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ABSTRACT

The static riser design problem is formulated and solved. A two dimen-—
sional, small slope, small deflection, linear model for bending of vertical cir-
cular tubular beams under tension, internal mud-static and external hydrostatic
pressure is used to analyze the behavior of risers under external time invari-
ant hydrodynamic loads. At the present state of the art, the prediction of hy-
drodynamic loads exerted on a circular cylinder moving in a viscous fluid, is
possible only in certain cases that have been studied experimentally. To over-
come this difficulty and study the design problem per se, a parametric approach
has been adopted. The load profile along the riser is described by a general
nth degree polynomial expression of the water depth and a series of loading

parameters.

The resulting static riser boundary value problem has been solved in terms
of the Airy functions of the first and second kind. 1In addition to the
exact solution, an approximate solution is derived. The approximate solution,
calledlqable approximation to the riser static problem, violates two of the four
riser boundary conditions. Two different methods have been developed to correct
the cable approximation and make it satisfy all four boundary conditions. Each
solution, the exact and the two corrected approximations, is applicable for
different ranges of the design variables. The corrected cable approximations
provide a satisfactory solution to the riser static boundary value problem and
can be easily implemented numerically for values of the design variables for

which the exact solution is numerically unstable [1].
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NOMENCLATURE

Cp Drag coefficient

D Average diameter of riser

Dg Outer diameter of buoyancy modules

D4 /Do Inner and outer riser diameters

E Young's Modulus

£y External hydrodynamic load per unit length in the x direction
I Riser cross—-sectional area moment of inertia

K(0),K(1) Riser curvature approximation at lower and upper ends

L Riser's length

M Bending moment

Mg M4 Bending moment at the lower and upper riser ends
he] Dimensionless vertical coordinate along the riser
Py Effective tension

Q Shear force

Sy Riser's material yield strength

T(0) Actual tension at the riser's lower end

TTR Tension at the top of the riser

U Riser's lateral displacement

v Fluid velocity

We Effective weight of riser per unit length

W Weight of drilling mud per unit length

Wr Weight of riser per unit length

z Vertical coordinate along the riser



Greek Symbols

04,02,9+¢+0y Hydrodynamic load parameters

B Dimensionless effective riser weight

Y YMr YW Specific weight of buoyancy modules material, mud and water
respectively

YR Specific weight of riser material

A Static offset of drilling vessel

T Dimensionless effective weight at lower end of riser

Sy -



INTRODUCTION AND OUTLINE

Continuous demand for new energy resources and rising of oil prices in
recent years have made the recovery of oil from the sea bed economically attrac-
tive even in deep waters. The marine riser is the structure connecting the off-
shore platform with the well at the sea bed during drilling or production opera-
tions. The first riser was installed in 1949 {2] at a 20 ft depth. Nowadays
risers of 4000 ft are in operation and 7000 ft risers are considered for instal-
lation and expected to be in place in some cases for at least 20 years. How-
ever, the technical understanding of riser behavior is still inadequate and the
design problem has not been satisfactorily solved as yet. This results in riser

failures causing higher oil recovery costs and environmental and safety hazards.

The solution of the riser design problem can be achieved in the following

steps.
(1) Proper formulation of the static and dynamic riser behavior.

(2) Derivation of a model for the prediction of the external hydrodynamic

forces exerted on the riser.

(3) Solution of the mathematical problem resulting from concatenation of

the above two models.

Upon completion of step (3) the riser design problem per se can be studied

in steps (4) through (7).

(4) Derivation of the design constraints e.g. stress, buckling, and posi-

tivity constraints.
(5) Formulation of the optimization problenm.
(6) 1Identification of the design feasibility domain.
(7) Derivation of the optimum design.

The marine riser design problem has not as yet been satisfactorily solved

for the following reasons.

(1) No adequate mathematical model for description of the static and

dynamic behavior of risers has been numerically implemented.
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(2) No general theoretical or phenomenological [3] model exists for pre-
diction of the hydrodynamic loads exerted on circular cylinders

moving in a viscous fluid.

(3) Some essential design constraints have not been formulated properly
i.e. Euler bucking of columns in tension due to internal static

pressure [4].

(4) Experimental studies of scaled riser models cannot simulate the actual

phenomenon [S5].
(5) On site measurements are technically impractical if not infeasible.

In spite of the above difficulties, numerous investigators have studied
the riser problem [Refs. 6 to 24]. The typical approach used in the literature

consists of:

(1) Implementation of a two-dimensional, small slope, small deflection

linearized Euler-Bernoulli type of beam model.
(2) Simplification of theAhydrodynamic load model and,
(3) Solution of the resulting riser problem.

The only effort to formulate the design problem and solve the optimization

problem has been made by the author of this report in [25,26].

This work is the first of a series of reports of the Department of Naval
Architecture and Marine Engineering of the University of Michigan which are
written in an effort to properly formulate and solve the riser design problem.

These reports are used as references in the graduate Ocean Engineering course.

Our method of solution and design approach is based on the following four

tools which we have recently developed.

(1) A three dimensional, large deflection nonlinear model which describes
the dynamic behavior of risers and takes into account its exten-—

sional oscillations [27].

(2) A mathematical model for the column buckling of vertical tubular
beams in tension due to internal pressure [4]. This model was used

to prove that for a given riser design there exists a riser length
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such that global buckling may occur due to internal pressure even

if the actual stress is tensile at all points in the riser.

(3) A generalized model describing the external hydrodynamic loads in
terms of unknown parameters. As was stated earlier, no satisfactory
method for prediction of the hydrodynamic loads exerted on risers
exists. However, ranges for. the above parameters can be estimated.
This method does not solve the problem but shifts it from the
level of analysis to the level of design. The method which we use
in studying the design problem is specifically suitable for design

problems involving parameters which vary over wide ranges [25,26].

(4) A design optimization method based on monotonicity analysis [28,29]
which eliminates some of the fundamental drawbacks of the currently
used numerical optimization methods in structural problems. Numeri-
cal methods are based on Finite Element Analysis and seek improve-

ment of existing designs. Their disadvantages are:

(a) They are purely numerical methods and do not allow for analytic
solution or parametric optimization. |

(b) They do not necessarily converge to the global optimum.

(c) They do not define the feasibility domain.

(d) They cannot be used to derive design rules, that is, analytic
relations between design variables and parameters for the op-

timum design.

The method we use based on monotonicity analysis [28,29] eliminates all the
above drawbacks of the currently used design methods. The potential of this
method and its applicability to the riser design problem has been demonstrated
in recent publications [25,26]. This design method is especially fruitful when
the objective and the constraints are expressed in closed form. For this reason
in this series of reports on riser design we will seek analytical instead of
numerical solution. In addition, wherever possible, we will also develop ap-
proximate analytical solutions which we will implement only if they compare well

with the exact solution.

In this report, which is the first in the riser design series, the static

1

Kiiser boundary value problem is formulated and solved.

—-—-_—\
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The marine riser, the various components of the offshore drilling or pro-
duction facility which have some influence on the design and performance of ri-
sers and the environmental conditions, are described in section I. In section
II the mathematical problem is formulated. That is the riser model and the hy-
drodynamic load model are developed and the boundary conditions are defined. In
section III the exact solution of the boundary value problem is derived in terms
of the Airy functions of first and second kind. In the last section of this re-
port the cable approximation solution is developed. This approximation is cor=
rected near the ends since it violates two boundary conditions. This approxima-
tion is very satisfactory and has been implemented in the static riser design

optimization problem [1].



I. THE MARINE RISER DESIGN PROBLEM

I.1 Description of the Riser System

The configuration of an offshore drilling system varies depending on the
type of the supporting structure, the site of operation and the environmental
conditions. However, the principle of the riser design is independent of the
overall drilling system configuration. The major components which make up the

system are the following six: (see Figure 1)

a. The Marine Riser. It is a long tubular beam connecting the supporting
structure with the well head at the seabed and is composed of rigid steel pipes
with an average length of 40 feet and outer diameter between 16 and 42 inches.
These pipes, made out of forged weldable steel, are connected by the riser con-
nectors which are designed to minimize installation time and to provide joints
able to withstand high tension loads. In areas of high bending stresses - near
the end systems - flexible joints are used instead. The riser diameter deter-
mines the magnitude of the external hydrodynamic force and, along with the thick-
ness of the pipes, it defines the weight of the riser per unit length and the

area of cross-section of the pipes.

Usually, depending on the depth of the water and the size of the riser,
additional buoyancy is needed to diminish the required tension at the top of the
riser. This buoyancy is provided by floating modules mounted on the riser pipes

at the expense of a substantial increase of the hydrodynamic forces [5].

b. The Kill and Choke Lines. They are high pressure pipes needed to con-
trol sudden increases of the well pressure. They run along the riser and are
mounted directly on the connectors through which they exert concentrated moments
and forces on the riser. 1In recent design the kill and choke lines are mounted

inside the riser [2].

Cc. The Drilling Mud. It circulates between the riser and the drill string
and inside the latter. The mud exerts on the riser static pressure force, Corio-
lis and centrifugal forces due to the riser's local rotation, and vertical and
torsional frictional forces due to its viscosity. Of these forces, only the

first is significant.

Similar forces are exerted by the mud on the drill string. However, the

presence of the mud inside and outside the drill pipe significantly reduces the

-5-
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effect of the mud static pressure.

The choice of the drilling mud with the optimal physical properties is a

very difficult engineering problem. The mud should be dense enough to:

1) protect the riser from the drill string, and
2) prevent a blowout in case of a sudden increase of the pressure of the

Well.
On the other hand, if the mud is too dense,

1) it will not lubricate and cool the bit properly,

2) it will not carry away the cuttings at an adegquate rate,

3) it may be lost through semipermeable formations in the well, and
4) it will significantly diminish the effective tension of the riser

(see Section II).

The drilling mud may be water based or oil based and its density usually
varies between 9 and 15 1b/gal, with an average of 12 1b/gal and an absolute
maximum of 18 1lb/gal.

d. The Drill String. It is the instrument that the riser protects from the
environmental forces and guides to the wellhead. Its outer diameter is 4 to 6
inches. It may come in contact and wear out the riser, unless the drill collars

are properly spaced.

e. The Upper End System. It consists of a supporting structure, a tension-

ing system, a slip joint, a ball joint, and a variable size buoy.

The motion of the supporting structure - e.g. a drill ship, a semisubmers-
ible or a submersible - has two components: (1) a fast small amplitude periodic
one due to the surface waves, and (2) a slow large amplitude nonperiodic one due
to the wind, the ocean currents, and the wave second order drift forces. This

motion is controlled by the ship controller's action or the mooring system.

The tensioning system, which is housed on the supporting structure, holds
the upper end of the riser through the moonpool and provides part of the neces-

sary tension to keep the riser tight and prevent buckling.

-
The slip joint compensates for the vessel's heave motion and diminishes the

effect of the variation of the tension at the top of the riser due to imperfec-



tions of the tensioning system.

The upper ball joint alleviates excessive bending moments due to the rolling

and pitching of the supporting structure.

The upper buoy is a variable buoyancy tank, found a few hundred feet below
the free surface. It provides additional tension at the top of the riser but is
subject to wave forces which may be significant. Consequently, it is designed to
be of variable size, and depending on the environmental conditions, its volume is

adjusted to provide maximum tension within the structural limits.

f. The Lower End System. It consists of a ball joint, a Blow Out Preventer

(BOP), and a marine connector.

The ball joint is a stress alleviation device at the riser's lower end which

is an area of high bending stresses.

The blowout preventer, placed on top of the well head, is used primarily to
control large pressure experienced during drilling. The BOP is connected to the
riser's lower end through the marine connector and to the well through the well-

head connector.

I.2 Description of the Environment

The sources of environmental excitations, which may influence the riser di-
rectly or indirectly by exerting forces on other components of the offshore

drilling system are the following:

a. Ocean Current. Its speed is usually not greater than 2 knots and in
most cases its maximum value does not exceed 3 knots. Timewise, the current is
slowly varying, while depthwise it may change considerably and even reverse its
direction. Tt exerts significant hydrodynamic forces on the riser and the sup=-

porting structure.

be. Surface Waves. They induce oscillatory forces on the riser. The wave
spectrum is in general a function of the wave frequency, Wo » and its direction
of propagation, 8o [30]. 1In the presence of a current, the properties of the
waves and the sea spectrum change [31]. Under certain conditions, the computa-
tion of the properties of the modified waves and spectrum is possible [32] and

should be implemented in the riser analysis [22].
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C. Strong Winds and Gusts. They offset the drill ship from its original

place and the riser from its vertical position.
Other sources of excitation, not so often encountered, are the following:

a. Internal Waves. They propagate on the surface between different density
layers [33]. Internal wave currents may be as strong as the ocean surface cur-

rents [34].

(3

b. Microseismic Waves. They are surface standing waves formed by the vi-
brations of the bottom of a tank or of the ocean. They generate a second order
pressure term, which does not decay exponentially with depth, but is constant in

the whole domain [35,36].

cs Tides. They can influence the riser in two ways. First, by varying the
water level, and second, by generating currents of considerable speed. The

latter is significant for shallow water drilling operations.

d. Volcanic Waves or Tsunamis [37]. Their existence is rather improbable.
However, when such waves occur, the probability of surviving of the offshore
drilling system is low [15]. It is necessary to disconnect the riser from the

wellhead and move the supporting structure and the riser out of the wave system.

I.3 Preliminary Riser Design

In the preliminary riser design, the following basic variables, parameters

and constants are involved in general.
a. Variables:

1) The outer diameter and the thickness of the riser pipes.

2) The tension at the top of the riser provided by the tensioning
system.

3) The total buoyancy of the buoyancy tanks and their distribution
along the riser.

4) The density of the drilling mud.

5) The offset of the supporting structure.

6) The properties of the upper and lower end systems which define the

boundary conditions.
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b. Parameters:

1) The water depth and the riser length.

2) The upper and lower limits of the drilling mud density [25,26].

3) The properties of the riser material and in particular, Young's
Modulus, density and yield stress.

4) The ocean current profile description parameters.

5) The ocean surface wave properties.

6) The internal wave characteristics.

7) The Response Amplitude Operators (RAO) of the supporting structure

in all six degrees of freedom.
c. Constants:

1) The intensity of the gravity field g.

2) The water density and kinematic viscosity.

The task of the designer is to compute the values of the design variables
for some particular values of the parameters. To achieve this task, the designer
should solve several problems related to the riser performance. The most impor-

tant of these are the following:

a. Model the static and dynamic behavior of the riser taking into account

all the significant forces [14,19].

b. Predict the hydrodynamic forces exerted on the riser under various flow
conditions [5].
C. Use the derived mathematical models in (a) and (b) to predict the riser's

static and dynamic response [21].

de Calculate the resultant stresses in the material due to the static and

dynamic response of the riser [15].

e. Determine the natural frequencies of the riser and find their dependence
on the various design parameters {20].

f. Study the possibility of local buckling.

Each of the above problems has been identified and studied early in the
research on marine risers [6]. Many computer programs which calculate the stres-

ses in the riser exist [19]. However, none of these problems is fully understood.
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Finally the riser design must be optimized for minimum weight, cost or mini-

mum maximum expected stress.

In this work the static riser problem is formulated and solved.



II. FORMULATION OF THE STATIC RISER PROBLEM

The mathematical model for the riser's static response derived in this sec-
tion is a two-dimensional, linearized, small slope small deflection model. It is
a special case of the general three dimensional nonlinear model derived in refer-
ence [27]. However, for the sake of completeness of this report the riger static
linear model will be derived from first principles in this section. The deriva-

tion of the riser model is based on the following assumptions:

a. Shear forces are small. Consequently, the riser is modelled as a

Bernoulli~Euler type beam and not as a Timoshenko beam [38].
b. The riser material is isotropic, homogeneous and linear elastic.
c. The presence of the drill string is neglected [19].
d. Thermal stresses are negligible.
e. Coriolis, centrifugal and frictional forces due to the motion of the

drilling mud are small.

II.1 sStatic Equilibrium Equations

In addition to the above assumptions, the following ones are made in order

to derive a linearized model.
a. Deflections of the riser are small.

b. Slopes of the riser are small. The consequence of assumptions a. and b.

is that squares or products of deflections and/or slopes can be neglected.

c. The torsional moment and the extension of the riser due to the tension

are small and can be omitted from the calculations.

d. External forces in the tangential direction are negligible in comparison

to those in the normal direction (see Figure 2).

e. Viscous damping forces, which are known to be proportional to the square
of the relative velocity of the riser with respect to the water, can be linear-

ized.

As a result of assumptions b., ¢. and d., the equations of motion of the ri-

ser in the (x,z) and (y,z) planes are decoupled, the damping forces are lin-

-12-
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earized and the lift forces due to vortex shedding are treated as external ex-

citation.

Some additional assumptions, related to the discontinuities of the proper-
ties of the riser its effective weight and tension are discussed later in this

section.

Based on the above assumptions we can derive the linearized differential

equations of equilibrium of risers. (Figqure 2).

Equilibrium of moments

am au
- Peg tQ2=0 (II-1)

Equilibrium of forces in the x direction:

L -xy (II-2)

Equilibrium of forces in the =z direction:

dapr,
Tl We (1I-3)
where:
Wo = WR + Wy + Wg - B (ITI-4)
7Dy 2
Pa(z) = T(2z) + vy y (hyy - 2) -
‘ﬂ'Dj_2
~ Ym ‘4_‘ (hm - z) (II-5)

u is the deflection of the riser in the x direction,

T(z) is the actual tension in the riser,
M(z) is the bending moment in the Y direction,
Q(z) is the shear force in the X direction,

fx(2z) is the hydrodynamic force per unit length exerted on the riser.

In addition,
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Wg = YR 7 (Do - D32) (1I-6)
is the weight of the riser per unit length,

Wm = Ym 5 D32 (11-7)
is the weight of the drilling mud per unit length

Wg = Yp 7 (Dp2 = Do2) (11-8)
is the weight of the buoyancy modules per unit length and

B = y, 5 Dg? (I11-9)

The linearized constitutive relation of bending is:

2
M(z) = EI 9-3 (II-10)
dz2
where:
I =2 (Dy2 - Dy2) (1I-11)
- 64 o 1
Finally the boundary conditions are:
u(o) =0 (II-12)
U(L) = A (II-13)
a2y
352 (0) =0 (I1~-14)
a%u
o7 (L) =0 (II-15)

Controversial issues in the riser design are the roles of the effective ten~
sion Pg(z) and the effective weight per unit length Wa(z) . In equation
(II-1) it is Po(z) and not T(z) , that is the effective and not the actual

tension, that affects the equilibrium of moments. In effect, equations (II-1) and
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(II-5) show that the external hydrostatic force has a stiffening effect on the
riser similar to that of the actual tension while the internal mud-static pres-
sure has an opposite effect. 1In addition, in the equation of equilibrium of forces
(II-3) in the 2z direction the effective and not the actual weight of the riser
per unit length appears. These statements are proved in reference [27] for the
general three dimensional case and the proof is not repeated here. Suffice to say
that equations (II-1) and (II-3) can be proved by integrating the static pressure
forces from the water and the drilling mud on the external and internal riser sur-—

faces respectively.

At this point we may also explain the effect of the buoyancy modules. The
outer diameter of the modules, Dg , appears in We since they reduce the
riser weight in water. However, Dg does not appear in equation (II-5) since

the modules are not rigid and do not contribute to the effective stress Pa(2z)

Further, from equation (II-5) we have

Pe(z) = T(2) + pyugho(z) [hy-z] = ppgh;(z) [hy-z] (1I-16)
where

Bolz) = mDy2/4 (II-17)
and

Aj(z) = wD;2/4 (1I-18)

In addition equations (II-3) and (II-4)

dP.(z)
dz

= Wa(2z) = Wgr(z) + Wg(z) + Wp(z) - B(z) (II-19)

Eliminating Pg(z) from equations (II-16) and (II-19) we get:

2.n 2
aT(z) T(Dg“~Do*)
= - WR(z) + Wg(z) - py 1 -

(1II-20)

= Pw9 g; (Ao(z)) [hy=z] + ppg g; (3i(2)) [by-z]

Integrating equation (II-19) we get



-17-

Po(2) = We(E)AE + Pg(0) . (I1-21)

Similarly from equation (IX=20)

A z
T(Dg2-p,2)
T(z) = [WR(E) + Wg(€) - pyug 2 ) 2 ]di - pwqu(ho(i)) * [h,~E]dE
0 0
V4
aw, (&)
d—g [hy-E]1dE + T(0) (I1~-22)
0

We can make the following remarks on equation (II-22)

1. The tension at the top of the riser (z=L) is equal to the weight of
the riser in vacuum plus the integrals of the effects of variations or disconti-

nuities of the internal and external riser surfaces.

2. The required tension at the top of the riser is reduced only by the

buoyancy of the modules and not by that of the riser.

3. The actual tension T(z) in the riser can be reduced only by short
buoyancy modules. Long continuous modules mounted all along the riser cannot

serve this purpose.

4. Only a small part of the total mud weight is carried by the riser. 1In
addition the third term on the right-hand side of equation (II-22) indicates that

discontinuities of the internal riser surface should be avoided.

II.2 External Loads

It was explained in the introduction of this report that our knowledge of
the hydrodynamic forces exerted on circular cylinders moving in a wviscous fluid
is limited [5]. 1In order to derive a general solution for the static riser pro-

blem we have adopted the following method.

The external hydrodynamic force, fx(z) , is proportional to the square of

the relative fluid velocity. Along the riser (depthwise) we can approximate the
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force profile by a nth degree polynomial* as in equation (II-23).

2 z 0
+ et op(F) (II-23)

1 z z
£x(2) = 5 py CDVZDB[aO tag s+ az(g)

where V is a characteristic velocity and Cp 1is the drag coefficient [5].

II.3 The Boundary Value Problem

If we assume that the riser properties are constant, that is independent of
z , then we can combine equations (II-1), (II-2), (II-3) and (II-9) to get the
fourth order differential equation with variable coefficients which describes the

riser's response to external static loads:

2 2
& [Exg;g] -< [(Wez + pew))%-z—)] = £,(2) (II-24)

In dimensionless form equation (II-24) becomes:

4
a*u  a au L4 L Dg
- = (Bp + T)—= | = == f (p) = =——— Cp h( (II-25)
ap* ~ dp [: P dp:] BT "x'P g Ch P(P)
where:
WelL3
B =51 (II-26)
Pg(0)L2
T T TR (II-27)
1 2
Ch = 3 Py CpV (II-28)
2
P = i (IX-29)
and h(p) = ag + aqp + agp? +...+ aph (1I-30)

*Other classes of functions may be used to approximate the profile of the exter-
nal static load; e.g. exponential functions [18]. The method of solution pre-

sented in the following section is applicable for any function felz) &
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Equation (II-25) is subject to the following boundary conditions which are im-
posed by the fixed lower end of the riser, the static excursion of the drill

ship, A , and the upper and lower ball joints

U(0) = 0 (I1-31)
U(1) = A (II-32)
2
:_121(0) =0 (II-33)
p
2
%’(1) =0 (11-34)
p

In conclusion, equation (II-25) subject to the boundary conditions (II-31) to
(IXI-34) models the riser response to the static load defined by equation (II-23).



III. EXACT SOLUTION OF THE BOUNDARY VALUE PROBLEM

Equation (II-25) subject to the boundary conditions (II-31) to (II-34) can
be solved in terms of well known functions. The method of solution presented in
this section is applicable for any forcing function h(p) . Equation (II-25) can

be written as

a*v 4 av | _ 2
aph  dp (Bp + T)dpj] = 8g + 8§qp + G2p% + eoe + Sp° (III-1)
LDy

where & = Ch o4 : (III-2)

EI

Integrating (III-1) once we get:

+1

ady au g :

— =~ (Bp +1) — = o + Z §s_1p3/3 (I11-3)
J

dp3 dp 3=1

where o is a constant of integration.

Equation (III-3) is equivalent to

d2 n+1 .

dx 3=1
where

x = B1/3p + g=2/3¢ (III-5)
and

dg;p) = y(p) (III-6)

Rewriting the right hand side of equation (III-4) in terms of powers of x

gives:
2 n+1 .
9.% - xy = 08~2/3 + § nyxi (I11-7)
dx i=0

The solution to equation (III~7) is given by (III-8) below where the first two

terms constitute the homogeneous and the rest the particular solution:

-20-
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X
Y(x) = cqAi(x) + cpBi(x) + W(0B~2/3 + hg){~Ri(x) f Bi(&)dE

+

x X
Bi(x)f Ri(E)AE} + hymw {-Ai(x)f EBi(E)dE

X

X
Bi(x)f ERL(E)AE} + vuu + hpyq m{-Ai(x) f gnt1Bi(g) +

+

x
+ Bi(x)[ et lni(g)ag) (III-8)
Here Ai(x) and Bi(x) are the Airy functions, and c1 and c¢3 are constants.

From (III-6) and (III-8) we get:

X
u(p) = 8‘1/3f y(E)dE ’ (III-9)
X = Bl/sp + 8-2/3T
and
2
d—U% - gl/3 o) (III-10)
%® o 1/3 -2/3
x = gl/3p + g-2/3;
where
+ Ty 12n4q (%) (III-11)

X
f Y(£)4E = c3 + c9Z9(x) + cZ3(x) + m(0B™2/3 + hj)Z3(x) + whyZg(x)

T cee + 'n’h.n+1zn+1(x) (III-12)

X
Zq(x) f Ri(g)ag (ITI~13a)

X
Z5(x) f Bi(£)dg (III-13b)
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13 x £
n*+4B§ (n)dndg +f Bi(E)fnn+4Ai('ﬂ)dnd§ (II11-14)

X
Zp+q(x) = -f Ai(E)f

Finally the four constants of integration o , €4, ¢ , and c¢3 can be deter-

mined by solving the following system of linear equations:

(a] [C] = [R] (III-15)
where
(1 29(x0)  Zy(x0) wB=2/3z3(xq) ]

1 Zq(xq)  Za(xq) m8~2/3z3(xq)

(] = (III-16)
0 Zy(xg) Zplxg) w8~2/323(xg)
o Z:(x1) z;(x1) w8‘2/3Z;(X1)_
xo = 8-2/37 (I11-17)
xq = B1/3 + g=2/3; (1I1-18)
[C]T = [c3 ¢4 cp o (I11-19)
and
n+1 n "
[RIT = -1 ;é% hy * [:Zi+3(xo) Z1+3(%1) 2343 (xq) Zi+3(x1i] (111-20)

The solution presented in this section has been implemented numerically for broad
ranges of values of the design variables B and T [1]. For high values of x
the asymptotic expressions of Ai(x) and Bi(x) were used [39]. Negative val-
ues of x were also considered in order to evaluate the global static buckling

loads of risers.



IV. APPROXIMATE SOLUTION OF THE BOUNDARY VALUE PROBLEM

In the previous section, the exact solution to the static riser boundary
value problem - defined by the differential equation (III-1) subject to the boun-
dary conditions (II-31) to (II-34) - was derived and can be used to evaluate the

bending stresses in the riser needed in the formulation of the design problem.

The exact solution is a function of the Airy functions of first and second
kind and their integrals and integrals of their moments. However, the exact
solution is very complicated and it is very hard for the designer to realize the
significance of the design variables, design parameters and loading parameters
and the effect of their variation without a considerable amount of numerical com-
putations. For this reason a simpler approximate solution to the static riser
problem is developed and presented in this section. The accuracy of this method,
studied in [1], and its simplicity makes it very attractive to the designer par-

ticularly in the formulation of the optimization problem [25,26].

IV.1 Cable Approximation

The first term in the fourth order linear differential equation with vari-
able coefficients which describes the static riser behavior, (III-1), is due to
the riser bending rigidity, EI . The bending moment that the riser can sustain
EId2U(z)/dz2 is significant only in places along the riser where the riser cur-
vature is significant. This is in general true near the upper and lower ends of
the riser. Consequently, the first term in equation (III-1) is comparable in
magnitude to the second term, which is due to the effective tension in the riser,
only near the boundaries i.e. near z=0 and 2z=I . This observation made many
investigators [14] conclude that the first term in equation (III-1) can be
omitted in comparison to the second one, thus reducing the governing differential

equation to a second order linear one with variable coefficients.

- g—z l:(wez + Pe(o))%g:l = £.(2) (IV-1)

Equation (IV-1) can now satisfy only two of the four required boundary con-

ditions defined by equations (II-31) to (II-34). Namely,
U(o) =0 (IV=-2)

and

-23-
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U(L) = A (IV=-3)

The boundary value problem defined by the differential equation (IV-1) and
the boundary conditions (IV-2) and (IV-3) describes the static behavior of a
cable. Consequently, the solution to the cable B.V.P. is called Cable Approxima-

tion to the riser B.V.P.

We can rewrite the cable B.V.P. in the following dimensionless form:

a au LY
- — + —_— = - -
I [(Bp T)dp:I P £ (pL) (Iv-4)
where B , T and p are defined by equations (II-26), (II-27) and (II-29) re-
spectively and f,(pL) is the external time independent load. For the general

case studied in section III where the load is described by a nth degree polyno-

mial,
1 2 z zy2 z\D
fx(z) = 5 Py CpV<eDg ag + a4 i + az(E) + eee + an(i) (IV=5)
the cable B.V.P. becomes:
d du
- — + — = -
ap [ (Bp T)dp-J ah(p) (IV-6)
subject to the boundary conditions
U(o) =0 (Iv=7)
U(L) = A (1Iv=-8)
where:
L%Dg
a = E_I Ch (IV=-9)
=] 2
Ch = 3 Py CpV (Iv=-10)

h(p) = ag + aqp + azp? + a3p? + ... + ayph (IV-11)
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The solution to the cable B.V.P. is:

p
U(p) = -a Eé%%gg + C4 % 1n (% p+ 1) (Iv-12)
0
where:

1
J‘ H(E)dE
A+ a

BE+T
C1 = (IV=13)
1 B
E In (; + 1)
P
H(p) = h(E)dg (Iv-14)
0

and { is a dummy variable.

IV.2 Range of Validity of the Cable Approximation

Equation (IV-12) is not a solution to (IV-6) for negative values of T .
Obviously the denominator in the first term and the argument of the-natural loga-
rithm in the second term of the right hand side of equation (IV-=12) may become
zero or negative for <tT<0 and some value of £ or P between 0 and 1. When
T<0 the effective tension at the lower end of the riser Po(0) will be less or
equal to zero. A riser may not buckle for negative values of Pg(0) [4] due to
its bending rigidity. A cable though, will collapse. Consequently for 7T<0 the
cable approximation is invalid. It should be emphasized at this point that the
cable collapses when the effective tension and not the actual one becomes nega-
tive. That is a cable heavier than water may not collapse because it is actually

supported by the external hydrostatic pressure.

Even for values of T1>0 the cable approximation is not correct near the
riser ends, that is for P20 and p=1 , because it violates the two boundary
conditions (II-33) and (II-34). Two types of corrections are préposed and
modelled in the following sections. In both corrections concentrated bending
moments are applied at the riser ends in order to make the riser curvature satis-

fy equations (II-33) and (II-34). From the cable approximation and the riser
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bending rigidity we can evaluate the required end corrections. However, the
riser response to these corrections can be evaluated in two ways. The first
method formulated in section IV.3 is simple mathematically but is valid only for
high and moderate values of the tensile stress. The second method developed in
section IV.4 is more complicated but is acceptable even for relatively low posi-
tive values of T . For low positive or negative values of T neither of the
proposed corrections is acceptable. In this case the exact solution developed in
section III must be used. Obviously it is difficult and expensive to implement
the exact solution numerically. In reference [1] the exact'solution, the cable
approximation and the two corrected cable approximations are compared. In refer-
ence [1] we show explicitly the limits of applicability of each one of the four
solutions and we develop design curves which can readily be used to derive the

preliminary riser design particulars.

IV.3 End Corrections for High and Moderate Tensile Stresses

The exact boundary value problem is defined by equations (IV-15) to (IV-19)

a*u 4 au

d—p'"- " 3 [(Bp + 1) 35] = ah(p) (Iv=-15)
u(0) = 0 (IV-16)
U(1) = A (IV-17)
2

auo _, (Iv-18)
dp2

2

o) _, (IV-19)
dp2

The cable approximation is the solution to the following boundary value

problem
d du
- d—p [(Bp + T) E)] = ah(p) (IV=-20)
U(0) =0 (IV-21)
U(1) = A (IV-22)

where h(p) and a are defined by equations (IV-6) and (IV-9) respectively.
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Let K(0) and K(1) be the values of the riser curvature evaluated by the

cable approximation. Then the bending moments at the riser ends are

Mo = = K(0) (1v-22)
L
and
My = = R(1) (Iv-23)
2

and not zero as the proper boundary conditions (IV-18) and (IV-19) state. To
correct this discrepancy we will impose concentrated moments Mg and -Mq at
the lower and upper riser ends respectively, calculate the riser response and
superpose it to the cable approximation. This superposition is possible because
the system is linear. The boundary value problem that we will have to solve in

order to find the riser response near the upper end is:

a*u  4a du
— . — + — =0 Iv-24
ap" ap [(Bp T) 3 ( )
2 -MqL2
Uy = 2 (IV-25)
dp2 EI
2
d_U(o) =0 (IVv=-26)
dp2
U(1) =0 (IV=27)
U(0) =0 ; (Iv-28)

The above problem can be solved exactly in terms of Airy functions of the
first and second kind. However, as explained in reference {1] the numerical im-
plementation of the exact solution is not stable for high values of (8l/3 +
g~2/31) and/or (B~2/31). For high values of the tensile force we can assume
that near the riser ends the quantity Bp+T varies slowly. Consequently, for

the upper end correction we can set
Bp+ T8 +T=14. (IV=-29)

Then the boundary value problem (IV-24) to (IV-28) reduces to the following one:
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4 2
S_g -a g_g =0 (IV-30)
P p
2
a2u(1 -MqL
a ; - EI (Iv=-31)
. dp
2
ddU;O) =0 (Iv-32)
p
Uu(1) =0 (1Iv-33)
U(0) =0 (IV-34)

The solution to the boundary value problem defined by equations (IV=30)-
(IV-34) is:
K(1) sinh/B+T p X(1)

U(p) = - + (IV=-35)
P 8+t sinh/B+T B+T P

and the curvature is

2 inh/B+
d7ulp) _ _p(qy 222 Brip (IV-36)
ap? sinh/B+T

Similarly the problem that we must solve in order to correct the cable ap-

proximation near the lower riser end is:

a*uy  a au
—_— - (Bp + T) — =0 (IV=-37)
dpl+ dp [j N dP:]

d2u(1)

dp2

a2u(o) ~MoL?

a2 EI (1IV-39)
p

u(o) = o (IV-40)
u(1) =0 (IV-41)

For high values of the tensile force we can assume that near p=0 the quantity

Bp+T varies slowly and can be set approximataely equal to T

Bp+ T 2T =8B (Iv-42)
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Then the boundary value problem (IV-37) to (IV-41) reduces to the following one:

4 2
au _ g du_ (IV-43)
ap* dp*
a2u(o)  ~-MgL?
= (IV-44)
dp2 ET
2
acu(1) _ 0 (IV-45)
dp2
U(0) =0 (IV=-46)
u(1) =1 (IV-47)
The solution to the reduced boundary value problem is:
U(p) = - K:.O) sinh/T(1-p) KiO) (1-p) (1V-48)
sinh/T
and the curvature is:
dzU(g) = —X(0) sinh/?k1-g) (IV-49)
dp2 sinh VT

In order to derive the corrected cable approximation we have to superpose
the cable solution (IV-12) and the end corrections (IV-35) and (IV-48). Thus the

corrected cable approximation for high values of the tensile force is:

p
I H(E)dE il 8
U(p) a P +Cpzln (T pt1) | +
e K1) sinn/BFep K(1) p] N
L BT inn/BEr BT
[ K(0) sinn/T(1-p) K(0) :I
+ - + (1-p) (1v=-50)
L T sinh v¥T T

where Cq is defined by equation (IV-13),

aa
K(0) = ~ — - — C4 (IV=51)
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and

ah(1) _ B

KN == 30 (B0 2

(cy - aH(N)) (Iv-52)

Similarly, using equations (IV=-36) and (IV-49) we get the corrected cable

approximation to the riser curvature:

a2u(p) [-ah(p) B :]
= - C - aH(1) +
dap? (B+1)2  (B+1)2 (e )

+

[_ X(1) sinh/B+T E]
sinhy/B+T

+

[-K(O) sinhyT_(1-p) “'] (IV-53)
sinh/'T

IV.4 End Corrections for Low Positive Tensile Stresses

As discussed in the previous section the numerical implementation of the

exact solution is not stable for high values of

xq = Bl/3 + g-2/3 (IV-54)
and/or
xg = B~2/3t 11 . (IV-55)

For such values of B and T we have to use the cable approximation and correct
it. For high values of T the correction formulae developed in section IV.3 are
satisfactory. However, x5 and/or xq1 may have high values for high values of
B and low positive T values. In this case we must solve the boundary value
problems defined by equations (IV-24) to (IV-28) and (IV-43) to (IV-47) exactly
using the Airy functions. The procedure for solving these two boundary value
problems is similar to the one developed in section III and the numerical imple-

mentation is stable for even higher values of X9 and/or xq [1].

Upper End Correction

The solution to the problem defined by equations (IV=-24) to (IV-28) is:

-1/3 -2/3
ulp) = 8 {e3 + o12q(x) + cBza(x) + moUg=2/3z3(x)) = gl/3p + g=2/3¢
(IV-56)
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and the curvature is:

a2ulp)

7 = 31/3{c?z1(x) + cgzz(x) + wcuB'2/3Z3(x)}

x = 81/3p + g-2/3¢
(1Iv-57)

where 27 , 25 , Z3 are defined by equations (III~13) and (III-14) and c? ’

cg ’ cg and oY% are the solutions to the following system of linear equations:

rcg ] FO i

(a1] <4 =|o (IV-58)

u
Cy 0
_moug=2/3 | | -r(1)8~1/3 |

where

1 Z4(xg) Zo(xq) Z3{xq) 7]

1 Z1(xq) Zo(x1) Z3(xq)
A= 11X 21X 31Xq (IV-59)
0 Z4(xq) Zo(xq) Z3(xgp)

L0 Zq(xq) Za(xq) 2Z3(xq) |

Lower End Correction

The exact solution to the boundary value problem defined by equation (IV-43)

to (IV-47) is:

ulp) = B-1/3(c5 + cfzq(x) + cBza(x) + mole=2/325(x))

x = 81/3P + 8-2/3T
(IV=-60)

and the curvature is:

a2ul’p)

dp2 = 81/3{C%Z1(x) + chZ(x) + FGLB_2/323(X)}

x = 31/39 + 3-2/3T
(IV-61)

where c% ’ cg F cg and ol are the solutions to the following system of

linear equations:
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— 4 - -
cg 0
[al| ¢ =0 (Iv-62)
o3 ~K(1)g=1/3
L ﬂcLB-Z/s a = 0 R

In order to derive the corrected cable approximation we have to superpose
the cable solution (IV-12) and the end corrections (IV-56) and (IV-60). Thus the

corrected cable approximation for low positive values of the tensile force is:

p
H(E)dE

u(p) BE+T

0
|
]

+ Cy % 1n(§ p+1) | + B71/3| o5 + clzq(x) + chza(x) +

+ maUR~2/334(x)
moTe 3 x = Bl/3p + pg=2/3¢ (IV=63)

B=1/3| c3 + c7Z1(x) + chZy(x) + molB=2/3z5(x)

+

% = Bl/3p + 8-2/3T

Similarly, using equations (IV-57) and (IV-61) we get the corrected cable

approximation to the riser curvature:

2
d?U(p) _ | =ah(p) _ __B -
ap? (ere) - (eemy2 (C1 - al(m)]) |+

— e
+ gl/3 C?Z:(x) + ch;(x) + wou8’2/3zg(x)
L -

- -

x = 81/3P + 8-2/3T

+ B1/3] ciz1(x) + chZa(x) + mole=2/3z5(x) ‘= B1/3p + g2/

(IV-64)



CONCLUSIONS AND FURTHER WORK

In this report the static marine riser problem has been modelled and solved.
The exact solution developed in section III can be implemented numerically over
limited ranges of the values of the dimensionless variables B and T due to
numerical instability of the Airy functions of the second kind for high values of
its arguments. To solve the riser problem for high values of B and 1 the
cable approximation was developed in section IV. Two different types of correc-
tions were used in order to achieve satisfactory approximations. One makes the
cable approximation applicable for low positive values of the tensile force and

the other for moderate and high values of the tensile force.

All three solutions have been implemented numerically in reference [1] and
the ranges of validity of each one has been found. These solutions are used in

{1] to do a parametric static riser design analysis and generate design curves.
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