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ABSTRACT

An approximate, closed-form expression for the value of the integral
encountered in the calculation of the probability density function (PDF) of
the envelope of a partially saturated ocean acoustic process is obtained.
Other possible derivations for specific cases are presented. Furthermore, an
expression of this PDF as a series of modified Bessel functions is presented.
Numerical applications show that the closed form expression is always within
1-2% of the exact result, and is obtained at a substantially lower computa-
tional effort. The results may also be directly applied to the evaluation of
the PDF encountered in the structural reliability analysis of marine diesel

engine shafting systems.



Introduction

The scope of this paper is to derive an approximate closed-form
expression for an integral of the following form:
27
I=/ exp {a cosp +b sing + ¢ cos2¢ + d sin2¢}d¢ (1)
0
This integral was encountered in the evaluation of the first order probability
density function (PDF) of the envelope of the acoustical pressure of a

partially saturated process [1], [2], [3]. Let us denote X(t) and Y(t)

the cosine and sine components of the envelope. Then [2]:
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where uy , 04,2 are the mean and the variance of the random variable X(t)
respectively, Uy » oyz are the mean and the variance of the random variable
Y(t) respectively, and Pxy is the correlation coefficient of random vari-
ables X and Y .

In general, the quadrature components of the envelope of a narrowband

ocean acoustic multipath process are given by



N
X= ) (r, cost, + Nx(n))

n=1
v (

Y= ) (r,sin6, + Ny n)y) (6)
n=1

where:

N = number of independent paths between source and receiver,

r, = the amplitude of the nth path

8, = phase of the nth path

Nx(n), Ny(n) = zero-mean, uncorrelated Gaussian additive noise for the
nth path.
Furthermore, the envelope and the phase of the total signal are defined

as:

P (X2 + Y2)1/2

¢ = tan~l (y/X) (7)
At short ranges and low frequencies, or for stable channels, the propagation
is said to be unsaturated and the probability density function (PDF) of p is
Rician [4] and independent of the number of paths. At sufficiently long
ranges and/or high frequencies, the propagation is fully saturated, which
means that ¢ , the phase of p , can be characterized as a random variable

uniformly distributed between O and 2n , or each path has a phase 6 that

n
is normally distributed with a standard deviation > 2r . 1In this regime,
when N » 4 and the single path amplitudes r, are approximately equal,
phase random multipath propagation is obtained. It has been found that the
envelope p(t) of a fully saturated phase random process with additive
Gaussian noise obeys a Rayleigh PDF. Moreover, several other statistics and

joint PDF's for the phase random process have been obtained, and are presented

in a comprehensive summary by Mikhalevsky [5].



In intermediate ranges, where the signal experiences enough perturbations
in the channel so that each 8, can be characterized as a Gaussian random
variable but with a standard deviation <2m , partially saturated propagation
is obtained. The frequency/range boundaries between the unsaturated,
partially saturated, and fully saturated regimes are dependent upon the ocean
dynamics or boundary dynamics of the propagation channel, as well as the
magnitude of any relative source-receiver motion.

In Ref. [2], the envelope statistics for signals in the partially
saturated regime were presented. As the variance of the single path phase
goes to zero, or becomes large, the PDF's converge to the unsaturated and
fully saturated results respectively.

For the statistics of the amplitude and phase, we only need to consider
the correlation matrix of X and Y and the transformations given by Eq.
(7). After the numerical calculations have been performed, we see that the

joint PDF of p and ¢ is:

p
Pp ¢(pl¢) = e sse s ———— X
' 2moyg0y(1-p2 J1/2
Xy
|_- -1 (pcos¢—ux)2 2pxy(pcos¢-ux)(psin¢—uy) (psin¢-uy)z_
€XP [—=—mmmmmmeme | et e el e
2(1-p2 ) o2 ox Oy oy?

The PDF of the amplitude of the envelope p is obtained by integrating the

above equation with respect to ¢ from 0 to 27 .
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In the case of the structural reliability studies (see for example [6]), [7])
the probability of first excursion failure during a time interval of length

T must be calculated. This is achieved by deriving an expression for the
probability that random process A8y (t) exceeds a threshold (ABg )max that
has been determined previously. The approach is based on the approximation of
the local maxima of ABg (t) by the value of the associated envelope process at
the time they occur. A discrete time, two-state process is defined with the
two states defined by the requirement that the value of ABg (t) exceeds or
does not exceed the threshold (ABg)pax + The failure probability is
calculated assuming that the discrete time process is Markov.

Let t3, t3, «.. be the times that the local maxima of A6y (t) occur.
Assuming that the local maxima of ABg (t) are approximately equal to the
value of the envelope at the time they occur, the upcrossing probability is
equal to the probability that at least one of the values of the envelope at
times £y, tye «e. exceeds the value of the threshold. Since Aez(t) is a
narrowband process, the time interval between two successive local maxima is
approximately constant.

If we assume that ty.q - tx = T = constant for all k=1, ... the
expected period between successive maxima is T = 2n/wg , and the expected
number of maxima in the time interval T is

v ="T/T + 1 (10)

Consider a discrete time, two state random process, whose states, denoted
by U and P , are defined by the requirements that the envelope of A6y (t)
exceeds and does not exceed the threshold (A6y)max , respectively. The time
step is constant and equal to T , with the discrete process taking values at
times 0, T, +..,VT . The envelope process pg(t) = (Xzz(t) + Yg'?-(t))lf2 is
stationary since Xo(t) and Yy (t) are stationary. Hence, the discrete time

random process is also stationary. It is assumed that the discrete process is



Markov. The upcrossing probability is given by the equation:

P(upcrossing in [0,T]) = P (§g > pg) +

+ P (&1 >pp &< pPg) +P(Ex >pg, &1 K pg s Eg € pg) + eeo

+ P (Ey_1 > P00 r Ev-2 € Pg s eesr &g < pg) (11)
where ¢£; denotes the ith maximum and py equals to the threshold (A6g Imax.
With the assumptions that the local maxima are approximately equal to the
value of the envelope process at the time they occur and that the time
interval between successive maxima is equal to T eq. (11) yields:

P(upcrossing in [0,T]) = P(U) + P(DU) + ees + P{D ... DU) (12)
where P(U) denotes the probability that the value of the two-state Markov
process in U and P(DU) denotes the joint probability that the value of the
process is D and U on two successive steps. Using the fact that the
discrete time process is Markov, eq. (12) yields:

P(upcrossing in [0,T]) =1 - (1-c) (1-b)V~! (13)
where c¢ is equal to P(U) and b is equal to the conditional probability
that the value of the two-state Markov process is U given that its value in

the previous step was D . Coefficients ¢ and d can be obtained as

follows:
0
c =] f£,(py) dpy o
]
Pp <«
f / fo(t)p (t+1) (P1,P2)dpy dp3
Po
N (15)

Po
| £5(pq) dpy
0

This result has been obtained by Epstein [8].
Since the integrations required for the evaluation of ¢ and d cannot

be performed analytically [2], the calculation of the value of the first-order



envelope PDF for any value of p¢ requires one numerical integration while
the calculation of the second-order envelope PDF for any pair P1:P2 Yrequires
two, nested numerical integrations.

In these references, the integrals were numerically evaluated using
Simpson's formula. Since the computing cost of this evaluation is high, and
in the absence of an exact closed-form expression, it is desirable to derive
an approximate closed form expression for this integral. This would also

provide insight into the limiting behavior of the PDF.

Derivation of the Approximate Closed-Form Expression

Our approach is based on the approximation of the exponent in the
neighborhoods of the maxima or minima by second order polynomials having the
same roots and maxima. It turns out that the integral obtained after the
approximation can be evaluated in closed form.

We use the following abbreviations:

F(¢) = a cos¢ + b sing + ¢ cos2¢ + d sin2¢ (16)
2m
I=] expF d¢ (17)
0
F(¢) = a' cos(¢ + §9) + b' cos(2¢ + §5) (18)
a' = Ya%?+b? , b' = /cZ4d? (19)
84 = tan~! (-b/a) , &, = tan~! (-d/c) (20)

First we find the maxima, minima and the roots of the exponent F(¢) .

For the stationary points, we set dF/d¢ = 0 . That gives

-~ a sin¢ + b cosp - 2c s8in2¢ + 2d cos2¢ = 0

If we substitute cos¢ = u , we get:



—a¥1-uZ + bu - 4c/1-uZ u + 2d(2u2-1) = 0 , or
16(d2+c2)u* + 8 (bd + ac)ud + [a2+b2 - 16 (c2+d2)]u +

+ (-4bd - 8ac)u + 442 - a2 =0 (21)

For the roots of the exponent, we set F=0 .

After the substitution cos¢ = u :

au + b Y1-uZ + c(2u2-1) + 2du Y1-u2 = 0 , oOr

4(c2+d2) u* + 4 acud + 4bdud + [a2+b2 - 4(c2+a2)Ju?2 -

- 2acu - 4bdu + c2 - b2 =0 (22)
Hence, in both cases, we have an algebraic equation of fourth order in u .
We find the roots and the values ¢j = cos™lu; , ¢; in [0,2n] .

The roots of the fourth order algebraic equation

u* + aqud + ayu? + azu + a4 = 0
are given by the following [9]:

If y, 1is a real root of the third order equation

3

yJ - a2y2 + (aqa3 - day) v + dajay - a32 -a12a4 =0 (23)

the four roots are the roots of the quadratic equation:

1 1
z2 + 5 (aq 2 Va12-4a2+4Y1) zZ + 3 (vq £ VY12-4Q4| =0 (24)

The roots of the third order equation

y3 + B1y? + Boy + B3 = 0 are:

Y9 =S+ T~ -8
1 3 1

1 1 —
Yo = = - (S+T) - 3 By + " iv3 (s-1) (25)



1 1 1 —
= - - (S+T) -~ - By - - i Y3 (S-T)
Y3 2 3 1 2

where: S =3/R+ /Q3+RZ , T = 3/R - /Q3+RZ (26)
and Q= 1/9 (382-812) , R = 1/54 (9818, - 2783 - 28,3) (27)

1f (¢1, F(¢1)) is a local maximum of the exponent and ¢9' 1is the root

following ¢4 , the value of the integral

61"
At = f eF d¢ can be approximated by the integral
1

P’ 2
f e‘-A X<4+u dx ,
0

where

P1' =¢9' = ¢é9 , u=F(gq) and X =y/py'? .

Therefore

Pq' P’ w —
At = f e-AxZ+u dx = eM 3 Y- erf(vu) (28)
0 H

In the same manner, if ¢;" is the root before $1 the integral

$q P1" g —-
A" = [  eF d¢ can be approximated by eH -- ¢- erf (Yu) .
¢1u 2 H
Hence _
0" ovow
Ay +Aq' +Aq" = [ eF d¢p = el —= V- erf (V) (29)
¢ 2 v

where pq = Pq' + pq" 1is the distance between the roots.

In the case of local minimum, where we do not expect a significant
contribution to the value of the total integral, we use a quadratic
approximation of the quantity ef . 1If (¢2, F(¢2)) is a local minimum and

U = F(¢y) < 0 the integral

¢2ll
Ay = [ eFaqy



where ¢5' and ¢," are the roots of the exponent immediately before and

after ¢, respectively, can be approximated by:

3
A, = 92(5 +el) , where py = ¢y - ¢, (30)
4
Hence, I = )A; (31)
i=1
where:
Pi m —_
Aj 2 eli -~ V- erf (Vpy) , i =1,2,3,4, u>0 (32)
2 My
1
and Ai = pi(g +ebi) , i=1,2,3,4, p<o (33)

Note: it is possible to have only 2 roots, ¢1 and ¢ . In this case we
can take I = Ay + Ay . 1In the case where three stationary points exist
between the two roots, we can handle the middle one as if it were another
root.

In the case where the maximum value of the exponent is large, (u > 4) -
that is usually the case - Laplace's method may be applied [10]. According to
Laplace, the major contribution to the value of the integral arises from the
immediate vicinity of those points of the interval, at which the exponent
assumes its largest value. If F(¢) has more than one maxima, we may break
up the integral into a number of integrals, such that in each integral, F(¢)
reaches its maximum at one of the end-points and at no other point.
Accordingly, we shall assume that F(¢) reaches its maximum at ¢ = ¢y , and
that F(¢) < F(¢g) in the interval discussed. Since our F is twice
continuously differentiable, and F'(¢g) = 0, F"(¢g) < 0 , we may apply the
technique introduced by Laplace. Specifically, a new variable u is defined

by the substitution F(¢g) - F(¢) = w2 . F'(¢) will be negative in
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¢0 € ¢ < ¢o * n for some sufficiently small n . As F(¢) becomes large:

$o+n 9) 1
Iz2] eFl9) ¢ = -4f u ——--- {exp[F(4g) - uv2]} au (34)
) 0 F'(¢)
where U = [F(¢0) - F(¢0+n)]1/2 >0 . (35)

Since only the neighbourhood of u = 0 matters, we may replace u/F'(¢) by
-[—2F"(¢0)]’1/2 ¢+ which is the limit of u/F'(¢) as ¢ > ¢g , and obtain
-2 u
Iz [cm—mmm ]1/2 2+ [ {expl-uZ + F(¢g)]} du (36)
F" (¢0) 0

By the same arqument, we may extend the integration to u = o and finally

obtain Laplace's result

Iz 2eF(¢o) [—— 172 (37)

In the general case, where we have to deal with two maxima, uq = F(¢gy) and

2 = F(¢g2) . ¢€ [0,2m) , the value of the integral will be:

—om 172 —op 172
I = 2eM1 [ ------- ] + 2el2 [ ------- ] (38)

Special cases:

(a) If a2 + b2 >> 2 + a2
The exponent F(¢) can be transformed into the form
F(¢) = a' cos(¢+89) + b' cos (2¢ + 85)

where

b d
a' = Ya%+b? , 8y = tan~' - , b' = /cZ+dZ, 8§y = tan~! - ,
a c

After the substitution ¢ + &y =y

2T
I=]  exp {a' cosp + b' cos(2¢ + &)} d¢ =
0
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27
= f exp Fy(y)dy ,
0

where Fy(y) =a' cosy + b' cos(2y + §)

and § = 85 - 261 o

In this case we expect the maximum value of F1(y) to be near y = 0
2

v

For small values of § : a' cosy = a' (1 - = )
2

b' cos(2y + §) =Db' (cos2y coss - sin2y sinf) =
= [(1 - 2y2) coss - 2¢ siné b
Consequently
Fq 2 a' - 2 V2 + [cos§ - 2cosd * Y2 - 2sind * y1b!

a
=a' + Db'cos§ - Y2b'sin§ - Y2 (2b'cosG + 5 )

To find the value of Yy that maximizes Fqy , set

dF4
-- =0, or equivalently,
dy
al
- 2b'sin§ - 4yb'cosé + - = 0 , which yields
2
~b'siné
Yo = —m——mmmmeeee (since a' > b' , Iwol << 1) .

2b'cosd+a'/2

An approximation to I can now be the quantity 2m Ig(u) for u < 4 .
where y = F(¢g) and Io(u) is the modified Bessel function of order

Equation (40) is valid for small values of U . For large values of 1y

we can use equation (37).

(B) If a2 + b2 << ¢2 + g2

Let ¢y =¢ + 8,/2, and § = §q - - P

(39)

(40)

o *
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The exponential then becomes:

Fa(y) = a'cos(yp+§) + b'cos 2y
Again, the maximum value of Fy(y) will be near %=0 . Another local maximum
will be near §y =17 .

The following approximations are used:

a' cos(y+8) = a' (cosy cos§ - siny sin) =

= [(1- y2/2) cos§ - y sindla' , and

b' cos2y = b' (1-2y2)
Consequently,

Fp = a' cosé - a' ¢2/2 * cos§d - a'y sin§ + b' - 2b'1p2
To find the value of ¢ that maximizes F,, set

dF,/dy = 0, or

- a' sin§ - 2y (a/2 + 2b') =0
Hence {Ygq = —=—===-== . (41)

Now define uq = Fldg) , 99 = Yo = 62/2
For the second maximum we have
-a'sin(§+m) a'sing

Ygg = ==mmmmmmo== B csmeeee = = (g4 (42)
and up = F(yg3) -
An approximation to I can now be the quantity

(43)

T Ig(uq) + wIgluy) ,
where I, is the modified Bessel function of order 0 for small values of
My , Mg . For large values of uq , up (>4) we can use equation (38).

(C) 1If parameters a, b, ¢, d are all small (<<1) , an approximation

can be obtained by expanding the exponent, integrating term by term and

dropping the higher order terms:
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F F2
ef = 1 + = + —— & «es, hence
11 2!
2n 2m 1
I=) efFap=/[ (1 +F+-F2) ap =
0 0 2
27 2n 2r 2m 2n
= f d¢ + a f cos¢de + b f singd¢p + c f cos2¢dd + d f sin2¢d¢ +
0 0 0] 0 0
2% 2% 2n 2n
+ a2 [ cos2¢d + b2 [ sin2¢d¢ + c2 | cos22¢dp + d2 | sin22¢d¢ +
0 0 o 0
2m 2n 2w
+ 2ab f cos¢ sin¢g d¢ + 2cd f cos2¢ sin2¢ d¢ + 2ac f cos¢ cos2¢ d¢ +
0 0 0
27 2n 2n
+ 2bc [ sing cos2¢ d¢ + 2ad [ cos¢ sin2p dp + 2bd | sin¢ sin2¢ d¢ =
0 0] o
L
=21 + (a2 + b2 + c2 + a2) - ' (44)
2

Derivation of a Bessel Series Approximation

The first order PDF can be evaluated in terms of an infinite power series
of modified Bessel functions. The evaluation is based on the expansion of the

cosine terms of the exponential into power series as follows:

-]

a'cos(¢p+64) = X €n (-1)1 1,(a')cos(n¢+nd ) and (45)
n=0

b'cos(2¢+83) = ] en (-1)0 I (b')cos(2mp+md,) (46)
m=0

where

]

En(m) =1 for n(m) =0 and
€En(m) = 2 for n(m)> 1 .

Plugging (45) and (46) in (17):
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2 -

1= | 1) eqeq (-1)MD In(a')In(b')cos(ng+nd,).

0 n=0 m=0

1 2 o © 27

I=- )} } L | emep(-1)™M 1
2 nq=1 n=0 m=0 O

cos((Zm + (=1)M1 n)¢ + (mé5 + (-1

The only terms of the sum in (47) that are

Dropping all the terms that are zero eq. (4

I=rnIg(a’) Ig(b') + 7 ) ep eop (-1)
m=1

cos(2m¢+mSy)d¢ , or

n(a")Ig(b")

)P1néq))de

not zero are for n=2m

7) yields:

In(a') Iyn(b')

cosm(§o9 - 264)

(47)

and nq=1 .

In most cases, 3 or 4 terms is the sum of eq. (47) are enough to obtain

(48)

a reasonable estimate of I. However, the evaluation of the modified Bessel

functions requires a considerable amount of

Examples

1. General case: Quantities a2 + b2 and c¢2 + d2 are of
order of magnitude. Two numerical examples will be considered:

a) a=b=c=4=1 .
Equation (22) becomes:

gu* + 8ud - 6u2 - 6u = 0 ; Or

u(4u? -3) (u+1) =0 , whose roots are:

uy =0, u=-1, uy=v3/4, u =-v3/4
Since u = cos¢ , the corresponding values of ¢ are:

Ui
¢ = > = 1.5708 , ¢5 = 7 = 3.1416 , ¢3 = 3.6652 , ¢, = 5.7596

Equation (21) becomes:

computational effort.

the same
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32u* +16 w3 ~30u2 -12u+3=0 »

u* + 0.5 ud - 0.9375 u2 - 0.3750 u + 0.0938 = 0
The third oxder equation:

¥} - azy? + (aga3 - 4ay) ¥ + (4ay04 - 032 - a2a4) = 0
becomes :

y3 + 0.9375 y2 - 0.5625y - 0.5156 = 0

Hence:
38,-8¢2
= m——m——— = -~ 0,2852
9
981B,-2785-28,3
R I emat e o aw o e e o e e v - = 001394
54

YD = iY=P = i 0.0613

R+ VD= 0.1394 + i 0.0613

S = 3/0.1394 + 1 0.0613 =

= 3/0.1523 (cos 0.4141 + 1 sin 0.4141) =
= 0.5340 (cos 0.1380 + i sin 0.1380) =

T = 3/0.1394 - 1 0.0613 = 0.5289 - i 0.0735

1
Thus: ¥y = S+ T - g 81 = 0.7454 .

The quadratic equation

1 1
22 + 5 {a1 + VG1Z-4a2+4Y1} Z + ; {y1 + /y12-4a4} =0

becomes:
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(1) 22 + 1.5711 2 + 0.5851 = 0
with roots: 2y = - 0.6008 , 25 = - 0.9644
and (2) 22 - 1.0711 Z + 0.1602 = 0
with roots: 23 = 0.1798 , Z, = 0.8914

Since ¢; = cos™lu; , ¢; €[0,21] we have:

1 = 0.4704 , ¢, = 2.2228 , ¢3 = 3.4092 , ¢4 = 4.8932
and ]J1 = F(¢1) = 2,7418 ’ 112 = F(¢2) = - 1,0402
u3 = F(¢3) = 0.1414 , g = F(¢4) = - 2.0930

Since the values of yu; are small (<4) , we use formulas (29) and (30):

P1 T -
Ay = el —— V- erf(Vyu) =
2 l.l1
2.0944 3.1416
= 15.5149 ——=--- S erf (1.6558) = 15.6523
2 2.7418

1
Ay = P2 (; + ek2)

1.5708 (0.3333 + 0.3574) = 1.0850

= 0.3979 , A4 = 0.9563 , and

o
w
[

I= ) A = 18.0915
The exact value of I , calculated numerically, is 17.7622, and hence the
difference is only - 1.854% .

b) a=b=c=d=5. Equation (21) is the same as in (a) .

Hence ¢g4 0.4704 and 4 = 13.7090
F"(¢g1) = - 34.6665 .

902 = 3.4092 and u, = 0.7070

F'($02) = - 21.2595

Using formula (38) we get I ~ 382,719 .

The exact value of I is 387,820, and hence the error is + 1.315%
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2. Special case A: a=10, b=1, ¢c=1, d=1

a' = YaZ+b% = 10,0499 , &4 = tan~! (-bsd) = - 0.0997

b' = /cZ+d? tan~l (-d/c) = - 0.7854

1.4142 ’ 62

§ = 62 - 261 = - 0.5860

<~
(@
L]
1
|
]
[}
]
[}
|
|
]
]
]
[}
]
o
L]
—
(=]
[+
o
©
o
I
<
o
|
(=]
—-—
[

2b'cosé+a'/2
= F(¢0) = 11.3099 , eH = 81,685
F"(¢0) = 15,2591
2m
Hence I 2 *eH* yeomme—o = 52,416
F“ (¢O)
The exact value is I = 53,361 , and the error + 1.771%

3. Special case B: a2 + b2 << 2 + g2

Say: a=1, b=1, ¢=1, 4=10

a' =/a?+p?Z = 1.4142 , &, = tan~! (-b/a) = - 0.7854
b' = /cZ+dZ = 10.0499 , 6, = tan~! (-d/c) = - 1.4711,

1

5 ==, 51 - - 62 = - 0.0498

2

For the first maximum we use eq. (41)
Mol it 0.0017 ] Yy ! ) 0.7373
= ——m—m—= = 0, or = - - = 0.
vor = Z77oe3 ' 01 01 = 5 °2
My = 11.4624 , F"($gq) = - 41.6118
For the second maximum
1

Vo2 = = Vg1 = - 0.0017 , or %02 = Vo2 - 5 52+ﬂ = 3.8755

Uz = 8.6371 , F"(¢gy) = - 38.7869
Using formula (38) we get: I ~ 39,212 .

The exact value of I is 39,702 and hence the error is 1.233%



Further Research

An approximate closed form expression for the joint PDF of the envelope
in two distinct points in time is a desirable future research direction.
Laplace's method has been applied to integrals depending on two large
variables by Fulks [11] and Thomsen [12] and to double and multiple integrals
by Hsu [13], [14], [15] and Rooney [16]. If the stationary points of the
exponent F(¢q, ¢3) can be analytically located, an approximate closed form

expression may be derived.
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