periodic Oscillations,
Journal of Fluid Mechanics, Vol 121, pp. 443-463.

Hulme, A. (1983). A Ring-Source/Integral Equation Method
for the Calculation of Hydrodynamic Forces Executed on
Floating Bodies of Revolution, Journal of Fluid
Mechanics, Vol. 128, pp. 387-412.




124

Ikebuchi, T. (1981). Hydrodynamic forces on a body moving

arbitrary in time on a free surface. Journal Kansai
Society of Naval Architects, Japan, No. 181,
ppc 45"53.

Inglis, R.B. (1980). A three-dimensional analysis of the
motion of a rigid ship in waves. Ph.D. thesis,
Department of Mechanical Engineering, University
College, London.

Inglis, R.B. and Price, W.G. (1982). A three-dimensional
ship motion theory -- comparison between theoretical
prediction and experimental data of the hydrodynamic
coefficients with forward speed. Transactions Royal
Institution of Naval Architects, Vol. 124, pp.
141-157.

Kotik, J., and Lurye, J. (1964). Some Topics in the Theory
of Coupled Ship Motions, Proceedings 5th Symposium
on Naval Hydrodynamics, ONR, Washington, D.C., pp.
407-424.

Kotik, J., and Lurye, J. (1968). Heave oscillation of a
floating cylinder or sphere. Schiffstichnik, Vol. 15,
ppu 37_38n

Lamb, H. (1932). Hydrodynamics, Cambridge University
Press.

Lin, W.C. (1966). An initial-value problem for the motion
of a ship moving with constant mean velocity in an
arbitrary seaway. Report No. NA-66-9 of College of
Engineering, University of California, Berkeley.

Maskell, S.J., and Ursell, F. (1970). The transient motion
of a floating body. Journal of Fluid Mechanics,

Newman, J.N., (1985). Transient axisymmetric motion of a
floating cylinder. submitted for publication in the
Journal of Fluid Mechanics.

Oogilvie, T.F. (1964). Recent progress toward the under-
standing and prediction of ship motions. Proceedings
5th Symposium on Naval Hydrodynamics, ONR,
Washington, D.C., pp. 3-128.

ogilvie, T.F. and Tuck, E.O. (1969). A rational strip
theory of ship motion: Part 1. Report No. 13,
Department of Naval Architecture and Marine
Engineering, The University of Michigan, Ann Arbor.



125

Ogilvie, T.F. (1977). Singular perturbation problems in
ship hydrodynamics. Advances in Applied Mechanics,
VOl. 17, pp. 91-1880

Salvesen, N., Tuck, E.O., and Faltinsen, 0. (1970). Ship
motions and sea loads. Transactions Society of Naval
Architects and Marine Engineers, Vol. 78,
pp. 250-287.

Stoker, J.J. (1957). Water waves. Interscience
Publishers, Inc., New York.

Ursell, F. (1964). The decay of the free motion of a
floating body. Journal of Fluid Mechanics, Vol. 19,
pp. 305-314.

Yeung, R.W. (1982). The transient heaving motion of
floating cylinders. Journal of Engineering
Mathematics, Vol. 16, pp. 97-119.

Yeung, R.W., and Kim, S.H. (1984). A new development in
the theory of oscillating and translating slender
ships. Proceedings 15th Symposium on Naval Hydro-
dynamics, ONR, Washington, D.C., pp. 195-218.

Wehausen, J.V. and Laitone, E.V. (1960). Surface waves.
Handbuch der Physik, Springer-Verlag, Berlin,
pp. 446-778.

Wehausen, J.V. (1967). 1Initial-value problem for the
motion in an undulating sea of a body with fixed
equilibrium position. Journal of Engineering
Mathematics, Vol. 1, pp. 1-19.

Wehausen, J.V. (1971). The motion of floating bodies.
Annual Review of Fluid Mechanics, Vol. 3, pp. 237-268.






