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ABSTRACT

A general analysis of the added mass and damping of a marine
propeller in all modes of rigid body vibration is presented. This
derivation assumes that the pressure distribution on a propeller
blade due to a unit heave oscillation or unit pitch oscillation
about the midchord point can be obtained by two-dimensional thin
foil theory, lifting-line theory, or lifting-surface theory.

These results show that eighteen coefficients are needed to
completely characterize the added mass and damping of a propeller.
The use of two-dimensional thin foil theory and lifting-line
theory to obtain the pressure distribution on a propeller blade
due to a unit heave oscillation or unit pitch oscillation are
reviewed. These results have been utilized in the PRAMAD computer
program which calculates the added mass and damping of a vibrating
propeller. This program incorporates approximate lifting-surface
corrections which were obtained by regressing the ratio of
lifting-surface and lifting-line results for a matrix of
four-bladed Wageningen B-Series propellers. Results are presented
for sehsitivity studies performed using the PRAMAD program to show
the effects of advance coefficient, vibration frequency, blade
number, and skew on propeller added mass and damping. Preliminary
design equations are presented for the estimation of all eighteen
added mass and damping coefficients of 4-, 5-, 6-, and 7-bladed
Wageningen B-Series propellers.
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1. 1Introduction

The increase in the installed power in commercial ships in
recent years has made propulsion shafting vibration one of the
most important problems in marine engineering. It is now very
important, if not mandatory!s2, to be able to analyze shafting
systems in torsional, axial, and lateral vibration in
preliminary as well as detailed design. 1In the past 20 years,
the growth of computers has made practical a complete analysis
of marine propulsion shafting vibration. Needed numerical
techniques have also been developed during this period.
Research effort in this country has significantly improved our
ability to establish the propeller excitation of the propulsion
shafting.3s4+s5 No parallel effort has been underway during this
period, however, to provide comparable techniques and data for
the estimation of the propeller added mass and damping. These
data are also needed to perform the propulsion shafting
analyses. The collective term "added mass and damping" is used
here to include the coefficients which characterize all the
hydrodynamic forces and moments which act on a propeller due to

its translational and rotational vibration in a fluid.

In general, a marine propeller vibrates in the six rigid
body modes with displacements §; and rotations 8i as defined
in Fig. 1. The propeller will be assumed to vibrate as a rigid
body in this discussion. The propeller operates in a
circumferentially varying wake field and thus generates a
vibratory component of 1lift which produces vibratory excitation
forces Fj in the three coordinate directions and vibratory
excitation moments Qj about the three coordinate axes. The
force Fy directly excites axial or longitudinal vibration.

The moment Qy directly excites torsional vibration. The
forces Fy, and F, and the moments Qy and Qz excite
lateral vibrations. As the propeller vibrates in water, it
experiences additional hydrodynamic forces fi and moments qj
(added mass and damping) due to its oscillatory motion. 1In
linear foil theory these can be viewed as the forces and moments



generated by the propeller's oscillatory motion in a uniform
wake field.

4 displacements §j
I rotations 8;
forces Fji, £f3
moments Qj, qj

’////' Y

Qy,qy,ey

bearing

Figure 1. Nomenclature for Propulsion Shafting Vibration

The equations of motion for the vibrating propeller can be

written as follows in matrix form:
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where m is the propeller mass, Jgx 1is the mass moment of
inertia of the propeller about its axis of rotation and Jyy=Jzz
are diametral mass moments of inertia. The displacement

vector x , vibratory excitation vector fo , and additional
hydrodynamic force vector f}, are defined as follows:



X = [5xr 5yr 8§z, Oy eyr ez]T v (2)
Ee = [FXI FYI Fz Qxl le O.z]T ’ (3)
fh = [fx, fyr £z, ax., dy s CIz]T . (4)

The vector fg includes the forces and moments exerted on the
propeller by the shafting and couples the propeller motion with
that of the rest of the propulsion shafting system. The
additional hydrodynamic forces fn  depends on the displacement,
velocity, and acceleration of the propeller and can be
represented as follows:

£n = “MaX - CpX - Kpx - (5)

The matrix Kp will be zero for a fully-immersed propeller
leaving,

fn = -MaX - Cpx . (6)

Substituting eq. (6) into eq. (1) and rearranging yields
the traditional form of the equations of motion; i.e.,

(M + Ma)i + Cpl.(_ - Es = £e . (7)

The matrix M; 1is the added mass matrix for the propeller. The
first three terms on the main diagonal are the added mass in
the three coordinate directions, the second three terms on the
main diagonal are the added mass moments of inertia, and the
off-diagonal terms are usually called inertia coupling. The
matrix Cp is the damping matrix for the propeller. The first
three terms on the main diagonal are the linear damping, the
second three are the rotational damping and the of f-diaqonal
terms are usually called velocity coupling. Notice that
negative siqgns are included in the definition eq. (6) so that
the added mass and damping matrices appear with plus signs on
the left side of the equations of motion, eqg. (7), where they
are normally used.

The added mass and damping matrices contain a total of 72
coefficients. Only eighteen non-zero coefficients, however, are



actually needed to fully characterize the added mass and damping
properties of a marine propeller. We will show below that these

matrices have the following form:

mip O 0 mgy O 0 ] c11 O 0 c41 O 0 T

0 mpz -m32 0 m52 -mg2 0 c22 -c32 0 c52 -c62
My = 0, 32, P22 0 .Me2 M52, . Cp = 0 c32 c220 <ce2 Cs2|

mgy O 0 mgq O 0 cg41 O 0 cq4 O 0

0 mg5y -mg2 0 m55 -mgs 0 cs52 -cg2 0 c55 —Cg5

LO mg2 m53 0 mgs mss | _0 cg2 c¢52 0 cg5 €55 |

(8)

The two matrices have an identical form. The zeros in the first

and fourth rows and columns indicate that the added mass and

damping introduce no coupling between the torsional/axial motion
(coordinates 1 and 4) and the lateral motion (coordinates 2, 3,

5, and 6). The symmetry of the propeller in the lateral plane
results in the equality of selected terms in the lateral
coordinates; e.g. myp = m33 , M55 = mgg , and mgy = Mg3 .

A reciprocity relationship results in the equality of other

terms; e.g. mj4 = mgy and my5 = mgy . Note that the matrices

are symmetrical except for four sign changes. These sign

changes result from the handedness of the propeller; i.e., for a
right-hand turning propeller the +y-axis immediately follows the
+z-axis as the propeller rotates but not vice versa. Six added

mass and damping terms are needed for the coupled torsional/axial
motion; i.e., m)] , Mgq4 , M4] ,» C11 + C44 » and c4g1 . Twelve terms
are needed for lateral motion. These can be separated into one group
with the forces and moments in the lateral directions which are the
same as the direction of the motion; i.e., my3 , mgg , mgy , C22
cgg , and c52 . These we term the coefficients for forces parallel
to the motion. A second group has forces and moments in the lateral
directions which are normal to the motion; i.e., m33 , mgs , mg2 .
c32 , Cg5 » and cgz . These we term the coefficients for forces
perpendicular to the motion. This nomenclature follows that
introduced recently by Hylarides and van Gent.®



In free vibration analyses, which are performed to
establish the natural frequencies of the propulsion shafting
system, damping and velocity coupling are usually neglected.
Data is needed for the added mass and inertia coupling but the
latter is also commonly neglected. In forced vibration
analyses, which are performed to establish the magnitude of
vibration, both the added mass and damping are required.

Limited data exists for propeller added mass in torsional and
axial vibration7/8/9s10; eyen less exists for lateral
vibration8,11,12,13, The quasi-steady approach commonly used in
the United States to estimate propeller damping in torsional and
axial motion can lead to serious errors;l%,15,16 essentially no
data exists for propeller damping in lateral vibration. The
notable exception to this general situation is the recent paper
by Hylarides and van Gent® which gave complete added mass and
damping results for a matrix of nine 4-bladed Wageningen
B-Series propellers. The present paper presents new results on
the fundamental character of propeller added mass and damping,
provides a practical technique for obtaining the added mass and
damping of a propeller in detailed design, and presents design
equations which can be used to estimate the added mass and
damping early in preliminary design. We feel these results will
permit a major improvement in the state-of-the-art of marine
propulsion shafting vibration analyses.



2. Derivation of Propeller Added Mass and Damping

In this section, we present a general analysis of the added
mass and damping of a marine propeller. Here it is assumed that
the pressure distribution on a propeller blade due to a unit
local pitch and a unit local heave oscillation at a specified
frequency are known. Techniques for obtaining these pressure
distributions will be discussed separately in Section 3.

2.1. General Approach

Equation (6) states that the added mass and damping forces
and moments on a propeller are the result of the velocity and
acceleration of its vibratory motion in a uniform wake field.
Suppose we subject a propeller to a general harmonic oscillation
at frequency w, which can be expressed in complex form as,

X = Re{Xeloty , (9)

and then calculate the resulting vector of six hydrodynamic
forces and moments on the propeller, £fj . The foil behavior is
linear so the resulting hydrodynamic force will be harmonic at
the same frequency; i.e.,

£fh = Re(Fpelwty | (10)

where the complex magnitude vector Fj reflects the phase
shifts which exist between the excitation and response. The
displacement magnitude vector X would also be complex if there
were phase shifts in the various components of the displacement
with respect to the zero-time reference point. Equation (9) can
be differentiated to obtain the velocity and acceleration and
the results can be substituted into eq. (6) to yield,

fnh = Re{(w2My - iuwCp)xeluty | (11)

Comparing eq. (10) and eq. (1l1), the force magnitude vector Fj
is given by,
Fh = FX = (w2My - iwCplX (12)

where F 1is a matrix with complex elements.



Now if we subject the propeller to a unit oscillation at
frequency w in a single coordinate £ , the displacement
magnitude vector X 1is a unit vector in coordinate ¢ and the

force magnitude vector becomes column ¢ of matrix F ; i.e.,

0
F} =F |1 row g , (13)
L .
[0
where the asterisk denotes a unit oscillation. The resulting
force or moment in coordinate (row) 3j in Eﬁ is then element

(j,¢) of the matrix F . We therefore have® from eq. (12),

F;l- = sz = (uzmjz - i(anz ’ (14)
3L
giving,
! Re{F } (15)
m'z = —Re r
] w2 hjz
and,
LingFr ) (16)
C'z = = ~=—=]M .
J w hjz

These state that if we (1) subject the propeller to a unit
oscillation at frequency w 1in coordinate £ , (2) calculate
the resulting force or moment in coordinate 3j , and (3)
designate this complex magnitude as thz ;, the elements (j,e)
of the propeller added mass and damping matrices can be
calculated by egs. (15) and (16), respectively. This is the
technique used in the following. The process must be performed
once for each of the nine pairs of elements (j,t) needed in

eq. (8).



2.2, Coordinate System Definitions

In this analysis, we use three separate coordinate systems.
The first is the overall coordinate system defined in Fig. 1 for
a right-hand propeller. The displacement vector in these
coordinates is given by eq. (2) and component & of this vector
can be denoted x; . The second coordinate system of interest
is in the projected plane of the propeller as shown in Fig. 2.
The coordinates are aft (unit vector i) along the x-axis in
Fig. 1, radially outward (ey), and tangential (eg) directed
opposite to the direction of rotation. The 2 blades are indexed
by the integer k=0,1,...,%Z-1; the blade spacing is 2n/Z . The
position vector to any point on a particular blade k is defined
by the coordinates (x3, rj, 8]) where the angular position in
the projected plane 67 is given by,

2nk
81 = 6 + 3 + 0g(ry) + a' , (17)

where the first component,

8 = -t , (18)

is due to the rotation of the propeller. Angle 8 is defined to
the generator line (radial reference line through the midchord
point at the hub plus rake in x-direction) for the index (k=0)
blade. The first two terms in eq. (17) give the angular
position of the generator line for blade k. The projected skew
angle 8g defines the angular displacement of the midchord point
at radius rj) from the generator line. Coordinate a' is a local
angular coordinate in the projected plane of the blade. It is
negative at the leading edge, zero at midchord, and positive at
the trailing edge.

The third coordinate system of interest is a local
coordinate system centered at the midchord point of the
propeller blade section at radius rj as shown in Fig. 3.
Coordinate n is normal to the blade and generally directed aft
(positive on the blade face). Coordinate m is along the blade



rotation @ (rad/sec)

8 + 2nk
Z
generator line for blade k
blade k
(//x=xl positive aft Y
I/’—-
/
7 r
; midchord line for blade k
|
8 (r)) \ (ke 2y 8

Figure 2. Coordinate System in Projected Plane of Propeller.

chord; positive toward the trailing edge. Coordinate r is
radially outward (e,) as in the projected plane. These local
coordinates are oriented at the geometric pitch angle Bg, with
respect to the transverse (y-z) plane of the propeller. The
chordwise linear coordinate m is related to the local angular

coordinate in the projected plane a' by,

rjoe'

m = . (19)

COSBg

The axial position in the overall coordinate system, x , and in
the projected-plane coordinates, x3 , are similarly given by,

x = x1(r1,a') = r18p(ry1) + ri(ég(ry)+a')tangg (20)



where 6, is the rake of the propeller blade at radius r; .

¢. 2tk

r1(6 + =) projected plane (x=0)

-1 p(ry)
\\ Bg(rl) = tan 2rr,

P = pitch (in.)
6

rla' rle

section at radius rl

¢ = rake (in./in.)
, aft

Figure 3, Coordinate System in Local Plane of Propeller Blade

Small displacements x; in the overall coordinate system
shown in Fig. 1 will produce a vector displacement in the
projected-plane coordinate system shown in Fig. 2 given by,

i=§uxz ' (21)
2=1
where,
yr=1i
Y2 = -sinfjey - coséjeg ,

Y3 = cosbler - sinbjieq

Y4 riee

Y5 = rjcoséji - xjcoseje, + x1sinéjeg ,
Y6 = r1sineji - xysineje, - xjcosfjiey .

The unit normal n in the local coordinate system shown in Fig. 3
is similarly related to the projected-plane unit vectors by,

n = cosfgyi - singgeq - (22)

If a propeller undergoes a small general motion in the overall

-10-



coordinates, egs. (21) and (22) can be used to obtain the
resulting displacement normal to the blade section; i.e.,

§n = 6+°n = (§y+r16gycose) + r10zsing))cosgg
+ (Gycose1+6zsinel-rlex—xleysine1+xlezcosel)sinsg. (23)

The heave motion of the local blade section is given by eq. (23)
evaluated at the midchord point, i.e., a' =0 in eq. (17) and
eqd. (20). The pitch motion of the local blade section about its
midchord point is given by,

aén 3én 3a’ cos 9é6n
ént = e— = evm— — = _Bg —— i (24)
a'=0 am da' 9m ry da’
a'=0 a'=0 a'=0
This notation signifies that local angle a' is set to zero

only after all derivatives have been taken.

2.3. Heave and Pitch Due to Oscillations in Overall Coordinates

To utilize equations (15) and (16), we need the force or
moment in coordinate j resulting from a unit oscillation in
a single coordinate g ; i.e., Fﬁjz. It is convenient, however,
to derive the expressions for a small general displacement 8
and then specialize this later to a unit displacement in
coordinate £ . Consider oscillations in each coordinate g at

frequency w ,
Xg = Re{Azeiwt} . (25)

These can be substituted into eq. (23) to obtain the resulting
oscillatory motion normal to the blade section. The complex
form can be used for sin 6' and cos 6' in the terms involving

these functions in eq. (23) to give expressions of the form,

1l . . . .
Xg COSO | =-3Re{A£elBe1(w‘9)t + Age~1Bel(utn)ty (26)
1 . . . .
Xpsiney = —--ERe{AzielBel(“"Q)t - Azie‘lBel(“+9)t} ’ (27)
where,

-11-



2nk
B(ry,a',k) = _E- + 8g(ry) + o' . (28)

The resulting oscillatory motion normal to the blade section can
be expressed in the compact form,
6 - s . + .
én(xy1,r1,a',k,t) = Re{ } Az[Czel(w'ﬂ)t + C,,'elwt + Czel(m+9)t]}.
£=1 (29)

Note that this motion has components at three frequencies.

Recall that ® 1is the vibration frequency and @ is the
propeller rotation frequency. These three frequencies are
analogous to the frequencies (2-1)o , 2@ , and (Z+l)Q , which
occur in a similar manner in the blade-rate propeller vibratory
excitation problem. The C coefficients are given in Table 1.
The zeros in Table 1 reflect the lack of coupling between

torsional/axial motion and motion in the lateral plane.

2 Cy Cy G
1 0 COSsB g 0
1 . 1 .
2 —elBgin 0 —e~1Bgin
2 Py > Bg
3 --leiBsint 0 --ie‘iBsine
2 2 g
4 0 —rlsinsq ' 0
r) x1i | . ry x11i | .
5 —COSBy + ——singy)elB 0 —CcosBgq~——singy)e~1B
14 X1 o iB ryi X1_. =1iB
6 ( 5 coseg+2 31nsg)e 0 (—E-cossg+5-51nsg)e

Table 1. C Coefficients for Blade Normal Displacement Eg. (29)

-12.




The local oscillatory heave of the propeller blade section
due to small oscillations in the overall coordinates can be
obtained by substituting o' = 0 into egs. (20) and (28), and
then using eqg. (29). This yields,

6
§n(0) = én| 0" Re{ J Az[C;(O)el(w—ﬂ)t+C2(O)elwt+CI(0)e1(w+Q)t]},
o = 2:1
(30)
where the C(0) coefficients are from Table 1 with a' = 0 which
gives,
2rk
B = By = B(r1,0,k) = + 6g(ry1) (31)
X1 = X190 = X1(r1,0) = r18,(ry) + ryjég(ri)tangg . (32)

The local oscillatory pitch of the blade section about its midchord
point due to small oscillations in the overall coordinates can be
obtained by using eq. (29) in eq. (24). The result can be
expressed in the compact form,
6 p— . . + .
§n'(0) = Re{ | Ay[Djei(w-R)tip elutipjei(uwtaltyy |, (33)

2=1
where the D coefficients are obtained from the corresponding C
coefficients using,

cos aC
p = 0S8g . (34)
ri da'] |
=0

The D coefficients are given in Table 2 where eq. (31) and eq.
(32) are used in these expressions for B and xj , respectively.
The zeros in Table 2 reflect the lack of coupling between
torsional/axial motion and motion in the lateral plane and indicate
that there is no local pitch of the blade section in torsional or
axial motion.

-13-



- +
1l 0 0 0
——e+BPsing 4CoSs - ——eTiPs51ng 4COS8
271 BgcosBg 211 gCcosBg
3 i iBgj 0 X ‘iBsinB 0SB
—elBging cos —_— c
271 BgCOsBg 2r1 g g
4 0 0 0
i X1 : i b S .
5 — - —=—ginB4cOsBq)elB 0 (= — - ——s1ing 4qCOSR ye—1B
P 2r Bgcosiq 2 2r E E
1 xi : 1 xi :
6 (— + ——sinp cospy)elB 0 ( -— - sing qcosgy)e~1B
2 2r) Bgeosty 2 2rp 99

Table 2. D Coefficients for Blade Local Pitch Eg. (33).

2.4. Forces Due to Unit Oscillations

Equations (30) and (33) indicate that oscillation in the
overall coordinates at a frequency w will produce local heave and
pitch, respectively, of the propeller blade section at the three
frequencies w - , w , and o + Q . Assume we are able to
calculate the pressure distribution on the propeller blade due to a
unit heave or unit pitch at any frequency w' . These results

could be written in a complex form as follows for heave and pitch,

respectively:
heave: p(ri,a',k,w',t) = Re{P(rl,a',k)ei“'t} ’ (35)
pitch: p'(rise',k,w',t) = Re{P'(r1,a' k)ein'ty | (36)

We can designate the complex pressure amplitudes due to a unit
heave at frequencies w -9 , w , and o +@ as P_, P, and
P, respectively. Similarly, we can designate the complex
pressure amplitudes due to a unit pitch at frequencies w - Q , w ,

and w +Q as P', P' , and Pl , respectively. Section 3 will

-1l4-



discuss how these pressure distributions can be calculated.

Equation (30) gives the magnitude of the heave of the local
blade section which occur simultaneously at the frequencies o - @,
w , and w + Q@ as the propeller undergoes a general oscillation at
frequency w. The resulting pressure distribution can be obtained
by summing the products of the magnitude of heave at each frequency
times the pressure distribution due to a unit heave at that
frequency. Equation (33) gives the magnitude of the pitch at the
three frequencies which also occur as the propeller undergoes a
general oscillation at frequency w. The pitching will contribute
three more pressure components which can be obtained by multiplying
the pitch magnitude times the pressure distribution due to a unit
pitch at the corresponding frequency. The total pressure at
projected-plane coordinates rj; and o' on blade %k is therefore
given by the sum of the six possible pressure components; i.e.,

6
p(ry,a',k,w,t) = Re{zzlAz[(C;(O)P_+D;(0)Pl)ei(w‘9)t
+ (Cg(0)P+Dg (0)P')elut 4 (CI(O)p++DI(0)p;)ei(w+9)t]}.
' (37)

To use eqg. (15) and eq. (16), we need the pressure
distribution due to a unit oscillation in coordinate g so A, =1
and A; =0 ; i=1,2,...6, i # ¢ . Equation (37) then yields,

Py (r1,a',k,u,t) = Re{(Cy(0)P_+Dg (0)P!)el(w-0)t

+ (Cy(0)P+Dy (0)P*)elut + (Cy(0)P, +Dy (0)P))eilwt)ty,
(38)

To use eq. (15) and eq. (16), we need the force or moment component
in coordinate j produced by this pressure; i.e., F;_ . This can
be obtained by integrating the correct component of taé force
produced by the pressure eq. (38) over the blade and summing over
all 2 blades. Mathematically this becomes,
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2~-1 Tt *ar(r1) rida'
Re{F;_zeiwt} = Re{ X [ f pz(rlla"k,(ﬂ ,t)(ﬂ'lj)coss drl} 7
’ =00 vy 7 —apr) E

(39)

where the radius is integrated from hub to tip and ap 1is the
projected angle of the semichord at radius rj . The vector dot
products which produce the appropriate components of the force are
available from eq. (21) and eq. (22); i.e.,

—
=]
L]
=
=
~—
1

= COSBg ’

o]
L ]
=
N
e
]

cos61sinBqg .

(n*y3) = sinejsingqg .

(n*yq) = -r1singg . (49)
(n°ys5) = rjcos@}cosg -~ x1singisingg .

(n.yg) = risinejcosgg + x1cosé1singq .

In eq. (40), a' 1is not zero in general and eq. (17) and eq. (20)

must be used for 631 and X1 . respectively.

Equation (39) indicates that even though the pressure on the
propeller blade is at three frequencies, the force this produces
is at the single frequency w . This result can be illustrated
mathematically by presenting two examples of the use of eq. (39).
These examples will also show how we reduce this expression to a
form convenient for computer solution. Substituting eq. (38) into

eq. (39) and taking the summation inside the integrals we obtain,

e aL(rl)
Re{F;‘l_zel“’t} = Re{[ [ [(G5£P_+H§2P:)
rh =

J ar(ry)

+ + :
+ (szP-l'szP') + (GjR.P++Hj2P.;.)] drlelwt} ,(41)

rida'
cosBq

where,
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s 7-1

. +
Gyg = et ¥ Co(0)(n-yy) , (42)
k=0
* SR Jat ¥
Hyy = e¥18% ] D (0)(n-yj) (43)
7-1
Gyg = kéocz(O)(E'lj) ' (44)
51
Hs, = Do (0)(n°eys) (45)
R P

Note that the negative exponential is used with the plus super-
script (G1 and #%) in eq. (42) and (43) and vice versa.

Consider first the axial added mass and axial damping case
(¢=1, j=1) . From Tables 1 and 2, only C;(0) = cosBqg is
non-zero so only Gjj; 1is non-zero. We therefore have from eq.
(41),

Fe ron(rl) rida’
F* e G r "YP(r ) dr 46
h11 f 11(r1,a')P(xry1,a )cosa 1 (46)
h

-ar(ry) g

and using (neyj) from eq. (40) in eq. (44) we have,

G1i({ryi,a') = zzlcoszsg = Zcos?By . ) (47)
k=0
The reduction of the summation in eq. (47) to just the multiplier
Z indicates that all Z blades contribute equally to the axial
added mass and axial damping. Equation (46) can be rearranged to
yield,

rt S da'
F¥ =12 [./. P(ry,a') Jcos2B,yrydry . 48)
hyq [ (r1,a costg Bgridry (
Th oL

For programming convenience we define the term in brackets as
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ap(ry) .
da
PHX(r1) = P(rj,a')—————— (49)
cossg(rl)
-ar(ry)
a chordwise integral of the pressure due to a unit heave at

frequency ® . Equation (48) then becomes simply,

e
F* = 2 PHX(rl)coszsg ri1dry (50)

th
and the axial added mass mj] can be obtained using eq. (15) and

the axial damping c¢j] can be obtained using eq. (16).

The analysis is not so simple in the lateral case. As an
example of the other extreme, consider the lateral (diametral)
added mass moment of inertia and lateral rotational damping case
(£=5, j=5). The C and D coefficients from Tables 1 and 2,
respectively, are used with By and Xjg from eq. (31) and
(32), respectively. Since Cg = Dg = 0 , eq. (44) and (45) yield
Ggg = Hgg = 0 . The complex form can be used for cos8) and
sing; in eq. (40) to give,

r . . . . x1i . \ . .
(2.15) =-—2l(elBe"th.l.e-lBelnt)cong +__;._(elBe—lﬂt_e-lBelgt)sinsg’
(51)
where a' 1is not zero in general so we must use,

B

By + o' , and

X1 X190 + ria'tangg ,

in this expression. Now Cg ’ Dg , and eq. (51) can be
substituted in eq. (42) to evaluate G§5 . If we take advantage
of the fact that,

4ik
+
Z

z-1 1

]

k=0

1]
o
-
N
A%
[\
-

7 -
k=

e
0

we obtain the following expression for Ggg :
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y/ .
e 2 2 2 + a2 -ig?
Gssg 4[(r1 cos2Bg+x? sin2gg)eia

+ (-r12isin2Bg+xlorlsinzsgtaneg)a'e‘ia'] . (53)

Similar expressions can be obtained for G§5 , Hgg , and Hg5 .
The zero summation in eqg. (52) indicates that the contributions
from the 2 blades exactly cancel one another due to propeller
symmetry. Substituting all these results into eq. (41) yields the

following spanwise integral for FESS :

r
* 2 ‘ 3 2 2 in2
Fh55 z [(r13cos sg+xlor151n Bg)PHLM
Th
+ (-r13isinzsg+xlor12sinzsgtansg)PHLMA

+ (r12icossg+x10rlsin3sg+xioisinzsgcoseg)PPLM
+ (r12sinsgtansg+x10rlisin3Bg)PPLMA

+ (r13coszsg+xi0rlsinzsg)PHLp
+ (r13isin2Bg+xlor12sinzsgtaneg)PHLPA

+ (-r12icossg+x10rlsin3Bg-xioisinzsgcossq)PPLP

+ (rlzsinsgtansg-xlorlisin3Bq)PPLPA]drl (54)
where,
- r
p apL(r1) +iny  da'
PHL M (r1) = Py (ryj,a')etla (55)
M _ COSB g
ar(ry)
o] ar{ry) . da
PHL| [A(r;) = Py (rysa')a'etla , (56)
[M] _ COSB g
ar(ry)
ar(r
3 L(r1) +i 1 da’!
PPL (r1) = P!(rj,a')e*la (57)

~ar(ry)

-19-~



ar,(ry)
P . 4 da'
PPL[M]A(r]_) = / Pt'(r]_,a')a'etla v (58)

cosB
ar(ry) g

with the plus sign used with P and the minus sign used with the
M in the chordwise pressure integral name. Comparing egs. (53)
and (54) shows that the term GggP- in eq. (41) produces the
first two terms in the integrand in eq. (54).

Equation (41) was evaluated for all 36 combinations of i and
j. These results yield only nine unique, nonzero results and the
added mass and damping matrix properties shown in eq. (8). The
complete expressions for the nine complex hydrodynamic forces
th are given in Table 3. All terms within the integrals are
functions of the variable of integration r; . The chordwise
pressure integrals are defined by eq. (49) and egs. (55) through
(58). 1In the computer program PRAMAD which calculates the
propeller added mass and damping using these results, the
chordwise pressure integrals for a unit heave at frequency w , eq.
(49), and for a unit pitch and a unit heave at frequencies w - @
and w + @ , eq. (55) through (58), are first calculated and stored
as a function of radius. These results are then combined into the
appropriate radial integrands as given in Table 3 and integrated
to give the desired complex hydrodynamic forces. The associated
added mass and damping are then obtained using eq. (15) and eq.
(16), respectively.
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3. Pressure Distributions Due to Unit Oscillation

In this section, we review techniques which can be used to
establish the chordwise pressure distribution acting on a
propeller blade at some radius rj] as it undergoes a unit
oscillation at some frequency w' in heave or pitch about its
midchord point. These pressure distributions are denoted p and p'
in eq. (35) and eq. (36). The associated complex magnitudes P(rjp,
a'yu') and P'(rj,a',w') are utilized in the chordwise pressure
integrals eq. (49) and egs. (55) through (58). The available
techniques parallel those used in steady propeller theory. In the
order of increasing accuracy, complexity, and cost, they are
two-dimensional thin foil theory, lifting-line theory, and
lifting-surface theory. To date, our work has been limited to the
first two approaches.

3.1. Two-Dimensional Thin Foil Theory

The complete solution for small lateral oscillations of a
thin foil in a uniform stream of incompressible fluid was first
published in this country by Theodorsen.l? Here we utilize the
presentation of Theodorsen's method given by Bisplinghoff, Ashley,
and Halfman.l8 They utilize the coordinate system shown in
Fig. 4. The thin foil undergoes heave and pitch oscillations due
to a vertical oscillatory motion,

Za(x,t) = Re{Zy(x)elot} | (59)
The vertical fluid velocity at the foil surface is,
walx,t) = Re{wa(x)elut} | (60)

Under the usual thin foil approximations, the linearized boundary
condition is,

324 925
Wa(x,t) = —— + U —=— 61
a( ’ 3t ™ r ( )

which yields,
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- 3Z4
wa(x) = 1mza(x) + —_— (62)
IX

Note that in Fig. 4, positive heave is in the negative

z-direction.
z 4

Figure 4. Coordinate System for Two-Dimensional Thin Foil

The resulting pressure distribution, or more specifically the
difference between the pressure on the upper and lower surfaces
(z=0%*) of the foil, will also be oscillatory; i.e.,

Ap(x,t) = p(x,0%,t) - p(x,0",t) = Re{aP5(x)elut} (63)

and this will produce an oscillatory lift,

b
L(t) = - / Ap(x,t)dx = Re{Lelwt} (64)
-b

The pressure distribution is given by,

P 1
APa(x*) 2 ll_x* '1+E*l_
- = - 1-C(k : *\dr*
U m [ ()] l4+x* j{ 1-g* wa (£7)dE
-1
! 1-x* 1+g* _ '
- 1 * * *
¥ f [ 1+x* 1- E* x*_g* 1kA(x ’E*)] wa(g )dE ’
-1

(65)

where,
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X
x*'—‘g r
E* = é , and
wb
k = G— , the reduced frequency. (66)

The function C(k) is the Theodorsen function,

J1(k)-iY] (k)
C(k) = ; - ’ (67)
Jy(k)-i¥y (k) +idg(k)+Y¥g (k)

where Ji and Yj are Bessel functions of the first and second

kinds, respectively. The function A is given by,

A(x*,e*) =

1 1-x*g*+/1-g*2 /1-x*2

1-x*E*=/1-£*2 /1-x*2

Using eq. (63) and eq. (64), the complex lift magnitude is given
by,

b 1
L =./. [-AP5(x)]dx = b./. [-AP5(x*)1dx* . (69)

-b -1
If we define a complex lift coefficient C;, = L/pUb we then get,

+1

P *
Cr, =/ [_ A_Pé‘.ix_l] dx* |, (70)
oU

-1

which is a chordwise integration of the pressure distribution
given by eq. (65).

We can now specialize these results to heave and pitch of the
foil. 1In heave, we have,

za(x,t) = -h(t) = -Re{heluty (71)
so eq. (62) yields,

Walx) = -ioh . (72)
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Bisplinghoff, et all® show that the resulting integrated lift
gives the complex lift coefficient,

Cr = nhwl2i C(k)=k] . (73)

The first part of this expression is the circulatory part due to
the interaction of the heave and the circulation present on the
operating propeller. The second part of this expression is the
noncirculatory part and would be present even if the propeller
were not rotating. 1In pitch, we have,

z2a(x,t) = -a(t)x = -Re{xaeloty (74)
so eq. (62) yields,
WalxX) = - iwax - Ux = -Ua(l+ikx*) . (75)

Bisplinghoff, et all® show that the resulting integrated 1lift
gives the complex lift coefficient,

Cr, = mUa[ik+C(k) (2+ik)] . (76)

In this expression the first part is the noncirculatory part; the
second part is the circulatory part.

The two-dimensional thin foil theory results can now be
specialized to the propeller vibration problem of interest here.
We need the pressure distribution for a unit heave 6n(0)=1 and for
a unit pitch about the midchord point of the blade section
én'(0)=1. Comparing the coordinate systems in Fig. 3 and Fig. 4

we have,
heave: 6n(0) = -h , so h=-1 , (77)
pitch: én'(0) = -« , so a = -1 (78)

The results for a unit heave oscillation from eq. (72), eq. (73),
and eq. (77) then become,

Walx) = iew , (79)

CL

Tw[k=-2iC(k)] . (80)
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The results for a unit pitch oscillation from eq. (75), eq. (76),
and eq. (78) then become,

Wa(x) U(l+ikx*) , (81)

Ci, -rU[ik+C(k) (2+ik)] . (82)

The linearized boundary condition magnitudes eq. (79) and eq. (81)
are used in eq. (65) to obtain the pressure distribution for the
unit heave and the unit pitch, respectively.

This completes the development of the two-dimensional thin
foil results. The pressure distribution given by eq. (65) is
singular at the leading edge x*=-1 as is typical in the linearized
theory. Care must also be taken in numerically evaluating the
integrals on £* dQue to the singularities at g*=x* and at the
leading and trailing edges. 1In our work, we evaluate the
integrals on £¢* using a 100 segment rectangular rule with the
integrand evaluated at the center of each segment. This avoids
the leading edge singularity directly. The integrands at the
center of the trailing edge segment are obtained by assuming Ga
constant at its value at the trailing edge and then integrating
the remainder of the integrand analytically. If the integrand
with the (x*-g*)-1 singularity is evaluated within 0.001 of g*=x*,
the integrand is set equal to zero since the singularity can be
shown to integrate to zero in the limit; i.e. the Cauchy principal
value integral is indicated in eq. (65). The final numerical
difficulty is in obtaining the pressure at the leading edge x*=-1.
The pressure is known at the trailing edge to be Aﬁa(l)=0. The
pressure is calculated at nine additional, equally-spaced points
along the chord length. Equation (70) is then used to establish
the equivalent finite leading edge pressure which will yield the
correct integrated 1lift as required by either eq. (80) or eq.
(82). Simpson's rule is used to perform the integration in eq.
(70) and this equation is then solved for the equivalent leading
edge pressure AP5(-1).

The two-dimensional results ignore the induced velocities

caused by the spanwise and chordwise circulation distribution and
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the finite span. The results will be shown below to generally
over predict both the added mass and damping of the propeller.
The solution is, however, very economical.

3.2 Lifting-Line Theory

Our lifting-line analysis models the propeller as an even
numper 4<MM<LU Or clrcumterentlal segments ot equal radial width
as shown 1n Fig. 5 tor MM=4. ‘''he bound vorticity 1s assumed to
have a constant value radially 1n each segment. ''his 1s essen-
tially the approach used by Brownl? except that skew has been ad-
ded. The litting-line segments are at a constant angle passing
through the midchord point ot the midpoint ot each blade segment.
Ihe trailing vortex system has both radlial and tangential compo-
nents. The radial component is due to the time-varying nature of
the bound vorticity. The tangential (streamwise) component is due
to the radial variation of the bound vorticity. With the assump-
tion of radially constant bound vorticity in each segment, the
tangential component consists of discrete trailers beginning at
the midchord point at the joints between the segments and at the
ends of the blade. This lifting-line model reflects the spanwise
distribution of circulation but neglects the chordwise distribu-
tion. The model will, therefore, be more appropriate for higher
aspect ratio (lower expanded area ratio) propellers.

4z
index blade k=0

4~ _— generator line

x(r,68) midchord line

MM=4 segments radially

E{p,$) midchord line on any blade k

Figure 5. Lifting-Line Propeller Model
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From Fig. 5, the angular coordinate to the midchord line of
the index (k=0) blade at radius r when its reference line is

vertical is just the projected skew angle,
8(r,k=0) = 6g5(r) . (83)

The angular coordinate to the midchord line of any of the blades

at radius p under the same condition is then,
27k
¢ (p,k) = . + 0g(p) . (84)

If we now let wy(r,t) be the normal velocity at point r on the
midchord line of the index (k=0) blade, we have,

walr,t) = Ref{wy(r)elvt} (85)

where Ga(r) is the complex amplitude and w is the vibration
frequency. If we denote the fluid velocity normal to the blade
as wi-p(r,t); i.e.,

w3_p(r,t) = Re{wi_p(r)elvt} , (86)
the kinematic boundary condition requires,
wa(r) = wi_p(r) . (87)

Employing a lifting-line model of the propeller with the
bound vorticity along the midchord line, w3.p(r) can be written,

¢ re -

- - ar

w3-p(r) = T(p)Kp(r,p)dp + j[ P Ke(rypl)de (88)
Th Th P

where T is the complex circulation and dT/dp is its radial
derivative. The kernel functions K, and Ky represent the normal
velocity induced at r on the index blade by the radial and
tangential vortex systems, respectively, of all Z blades. The
integral over the tangential vortex system is evaluated in a
Cauchy principal value sense just as in the steady theory. Its
evaluation presents no particular difficulty. The integral over

the radial vortex system has a more difficult singularity,
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however, at p=r. Following Reissner2? and Brown,l9 the
difficulty in evaluating the radial vortex system integral can be
eliminated by adding to and subtracting from eq. (88) an
equivalent two-dimensional normal velocity,

wa-p(r,t) = Re{wa_p(r)elvt} (89)
where the amplitude has the form,
wa-p(r) = T(r)Ky_p(r) . (90)

This yields for eq. (87) and eq. (88),

Tt
Walr) = Wa_p(r) + }{ [T(p)Kp(r,p) = T(r)Ky_plr)ldp
Th

rt -
ar
+ — Ke(r,p)de . (91)
dp
Th

The radial vortex system integral is now well-behaved at p=r

since Kyp(r,p) and Ko_p(r) have the same singularity as p-»r.

The integral equation (91) can be solved numerically by
modeling the bound vorticity as MM segments of constant
circulation radially as shown in Fig. 5. We let Kj4 be the
combined kernel of both the radial and tangential vortex systems.
With the assumption of piecewise radially constant T, the radial
derivative dT/dp is a sequence of delta functions at the joints
between the segments. The strength of the discrete trailers are
given by the difference in the circulation at the two adjacent
segments. The singularity at p=r in the tangential vortex system
integral is avoided entirely since there is no trailing vortex at

the midpoint of the segments where eq. (91) is satisfied.

Denoting i as the field point where eq. (91) is satisfied
and denoting j as the integration points p, eq. (Y1) can be
written as a system or MM simultaneous equations,
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MM
Wa; = W2-pi + } [T3Kiy - Tiky ;! o+ 1=l,ec.,MM (92)
i=1
The complex circulation at each segment Fz can be written as,

Ty = bgwa_p, Gy (93)

where G, is the complex circulation obtained from Theodorsen's
method for the two-dimensional thin foil and b, is the section
semichord length. Our complex circulation Gy is related to
Bisplinghoff, et al'sl!8® nomenclature by,

Gy = qe~ik (94)

where they derive a complex reduced circulation @ given by,

1
1+g* _
4 I:E* wa(E*)dg*
- -1

g = — _ , . (95)
mik[J1(k)=1¥] (k) +iJg(k)+Yq (k)]

Substituting eq. (93) into eq. (92) produces a system of MM
simultaneous equations,
- - MM - - - ~%
Wa; = W2_p; + Y [wa-pjKij - wa-piKa-pil ; i=l,...,MM ,
3=l (96)

in terms of the MM unknowns wy.p, the equivalent two-dimensional
normal velocity at the midpoint of each blade segment. The left
side of these equations is obtained by using eq. (79) or eq. (81)
at the midpoint of each segment for the heave and pitch problems,
respectively. The system of equations eq. (96) is solved for

the wp_p which are then used in place of w, in eq. (65) to obtain
the pressure distribution at the midpoint of each segment. The
kernels ﬁij and E;-Di are essentially those used by Brown?20
except that the spatially oscillating exponential he includes for
the nonuniform flow case is just 1 for the uniform flow in the
added mass and damping problem and we include the skew angle in
the definition of the midchord point.
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This completes the development of the lifting-line theory.
In summary, we use two-dimensional theory to obtain the complex
circulation Gy using_eq. (94l*and ed. (95). These results are
used in the kernels Kjij and Kp_.pj which form the system of MM
simultaneous equations eq. (96). This system is then solved for
the equivalent two-dimensional normal velocities Wo-D which are
used in place of Qa in eq. (65) to obtain the chordwise pressure
distribution AB,. This theory neglects the chordwise
distribution of the bound circulation and will therefore be less
accurate for lower aspect ratio (higher expanded area ratio)
propellers.

3.3. Lifting-Surface Theory

Lifting-surface theory models the chordwise as well as
spanwise distribution of the bound vorticity. The development
presented in Section 2 is equally valid when the pressure
distributions for a blade undergoing a unit heave or unit pitch
about its midchord point are obtained using an unsteady
lifting-surface theory. Our work to date, however, has not
utilized a lifting-surface theory. Kerwin and Lee2! recently
reviewed various lifting-surface theories and presented an
unsteady lifting-surface theory for the unsteady flow problem.
This approach could be adapted to the problem of the foil
oscillating in a uniform flow. Hylarides and van Gent® have
applied lifting-surface theory to the added mass and damping
problem. They have published results for a series of four~bladed
Wageningen B-Series propellers. These results will be discussed
further below.
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4. The PRAMAD Computer Program Results

The Propeller Added Mass and Damping program (PRAMAD) was
written to calculate the added mass and damping of propellers
using the theory developed in Section 2. Either the
two-dimensional thin foil theory or the lifting-line theory
results reviewed in Section 3, at the user's option, are used to
calculate the pressure distributions. The program is a batch-type
program written in FORTRAN IV. User's Instructions, Programmer's
Documentation, and a listing of the program are included as Appen-
dices A, B, and C, respectively. The program accepts the propel-
ler geometry input data in a wide variety of forms at the user's
option. Output is in English units, SI units, and a nondimen-
sional form as defined in Table 4. Selected results obtained with
this program are reviewed in this and following sections. The
lifting-surface corrections which are included in the program are
presented in Section 5.

Type of coefficient coefficients divisor
added mass moment of inertia | mgg4,mg5g5,mgs pDS
inertia coupling mg41,m52,Mg2 p D!
added mass myy,m22,M32 pD3
rotational damping C44+C55,C65 pnDS
velocity coupling C41+C52+C62 pnD*
linear damping C11,C22,C32 pnD3

Table 4. Nondimensionalization of Coefficients

4.1. Comparison of Two-Dimensional, Lifting-Line, and

Lifting-Surface Results

The PRAMAD program evaluates the added mass and damping of a
propeller using two-dimensional thin foil and lifting-line
theories. Hylarides and van Gent® have published results which
they obtained using a lifting-surface theory for a matrix of nine

four-bladed Wageningen B-Series propellers. Their results were
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presented in nondimensional form for a blade-rate vibration
frequency (w=4Q, Q=rotation frequency). The propellers were
assumed to be "lightly-loaded;" i.e., operating at an advance
coefficient Jy, producing zero thrust. For comparison purposes
we have duplicated their calculations for the B4-70-80 propeller.
This propeller has a nominal expanded area ratio of .70 and a
pitch-diameter ratio at the 0.7 radius of .80. The
nondimensional results are shown in Table 5.

Torsional/Axial and Lateral: Parallel Results. There is

reasonable agreement for the torsional/axial results and the
lateral results with the forces parallel to the motion. 1In
general, there is better agreement between the lifting-line and
lifting-surface results for damping than for added mass. There
is only a small difference between our two-dimensional and
lifting-line results for added mass. This occurs because our
lifting-line theory "corrects" only the circulatory part of the
added mass and damping for finite aspect ratio. The added mass
coefficients are dominated by the noncirculatory part which is
effectively unchanged in the lifting-line analysis. 1In view of
the differences between lifting-line and lifting-surface results,
we have incorporated lifting-surface corrections for these
coefficients into the PRAMAD program. The development of these

corrections is described in Section 5.

Lateral: Perpendicular Results. There is little agreement

for the lateral results with the forces perpendicular to the
motion. Hylarides and van Gent present results for m3g and c35
which are different from mgy and cgp, respectively. We have
shown by the theoretical derivation presented in Section 2 that
these pairs of coefficients must be equal. The added mass
results are generally quite small; i.e., mgg is thirty times mgs.
The differences between the numerical results for added mass
obtained by the lifting-line and lifting-surface theories are,
therefore, not surprising. From an engineering standpoint these
coefficients are negligible. Our results show damping values
(ce5:C62,c32) which are comparable to the damping forces parallel
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two dimensional lifting-line lifting-surface from

component from PRAMAD from PRAMAD Hylarides & van Gent®

torsional/axial
LYY .00166 «00163 00119
mg 4 -.01342 -.01316 -.00934
mqq . 10842 . 10626 «07340
c44 «02267 « 00947 .01180
c41 -. 18063 -.,07492 -.09260
<11 1.44128 «59286 «72700

lateral:parallel
mgg .00470 .00486 .00358
mg o 00624 00639 « 00467
myo .01381 01381 .00866
c55 .08915 . 04397 «03790
c5o . 08905 04016 04410
Coo . 14586 .05936 07010

lateral:perpendicular

mgs5 .00108 -.00014 00015
Mg 00090 -.00020 00106
m35 = mgo .00090 ~.00020 -.00088
m3, 00132 -.00017 -.00001
65 -.03743 -.05141 -.00518
c2 -.04021 -.05181 00610
c35 = ¢ -.04021 -.05181 -.01700
c32 -.07609 -.09150 -.00100

Table 5. Comparison of Results for B4-70-80 Propeller (Tge, w=4Q)
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to the motion (css5,c52,c22) and an order of magnitude or more
larger than those obtained by Hylarides and van Gent. In view of
the large differences in results, we have made no attempt at this
time to develop lifting~surface corrections for the lateral
results with the forces perpendicular to the motion.

Typical Pressure Distributions. Pressure distributions
obtained using the lifting-line theory for the David Taylor NSRDC
4381 propeller described in Section 7 are shown in Fig. 6 and

Fig. 7 for a unit heave and a unit pitch, respectively. These
typical results are for the x=.65 nondimensional radius at a
vibration frequency which corresponds to a reduced frequency
k=2.91. As noted in Section 3.1, the finite leading edge
pressure is an equivalent value derived so that the integrated
pressure produces the necessary total lift. From Fig. 6, the
heave produced 1lift is predominantly positive real with a phase
angle of about -20° with respect to the heave displacement &§n(0).
From Fig. 7, the pitch produced 1ift is predominantly negative
imaginary with a phase angle of about -105° with respect to the
pitch displacement én'(0). This is consistent with eq. (80) and
eqg. (82) since C(2.9) = .507-.041i.

Comparison with Quasi-Steady Damping. Longl® suggests that

a quasi-steady assumption should be used to obtain the torsional/
axial damping. This approach has been used by Archer for
torsional damping.l*s15 This approach assumes that the steady-
state propeller characteristics (Kr,Kg,J) are also applicable to
a vibrating propeller. Under this assumption, the following
results can be derived for the nondimensional damping
coefficients:

can = =— (2Kg - J X9y | (97)
27 aJ
dKq
c = o — 98
41 a7 ' (98)
dKp
o] = = e— 99
11 3J ( )
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These equations were used to estimate the quasi-steady damping
coefficients of a B4-70-80 propeller at Jgg (lightly loaded,

Kp=0) using characteristics given by van Lammeren, van Manen, and
Oosterveld.?? This yields c4q = .00936, c4] = -.0537, c11 = .491.
For this particular case the torsional damping is reasonably good,
the axial damping is 30 percent low, and the velocity coupling is
40 percent low in magnitude. A comparison of quasi-steady

results with lifting-surface results for all nine of the B4
propellers analyzed by Hylarides and van Gent is shown in Table 6.
The damping is generally underpredicted by up to a factor of 2
compared with the lifting-surface results when the quasi-steady
assumption is used.

torsional damping cgqq velocity coupling c41 axial damping cqq
propeller
quasi- lifting=- quasi- lifting= quasi- lifting=
steady surfaceb steady surfaceb steady suraceb
e i T} —m R e . L)
B4-40-50 .00473 .00395 | -.0343 -.0496 ' +348 624
B4-40-80 v .00934 .00965 i -.0533 ~-.0758 .423 .595
B4-40-120 ; 01910 +01980 ~-.N806 =+ 1040 462 . 542
- = - — et N
B4-70-50 .00459 .N0530 -.0321 -.0666 <462 «837
B4-70-80 - .00936 .01180 ~-.0537 -.0926 .491 727
B4-70-120 .01970 02300 -.0852 ~-+1200 476 <630
B4-100-50 .N0598* .N0463 -.0400* ~-.0582 .492* .853
B4-100-80 .01070 .01099 ¢ =.0653 ~-.0854 463 671
B4-100~120 .N2040 02230 ; -.0923 -.1170 «455 H1D
S e e somw ko = ——te D e D iy s L
Key: B4-70-80 4 blades Ag/A STU, PD s N,7; = .80

*estimated for P/D = .60

Table 6. Comparison of Quasi-Steady and Lifting-Surface
Torsional/Axial Damping
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4.2. Sensitivity Studies

To establish the effect of various propeller parameters on
the added mass and damping in all modes of vibration, a number of
sensitivity studies were performed using the lifting-line theory
option of the PRAMAD program. For these studies, Wageningen
B-series propellers with a nominal expanded area ratio of .75 and
a pitch-diameter ratio of .90 were analyzed. The reference was
the four-bladed B4-75-90 propeller.

Effect of Advance Coefficient. Table 7 presents results for

the B4~75-90 propeller vibrating at its blade rate while operating
at 25, 50, 75, and 100 percent of the lightly-loaded advance
coefficient Jy,(Kp=0). Most propellers are designed to operate at
about .75 J,, which gives an advance coefficient slightly below
that yielding the maximum open water efficiency. 1In general, the
added mass terms, which are more strongly dependent on the
noncirculatory contribution, are less sensitive than the damping
terms to changes in the advance coefficient. Comparing the
lightly-loaded results and the most typical .75J,, results, the
added mass terms change very little., The lateral added mass
results for forces perpendicular to the motion change
significantly but the overall magnitudes are negligibly small.

The torsional/axial and lateral:parallel damping results are 7 to
34 percent higher at the normal operating advance coefficient.

The lateral:perpendicular damping results are 9 to 15 percent

lower at the normal operating advance coefficient.

Effect of Vibration Frequency. Propulsion shafting vibration

is primarily of concern at blade rate due to the large propeller
excitation at this frequency. The propeller excitation at twice
and three times blade rate are usually much smaller. Diesel
engine propelled ships can also experience significant torsional
excitation at integer multiples of the rotation frequency (two-
stroke cycle engines) or integer multiples of one-half the rota-
tion frequency (four-stroke cycle engines). Lateral vibration may
be excited at the rotation frequency due to system imbalance. The
PRAMAD program, therefore, accepts the vibration frequency and

the rotation frequency as independent inputs.
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lightly-loaded

component «25J99 <5009 «75399 Jge

torsional/axial
m44 «00199 .00225 .00226 «00225
mg4q -.01431 -.01608 -.01620 -.01609
mq4 .10306 11546 11622 «11528
C44 .02074 «01470 01209 .01058
41 -.14653 -.10394 ~.08513 -.07419
119 1.03669 «73572 «60015 52009

lateral:parallel
m5s «00422 .00519 .00534 00540
mg o 00669 .00764 «00780 .00783
myo 01779 .01878 .01887 .01861
cgg 06314 «04930 04354 . 04058
Cg2 07149 «05411 .04479 03846
C2 «13142 «10339 .07980 «05953

lateral:perpendicular
mgs .00028 «00002 -+00021 -.00040
Mgo .00024 -.00000 -.00028 -.00053
m3o 00066 .00047 -.00015 -.,00086
Cg5 -.02859 -.,04613 -.,05219 -.05740
Cg2 ~.03067 ~-.04760 -.,05532 -.06207
c32 -.05419 -.08188 -+10239 -.12001

Table 7. Effect of Advance Coefficient J on Results for B4-75-90

Propeller (w=4Q)
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Table 8 presents results for the B4-75-90 propeller operating
at .75 Jy, while vibrating at its rotation frequency and its blade
rate and first two harmonics. 1In general, the added mass terms
increase in magnitude with frequency while the damping terms
decrease with frequency. The lateral damping terms for forces
parallel to the motion are particularly sensitive to the frequency
of vibration. The lateral added mass terms exhibit a sign
reversal at low frequency with the mgg, mgy, and m3p terms

reaching significant magnitudes at the rotation frequency.

Effect of Blade Number. Table 9 presents results for the
blade-rate vibration (w=2ZQ) for 4-, 5-, 6-, 7-bladed BZ-75-90
propellers operating at .75 Jyp,. Since all propellers have the

same expanded area ratio, these results indicate the effect of
changes in the blade aspect ratio. The lifting-line theory would
be expected to be more valid for the higher blade numbers. The
analyses were performed for the same rotation frequency, so the
results represent vibration at different frequencies. Comparing
Tables 8 and 9, the trends can be seen to be opposite. Thus, the
effect of the increasing aspect ratio dominates the influence of
the increasing frequency as the blade number is increased. The
added mass decreases with blade number. The torsional/axial and
lateral:parallel damping results increase with blade number while

the lateral:perpendicular results show an opposite trend.

Effect of Blade Skew. The Wageningen B-Series propellers are

without skew. Table 10 presents the results for the blade-rate
vibration of a B4-75-90 propeller operating at .75 Jy, when it is
redesigned with various linear skew distributions. Results are
shown for a tip skew 6g of 25, 50, 75, and 100 percent where 100
percent places the tip of one blade radially over the root of the
adjacent blade. Positive skew is defined opposite to the
direction of rotation. The 100 percent tip skew is 2n/Z2 = n/2
radians on the 4-bladed propeller. The added mass results show
little dependence on skew. The damping results either increase
with skew or increase and then decrease with increasing skew.
Maximum torsional/axial damping is exhibited by the design with a
50 percent skew distribution.
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rotation rate blade rate
component w = Q w = 49Q w = 8Q w = 12Q
torsional/axial
ma4 «00177 .00226 «00237 00242
mgq -.01264 -.01620 -.01696 -.01726
mqq «09055 11622 «12157 12370
C44 .01319 01209 . 00806 00684
c41 ~+09305 -.08513 -.05701 -.04851
€11 «65733 .60015 «40377 « 34441
lateral: parallel
mgg ~-.00207 00534 00571 00586
mgo -.00017 «00780 .00818 .00832
myo ~.00151 .01887 «01970 «01999
c55 «07579 04354 .02343 01249
Cgo 07956 .04479 «02325 01389
C39 « 15027 « 07980 «04547 «03260
lateral: perpendicular
mgg .00304 -.00021 -.00035 -.00029
mgo «00225 -.00028 ~-.00042 -.00065
m3o «00342 -.00015 -+,00072 -.00065
Cg5 -.05907 -.05219 -.04187 -.03894
Ce2 ~.05754 -.05532 -.04444 -.04187
c32 -.11081 -.10239 -.08070 -.07684
Table 8. Effect of Vibration Frequency on Results for B4-75-90 Propeller
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component Z =4 Z =25 Z =6 zZ =717
torsional/axial
ma4 00226 00187 .00162 .00140
ma1q -.01620 -.01334 -.01132 -.,00978
mqq «11622 «09570 07900 .06830
Ca4 «01209 01530 01744 «01921
€41 -.08513 -.10800 -.12173 -.13410
cqq «60015 «76305 .84983 «93620
lateral: parallel
mgg .00534 .00440 .00374 .00324
mgo .00780 00646 «00551 .00479
Mmoo .01887 01551 «01401 «01217
Css5 .04354 «05160 05632 «06062
cgo «04479 «05620 «06219 06789
Co9o «07980 «09910 .11146 12170
lateral: perpendicular
Mgy -.00021 .00009 .00016 .00017
mgo -.00028 00006 «00012 00014
m3o -.00015 .00033 .00031 .00029
C65 -.05219 -.04483 -.03853 -.03296
Cg2 -.05532 -.04798 -.04171 -.03597
c32 -.10239 -.08635 -.07451 -.06408

Table 9. Effect of Number of Blades Z on Results for BZ-75-90 Propellers
(.75J22, blade rate w=2ZQ)
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for B4-75-90 Propeller (.75Jg9, w=4Q)
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component 04=0% 85=25% 85=50% 8 4=75% 85=100%
torsional/axial
mg4q 00226 00229 «00231 .00231 00232
mg1q -.01620 -.01641 -.01655 -.01655 -.01655
mq1q «11622 «11773 11869 «11860 11850
C44 01209 01338 .01416 01356 .01288
Ca1 -.08513 -.09410 -.09930 -.09478 -.08972
11 60015 66251 69672 66238 «62482
lateral: parallel
mgeg .00534 .00535 «00547 . 00565 00587
mgo 00780 00790 00796 .00804 .00815
Mmoo .01887 01936 01935 «01912 01883
Cgg «04354 «04891 « 05525 05738 .05825
Cgo . 04479 05170 05623 « 05540 05416
C32 07980 08454 07671 «05922 « 04352
lateral: perpendicular
mgs -.00021 -.00007 ~-.00000 -.00016 -.00040
mg2 -.00028 .00018 «00050 00059 00064
m3o -.00015 -.00011 ~.00050 -.00127 -.00187
Cg5 ~.05219 -.05318 -.05652 ~.06204 -.07231
Cg2 -.05532 -.05522 -.05463 -.05512 -.05801
c3o -.10239 -.11101 -.11012 -.10548 -.09908
Table 10. Effect of Linear Skew Distribution with Tip Skew 64 on Results




5. Lifting-Surface Corrections

As noted in Sections 3 and 4, our PRAMAD program utilizes
either two-dimensional thin foil theory or lifting-line theory to
establish the chordwise pressure distributions needed in eq. (49)
and eqgs. (55) through (58). The program can calculate the added
mass and damping properties for any conventional propeller
geometry. Our lifting-line results were compared with the
lifting-surface results obtained by Hylarides and van Gent® for a
four-bladed B4-70-80 Wageningen B-Series propeller in Table 5. 1In
order to improve the practical utility of our program pending the
incorporation of a lifting-surface theory option, we have used the
results presented by Hylarides and van Gent to develop approximate
lifting-surface corrections for our lifting-line results for the
torsional/axial coefficients and the lateral results for forces
parallel to the motion. Because of the fundamental
inconsistencies between our results and those obtained by
Hylarides and van Gent for the forces perpendicular to the motion,
no attempt has been made to develop lifting-surface corrections

for these coefficients.

5.1. Definition of Corrections

The results presented by Hylarides and van Gent are limited
to the blade-rate vibration of a matrix of nine four-bladed
B-Series propellers operating at a lightly-loaded advance
coefficient Jy,. The nine propellers have combinations of three
expanded area ratios Ag/Ay and three pitch-diameter ratios P/D.
These two parameters are the two most important in determining the
nondimensional added mass and damping. The Dutch results are
presented in nondimensional form so the effects of propeller size
and rotation rate are removed. The lifting-line option of the
PRAMAD program was used to duplicate the analyses performed by
Hylarides and van Gent. The ratio of the lifting-surface results
to the lifting-line results for the torsional/axial and lateral:
parallel coefficients for the nine propellers are given in
Table 11. The ratios are closest to one for the small expanded

area ratio (large aspect ratio) propellers where the lifting-line
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model is expected to be most valid. As the expanded area ratio of
the propeller increases, the ratio decreases for the added mass
coefficients and increases for the damping coefficients. Our
lateral damping coefficients cgy and cp9 approach zero and even
reverse sign for propellers with the two highest pitch ratios and
the nominal expanded area ratio of one. The propeller blades have
a geometric aspect ratio,

span span?

AR = e ' (100)
mean chord blade area

of only .893 in this case and the lifting-line modeling would be
expected to be marginal.

For use in the PRAMAD program, we have defined
lifting-surface corrections in the same spirit as presented for
camber, ideal angle of attack due to loading, and ideal angle of
attack due to thickness by Morgan, Silovic, and Denny.23 For each
of the twelve torsional/axial and lateral:parallel coefficients, a
lifting-surface correction is defined as,

lifting-surface result

LSC(P/D,AR) = =——— - ’ (101)
lifting~line result from PRAMAD

so that the PRAMAD lifting-line result can be multiplied by this
approximate correction to yield on improved estimate. For the
correction to be appropriate to propellers of any blade number,
the appropriate parameter is the blade aspect ratio and not the
expanded area ratio as this most closely correlates with the
validity of the lifting-line modeling. For convenient computer
implementation we desired a regression equation for each of the
twelve lifting-surface corrections as functions of P/D and AR.

The basic data for these corrections are the ratios given in Table
11 however these data could not be used alone. The PRAMAD program
could be expected to be applied to propellers with up to seven
blades and expanded area ratios as low as perhaps 0.5. At this
extreme, the propeller blade would have a geometric aspect ratio
of 3.125 which is well beyond the range of the data in Table 11.

A direct regression of the data in Table 11 could not be expected
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to yield reliable results for aspect ratios above 2.232, the
highest value for which data was available. Using the knowledge
that all the corrections should approach 1.0 at high aspect ratio,
the data of Table 11 was, therefore, manually extended with
extrapolated data points at an aspect ratio of 4.0 as shown in
Table 12. The extended data set given in Tables 11 and 12 could
then be used to obtain regression equations which would be
reliable over the range of expected use.

The lifting-surface corrections based on the data in Table 11
are strictly limited to blade-rate vibration of unskewed,
four-bladed Wageningen B-~Series propellers operating at Jgge By
expressing the corrections as functions of geometric aspect ratio
AR, the corrections can be reasonably extended to propellers of
other blade numbers. The ratio of the lifting-surface to
lifting-line results would not be expected to be strongly
dependent on vibration frequency, advance coefficient, skew, and
detailed propeller geometry so the resulting corrections should be
valid for engineering purposes. The lifting-line results and
lifting-surface corrections are, however, output separately by the
PRAMAD program so each user can determine whether or not to
utilize the correction.

5.2. Regression Analyses for Corrections

To obtain the regression equations for the twelve
lifting-surface corrections based on the data in Tables 11 and 12,
the Michigan Interactive Data Analysis System (MINDAS)2% was
utilized. As one of its many capabilities, this program performs
multiple linear regression using regression equations of the
user's choice. The resulting regression equations for the
lifting-surface corrections to the torsional/axial added mass and
damping coefficients are as follows:

LSC(mgq) = .61046 + .34674(P/D) + .60294(AR)~! - ,56159(AR)™2
- .80696(P/D)(AR)™! + ,45806(P/D)(AR)"2 , (102)
LSC(m4y) = .65348 + .28788(P/D) + .39805(AR)~! - ,42582(AR)—2

- .61189(P/D)(AR)~1 + ,33373(P/D)(AR)™2 (103)
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aspect ratio AR = 4
component
P/D = 0.50 P/D = 0.80 P/D = 1.20

torsional/axial

mg4 .810 «870 <930

my 4 .805 «855 «910

myq 760 .810 .850

C44 1.000 1.000 1.000

€41 1.000 1.000 1.000

c11 1.000 1.000 1.000
lateral: parallel

mgg 1.000 1.000 1.000

mgo 1.000 1.000 1.000

myo .980 950 915

Cgg 1.000 1.000 1.000

cgo 1.000 1.000 1.000

€2 1.000 1.000 1.000

Table 12. Extrapolated Data Used in Regressions for Lifting-Surface
Corrections
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LSC(my71)

LSC(cy4)

LSC(cq1)

LSC(c11)

+ + 0+ + i i

+
+

.61791 + .23741(P/D) + .42253(AR)~1 -~ ,43911(AR)=2
.46697(P/D) (AR)~! + ,25124(P/D)(AR)~2 , (104)

.82761 - .41165(AR)™2 + 1.2196(P/D)(AR)"!
6.3993(AR)~3 -~ 13.803(P/D)(AR)™3 -~ 6.9091(AR)"%
15.594(P/D) (AR)™% , (105)

.80988 - .63077(AR)~2 + 1.3909(P/D) (AR)~!
7.5424(AR)~3 - 15.689(P/D)(AR)~3 -~ 8,.0097(AR)~%“
17.665(P/D) (AR) "4 ’ (106)

.82004 - .67190(AR)™2 + 1.3913(P/D)(AR)"!
7.7476(AR)~3 ~ 16.807(P/D)(AR)~3 - 8.2798(AR)~%
19.121(P/D) (AR)~% (107)

To improve the effectiveness of the equations over the range of

expected use, the data values for the ratio of the coefficients
€52 and cpp for the B4-100-80 and B4-100-120 propellers shown in
Table 11 were excluded from the associated analyses. The

resulting regression equations for the lifting-surface corrections

to the lateral:parallel added mass and damping coefficients are as

follows:

LSC(msg5)

LSC(mg3)

LSC(m33)

LSC(cgs5)

LSC(cs53)

- .13964 + .89760(AR) + .34086(P/D) - .15307(AR)2
.36619(P/D)(AR) + .70192(P/D)(AR)2 , (108)

.0010398 + .66020(AR) + .39850(P/D) - .10261(AR)2
.34101(P/D)(AR) + .060368(P/D)(AR)2 , (109)

.78170 + .36153(AR-2) - .19256(P/D)(AR-2)
.17908(P/D)(AR-2)2 - ,16110(AR-2)2
.061038(P/D)2 (AR-2) , (110)

.78255 + .061046(AR) -~ 2,5056(AR)~3 + 1.6426(AR)™4
1.8440(P/D) (AR)~+ , (111)

1.0121 + .73647(AR)~2 -~ 3,8691(AR)"3
1.5129(P/D)(AR)™3 + 3.0614(AR)™%
3.0984(p/D)(AR)™%* , (112)
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LSC(c22)

.84266 + 6.,7849(AR)"2 + ,.12809(P/D)(AR)"1
21.030(AR)~3 - 3.3471(P/D)(AR)~3 + 15.842(AR)"*
+ 5.1905(P/D) (AR)"% . (113)

The multiple correlation coefficients R and the standarAd
error SE for each of the regression equations (102) through (113)
are shown in Table 13. The multiple correlation coefficient
squared is the coefficient of multiple determination which
indicates the proportion of the variation explained by the linear
regression equation. The standard error is the square root of the
error sum of squares SSE which is the sum of the squares of the
residuals at the data points.25 The reqression equations were
also evaluated for a B4-70-80 propeller and these results are
shown in Table 13 with the data values from Table 11. The errors
in the regression equations are less than 4 percent which is
acceptable considering the approximations inherent in their
development and use.
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B4-70-80 Test
standard percent
correction on component || mult. R error regression data error

torsional/axial

my4 «99935 . 0056 «7345 .7280 0.9%

mg1q «99918 0062 «7144 +7096 1.0%

mq4q «99748 .0099 «6999 «6908 1.0%

C44 «99865 «1232 1.2050 1.2457 3.3%

c41 «99921 .1038 1. 1940 1.2360 3.4%

<11 «99983 <0550 1. 1850 1.2263 3.4%
lateral: parallel

mgg «99829 0143 «7466 «7373 1.3%

mgo «99914 .0088 .7256 «7261 0.1%

myo «98357 .0488 6503 «6272 3.7%

Cgs «99627 .0856 .8309 «8620 3.6%

Cgo «99978 .0169 1.1100 1.0957 1.3%

co2 <99991 0405 1.2229 1.1809 | 3.6%

Table 13. Regression Data on
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6. Preliminary Design Equations for Wageningen B-Series Propellers

One of the initial objectives of this reseérch was to develop
an improved capability to estimate the added mass and damping of a
propeller in all modes of vibration early in preliminary design
when vibration analyses must first be performed. At that point,
the detailed design of the propeller is not available but its
overall parameters such as diameter, blade number, rotation rate,
expanded area ratio, and pitch are usually known. The Wageningen
B-Series is the most commonly used standard series for commercial
marine propellers so we used the PRAMAD program to calculate the
added mass and damping of matrices of nine B-Series propellers
having 4, 5, 6, and 7 blades. The calculations were performed
using lifting-line theory with the propellers at an advance
coefficient of .75J,, and a blade-rate vibration frequency. For
each blade number, the propellers had expanded area ratios of .50,
.75, and 1.0 and pitch-diameter ratios of 0.6, 0.9 and 1.2. The
resulting nondimensional added mass and damping coefficients for
each blade number Z were then fit by multiple linear regression
equations using the MIDAS program.2*% The reqression equations
have the form:

coefficient mjj or cjj = C1 + C2(Re/Ap) + C3(P/D) + Cq(Re/Ap)?2
+ Cg(P/D)2 + Cg(Ag/Bp) (P/D) (114)

which is suitable for either calculator evaluation or computer
implementation.

The regression equation coefficients for the added mass and
damping coefficients for Wageningen B-Series propellers having 4,
5, 6, and 7 blades are given in Tables 14, 15, 16, and 17,
respectively. The multiple correlation coefficient R and standard
error SE are also shown for each regression equation. These
equations represent lifting-line results so the lifting-surface
corrections presented in Section 5 could be multiplied onto the
torsional/axial and lateral:parallel results to improve the
estimates. For the B-Series the blade geometric aspect ratio AR
needed in egs. (102) through (113) is given by:
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«22087 Z (115)
Ae/Ag ’

where Z is the blade number. The results given in Tables 7, 8, and
10 could also be used to correct the estimates for advance
coefficient, vibration frequency, and skew, respectively, if

desired. Sample results obtained using these equations are given

in the next section.
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7. Design Example

As a final example, we have used the PRAMAD program to
calculate the blade-rate added mass and damping of the five-bladed
David Taylor NSRDC propeller 4381 which has been used by
Boswell26:27 ag part of a study of the effects of skew on
propeller performance. The characteristics of this propeller are
given in Table 18. The propeller has an expanded area ratio of
.725 and a design pitch of 1.210 at the x=0.7 nondimensional
radius. The propeller is designed for uniform flow and is without
rake or skew. To provide the input needed by the program, a 20
ft. diameter propeller was assumed to be turning at 110 rpm. The
design advance coefficient was then used to obtain the ship speed.
The propeller was modeled by MM=8 segments. The propeller section
has a NACA 66 modified thickness on a NACA a=0.8 meanline. The
propeller material weight density was assumed to be 0.314 1lbf/in3
and approximate hub dimensions were assumed to allow the
estimation of the mass and torsional mass moment of inertia of the
propeller.

The PRAMAD lifting-line theory results obtained for the
DTNSRDC propeller 4381 are shown in Table 19. These results were
obtained using 70.7 central processing unit (CPU) seconds on our
Amdahl 470/V8 computer. The lifting-surface corrections and
resulting products are also shown for the torsional/axial and
lateral:parallel coefficients. To illustrate the effectiveness
of the Wageningen B-Series design equations presented in Section 6
for preliminary estimates, the equations from Table 15 for a
five-bladed propeller were evaluated using Ag/Ao=.725 and
P/D=1.210 and these results are also shown in Table 19, Note that
the 4381 propeller is not a Wageningen B-Series propeller. These
estimates are generally within 10 percent; coefficients cgg, c22,
and mgs show larger deviations in this particular case. The
lateral:perpendicular added mass coefficients are so small that
there are large percentage differences and sign changes between
the B-Series equations and the specific lifting-line output for
the 4381 propeller.
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Z =5 Ag/Rg = .725
D = 20 ft. (assumed) P/DO - = 1,210
J = ,889
M =17
Vg = 32.6 ft/sec.
w = 5Q = 57,596 rad/sec.
N = 110 rpm (assumed)
8 = 11.519 rad/sec.
Pw = 1.9905 lbfsec?/fth
Yp = 0.314 1bf/in3 (assumed)
x R c/D Vy/Vg Bg P/D 8r t/D
«200 24,00 174 1.000 .000 1,332 .000 .0434
«250 30.00 «202 1.338 .0396
«300 36,00 «229 1.345 .0358
«350 42,00 «253 1.354 .0324
«400 48,00 «275 1.358 «0294
«450 54,00 «295 1.352 . 0266
500 60,00 312 1.336 «0240
«550 66,00 «326 1.311 «0215
.600 72.00 «337 1.280 .0191
«650 78,00 «344 1.246 .0168
700 84,00 347 1.210 .0146
. 750 90.00 «344 1.173 «0125
.800 96,00 «334 1.137 «0105
«850 102,00 «314 1.101 0086
«900 108,00 - 280 1.066 . 0067
«950 114.00 «210 1.031 . 0048
1,000 120.00 .000 Y J .995 v .0029
Table 18, Characteristics of DTNSRDC Propeller 4381 Example
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lifting-line | 1lifting-surface| product]|| BS regression per cent
component result correction equation difference*
torsional/axial
mg4 «00312 <7627 .00238 .00284 9.0
ma1 -.01594 «7492 -.01194 -.01485 6.8
mqq 08186 7372 +06035 .07718 5.7
c44 02263 1.,0100 02285 .02323 2,7
c41 -, 11830 «9778 -.11568 -.12749 7.8
c11 62443 «9345 «58351 +66790 7.0
lateral:parallel
mss 00472 « 7799 .00368 « 00377 20,1
mgo .00782 7746 00606 «00721 7.8
myo «02065 7778 +01606 02197 6.4
cgg 04484 « 9496 04258 +04676 4,3
cgo +06101 1.0653 .06499 .06314 3.5
€32 « 15762 1.0042 «15828 . 13880 11.9
lateral :perpendicular
mgs ~-.00018 none Nea. «00007 -
mgo -.00017 developed -.00070 -
m3p . 00046 .00022 52,2
c65 -.05376 -.04677 13.0
Ce2 -.06284 -.05829 7.2
Cc32 -. 12606 -.12269 2,7

*compared with lifting-line result

Table 19 .

-60~-

Results for DTNSRDC Propeller 4381




The mass of the 4381 propeller defined in Table 18 was
estimated to be 148.0 lbf.sec2/in. and the torsional mass moment
of inertia was estimated to be 393,400 1lbf.in.sec2. The
dimensional axial added mass mj] of 80.0 lbf.sec2/in. is
therefore 54.1 percent of the mass. Expressing the added mass as
a percentage of the mass is a theoretically invalid practice but
is done here since many still use this basis to compare designs.
The lateral added mass myo of 21.3 1lbf.sec?/in. is 14.4 percent
of the mass. The torsional added mass moment of inertia myggq of
182,000 lbf.in.sec? is 46.3 percent of the torsional mass moment
of inertia. The lateral diametral added mass moment of inertia

mg5 of 281,300 lbf.in.sec? is 71.5 percent of the torsional mass
moment of inertia.
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8. Closure

A general analysis of the added mass and damping of a marine
propeller is presented in Section 2. This analysis assumes that
the pressure distribution on a propeller blade due to a unit heave
or unit pitch about the midchord point can be obtained using two-
dimensional thin foil theory, lifting-line theory, or lifting-
surface theory. The complex force integrals used to calculate the
added mass and damping matrices for a propeller as defined in eq.
(8) are shown in Table 3. These represent new theoretical
results.

We have deVeloped the PRAMAD computer program which evaluates
the added mass and damping of a marine propeller. This program
uses either the two-dimensional thin foil theory or lifting-line
theory reviewed in Section 3 to calculate the pressure
distribution on the blade due to a unit heave or unit pitch about
the midchord point. This program incorporates the lifting-surface
corrections for the torsional/axial and lateral:parallel added
mass and damping coefficients presented in Section 5. The effects
of advance coefficient, vibration frequency, blade number, and
skew on the added mass and damping calculated using the
lifting-line option in PRAMAD are illustrated by sensitivity
studies presented in Section 4.

To provide improved capability to estimate the added mass and
damping of a propeller in preliminary design, we have presented
design equations for all the added mass and damping coefficients
of 4-, 5-, 6-, and 7-bladed Wageningen B-Series propellers. These
equations are of the form shown in eq. (114) and were obtained by
multiple linear regression of the lifting-line theory results
obtained from the PRAMAD program. The coefficients for these
equations are presented in Tables 14 through 18.

We would like to acknowledge the work of University of
Michigan, Department of Naval Architecture and Marine Engineering
graduate student Dean L. Couphos, who did some of the early
programming for the PRAMAD program.
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APPENDIX A. USER'S DOCUMENTATION FOR PRAMAD Rev. 1
Sept. 2, 1980

UNIVERSITY OF MICHIGAN

DEPARTMENT OF NAVAL ARCHITECTURE AND MARINE ENGINEERING

IDENTIFICATION: PRAMAD

PROGRAMMER: Associate Professors Michael G. Parsons and William
S. Vorus and Edward M. Richard, Department of Naval Architecture

and Marine Engineering, The University of Michigan, 1979-1980.

SPONSOR: PRAMAD was developed under Department of Commerce,
Maritime Administration, University Research Contract No. MA-3-
70-SAC-B0012. Selected subroutines were previously developed
under American Bureau of Shipping support. Other subroutines are
from the public files of the University of Michigan Computing
Center.

PURPOSE: The Propeller Added Mass and Damping (PRAMAD) program
is a batch-type program which evaluates the added mass, added
mass moment of enertia, and inertia coupling and the linear
damping, rotational damping, and velocity coupling of a propeller
in torsional, axial, and lateral vibrations. The results may be
obtained using a two-dimensional foil theory or using a lifting-
line theory. Approximate lifting-surface corrections for the
lifting-line results are given for the torsional/axial results
and for the lateral vibration results for forces and moments
which are parallel to the vibratory motion. The program accepts
a variety of input forms. The output is in English, SI, and

nondimensional forms.

METHOD: The PRAMAD program obtains the added mass and damping of

a propeller in a two step process. First, either two-dimensional

foil theory or the more expensive lifting-line theory is used, at

the user's option, to obtain the chordwise pressure distribution

on the propeller blade due to a unit heave or unit pitch of the

blade section. If results are desired only for torsional/axial

motion, the results for unit pitch are not needed. The second

step uses the chordwise pressure distribution results to produce

the added mass and damping of the propeller. When the displacement
A-1



. : _ _ T
vector for the propeller is given by x = [Gx' Gy, Gz, ex, ey, ez] ,
the added mass and damping matrices take the following form:

mj; O 0 mg1 O 0 c11 O 0 c41 O 0 ]

0 mp2 -m33 0 m5p -mg 0 c22 -c32 0 c52 -Cg2
My = 0 m32 m330 mea msz . _ |0 32 220 c62 C52)

mg1 O 0 mge O 0 p cq1 O 0 c44 O 0

0 m53 -mgz 0 m55 -mgs 0 c52 -c62 0 c55 —Cg5

|0 me2 m52 0 mgs mss) |0 cg2 ©52 0 ce5 c55

The torsional/axial results are uncoupled from the lateral results
and are as usual associated with the x-direction which is directed
aft along the axis of rotation of the propeller. For the purposes
of the PRAMAD program the y- and z-directions can be any right-
handed orthogonal directions in the transverse plane of the assumed

right-handed propeller.

The program calculates the torsional/axial results (m44, Myqr Myqv

Ca4' C41° cll)’ the lateral results with the added mass and damping
forces and moments parallel to the motion (m55, m52, M,sr Cggr Cgyor
022), and the lateral results with the added mass and damping forces
and moments perpendicular to the motion (m65' m62’ m32, 065’ 062’ 032).

DATA INPUT: Propeller geometry, rotation rate, vibration frequency,
ship speed, wake data, and program control parameters are read from
a single line file (or set of data cards). This line file should
be pfepared as shown in Table A-1. Most of this data is self-explan-
atory. The user uses line 2 to tell the program what output is
desired and what method to use to evaluate the blade pressure
distributions. On line 3 the input variable M defines the number
of radii for which blade geometry and wake data will be given on

the M record type 6. The program requires that the propeller
blade be divided into MM circumferential segments of equal radial
width as shown in Fig. A-1. An even number of segments between 4
and 10 should be used; 8 are normally used. The propeller data
must be input for the M=2*MM+1 radii which define the edges and
center of each segment. Thus, the use of 8 segments requires input
at 17 radii where R(1) is the hub radius and R(M=17) is the tip
radius.



Record Input Format Comments
Type
1 " TITLE 18a4 Any 72 character identification
for the program output.
2 ITOR 5IS ITOR=1; for torsion results
=0; if not
A )
IAXL IAXL=1; for axial results
=0; if not
ILAT ILAT=1; for lateral results
=0; if not
METHOD METHOD=0; two-dimensional foil theory
=1; lifting-line theory
KODE KODE=0; normal output
=1; additional output from PRES3D
3 M 215 number of radii for which geometry
g
and wake data will be given on
record type 6; blade is modeled
as 4<MM<10 cven number of segments
radially; then M=2*MM+l.
NB number of propeller blades (2)
4 RPM 4F12.6,1I5 propeller revolution rate (rev./min.)
USI ship speed Vg(ft./sec.) or (m./sec.)
as given by IUNIT
FREQ vibration frequency (rad./sec.)
: 3
RHOI density of water (slugs/ft.”) or
{kg/m.3) as given by IUNIT
UNIT IUNIT=0; USI and RHOI in English units
=1; USI and RHOI in metric units

Table A-1.

Data Set Definition (continued)




Record
Type

Input

Format

Comments

IRAD

ICHORD

ISKEW

IPITCH

IRAKE

5I5

IRAD=1;

ICHORD=1

=2

ISKEW=1;
=2;

IPITCH=1

if dimensional radii
input (in.)

if dimensional radii
input (m.)

if nondimensional radii input
x=R/Ry with R(M)=Ry dimensional
input (in.)

if nondimensional radii input
x=R/R¢ with R(M)=Ry dimensional
input (m.)

; if chord input as projected
semichord (rad.)

; if chord input as
nondimensional C/D ratio

if skew input in radians
if skew input in degrees

, if dimensional pitch
input (in.)

; if dimensional pitch
input (m.)

if pitch input as
nondimensional P/D ratio

if dimensional input (in./ft.)
if dimensional input (mm./m.)

if dimensional input (deg.)

RADIUS

CHORD

SKEW

PCH

6F12.6
repeated
M times
for each
radius R

radius R

chord at

input as indicated by IRAD

radius R input as incicated by

ICHORD

mecan longitudinal inflow velocity at
radius R nondimensionalized by ship
speed, Vyx/Vg

propeller projected skew at radius R
input as indicated by ISKEW; positive
opposite direction of rotation

propeller pitch at radius R input as
indicated by IPITCH

propeller rake at radius R as
indicated by IRAKE; positive aft.

Table A-1.

Data Set Definition

(concluded)




The time limit XXX depends on the number of propeller blades
(NB=Z) and the theory used to obtain the blade pressure distri-
butions. Suggested limits are shown in Table A-2 when the results
are desired for all cases. Approximately 20% of the time shown
for the lifting-line theory is needed if only the axial and/or
torsional results are desired; approximately 80% is needed if
only the lateral results are desired.

number of blades two-dim. foil theory lifting~line theory
4 5 100
5 5 120
6 5 140
7 5 160

Table A-2. Suggested Time Limits for PRAMAD

SAMPLE OUTPUT: The following example is for a five-bladed pro-
peller which is divided into MM=8 segments radially. The lifting-

line theory is used to evaluate the added mass and damping for
torsional, axial, and lateral vibrations. English units are used
in the input. The propeller operates in a uniform wake and has no
rake or skew. Chord and pitch are input as non-~-dimensional ratios.
The radii are input in non-dimensional form with the last radius
R(17) input in inches (IRAD=3). The input data file is shown
below followed by the program output for KODE=0. The first part
of the output is a verification of the input. The coupled tor-
sional and axial results are output next. This is followed by

the lateral results which are given as results for forces paral-
lel to the motion and then forces perpendicular to the motion.
Each output result is given dimensionally in English and then SI
units followed by a non-dimensional result. The non-dimensional
result is followed on the same line by the terms by which it must
be multiplied to produce a dimensional result. For example, the
torsional added mass moment of inertia result is non-dimension-
alized by pD5. The results for the torsional/axial case and the
lateral results for the force parallel to the motion are followed
by lifting-surface corrections. The lifting-~line results can be
multiplied by this value as an approximate correction for the
chordwise effects which are neglected in the lifting-line thoery.
No correction is given for the lifting-line results in the lateral
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\\¥_R(5)
R{4)
\\ R(3)

\ re2)

Rh=R(l)

Figure A-1. Blade Segmentation for Data Input

Line 5 of the data file controls the variety of forms which
can be used to input the propeller geometry. The radii can be
input in inches, meters, or non-dimensional form. If the non-
dimensional form is used the tip radius R(M) must be given in
dimensional form to scale the input. Chord can be input as pro-
jected semichord in radians or as chord-diameter ratio. Skew
can be input as degrees or radians. Pitch can be input in inches,
meters, or non-dimensional pitch-diameter ratio. Rake can be
input in inches/ft., mm/m, or degrees. Data record type 6 is
repeated as M lines in order to input the data for each of the
M radii.

MTS Run Information: PRAMAD may be run from a terminal using a

preloaded data file or as a batch program using data cards. The
object code is located in K8R6:PRAMAD.O (subject to change; see
Professor Parsons for current location). To run the program from
the terminal enter:

SRUN K8R6:PRAMAD.O 4=datafile T=XXX
To run the program as a batch program use:

SRUN KB8R6:PRAMAD.O 4=*SOURCE* T=XXX

(data carnds)
SENDFILE



case with the force perpendicular to the motion or for any case
when the two-dimensional theory is used.

DTNSRDC PROPELLER 4381 EXAMPLE PROBLEM USING PRAMAD
1 1 1 1 0

17 5
110.0 32.60 57.596 1.9905 0
3 2 1 3 3

0.200 0.174 1.000 0.000 1.332 0.000
0.250 0.202 1.000 0.000 1.338 0.000
0.300 0.229 1.000 0.000 1.345 0.000
0.350 0.253 1.000 0.000 1.354 0.000
0.400 0.275 1.000 0.000 1.358 0.000
0.450 0.295 1.000 0.000 1.352 0.000
0.500 0.312 1.000 0.000 1.336 0.000
0.550 0.326 1.000 0.000 1.311 0.000
0.600 0.337 1.000 0.000 1.280 0.000
0.650 0.344 1.000 0.000 1.246 0.000
0.700 0.347 1.000 0.000 1.210 0.000
0.750 0.344 1.000 0.000 1.173 0.000
0.800 0.334 1.000 0.000 1.137 0.000
0.850 0.314 1.000 0.000 1.101 0.000
0.900 0.280 1.000 0.000 1.066 0.000
0.950 0.210 1.000 0.000 1.031 0.000
120.0 0.000 1.000 0.000 0.995 0.000

#RUN K8R6:PRAMAD.O 4=DATAFILE T=120
#EXECUTION BEGINS

UNIVERSITY OF MICHIGAN
DEPT. OF NAVAL ARCHITECTURE AND MARINE ENGINEERING
PROPELLER ADDED MASS AND DAMPING PROGRAM

DEVELOPED UNDER MARAD CONTRACT NO. MA-79-SAC-B0012

DTNSRDC PROPELLER 4381 EXAMPLE PROBLEM USING PRAMAD

***INPUT VERIFICATION##**

ITOR=1 IAXL=1 ILAT=] METHOD=1
M=17 NB=5
RPM=110.00 USI= 32.60 FREQ= 57.596 RHOI=]1.9905

IUNIT=0 USI IN FEET PER SECOND, RHOI IN SLUGS PER CUBIC FOOT



IRAD=3 NONDIMENSIONAL RADII, TIP RADIUS IN INCHES
ICHORD=2 NONDIMENSIONAL CHORD INPUT AS C/D
ISKEW=1 SKEW INPUT IN RADIANS

IPITCH=3 NONDIMENSIONAL PITCH INPUT AS P/D

IRAKE=3 RAKE IN DEGREES

R/RT RADIUS  CHORD WAKE SKEW PITCH
0.2000 0.200 0.1740 1.0000 0.0 1.332
0.2500 0.250 0.2020 1.0000 0.0 1.338
0.3000 0.300 0.2290 1.0000 0.0 1.345
0.3500 0.350 0.2530 1.0000 0.0 1.354
0.4000 0.400 0.2750 1.0000 0.0 1.358
0.4500 0.450 0.2950 1.0000 0.0 1.352
0.5000 0.500 0.3120 1.0000 0.0 1.336
0.5500 0.550 0.3260 1.0000 0.0 1.311
0.6000 0.600 0.3370 1.0000 0.0 1.280
0.6500 0.650 0.3440 1.0000 0.0 1.246
0.7000 0.700 0.3470 1.0000 0.0 1.210
0.7500 0.750 0.3440 1.0000 0.0 1.173
0.8000 0.800 0.3340 1.0000 0.0 1.137
0.8500 0.850 0.3140 1.0000 0.0 1.101
0.9000 0.900 0.2800 1.0000 0.0 1.066
0.9500 0.950 0.2100 1.0000 0.0 1.031
1.0000 120.000 0.0 1.0000 0.0 0.995

***RESULTS FOR THE COUPLED TORSIONAL AND AXIAL CASE***

TORSIONAL ADDED MASS = 0,238663E+06 LBF-IN-SEC**2
MOMENT OF INERTIA 0.269665E+05 N-M-S**2
Mé4 0.312366E~02 RHO*D**5
LS CORRECTION = 0.762703E+00

TORSIONAL/AXIAL
INERTIA COUPLING
M1
LS CORRECTION

-.507396E+04 LBF-SEC**2
-.225710E+05 N-S**2
-.159381E-01 RRO*D**4
0.749178E+00

[ I I ']

AXTIAL ADDED MASS 0.108591E+03 LBF-SEC**2/IN
0.190179E+05 N-S**2/M
0.818636E-01 RHO*D**3

0.737245E+00

M1l
LS CORRECTION

:

¢ o o o o & o o o o
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TORSIONAL DAMPING

C44

1S CORRECTION

TORSIONAL/AXIAL
VELOCITY COUPLING
c4l

LS CORRECTION

AXIAL DAMPING

Cli1

LS CORRECTION

***RESULTS FOR THE

*** FORCE PARALLEL

LATERAL ADDED MASS
MOMENT OF INERTIA
M55
LS CORRECTION

LATERAL INERTIA
COUPLING

M52

LS CORRECTION

LATERAL ADDED MASS

M22
LS CORRECTION

LATERAL ROTATIONAL
DAMPING

CS5

LS CORRECTION

LATERAL VELOCITY
COUPLING

c52

LS CORRECTION

0.316935E+07
0.358105EH06
0.226260E-01
0.101003E+01

-.690483E4+05
-+307154E+06
-.118304EH00
0.977838E+00

0.151854E4+04
0.265946E+06
0.624427E4H00

LBF-IN-SEC
N-M-S
RHO*NXD**5

LBF-SEC
N-S
RHO*N*D**4

LBF-SEC/1IN
N-S/M
RHO*N#*D*#*3

0.934475E+00

LATERAL CASE***

TO MOTION ***

0.360624E+06
0.407469E+05
0.471991E-02
0.779910E+00

0.249039E4+04
0.110783E+05
0.782269E-02
0.774606F+00

0.273933E+02
0.479746E+H04
0.206510E~01
0.777770E+00

0.628100E+07
0.709690E+06
0.448402E-01
0.949618E+00

0.356071E+05
0.158394E+06
0.610075E-01
0.106533E+01

LBF-IN-SEC**2
N-M-S**2
RHO*N**5

LBF-SEC**2
N-S**2
RHO*D**4

LBF-SEC**2 /IN
N-S**2 /M
RHO*D**3

LBF-IN-SEC
N-M=-S
RHO*N*D**5

LBF-SEC
N-S
RHO*N*D*%4



LATERAL LINEAR
DAMPING
C22

LS CORRECTION

0.383302E+03
0.671289E+05
0.157615E+00
0.100424E4H01

*** FORCE PERPENDICULAR TO MOTION

LATERAL INERTIA
COUPLING
M65

LATERAL INERTIA
COUPLING
M62

LATERAL INERTIA
COUPLING
M32

LATERAL VELOCITY
COUPLING
C65

LATERAL VELOCITY
COUPLING
C62

LATERAL VELOCITY
COUPLING
C32

«140723E+05
.159003E+04
.184181E-03

.530728E+02
+236089E+03
.166710E-03

0.607790E+00
0.106444E+03
0.458195E-03

«753010E+07
.850826E+06
«537575E-01

.366754E+05
.163147E+06
.628379E-01

.306552E+03
.536875E+05
-.126055E+00

e % e J dede e e e e s de v g e e ok ok o e e ek ok

#EXECUTION TERMINATED

DIAGNOSTICS:

LBF-SEC/IN
N-S/M
RHO*N#D**3

*hk

LBF-IN-SEC**2
N-M-§#*2
RHO*D**5

LBF-SEC**2
N=-S**2
RHO*D**4

LBF-SEC**2/IN
N-S#**2 /M
RHO*D#**3

LBF-IN-SEC
N-M-S
RHO*N*D**5

LBF-SEC
N-S
RHO*N*D*%/

LBF-SEC/IN
N-S/M
RHO*N*D*%*3

PRAMAD includes a number of run time error returns
which may appear to the user.

These messages are preceeded by

***WARNING*** and are summarized as follows:

error message

CONVERGENCE NOT REACHED
IN FORINT ERR=XXX

explanation

The evaluation of the integral over
the trailing vortex in the wake
failed to converge in 30 iterations
in subroutine FORINT. A few errors
(s20) -of this type has been shown
to produce ho noticable effec¢t on
the numerical results.

A-10



CONVERGENCE NOT REACHED
IN FETCHO ERR=XXX

ERROR RETURN FROM
BESJ IER = X

ERROR RETURN FROM
BESY IER = X

SINGULAR COEFFICIENT
MATRIX IN CIR

ITERATIVE REFINEMENT
FAILED TO CONVERGE IN
CIR ITERATIONS=XXX

The evaluation of the integral over
the trailing vortex in the wake failed
to converge in 20 iternations in
subroutine FETCHO. Errors of this type
have not been experienced.

Error condition in subroutine BESJ.
If IER=2, the requested argument for
the Bessel Function was negative. If
IER=3, the required accuracy of 0.001
was not achieved.

Error condition in subroutine BESY.
If IER=2, the requested argument for
the Bessel Function was negative. If
IER=3, the estimate exceeds 10**70.

The coefficient matrix of the linear
linear system of equations which must
be solved by subroutine CIR to obtain
the downwash influence coefficients is
singular.

The solution of the linear system of
equations needed to obtain the downwash
influence coefficients failed to
converge in XXX interations in sub-
routine CIR.

A-11



APPENDIX B. PROGRAMMER'S DOCUMENTATION FOR PRAMAD

This programmer's documentation does not duplicate the
User's Documentation for PRAMAD which is included in Appendix A.
The reader should be familiar with that appendix before proceed-
ing.

1. Program Organization

PRAMAD is a modular program consisting of a MAIN program
and 22 subroutines. The relationship of these modules is shown
in Fig. B-1l. 1In Fig. B-1l, a solid dot is used to signify paral-
lel calls to subroutines and not a MENU or branching among alter-
native subroutines. Thus, subroutines INSUB, PRES3D, at least
one of AMDTOR, AMDAXIL, and AMDLAT, and PRINT are called in suc-
cession by the MAIN program. Subroutine INSUB reads all data,
transforms all data to a common program set of units, calculates
some data derived from the input, and prints the input verifica-
tion. Subroutine PRES3D calculates selected chordwise integrals
involving the pressure distribution due to a unit heave or a unit
pitch of the blade section. This requires the use of 14 other
subroutines when the lifting-line theory is used. If the two-
dimensional theory is used only the subroutine FOIL2D branch is
actively used. Subroutines AMDTOR, AMDAXL, and AMDLAT use the
chordwise pressure integrals produced by PRES3D to evaluate the
added mass and damping associated with torsional, axial, and
lateral vibration, respectively. Subroutine AMDAXL evaluates
the inertia and velocity coupling terms when coupled torsional/
axial results are desired (ITOR=IAXL=1l). These subroutines
utilize subroutine MODSIM to perform the spanwise integration of
the forces. Subroutine PRINT calculates the various dimensional
and non-dimensional forms of the output and prints the results.
If the lifting-line theory is used, PRINT calls subroutine LSCORR
to obtain the lifting-surface corrections for the torsional/axial
results and the lateral results with the force parallel to the

motion.
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2. Common Block Definitions

PRAMAD utilizes an unlabeled common and 9 labeled common
blocks. The variables included in these common blocks are de-
fined in this section. Numbers in parentheses after variable
names indicate the dimensions of arrays. Explicit mode declara-

tions are noted.

2.1 Unlabeled COMMON

I index for local segment in downwash
influence coefficient development.

J index for remote segment in downwash
influence coefficients development.

IY 2*T,

JJ 2*J,

RI non-dimensional radius at center of
local segment R(II)/R(M).

RK non-dimensional radius at inner edge,
outer edge, or center of remote
segment.

N vibration frequency divided by rotation

frequency, FREQ/W (REAL):; harmonic
number when N is an integer.

2.2. COMMON A

EPS convergence test condition for evalua-
tion of wake integral in FORINT;
set at 0.1 in FETCH1.

LIMIT limit number of iterations for evalua-
tion of wake integral in FORINT;
set at 30 in FETCH1.

NORD parameter of convergence acceleration
scheme utilized in FORINT; set at
3 in FETCH1.

2.3. COMMON B

AA axial limit of rectangular rule inte-
gration in trailing system; switch
point between using RRINT and FORINT.

KONTRL switch on the form of integrand in
trailing vortex system; either 1 or 3.



2.4.

COMMON CORR

In the following all references to lateral

results are for the case with the force parallel to the

motion.

JXXLSC
CXXLSC
MXXLSC
BRXLSC
BCXLSC
BXXLSC
JYYLSC
CYYLSC
MYYLSC
BRYLSC
BCYLSC

BYYLSC

COMMON D

SSs1

KON

AB

BB

lifting-surface correction for torsional
added mass moment of inertia (REAL).

lifting-surface correction for tor-
sional/axial inertia coupling.

lifting-surface correction for axial
added mass (REAL).

lifting-surface correction for tor-
sional damping.

lifting-surface correction for tor-
sional/axial velocity coupling.

lifting-surface correction for axial
damping.

lifting-surface correction for lateral
added mass moment of inertia (REAL).

lifting-surface correction for lateral
inertia coupling.

lifting-surface correction for lateral
added mass (REAL).

lifting-surface correction for lateral
rotational damping.

lifting-surface correction for lateral
velocity coupling. '

lifting-surface correction for lateral
linear damping.

projected angle between lifting-line
segment JJ and segment II on index
blade.

switch with K=0 for radial trailer
and K=3 for tangential trailer (set
in PRES3D).

projected angle between lifting-line
segment II on index blade and segment
JJ on any blade.

axial distance between lifting-line seg-
ment II on index blade and segment
JJ on any blade (n.d.).



2.6.

COMMON DEVICE

INFILE

OUTDEV

COMMON INPUT

Cco (21)
SI (21)
BR (21)
TE (21)
R (21)
PITCH (21)
A0 (21)
AS (21)
UT (21)
Us

W

FREQ

RHO

M

MM

NB

BETAG (21)
AR (21)

Input/output (I/0) channel for input;
set in MAIN program to 4.

I/0 channel for output (INTEGER); set in
MAIN program to 6.

cosine of the hydrodynamic pitch angle
arctan (US*AO0(I)/(W*R(I))) at each
of M radii.

sine of the hydrodynamic pitch angle
at each of M radii.

a local advance coefficient, A=Vy(r)/
mnD, at each of M radii.

projected semi-chord at each of M
radii(rad.).

radii (in.) defining edges and center
of each blade segment; see Fig. A-1l.

pitch at each of M radii (in.).

non-dimensional mean logitudinal inflow
velocity (wake) at each of M radii

(VX/VS).
projected skew at each of M radii(rad.).
hydrodynamic inflow velocity

(A/(W*R(I))**2+(US*A0(I))**2) at
each of M radii (in/sec),

ship speed (in/sec).

propeller rotation frequency (rad/sec).
vibration frequency (rad/sec).

water density (slugs/ft3=1bfsec2/ft4).

number of radii for which propeller
geometry and wake data is given.

number of equal width segments into
which blade is divided radially,
M=2M+1.

number of propeller blades (Z).

geometric pitch angle at each of M
radii, (rad), arctan(P(I)/27R(I)).

rake at each of M radii (in./in.).



2.8.

COMMON OPTION

ITOR

IAXL

ILAT

METHOD

COMMON OUTPUT

AMXX (2,2)
DXX (2,2)
AMYZ (2,4)
DYZ (2,4)

control index; = 1 if torsional results
desired, = 0 if not.

control index; = 1 if axial results
desired, = 0 if not.

control index; = 1 if lateral results
desired, = 0 is not.

control index; = 1 for lifting-line

theory, = 0 for two-dimensional foil
theory.

matrix of final torsional/axial added
mass results in English units;
position (1,1) is torsional added
mass moment of inertia, position
(2,2) is axial added mass, and posi-
tion (1,2) is torsional/axial inertia
coupling.

matrix of final torsional/axial damping
results in English units; position
(1,1) is torsional damping, position
(2,2) is axial damping, and position
(1,2) is torsional/axial velocity
coupling.

matrix of final lateral added mass
results in English units; position
(1,1) is lateral added mass moment
of inertia, position (2,2) is lateral
added mass, and position (1,2) is
lateral inertia coupling for the case
with forces parallel to motion. Posi-
tions (1,3), (2,4), and (1,4) carry
the comparable results for the case
with forces perpendicular to the
motion.

matrix of final lateral damping results
in English units; position (1,1) is
lateral rotational damping, position
(2,2) is lateral linear damping, and
position (1,2) is lateral velocity
coupling for the case with forces
parallel to motion. Positions (1,3),
(2,4), and (1,4) carry the comparable
results for the case with forces
perpendicular to the motion.




2.10. COMMON PRINTG

PHX (10) chordwise integral involving the pres-
sure due to unit heave at vibration
frequency eq. (49) (COMPLEX) eval-
uated at the center of each of MM
blade segments. Used in torsional/
axial (X-direction) problem.

PHLP (10) chordwise integral involving the pres-
sure due to unit heave at vibration
plus rotation frequency eq. (55)
(COMPLEX) evaluated at the center of
each of MM blade segments. Used in
lateral problem.

PHLM (10) chordwise integral involving the pres-
sure due to unit heave at vibration
minus rotation frequency eq. (55)
{COMPLEX) evaluated at the center
of each of MM blade segments. Used
in lateral problem.

PPLP (10) chordwise integral involving the pres-
sure due to unit pitch at vibration
plus rotation frequency eq. (57)
(COMPLEX) evaluated at the center of
each of MM blade segments. Used in
lateral problem.

PPLM (10) chordwise integral involving the pres-
sure due to unit pitch at vibration
minus rotation frequency eq. (57)
(COMPLEX) evaluated at the center of
each of MM blade segments. Used in
lateral problem.

PHLPA (10) chordwise integral involving the pres-
sure due to unit heave at vibration
pPlus rotation frequency eqg. (56)
(COMPLEX) evaluated at the center of
each of MM blade segments. Used in
lateral problem.

PHLMA (10) chordwise integral involving the pres-
sure due to unit heave at vibration
minus rotation frequency eq. (56)
(COMPLEX) evaluated at the center of
each of MM blade segments. Used in
lateral problem.

PPLPA (10) chordwise integral involving the pres-
sure due to a unit pitch at vibration
plus rotation frequency eq. (58)
(COMPLEX) evaluated at the center of
each of MM blade segments. Used in
lateral problem.



PPLMA (10) chordwise integral involving the pres-
sure due to a unit pitch at vibration
minus rotation frequency eq. (58)
(COMPLEX) evaluated at the center of
each of MM blade segments. Used in
lateral problem.

3. Subroutine Descriptions

The 22 subroutines of PRAMAD are described in the following
sections. Those subroutines marked (*) are from the public files
of the University of Michigan Computing Center. 1In general, these
are fully documented by comments in the program listing which is
included in Appendix C. Therefore, only brief functional descrip-
tions of these subroutines will be included here. Those subrou-
tine marked (**) are adaptations of subroutines developed previ-
ously by Professor W. S. Vorus of the Department of Naval Archi-
tecture and Marine Engineering, The University of Michigan, under
American Bureau of Shipping support. Numbers in parentheses after
argument names indicate the dimensions of arrays. Explicit mode

declarations are noted.

3.1. SUBROUTINE AMDAXL

Purpose: Uses the chordwise pressure integral
results PHX in COMMON PRINTG to
evaluate the axial added mass and
damping. Called when IAXL=1l. The
torsional/axial inertia and velocity
coupling are also evaluated if
ITOR=1. Results are loaded into
AMXX and DXX in COMMON OUTPUT.

Method: The axial added mass and damping are
evaluated using eqg. (15), (16), and
(50). The spanwise integration is
performed using subroutine MODSIM.
The torsional/axial inertia and
velocity coupling are evaluated
using egs. (15), and (16) and qf

in Table 3. 41
Calling Arguments: None.
Common Blocks: INPUT, OUTPUT, OPTION, PRINTG.
Comments: Variable F11 (COMPLEX) corresponds to

Fﬁll in eq. (50). Variable F41
(COMPLEX) corresponds to F;41 in
Table 3. '
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3.2. SUBROUTINE AMDLAT

Purpose: Uses the chordwise pressure integral
results PHLP, PHLM, PPLP, PPLM,
PHLPA, PHLMA, PPLPA, and PPLMA in
COMMON PRINTG to evaluate the added
mass and damping for lateral vibra-
tions. Called when ILAT=1l. Results
are loaded into AMYZ and DYZ in
COMMON OUTPUT.

Method: The lateral added mass and damping are
evaluated using eqgs. (15) and (16)
and the appropriate Fﬁhz from Table
3. The span wise integration is
performed using subroutine MODSIM.

Calling Arguments: None,

Common Blocks: INPUT, OUTPUT, PRINTG.

Comments: Variable F55 (COMPLEX) corresponds to
F* in Table 3; variable F52

h55 N )
(COMPLEX) corresponds to Fp 5 in

Table 3; variable F22 (COMPLEX)
corresponds to Fﬁzz in Table 3;
variable F65 (COMPLEX) corresponds
to F§65 in Table 3; variable Fé62
(COMPLEX) corresponds to Fﬁ62 in
Table 3; variable F32 (COMPLEX)

* .
corresponds to Fh32 in Table 3.

3.3. SUBROUTINE AMDTOR

Purpose: Uses the chordwise pressure integral
results PHX in COMMON PRINTG to
evaluate the torsional added mass
moment of inertia and damping.
Called when ITOR=1. Results are
loaded into AMXX and DXX in COMMON
OUTPUT.

Method: The torsional added mass moment of
inertia and damping are evaluated
using egs. (15) and (16), and
Fﬁ from Table 3. The spanwise
integration is performed using
subroutine MODSIM.

Calling Arguments: None,

Common Blocks: INPUT, OUTPUT, PRINTG.

Comments: Variable F44 (COMPLEX) corresponds to
F§44 in Table 3.



3.4.

3.5.

3.6.

3.7.

SUBROUTINE BESJ*

Purpose:

SUBROUTINE BESY*

Purpose:

SUBROUTINE CAXMB*

Purpose:

SUBROUTINE CBS*

Purpose:

SUBROUTINE CIR¥*

Purpose:

SUBROUTINE COLECT**

Purpose:

Method:
Calling Arguments:
SUM

SUM1

Common Blocks:

Computes the J Bessel Function for a
given argument and order. See
listing.

Computes the Y Bessel Function for a
given argument and order. See
listing.

Computes r = AX - b, where A is an
NxN matrix, in twice the precision
of the data. This accuracy is
crucial to the iterative refinement
algorithm used in Subroutine CIR.
See listing.

Solves the system of N linear equations
Ax = b by back substitution in the
LU~-decomposition of matrix A. Used
to obtain the starting solution
vector utilized by Subroutine CIR.
See listing.

Solves the system of N linear equations
Ax = b using iterative refinement
based upon LU-decomposition of matrix
A. See listing.

Sums the wake induced velocities for
the index blade.

Refer to reference 19.

complex induced velocity at radius II
due to tangential trailers from
radius JJ (COMPLEX).

complex induced velocity at radius II
due to radial trailers from radius
JJ (COMPLEX*16).

unlabeled, B, D, INPUT
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Comments:

3.10. SUBROUTINE CLUD*

Purpose:

3.11. SUBROUTINE FETCH

Purpose:

Method:
Calling Arguments:
XINT

Common Blocks:

Comments:

3.12. SUBROUTINE FETCHO

Purpose:
Method:

Calling Arguments:
XINT
ALFA

Common Blocks:

Comments:

3.13. SUBROUTINE FETCH1

Purpose:

Method:

Summation variable MC introduces the
influence of each of the NB blades
upon the index blade.

Computes the LU-decomposition of a
matrix using Gaussian elimination
with partial pivoting. See listing.

Assembles the wake induced normal
velocity at radius II on the index
blade due to radius JJ on blade
having location A(AB) and B(BB) from
COMMON D.

Refer to reference 19.

complex amplitude of induced velocity
(COMPLEX) .

unlabeled, A, B, D, INPUT.

None.

Performs improper integration over wake
for non-oscillating arguments.

Rectangular rule integration using
Subroutine RRINT.

value of complex integral (COMPLEX).

argument of oscillating exponential,
= 0.

unlabeled, A, B, D, INPUT.

None.

Performs improper integration over wake
for oscillating arguments.

Combination of rectangular rule over
first part of cycle using Subroutine
RRINT and Gauss quadrature over
remainder to infinity using
Subroutine FORINT.



3.14.

3.15.

Calling Arguments:
XINT
ALFA

Common Blocks:

Comments:

SUBROUTINE FOIL2D**

Purpose:

Method:

Calling Arguments:
XK
R

CL

GL
KEY

ICALL

Common Blocks:

Comments:

SUBROUTINE FORINT**

Purpose:

Method:

value of complex integral (COMPLEX).

argument of oscillating exponential,
% 0.

unlabeled, A, B, D, INPUT.

None.

To compute the two-dimensional thin foil
theory results for lift coefficient,
complex circulation, and chordwise
pressure distribution given reduced
frequency and geometry.

Implements the results of Section 3.1.

reduced frequency, k = wb/U.

complex pressure amplitude, eq. (65)
(COMPLEX)

complex lift coefficient, eq. (80)
divided by w or eq. (82) divided
by U (COMPLEX).

complex circulation, eq. (94) (COMPLEX).

control parameter; = 1, 2, or 4 for
heave problem; = 3 or 5 are for
pitch problem.

control parameter for return point;
1 if pressure amplitude not needed;
2 if pressure amplitude is needed.

DEVICE.

When the reduced frequency XK is zero
the known lift coefficient and
complex circulation results are used
to avoid numerical difficulties.

Integrates a function of oscillating,
decaying character from some point
to infinity.

Gauss quadrature on half-cycles with
half-cycle summation. (See:
"Numerical Quadrature of Fourier
Transform Integrals,"” Mathematical
Tables and Other Aids to Computation,
Vol. 10, No. 55, July, 1965, pp. 140-
149.)
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3.16.

3.17.

Calling Arguments:
ALFA
XTI
KEY

Common Blocks:

Comments:

SUBROUTINE FUNCT**

Purpose:

Method:

Calling Arguments:
D
S

Common Blocks:

Comments:

SUBROUTINE INSUB

Purpose:

Method:
Calling Arguments:
KODE

Common Blocks:

Comments:

argument of oscillating exponential.
value of integral (COMPLEX).

index for data initialization; = 0
only lines 673-684 performed; =
only lines 688-690 performed; =
full use of subroutine, lines
693-738.

A.

None.

Provide vortex kernel function for
improper integration over wake.

Refer to reference 19.

vortex kernel function (REAL*8).

steamwise coordinate; argument of
vortex function.

unlabeled, B, D, INPUT.

None.

Reads all input data from I/O channel
INFILE, transforms input data to a
common set of program units (see
COMMON INPUT description), calculates
data derived from input data, and
prints input verification. Some
input and the calculated results
are loaded into COMMON INPUT.
Remaining input are returned through
COMMON OPTION and argument KODE.

Straight forward.

control index; = 0 for normal output,
= 1 for additional output from
subroutine PRES3D.

DEVICE, INPUT, OPTION.

None.
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3.18. SUBROUTINE LSCORR

Purpose: Calculates the lifting-surface correc-
tions for use with the lifting-line
results for the added mass and
damping for the coupled torsional/
axial case and the lateral case with
force parallel to the motion. The
results are loaded into COMMON CORR.

Method: Corrections are evaluated using regres-
sion equations (102) through (113).
The first part of the subroutine
uses Simpson's Rule integration to
obtain the blade area needed to eval-
uate the blade aspect ratio, AR. A
Newton's forward difference inter-
polation is then used to obtain the
pitch-diameter ratio at the 0.7
radius, PD07. The corrections are
then evaluated as needed.

Calling Arguments: None.
Common Blocks: CORR, INPUT, OPTION.
Comments: None.

3.19. SUBROUTINE MODSIM

Purpose: Perform spanwise integration of complex
integrands which are known only at
the midpoint of an even number of
equal width segments (MM) of the vari-
able of integration.

Method: Subroutine uses a modified Simpson's

Rule integration. The integrand is
assumed to be zero at the upper limit,
the blade tip. The integrand at the
lower limit, the hub, is obtained by
quadratic extrapolation of the inte-
grand values at the adjacent three
points. The real or imaginary part

. of the integrand might appear as

interpolated value follows when MM = 4, M = 9.

integrand data
values I(2) I(3)

extrapolated
value

R(1) R(2) R(3) R(4) _ R(6) | R(8) R(9)=R(M)
hub tip



The integral between R(2) and R(M-3=6)
is obtained by the conventional
Simpson's Rule. The integrands at
R(1l) and R(3) can be obtained alge-
braically in terms of the integrands
at R(2), R(4), and R(6) using qua-
dratic extrapolation, respectively;

i.e.,
I(R(1)) = %?1(1) - 21(2) + 31(3),
I(R(3)) = %1(1) + 21(2) - %1(3)

The (5,8, minus 1) integration rule
is then used to obtain the integral
between R(1l) and R(2) using the
integrands at R(l), R(2), and R(3).
The integral between R(M-3=6) and
R(M=9) is obtained using a Simpson's
Rule for unequal intervals using the
integrands at R(6) and R(8), and the
assumed zero integrand at R(9).

(see: Van Gunsteren, L.A., "Numer-
ical Calculation of Areas and
Moments," International Shipbuilding

Progress, Vol. 14, No. 157, Sept.
1967, pp. 357-364.)

The combined integration rule using
only the integrand values at the
even index radii then becomes as
follows: MM

INTEGRAL = 1 A(L)*I(2),
i=1

where H=(R(M)-R(1))/MM,
ment width.

8
24

the seg-
The algorithm in MODSIM generates

the needed multipliers A(zZ) which
are as follows:

MM A(T)
4 25, 25, 19, 27
6 25, 25, 18, 32, 17, 27
8 25, 25, 18, 32, 16, 32, 17, 27
10 25, 25, 18, 32, 16, 32, 16, 32, 17, 27




Calling Arguments

INTGRD (MM)

INTGRL
H
MM

Common Blocks:
Comments:

3.20'

SUBROUTINE PRES3D

Purpose:

Method :

Calling Arguments:

KODE

Common Blocks:
Comments:

value of integrand at the midpoint

of MM spanwise segments equal
width H (COMPLEX) .

value of integral (COMPLEX).
width of spanwise segments.

number of spanwise segments (MM<10,
even).

None.
None.

Develops the chordwise pressure inte-
grals: PHX(I), PHLP (I), PHLPA(I),
PPLP(I), PPLPA(I), PHLM(I), PHLMA(I),
PPLM(I), and PPLMA(I) in accordance
with eq. (49) and equations (55)
through (58).

The unsteady lifting-line theory of
Brown, reference 19, is used with
modification to accommodate skew and
to apply to the oscillating foil
problem instead of the oscillatory
wake problem. See Section 3.2. Out-
put loaded into COMMON PRINTG.

control index; = 0 for normal output
which includes nothing from PRES3D,
= 1 for additional test output from
PRES3D.

unlabeled, D, INPUT, OPTION, PRINTG.

Variable MUM governs the basic opera-
tion. 1In the torsional/axial problem
oscillation only at w is needed so
MUM = K = 1 and a single case is cal-
culated. 1In the lateral problem
oscillation at the w*Q frequencies
are needed for heave and pitch so
K=2,3, 4, 5. Cases K = 2 and 4
are heave. Cases 3 and 5 are pitch.
Cases K = 2 and 3 are for w+Q; cases
4 and 5 are for w-Q.

The subroutine also handles the two~-di-
mensional thin foil theory problem
with lines 272-325 omitted since there
are no induced velocities.

o}
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3.21

3.22.

SUBROUTINE PRINT

Purpose:

Method:
Calling Arguments:
Common Blocks:

Comments:

SUBROUTINE RRINT**

Purpose

Method:

Calling Arguments:
DELS

NC

XINT
NP

Common Blocks:

Comments:

Calculates SI unit and non-dimensional
output from the English unit output
in COMMON OUTPUT. Calls subroutine
LSCORR for lifting-surface correc-
tions if lifting-line theory is used
(METHOD=1) .

Straight forward.

None.

CORR, DEVICE, INPUT, OPTION, OUTPUT.
None.

Performs rectangular rule integration
of a complex integrand of the type
found in evaluating the downwash
caused by bound and trailing vortices.

The subroutine FUNCT is used to obtain
variable part of the integrand. This
result, Q, is then multiplied by

1 *XM*S . .
e , where S is the variable of
integration, in order to form the
integrand. The integration is per-
formed from S=0 to S=DELS*NC. The
integrand is evaluated at the mid-
point of NP intervals of the variable
of integration.

A range of the variable of integration.
Call is either 1/16 cycle,when ob-
taining the induced velocity on seg-
ment I due to trailers at the segment
I on index blade, or 1/4 cycle.

Number of DELS's in interval of inte-
gration. Call is either 1 when DELS
is 1/16 cycle or 3 when DELS is 1/4
cycle.

value of integral (COMPLEX).

number of intervals of variable of inte-
gration in each DELS in rectandular
rule integration.

integration parameter included in expo-
nential part of integrand. Here the
reduced frequency.

None.

None.



4. PRAMAD In MTS

The PRAMAD program is written in IBM System 360/370 FORTRAN
IV. It consists of 1822 source lines which are listed in Appendix
C. The object version occupies 60642 bytes when compiled using
the Michigan Terminal System (MTS) *FTN (level G) compiler. A
size breakdown by module is as follows:

module source lines source statements bytes
MAIN 17 13 480
INSUB 179 164 5556
PRES3D 185 171 9458
FOIL2D 95 91 4888
COLECT 34 32 852
FUNCT 27 25 838
FETCH 39 38 2362
FETCHO 36 34 848
FETCH1 32 31 904
RRINT 18 17 914
FORINT 78 75 6184
AMDTOR 24 23 792
AMDAXL 34 33 1222
AMDLAT 95 82 6982
MODSIM 26 21 864
PRINT 175 147 6032
LSCORR 91 79 2754
BESJ 105 53 1536
BESY 135 69 2058
CLUD 146 49 1950
CIR 115 32 1316
CBS 91 25 1038
CAXMB 45 18 814

1822 1322 60642
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APPENDIX C. LISTING OF PRAMAD

oo~V B~ W N

18
19
20
21
22
23
24
25
26
27
238
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

[eRe*NeNe!

aOaQOa

10

20

UNIVERSITY OF MICHIGAN

DEPT. OF NAVAL ARCHITECTURE AND MARINE ENGINEERING

PROPELLER ADDED MASS AND DAMPING PROGRAM (PRAMAD)
REVISION OF SEPTEMBER 5, 1980

COMMON /DEVICE/ INFILE,OUTDEV

INTEGER OUTDEV
COMMON /OPTION/ ITOR,IAXL,ILAT,METHOD
OUTDEV=6
INFILE=4

CALL INSUB(KODE)

CALL PRES3D(KODE)

IF (ITOR .EQ. 1) CALL AMDTOR
IF (IAXL .EQ. 1) CALL AMDAXL
IF (ILAT .EQ. 1) CALL AMDLAT
CALL PRINT

STOP

END

SUBROUTINE INSUB(KODE)

READS DATA FROM FILE, LOADS COMMON INPUT,
PRINTS INPUT VERIFICATION

COMMON /DEVICE/ INFILE,OUTDEV
INTEGER OUTDEV
COMMON /INPUT/ CO,SI,BR,TE,R,PITCH,AO, AS,UT,US,V,FREQ,RHO,
,M,NB,BETAG, AR
DIMENSION C0(21),SI(21),BR(21),TE(21),R(21),AS(21),BETAG(21)
OIMENSION AO0(21),UT(21),PITCH(21),AR(21)
COMMON /OPTION/ ITOR,IAXL,ILAT,METHOD
DIMENSION RADIUS(21),CHORD(21),VAKE(21),SKEW(21),PCH(21)
DIMENSION TITLE(18),RAD(21),RAKE(21)
DATA PI /3.14159265/
READ(INFILE,1000) TITLE
READ(INFILE,1010) ITOR,IAXL,ILAT,METHOD,KODE
READ(INFILE,1020)t,NB
Mi=(M-1)/2
MN1=t-1
READ(INFILE,1025) RPM,UST,FREQ,RHOI,TIUNIT
IF(IUNIT.EQ.1) GO TO 10
Us=USI*12.
RHO=RHOIL
GO TO 20
CONTINUE
Us=UsI1%*39, 3701
RHO=RHOI*, 001941
CONTINUE
W=RPM*PI/30.
READ(INFILE,1010) IRAD,ICHORD,ISKEW,IPITCH,IRAKE



49 PEAD(INFILE,1030)(RADIUS(I),CHORD(I) ,WAKE (1),SKEW (1) ,PCH(I),

50 1 RAKE(I),I=1,M)
51 GO TO (30,50,70,90),IRAD
52 30 CONTINUE

53 DO 40 I=1,it

54 R(I)=RADIUS(I)

55 40  CONTINUE

56 GO TO 110

57 50 CONTINUE

58 DO 60 I=1,4

59 R(I)=RADIUS(I)*39,3701
60 60  CONTINUE

61 GO TO 110

62 70  CONTINUE

63 R (1)=RADIUS(}1)

64 NO 80 I=1 Nl

65 R(T)=RADIUS(I)*R(M)

66 80  CONTINUE

67 GO TO 110

68 90  CONTINUE

69 RQC1)=RADIUS (:1)*39,3701

70 DO 100 TI=1,uN1

71 R(I)=RADIUS(I)*R(1)

72 100 CONTINUE

73 110 CONTINUE

74 DO 120 1I=1,M

75 AO(TI)=J AKE(T)

76 UT(I)=SQRT((W*R(I))**2+(US*AQ(I))**2)
77 CO(I)=W*R(I)/UT(1)

78 SI(I)=US*A0(T)/UT(1)

79 BR(I)=US*AO(TI)/(W*R(1))
80 RAD(I)=R(I)/R(M)

81 IF (ICHORD .EQ. 1) TE(I)=CHORD(I)
32 120 CONTINUE

83 GO TO (130,150), ISKEW

84 130 CONTINUE

85 DO 140 1I=14

86 AS(1)=SKEW(I)

87 140 CONTINUE

88 GO TO 170

89 150 CONTINUE

90 DO 160 I=1,1

91 AS(I1)=SKEW(I)*2*P1/360.
92 160 CONTINUE

93 170 CONTINUE

94 GO TO (180,200,220),IPITCH
95 180 CONTINUE

96 DO 190 I=1,M

97 PITCH(I)=PCH(I)

98 190 CONTINUE

99 GO TO 240
100 200 CONTINUE
101 DO 210 I=1,M

102 PITCH(I)=PCH(I)*39,.3701

c-2



103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
136
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156

210

220

230

240

250

260

270

280

290

300
310

320

1

CONT INUE
GO TO 240
CONTINUE
DO 230 I=1,4
PITCH(I)=PCH(I)*2*R()
CONT INUE
CONTINUE
GO TO (250,270,290),IRAKE
CONTINUE
DO 260 I=1,M
AR(I)=RAKE(I)/12.
CONTINUE
GO TO 310
CONTINUE
DO 280 I=1,M
AR(I)=RAKE(1)/1000.
CONTINUE
G0 TO 310
CONTINUR
DO 300 I=1,M
ARR=RAKE (I)*PI/180.
AR(I)=TAN(ARR)
CONTINUE
CONTINUE
DO 320 I=1,M
BETAG(I)=ATAN(PITCH(I)/(2.*PI*R(I)))
IF(ICHORD.EQ.2) TE(I)=CHORD(I)*COS(BETAG(I))/RAD(I)
CONTINUE
WRITE(OUTDEV,1050)
WRITE(OUTDEV,1060) (TITLE(1), I=1,18)
WRITE(OUTDEV,1065)
WRITE(OUTDEV,1070) ITOR,IAXL,ILAT,METHOD
WRITE(OUTDEV,1080) M ,NB
WRITE(OUTDEV,1090) RPM,USI,FREQ,RHOL
IF(IUNIT.EQ.OMRITE(OUTDEV,1095)IUNIT
IF(IUNIT.EQ.1)WRITE(OUTDEV,1096)IUNIT
IF(IRAD .EQ. 1)WRITE(OUTDEV,1100)IRAD
IF(IRAD .EQ. 2)NRITE(OUTDEV,1101)IRAD
IF(IRAD .EQ. 3)W#RITE(OUTDEV,1102)IRAD
IF(IRAD .EQ. 4)WRITE(OUTDEV,1103)IRAD
IF(ICHORD .EQ. 1)WRITE(OUTDEV,1104)ICHORD
IF(ICHORD .EQ. 2)WRITE(OUTDEV,1105)ICHORD
IF(ISKEW .EQ. 1)WRITE(OUTDEV,1106)ISKEV
IF(ISKEW .EQ. 2)YRITE(OUTDEV,1107)ISKEW
IF(IPITCH .EQ. 1)JRITE(OUTDEV,1108)IPITCH
IF(IPITCH .EQ. 2)WRITE(OUTDEV,1109)IPITCH
IF(IPITCH .EQ. 3)JRITE(OUTDEV,1110)IPITCH
IF(IRAKE.EQ.1)JRITE(OUTDEV,1111)IRAKE
IF(IRAKE.EQ.2)WRITE(OUTDEV,1112)IRAKE
IF(IRAKE.EQ.3)¥RITE(OUTDEV,1113)IRAKE
WRITE(OUTDEV,1115)
DO 330 I=1,M
WRITE(OUTDEV,1120) RAD(I),RADIUS(I),CHORD(I),WAKE(I),SKEW(I),
PCH(I),RAKE(I)
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330 CONTINUE

1000 FORMAT(18A44)

1010 FORMAT(515)

1020 FORIAT(215)

1025 FOR'AT(4F12.6,15)

1030 FORMAT(6F12.6)

1050 FORMAT(’-’,T25, UNIVERSITY OF HICHIGAN’/’ ‘,Tll, DEPT. OF NAVAL AR
ICHITECTURE AND MARINE ENGINEERING’/’ ‘,T16, PROPELLER ADDED !ASS A
2ND DAMPING PROGRAM’/’0’,T11, DEVELOPED UNDER MARAD CONTRACT NO. MA
3-79-SAC-R0012")

1060 FORMAT(’ -’ ,18A4)

1065 FORMAT( —~***INPUT VERIFICATION***’)

1070 FORMAT(‘OITOR=’,I1,5X, IAXL=",11,5X, ILAT=",11,5X, "METHOD=",11)

1080 FORMAT( OM=’,12,7X, NB=",11)

1090 FORI{AT(‘ORP4=’,F6.2,5X, USI=",F6.2,5X, FREN=",F7.3,5X, RI0I=",F6.4
1)

1095 FORMAT(‘OIUNIT=",I1,° USI IN FEET PER SECOND, RHOI IN SLUGS PER C
1UBIC FOOT’)

1096 FORIAT(’OIUNIT=",I1,° USI IN METERS PER SECOND, RHOI IN KILOGRAS
1 PER CUBIC !ETER')

1100 FORMAT(’OIRAD=",1I1," RADIUS IN INCHES’)

1101 FORMAT(’OIRAD=",I1,” RADIUS IN METERS’)

1102 FORMAT(’OIRAD=",I1,° NONDIMENSIONAL RADII, TIP RADIUS IN INCHES’)

1103 FORMAT(’0OIRAD=",I1,° NONDIMENSIONAL RADII, TIP RADIUS IN METERS’)

1104 FORMAT( UICHORD=',1I1," PROJECTED SEMICHORD IN RADIANS’)

1105 FORMAT(’OICHORD=',11," NONDIMENSIONAL CHORD INPUT AS C/D’)

1106 FORMAT( OISKE4=’,I1,° SKEW INPUT IN RADIANS’)

1107 FORMAT(OISKEN=",I1," SKEW INPUT IN DEGREES’)

1108 FORMAT(’OIPITCII=",I1,” PITCH IN INCHES’)

1109 FORMAT(‘OIPITCH=",11,° PITCH IN METERS’)

1110 FORMAT(‘OIPITCH=",I1,° NONDIMENSIONAL PITCH INPUT AS P/D’)

1111 FORMAT( OIRAKE=’,I1,° RAKE IN IN/FT’)

1112 FORMAT(’OIRAKE=",I1," RAKE IN M!/H1°)

1113 FORMAT( OIRAKE=",11," RAKE IN DEGREES’)

1115 FORMAT(’0 R/RT RADIUS  CHORD W AKE SKEW PITCH’,
1 ‘ RAKE’ /)
1120 FORMAT(’ ‘,F6.4,2X,F7.3,3X,F6.4,3X,F6.4,2X,F7.3,2X,F7.3,
1 2X,F7.3)
RETURN
END

SUBROUTINE PRES3D(KODE)

HEAVE AND PITCH CHORDWISE PRESSURE INTEGRALS

COMMON /DEVICE/ INFILE,OUTDEV
INTEGER OUTDEV

COMMON /INPUT/ CO,SI,BR,TE,R,PITCH,AOQ,AS,UT,US,W,FREQ,RHO,

1 M,MM,NB ,BETAG,AR
DIMENSION C€0(21),81(21),BR(21),TE(21),R(21),AS(21),BETAG(21)
DIMENSION AO0(21),UT(21),PITCH(21),AR(21)

COMMON /OPTION/ ITOR,IAXL,ILAT,METHOD

COMMON /PRINTG/ PHX,PHLP,PHLM,PPLP,PPLM,PHLPA,PHLMA,PPLPA,PPLMA
COMPLEX PHX,PHLP,PHLM,PPLP,PPLM,PHLPA,PHLMA,PPLPA,PPLMA
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DIMENSION PHX(10),PHLP(10),PHL1(10),PPLP(10),PPLM(10)
DIMENSION PHLPA(10),PHLMA(10),PPLPA(10),PPLMA(10)
COMMON 1,J,I1,JJ,RI,RK,N
REAL N
COMMON /D/ SS1,KON, AB,BB
DIMENSION PRES(11),VN(10),RHS(10),AC(10),c(10,10),A(10,10)
DIMENSION V(10),1.(10),SV(10),AC1(10),ACFAC(10),XK(10,3),X(21)
DIMENSION SM(11),F(10),FA(10)
COMPLEX PRES,VN,DUM,CL,GL,XI,C,V,AC,A,AC],RHS,SV,F,EXPO,FA
COMPLEX*16 SWi11,SUM2
DATA P1/3.14159265/
DATA SM/1.,4.,2.,4.,2.,4.,2.,4.,2,,4.,1./
1 FOR{AT(’1CHORDWISE PRESSURE INTEGRALS, 2D OPTION)
2 FORMAT(’1CHORDWISE PRESSURE INTEGRALS, LL OPTION’)
3 FORMAT('0’)
4 FORMAT(’ONON-DIM. PRESSURES AT R = ‘,F8.3,
1 ‘  REDUCED FREQUENCY = ‘,F7.4)
5 FORMAT(6E15.5)
6 FORMAT(’ ‘,37X,°CL = ’,2E12.4/)
8 FORMAT (‘OHARMONIC ORDER = ‘,F6.3)
9 FORMAT (’ORADIUS’,10X,°VN’)
10 FORMAT (1XF8.4,1XE14.6,1XE14.6)
11 FORMAT (’OREDUCED FREQ AND CL AT R = ‘,F8.3/)
12 FORMAT (’OPRESSURE INTEGRAL = ‘,2E1l4.5/)
13 FORMAT (1X4El15.5)
14 FORMAT (’ONORMAL ONSET VELOCITIES FOR K = ‘,I1/)
15 FORMAT (‘ONET NORMAL VELOCITIES FOR K = ‘,I1/)
16 FORMAT (’OINFLUENCE COEFFICIENTS’/)
CALCULATE REDUCED FREQUENCIES AND COMMON TERMS
DO 20 I=1,M
X(I)=R(I)/R(M)
CONTINUE
DO 40 I=1,MM
1I=2*]
XK(I,1)=FREQ*TE(II)*R(II)/(UT(II)*COS(BETAG(II)))
IF (ILAT.EQ.0) GO TO 30
XK(I,2)=XK(I,1)*(FREQ#)/FREQ
X¥(I,3)=XK(I,1)*(FREQ-4)/FREQ
CONTINUE
ACFAC(I)=TE(II)*SQRT(BR(II)**2+X(II)**2)
CONT INUE.
BEGIN CALCULATIONS
CALL FORINT(0.0,XI,0)
N=FREQ/W
RHOU=RHO0/20736.
IF (KODE.EQ.l.AND.METHOD.EQ.0) RITE(OUTDEV,1)
IF (KODE.EQ.l.AND.METHOD.EQ.1) WRITE(OUTDEV,2)
IF (KODE.EQ.1) WRITE(OUTDEV,8) N
IF (ILAT.EQ.0) MUM=1
IF (ILAT.EQ.1) MUM=5
LOOP FOR DIFFERENT FREQUENCY CASES
DO 220 K=1,MUM
IF (K.EQ.l.AND.IAXL.EQ.O.AND.ITOR.EQ.O) GO TO 220
IF (K.LE.3) cC=1.
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IF (K.GT.3) cC=-1.
IF (KODE.EQ.1) WRITE(QUTDEV,14) K
ESTABLISH NORMAL ONSET VELOCITIES
DO 50 I=1,11
II=2%]
IF (K.NE.3.AND.K.NE.5) VN(I)=(1l.,0.)*FREQ
IF (K.EQ.3.0R.K.EQ.5) VN(I)=(1l.,0.)*UT(II)
IF (KODE.EN.1) WRITE(OUTDEV,10) R(II),VN(I)
CONT INUE
2D THEORY BRANCI POINT
IF (METHOD.EQ.0) GO TO 130
DO 60 I=1,Md
RHS(I)=(1.,0.)
FIRST CALL TO FOIL2D FOR CIRCULATION
KK=1+K/2
CALL FOIL2D(XK(I,KK),PRES,CL,GL,K,1)
AC(I)=ACFAC(I)*VN(I)*GL/(4.*P1)
ACL1(1I)=-1./VN(I)
CONT INUE
DOUBLE LOOP FOR INFLUENCE COEFFICIENTS
DO 90 I=1,1
I1I=2*]
RI=X(II)
DO 80 J=1,MM
KON=0
JI=2%]
RK=X(JJ-1)
CALL COLECT (XI,Surl)
RE=X(JJ+1)
CALL COLECT (DUM,SUM2)
C(1,J)=(0, ,~1.)*N*(DUM-XI)+SU12-SUM1
KON=3
JI=JJ~1
RK=X(JJ)
CALL COLECT (XI,SUil)
IF (J .GT. 1) C(1,J-1)=C(I,J-1)+XI*AC(J-1)*AC1(I)
C(1,J)=(C(1,J)-XI)*AC(J)*ACI(I)
IF (J .NE. MM) GO TO 70
JI=JJ+2
RK=X(JJ)
CALL COLECT(XI,SUM1)
C(1,J)=C(1,J)+XI*AC(J)*ACI(I)

CONTINUE
IF (I .EQ. J) C(I,J)=1.+C(1,J)
CONTINUE
CONTINUE
IF (KODE.EQ.0) GO TO 110
WRITE(OUTDEV,16)

DO 100 I=1,ft
WRITE(OUTDEV,13) (C(I,J),J=1,MM)
WRITE(OUTDEV,3)
CONTINUE
CONTINUE
CALL CLUD (MM,10,C,10,A,L)
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CALL CIR (*M,10,C,10,A,L,V,RHS,SV,IER)
IF (IER.EQ.0) WRITE(OUTDEV,300)

IF (IER.LT.0) ITER=-IER

IF (IER.LT.0) WRITE(OUTDEV,301) ITER
COMPUTE NET NORMAL VELOCITIES

IF (KODE.EQ.1) WRITE(OUTDEV,15) K

DO 120 I=],MM

VN(I)=V(I)*VN(I)
IF (KODE.EQ.1) WRITE(OUTDEV,10) R(2*I),VN(I)

CONTINUE

2D THEORY RETURN POINT
CONTINUE

CALCULATE PRESSURE INTEGRALS
DO 210 I=1,MM

1I=2*1
KK=1+K/2
CALL FOIL2D(XK(I,KK),PRES,CL,GL,K,2)
IF (K.GT.1) GO TO 140
IF (KODE.EQ.1) WRITE(OUTDEV,11) R(II)
IF (KODE.EQ.1) WRITE(OUTDEV,13) XK(I,KK),CL
PHX (I)=RHOU*UT(II)*VN(I)*TE(II)*CL/COS(BETAG(II))
IF (KODE.EQ.1) WRITE(OUTDEV,12) PHX(I)
GO TO 200
CONT INUE
IF (KODE.EQ.1) WRITE(OUTDEV,4) R(II),XK(I,KK)
IF (KODE.EQ.1) WRITE(OUTDEV,6) CL
IF (KODF.EQ.1l) WRITE(OUTDEV,5) (PRES(KL),KL=1,11)
DT=TE(TII)/5.
ALFA=-TE(II)-DT
F(I)=(0.,0.)
FA(1)=(0.,0.)
DO 150 ®M=1,11
ALFA=ALF A+DT
EXPO=(0.,1.)*ALFA*CC
F(I)=F(I)+S1M(¥1)*PRES (KM )*CEXP(EXPO)
FA(I)=FA(T)+SM(KH)*PRES (K1) *ALFA*CEXP (EXP0)
CONTINUE
F(I)=F(I1)*0.2/3.
FA(I)=FA(1)*0.2/3.
F(I)=RHOU*UT(II)*VN(I)*TE(II)*F(I)/COS(BETAG(II))
FA(I)=RHOU*UT(II)*VN(I)*TE(II)*FA(I)/COS(BETAG(II))
IF (KODE.EQ.l) WRITE(OUTDEV,12) F(I)
GO TO (200,160,170,180,190),K
CONTINUE
PHLP(I)=F(I)
PHLPA(I)=FA(1)
GO TO 200
CONTINUE
PPLP(I)=F(1)
PPLPA(I)=FA(I)
GO TO 200
CONTINUE
PHLM(I)=F(I)
PHLMA(I)=FA(I)
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GO TO 200

CONTINUE

PPLM(I)=F(1)

PPLMA(I)=FA(I)

CONTINUE

CONTINUE

CONTINUE
RETURN
FORMAT ("0***J ARNING*** SINGULAR COEFFICIENT MATRIX IN CIR’/)
FORMAT("O***J ARNING*** ITERATIVE REFINEMENT FAILED TO CONVERGE IN
ICIR - ITERATIONS = ‘,15/)
END

SUBROUTINE FOIL2D (XK,R,CL,GL,KEY,ICALL)
2D FOIL IN HEAVE/PITCH
CO'MMON /DEVICE/ INFILE,OUTDEV
INTEGER OUTDECV
DIMENSION R(11),X(11)
COMPLEX C,Cl,P,VY,P1,R,R1,R2,CL,GL
DATA PI/3.14159265/
DATA X/-1.,-.8,-.6,~.4,-.2,0.,.2,.4,.6,.8,1./
CALCULATE LIFT COEFFICIENT
IF (XK.EQ.0.0) GO TO 10
CALL BESJ(¥K,0,BJO,.001,IER)
IF (IER.EQ.2.0R.IER.EQ.3) WRITE(OUTDEV,200) IER
CALL BESJ(XV¥,1,BJ1,.001,IER)
IF (IER.EQ.2.0R.IER.EQ.3) WRITE(OUTDEV,200) IER
CALL BESY(XK,0,BYO,IER)
IF (IER.GE.2) WRITE(OUTDEV,20l) IER
CALL BESY(X¥,1,BYl,IER)
IF (IER.GE.2) WRITE(OUTDEV,201) IER
C=BJ1-(0.,1.)*BY1
P=(0.,1.)*(BJ0-(0.,1.)*BY0)
Cl=C+P
c=c/cl
GO TO 20
CONTINUE
Cc=(1.,0.)
CONTINUE
GO TO (30,30,40,30,40), KEY
CONTINUE
CL=PI*(XK~2.*(0.,1.)*C)
GO TO 50
CONTINUE
CL==PI*(2.*C+(0.,1.)*XK*(1.4C))
CONTINUE
CALCULATE COMPLEX CIRCULATION
IF (XK.NE.0.0) GO TO 60
GL=2,*PI*(1.,0.)
GO TO 90
CONTINUE
DX1=.02
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vY=(0.,1.)
N=100
P=(0.,0.)
XI=-1.+.5*DXI
no 80 I=1,N
IF (KEY .EQ. 3 .OR. KEY .EQ. 5) VY=1.4+(0.,1.)*XK*XI
IF (I .EQ. N) GO TO 70
P1=SQRT((1.+XI)/(1.=XI))*VYy
P=P+P1
CONTINUE
XI=XI+DXI
CONTINUE
IF (KEY .EQ. 3 .OR. KEY .EQ. 5) VY=1.4(0.,1.)*XK
P=P*DXI+2.*SQRT(2.*DXI)*VY
GL=4,*P*CEXP( (0. ,~1.)*XK)/(PI*XK*Cl)
CONTINUE
IF (KEY.EQ.1.0R.ICALL.EQ.1) RETURN
CALCULATE CHORDWISE PRESSURE
P=P*(1.-C)
VY=(0.,1.)
D5=SQRT(DLXI)
R(11)=(0.,0.)
DO 130 J=2,10
D1=SQRT((1.-X(J))/(1.4X(J)))
D2=SQRT(1.-X(J)*X(J))
D4=SORT(1.-X(J))
R1=(0.,0.)
R2=(0.,0.)
XI=-1.+DXI/2
DO 120 I=1,N
IF (ABS(X(J)=XI) .LT. .001) GO TO 110
D3=SQRT(1.-XI*XI)
FUN=.5*ALOG((1.~X(J)*XI+D2*D3)/(1.-X(J)*XI-D2*D3))
IF (KEY .EQ.3 .OR. KEY .EQ. 5) VY=1.+(0.,1.)*XK*XI
IF (I .EQ. N) GO TO 100
P1=SQRT((1.+XI)/(1.-XI))*VY
R1=R1+P1/(X(J)-X1)
CONTINUE
R2=R2+FUN*VY
CONTINUE
XI=XI+DXI
CONTINUE
VY=(0.,1.)
IF (KEY .EQ. 3 .OR. KEY .EN. 5) VY=1.+(0.,1,)*xXK
D6=1.414*%ALOG((D4-D5)/(D4+D5)) /D4
R1=R1*DXI+D6*VY
R(J)=(0.,~1.)*XK*R2
R(J)=R(J)*DXI+D1*R1
R(I)=(R(J)+P*D1)*2. /PI
CONTINUE
R(1)=+15.*CL-4.*R(2)=2.*%R(3)~4.*R(4)-2.*R(5)
R(1)=R(1)-4.*R(6)~2.*R(7)=4.*R(8)~2.*R(9)-4.*R(10)
RETURN
FORMAT (* O***J ARNING*** ERROR RETURN FROM BESJ - IER

FORMAT (* 0% *#J ARNING*** ERROR RETURN FROM BESY - IER
END

,12/)
“,12/)
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SUBROUTINE COLECT (SU:f,SUM1)
SUBR FOR BLADE SUMMATION
CoMMON /INPUT/ CO,SI,BR,TE,R,PITCH,A0,AS,UT,US,W,FREQ,RHO,
1 M,MM,NB, BETAG, AR
DIMENSION C€0(21),S1(21),BR(21),TE(21),R(21),AS(21),RETAG(21)
DTMENSION A0(21),UT(21),PITCH(21),AR(21)
cerfoN 1,J,11,JJ,RI,RK,N
REAL N
COMON /B/ AA,FONTRL
COMMON /D/ S1,KON,A,B
COMPLEX*16 SUM1
COMPLEX XINT,SUM
REAL*8 AM,D
DATA P1/3.14159265/
SUM=(0.,0.)
sti11=(0. ,0.)
B=AS(II)*BR(II)~AS(JJI)*BR(JIJT)
S1=AS(II)-AS(JJ)
DO 20 *iC=1,NB
A1=2,*PI*(MC-1) /NB
A=-S]+AM
IF (KON .GT. 1) GO TO 10
ALFA=SIN(A)
IF (ALFA .EQ. 0. .AND. B .EQ. 0.) GO TO 20
AA=0,
CALL FUNCT (D,0.)
SUM1=SUM1+D
GO TO 20
CONTINUE
CALL FETCH (XINT)
SUM=SUM+XINT
CONTINUE
RETURN
END

SUBROUTINE FUNCT (D,S)
SUBR FOR VNBT KERNEL
corfoN /INPUT/ CO,SI,BR,TE,R,PITCH,A0,AS,UT,US,W,FREQ,RIO,
1 M,MH1,NB, BETAG, AR
DIMENSION C0(21),SI(21),BR(21),TE(21),R(21),AS(21),BETAG(21])
DIMENSION A0(21),UT(21),PITCH(21),AR(21)
CoMMON 1,J,11,JJ,RI,RK,N
REAL N
COMMON /B/ AA,XONTRL
COMMON /D/ X1,KON,A,B
REAL*8 S2,CC,SS,D,F
S1=S+AA
$2=B~BR(JJ)*S1*1.DO
CC=DNCOS(A+S1*1,D0)
SS=DSIN(A+S1%1,D0)
D=DSQRT(S2*S2+RI*RI+RK*R¥.~2 . *RI*RK*CC)
IF (KON .GT. 0) GO TO 10
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D=1./(D*((RI*SS)**2+52%52))

D=D*(RK~-RI*CC)

D=D*(RI*CO(II)*SS-S2*ST(II)*CC)

RETURN
CONT INUE
D=1./(D**3)
IF (KONTRL .NE. 3) RETURN
D=D*s1
RETURN
END

SUBROUTINE FETCH (XINT)

COMMON /INPUT/ CO,SI,BR,TE,R,PITCH,AQ,AS,UT,US,H,FREQ,RHO,

1 M,M1,NB,BETAG, AR
DIMENSION €0(21),SI1(21),BR(21),TE(21),R(21),AS(21),BETAG(21)
DIMENSION AO(21),UT(21),PITCH(21),AR(21)

COMMON 1,J,I1,JJ,RI,RK,N
REAL N

COMMON /A/ EPS,LIIT,NORD
COMMON /B/ AA,KONTRL
COMION /D/ S1,KON,A,B
COMPLEX XINT,XI,EINT,EX1,EX2
DIMENSION ALFA(S),EINT(5)
DATA PI/3.14159265/
ALFA(1)=N
ALFA(2)=N-1
ALFA(3)=N-1
ALFA(4)=N+1
ALFA(5)=N+1
DO 10 JK=1,5

AB=—ALFA(JK)

CALL FORINT(AB,XI,l)

IF (JK .LT. 3 .OR. JK .EQ. 4) KONTRL=1

IF (JK .EQ. 3 .OR. JK .EQ. 5) KONTRL =3
IF (ALFA(JK).LT.0.5) CALL FETCHO (XI,AB)
IF (ALFA(JK).GE.0.5) CALL FETCHl (XI,ARB)

EINT(JK)=XI
CONTINUE
EX1=CEXP ((0.,1.)*A)
EX2=1./EX]

EC=RI*CO(II)*CO(JJ)-RK*SI(II)*ST(JJ)
ES=RI*SI(II)*ST(JJ)-RK*CO(IT1)*C0(JJ)

XINT=ES*EINT(1)

XINT=XINT+. 5%(EC-(0. ,1.)*SI(I1)*CO(JJ)*B)*EX1*EINT(2)
XINT=XINT+.5%(0.,1.)*ST(II)*CO(JJ)*BR(JJ)*EXI*EINT(3)
XINT=XINT+. 5* (EC+(0. ,1. )*SI(II)*CO(JJ)*B)*EX2*EINT(4)
XINT=XINT-.5%(0.,1.)*SI(II)*CO(JJI)*BR(JI)*EX2*EINT(5)
XINT=XINT*SQRT(RK*RK+BR(JJ)*BR(JJ))

RETURN
END
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SUBROUTINE FETCHO (XINT,ALFA)
COMMON /DEVICE/ INFILE,OUTDEV

INTEGER OUTDEV
CoMON /INPUT/ CO,SI,BR,TE,R,PITCH,AO,AS,UT,US,W,FREQ,RHO,
1 M,MM,NB,BETAG, AR

DIMENSION C€0(21),SI(21),BR(21),TE(21),R(21),AS(21),BETAG(21)

DIMENSION A0(21),UT(21),PITCH(21),AR(21)
COMON 1,J,I1,JJ,RI,RI,N

REAL N
COMMON /A/ EPS,LIMIT,NORD
COMMON /B/ AA,KONTRL
COMMON /D/ S1,KON,A,B
COMPLEX XINT,XI,F1
DATA PI/3.14159265/
AA=O.
DS1Q=P1/2.
XINT=(0.,0.)
SDEL=DS1Q
DIFF=A+S1
IF (I .EQ. J .AND. DIFF .EQ. 0.) SDEL=PI/8.
ME=0
CONTINUR
CALL RRINT (SDEL,1,XI,40,ALFA)
XINT=XINT+XI
AA=AA+SDEL
IF (SDEL .NE. DS1Q) SDEL=DS1Q
ERR=CABS(XI)/CABS(XINT)
IF (ERR.LE.0.05) GO TO 20

MR="{K+1

IF (MK.LE.20) GO TO 10

JRITE (OUTDEV,1) ERR

FORMAT (" 0***J ARNINC*** CONVERGENCE NOT REACHED IN FETCHO’,
1 ‘ ERR = ’,E12.6)
CONTINUE
RETURN
END

SUBROUTINE FETCH1(XINT,ALFA)
CoMMON /INPUT/ CO,SI,BR,TE,R,PITCH,AQ,AS,UT,US,¥,FREQ,RHO,
1 M,MM,NB,BETAG, AR
DIMENSION CO(21),SI(21),BR(21),TE(21),R(21),AS(21),BETAG(21)
DIMENSION A0(21),UT(21),PITCH(21),AR(21)
COMMON I1,J,II1,JJ,RI,RK,N
REAL N
COMMON /A/ EPS,LIMIT,NORD
COMMON /B/ AA,KONTRL
COMMON /D/ S1,KON,A,B
COMPLEX XINT,XI,Fl,XIADD
DATA PI1/3.14159265/
AA=O.
DS1Q=PI/(2.*ABS(ALFA))
DIFF=A+S1
SDEL=DS1Q
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629 IF(I .EQ. J .AND. DIFF .EQ. 0.) SDEL=DS1Q/4.

630 CALL RRINT (SDEL,1,XINT,40,ALFA)
631 AA=AA+SDEL

632 IF (SDEL .EQ. DBS1Q) GO TO 10

633 CALL RRINT (SDEL,3,XI,10,ALFA)
634 AA=AA+3.*SDEL

635 XINT=XINT+XI

636 10  CONTINUE

637 EPS=.1

638 NORD=3

639 LIMIT=30

640 CALL FORINT(ALFA,XI,2)

641 XIADD=XI*CEXP( (0. ,1.)*AA)

642 XINT=XINT+XIADD

643 RETURN

644 END

645 SUBROUTINE RRINT (DELS,NC,XINT,NP,XM)
646 C RECT RULE INT OF VNBT AND VNTT KERNELS
647 COMPLEX XINT

648 REAL*8 Q

649 DATA PI/3.14159265/

650 XINT=(0. ,0.)

651 DS=DELS/NP

652 S=.5*DS

653 DO 20 I=1,NC

654 DO 10 J=1,NP

655 CALL FUNCT(Q,S)

656 XINT=XINT+Q*CEXP( (0. ,1. )*X1{*S)
657 S=S+DS

658 10 CONT INUE

659 20  CONTINUE

660 XINT=XINT*DS

661 RETURN

662 END

663 SURBROUTINE FORINT(ALFA,XI,KEY)
664 c FOURIER TRANSFOR' TYPE INTEGRAL
665 COMMON /DEVICE/ INFILE,OUTDEV

666 INTEGER OUTDEV

667 COMMON /A/ EPS,LIMIT,NORD

668 COMPLEX XI

669 REAL*8 VN,VNI

670 DIMENSION BF(3,3),UJ(3,3),SN(30),BETA(30),A(30,30)
671 DATA P1/3.14159265E0/

672 IF (KEY.CT.0) GO TO 10

673 UJ(1,1)=1.E0/6.E0

674 UJ(2,1)=1.E0/10.EO

675 UJ(2,2)=3.E0/10.EO

676 UJ(3,1)=1.E0/14.E0
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UJ(3,2)=3.E0/14.E0

UJ(3,3)=5.E0/14.E0
BF(l,1)=.25E0/COS(PI*UJ(1,1))
BF(2,1)=.18090169943750E0/COS (PI*UJ(2,1))
BF(2,2)=.69098300562505E-1/COS(PI*UJ(2,2))
BF(3,1)=.13578349056446EO/COS(PI*UJ(3,l))
BF(3,2)=.87322923854022E-1/COS(PI*UJ(3,2))
BF(3,3)=.26893585581519E~1/C0S (PI*UJ(3,3))
RETURN

CONTINUE
IF (KEY.GT.1) GO TO 20

XSIGN=1,.EO

IF(ALFA .LT. 0.) XSICN=-1.EO
GAMA=ABS(ALFA)

RETURN

CONTINUE
P1=PI/GA1MA
X1=(0.E0,0.E0)
DO 90 KM=1,2

CC=1.E0
Cl=-1.E0
DO 70 NV=1,LIMIT
NU=NV-1
SN(NV)=0, EO
CC=CC*Cl
DO 30 II=1,NORD
ZETA=(UJ(NORD, I1)+NU+, SEO* (KM-1) )*P1
CALL FUNCT (VN,ZETA)

ZETA=ABS((—UJ(NORD,II)+NU+.SEO*(Kﬂ-l))*Pl)

CALL FUNCT (VN1,ZETA)
VN=(VN+VN1)*BF(NORD,II)
SN(NV )=SN(NV )+VN
CONTINUE
SN(NV )==SN(NV)*CC*P1
IF (NV=4) 70,40,50
CONTINUE
BETA(1)=SN(1)+SN(2)
BETA(2)=BETA(1)+SN(3)
HL=0
A(1,1)=,5E0*(BETA(1)+BETA(2))
CONTINUE
IL=NU-1
ML=ML+1
BETA(IL+1)=BETA(IL)+SN(IL+2)
A(IL,1)=,5E0*(BETA(IL)+BETA(IL+1))
JL=IL-1
LI=IL
DO 60 KL=1,ML
A(JL,KL+1)=, 5E0* (A(JL,KL )+A(LJ,KL))
JL=JL-1
LJ=LJ-1
CONTINUE
ERR=ABS ((A(1,IL)-A(1,IL-1))/A(1,IL))
IF (ERR.LE.EPS) GO TO 80
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CONTINUE
WRITE(OUTDEV,75) ERR

FOR'AT (* 0% *%J ARNING*** CONVERGENCE NOT REACHED IN FORINT’,
1 ‘ ERR = ’,E12.6)
CONTINUE

XI=XI+CPLX(l.EOQ*(2-KM) ,XSIGN*(KM~1))
1 *(A(l,IL)-.5E0*SN(1)*(2-EM))
CONTINUE
RETURN
END

SUBROUTINE AMDTOR

COMMON /INPUT/ CO,SI,BR,TE,R,PITCH,AQ,AS,UT,US,W ,FREQ,RHO,

1 M ,MM,NB,BETAG, AR
DIMENSION €0(21),SI(21),BR(21),TE(21),R(21),AS(21),BETAG(21)
DIMENSION A0(21),UT(21),PITCH(21),AR(21)

COMMON /OUTPUT/ AMXX,DXX,AMYZ,DYZ
DIMENSION AMXX(2,2),DXX(2,2),AMYZ(2,4),DY2(2,4)

COMMON /PRINTG/ PHX,PHLP,PHLM,PPLP,PPLM,PHLPA,PHLMA,PPLPA,PPLMA
COMPLEX PHX,PHLP,PHLM,PPLP,PPLM,PHLPA,PHLMA, PPLPA,PPLMA
DIMENSION PHX(10),PHLP(10),PHIM(10),PPLP(10),PPLH(10)
DIMENSION PHLPA(10),PHL}MA(10),PPLPA(10),PPLMA(10)

COMPLEX F44,INTCRD,INTGRL

DIMENSION INTGRD(10)

H=(RCM)-R(1))/1M

DO 10 I=1,MM
II=2%T
INTGRD(I)=SIN(BETAG(II))**2*R(II)**3*PHX(I)

10 CONTINUE

CALL MODSI1(INTGRD,INTGRL,H,*M)

T44=NB*INTGRL

A1XX(1,1)=(1./(FREQ*FREQ) ) *REAL (F44)

DXX(1,1)=(~1./FREQ)*ATMAG(F44) '

RETURN

END

SUBROUTINE AMDAXL

CoMMON /INPUT/ C€O,SI,BR,TE,R,PITCH,AO,AS,UT,US,W,FREQ,RHO,

1 M,MM,NB,BETAG, AR
DIMENSION C0(21),SI(21),BR(21),TE(21),R(21),AS(21),BETAG(21)
DIMENSION A0(21),UT(21),PITCH(21),AR(21)

COMMON /OUTPUT/ AMXX,DXX,AMYZ,DYZ
DIMENSION AMXX(2,2),DXX(2,2),AMY%(2,4),DYZ2(2,4)

COMMON /OPTION/ ITOR,IAXL,ILAT,METHOD

COMMON /PRINTG/ PHX,PHLP,PHLM,PPLP,PPLM,PHLPA,PHLMA,PPLPA,PPLMA
COMPLEX PHX,PHLP,PHLM,PPLP,PPL!M,PHLPA,PHLMA,PPLPA,PPLMA
DIMENSION PHX(10),PHLP(10),PHL:1(10),PPLP(10),PPLM(10)
DIMENSION PHLPA(10),PHLMA(10),PPLPA(10),PPLMA(10)

COMPLEX Fl1,F41,INTGRD,INTGRL

DIMENSION INTGRD(10)

H=(R(M)-R(1)) /MM

po 10 I=1,MM
II=2%1
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INTGRD(I)=COS(BETAG(II) )**2*R(I1)*PHX(I)
CONTINUE
CALL '1ODSTM(INTGRD,INTGRL,H,MM)
F11=NB*INTGRL
AMXX(2,2)=(1./(FREQ*FREQ) ) *REAL(F11)
DXX(2,2)=(-1./FREQ)*ATMAC(F11)
IF(ITOR.EQ.0) RETURN
DO 20 I=1,it
II=2*1
INTGRD(I)=COS(BETAG(II))*SIN(BETAG(II))*R(II)**2*PHX (1)
CONTINUE
CALL MODSTM(INTGRD,INTGRL,H,MM)
F41==NB*INTGRL
AMXX(1,2)=(1./(FREQ*FREQ) )*REAL(F41)
DXX(1,2)=(-1./FREQ)*ATMAG(F41)
RETURN
END

SUBROUTINE AMDLAT

CO:MON /INPUT/ CO,SI,BR,TE,R,PITCH,AO0,AS,UT,US,W,FREQ,RHO,

1 {,MM,NB, BETAG, AR
DIMENSION C0(21),SI(21),BR(21),TE(21),R(21),AS(21),BETAG(21)
DIMENSION A0(21),UT(21),PITCH(21),AR(21)

COMMON /OUTPUT/ AMXX,DXX, AMYZ,DYZ
DIMENSION AMXX(2,2),DXX(2,2),AMYZ(2,4),DYZ(2,4)

CO'MON /PRINTG/ PHX,PHLP,PHLM,PPLP,PPLM,PHLPA,PHL1A,PPLPA, PPLMA
COMPLEX PHX,PHLP,PHLM,PPLP,PPLM,PHLPA, PHLMA,PPLPA, PPLHA
DIMENSION PHX(10),PHLP(10),PHLM(10),PPLP(10),PPLI(10)
DIMENSION PHLPA(10),PHLMA(10),PPLPA(10),PPLMA(10)

COMPLEX J,F55,F52,F22,F65,F62,F32,INTGRD, INTGRL

DIMENSION INTGRD(10),G(10),AA(10),BB(10),cc(10),n1(10)

DIMENSION C0G(10),SIG(10),A(10),B(10),c(10),D(10),E(10),F(10)

H=(R(1)-R(1)) /MM

J=C1PLX(0.0,1.0)

DO 5 I=1,1
II=2%*1
COG(I)=COS(BETAG(II))

SIG(I)=SIN(BETAG(II))
X0=R(II)*AS(II)*SIG(I)/COG(I)+AR(II)*R(II)
A(T)=R(I1)**2*C0G(I)
B(I)=XO0*R(II)*SIG(I)
C(I)=X0*SIG(I)*C0oG(I)
D(I)=R(II)*COG(I)**2
E(I)=R(IL)**2*SIG(I)**2/C0OG(1)
F(I)=R(II)*SIG(I)**2
G(I)=R(II)**2*D(I )+X0*B(I)*SIG(I)
AA(I)=XO*E(I)*SIG(I)
BB(I)=F(I)*R(II)**2
CC(I)=B(IL)*SIG(L)**2
DD(I)=X0*C(I)*SIG(I)+A(I)

CONTINUE

DO 10 I=1,M1
II=2*]

INTGRD (I )=G(I)*PHLM(I)+(AA(I)~-J*BB(I))*PHLMA(I)
1 +(CC(I)+I*DD(I))*PPLM(I)+(E(I)+I*CC(I))*PPLHA(I)+G(I)*PHLP(I)
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2 +(AA(I)+J*BB(I))*PHLPA(I)+(CC(I)-J*DD(I))*PPLP(I)
3 +(E(1)-J*CC(1))*PPLPA(I)
10 CONTINUR
CALL MODSTM(INTGRD, INTGRL,H,M1)
F55=NB/4. *INTGRL
AMYZ(1,1)=(1./(FREQ*FREQ) )*REAL(F55)
DYZ(1,1)=(~1./FREQ)*AIMAG(F55)
DO 20 I=1,Mf
11=2%1
INTGRD(I)=STG(IL)*((A(I)-J*B(1))*PHLM(I)=-J*E(I)*PHLMA(I)
1 +(C(I)+I*D(1))*PPLM(I Y+F(I)*PPLMA(I)+(A(I)+I*B(1I))*PHLP(1)
2 +J*E(I)*PHLPA(I)+(C(I)=J*D(1))*PPLP(I)+F(I)*PPLPA(I))
20 CONTINUE ]
CALL MODSIM(INTGRD,INTGRL,H,M1)
F52=NB/4,*INTGRL
AMYZ(1,2)=(1./(FREQ*FREQ) )*REAL(F52)
DYZ(1,2)=(-1./FREQ)*AIMAG(F52)
DO 30 1=1,"M
I1I=2*%1
INTGRD(I)=R(II)*(SIG(I)*#*2)*(PHLM(I)+(J*COG(I)/R(II))*
1  PPLM(I)+PHLP(I)~(J*COG(I)/R(IL))*PPLP(1))
30 CONTINUE
CAILL MODSTM(INTGRD, INTGRL,H,M1)
F22=NB/4.*INTGRL
AMYZ(2,2)=(1./(FREQ*FREQ) ) *REAL(F22)
DYZ(2,2)=(~1./FREQ)*AIMAG(F22)
DO 40 I=1,M4
II=2*1
INTGRD (I)=J*G(1)*PHLM(I)+(BB(I)+IJ*AA(T))*PHLMA(I)

1 =(DD(I)-J*CC(1))*PPLM(I)~(CC(I)~J*E(I))*PPLMA(I)~J*G(I)*PHLP(I)

2 +(BB(I)-J*AA(I))*PHLPA(I)~(DD(I)+J*CC(I))*PPLP(L)
3 -(CC(I)+J*E(1))*PPLPA(I)
40 CONTINUE
CALL MODSTIM(INTGRD, INTGRL,H,if'1)
F65=NB/4. *INTGRL
A1YZ(1,3)=(1./(FREQ*FREQ) )*REAL(F65)
DYZ(1,3)=(~1./FREQ)*AIMAG(F65)
DO 50 I=]1,\
1I=2%]1
INTGRD(I)=SIG(I)*((B(I)+J*A(I))*PHL{(I)+E(I)*PHIMA(I)
1 ~(D(I)-J*C(1))*PPLM(I)+J*F(I)*PPLMA(I)+(B(1)~J*A(I))*PHLP(I)
2  +E(I)*PHLPA(I)-(D(I)+J*C(I))*PPLP(1)~-J*F(I1)*PPLPA(L))
50 CONTINUE
CALL MODST{(INTGRD, INTGRL ,H, 1)
F62=NB/4.*INTGRL
AMYZ(1,4)=(1./(FREQ*FREQ) ) *REAL(F62)
DYZ(1,4)=(~1./FREQ)*ATMAG(F62)
DO 60 I=1,M1
II=2*]
INTGRD(I)=R(II)*(SIG(I)**2)*(J*PHLM(I)~(COG(I)/R(IL1))*
1 PPLM(I)-J*PHLP(I)-(COG(I1)/R(II))*PPLP(1))
60 CONTINUE
CALL MODS IM(INTGRD, INTGRL,H,MM)
F32=NB/4.* INTGRL
AMYZ(2,4)=(1./(FREQ*FREQ))*REAL(F32)
DYZ(2,4)=(~1./FREQ)*AIMAG(F32)
RETURN
END
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SUBROUTINE MODSI(INTGRD, INTGRL,H,M1)
INTEGRATION BY A MODIFIED SIMPSON’S RULE
COMPLEX INTEGRAND GIVEN AT THE MIDPOINTS OF MM
SEGMENTS OF WIDTH H. VALUE AT LOWER LIMIT (HUB)
OBTAINED BY QUADRATIC EXTRAPOLATION. VALUE AT
UPPER LIMIT (TIP) ASSUMED ZERO.
COMPLEX INTGRD,INTGRL
DIMENSION INTGRD(MM),A(10)
DATA A/25.,25.,8*%0,0/
AQCnM)=27.
A(M-1)=17,
IF(*4.EQ.4) GO TO 20

NN=(D1-4)/2

DO 10 N=1,NN

A(2*%N+1)=16.
A(2%N+2)=32,

CONTINUE
CONTINUE
INTGRL=CH{PLX(0.0,0.0)
DO 30 I=1,MM

INTGRL=INTGRL+A(I)*INTGRD(I)
CONTINUE
INTGRL=INTGRL*H/24,
RETURN
END

SUBROUTINE PRINT
COMMON /DEVICE/ INFILE,OUTDEV
INTEGER OUTDEV

COPMON /INPUT/ CO,SI,BR,TE,R,PITCH,A0,AS,UT,US,W,FREQ,RHO,

1 M, 01, NB, BETAG, AR

DIMENSION C0(21),SI(21),BR(21),TE(21),R(21),AS(21),BETAG(21)

DIMENSION AO0(21),UT(21),PITCH(21),AR(21)
COM:ON /OUTPUT/ AMXX,DXX, AMYZ,DYZ

DIMENSION AMXX(2,2),DXX(2,2),MMYZ(2,4),DYZ(2,4)
COMMON /OPTION/ ITOR,IAXL,ILAT,METHOD

COMMON /CORR/ JXXLSC, CXXLSC,MXXLSC, BRXLSC, BCXLSC, BXXLSC,
1 JYYLSC, CYYLSC,MYYLSC, BRYLSC, BCYLSC, BYYLSC

REAL JXXLSC,MXXLSC,JYYLSC,MYYLSC
REAL JXX,MXX,JYY,HYY,JZY MZY
REAL JXXND,MXXND,JYYND,MYYND,JZYND, {ZYND
DATA P1/3.14159265/
RHOSI=RH0*515.198
DSI=R(1)*2,.%*,0254
RPS= /(2.*PI)
IF (METHOD.EQ.1) CALL LSCORR
IF(ITOR.EQ. 0. AND.IAXL.EQ.0) GO TO 30
IF (ITOR .EQ. 1 .AND. IAXL .EQ. 0) GO TO 20
IF (ITOR .EQ. 1 .AND. IAXL .EQ. 1) GO TO 10
WRITE(OUTDEV,1010)
MXX=AMXX(2,2)*175.133
BXX=DXX(2,2)*175,133
- MXXND=MXX/(RHOSI*DSI**3)
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BRZ=DYZ(1,3)*0,11299
BCZ=DYZ(1,4)*4,44840
BZY=DYZ(2,4)*175.,133
JYYND=JYY/(RHOSI*DSI**5)
CYYND=CYY/(RHOST*DSI**4)
MYYND=MYY/(RHOSI*DSI**3)
JZYND=JZY/(RHOSI*DS I**5)
CZYND=CZY/(RHOSI*DNSI**4)
MZYND=MZY/(RHOSI*DSI**3)
BRYND=BRY/ (RHOSI*RPS*DSI#*5)
BCYND=BCY/(RHOSI*RPS*DSI**4)
BYYND=BYY/(RHOST*RPS*DSI#**3)
BRZND=BRZ/(RHOSI*RPS*DSI**5)
BCZND=BCZ/ (RHOSI*RPS*DST**4)
BZYND=BZY/(RHOSI*RPS*DST*#*3)
WRITE(OUTIDEV,1070)
WRITE(OUTDEV,1071)AMYZ(1,1),JYY,JYYND
IF (METHOD.EQ.1) WRITE(6,1065) JYYLSC
WRITE(OUTDEV,1072)AMYZ(1,2),CYY,CYYND
IF (METHOD.EQ.1) WRITE(6,1065) CYYLSC
WRITE(OUTDEV,1073)AMYZ(2,2) ,MYY,MYYND
IF (METHOD.EQ.1) WRITE(6,1065) MYYLSC
WRITE(OUTDEV,1074)DYZ(1, 1) BRY, BRYND
IF (METHOD.EQ.1) WRITE(6 1065) BRYLSC
IRITE(OUTDEV,1075)DYZ(1, 2) BCY,BCYND
IF (METHOD.EQ.1) JRILE(6 1065) BCYLSC
WRITE(OUTDEV,1076)DYZ(2,2),BYY,BYYND
IF (WETHOD.EQ.I) WRITE(6,106S) RYYLSC
WRITE(OUTDEV,1080)
WRITE(OUTDEV,1081)A1YZ(1,3),J2Y,JZYND
WRITE(OUTDEV,1082)AMYZ(1,4),CZY,CZYND
WRITE(OUTDEV,1083)AMYZ(2,4) ,MZY ,MZYND
WRITE(OUTDEV,1084)DYZ(1,3),BRZ,BRZND
WRITE(OUTDEV,1085)DYZ(1,4),BCZ,BCZND
WRITE(OUTDEV,1086)DYZ(2,4),BZY,BZYND
40  CONTINUE
WRITE(OUTDEV,1100)
1000 FORMAT(’2***RESULTS FOR THE TORSIONAL CASE***’ /)
1010 FORMAT('2***RESULTS FOR THE AXIAL CASE**%‘ /)
1020 FORMAT(’2***RESULTS FOR THE LATERAL CASF***’ A1)
1030 FORMAT(’2***RESULTS FOR THE COUPLED TORSIONAL AND AXIAL CASE***’/)
1050 FORMAT(” OTORSIONAL ADDED *MASS = ‘ ,El2. 6 £ LBF—IN—SEC**Z /' HOMENT
10F INERTIA = "JE12.6," N-M-S*%2‘/’ , ‘M&4’ (13X, *,E12.6,
2’ RHO*D**5°)
1051 FORMAT(’OTORSIONAL/AXIAL’,6X,’= ‘ E12.6,’ LBF-SEC**2‘/’ INERTIA CO

1UPLING = ",E12.6," N=5**2°/’ ’ 5% ‘M41‘,13X,’= ‘,El12.6,
2’ RHO*D*%*4’)
1052 FORMAT( ‘0OAXIAL ADDED ASS = ’ El2.6,° LBF- SEC**2/IN’/’ *,21X,

1= * E12.6," N-S**2/M°/’ ',5X,'H11',13X,' ,E12.6,’ RHO*D**3 )
1053 FORMAT(’OTORSIONAL DAMPING = ',F12 6, LBF IN—SEC /021X, = 1
1,E12.6," N-1-S’/’ ’,5X,’C44’,13X,’= E12 6,’ RUHO¥N*D**5‘ )
1054 FORMAT(’OTORSIONAL/AXIAL = ‘,E12.6,” LRF-SEC’/’ VELOCITY COUP
1LING = " E12.6,° N-S°/’ ',5X,'C41’,13X,'= ",E12.6,
2’ RHO*N*D*#*4‘)
1055 FORMAT(’OAXIAL DAMPING’,8X,’= ‘ E12.6,’ LBF-SEC/IN’/’ ",21X,’= ’ F
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BXXND=BXX/(RHOSI*NPS*DSI**3)
WRITE(OUTDEV,1052)AMXX(2,2) ,MXX ,MXXND
IF (METHOD.EQ.1) WRITKE(6,1060) MXXLSC
WRITE(OUTDEV,1055)DXX(2,2),BXX, BXXND
IF (METHOD.EQ.1l) WRITE(6,1060) BXXLSC

GO TO 30
CONTINUE
WRITE(OUTDEV,1030)
JXX=AMXX(1,1)*0.11299
CXX=AMXX(1,2)*4, 44840
MXX=41XX(2,2)*175.133
BRX=DXX%(1,1)*0,11299
BCX=DXX(1,2)%*4, 44840
BXX=DXX(2,2)*175.133
JXXND=JXX/ (RHOSI*DST**5)
CXXND=CXX/(RHOSI*DST**4)
MXXND=MXX/(RHOSI*DSI**3)
BRYXND=BRX/ (RHOSTI*RPS*DSI**5)
BCXND=RBCX/(RHOSI*RPS*DSI**4)
BXXND=BXX/(RHOSI*RPS*DSI**3)
WRITE(OUTDEV,1050) AMXX(1,1),JXX,JXXND
IF (METHOD.EQ.1) WRITE(6,1060) JXXLSC
WRITE(QUTDEV,1051)AMXX(1,2),CXX, CXXND
IF (METHOD.EQ.1) WRITE(6,1060) CXXLSC
YRITE(OUTDEV,1052) A1XX(2,2) ,MXX ,MXXND
IF (METHOD.EQ.l) WRITE(6,1060) MXXLSC
WRITE(OUTDEV,1053)DXX(1,1),BRX, BRXND
IF (METHOD.E).1) WRITE(6,1060) BRXLSC
WRITE(OUTDEV,1054)DXX(1,2),BCX,BCXND
IF (METHOD.EQ.1) WRITE(6,1060) BCXLSC
WRITE(OUTDEV,1055)DXX(2,2),BXX, BXXND
IF (METHOD.EQ.1) WRITE(6,1060) BXXLSC

FORIAT(6E12.6)

GO TO 30
CONTINUE
WRITE(OUTDEV,1000)
JXX=AMXX(1,1)*0.11299
BRX=DXX(1,1)%0.11299
JXXND=JXX/(RHOSI*DSI**5)
BRXND=BRX/(RHOSI*N*DSI**5)
WRITE(OUTDEV,1050)AMXX(1,1),JXX,JXXND
IF (METUOD.EQ.1) WRITE(6,1060) JXXLSC
WRITE(OUTDEV,1053)DXX(1,1),BRX, BRXND
IF (METHOD.EQ.1) WRITE(6,1060) BRXLSC

CONTINUE
IF (ILAT.EQ.0) GO TO 40

WRITE(OUTDEV,1020)
JYY=AMYZ(1,1)*0.11299
CYY=AMYZ(1,2)*4.44840
MYY=AMYZ(2,2)*175.133
JZY=AMYZ(1,3)*0.11299
CZY=AMYZ(1,4)*4, 44840
MZY=AMYZ(2,4)*175.133
BRY=DYZ(1,1)*0.11299
BCY=DYZ(1,2)*4.44840
BYY=DYZ(2,2)*175.133
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1105
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112.6,° N-S/M°/’ *,5X,°C11°,13X,’= “,E12.6,° RHO*N*D**3’)

1060 FORMAT(8X,‘LS CORRECTION = ‘,E12.6/)

1065 FORMAT(6X,‘LS CORRECTION = ‘,E12.6/)

1070 FORMAT(’-*** FORCE PARALLEL TO MOTION ***’ /)

1071 FORMAT(’OLATERAL ADDED MASS = ’,E12.6,’ LBF-IN-SEC**2’/’ MOMENT OF
1 INERTIA = ‘,E12.6," N-M=-S**2°/’ ’ 5% “155’,11X,’= ‘,E12.6,
2’ RHO*D**5’)

1072 FORMAT('OLATERAL INERTIA = ‘ E12.6,’ LBF-SEC**2’/’ COUPLING’,l1l
1X,’= ’,E12.6,’ N=-S**2°/’ ‘ 5X,’M52°,11X,’= ‘,E12.6,’ RHO*D**4’)

1073 FORMAT(’OLATERAL ADDED MASS = ‘,E12.6,° LBF-SEC**2/IN‘/’ ’,19X,’=
1°,E12.6," N-S**2/M°/’ ’ 5X,‘M22°,11X,’= ’,E12.6,° RHO*D**3’)

1074 FORMAT(’OLATERAL ROTATIONAL = ‘,E12.6,° LBF-IN-SEC’/’ DAMPING’,12X
1,’= ’,E12.6,” N=M-S°/’ 7,5%X,’C55’,11X,’= ‘,E12.6,’ RHO*N*D**5’)
1075 FORMAT('OLATERAL VELOCITY = ‘,E12.6,” LBF-SEC’/’ COUPLING’,1lX,’

1= ' ,E12.6,’ N-S8’/’ ’,5X,’C52’,11X, = “ E12.6,° RHO*N*D**4’)
1076 FORMAT(’OLATERAL LINEAR = ‘,E12,6,’ LBF-SEC/IN’/’ DAMPING',12X
1,’= “,E12.6,” N-S/M’/’ ’,5X,°C22’,11X, = ‘,E12.6,’ RHO*N*D**3’)
1080 FORMAT(’~#*** FORCE PERPENDICULAR TO MOTION **%*‘ /)
1081 FORMAT('OLATERAL INERTIA = ‘“ E12.6,’ LBF-IN-SEC**2’/’ COUPLING’
1,11X,= “,E12.6, " N=M-§**2°/° ‘ 5¥ ‘M65’,11X,’= ‘,El2.6,
2’ RHO*D**5°/)

1082 FORMAT(’OLATFRAL INERTIA = ‘ El12.6," LBF-SEC**2’/’ COUPLING’,ll
1X,’= ‘,E12.6,’ N-S**2°/’ ‘ 5X,‘M62’,11X, = ‘,E12.6,’ RHO*D**4’/)
1083 FORMAT(’OLATERAL INERTIA = ’,E12.6,’ LBF-SEC**2/IN’/’ COUPLING’

1,11X,’= " E12.6," N-S**2/M°/° ‘ 5X,’M32’,11X,’= ‘,El2.6,
2’ RHO*D**3’)
1084 FORMAT(’OLATERAL VELOCITY = ‘,E12.6,° LBF-IN-SEC’/’ COUPLING’,
111X,’= “,E12.6," N-M-S'/’ *,5X,°C65’,11X,’= ’ E12.6,
2’ RHO*N*D**5°/)

1085 FORMAT(’OLATERAL VELOCITY = ‘,El12.6,’ LBF-SEC’/’ COUPLING’,11X,’
1= ‘,E12.6,° N-S°/’ ’,5X,’C62',11X, = ' E12.6,’ RHO*N*D**4’/)
1086 FORMAT(’OLATERAL VELOCITY = ‘,E12.6,” LBF-SEC/IN’/’ COUPLING’,

111%,’= ’,E12.6," N-S/M’/" ’,5%,7C32°,11X,’= ’,Fl12.6,
2° RHO*N*D**3‘/)
1100 FORMAT('~**kkkkkkkkkkhkrkkhkhkkkkhkkk’ [///)
RETURN
END

SUBROUTINE LSCORR

CALCULATES LIFTING-SURFACE CORRECTIONS AS NEEDED

COMMON /INPUT/ CO,SI,BR,TE,R,PITCH, A0, AS,UT,US,V¥,FREQ,RHO,

1 M,MM,NB, BETAG, ARR “
DIMENSION cO(21),81(21),BR(21),TE(21),R(21),AS(21),BETAG(21)
DIMENSION A0(21),UT(21),PITCH(21),ARR(21)

COMMON /OPTION/ ITOR,IAXL,ILAT,METHOD

COMMON /CORR/ JXXLSC,CXXLSC,MXXLSC,BRXLSC,RCXLSC,BXXLSC,

1 JYYLSC,CYYLSC,MYYLSC,BRYLSC,BCYLSC, BYYLSC
REAL JXXLSC,MXXLSC,JYYLSC,MYYLSC

DIMENSION SM(21)

DATA PI/3.14159265/

CALCULATE ASPECT RATIO OF BLADES

MMM=—1



1109 SM(1)=1,

1110 s(i1)=1.

1111 H=(RQ1)=-R(1)) /M1

1112 DO 5 K=2 M

1113 KE=(K/2)*2

1114 IF (KK.EQ.K) SM(K)=4.

1115 IF (KK.NE.K) SHM(K)=2.

1116 5 CONTINUE

1117 ARFA=0,0

1118 no 10 I=1,

1119 ARCA=AREA+SM(I)*2.*TE(I)*R(1)/COS(BETAG(I))

1120 10 CONTINUE

1121 AREA=AREA*H/3.

1122 AR=(R(M)-R(1))**2/AREA

1123 C INTERPOLATE FOR P/D AT X=0,7

1124 DO 20 I=1,M

1125 IF (R(I)/R(M).CGT.0.7) GO TO 30

1126 20  CONTINUE

1127 30 CONTINUE

1128 U=(0.7*R(C1)-R(I-1))/(R(I)-R(I~1))

1129 - DELO=PITCH(I)-PITCH(I-1)

1130 DEL1=PITCH(I+1)~PITCH(I)

1131 DEL2=(DELL-DELO) /2.

1132 PDO7=(PITCH(I~1)+U*DELO+U*(U-1)*DEL2) /(2. *R(M))

1133 A=AR .

1134 B=PDO7

1135 C=AR**2

1136 D=PDO7*AR

1137 E=PDO7*C

1138 F=1./AR

1139 G=F*#2

1140 H=F*#*3

1141 0=PDO7*F

1142 P=PDO7*G

1143 Q=PDO7*|

1144 S=AR-2,

1145 T=S**2

1146 U=PDOT7*S

1147 V=PNO7*T

1148 X=8*PDO7**2

1149 Y=G**2

1150 Z=PDO7*Y

1151 IF (ILAT.EQ.0) GO TO 40

1152 JYYLSC=~. 13964+, 89760*A+, 34086*B~0, 15307*%C=0, 36619*D+0. 070192*E
1153 CYYLSC=0,0010398+. 66020* A+, 39850*B-0,10261*C=0,34101*D
1154 1 +0.060368*E

1155 MYYLSC=, 78170+, 36153*S-,19256*U+, 17908*V~-, 161 10*T~. 061038*X
1156 BRYLSC=, 78255+.061046%A-2, 5056*H+1, 6426%Y+1. 8440%7
1157 BCYLSC=1.0121+.73647*%G-3.8691*H~-1.5129*%Q+3.0614*Y+3,0984*7
1158 BYYLSC=0. 84266+6. 784 9%G+. 12809*0~21.030*11-3, 3471 %Q+1 5. 842*Y
1159 1 +5.1905%2

1160 40  CONTINUE

1161 IF (IAXL.EQ.O.AND,ITOR.EQ.0) GO TO 70

1162 IF (IAXL.EQ.0.0R.ITOR.EQ.0) GO TO 50
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50

60

70

1

JXXLSC=, 61046+, 34674*B+, 60294*F~, 561 59*%G-. 80696*0+, 45806*P
CXXLSC=, 65348+, 28788*B+, 39805*%F-,42582*G~, 61189*0+, 33373*P
MXXLSC=.61791+,23741%B+,42253%F=, 4391 1*C~-, 46697*0+,25124%p
BRXLSC=.82761-.41165*G+1.2196*%0+6.3993*H~-13.803*%Q-6,9091*Y
+15,594*%7
BCXLSC=, 80998~-, 63077*G+1.3909*%0+7.5424*H~-15.689*%Q-8. 0097 *Y
+17.665%2
BXXLSC=, 82004—-,67190*%G+1,3913*0+7. 7476*1H-16.807*Q-8., 2798*Y
+19.121%*Z7
GO TO 70
CONTINUE
IF (ITOR.EQ.1) GO TO 60
MYXLSC=,61791+.23741*B+,42253%F~, 4391 1*G-,46697*0+, 25124%*P
BXXLSC=. 82004-,67190*G+1.3913*%0+7, 7476*H-16,807*Q-8.2793*Y
+19.121%*2
GO TO 70
CONTINUE
JXXLSC=, 61046+.34674*RB+.60294*F~,56159*%G-. 80696*0+.45806%p
BRXLSC=.82761-,41165%G+1,2196*0+6,3993%H-13.803*Q-6.9091*Y
+15, 594%7

CONT INUE
RETURN
END

SUBROUTINE BESJ(X,N,BJ,D,IER)

NAASA 10.1.003 BESJ FTN 06-24-75 THE UNIV OF MICH CO{P CTR

SUBROUTINE BESJ

PURPOSE
COMPUTE THE J BESSEL FUNCTION FOR A GIVEN ARGUMENT AND ORDER

USAGE
CALL BLSJ(X,N,BJ,D,IER)

DESCRIPTION OF PARAMETERS
X -THE ARGUMENT OF THE J BESSEL FUNCTION DESIRED
N ~THE ORDER OF THE J BESSEL FUNCTION DESIRED
BJ -THE RESULTANT J BESSEL FUNCTION
D -REQUIRED ACCURACY
IER-RESULTANT ERROR CODE WHERE
IER=0 NO ERROR
IER=]1 N IS NEGATIVE
IER=2 X IS NEGATIVE OR ZERO
IER=3 REQUIRED ACCURACY NOT OBTAINED
IER=4 RANGE OF N COMPARED TO X NOT CORRECT (SEE REMARKS)

REMARKS
N MUST RE GREATER THAN OR EQUAL TO ZERO, BUT IT 4UST BE
LESS THAN
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1251
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10

20
30

31
32

34
36
38

40

50

60
70

DO

110

120
130

20+10*X~X** 2/3  FOR X LESS THAN OR EQUAL TO 15
90+X/2 FOR X GREATER THAN 15

SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
NONE

METHOD
WECURRENCE RELATION TECHNIQUE DESCRIBED BY H. GOLDSTEIN AND
R.'{. TIALER, RECURRENCE TECHNIQUES FOR THE CALCULATION OF
BESSEL FUNCTIONS® ,.T.A.C.,V.13,PP.102-108 AND I.A. STEGUN
AND ‘1. ABRAMOWITZ, GENERATION OF BESSEL FUNCTIONS ON HIGH
SPEED COMPUTERS’ ,1.T.A.C. ,V.11,1957,PP.255~257

BJ=.0
IF(N)10,20,20

IER=1

RETURN
1F(X)30,30,31

IER=2

RETURN
IF(X-15.)32,32,34
NTEST=20.+10. *X~X** 2/3
CO TO 36
NTEST=90,+X/2.
IF(N-NTEST)40,38,38
1ER=4

RETURN

IER=0

BPREV=.0

CO'PUTE STARTING VALUE OF

IF(X-5.)50,60,60
MA=X+6.

GO TO 70
MA=1.4*X+60. /X
MB=N+IFIX(X)/4+2
HZERO=MAXO(MA,MB)

SET UPPER LIMIT OF M

MMAX=NTEST
190 M={ZERO, IMAX,3

SET F(1),F(1-1)

Fi1l1=1,0E-238

Fi1=.0

ALPHA=.0
IF(1-(:1/2)*2)120,110,120
JT=-1

GO TO 130

JT=1

M2=t{-2

C-24



1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1251
1232
1283
1284
1285
1286
1287
1288
1289
1290

1292

1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320

C

140
150

160

170
180

190

200

DO 160 K=1,M2

HE=H=K

RBMK=2, *FLOAT (K ) *FM1/X=F}1
FH=FM1

FM1=BK
IF(MK-N-1)150,140,150
BJ=BMK

JT==JT

S=1+JT

ALPHA=ALPHA+B! K *S
BMK=2.*F1/X-F!
IF(N)180,170,180

BJ=RMK

ALPHA=ALPHA+RBMK
BJ=BJ/ALPHA
IF(ABS(BJ=-BPREV)=-ABS(D*RBJ))200,200,190
BPREV=BJ

IER=3

RETURN

END

C NAASA 10.1.004 BESY FTN 06-24-75 THE UNIV OF MICH COMP CTIR

C
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SUBROUTINE BESY

PURPOSE
COMPUTE THE Y BESSEL FUNCTION FOR A GIVEN ARGUMENT AND ORDER

USAGE
CALL BESY(X,N,BY,IER)

DESCRIPTION OF PARAMETERS
X -THE ARGUMENT OF THE Y BESSEL FUNCTION DESIRED
N =THE ORDER OF THE Y BESSEL FUNCTION DESIRED
BY -THE RESULTANT Y BESSEL FUNCTION
IER-RESULTANT ERROR CODE WHERE
IER=0 NO ERROR
IER=1 N IS NEGATIVE
IER=2 X IS NEGATIVE OR ZERO
IER=3 BY HAS EXCEEDED MAGNITUDE OF 10%**70

RE!ARKS
VERY SMALL VALUES OF X MAY CAUSE THE RANGE OF THE LIBRARY
FUNCTION ALOG TO BE EXCEEDED
X MUST BE GREATER THAN ZERO
N MUST BE GREATER THAN OR EQUAL TO ZERO
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1328
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1335
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1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
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1372
1373
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10

20

30

40

50

SUBROUTINES AND FUNCTION SUBPROGRA{S REQUIRED
NONE

YTETHOD
RECURRENCE RELATION AND POLYNOMIAL APPROXIMATION TECHNIQUE
AS DESCRIBED BY A.J.M.HITCHCOCK, POLYNOMIAL APPROXIMATIONS
TO BESSEL FUNCTIONS OF ORDER ZERO AND ONE AND TO RELATED
FUNCTIONS’, M.T.A.C., V.11,1957,PP.86-88, AND G.N. YATSON,
“A TREATISE ON THE THEORY OF BESSEL FUNCTIONS”, CAMBRIDGE
UNIVERSITY PRESS, 1958, P. 62

CHECK FOR ERRORS IN N AND X

IF(N)180,10,10
IER=0
IF(X)190,190,20

BRANCH IF X LESS THAN OR EQUAL &
IF(X~4.0)40,40,30
COMPUTE YO AND Y1 FOR X CREATER THAN 4

Tl=4.0/X

T2=T1*T1
PO=((((-.0000037043*T2+.0000173565)*T2~. 0000487613 )*T2
1 +.00017343)*T2~,001753062)*T2+,3989423
Q0=((((.0000032312*T2~, 0000142078) *T2+. 0000342468 ) *T2
1 -.0000869791)*T2+.0004564324)*T2~, 01246694
P1=((((.0000042414*T2~,0000200920)*T2+, 0000580759) *T2
1 -.000223203)*T2+.002921826)*T24, 3989423
Q1=((((-.0000036594*T2+, 00001622 )*T2~,0000398708)*T2
1 +.0001064741)*T2~,0006390400)*T2+.03740084
A=2.0/SQRT(X)

B=A*T1

C=X-.7853932

YO=A*PO*S IN(C)+B*Q0*C0S(C)
Y1==A*P1*COS(C)+B*Q1*SIN(C)

GO TO 90

COMPUTE YO AND Y1 FOR X LESS THAN OR EQUAL TO 4

XX=X/2.

X2=XX*XX

T=ALOG(XX)+. 5772157
Sui=0,

TERM=T

YO=T

DO 70 L=1,15
IF(L-1)50,60,50
SUM=SU"+1. /FLOAT(L-1)



1374 60 FL=L

1375 TS=T-SUM

1376 TERM=(TERM* (-X2)/FL**2)*(1,-1./(FL*TS))
1377 70 YO=YO+TERM

1378 TERM = XX*(T-.5)

1379 suM=0.

1380 Y1=TERM

1381 DO 80 L=2,16

1382 SI=SUM+1. /FLOAT(L-1)

1383 FL=L

1384 FL1=FL-1.

1385 TS=T-SUM

1386 TERM=(TERM*(-X2)/(FL1*FL) )*((TS~.5/FL)/(TS+.5/FLl1))
1387 80 Y1=Y14TERM

1388 PI2=.6366198

1389 YO=PI2*Y0

1390 Y1=-PI2/X+P12*Y]

1391 C

1392 C CHECK IF ONLY YO OR Y1 IS DESIRED
1393 C

1394 90 IF(N-1)100,100,130

1395 C

1396 C RETURN EITHER YO OR Y1 AS REQUIRED
1397 C

1398 100 IF(N)110,120,110

1399 110 BY=Y1

1400 GO TO 170

1401 120 BY=YO

1402 GO TO 170

1403 c

1404 C PERFORH RECURRENCE OPERATIONS TO FIND YN(X)
1405 C

1406 130 YA=YO

1407 YB=Y1

1408 K=1

1409 140 T=FLOAT(2*K)/X

1410 YC=T*YB-YA

1411 IF(ABS(YC)~1.0E70)145,145,141
1412 141 1ER=3

1413 RETURN

1414 145 K=K+1

1415 IF(K-N)150,160,150

1416 150 YA=YB

1417 YR=YC

1418 GO TO 140

1419 160 BY=YC

1420 170 RETURN

1421 180 1ER=1

1422 RETURN

1423 190 1ER=2

1424 RETURN

1425 END
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NAASA 2.1,006 CLUD

SUBROUTINE CLUD(N, ADIM,A,TDIM,T,IV)

FTN-A 10-29-75 THE UNIV OF MICH COMP CTR

COIPUTES THE LU-DECOMPOSITION OF THE N X N MATRIX A USING
GAUSSIAN ELTMINATION WITH PARTIAL PIVOTING. THIS FACTOR-
IZATION '{AY BE EXPRESSED IN THE FORY
L(N=1)*P(N-1)*. .. *L(1)*P(1)*A = U,

WHERE EACH L(J) IS THE IDENTITY MATRIX EXCEPT FOR THE SUB-
DIAGONAL ELEMENTS IN COLDMM J, EACH P(J) 1S A PERMUTATION
MATRIX, AND U IS AN UPPER TRIANGULAR 'IATRIX. THIS IS THE
PREPARATORY STEP IN SOLVING A SYSTEM OF LINEAR EQUATIONS,
INVERTING A MATRIX, OR CALCULATING A DETERMIKANT. A DISCUSSION
OF GAUSSIAN ELIMINATION AND THE LU~DECOMPOSITION AND THEIR
RELATIONSHIP TO THE NUMERICAL SOLUTION OF SYSTES OF LINEAR
EQUATIONS MAY BE FOUND IN EITHER WILKINSON (1965,CHAPTER 4)

UR FORSYTHE AND MOLER (1967).

ADTI

Iv

INTEGER N,ADIM,TDIM,IV(1)
COIIPLEX A(ADII,N),T(TDTM,N)

~> ORDER OF THE MATRIX A.

~> ROYJ DIMENSION OF THE ARRAY A. BECAUSE A TS AN N X N
ATRIX, ADIM SHOULD NOT BE LESS THAN N. IF ADIM IS LESS
THAN N, THE CONTENTS OF A ARE IGNORED, AND THE *{ATRIX
TO BE FACTORED IS ASSUMED TO BE STORED IN THE AKRAY T.
SINCE ADIM MUST BE A POSITIVE INTEGER, IT IS RECOIIENDED
THAT THE ACTUAL ARGUMENTS A AND T COINCIDE WHEN ADIM IS
LESS THAN N TO AVOID TIHE INCONSISTENCY WHICH ARISES WHLN

N EQUALS 1.

=> TNO~DIMENSIONAL ARRAY CONTAINING THE N X N MATRIX TO
BE FACTORED, I.E., THE CORFFICIENT “MATRIX OF THE SYSTH
OF LINEAR EQUATIONS OR THE MATRIX TO BE INVERTED. TIHE
CONTENTS OF A ARE NOT ALTERED.

TDIYM =~> ROJ DI{ENSION OF THE ARRAY T.

<~ TWO-DIMENSIONAL ARRAY FOR RETURNING THE LU-DECOMPOSITION
OF A. THE SUBDIAGONAL ELEMENTS OF THE J=-TH COLUMN OF THE
L(J) AND THE UPPER TRIANGULAR MATRIX U ARE RETURNED IN
THE CORRESPONDING ELEMENTS OF T. 1IF ADIM IS LESS THAN N,
T "MUST CONTAILIN THE MATRIX TO BE FACTORED JHEN THIS SUB~

ROUTINE IS CALLED.

<= VECTOR OF LENGTH N DEFINING THE PER{UTATION '{ATRICES
P(J): MULTIPLICATION ON THE LEFT BY P(J) INTERCHANGEY

IF IV(J) IS NOT FQUAL TO J, THEHN

DET(A) = ~ DET(P(J)*A).

OF DET(A), IV(N) WILL CONTAIN +1 IF AN EVEN NUMBER OF

INTERCHANGES ARF. PERFORMED AND -1 IF AN ODD NUMBER. THUS

DET(A) = IV(N)*T(1,1)* ... *T(N,N).
IV(N) WILL CONTAIN O IF A IS COIPUTATIONALLY SINGULAR.

29S8 I AND IV(J).

INTEGER 1,J,i%,KP1,L
COMPLEX TMP

REAL, PIV

REAL CABS,REAL,AIMAG

AND TO AID IN THE COMPUTATION

CARS(TIP) = ABS( REAL(TMP) ) + ABS ( ADMAG(TMP) )

c-28
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IF ADT!f 1S GREATER THAN OR EQUAL TO N, THE CONTENTS OF A ARE *OVED
TO T; WHILE IF ADIM IS LESS THAN N, THIS INITIAL DATA MMOVEMENT IS
SKIPPED. SINCE THE DATA MOVEMENT TDIE IS PROPORTIONAL TO N**2 AND
THE COMPUTATION TIME PROPORTIONAL TO N**3/3, SIGNIFICAMT SAVINGS
SHOULD NOT BE EXPECTED,

OO0O0

[@ @]

IF ( ADI{ .LT. N ) GO TO 8110
DO 8100 J =1, N
DO 8100 I =1, N
8100 T(1,J) = A(1,J)
5110 CONTINUE

GAUSSTAN ELIMINATION CONSISTS OF N-1 STAGES. NURING THE V-TH
STAGE, THE PERIMUTATION :MATRIX P(K), THE LOWER TRIANGULAR MATRIX
L(X), AND THE K-TH RUJ OF U ARE COMPUTED BASED ON THE CURRENT
ELE'ENTS OF THE K-TH RESIDUAL ’{ATRIX, I.E., THE FLEIENTS T(I,J),
1,J=K...N. ONLY THE ELEMENTS OF THE K-TH RESIDUAL MATRIX ARE
REFERENCED DURING THE K-TH STAGE OF GAUSSIAN ELIMINATION.

o0 caocG oo

IV(N) =1
Do 8260 K =1, N
PIV = CABS(T(K,K))
IF ( K .GE. N ) GO TO 8260

G

C SELECT THE PIVOT ROJ FOR THE K-TH STAGE BY PARTIAL PIVOTING,

C I.E., THE MAXIMUM ELEMENT IN THE 1-ST COLUMN OF THE F-TH RESIDUAL
C MATRIX, AND SET IV(IX) ACCORDINGLY. THE VARIABLE L HOLDS THE

C SUBSCRIPT OF THE PIVOT ROW, AND PIV THE ABSOLUTE VALUE OF TRE

C PIVOT ELEMENT.

L=F¥
Pl =K+ 1
DO 8200 1T = KP1, N
IF ( PIV .GE. CABS(T(I,K)) ) GO TO 8200
PIV = CABS(T(I,K))

L=1
8200 CONTINUE
IV(K) = L
o
C SAVE THE PIVOT ELEMENT IN TMP. TF P(X) IS NONTRIVIAL, I.E., IV(K)
C IS NOT EQUAL TO K, THE PIVOT ELEMENT IS ALWAYS NONZEKO; OTIHERJISE,
C THE PIVOT ELEMENT :1UST BE CHECKED. 1IF THE PIVOT IS 7ZERO, I.E.,
C THR MATRIX IS COMPUTATIONALLY SINGULAR, THEN T(I,K) IS ZERO FOR
C I=K...N, AND THE CO1PUTATION }1AY PROCEED TO THE NEXT STAGE.
o
™mp = T(L,K)
IF ( ¥ .NE. L ) GO TO 8210
IF ( PIV .GT. 0.0 ) GO TO 8220
(M) =0
GO TO 8260
8210 CONTINUE
IV(N) = =IV(N)
T(L,K) = T(K,K)
T(K,K) = TP
85220 CONTINUR



1538 C COMPUTE THE MONTRIVIAL ELEMENTS OF L(¥). RECAUSE OF TIE PARTIAL
1539 C PIVOTAL STRATEGY, THE ABSOLUTE VALUE OF L(I,K)=-T(IL,K)/T(,X) IS
1540 C LESS THAN OR EQUAL TO SQRT(2). IF T(I) DENOTES THE K=TH RESIDUAL
1541 C MATRIX, THEN THE SURDIAGONAL ELEMENTS OF THF V~TH COLUIN OF TiF
1542 C HTATRIX L(17) P(Z) T(K) ARE ZERO. THESE ELEMENTS ARE NOT ACTUALLY
1543 C CALCULATED, THEY ARE REPLACED BY THE ELEMENTS OF L(X).

1544 C

1545 TIP = =T1p

1546 DO 8230 I = KPl, N

1547 8230 T(I,K) = T(1I,0) / T1p

1548 C

1549 C APPLY P(X) AND L(K) TO THE F-TH RESIDUAL HATRIX COLBMNIISE, I.F.,
1550 C TOR J=K+1...N, INTERCHANGE T(K,JF) AND T(L,J), THE (¥,J)=ELEMENT
1551 C OF U, AND THEN FOR I=V+l...N, REPLACE T(I,J) BY

1552 C T(I,J) + L(¥)(TI,1n) * T(2,J).

1553 C

1554 DO 8250 7 = KPl, N

1555 ™P = T(L,J)

1556 T(L,J) = T(K,J)

1557 T(,J) = TP

1558 DO 3240 1 = KpPl, N

1559 R240) T(I,J) = T(1,J) + T(I,K) * TP

1560 8250 CONTINUE

1561 #3260 CONTINUE

1562 IF (PIV .FQ. 0.0) IV(N) =0

1563 RETURN

1564 C

1565 C TORSYTHE,G.E. AND !IOLER,C.RB. 1967. COMPUTEP SOLUTION OF LINEAR
1566 C  ALGEBRAIC SYSTENS. ENGLEYOOD CLIF¥FS,N.J.: PRENTICE-HALL.

1567 C JILKINSON,J.H. 1965. THE ALGEBRAIC EIGERVALUE PROBLE{. OXFORD:
1568 C CLARENDON PRESS.

1569 C THE UNIVERSITY OF MICHIGAN COHMPUTING CENTER
1570 C NUMERTICAL ANALYSIS LIBRARY -~ JULY 1975
1571 . END

1572 SUBROUTINE CIR(KN,ADLI, A, TOIM,T,IV,X,B,R,IER)

1573 C .

1574 C HAASA 2.1.007 CIR FTN=A 10-29-75 THE UNIV OF #A1CH COMP CIR
1575 C

1576 C SOLVES THE SYSTEM OF LINEAR EQUATIONS AX=B, WHERE A DENOTES

1577 C THE N X N COEFFICLENT ‘fATRIX AND X AND B ARE N-VECTORS,

1578 C USING TTERATIVE REFINEMENT BASED ON THE LU-DECOMPOSITION OF

1579 C A. THIS DECO'POSITION '1UST BE PROVIDED IN THE ARRAY T AND

1580 C VECTOR IV VIS-A-VIS THE SURROUTINE CLUD. BEGIMNING WITH TIF

1531 C VECTOR X(0), JUICH IS OBTAINED BY BACK-SUBSTITUTION IN THE

1582 C LU-DECO{POSITION (THE SUBROUTINE CBS), A SEQUENCE OF APPROX-
158: C LMATE SOLUTICHS X(I) IS GENERATED RY THE ALGORITHM

1584 C R(I) = A ¥(I) - B (COMPUTED BY AX1B)

1535 C A cC(I) = n»(D) (SOLVED BY BS)

1586 C X(I+1) = X(1) - ¢c(1).

1587 C THIS ITERATION IS CONTINUUD UNTIL THE QUOTIENT OF //¢(1)// AND
1588 C //X(1)// 18 LESS THAN MACHEPS OR UNTIL THIS OUOTIENT EXCEEDS HALF
1589 C ITS VALUE FROY THE PREVIOUS ITERATION. THE 1-NORM IS USED BECAUSE
1590 C IT IS THE EASIEST NORM TO COMPUTE. A DISCUSSION OF ITERATIVE
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C REFINEMENT (IMPROVEMENT) MAY BE FOUND IN EITHER JILKINSON
C (1965,CHAPTER 4) OR FORSYTHE AND 'fOLER (1967). THE CONVERGENCE
C CRITERION IS PATTERNED AFTER THE ALGOIL PROCEDURE “UNSYM ACC
C SOLVE’ (WILKINSON AND REINSCH,1971,CONTRIBUTION I/7).
o

INTEGER N,ADIH,TDIM,IV(1l), IER

COMPLEX ACADTM,N),T(TDIM,N),X(1),8(1),R(1)
C
C N => ORDER OF THF SYSTEI{ OF LINEAR EQUATIONS.
C ADT1 => ROJ DIMENSION OF THE ARRAY A.
C A => THO-DTIENSIONAL ARRAY CONTAINING THE CORFFICIENT '{ATRIX
C OF Til SYSTE'M OF LINEAR EQUATIONS.
C TODTII => ROW DIMENSION OF THE ARRAY T.
C T => TO-DIMENSIONAL ARRAY CONTAINING THE LU-DEC('{POSITION OF
C OF THE CORFFICIENT ‘fATRIX VIS-A-VIS THE SUBROUTINE CLUD.
¢ IV -> VECTOR CONTAINING THE INTERCHANGE INFORMATION GENERATED
C BY THFE SUBROUTINE CLUD DURING THE CO.fPUTATION OF THE
C LU=DECOMPOSITION OF THE COEFFICIENT *{ATRIX.
C X <= VECTOR FOR RETURNING THE COMPUTED SOLUTION OF THE
C SYSTEM O LINEAR EQUATIONS, I.E., X(IER).
C B => VECTOR CONTAINING THE RIGHT-HAND SIDE OF THE SYSTRE OF
C LINEAR EQUATIONS.
C R <~ SCRATCH VECTOR USED TO MOLD THE RESIDUAL VECTOR R(I) AND
C CORRECTION VECTOR C(I).
C IER <~ VARIABLE WHICH WILL CONTAIN O TF THE COEFFICIENT 'ATRIX
c IS COMPUTATIONALLY SINGULAR, I.R., IV(N)=0; A POSITIVE
c INTEGER IF ITERATIVE REFINEMENT CONVERGED; AND A NEGATIVE
C INTEGER IF ITERATIVE REFINFMENT FAILED TO MEET THE
C CONVERGENCE CRITERION. 1IN ALL CASES, TIIE ABSOLUTE VALUE
o OF IER INDICATES THE NUIBER O ITERATIONS PERFORMED.
G
C SUBROUTINES REQUIRED: CBS,CAXMD
¢

INTEGER I

EAL QUOT,XN1,RNL

COMPLEX Z

REAT, CABS,REAL, ATi{AG

CABS(Z) = ABS( REAL(Z) ) + ABS( AIMAG(Z) )
C

IER = 0

DO 8100 I = 1, N
3100 X(1) = B(1)

IF ( IV(N) .EQ. O ) RETURN

QUOT = 1.0
C

C COMPUTE THE FIRST APPROXI{ATE SOLUTION, X(0), BY BACI~SUBSTITU-
C TION IN THE LU-DECOMPOSITION OF THE COEFFICIENT “ATRIX.
C
CALL CuS(N,TDI'{,T,IV,X)
C
C COMPUTE THE RESIDUAL VECTOR R(I) = A X(I) - B AKD THEN THE
C CORRECTION VECTOR C(I) BY BACK~SURSTITUTION.
C
8200 CALL CAXIB(N,ADIM,A,¥X,B,R)
CALL CBS(N,TDIM,T,IV,R

Cc-31
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IER = IER + 1
C :
C COMPUTE THE 1-NORMS OF X(I) AND C(I) AND REPLACE THE CONTENTS
C OF X, CURRENTLY X(I), BY X(I+l1).
C
XN1 = 0.0
RNl = 0.0
DO 8210 I =1, N
XNl = ¥N1 + CABS(X(I))
RN1 = RNI + CABS(R(T))
8210 X(1) = X(1) - R(1)

SUCCESSIVE ITERATES X(I) ARE RFGARDED AS CONVERGENT IF TWICE
THE QUOTIENT OF THE 1-NORMS OF C(T) AND X(I) IS LESS THAN ITS
PREVIOUS VALUE. THUS THIS SEQUENCE OF NQUOTIENTS !UST DECREASE
‘fORE RAPIDLY THAN THE SEQUENCE 2%*-I, OR NONCONVERGENCE WILL

BE INDICATED BY SETTIKC THE ITERATION COUNT, IER, NEGATIVE. TUE
ITERATE X(I) IS ACCEPTED AS THE SOLUTION IF THE QUOTIENT OF

THE 1-NOR'{S OF C(I) AND X(I) IS LESS THAN MACHEPS. NOTE THAT
EVEN THOUG!H 'TACHEPS IS !'MACININE DEPENDENT, EXPLICIT USE OF THIS
CONSTANT HAS BEEN AVOIDED 3Y USING THE “MACUINE INDEPENDENT
DEFINITION OF THIS QUANTITY.

OO0 0O00

IF ( XN1 .GT. 0.0 ) RNl = RNl / XNl

IF ( (RNl + RN1) .LE. QUOT ) GO TO 8220
LR = =1ER
RETURN

8220 CONTINUE
QUOT = REI
IF ( (1.0 + RN1) .NE. 1.0 ) GO TO 8200
RETURN

FORSYTHE,G.F. AND MOLER,C.R. 1907, COMPUTER SOLUTION OF LINEAR
ALCEBRAIC SYSTEIS. ENGLEJOOD CLIFFS,N.J.: PRENTICE-HALL.
WILKINSON,J.H. 1965. THE ALGEBRAIC EIGENVALUE PROBLEM. OXFORD:
CLAREWDON PRESS.
WILKINSON,J.il. AND REINSCH,C. 1971. LINEAR ALGEBRA. HANDBOOK FOR
AUTOHATIC COMPUTATION, VOL. II. BERLIN: SPRINGER-VERLAG.
THE UNIVERSITY OF {ICHIGAN COMPUTING CENTER
NUMERICAL ANALYSIS LI1BRARY - JULY 1975

OO0 COoOn

END

SUBROUTINE CBS(N,TDIM,T,IV,R)
NAASA 2.1.008 CBS FTN=A 10-29-75 THE UNIV OF MICH COMP CTR

SOLVES THE SYSTE!1 OF LINEAR ENUATIONS AX=B, WHERE A DENOTES
THE N X N COEFFICIENT ‘{ATRIX AND X AND B ARE {I-VECTORS, BY
BACK~SUBSTITUTION IN THT LU-DECOMPOSITION OF A. THIS
DECONMPOSITION MUST BE PROVIDED IN THE ARRAY T AND VECTOR IV
VIS-A-VIS THE SUBROUTINF CLUD, THE LU-DECOMPOSITION *MAY BE
EXPRESSED IN THE FOR{
L(N=1)*P(N=-1)*, .. *L(1)*P(1)*A = U,
WHERE EACH L(J) IS THE IDENTITY MATRIX EXCEPT FOR THE SUB=-

OO0 OO0
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1699 C DIAGONAL ELEMENTS IN COLUMN J, EACH P(J) IS A PERIUTATION

1700 C MATRIX, AND U IS AN UPPER TRIANGULAR MATRIX. USING THIS

1701 C NOTATION, THE BACK-SUBSTITUTION CONSISTS OF FORMING

1702 C Y = L(N-1)*P(N-1)*,..*L(1)*P(1)*RB

1703 C AND SOLVING THE UPPER TRIANGULAR SYSTEM OF LINEAR EQUATIONS
1704 CUX =Y, I.E., FOR I=N...1l

1705 C  X(I)=(Y(I)=U(I ,N)*X(N)=o..=U(T,I+1)*X(I+1))/U(I,1).

1706 C THIS BACK-SUBSTITUTION YIELDS A VECTOR X WHICH IS THE EXACT
1707 C SOLUTION OF A SYSTEM OF LINEAR EQUATIONS (A+E)X=R, YHERE

1708 C //E// 1S GENERALLY ON THE ORDER OF N*//A//*{ACHEPS. THIS METHOD
1709 C OF SOLVING SYSTEMS OF LINEAR EQUATIONS IS DESCRIBED IN BOTH
1710 C 'JILK.INSON (1965,CHAPTER 4) AND FORSYTHE AND MOLER (1967).

1711 C

1712 INTEGER N,TDIM,IV(1)

1713 COMPLEX T(TDIM,N),B(1)

1714 C

1715 ¢ M => ORDER OF THE SYSTE{ OF LINFAR EQUATIONS.

1716 C TDIM -> ROJ DIMENSION OF THE ARRAY T.

1717 C T => ™WO-DLIENSIONAL ARRAY CONTAINING THE LU-DECOMPOSITION
1718 C OF THE COEFFICIENT i1ATRIX VIS-A-VIS THE SUBROUTINE CLUD.
1719 C IV => VECTOR CONTAINING THE INTERCHANCE INFORMATION GEWNERATED
1720 C BY THE SURROUTINE CLUD DURING THE COMPUTATION OF THE
1721 C LU-DECOMPOSITION OF THE COEFFICIENT 4ATRIX.

1722 C B == VECTOR CONTAINING THE RIGHT-HAND SIDE OF THE SYSTEM OF
1723 C LINEAR EQUATIONS. THL CONTENTS OF B ARE REPLACED BY THE
1724 C ELEMENTS OF THE SOLUTION.

1725 C

1726 INTEGER I,K,¥Pl,L

1727 COMPLEX TMP

1728 C

1729 > REPLACE THE CONTENTS OF THE VECTOR B BY THE VECTOR

1730 C ( L(N=-1) (P(N-1) oos ( L(1) (P(1) B)uuo).

1731 C THIS COMPUTATION IS PERFORMED IN N-1 STAGES, WHERE DURING THE
1732 C F=TH STAGE, THE CONTENTS OF B ARE REPLACED BY L(K)( P(K) B ).
1733 C THE PERMUTATION MATRICES P(K) ARE DEFINED BY THE VECTOR IV, I.F.,
1734 C MULTIPLICATION BY P(K) SIMPLY INTERCHANGES THE K-TH AND IV(I)-Tt
1735 C ELEMENTS OF THE VECTOR. THE LOWER TRIANGULAR ‘{ATRIX L(K) IS THE
1736 C IDENTITY MATRIX EXCEPT FOR THE SUBDIAGONAL ELEMENTS OF THE K~TlU
1737 C COLUMN, WHICH ARE STORED IN THE CORRESPONDING ELFEMENTS OF THE
1738 C ARRAY T.

1739 C

1740 DO 8110 K =1, N

1741 IF ( ¥ .GE. N ) GO TO 8110

1742 L = IV(K)

1743 THP = B(L)

1744 B(L) = B(K)

1745 B(K) = TP

1746 KPl = XK + 1

1747 DO 8100 I = ¥P1, N

1748 $100 8(I) = B(I) + T(I,K) * T™MP

1749 8110 CONTINUE

1750 C

1751 C REPLACE THE CONTENTS OF THE VECTOR B BY THE SOLUTION TO THE SYSTE!
1752 C OF LINEAR EQUATIONS WITH UPPER TRIANCULAR COEFFICIENT MATRIX U
1753 C AND RIGHT-HAND SIDE VECTOR B. THE USUAL FORIULAS FOR THE BACK-
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1754 C SUBSTITUTION, WHICH ARE BASED ON THE SUCCESSIVE RO¥S OF THE .1ATRIX
1755 C AND ARE SUITABLE WHEN INNER-PRODUCTS ARE ACCUWMULATED, ARE NOT
1756 C EMPLOYED. THE COMPUTATION HAS INSTEAD BEEN ARRANGED TO REFERENCE
1757 C THE SUCCESSIVE COLUMNS OF U. THUS AFTER B(I) HAS BFEN COMPUTED,
1758 C IT IS REMOVED FROM THE SYSTE't BY SURTRACTING B(I) TIMES THE I-TH
1759 C COLIRIN OF U FROM THE RESIDUAL VECTOR B(1l)...B(I-1).

1760 o

1761 =N

1762 5200 B(X) = B(K) / T(K,K)

1763 IF ( K .LE. 1 ) RETURN

1764 TP = =13(K)

1765 KPl = K

1766 K=1-1

1767 DO 6210 1 = 1, K

1763 8210 B(L) = p(I) + T(I,KP1) * TMP

1769 GO TO 8200

1770 o :
1771 C FORSYTUE,G.E. AND 'fOLER,C.B. 1967. COMPUTER SOLUTION OF LINEAR
1772 C  ALGEBRAIC SYSTEMS. ENCLEMOOD CLIFFS,N.J.: PRENTICE-HALL.

1773 C WILKINSON,J.H. 1965. THE ALGEBRAIC EICENVALUE PROBLE{. OXFORD:
1774 C  CLARENDON PRESS.

1775 C THE UNIVERSITY OF {MICHICAN COMPUTING CENTER
1776 C NIMERICAL ANALYSIS LIBRARY - JULY 1975
1777 END

1778 SUBROUTINE CAXMB(N,ADT,A,X,B,R)

1779 C

1780 C NAASA 2.1.009 CAXMB FTN-A 10-29-75 THE UNIV OF MICH COMP CTR
1781 C

1782 C COMPUTES R = AX-B, WHERE A IS AN N X N MATRIX AND R, X,

1733 C AND B ARE N-VECTORS, IN TJICE THE PRECISION OF THE DATA.

1784 C THE ACCURATE COMPUTATION OF THIS VECTOR IS CRUCIAL TO THE

1785 C SUCCESS OF THE ITERATIVE REFINEMENT ALGORITHM AS DMPLEMENTED BY
1786 C THE SUDROUTINE CIR. ITERATIVE REFINEMENT IS GKNERALLY NOT

175 C CONVERGENT I THESE RESIDUALS ARE COMPUTED IN THE PRECISION OF
1788 C THE SYSTEM OF LINEAR EQUATIONS.

1789 C

1790 ~ INTEGER N,ADIM

1791 COMPLEX A(ADLI1,N),X(1),B(1),R(1)

1792 C

1793 C N => ORDER OF THE MATRIX A.

1794 C ADIl -> RUJ DIMENSION OF THE ARRAY A.

1795 C A -> DJO-DIMENSIONAL ARRAY COMTAINING THE N X N MATRIX A,
1796 C USUALLY THE COEFFICIENT *f{ATRIX OF THE SYSTEM OF LINEAR
1797 C EQUATIONS.

1798 C X => VECTOR, USUALLY AN APPROXI'fATE SOLUTION TO THE SYSTEM
1799 C OF LINEAR EQUATIONS AX=B.

1300 C B => VECTOR, USUALLY THE RIGHT-HAND SIDE VECTOR OF THE

1801 C SYSTE'l OF LINEAR EQUATIONS.

1802 C R <~ RESIDUAL VECTOR, I.E., AX - B.

1803 C
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1804 INTEGER I,J

1805 DOUBLE PRECISION SR,SI,AR,AT,XR,XI

1806 C

1307 DO 8110 T =1, N

1808 SR = -DBLE( REAL(B(I)) )

1809 ST = -DRLE( AIMAG(B(I)) )

1810 DO 8100 J =1, N

1811 AR = DBLE( REAL(A(I,J)) )

1812 Al = DBLE( AIMAG(A(I,J)) )

1813 XR = DBLE( REAL(X(J)) )

1814 XI = DBLE( AIMAG(X(J)) )

1315 SR = SR+ ( AR * XR = Al * XI )

1316 8100 ST = SI + ( AR * XI + AL * XR )

1817 8110 R(I) = CIPLX( SNGL(SR), SNGL(SI) )

1318 RETURN

1819 C

1820 C THE UNIVERSITY OF MICHIGAN CO'IPUTING CENTER
1821 C NUMERICAL ANALYSIS LIBRARY - JULY 1975
1822 END
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