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ABSTRACT

The three-dimensional boundary value problem for the
unsteady motion of a ship oscillating on the free surface
is formulated for zero forward speed. Various forms of the
integral equation methods are formulated. The three-dimen-
sional source distribution method is developed to compute
the added mass and damping coefficient and the wave exci-
ting forces on a ship.

The integral equation is solved approximately by three
different methods: successive approximation by Neumann
series, iterative method by use of infinite fluid solution
and linear algebraic equations. The convergence of the
iteration method is studied to discover why it does not con-
verge for all frequency ranges. The improved iteration
method by Buckner-Chertock series is applied for low fre-
quency ranges to improve the convergence.

The integral equation is shown to fail at the infinite
number of discrete eigenfrequencies of the interior Dirichlet
problem. The difficulty near these eigenfrequencies can be
removed by using a new form of Green's function. The new
Green's function is constructed by adding an interior
source to the fundamental Green's function. This form of
the Green's function produces a new integral equation and
removes the numerical difficulty near the eigenfrequencies.

The strip theory is considered to be invalid for com-
puting hydrodynamic coefficients and exciting forces due to
short waves. Comparison of the results of strip theory with
those of 3-D theory shows that for the low and extremely high
frequencies of oscillation, strip theory gives a poor result
to compute the added mass; however, strip theory is a good ap-
proximation for fairly high frequency. The 3-D effects on the
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wave exciting forces are investigated for the head sea. The
axial distribution of the wave exciting forces are computed
using the three dimensional theory, Haskind's formula, and

a 2-D strip theory by Salvesen, Tuck, and Faltinsen (1970).
The 3-D theory shows that greater forces occur near the bow
than the stern for the head sea and decrease as the wave
passes along the ship. This confirms Faltinsen's (1971)
theory.
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I. INTRODUCTION

For solving the hydrodynamic boundary-value problem of a
ship oscillating at the free surface, strip theory has long
been used under the assumption of the slenderness of the geo-
metry. Another important assumption concerns the size of the
wave length relative to a characteristic ship dimension, for
example, the ship's beam. This leads to the short wave as-
sumption that the wave length should be asymptotically small,
of the same order of magnitude as the ship's beam. This is
discussed in depth by Ogilvie (1974).

Since the introduction of the strip theory by Korvin-
Kroukovsky and Jacobs (1957), various forms of strip theory
have been proposed for the ship motion problem. Ogilvie and
Tuck (1969) derived a more rational strip theory based on
systematic perturbation analysis. Strip theory has been
identified as a special case of the slender body theory which
requires that the frequency of oscillation be large, 0(1//e)
where € is the small slenderness parameter. Salvesen, Tuck,
and Faltinsen (1970) derived a new strip theory which satis-
fies the Timman-Newman symmetry condition and provides correc-
tion terms for a transom stern.

None of these strip theories is based on a complete so-
lution of the 3-D boundary - value problem, although some of
the theories introduce the strip assumption at a later stage
to minimize the effects of the 2-D assumptions. 1In particu-
lar, these strip theories are believed to fail near the ends,
where the slenderness assumption is no longer valid. 3-D ef-
fects have not been fully investigated previously.

The purpose of this thesis is to investigate these 3-D
effects and try to develop new methods of calculation that
do not contain the usual errors of the strip theory. To do
SO, we must begin with some simpler problems. The 3-D effect
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on the added mass without the presence of free surface is in-

vestigated first. Next, the 3-D effect in the presence of the
free surface is studied to determine the hydrodynamic coeffi-

cients and exciting forces for a head sea. The irregular fre-
quency phenomena of the integral equation is investigated,

and a new method to cure the irregular frequency phenomena is

developed by modifying the fundamental Green's function.

A. 2-D Free Surface Problem

Two methods are available to deal with the 2-D free sur-
face problem: a multipole-expansion method and an integral-
equation method.

Ursell (1949) solved the radiation problem for a heaving
circular cylinder using multipole expansion method. The po-
tential is represented by the sum of the multipole poten-
tials. The coefficients of the multipoles are determined by
satisfying the boundary condition on a circle. Tasai (1959)
and Porter (1960) extended Ursell's method to non-circular
cylinders.

Frank (1967) developed a completely different method,
the integral equation method. He assumed that the potential
could be represented by a distribution of the 2-D wave
sources over the contour of the section. The unknown source
strength is determined by satisfying the boundary condition
at the midpoint of the segments of the section. Frank's
method can be applied to a section of arbitrary shape.

The integral equation method has a defect, however: it
breaks down at and near a set of discrete eigenfrequencies
of the complementary interior flow. John (1950) was the
first to show the existence of the phenomenon. Several re-
searchers have proposed remedies.

Ursell (1953) developed an iteration method by modify-
ing the fundamental Green's function to derive a convergent
solution for all frequencies. He failed to mention, however,
that his method overcame the difficulty because of the exis-

tence of the interior resonance. Paulling and Wood (1972)



suggested that the interior resonance could be removed by
putting a 1id on the free surface inside the body. Ohmatsu
(1975) relieved the condition by showing that the boundary
condition on the 1lid could be an arbitrary Neumann condition.
Sayer and Ursell (1977) extended Ursell's previous work to
overcome the numerical difficulty at the eigenfrequencies
by modifying the fundamental Green's function. Ogilvie and
Shin (1978) developed a more general method to remove the
difficulty near the eigenfrequencies by choosing the proper
form of modified Green's function. The fundamental form of
the Green's function was modified by adding a point source
at the origin. Consequently, the new form of the integral
equation was obtained, and the irregular frequency phenome-

na were removed.

B. 3-D Infinite Fluid Problem

Lewis (1929) computed exactly the added mass of a
vibrating spheroid by the method of the separation of vari-
ables in spheroidal coordinates. He devised the J factor,
which represents the 3-D effect on added mass.

Hess and Smith (1962) solved the three-dimensional, in-
finite £fluid problem for an arbitrary body in steady motion
by solving the Fredholm integral equation of the second kind.

In this thesis, the boundary value problem for the os-
cillation problem is solved using the integral equation
method by source distribution. The three-dimensional effect
on the added mass is investigated for several 3-D bodies.

An approximation method is developed using the two-dimen-

sional source density as a first approximation.
C. 3-D Free Surface Problem
1. 3-D radiation problem

The formulation of the appropriate three-dimensional
boundary value problem is simple and straightforward. The
solution to the problem is, however, very difficult to ob-
tain, in general. Thus, only a few cases have been solved



for bodies of simple geometry. There are two possible nu-
merical methods which can be used for this problem: the
multipole-expansion method and the integral-equation method.
Recently the finite element method has been under develop~
ment for the problem. It is premature to say which method
is best. In general, we could say that the integral equa-
tion method is preferred for the arbitrary body oscillating

periodically in a uniform depth of water.
a. Multipole expansion method

For the three-dimensional case with a free surface,
Havelock (1955) was the first to solve the problem for the
simple geometric body of the heaving sphere using the multi-
pole expansion method. The velocity potential is represented
by a set of higher order singularities which satisfy the free
surface condition and radiation condition trivially, and a
wave source or multipole at the origin within the body which
satisfies the radiation condition. The unknown coefficients
for the polynomials and the wave source or multipole are
determined to satisfy the kinematic boundary condition on
the hull. The linear algebraic equations for the unknown
coefficients are solved numerically.

Barakat (1962) and Wang (1966) used a similar method for
the case of the heaving sphere in a finite uniform depth.

b. Integral equation method

Various forms of Fredholm integral equations can be de-
rived by using sources or dipoles, or by using both sources
and dipoles from Green's theorem. The unknown density of sin-
gularity is determined by satisfying the kinematic boundary
condition on the hull. 1In general, the Fredholm integral
equation of the second kind is preferred over the first kind
for numerical computation. Kim (1966) solved the integral
equation of the second kind by using sources for the unsteady
problem of the semi-spheroid oscillating at the free surface.
Milgram and Halkyard (1971) solved the integral equation de-

rived from Green's theorem by the successive approximation
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method and by the linear algebraic equation method for the
wave-exciting forces. Yeung (1973) solved the 3-D radiation
problem by distributing wave-free sources over the entire
surface of the fluid domain, such as free surface and sur-
face at infinity, in addition to hull surface. This leads
to much larger surfaces over which source density must be
determined, even though the Green's function is much simpler
than the wave source. Faltinsen and Michelsen (1974) fol-
lowed the integral equation method using source distribution
to compute the added mass and damping coefficient for large,
three-dimensional offshore structures.

The integral equation method for the three-dimensional
boundary value problem with free surface is complicated and
time consuming. The method requires large storage space and
computing time, since it involves a large number of computa-~
tions for the complicated kernel and the large size of the
linear algebraic equation. In the past, the three-dimen-
sional method was not practical since computers did not have
adequate computing speed and fast-access memory. However,
the advent of the new generation of modern computer would
make the method more practical.

The integral equation method has an inherent disadvan-
tage over the other methods. It fails at an infinite number
of discrete resonance freguencies of the complementary inte-
rior flow similarly to the 2-D free surface problem. A new
method has been developed to cure the irregular freqguency
phenomena of the integral equation for the 3-D free surface
problem. The fundamental Green's function has been modified
by adding a line of sources at the free surface on the center
plane. A similar interior resonance problem has been studied
in acoustics by Chertock (1964, 1970), Brundrit (1965), Cop-
ley (1968), Schenck (1968), Ursell (1973), Kleinman and Roach
(1974), and Jones (1974).

The integral equation by using source distribution can
be solved by several approximation methods: 1linear algebraic
equations, successive approximation by ¥Neumann series, or fre-
guency iteration method. The iteration methods do not
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converge for all wave frequencies, however: for low wave
frequency, Milgram and Halkyard (1971) have shown the succes-
sive approximation method does not converge. This occurs be-
cause the largest reciprocal eigenvalue of the kernel matrix
is beyond the radius of convergence of the unit circle. This
difficulty can be removed by increasing the radius of con-
vergence using a new seguence constructed by Buckner (1948).
Several other versions of the iterative methods have been
developed by Wagner «1951)-, Samuelson (1953), Rall (1955),
Petryshyn (1963), and Chertock (1968).

2. Wave excitation

In order to compute the exciting forces caused by waves,
one must determine the diffracted-wave potential resulting
from the presence of the ship. The boundary-value problem
for the diffraction potential is, however, very difficult to
solve for an arbitrary body. To avoid the difficulty of the
diffraction problem, several approximation methods have been

developed.
a. Strip theory

Korvin-Kroukovsky and Jacobs (1957) devised an artifi-
cial concept of the so-called relative-motion hypothesis of
the 2-D strip. Consequently, they computed the sectional
wave forces using the sectional added mass and damping. Al-
though not mathematically justified, the results have shown

good agreement with the experiments.
b. Haskind method and new strip theory

Haskind (1957) and Newman (1962) derived a formula by
applying Green's theorem to compute the total forces without
solving the direct diffraction problem. The great advantage
of the formula is that the forced motion potential can be
used to compute the wave-exciting forces without introducing
the artifical concept of relative motion. Thus, it is not
necessary to solve the additional boundary value problem for
the diffraction problem. Furthermore, the 2-D strip version
of the Kaskind method is derived by making the slenderness



assumption of the ship's geometry. By replacing the
integrand of Haskind formula with the sectional added mass
and damping coefficients, Salvesen, Tuck, and Faltinsen (1971)

derived the new strip theory.
c. Direct diffraction problem

If one wants to solve the diffraction problem, there are
special problems with the head sea. Faltinsen (1971) solved
the head sea diffraction problem for short waves by the
matched asymptotic expansion method. His results show that
the wave amplitude attenuates as the wave moves along
the ship. He concluded that his results agreed well with
experiments for short waves (A/L=0.5), but not for longer
waves (A/L=0.75). Maruo and Sasaki (1974) extended Faltin-
sen's theory for the head sea diffraction problem by including
a higher order term.

The author solves the direct 3-D diffraction problem
without making the usual assumptions of slenderness and high
frequency wave. Therefore the 3-D effect is included in the
3-D direct solution. The results by 3-D theory are compared
with Faltinsen's results. The 3-D effect on the wave exciting

forces are also investigated.



ITI. FORMULATION OF THE BOUNDARY-VALUE PROBLEM

A. Assumptions

///’

Figure 1. 3-D coordinate system and wave heading angle

Consider a ship oscillating in sinusoidal regular waves
with the heading angle x with respect to the negative x
axis. It is assumed that the ship has no forward speed.

The right-handed Cartesian coordinate system is used as
shown in Figure l. The origin of the coordinate system is
fixed at the mean midship position in the undisturbed free
surface. Positive x is to the bow, positive y is to
port and positive 2z is vertically upwards. The plane z=0
represents the undisturbed free surface.

The following assumptions are used throughout the paper:
(i) The fluid is inviscid and incompressible, and the flow
is irrotational. Thus a velocity potential exists in the
fluid domain. The boundary-value problem can be formulated
in terms of the velocity potential.

(ii) The waves have small amplitude. Linear free-surface
wave theory will be used. The surface tension also is
neglected.

(iii) The resulting motion of the ship is small. The
hydrodynamic problem can be linearized with respect to a

small-motion parameter.



The total hydrodynamic problem can be separated into a
problem of wave excitation on the restrained body and the
resulting forced motion due to the excitation. The hydro-
dynamic forces on the ship due to its own motion are computed
without the incident waves (in calm water).

The total velocity potential is decomposed into one
associated with the wave system and one due to the forced
motion of the ship. We can write*:

®(x,y,2) = 99 + &7 + Z &; , (1)

where

®9 is the complex amplitude of the incident-wave potential,

¢~ is the complex amplitude of the diffracted-wave
potential,

® is the complex amplitude of the velocity potential due

to forced motion in the i-th mode.

B. Radiation Problem

Consider a ship forced to oscillate periodically with
frequency of oscillation w. The motion is described by

a; (t) = Re{ai eiwt} , (2)

where a; is the complex amplitude of the motion in i-th
mode.

Then the complex velocity potential due to the forced
motion in the i~th mode, @i(x,y,z) , satisfies the 3-D

Laplace equation,

ax?2 + dy?2 T 322

2 2 2
[a d 9 ]<I>i(x,y,2) =0 , (3)

in the region exterior to the ship.

* It should be noted that the velocity potential corresponds
to the real part of <I>(x,y,z)ei“°t . Time factor elwt will

be suppressed unless otherwise specified.
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It also satisfies the free surface conditions. The

kinematic free surface condition is

3% dn | demdn _ B,

3% ox 3y 9y 5z T iwn = on z=n(x,y) . (4)

The dynamic free surface condition is derived from the
Bernoulli equation,

gn + iwdi+ %lvq’jjz =0 on z=n(x,y) ’ (5)

where g is the gravitational acceleration.
Combining the kinematic and dynamic free surface
conditions, we get a linearized free surface condition for

zero forward speed.

adi _
3z V¢ =0 onz=0 , (6)

where

w
v=— .
g9

The potential also should satisfy the bottom boundary

condition.
At a large distance from the body, the wawve should

travel outward, which gives a radiation condition,

lim VR [931+ 1\)@’] =0 , (7)
+<D

where
R = /x2+yz

The radiation condition is needed to make the solution

unique.
The velocity potential should satisfy the kinematic
boundary condition on the mean position of the ship,

—+ = iw a; n;, o (8)
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where n,; is the generalized normal for the i-th mode of
motion.

Let us redefine the velocity potential to derive a non-
dimensional form of the hull boundary condition:

¢, (x,y,2) = 1w a; ¢;(x,y,2) . : (9)

Then the hull boundary condition becomes

9¢; ( x,y,2)
— = n. on the hull . (10)
an i

The other conditions are unchanged if e, is replaced by
q)i'

Once the forced motion potential is computed from the
boundary value problem, the hydrodynamic coefficients (added
mass and damping) in the equations of the motion are computed

independently of the wave exciting forces.

C. Diffraction Problem

The velocity potential for the diffracted waves is
computed as if the ship were restrained from moving. The
diffracted-wave potential should satisfy the 3-D Laplace
equation (3), the free surface condition (6), and the radia-
tion condition (7), as does the radiation potential except
for the hull boundary condition.

Since the ship is assumed to be restrained, the boundary

condition on the hull becomes

3@7 _ -Bq) (11)
on an !

where the incident wave potential is given by

0, = iwgh eVZ o"l(vxcosx + vy siny) . (12)

Once the diffracted wave potential is computed from the
boundary value problem,(3), (6), (7), and (1ll), the wave
pressure distribution and exciting forces on the restrained
ship can be computed from the incident-wave potential and

diffracted-wave potential.
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D. Method of Solution by Various Integral Equations

The exterior Neumann problem for the three dimensional
unsteady water-wave problem can be solved by integral
equation methods. There are at least four different ways to
formulate the integral equation:

i) integral equation of the second kind, by using sources,

ii) integral equation of the first kind, by using dipoles,

iii) integral equation of the second kind from Green's
theorem (Helmholz representation in acoustics),

iv) integral equation of the first kind from Green's

theorem.

We can get an integral equation either of the first
kind or of the second kind. In general, it is easier to
sélve the second kind than the first kind. The integral
equation of the second kind usually has the dominating
diagonal terms in the influence matrix, and so the solution
is more stable than the first kind for the numerical compu-
tation.

We can get two different forms of the Fredholm integral
equation of the second kind, one by using a source distri-
bution and the other from Green's theorem. The kernel
matrices of these two integral equations are transposes of
each other.

1. Integral equation of the second kind by using sources

Figure 2. Exterior Neumann problem by using sources
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Let us apply Green's theorem to the exterior flow ' :

45 (@736 (2,0) 6730, | av,

_ 361
[] _¢i(Q)%(P,Q)—E;G(P,Q)]dS(Q) - f”
A"

zZs
(13)

where Green's function, G(P,Q), represents the potential at
field point P(x,y,z) due to a source of strength =471 at

point Q(&,n,z):
-V

. - i i vz e dw
G(x,y,27€,n,T) rtopE T 2ve Iw 7/ (x-8)2 +(y—n)2 + (w+7)2
~ omi v eV(Z'*'C)Hé?.)(\)R) (14)
where
r = /(x~E)2+(y-n)Z +(z-C)2 :

r* = /(x-£)2+(y-1)2 +(z2+2)2 ;

R = /(x=g)2+(y-n)2 .

(Various forms of the Green's functions are derived in
Appendix A.) IS represents all the bounding surfaces, that
is, hull, free surface, surface at infinity, bottom surface,
and control surface around P.

Since ¢ and G are harmonic in V , the volume
integral in the right hand side becomes zero. Furthermore
the surface integrals over the free surface and the
surfaces at infinity and bottom do not give any contribution
because of cancellation, since G satisfies the same boun-
dary conditions on those surfaces as ¢ (radiation and

diffraction potential only).

Tsince we are employing linear theory throughout the paper,
subscript i of ¢; and ©&; will be deleted. ¢ and ¢
imply ®; and ¢i ’ respec%ively unless otherwise specified.
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However, the integral over the small sphere isolating
the singularity gives, in the limit as its radius approaches

zZero,

zin || ,¢(Q)53%(P D - e G(2,0) | AS() = 4mee) . (15)
S
P

Note that only the first integrand gives 4m¢ , since the
second integrand does not contribute to the integral.

Thus we can represent the potential by sources and
dipoles only over the hull surface.

6(p) =-2 ”lcb(Q)a?%(P S L Q):] as(@ .  (16)

We can also formulate a complementary interior problem
similarly: Let &(P) be a solution of the 3-D Laplace
equation for P inside S , satisfying the free surface
condition. Note that the radiation condition cannot be
applied to the interior flow. Keeping the same sign of 1,
we get a similar expression from Green's theorem,

53y = L (3028 B9 _ 38 5
¢ (P) —HJ”?(Q)EE -gﬁ%G(P,Q)] as(Q) - (17)

We can also apply Green's theorem to $(Q) and G(P,Q)
for P outside of S. Since both functions are harmonic

inside S , we get

- 3G (P,Q) _ 3%
=12z ”ch(o) 3ng G(P,Q)J as(Q) . (18)

By adding (16) and (18) together, we get

|-9->

2 =50 v e {FE - A as).

$(R) = -4 ”{cp(o) -§(0) Yo >

[e %

o)
(19)
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The velocity potential is represented by sources and dipoles
distributed over the hull surface S. Further, if we specify
that

$(Q) = $(Q) for Q on S, (20)

then we can represent the potential solely by the distribu-
tion of sources of density o(Q) on the surface S:

0@ =-2 [[ s croas@ (21)
S
where
_ 38 (@) _ 36 (Q

Since the Green's function satisfies the Laplace equa-
tion, free surface condition, and radiation condition at
infinity, the velocity potential .automatically satisfies
those three conditions of the boundary-value problem. The
remaining condition is the hull boundary condition. There-
fore the source density in the integral representation must
be determined so that the given hull boundary condition is
satisfied. By applying the boundary condition on the hull,
we get the Fredholm integral equation of the second kind,

~.o(p) _ 1 3G (P,Q) -
3 e -H 0(Q) »= ds(Q) = f£(p)* . (23)

S P

*It should be noted that the right hand side of the integral
equation is defined as

£(P) nj (P) for radiation problem
f(p) -9%9/39n (P) for diffraction problem, (24)

henceforth unless otherwise specified. The bar through the
integral signs denotes that a pPrincipal value interpretation
should be made.

|
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We can solve the two dimensional Fredholm integral equation
of the second kind approximately by various methods. These
methods will be discussed in detail in later sections.

2. Integral equation of the first kind by dipole

If we specify that, in the equation (19),

36 (Q) _ 3¢ (Q)
bng _51% for Q@ on s, (25)

then we can represent the potential only by the distribu-
tion of the dipoles of density u{(Q) on the surface S

__1 3G (P,Q)
o(P) = -4 j[ u(Q)anQ as(Q) , (26)
where
u(Q) = ¢(Q) - $(Q) . (27)

By applying the boundary condition on the hull we get an
integral equation of the first kind,

1 —-” LG(P,Q) 4¢ = £(p 28
el g IR (Q = £(2) | (28)

3. Integral equation of the second kind from Green's
theorem (Helmholz representation in acoustics)

- —— . — — — — — —— o a—
———— ———

Figure 3. Exterior Neumann problem by using sources and
dipoles
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Let us apply Green's theorem to the exterior region
with field point P(x,y,z) on S. Since ¢ and G are

harmonic in V, we get

[[|o@e@e 2 G(P,Q)] as() = 0 ; (29)
fo o)

LS

The surface integrals over the free surface and the sur-
faces at infinity and bottom drop out because of cancellation.

The integral over the small hemisphere, Sp, is

” s @ 3‘;(1’ @) - 3%% s, as@ = 2re®) . (30)

P
Note that the second integral does not contribute. Substitu-

tion of the equation (30) into equation (29) yields the
integral equation of the second kind with unknown ¢ on S,

¢ (P) 1 2G(P,Q) _ 1 3¢
> +4ﬁ-H¢(Q) 3ng -H” G(P,Q) 3, ds(Q) .
S (31)

The right hand side is known from the given hull boundary
condition. It is interesting to note that the operator of
integral equation (31) is the transpose of the operator of
integral equation (23) by using source distribution. It will
be shown in section II-E that both operators have the same

eigenfrequency.

4. 1Integral equation of the first kind from Green's

theorem

Alternatively, we can get another form of the integral
equation from Green's theorem for the exterior Neumann
problem. Differentiating ¢ with respect to the normal at
point P in equation (31) and substituting hull boundary
condition(24), we get the integral equation of the first kind,
& [[o@ 5= 2P Das) = -Leey + FEED e g4 .

P s P (32)
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The integral in the left hand side is worse than just improper.
Burton and Miller (1971) proposed a method to deal with
the non-integrable singular kernel.

E. Irregular Frequency Phenomenon

John (1950) showed that the integral-equation (23) by
source distribution has numerical difficulty at the eigen-
frequency of the interior Dirichlet problem. It can be
considered that the integral equation (31) derived directly
from Green's theorem is more general in the sense that no
assumption about the interior flow has been made. In fact,
we have not defined the interior flow in the derivation of
equation (31). However, this alternative form of integral
equation also has the same difficulty at those eigenfrequen-
cies of the interior Dirichlet problem. This will be dis-
cussed in more detail in later sections II-E and III-B.

It can be shown that the operator of the integral equa-
tion for the interior Dirichlet problem is identical to that
of the integral equation (23) by sources for the exterior

Neumann problem.

/.

S * B

Figure 4. Interior Dirichlet problemn

Applying Green's theorem to the interior flow with field

point P(x,y,z) on the surface S, we get

f [;(Q)E%E—(P’Q)— E%i—(Q)G(E,Q)] ds(Q) = 0 for ; on S.
s+Sp+s,, Q Q (33)
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The integral over the free surface vanishes since 8 and
G satisfy the same free surface condition. The integral
around the hemisphere, SP’ gives -2n$(§) with the same
sign of n . Thus, we get directly the integral equation of

the first kind with unknown a$/anQ ’

” 2L c(B,0)ds(Q) = -2m8(B) + H&(Q) 25 (P:Qgs(q) .
Q !
s S (34)

In order to get the integral equation of the second kind,

let us differentiate 8 with respect to the 'normal vector at
Ig(x,y,z) on S. THen we get the integral equation of the second
kind with unknown normal velocity:

_1 9% _ 1938 a6 (F,Q) __1([s.3 3G (8,0)
2 3n, _ nfJong on s () = ”(b as(Q) -

S S (35)

~

The right hand side is known since ¢ is known. The left
hand side 1is identieal to that of the integral equa-

tion (23) for the exterior Neumann problem by source distri-
bution. If the homogeneous equation corresponding to(35)has
a non-trivial solution, the integral equation (35) for the
interior Dirichlet problem does not have a unique solution,
nor does the integral equation (23) by source distribution
for the exterior Neumann problem.

The integral equation method for the exterior Neumann
problem has been widely used in other field of wave problem,
especially in acoustics. Many authors, such as Chertock(1964),
Brundrit (1965), Copley (1968) and Schenck (1968), considered
the exterior Neumann problem for the 3-D Helmholz equation
and pointed out that both the integral-equation methods by
source distribution and Helmholz representation are inadequate
near the interior eigenfrequency. Kleinman and Roach (1974)
discussed the relationship between various cases of the
integral equation of the interior and exterior Dirichlet
problems and Neumann problem for the three dimensional

Helmholz equation.
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F. Existence and Uniqueness Theorem

The integral equation by source distribution , (23), is

rewritten as
o(P) - TK(0) = -2 £(P) , (36)

where K denotes an operator or kernel matrix of the

integral equation, which is defined as

_9G (P,Q)

oy 4S(Q) . (37)

k) = - £ [[o
S

-T is taken to conform to the standard form of (I-TK),
where I is the identitymatrix. Mikhlin (1960) gives the
derivation of the adjoint integral equation. It is given by

o(P) - TK*(0) = -2 £() , (38)

where K* , the adjoint operator of K, is defined as

3G (0,P)

BnQ ds(Q) . (39)

1
* = ——
K*(0) = -3= J f 5 (Q)
S
The asterisk denotes the adjoint, and the bar denotes the complex
conjugate. The complex conjugate of the adjoint operator

is defined as

3G (Q,P)

Bng as(Q) . (40)

R*(0) = - 5= H G (Q)
S

This is the same operator of the integral equation (31)

of the second kind derived directly from Green's theorem.
If the associated homogeneous equation of (36) has a

non-trivial solution, t is called the characteristic value

of K, and ¢(P) 1is called a characteristic function of K

belonging to T.

Theorem 1. If 1T is not a characteristic value of K, the
solution to the integral equation (36) is unique, as is
its adjoint system. Both homogeneous equations have only

trivial solutions.
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(Corollary) If 1 is a characteristic value of K, T is
also a characteristic value of X* and T is a charac-
teristic value of K and K* .

When T 1is one of the characteristic values of K, the
solution of the integral equation (36) is not unique since
we can add any homogeneous solutions to the particular
solution. Furthermore, we can not compute the particular
solution correctly due to numerical difficulty near the

characteristic values.

Theorem 2. If 1 is a characteristic value of K, then the
inhomogeneous equation has a solution if and only if £(P)
is orthogonal to the every solution of the adjoint homo-

geneous equation:

JJ g*(Q) £(Q) ds(Q) =0 ' (41)
S

where
o* - TK*(0*) = 0 .

The operator K also depends on the frequency of
oscillation  for the unsteady water wave problem. For
each wave frequency, there is a set of characteristic values
corresponding to K. Any wave-frequency that includes t=1 in
its set of characteristic values is called an eigenfrequency

or characteristic frequency.

Theorem 3. If the frequency of oscillation is that of the
eigenfrequency of operator XK, the homogeneous equation of
(36) has a non-trivial solution, and solution of the integral
equation is not unique. Furthermore, if Tt is real, the
eigenfrequency of operator K also is an eigenfrequency of
K*, K, and R*.

Various forms of integral equations are derived in the
previous section. All the integral equations of the second
kind involve the operator K in some form or another. By
Theorem 3, all the integral equations have the same eigen-
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frequency of oscillation. Thus, all the integral equations
fail to give unique solutions at the same eigenfrequencies.
From Theorem 1, the integral equation has a unique

solution if T is not any of the characteristic values

of K. This condition implies only that the kernel matrix is
invertible, since the determinant of the matrix is not singu-
lar. However, the condition does not guarantee that the itera-
tion-method converges. A more restrictive condition should

be satisfied to ensure convergence of theq, iteration-method.

Petryshyn (1963) gives the following condition.
Theorem 4. (Convergence theorem of the iteration-method)

The integral equation (36) has a convergent and unique
solution by successive iteration if any oneof the following
conditions is satisfied. The degree of restriction increases

in the given order.

(i) 1im V[RKAE < 1 , (42)

n
(ii) lim V][RRl <1 , (43)
n
(iii) Il <1 , (44)
where ||K|| denotes the norm of the operator which is
defined by
2
II&] = ” 2612, "as(p) as (o)
P

The following equalities hold:

1;1.mn KnE[| < 1%mn/ﬂ'1<ﬁ][' < x| . (45)
Condition (ii) is equivalent to & more practicel condition
that the maximum reciprocal characteristic value, Ymax |z 1 ],

min

is less than 1. Condition (iii) is equivalent
to more practical condition that the maximum singular
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value* is less than 1. Conditions (ii) and (iii) become

identical for the symmetric operator in Hermitian sense.

*Singular value is the square root of the reciprocal
characteristic value of [K][K*].



III. 2-D FREE SURFACE PROBLEM

24

Figure 5. 2-D coordinate system

Many strip theories have been developed either heuris-
tically or by systematic perturbation techniques. Even
though some strip theories introduce strip assumptions at a
later stage of derivation to minimize the effect of the 2-D
assumptions, all the strip theories eventually lead to a 2-D
boundary value problem for each section. In this chapter, a
2-D boundary value problem with the free surface is solved
using the integral equation method* by 2-D wave source dis-
tribution. The irregular frequency phenomenon of the integral
equation is corrected by a modified form of the Green's func-

tion.

A. Integral Equation Using the 2-D Wave Source

The boundary value problem for a 2-D oscillating body

*
Integral equation refers to the Fredholm-type integral equa-
tion unless otherwise specified.

24
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in calm water is formulated in terms of complex velocity po-
. ) . %

tential ¢iﬁy,z). The 2-D velocity potential should satisfy

the following equation:

32 ¢, 32 ¢4 :
= — =0 in the 2-D fluid region,
Ay 3z
3¢ .
vp. - i _ _
i Tz = 0 on z = 0,
;-lI-I:—OO ai&. = 0
02z !
0.
l —
N - Ni on C,

and the radiation condition which requires outgoing

waves as ly| .

The velocity potential can be represented by the distribution

of the 2-D wave sources over the contour of the section:

[
0;®) =5 0j(@ coa©), (46)

where 2-D Green's function is given by

C(y,2i n,2) = log/(y-n)2+(z—;)2 - log/(y-n)2+(z+g)2

_ [ ek(z+c‘cosldy—n) dk _ ZnieV(Z+C)

oy cos vy(y-n)- (47)

0
The 2-D Green's function is derived from the 3-D Green's func-
tion in Appendix A. Since the 2-D Green's function satisfies
the 2-D Laplace equation, free surface condition, and radia-
tion condition, the velocity potential of (46) satisfies the
same conditions. The unknown source density is determined
so as to satisfy the 2-D kinematic boundary condition on the
hull. The Fredholm integral equation of the second kind in
terms of the complex source density is given by,

ci(P)

1 3G(P Q) -
- +§T_TJC . (Q ) p dL (Q) = Ni(P). (48)

The velocity potential is the normalized form of ¢ by the
relationship (9).
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B. JIrregular Frequency Phenomenon

The integral equation (48) by using the source distribu-
tion can be approximated by a set of the simultaneous linear
algebraic equations which can be solved by matrix inversion.
However, the integral equation fails to produce soiutions at
certain frequencies associated with the resonance of interior
flow. At these eigenfrequencies, the determinant of the ker-
nel matrix becomes singular. The solution of the integral
equation cannot be computed at these eigenfrequencies of the
interior flow (Theorem 3 in chapter II-E).

The Green's function can be modified by adding or sub-
tracting a harmonic function which satisfies the radiation
condition and free surface boundary condition. The singular
nature of the Green's function is not changed. Ursell (1953)
used a simple form of modified Green's function to compute
the high frequency asymptotic solution of the integral equa-
tion from Green's theorem:

* ~ Vg

G(P,Q) = G(P,Q) - ce’® e "VPg(p, o). (49)

where G(P,Q) is the original Green's function, b is half
beam, and O denotes the origin. Ursell determined

the constant C specifically as 1/2, thus making the kernel
small enough to yield the convergent solution by iteration
method. This restriction turns out to be a weak one, however .
Ogilvie and Shin (1978) proved that constant C can have a
rather arbitrary magnitude. A more general form of the modi-

fied Green's function is given by
G(P,Q) = G(p,Q) - ce’t e iVl g (p,0, (50)

The modified Green's functions (49) and (50) do not satisfy
the symmetry requirement of the Green's function. The sym-
metrical form of the modified G can be constructed in the

following form:

G(P,0) = G(P,Q) - z=x G(P,0)G(0,Q). (51)

o~
G denotes a modified Green's function.
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The modification term G(P,0) represents a source at the ori-
gin. This modified Green's function (51) satisfies the re-
quirements of the Green's function. The modification would
not affect the potential in the exterior region. It would,
however, change the magnitude of the source density on the
hull. '

The integral equation is solved by using the modified
Green's function which removes the numerical difficulty at
the eigenfrequency. The numerical result shows that the sym-
metry condition of the modified G is not very important. Any
of the modified Green's functions (49), (50) and (51) can be
used for the purpose. The eigenfrequencies of the 2-D rec-
tangle can be predicted by the method of separation of vari-
ables. For the symmetrical mode (heave), the eigensolution

is given by

- Ya¥ .
¢n = COs —3 sinh Yn (z+T), where n =1,2,3,...
and Yp = iZE:llﬁ' B is the beam, and T is the draft.

B
Note that 2-D coordinate system from Figure 5 is used.
The eigenfrequency of oscillation is given by
w2 B _
n - (2n-1)w coth (2n-1) 1T ]
29 2 B
For the anti-symmetrical mode (sway), the eigensolution is

given by
Unyf'- R
¢, = cos 5 sinh Un (z+T) , where n =1,2,3,...
_ 2n7
and ¥, = =B -

The eigenfrequency of oscillation is given by

w? B
n - 2nmT
25 nt coth B .

Figure 6 shows that source density becomes very large
at the irregular frequency. The source density should become
infinite if we hit the exact irregular frequency. As a con-
sequence, the pressure, added mass coefficient, and damping
coeffcient blow up. If we modify the Green's function, we
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Re{c}

original G
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1.2 ¢
1.0 |
0.8 /
0.6 [ /
0.4 | .
0.2 T SOl
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-0.2 |
w2B

Figure 6. Source density at the free surface for the heaving rectangle
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can solve the integral equation. Figure 6 also shows that
the discontinuity in source density can be corrected by the

modified Green's function.

C. Approximation Methods

Three different methods will be used to solve the inte-
gral equation (48): linear algebraic equation, successive

approximation by Neumann series, and frequency iteration.
1. Linear algebraic equation method

Frank (1967) solved the 2-D boundary value problem by
the method of source distribution over the contour. He di-
vided the hull into segments of straight lines and assumed
the source density to be constant over each segment. By
applying the hull boundary condition at the midpoint of
each segment, he got a set of simultaneous linear algebraic
equations. This was solved by matrix inversion.

Troesch (1976) made the more reasonable assumption that
source density varies linearly along the given segment. Thus,
for him, the source density is a continuous function over the
given section, while Frank's assumption gives jump in source
density from segment to segment. The body boundary condition
is applied at the nodal point of the section. These simulta-
neous linear algebraic equations for the unknown source den-
sity are solved by matrix inversion or lcwer and upper trian- .

gular decomposition methoo. .In this paper, Troesch's method

is employed.

2. Successive approximation by Neumann series

Let

o = Ao(l) + Ao(z) + A0(3) + ——— (52)

Substituting (52) into the integral equation (48) produces

a series of source densities as follows:

Ao (1) =-on. (53)
1 v
and

Ag (2) _ 1 AO(l) 9G (P,Q) as ().
m c aNp
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By induction, we get

pot® = L LAo‘n‘l) (08B g5 (g) . (54)
T P

In order to get the convergence of the iteration method, some
bounded-conditions on the kernel are required.. This is
presented in detail in section II-F. When the numerical cal-
culation is performed by using the original form of the
Green's function, the iterative solution does not converge
at irregular frequencies as expected. By using the modified
Green's function, however, the iterative solution converges
very well. Even at irregular frequencies, the convergence

is good. The rate of convergence is much faster for the
high frequency of oscillation than for the low frequency.

3. Frequency iterative method

We can extend Ursell's (1953) high frequency asymptotic
analysis to practical problems of finite frequency. The solu-
tion of the finite frequency case can be considered as the
high frequency limit problem, with successive corrections
of the frequency effect in accordance with the asymptotic
analysis. Then we only need to solve a canonical problem
corresponding to infinite frequency. When the problem is
solved once, the same kernel matrix can be used iteratively
to find successive corrections for free surface effect.

The Green's function consists of two parts: one for
the infinite fluid and the other for the presence of the free
surface boundary. By separating these parts of the Green's

function, the integral equation (48) can be written as

I F
g 1 oG 1 G
- 4+ — d = N. - =— |o d
2 Zﬂj ° SN % i 27 J N o (55)

C

6T = 1og”(y-m 2 + (2-2)2 = 109/ (y-M)2 + (2+7)2 ]

and GF =G - GI,

Assuming that there is an asymptotic series for ¢ and
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that aGF/aN is of a higher order than eGI/aN for high fre-
quency, we get a sequence of integral equations. As a

first order approximation, we get

(1) I
Ac 1 (1) 3G _
> + EFJ Ao N ag = N, . (56)
C

This corresponds to the case of infinitely high frequency of
oscillation. More precisely, it is the case of ¢=0 free sur-
face condition. Equation (56) would be a good approximation
for the vibration problem of extremely high frequency of os-
cillation. The free surface effect is taken into account in
the higher order approximation. Thus, the second iteration
is given by
F

(2) I
Ag 1 (2) 3674, - _ L[ ,,(1) 36
—z ¢ ﬁJ B0 g ¢ T -sz 8077 9§ de- (=7)

The right-hand side of the integral equation (57) is known
from the first iteration (56). The n-th iteration is given
by

QL

(n) I F
Ag 1 (n) 3G - _ 1 (n-1) 3G

The kernel matrix of the integral equation (58) does not have
eigenfrequencies. There is no resonance of the interior flow,
since there is no free surface involved in the left~hand side.
The free surface effect is reflected as a forcing term in the
right-hand side of the equation. This can be interpreted as
a corrective normal velocity resulting from the presence of

a free surface. Similar to the successive approximation by
Neumann éeries, this iterative method does not converge for
all frequency ranges unless we modify the original form of
the Green's function.

Figure 7 shows that the corrective normal velocity di-
verges by using the original Green's function. It also shows
that the corrective normal velocity converges with the modi-
fied Green's function. Figure 8 shows that the velocity
potential converges well when the modified Green's func-
tion is used for the heaving circle. Figure 9 shows that =
the iterative solution converges for the heaving rectangle.
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Figure 7. Corrective normal velocity for the heaving
: circle by the frequency iteration method
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Figure 8. Iterative solution of the velocity potential
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Figure 9. Iterative solution of the velocity potential for
the heaving rectangle (B/T=4)
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Figure 10. Convergence of source density at the free
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Figure 10 shows that the iterative solution converges well
when the modified Green's function is used. The rate of con-
vergence is slow for low frequencies, and is faster for the
high frequencies. The rate also depends on the shape of the
section. For example, the rate of convergence is better for
the circular cylinder than for the flat rectangular cylinder
(B/T = 4.0). Four to ten iterations yield a good approxima-
tion from which to compute the source density. They give
sufficient accuracy for the computation of the added mass

and damping coefficients.

D. Hydrodynamic Pressure, Sectional Added Mass, and Damping

The hydrodynamic pressure is obtained from the linear-

ized Bernoulli equation as,
P = —iwp¢r (59)

where w is the frequency of oscillation, and p is the density
of the fluid. By replacing & with iwa¢ , we get
— 2

P = paw®¢,
' (60)
where a is the amplitude of the body motion, and ¢ is the
normalized form of the velocity potential. The pressure is
non-dimensionalized by hydrostatic pressure pga:

P__ =g where v = w? (61)

pga ! g .
The real and imaginary parts of the hydrodynamic pressure
are related to added mass and damping coefficients, respec-
tively. The sectional hydrodynamic force is computed from

the pressure integration over the contour:

Fi:JC P(Q) N, (Q) an(0), (62)

= pgavF ,
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where F = [ ¢ N, dl. (63)
cC 1

The complex amplitude of the hydrodynamic force is repre-

sented by

F =—(-pA C, w?a + ipA C4 w?a), (64)

where A is the sectional area, C, is the added mass coef-
ficient, and Cé is the damping coefficient. By equating (62)
and (64), the sectional added mass and damping coefficients

are defined by

Re[F]
Ca = =3
~ (65)
and o - -Im[F]
g = =2
A -

Figures 11 and 12 show the hydrodynamic pressure at keel and
at the free surface on the heaving circle, respectively. The
2-D added mass coefficient and damping coefficient for the
heaving circular cylinder are shown in Figure 13.

The added mass coefficient and damping coefficient for

the rectangular cylinder with a beam draft ratio of 2.0 is

shown in Figure 14.

E. Summary

The integral\equation of the second kind derived by
using a 2-D wave source can be solved approximately by sev-
eral numerical methods: simultaneous linear algebraic equa-
tion, frequency iteration using the infinite fluid solution,
Oor successive approximation by Neumann series.

All of these methods, however, fail at the eigenfre-
quency of the interior Dirichlet problem. The irregular fre-
guency phenomenon for the Fredholm integral equation which
results from the source distribution can be removed by
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Figure 1l. Pressure at the keel for the heaving circle
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Figure 12. Pressure at the free surface for the heaving
circle
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Figure 13. Added mass and damping coefficients for the
heaving circle
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modifying the fundamental form of the Green's function.

When the modified Green's function is used, both the
successive approximation by Neumann series and frequency
iterative method can also be used. The iterative methods
converge well for the high freguencies of oscillation. The
rate of convergence is slow for the low frequeﬁcies. For the
computation of the added mass and damping coefficients, four
to ten iterations give a good approximation.

Ca'cd
1.5 —_—
Ca e
—_—— cd
1.0F

S ——_ ——.

0 0.5 1.0 1.5 2B 2.0 2.5 3.0

2g
Figure 14. Added mass and damping coefficients for the
heaving rectangle (B/T=2)



IV. 3-D INFINITE FLUID PROBLEM

Figure 15. Free-surface problem for infinitely high frequency

As the frequency of oscillation increases, the free sur-
face wave is contained only in the thin layer near the free
surface. 1In the limit, the wave disappears and the free sur-
face becomes a zero equi-potential surface. The problem in
the lower-half space can be extended into the upper-half
space by reflecting the body into the upper-half plane. This
corresponds to the flow around the so-called "double bodv"¥*
The flow is gqualitatively similar to that caused by a verti-
cal dipole at the origin for a sphere and by a line of 4di-
poles at the centerline for a slender spheroid. For
simple geometric bodies such as the sphere and spheroid, the
exact solution can be obtained by the method of separation
of variables in a suitable coordinate system.

A similar subject has been treated by Lamb (1932), Lewis
(1929), Landweber and Macagno (1957), Kumai (1966), Vorus

*It should be noted that this applies only to heave motion.
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(1971), and Tein (1976) for the study of vibration in the
infinite fluid.

For the arbitrary 3-D body, no simple solution exists.
It can be solved either by multipole expansion method or by
an integral equation method. Various forms of integral equa-
tions are available by sources, by dipoles, and by both
sources and dipoles (see Lamb). Since the Green's function
for the infinite fluid case is simple, the integral equation
by source distribution is relatively simple to solve. This
method is applied to compute the hydrodynamic pressure for
the unsteady motion of 3-D body with the infinitely high
frequency of oscillation. This also is equivalent to the os-
cillation problem of the deeply submerged body.

A. Integral Equation Methods

The integral equation using the 3-D wave-free source is

given by 3-D
-3~ ﬁr” o @32 ' as(0) = n (@), ee)
S P

where the Green's function is given by

3D 1 _ 1
J(x-£)2 + (y=n)* + (z-¢)? (x=€)2 +(y=n)? + (247 )2

The integral equation (66) is the same as the integral equa-
tion (23) except for the simple form of Green's function.
The first term is a point sink. The second term is a point
source. The numerical procedure to solve the integral equa-
tion is described in Appendix B. The basic numerical scheme
is the same as in the 3-D free surface problem which uses
the more complicated Green's function to satisfy the free
surface and radiation conditions. The induced velocity
potential is evaluated in Appendix B.

No irregular frequency phenomena has been found for
the infinite fluid case, because interior resonance cannot

occur without the presence of free surface inside the
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body. Mathematically there is no eigensolution for the in-
terior Dirichlet problem in the infinite fluid case, as
described in Kellogg (1929).* The reciprocal eigenvalues
of the kernel matrix are within the unit circle of con-
vergence. Any numerical methods for the integral equation
would work. The linear algebraic equation method gives a
stable solution since the determinant of the kernel matrix
never becomes zero. The iterative method with successive
approximation converges very well. In general, 4 to 8 itera-
tions are sufficient to give 4-significant-digit accuracy.
The integral equation also can be solved, approximately,
by the 2-D iteration method. Instead of solving the 3-D
integral equation** directly, a sequence of two-dimensional
integral equations is solved section by section. Consider-
ing the slenderness of the parallel middle Body, the 2-D
source density is assumed to be a first approximation to the
3-D source density along most of the length of the parallel
middle body. For each section of parallel middle body, we
get a 2-D integral equation such as

(1) 2-D
C(x) P
where
62D = 10g/(y-n) 2+(z-2)? - log/(y-n)2+(z+2)2 .

The 2-D approximation of source density begins to fail as it
approaches the ends, where the slenderness assumption is not
valid. For the rapidly varying sections near the end, the
3-D integral equation is solved directly by taking into ac-
count the 3-D onset velocity on the end section which is
caused by the strip motion of the parallel middle body:

*

If the velocity potential is harmonic, is continuously dif-
ferentiable in a closed regular region, and vanishes at all
points of the boundary of the region, it vanishes at ali
points of the region.

* %

The 3-D integral equation and 2-D integral equation are
defined as the integral equation derived from the 3-D and
2-p boundary value problems, respectively.
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Ad?) 1” (1) 3G (P, Q) 1ﬁ (1) 3G (P, Q)
_— - Ao —_ LR dS(Q) = n, (P)+-—= Ao A [
2 dm)sg 3np, s 4T )js,, 8, ds(Q),

(68)

where SE denotes end section, and sM denotes the slowly
changing middle section. The contribution from the other
end is small and can be neglected.

The integral in the right-hand side of (68) is the on-
set velocity from the parallel middle body. The integral
vanishes for the infinitely long uniform cylinder. The
3-D integral equation becomes the exact 2-D integral equa-
tion. The first order approximation becomes the exact
solution. 1In Appendix A-5, the 2-D source density is
derived from the 3-D source density for the infinitely long
uniform cylinder. The iteration can continue further. 1In
this paper, only the first iterative solution is computed.

The velocity potential is obtained by integrating the
product of the source density and the 3-D Green's function

over the hull surface:
_ 1 3-D
$ (P) °°ZFJJS 0(Q)G (P,Q) ds(qQ) . (69)

The velocity potential (hydrodynamic pressure) distribution
as computed by the 2-D iteration method is compared with the
3-D solution and the strip theory solution in Figure 16
through 18. Even the first order solution gives better ac-
curacy than the strip theory, especially for heave. It be-
comes less accurate for the springing mode. More iterations
are needed for the higher mode of vibration because we assume
that 2-D strip source density is a good approximation of 3-D
source density along the parallel middle body, which is not
quite true. The assumption is valid for heave, but not for
2-node vibration. Figure 19 shows the axial distribution

of the source density along the keel of the rectangular
cylinder. Figure 20 shows the girthwise distribution of

the velocity potential at the midship of the heaving

rectangular cylinder.
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B. Hydrodynamic Pressure and Added Mass

The non-dimensional hydrodynamic pressure is represented

in terms of velocity potential,

P
paw?

= ¢, , (70)

Note that the hydrodynamic pressure has only a real part for
the infinite fluid case.

The added mass*is the hydrodynamic force caused by unit
acceleration, since the total force is in phase with the ac-
celeration. The sectional added mass is obtained through

pressure integration around the section:

al
m(x) = oy, n,———— (71)
(x) pJ _1(x) 3,
C(x) l—nl
where wi(x) is the mode shape of the vertical vibration.
The sectional added mass coefficient is defined by
Ca(x) = BLX) (72)

= pAo ,
where A0 is the sectional area at midship. The total added

mass coefficient is defined by

1 L/2
Ca =_pvJ m(x) dx ’
-L/2
where V is the volume of the displaced fluid.

C. 3-D Exact Solution of the Vibrating Spheroid

The velocity potential for the vibrating spheroid is
solved by the method of separation of variables in spheroidal
coordinates by Lewis (1929). It is assumed that the mode
shape is approximately a simple shear of transverse sections
of the spheroid. Then the velocity potential for the

*

Added mass for the heave is mass and for the pitch it is
added moment of inertia dimensionally. For the vibration
mode, it should be interpreted as generalized added mass.
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vertical vibration can be expressed by the spherical har-
monics. The transformation of the cylindrical coordinate
system (x,R,6) to the prolate spheroidal coordinate system
(«,u,6) is given by

X =42 pu«k 1<k<eo ,

R = 24/ (1-p2?) (k2-1) -1<p<l ,
and
6 =6 0<g<2m ,

where & 1is the distance from center to focus of spheroid.
The velocity potential at field point (x,u,0) due to the
2-node vibration mode (Vl—V3u2) is represented in spheroidal

coordinates:
¢ = C(k,u) cos 6, (73)
where

C(k,u) = Bl(KO)Pl(u)Ql(K) + 83(K0)P3(u)Q3(K) ’

Bn(KO) is constant for the given shape of the spheroid
(K=Ko) and given mode shape of vibration, Bl and 83 are
iven by
g Vs
N -y
Bl ’
2vk2-1 2 Q. (k)
d 1 K=K,
V3L
83 = ’
15/k2-T -2 Q_ (k)
9K 3 K=K,

where L is the length of the spheroid.

Ph(n) is the associated Legendre function of the first kind,
and Q, (k) is the associated Legendre function of the
second kind. After some algebraic manipulation, we get the
velocity potential on the surface of the spheroid, where

K=K as

ol
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= \' v
¢ (Koru,9)=R0(u)L{VI-ngWl(Ko)+j§(l—5u2)w3(KO)]cose .
' (74)

where Ro(u) is the local radius at section u(2x/L) of the
spheroid, and Wn(KO) is J factor of the spheroid for n-th

normal mode:

3 Kk+1 3k?
W = 2X109 77 - 1
1 3 K+1 3k2-6
7 K109 (=T - =1
K=K '
0
3 3 k+1  15¢*-13¢?
I 5 (5k —K)lOgK_l - TIo1
3 3 K+1 45k *=63k2+16
5 (15«3 11x) log—3F - 71
K=Ky

The added mass can be computed either from the kinetic
energy of the fluid or by the direct integration of the pres-
sure over the hull surface. By applying Green's theorem in
the fluid domain, the generalized added mass for the vibra-
tion modes can be represented by the kinetic energy of the
surrounding fluid caused by the unit velocity in the given
mode. This relationship does not hold when the free surface
exists, however, since the kinetic energy expression has
contributions from the free surface and surface at infinity.

The sectional added mass for the springing spheroid is
obtained through pressure integration around the section:

r11’/2 VE;?:E?
= 2
m(u) = oJ (V, =V u®)n, — R, (u)ds .

-1/2
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Thus, the sectional added mass coefficient of a springing

spheroid is given by

A
Catm) =R = (12 (vi-v u?) vy v, -2h v, 50
pThb
2 (75)

The total added mass coefficient is obtained by integrating
the sectional added mass along the axial direction:

v

_m _ __3,2 8 2

Ca =57 =M V17577 + 135 W3V3 | (76)
The total added mass agrees with Lewis' result com-

puted from the kinetic energy of the fluid for the 2-node

vibration.

D. 2-D Strip Theory for the Vibrating Spheroid

Instead of solving the 3-D boundary value problem, a
set of 2-D boundary value problems is solved sequentially
by section based on slenderness of the body. It is assumed
that each section performs 2-D vertical motion independently,
without the interaction between sections. The 2-D flow of
any section of the spheroid can be computed by the method
of separation of variables. The flow is basically that
caused by the 2-D vertical dipole at the centerline with a
strength proportional to Vl-V3u2. The velocity potential in
the fluid field computed by strip theory is given in
cylindrical coordinates:

(Vl-V3u2)R02(u) cosf

¢(u,R,0) = 5 ' (77)

where
R = Yy2+z2 ,
and

Ry(Ww) = b/1-u? .

The velocity potential on the surface of the spheroid

for the 2-node vibration is given as
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= -V y2
¢(u,Rb,6) (Vl VoH )Rb(u) cosb . (78)

The strip-theory sectional added mass is obtained by inte-

grating the pressure along the girth of the section:

m(u) = p(v,vu? ] ongdr = prr P (v, vahH?  (79)

The total added mass of the spheroid is obtained by integra-
ting (79) along the axial direction. The added mass coeffi-

cient by strip theory becomes

- V3 8 2
Ca - [Vl- ? + m V3 . (80)

This is the same as 3-D results (76) except for the Wn

factor.

E. Local J(u) Factor and the 3-D Effect

The local J factor is defined as the ratio of the sec-
tional added mass of the 3~D body to the added mass of the
2-D cylinder at the section u. For the vibrating spheroid
with mode shape Vl-V3u2, the local J factor becomes

W, (vl-v—g) V4 (1-5u2)
J(u) = > ) (81)

Vl—V3u

-

For heave, the local J(u) factor becomes Wl’ which is
constant. This is surprising since it means that the relative
€rror of the strip theory computation is the same for any
section of the spheroid. 1In other words, the 2-D strip-theory
value for the added mass near the ends is no worse than that
along midship of the heaving spheroid. Furthermore, the ab-
solute error created by strip theory is greater at midship
than near ends. Figure 21 compares strip theory and 3-D
theory for the added mass distribution of the heaving and
springing spheroid.

For a normal mode of 2-node vibration (1-5u?), the local
J factor becomes a constant value of W3. Thus, the same
conclusion about the end effect can be made for the 2-node
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vibration. This is a case in which physical intuition does
not always work. It should be recognized that the above dis-
cussion is valid only for an infinitely high frequency of
oscillation and for the special geocmetry of the spheroid.

A later chapter will study how the constant local J factor
changes when the free surface exists.

For blunt 3-D bodies such as a rectangular tank or a
circular cylinder with vertical ends, the discrepancy near
the ends between strip theory and 3-D theory is significant.
Near the midship section, strip theory is a quite good ap-
proximation; however, it becomes a very poor approximation
as it approaches the ends. Figures 22 and 23 compare 2-D
and 3-D theories for the sectional added mass of heaving
and vibrating circular and rectangular cylinders (L/B=10),
respectively.

For a vibrating spheroid, the ratio of 3-D pressure
to 2-D pressure is given by

3-D (v z—)w 23 3 AT
D u?)

2-D .
p Vi V3u

For the spheroid, the pressure ratio is identical to the
local J factor (8l). For heave, the 3-D pressure varies
like vI-uZ, while the sectional added mass by 3-D theory
varies like (l1-p?) in an axial direction. The pressure
found by 2-D strip theory varies like vI-u2 , and the
sectional added mass computed by 2-D theory varies like
(1-u?) in an axial direction. Thus, the pressure ratio
becomes identical to the local J factor through cancel-

lation of the same factor.

F. Total J Factor

The total J factor is defined as the ratio of the actual
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"added mass computed using the 3-D theory to the added mass
computed using the strip theory. For a springing spheroid,
the J factor becomes

2 8 2

) Wy tTEVs Ry

2 8 . 2 .
SV

v
3
(Vl- ?
]
5

\'

(vy-

Figure 24 shows the total J factor for various L/B ratios

of a spheroid for various normal modes of vertical vibra-
tion. For heave, the J factor approaches 0.5 for a sphere
and 1 for the infinitely long circular cylinder. For the
2-node vibration (1-5u?), the J factor becomes 0.25 for a
sphere and approaches 1 for the 2-D circular cylinder. The
more slender the spheroid, .the better the strip solution for
estimating the added mass. The strip theory value is a bet-
ter approximation for the lower modes than for the higher

modes of wvibration.

G. Summary

The pressure distribution and sectional added mass for
a vibrating spheroid, circular cylinder, and rectangular
cylinder are computed by the 3-D source distribution method.
The numerical solution from any approximation method is very
stable since there is no resonance phenomena inside the
bodies. The three dimensional solutions are compared with
the strip solutions.

The 3-D effect on the added mass distribution for the
vibrating spheroid is evenly spread along the entire length
because of its particular geometry and its normal mode. How-
ever, the 3-D effect on the added mass distribution for the
blunt 3-D body is significant near ends. For the same geo-
metry, end effect is more significant for the higher mode

than for the lower mode of vibration.



V. 3-D FREE SURFACE PROBLEM

No analytic solution exists for the 3-D arbitrary body.
Thus, analysis must depend on either the generalized multi-
pole expansion method or the integral equation method. 1In
general, the integral equation method is preferred for the
3-D arbitrary body. Various forms of the integral equations
for the 3-D unsteady oscillation problem are derived in chap-
ter IT.

This paper employs the integral equation method by using
3-D wave source distribution. Irregular frequency phenomenon
is removed by using a modified Green's function. The pres-
sure distribution and sectional added mass and damping coef-
ficients for the heaving spheroid are computed. The 3-D ef-

fect on the added mass is also investigated.

A. Integral Equation by 3-D Wave Source

The Fredholm integral equation of the second kind using

3-D wave source distribution is given by

o(P) 1 3G (P,Q) ., =

-3 -4—ﬂ” c(Q)a—np ds(Q) = n, (P), (23)
where

96 _ [ 86 , 8¢, 3G

n,  “x3x T Nooy T n3z .

P

The various forms of the Green's functions and their deriva-
tives are derived in Appendix A. The integral equation using

source distribution is solved by several numerical methods.

B. Irregular Frequency of the Interior Dirichlet Problem

The integral equation method is powerful because it can

be applied to an arbitrary three-dimensional body. It has,

60
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however, the inherent disadvantage of a resonance problem
with the complementary interior flow at an infinite set of
eigenfrequencies similar to that of the 2-D problem
(section III-C). The eigenfrequencies of simple 3-D bodies
can be predicted.

The eigenfrequency of the interior Dirichlet problem
(p=0 on the boundary) for a rectangular tank can be computed
by using the method of the separation of variables. For the

symmetrical mode, the eigensolution is given by

m,n (2m-1)7x /N

¢ = cos cos {2n-L)Ty sinh y© (z+T), (83)

L B
for m,n =1,2,3... ,

where L is the length, B is the beam, T is the draft of the

tank, and

Ym,n ?Jé(zmil)ﬂf + [(2n;l)nf ]

Note that the 3-D coordinate systemfrom Figure 1 is used.
The eigenfrequency of oscillation is determined from the free
surface condition:

2
(wm,n)= m,n

= Y coth Ym,n

T .

The lowest eigenfrequency becomes

w?B _ /mB2 ,m,2 T2, ,mT.2
“2g = K§E)+(§) coth (f—)+(_§) . (84)

The anti-symmetrical modes can be obtained similarly. The
lowest eigenfrequency of the rectangular tank is plotted
versus length/beam ratio and beam/draft ratio in Figure
25. For an infinitely long narrow tank, the eigenfrequency
for the symmetrical mode becomes that of a 2-D rectangle.

For the circular tank, the method of separation of vari-
ables in cylindrical coordinates is used. The eigen solution

is given by

¢m'n(R,9,z) = sinh Y(z+T)Jm(Ym'nR)cos mbé, for m,n=0,1,2,
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m,n . .
where vy '" is determined from

Jm(ym’nR) = 0, on R=a ,

and a is the radius of the circular tank.

The eigenfrequency of oscillation is given by
2

(w
m of
én = vy coth Y07 |

The lowest eigenfrequency of oscillation becomes

€28 -2.445, for 2 =1 .
g T
The irregular frequency phenomena of the integral egquation
method can be removed by modifying the fundamental form of
the Green's function. A modified Green's function is con-
structed by adding a line of sources at the free surface on

the center line. It is presented by

G(P,Q) = G(P,Q) - 5r7G(P,Q)G(Q,Q,) cos I&,

where G is the original form of the Green's function, Q0 is
the point at (£,0,0), and G(P,QO) is a source located at £
of the center line. Refer to Chapter IIT-B for the 2-D case.

C. Linear Algebraic Equation Method

The macroscopic numerical procedure used to solve the
integral eguation based on source distribution is described

as follows:

i) approximate the body surface by a number of plane
quadrilateral elements;

ii) compute the influence coefficient matrix for induced
normal velocity and induced velocity potential;

iii) compute the generalized normals of the elements;

iv) solve the simultaneous linear algebraic equation
compute the source density;

v) compute the velocity potential on the hull by inte-
grating the computed source density over the hull

surface;



vi) integrate the hydrodynamic pressure on the hull in the
direction of the desired motion to compute the
hydrodynamic coefficients.

(Details of the numerical procedures are given in Ap-

pendix B.)

D. Iterative Methods

Similar to the 2-D free surface problem, various itera-
tive methods are used to solve the integral equation: suc-
cessive approximation by Neumann series, the frequency itera-
tion method, and the improved iteration method using the Buck-

ner-Chertock series.
l. Successive approximation by Neumann series

Successive approximation by Neumann series is described
in III-C-2 for the 2-D free surface problem. The numerical
scheme similar to the 2-D case is applied for the 3-D prob-
lem. Successive approximation does not converge for all fre-
quencies of oscillation. The successive approximation does
not converge for the low frequency. It is found, however,
that the successive approximation method converges well for
the high frequency.

2. Frequency iteration by using an infinite fluid solu-

tion

The frequency iteration method for the three-dimensional
case is similar to the 2-D problem (ITI-C-3). The first
iteration gives the infinite fluid source density, and the
free surface effect is corrected gradually by successive
iterations. The frequency iteration method converges for
the high frequency of oscillation. However, it does not
converge for the low frequency. Figure 26 shows that the
frequency iteration method converges well for vb=4, but
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diverges very fast for vb = 1. The convergence rates of
both iteration methods are almost same. If one method con-
verges, then the other method also converges.

The two fundamental questions for the iteration methods
are: Do the iterative solutions converge? If so, do they
converge to right solution? It is found that the iteration
solutions converge to the right solution, if they converge.
The rate of the convergence of iteration depends on the first
approximation. For the high frequency, the infinite fluid
solution as a first approximation may be sufficient enough
for the convergence. This paper studies the convergence
condition of the iteration method to find out why it does not
converge for all frequencies. (For the low frequency, suc-
cessive approximation by Neumann series and frequency itera-
tion do not converge.) An improved iteration method by Buck-
ner and Chertock is applied for the low frequency ranges to

improve the convergence. (See Figure 27)
3. Improved iteration method
Let us assume that there is a convergent series in o:

o = Ac(l) + Ac(z)

Substituting o into the integral eguation (36), we can re-

write the integral equation as

o Piac @1 ) - k(ao P aac @ sy = 2
Let T=1,
Ao(l) = =2f(1-H)
and
(n-1)

Ao () [H+ (1-H)K] Ac

for n>2

where H is any real number or complex number.

We .then get a new sequence as follows:

0(1) = -2f(1-H)

0@ = ae Wi a-mrrae®

~

(1+K)f , (88)
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where

X = H+(1-H)K,
and

£ = -2£(1-H).

By induction, we get

~2 n-1

o™ - (1 + R+ R 4 ... R VE (89)

-~

where K is n-th iterate of new operator K.

Let us rewrite the equation (88) as

o (3 =_2f (1-m)+ B+ (1-B)Klac (1)

= 5o'P s (1-m) [ -2£4+r0 P 7.

By induction, we get the n-th sequence,

o™ = g (1) (1-H)[ =2+ Kc(n—l)], (50

which is the Buckner's sequence. Buckner has demonstrated
that the new sequence (90) converges to the unique solution
if H satisfies the necessary and sufficient condition,

0<H<1

’
except for the eigenfrequencies. Chertock (1968) gives a
more useful condition of convergence in the iterative solu-
tion. He finds that if the maximum reciprocal eigenvalue
of the kernel matrix is larger than the unit circle, the
original Neumann series does not converge. The domain of
convergence for the new sequence is inside the circle with
its center at H/(H-1) and its radius %. The circle passes
through the point (1,0). If the kernel matrix has a real
eigenvalue (1,0), the improved iteration method would not
converge. -

For the unsteady oscillation problem, the kernel matrix
of the integral equation is a function of wave frequency.
For each wave frequency, there is a set of characteristic
values of the kernel matrix. If any one of the characteris-
tic values is not 1, the solution exists uniguely. This



68

condition is sufficient for the linear algebraic equation
method to work, since the determinant of the kernel matrix
is not singular. This condition is not sufficient, however,
for the iterative method to converge. The more restrictive
condition is required for the iteration method to converge.
This condition is given in theorem 4 of the section II-E.
The maximum reciprocal eigenvalue of the kernel matrix is
beyond the unit circle for the low frequency of oscillation.
Thus, the iterative solution diverges. At the eigenfrequen-
cies of the interior Dirichlet problem, at least one of the
reciprocal eigenvalues of the kernel matrix is 1. Conse-
quently, the iteration solution would not converge at these
frequencies. For the high frequency of oscillation, the
iterative method converges well since all the reciprocal
eigenvalues of the kernel matrix are within the radius of

convergence.

E. Hydrodynamic Pressure, Added Mass, and Damping Coeffi-

cients

The non-dimensional hydrodynamic pressure (61) was de-
rived in section III-D from the linearized Bernoulli equa-
tion:

P _
oga - Vo . (61)

The longitudinal distribution of the hydrodynamic pressure
for the heaving spheroid is shown in Figure 28. The girth-
wise distributions of the pressure at various sections are
shown in the Figure 29. The 3-D pressure distribution is
compared with the 2-D pressure near midship and near the
ends in Figure 30 and 31, respectively.

The hydrodynamic forces are obtained by integrating the
hydrodynamic pressure caused by the forced-motion in the
direction of that mode over the mean submerged surface of the

ship:

Fi= JJS P n, ds = pga\)Fi (91)
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where the non-dimensional hydrodynamic force, ?i,is given

by

F“i= ”s ¢ni das .

The complex amplitude of the hydrodynamic forces due to
forced motion is expressed in terms of added mass and damp-

ing coefficients as

F.= - (—MCawza + iMdeza) ' (92)

where M is the mass of the displaced fluid, Ca is the added
mass coefficient, and Cd is the damping coefficient. The
first term in the parenthesis is the force in phase with
the acceleration of the body motion. The second term is the
force in phase with the velocity of the body motion. By
equating (91) and (92), the added mass coefficient and damp-

ing coefficient are defined, respectively, as follows:

c = RelF]
a v
and -
Cd - —iHl ’
v

where V is the displaced volume of the body.

The added mass and damping coefficients for a heaving
spheroid (L/B=8) are shown in Figures 32 and 33, respective-
ly. The symmetryyof the spheroid has been utilized to reduce
the size of the linear algebraic equation. Forty elements
have been used to approximate the gquadrant of the semi-
spheroid. The accuracy of the result depends on the number
of elements used to represent the body surface. It also
depends on how the elements are distributed over the surface.
In general, more elements should be distributed over a region
where body shape changes rapidly. For the high frequency
of oscillation, more elements are needed for accuracy.

The three dimensional added mass is compared with the
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strip theory added mass for the heaving spheroid in Figure
32. The two theories have a completely different asymptotic
behavior for the low frequency limit. Added mass becomes in-
finite using the strip theory, while it is finite using 3-D
theory. Thus, the error by strip theory becomes infinite for
the low frequency limit. For the high frequency limit, the
error by strip theory is finite. The error by strip theory
for the infinitely high frequency limit is 5.5% for the
heaving spheroid of L/B ratio 8 (Figure 24).

For finite frequencies , the total J factor lies between
the two limits. For a fairly high frequency of oscillation,
the strip theory approximates the 3-D result well. Even-
tually the error would approach the finite value of the high
frequency limit.

F. Sectional Added Mass, Damping Coefficients, and the 3-D
Effect

The sectional hydrodynamic force is computed from the

pressure integration over the contour at station x:

_ ds
Fix) = [C(x) ¢ni7f==:r

-an

~

The sectional added mass and damping coefficients are defined

as
c, (x) = Re[Fi(x) ] ]
A
and

cy(x) = -Imﬁﬁ{x)] ,
0
where Ay is the sectional area at midship.

The spheroid is chosen to see the 3-D effect on the
sectional added mass distribution along the x axis under the
presence of the free surface, since the spheroid has a unigue
geometry for which the strip theory solution is a constant
ratio of the 3-D exact solution in the infinite fluid. In
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other words, the strip solution produces a constant error
ratio not only near the ends, but also near midship. This
error ratio decreases as the spheroid becomes more slender.

Figures 34 through 36 show the sectional added mass dis-~
tribution for the various frequencies (w?L/2g = 3,8,12) using
both 3-D and 2-D theories. For the low frequency (mzL/2g=3),
the sectional added mass distribution from the 2-D strip solu-
tion is quite different from the three-dimensional result
(see Figure 34). Moreover the ratio of the 3-D added mass to
the 2-D added mass is not constant at each section. The local
J factor varies relatively slowly along the middle section.

As it approaches the end of spheroid, the J factor moves to-
ward zero. The strip theory overestimates the sectional added
mass near the end. But the strip theory underestimates the
total added mass, sihce the strip solution underestimates near
midship which is the source of the main contribution. { It is
not. offset by the strip thoery overestimations near the
ends.) For the high frequency (w?B/2g = 12), the sectional
added mass computed by the strip theory still deviates from
the 3-D solution, but the deviation is smaller than in the
lower frequency case. Near the end of the spheroid, the

strip theory still overestimates the sectional added mass.
However, this region of discrepancy is narrowly restricted

to the very end. The total J factor is 0.987. The strip
solution overestimates. the 3-D solution. The total J factor
would eventually approach a high frequency limit of 0.945

(see Figure 24). As the frequency increases, the sectional
added mass distribution of the strip thory approaches the 3-D
result with a constant error ratio. The 3-D effect near the
end disappears in the high frequency limit.

Figure 37 through 39 show the sectional added mass dis-
tribution for the vibrating spheroid using both 3-D and 2-D
theories. The differences between the 3-D and 2-D added mass
distribution are greater for the low frequency than for the

high frequency.
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H. Summary

The Fredholm integral equation of the second kind de-
rived by using sources is applied to solve the exact 3-D
radiation problem. The integral equation is solved by sev-
eral different methods: equivalent linear algebraic equa-
tions, successive approximation by Neumann series, improved
iteration using Buckner-Chertock series, and frequency itera-
tion using the infinite fluid solution. This 3-D source dis-
tribution method can be applied for a general arbitrary body,
for which the 2-D strip theory cannot be applied. The body
surface need not be slender or analytically defined. It must,
however, be smooth enough to have a continuous normal vector.
The method may give less accurate results for a body with
sharp edges where the normal vector has discontinuity. How-
ever, for a practical computation, the edge can be rounded
to give a finite curvature.

The pressure distribution, added mass coefficient, and
damping coefficient for the heaving spheroid at the free sur-
face are computed. The 3-D effect on the added mass is also
studied. The 3-D effect on the added mass distribution is
more significant for the low fregquency than for the high
frequency of oscillation. The total added mass found by
strip theory gives a poorer approximation for the low fre-
quency than for the high frequency limit. For a fairly high
frequency, the strip theory is a good approximation.



VI. WAVE EXCITING FORCES

Exciting forces caused by waves can be computed by sev-
eral different methods. One method solves the diffraction
problem directly. The exact diffraction problems are dif-
ficult to solve. No analytic solutions exist for an arbi-
trary three-dimensional body. Thus, one has to depend on
numerical methods. Various forms of integral equations (23),
(28), and (32) are available to solve the diffraction prob-
lem. One is the integral equation (23) which uses a source
distribution. The integral equation method requires large
storage space and computing time, since the symmetry condi-
tion of the body geometry cannot be utilized for obligue
wave. A new diffraction problem must be solved for each
wave heading angle.

Alternatively, the direct diffraction problem can be
avoided by use of the Haskind reciprocity relationship, which
can determine the total force by the diffracted waves with-
out solving the diffraction problem. The total force is con-
verted into an integral involving the forced motion poten-
tial by the application of Green's theorem. Thus, we need
to know only the forced motion velocity potential, which
we must solve for the hydrodynamic coefficients of the
equation of motion. Furthermore, it is not necessary
to solve the problem for each wave heading angle. However,
Haskind's method does not give the actual pressure distribu-
tion. The identity of the actual pressure distribution has
already been lost by applying Green's theorem in the whole
fluid domain. The integrand of the Haskind formula cannot
be identified as the actual force distribution; however, the
actual force distribution is not necessary to set up the egua-
tion of motion. Only the total integrated exciting forces
are needed to set up the equation of motion. If one wanted

82
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to compute the load distribution or the bending moment at
midship, refer to an alternative method derived by Ogilvie
(1971).

This study uses the Haskind formula to compute the ex-
citing forces resulting from the diffracted wave, because
it is an efficient and economical method, espeéially for the
symmetric body. The author solves the direct diffraction prob-
lem by source distribution method and computes the pressure
distribution and sectional forces for the head sea. These
results are compared with Faltinsen's (1971) results and Lee's

experimental results(unpublished, described by Faltinsen).

A. Wave Exciting Forces by Haskind Formula and Strip Theory

The complex amplitude of the wave exciting forces is
obtained by integrating the pressure caused by incident and

diffracted waves over the hull surface:
*

wo_ .
Fi = lijjs (@0 + @7) nidS ' (93)

where @0 is the complex amplitude of the incident wave po-
tential, which is given by

2y = igh oVZ e—i(vx cos X + vy sin y)
h is the wave amplitude, v is the wave number, y is the heading
angle of the wave, and @7 is the complex amplitude of the
diffracted wave potential.

Applying the Haskind reciprocity relationship and
hull boundary condition to (93), we get

w 8@0

Fl = =1wp (sq)o nl - ¢l F) ds o (94)
The first term in the integral of (94) is the well-~known
Froude-Kryloff force, while the second term is the diffracted

wave force. Since we know ¢; from the forced motion prob-

*
Superscript w denotes wave action. The wave exciting force

FW, should be distinguished from the hydrodynamic force re-
sulting from forced motion.
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lem, the diffracted wave force is obtained by simple inte-
gration. Non-dimensionalizing the wave force (94) by the

hydrostatic force, we get
w

Fi 1 3¢d

where A, is water plane area and non-dimensional potential

of incident wave is given by ¢0 = m@o/igh. The real and
imaginary parts of the exciting forces are the forces in
phase with the water elevation and vertical velocity com-
ponent, respectively. The amplitudes and phase angles of
wave forces causing heave on the spheroid are shown in
Figures 41 and 42. The phase angle is defined as the
leading angle of wave force over the wave crest at midship.
For the strip theory* ’ ¢i is replaced by 2-D poten-
tial in Haskind formula (94) assuming that forced motion po-
tgntial satisfies approximately the 2-D Laplace equation near
the body of the hull. Furthermore, the 3-D normal also is
replaced by the 2-D normal, assuming that the body geometry
changes slowly in x direction. Thus we get the 2-D version

of the Haskind formula from (94):
L/2

FY - pthx [?e-luxcosxj Nie_lVYSlnXevzdl
-3 xégéz C(x) 2-D
- etV X w? (Ny=-iN, dz] .
C(x)

This is the same as the sum of the eguations (149) and (150)
of Salvesen, Tuck, and Faltinsen (1970). By replacing the
integral of the 2-D potential with the 2-D sectional added

-ivysinxevz¢

siny)e i

mass and damping coefficients using (65), we get

L/2

. —uT )

Fg = phfdx etV¥e™V (x)[éb(x) - Aowz{ca(x) - i Cd(x)}] .
~L/2

for heave in head sea which is the sum of equation (32) and

(33) of salvesen, Tuck, and Faltinsen (1970). T(x) is the

effective draft of section at x, b(x) is the half beam of the
section, and Ao is the sectional area at the midship.

N ;
Strip theory refers to Salvesen, Tuck, and Faltinsen's strip
theory (1970) unless otherwise specified. This should be

distinguished from Faltinsen's diffraction theory (1971).
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B. Direct Diffraction Problem and Wave Pressure

The diffracted wave potential is computed by solving
the integral equation (23) by using source distribution:
3¢

S

P

The numerical method to solve the integral equation is the
same as the 3-D radiation problem, except for the body bound-
ary condition. The numerical method is described in Appendix
B. Once the unknown source density is determined from the
body boundary condition, the non-dimensional diffracted wave
potential is computed by
1
$,(P) = -E” 0,(Q)G(P,0) ds(Q) .
S
The dimensional form of the diffracted wave potential is

given by

The complex amplitude of the wave pressure caused by dif-
fracted and incident waves is represented in terms of velo-

city potential:
w .
p = —1wp(®o + @7).

The wave pressure is non-dimensionalized by hydrostatic pres-
sure:
pw

pg_h=¢0+¢7 .
Note that the wave pressure has both the real and imaginary
parts. The amplitude and phase angle of the wave pressure
are computed. The distribution of wave pressure is compared
with Faltinsen's results and C. M. Lee's experimental results
with the spheroid for short waves ()/L=0.5) in a head sea.
These results are shown in Figures 42 through 44. ©Note that
Faltinsen's results and C. M. Lee's results are for the low

speed case (Fn=0.082), while the 3-D result is for zero
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Figure 43. Longitudinal distribution of the phase angle
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speed. Figure 42 shows the longitudinal distribution of
pressure along the keel of the spheroid (L/B=6). 3-D theory
gives the lowest value, even though all the results show
similar qualitative behavior. Figure 43 shows the longitu-
dinal distribution of the phase angle of the pressure. Fal-
tinsen's theory predicts the phase angle to be 45 degreés
before the phase angle of the Froude-Kriloff pressure,

while 3-D diffraction theory shows a lower value

of 30.4 degrees. Figure 44 shows the girthwise pressure
variation along the midship section. Faltinsen's results
overestimate those found using 3-D theory.

C. Distribution of the Sectional Wave Forces

Newman (1970) proposed a method to campute the distri-
bution of the wave forces by applying Green's theorem direct-
ly in the 2-D domain. However, one has to solve the 2-D
boundary value problem, the governing equation for which is
the 2-D Helmholz equation instead of the 2-D Laplace egua-
tion.

Ogilvie (1974) derives a similar relationship to compute
the wave force per unit length without solving the diffrac-
tion problem. He applies Green's theorem in the 3-D strip
with width Ax and evaluates the integrals over all the
boundary surfaces.

A
T
5 Ax//gy -~ {1 5
| I |
| ' . ) : “, n
: Me I ol
S ) . M H :
w E L | Mmoo T“"“—"-l'“—} '
! e — 71- S
: AS (x)
: = "D
/|_-__-__-_.__-____..____-_-_____..__ I
///

Figure 45. Strip along which sectional force is computed.
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Applying Green's theorem to the strip shown in Figure

45, we get
3¢ . 9d
i 7
(=— ¢, = ¢.5—) ds = O,
[{ZS on 7 ion

where IS includes all the boundary surfaces. Since ¢i

and @7 satisfy the same free surface and radiation
conditions, the integral over those surfaces vanishes. The
integral over D and D remains, however. Then we get

the sectional wave exciting force on the strip S(x) at x as

w 3@0 3¢i 8@7
) = =0 ]| (00,0 350 88~ |5 - (8=t 52D as]
(96)

The integral over D and D” can be combined as

36 . 20 3¢ 30
i 7 3 i _ 7
{JD+D»(5n ;= Pygg) 98 ijL;?E( %27 ~ ®iax ) 98-

32¢i 32¢7
Ax D(®7W - ¢.,——) ds.

i 3Ix2
If we further assume that (9%)
32¢i az¢7 \
57 -k2¢i r and —— = -k“0,, where k=v cos ¥,

the integral over D also vanishes. However, this ¢i must
satisfy the 2~D Helmholz equation rather than the 3-D
Laplace equation. The integral over D will not wvanish,

however, since we have only

2 2 2 2 2 2
%%, _ 3%, _ Chl and 3°@, _ 3%0, 3%,
X7’ Iy~ az® ' x> aY* 322 °

By using the equation (97) and some manipulation, we get the

wave force per unit length as

W Y. 32¢. 320
AFY(x) _ . f[ %%, ag is _° %7 ]
Ax - lUp-— C(X)(éoni ¢i8n )/W JJD( X 7 ax i)ds ’

1 (98)
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where ¢i is 3-D exact potential and n. is still the 3-D nor-
mal. This formula is exact since no strip assumption is
made, but it is not useful for practical computation since
the second integral includes the diffracted wave potential,
which we want to avoid. The first integral is the integrand
of the Haskind formula (94). Thus, the integral over D is
the difference between the 3-D sectional force and the inte-
grand of the Haskind formula. The difference is greater for
short waves than for long waves.

The sectional forces caused by waves are computed from
direct pressure integration along the girth of the section.
Non-dimensionalizing the sectional wave forces results in

W

F(x) v dg

—_— = (¢, +¢,) n, ——
pgh jC(x) 0 7 i /I:HIT .

The instahtaneous profiles of the sectional wave force for

the heave of a spheroid is shown in Figure 46.

D. 3-D Effect on Wave Exciting Forces

The longitudinal distribution of the wave exciting
forces for heave is computed by solving the direct 3-D dif-
fraction problem for the two different waves (VvL/2 = 3,8).
The sectional wave forces on the spheroid determined by 3-D
diffraction theory are compared with those computed by 3-D
Haskind formula, and 2-D strip theory in Figures 47 and 48.
The 3-D theory shows the end effects for head seas because
of the significant deformation of the waves near the ship's
bow and stern. The wave force determined by 3-D theory has
a higher value near the bow and lower value near the stern
than that of the strip theory for head sea. The 3-D theory
and Haskind formula show asymmetrical behavior about the
midship, while the 2-D theory is symmetrical fore and aft.
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The strip theory does not predict the attenuation of the
wave forces for the head sea. It does not distinguish dif-
ferences in the magnitude of wave forces near the bow and
near the stern. The difference between the 3-D theory and
the integrand of the Haskind formula is significant espe-
cially for the short waves. This confirms that the integrand
of the Haskind formula cannot be identified as an actual
force distribution. The discrepency between the theories
for the wave force distribution is greater for the short
waves than for the long waves. However, the phase angle
shows good agreement between theories.

The integrated forces from the bow to station x are
plotted in Figure 49. It shows that the integrated wave
force determined by Haskind formula approaches the total
force determined by the 3-D diffraction theory. This con-
firms that the Haskind formula should be used for computing
the total force, not for the distribution of forces.

Figures 50 and 51 show the distribution of the wave
forces for the springing mode. The attenuation of the
wave forces along the spheroid is more significant for
the springing mode than for the heave.



94

A/L = 1.05 — Im

0.6

0.2¢

0.0

-0.6. 2 Iy 9 L} A 4. i
-8 -6 -4 -2 0 2 4 6 8
.P.

A.R,. X
1>l?‘:.gure 46. Instantaneous profile of the wave force on thg
spheroid (L/B=8) for heave (VL/2 = 3) in head sea

F{x).v
Pgh
Amplitude A/L = 1.05
—=-—  strip theory
——--  Haskind's method
0.6 -———  3-D theory ]
0.4- /_--:_’---‘ -------- s ‘-%r-*.ﬁ_ <

-8 -6 -4 -2 0 2 4 6 8

A.P. = F.P.
degrees
200k Phase angle ———— 3-D theory .
100} J
0 ) .
0 2 4 6 8
-100 * ’

-200

Figure 47. Longitudinal distribution of the wave force on
the spheroid for heave (VL/2 = 3)
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Figure 48. Longitudinal distribution of the wave force on the
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the spheroid (vL/2 = 8)
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VII. SUMMARY

The three-dimensional boundary value problem for the
unsteady motion of a ship oscillating at the free surface in
a head sea has been formulated for the zero-forward speed.
Various forms of the integral equation methods are formulated.
The integral equation method by using three-dimensional
source distribution is developed to compute the added mass,
damping coefficients, and wave exciting forces on a ship.

The integral equation is solved numerically by three dif-
ferent methods: successive approximation by Neumann series,
frequency iteration using the infinite fluid solution, and
linear algebraic equations. Iterative methods converge for
the high frequencies of oscillation, but not for the low
frequencies. The iteration methods require more stringent
condition on the kernel matrix than does the linear algebraic
equation method. The iteration methods are studied to deter-
mine why they do not converge for all frequency ranges. An
improved iteration method using the Buckner-Chertock series
is applied to improve the convergence in the lower frequency
range.

The integral equation using source distribution fails
at a discrete infinite number of the eigenfrequencies of the
interior Dirichlet problem. The difficulty near these eigen-
frequencies can be removed by using a new form of the Green's
function. The new Green's function is constructed by adding
a point source at the origin to the fundamental Green's func-
tion given for the 2-D problem. The new Green's function
produces a new integral equation which removes the numerical
difficulty near these eigenfrequencies. The three-dimen-
sional problem with free surface is approached similarly.

The modified form of the Green's function is constructed by

adding a line of sources along the centerline at the free
surface to the fundamental Green's function. This modifica-
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tion cures the irregular frequency phenomenen .&+ these aicen-

frequencies.
It is accepted in the field that short waves cause the

strip theory to fail for the computation of wave exciting
forces. First study, investigates the three-~dimensional effects
on the hydrodynamic coefficients. It finds the strip theory
is completely wrong for the zero frequency limit. The added
mass coefficient found by strip theory is infinite for the
zero frequency limit, while the 3-D theory gives a finite
limit. For the high frequency limit, the error by strip
theory is finite. The more slender is the ship, the better
the result of strip theory. The 3-D effect on the added mass
is spread evenly along the entire length of the spheroid
for the infinitely high frequency; it is not concentrated

at the ends. The 3-D effect on the generalized added mass

is greater for the higher mode than for the lower mode of

the vibrating spheroid. But strip theory is a good approxi-
mation for fairly high frequencies. The 3-D effect on the
hydrodynamic coefficients (added mass and damping) is quite
small for the heaving slender spheroid.

Next, the study looks at the 3-D effects of the wave ex-
citing forces for the head sea. The direct diffraction prob-
lem is solved by the 3~D source distribution method. The
amplitude and phase angle of the pressure distribution are
compared with Faltinsen's results and Lee's experimental re-
sults for the heaving spheroid. All the results show similar
trends near the bow and stern. However, Faltinsen's theory
overestimates the 3-D result.

The axial distribution of the wave exciting forces is
computed by the three-dimensional diffraction theory, the
3-D Haskind formula, and the 2-D strip theory developed by
Salvesen, Tuck and Faltinsen (1970). For wave force dis-
tribution, the strip theory underestimates the 3-D theory near
the bow and overestimates it near the stern. The 3-D theory
finds that, in head sea, greater forces occur near the bow than

the stern, and the forces decrease as the wave passes along
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the ship. The discrepency between the theories is gquite small
for the long waves (A/L = 1.05), but the difference becomes
much greater for the short waves (A/L = 0.392), because more
diffraction occurs for the short waves. The difference be-
tween the Haskind formula and 3-D diffraction theory for the
force distribution due to short waves is significant. The
study confirms that the integrand of the Haskind formula can-
not be identified as an actual force distribution. It has
a physical meaning only when the total integrated force is

considered.
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APPENDIX A. GREEN'S FUNCTION
1. Derivation of the 3-D Green's Function

The various forms of 3-D Green's functions are derived
in this appendix. The boundary value problem for the Green's
function is similar to that for the velocity potential, with
the exception of the boundary condition on the hull. The
Green's function is not required to satisfy the complicated
body boundary condition. It should satisfy the following

equations:
9+ 2 4+.2 lg=- L §(x-£)8(y-n)8(z-2) in the fluid
ax?2 day?2 022 4T
region, (A-1)
%g - vG =20 on 2z=0 , (A-2)
. 3G _
lim 7~ =0 , (A-3)
Z>r=C0
and
. 3G .
1im /R IR + ivG| =0 , (A-4)
Ry
where R = /(x-&)2+(y-n)?z .

Note that G is the complex velocity potential of a source
of strength, -4m . Time factor elmt has been suppressed.

Let G and G be the Fourier transform pair. Then,

in x,y plane and kx,ky plane, we get

G(kx,ky,Z) = -2%[ jG(x’y'z)e-i{kx(x-€)+ky(y—n)}dxdy ,
N (a-5)
and
G(x,y'z) = é%.J J é(kxlkyrz)ei{kx(x—g)+ky(y-n)}dkxdky .

(A-6)
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A change of variables gives Fourier transform pairs
in the R,6 plane and the k,B8 plane as follows:

@ ™

~ f - -
G(leIZ) = EJ;TT JRdRJ G(R,S,z)e 1kRcos (6 B) dsg ’ (A-7)
0 -w '
and
© r-n'
G(R,8,2) = f%-f kak | G(k,B,z)elkReos (6-B) 45 (A-8)
0 -1

where R = V/(x-£)2+(y-n)2 ,

Xx-{ = Rcos 6 , y-n = R sin 8 ,
and ky k cos B , ky = k sin 8 .

Let G = 1/r + Gg ,
where r = /(x-£)%+(y-n)2+ (z-C)2 .
Go is the harmonic part of the Green's function. The
singular part is 1/r f£from the well-known potential theory.
Taking the Fourier transform of the Laplace equation, we

-~

get an ordinary differential equation for Gy »

d2G, .
oz - k¥Gg =0 (a-9)

The solution of the differential equation (A-9) is an
exponential form. Only positive k is needed to produce a

finite solution, as z+-» . It is given by
= ' kz

The Fourier transform of the free surface condition (A-2)

is given by

4G ~ _

3z " v =0 , on z=0 . (A-11)
From the free surface condition, we can determine Ay as

(k+v) K&

= Tk-Wk . (2-12)

Thus we find the Fourier transform of G is
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s sk lz-z | . (cry) & (240)

K k=v & ' (A-13)

where the following integrals were used in the derivation:

2T
_ 1 ~ikRcosR
Jo(kR) = 5 J e dag , (A-14)
0
” ~k|z|
J —2 _ J,(kR)dR = EL—E——— . (A-15)
0¢R2+22

Inverting the Fourier transform of G,(A-13), produces the

Green's function as:

=}

_ 1 k+v k(z+7) _

G=2% f =y © Jo(kR)dk , (A-16)
0

where the bar on the integral sign denotes that this is a

principal value integral. Integral (A-14) and

J e-klz_CIJo(kR)dk =
0

1
vR2+(z-7) 2

(A-17)

are used in the derivation of (aA-16).
The radiation condition remains to be satisfied. For

large R, (A-16) becomes, asymptotically,

v (z+C)

G v =271ve YO(vR).

. . . +]
In order to insure the outgoing wave with e wt , we add a

. + .
harmonic solution., —2W1vev(z & JO(vR). The Green's function
then behaves as follows:

v (z+Z)

G v -2mive Hézth) , for large VR,

where Héz) is the Hankel function of the second kind.

Finally we obtain a Green's function as

v (z+Z)

0
k+ + .
G = % + f E:% ok (2 C)Jo(kR)dk—ZTrlve Jg (VR) .

0 (A-18)
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Using the integral (A-~17), Green's function (A-18) becomes,

®  k(z+g)
=1 _ 1 ke s uV(2Z+T)
G = T + Zf %=y Jo(kR)dk 2wive JO(vR) ’
0 (A-19)
where

r* = /{x=F) 2+ (y-n) 2+ (2#0) 2 .

Using the integral (A-18) again, Green's function (A-19)

becomes
o)
k(z+Z)
_ l 1 e _ . V(z+T)
G =2+ Zx + 2vf-—i:;——-Jo(kR)dk 2mive Jg(VR) .

0 (A-20)

Next Havelock's form of Green's function is derived
from (A-20). Combining the principal value integral with
the imaginary part, Green's function (A-20) then can be

represented as

”ek(z+;)

& —— J,(kR)AK , (A-21)

_1,1
G =+ Zx + ZvJ

where - denotes the path along the indented semi-circle
over the singularity at k=v .

Next we evaluate the contour integral with the indented
semi-circle above the simple pole. Substituting
%[HéI*kR) - HéZ}kR)] for JO(kR) , the contour integral is

written as

[wek(Z'i'E) 1
| TR Jo (kR)dk = 7[I1+I2] ’ (A-22)
0
—\
where
*®  k(z+r)
= e g
I, I = Hy'' (kR) dk ,
0
o W

and

[
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® k(z+z)
e

—— B§?) xm) ax .

0
—_"

Then we evaluate the integrals I, and I, by use of
residue theorem. The residue theorem states that

= +27i I residues , (A-23)
zC

where IC denotes all the contours, and * signs are
assigned to represent the counterclockwise and the clockwise
direction of integration, respectively. The paths of inte-
gration are shown in Figure A.l. Jordan's Lemma causes the
integral over Cg to vanish. There is no residue in path 1.

Thus the integral Il becomes

I =

0 Jim(z+7)
-

(1) . . _
Ty HO (imR) idm . (a-24)
From Abramowitz and Stegun (1964), we get
2K0 (mR)

H(Sl) (imR) = —5—

where K0 is the modified Bessel function.

im
path 1 path 2

k-plane 4 k-plane

—-im

Figure A.l1. Paths of integration in the
complex plane
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Replacing Hél)(imR) by gE%%EBl produces

_ 2 (v+im)eim(z+§)
Iy =-% J VEmz Ko (mR)dm .
0

By using the residue theorem (A-23), I, is represented by

G .
_ e—1m(z+g) (2) ]
IZ = 1 jw —?n-{:——- HO (—1mR) dm - Residue -

In explanation, the integral over CR vanishes in the fourth

quadrant by Jordan's Lemma. We have a residue inside path 2,

and the negative sign occurs because of the clockwise

direction of integration. Replacing Héz)(-imR) by
—#%KO(mR) and evaluating the residue, we get
® . -1 +z)
__2 (v-im) e~ M (2 oV (2HT) L (2)
I2 —-E-J VZImZ KO(mR) dm -2mive Hyj (VR) .
0

Adding I, and 12 , and after some algebraic manipulation,

Havelock's form of Green's function is obtained as

follows:
m —
_ 1 1 4v vcosm (z+z) -msinm(z+z)
C=rtm -7 J v2+m2 Ko (mR) dm

—2ﬂivev(z+C)Héz)(VR) i (A-25)

Next we derive Haskind's form of Green's function.

Let
1=
J
0

3cosm(z+c)-msinm(Z+C)
T KO(mR) dm .

A change of variables produces
©
{ {cosuy (z+z)-usinuv (z+7)
I = J ’ Traz Ky(uvR) du . (A-26)

0



107

The z-derivative of I is

©

oI

0z J
0

[:uvsinuv(z+c)-u2vcosuv(z+;) ]

a2 Kqy (uvR)du .

(A-27)

Adding (A-26) and (A-27) results in a first order ordinary
differential equation after some algebraic manipulation:

=}

vl - %% = vJ cosuv (z+z)Kg(uvR)du . (A-28)
0

The integral in the right-hand side of (A-28) is obtained by

using the formula 6.671-14 from Gradshteyn and Ryzhik (1965):

(o2}

J cosuv(z+;)K0(uvR)du = T . (a-29)

0 2/R2+ (z+7) 2

The solution of the differential equation (A-28) is given as

Z+0
I = - 12r_ ev(2+c)j e du,ogviz+r) (A-30)
o /REFGZ

By evaluating I at the point (2+g)=0 in both (A-26) and
(A-30) and equating them together, we can determine the

constant C as:

=]

2
- Kg(uvR)du _ m° _
c J 1+uz2 4 [ HO(\)R) —YO (VR) ] ’ (a-31)
0
where Hp is the Struve function of zero order. Putting
(A-31) and (A-30) into (A-25), the Green's function becomes
Z+L —uv
G = % + %* + 2vev(z+c)j —= du-ﬂvev(z+C)[ﬂva)—Yo(vR)]
0 YR24y2
—2mive” (PP (2) (br) . (a-32)

The Green's function (A-32) is an efficient form for the
practical computation since it separates the oscillatory
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outgoing waves from the monotonically decaying local
disturbance. From Gradshteyn and Ryzhik (6.566), we get

-}

2 e VU gu
Hg(WR) - Y (WR) = 2 J e _¢du | (A-33)
T o VYRZ+u?

Substituting (A-33) into (A-32) and combining the integrals,
yields

-vu
ev(z+;) e du Y (z42)

11
G =7+ 5~ -27ive

s H{PWR) . (a-34)
z+7 /R2+u

By change of variable, u-f=w , we get
z
-Vw

+ 2vevzj e dw 2ﬂivev(z+C)Hé”(vR),
V(x-E) 2+ (y-n) 2+ (w+g) 2

_ 1
G =z +

R

*

(A-35)

which is the Green's function derived by Haskind.

2. Evaluation of 3-D Green's Function and Its Derivatives

In order to solve the integral equation by source
distribution, the Green's function must be computed numerous
times. Computing the Green's function and its derivatives
in order to construct the kernel matrix of the integral
equation is the most time consuming part of the total
computation. An efficient form of the Green's function is
definitely needed. Many different forms of Green's function
(A-18), (A-19), (A-20), (A-21), (A-25), (A-32) and (A-35) are
available. One can be derived from the other by deforming
the path of integration and evaluating the integrals.

The most common forms (A-18), (A-19) and (A-20), which
include the principal value integral, are inefficient to
compute because the integrand, which includes the Bessel
function of the first kind, is rapidly oscillating for large
kR, and also because of numerical difficulty near the
singularity at k=v . Havelock's form (A-25) of Green's

function separates the outgoing wave from the local distur-~
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bance. However, it includes the integral of the oscillating
function. Green's function (A-33) and the original Haskind
form (A-35) explicitly separate- the oscillatory outgoing
waves from the local disturbance. Local disturbance is
represented by an exponentially decaying integral. For
numerical computation, a modified form (A-32) from Haskind's
form is efficient for computation, especially for large kR.

By change of variable, (A-32) is rewritten as

v(z+z)
G = % + %* + 2veV(z+C) ~e Yau -nvg(z+C)[HdvR)+Yo(vR)]
0 v (VR)Z +u?
- 2niveV(z+5)Jo(vR) ]

Differentiating G with respect to x produces

v(z+z) _,
v (z+Z) e du

[(vR)2+u2]3/2

Gy T== (x-£) [r_la- + ria]- 2v3 (x-E)e

-nvzev(z+§)i§52-{%-- HﬁvR)-Yl(vR)} +2niv2ev(z+C)i§§2—Jl(vR).

(A-36)

Similarly, the y-derivative of the Green's function is
obtained as

rv(Z+C)

[ (VR) 24+u2] %72

Gy=-(y-n)[§% + ri3]-2v3(y-n)e

0

—ﬂvze\)(z+c)-(—17-;i) { %— Hy (VR)-Y, (VR) } +2miv2zeV (2¥E) -(Y—;{@Jl(vR) ]

(A-37)

+Subscripts X, ¥y, and z denote the partial derivatives with
respect to X,y,z, respectively.
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Finally, the z derivative of G is obtained as
v (z+Z) -u
G = -(z-sc) _ (ZI? + 2y2eV (2+2) e ~ du
z r —————
v (VR) 2+u?2

—rvze” (P 0 uryar  om) 3 2 - 22 (FFE) g ()
(a-38)

3. Derivation of the 2-D Green's function from the 3-D

Green's function

The two-dimensional Green's function can be derived in
a manner similar to that of the three-dimensional one.
Various forms of two-dimensional Green's functions have been
derived by John (1950), Haskind (1953), Thorne (1953), and
Ogilvie (1978).

In Chapter IV, two-dimensional source densities have
been used as a first approximation of the 3-D source density
along the parallel middle body. In this appendix, 2-D source
density is derived from the 3-D source density for an
infinitely long uniform cylinder. The 2-D Green's function
is derived from the 3-D Green's function for the infinite

fluid case and also for the free surface case.
a. Infinite fluid case

The 3-D velocity potential is represented by the
distribution of the 3-D sources over the hull:

L/2 _
¢=_4%Jr dgf iizz(Q)'v 1 - 1 ]
-L/2 Cc(g) "TTRL W(ETRIEARE /(x-f) 24REE
(a-39)
where Ry=V(y-n)2+(z-¢)2 , and RE=v/ (y-n) 2+ (z+g)2 .

For an infinitely long uniform cylinder, n1=0, and o(&,n,z)=
c(n,Z). Interchanging the order of integration of (A-39)

results in
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rL/2 _

6 = - = a2 o(n,z) 1 - L ag .

4r v (x-%) 2+R2 Y (x=E) 2+R%?2

o w2 (A-40)
Now
1 -1
Il = [ ' dg r IZ = j dg .
(x-%) 24+R2 /(x_g)2+Rgz
~L/2 -L/2

Separating the limits of this integration into two parts,
results in

X L/2

I, = 1lim l- dg + J —dg_
1 - V(x-E) Z+RZ /(x-E) 2+RZ] °
-L/2 (o) X x= o

Evaluating the integrals, we get

X L/2
I, = -log| (x~£)+/TE-ET29RE| + log| (5-x)+/E=ETTHEZ
-L/2 X

=-Qlog(Ro)+ log (x+% + /(x+%)2+Rg)

+log(%—x+¢(x-§02+Ré) (A-41)

+ Similarly,

L L L L
= * o += +/ +2 27~ o =
I2 2 1ogR.o log{ (x 2) (x 2)2+R* ] log[(2 X)+/ (x 2)2+R32]

Combining Il and 12 and taking L+« as the limit, we get

%ig(Il+IZ) = —2(log3;logRg) (A-42)
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This is the 2-D Green's function for the infinite fluid. The
velocity potential therefore becomes the 2-D velocity
potential by substituting (A-42) into (A-40):

¢ = + f%-[ o[logRslogR¥] df . , (A-43)
C

b. Free Surface Case

L/2 -
- k(z+g)
o= - Afag[ G L1 ket 3o RV ETTF (I T) k]
“n/2°c(g)’? - 0
ufiag (a-44)

For the infinitely long uniform cylinder,

nl=0 and o(&,n,z)=0(n,z) .

Interchanging the order of integration in (A-44), we get

1 i 1 1 [ keX(Z¥D)
¢ =-4—Tr-fdzc(n,C)f [:E-'f*"'zj = Jo(k/(x—€)2+(y-n)2)dk]d€.
=L/2 0
— "\ (A-45)
Now, let
L/2 wkek(z+c)
13 =I dg = JO(kV(X‘E)Z’FIY‘n)z)dk . (a-46)
-L/2 0
.

Interchanging the order of integration, we get

® ek (2+2) ®
1y = [ ax K2 J 3o e/ R=EVZF (=M 2)dE . (a-47)
0 Y- )
e W
Let
I4 = j Jo(k/(x-£)2+(y-n)2)d£ . (A-48)

-0

By change of wvariables, I, becomes
co+x
f Ty (kVETTH(y-m) 2) dg' .
—ao+x
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Deleting the prime sign and considering the section at
x=0 for simplicity since it should be the same for any
section, we get

I, = J Jo(k/£2+Y2)dE '

-0

where (y-n) is replaced by Y. Using the addition theorem
(9.1.75) from Abramowitz and Stegun, I, becomes

]

2 Jdg I J,(kE) Jn(kY) cos F- . (A-49)
o T

Changing the integral and summation of (A-49), we get

[>+]
o

;=2 I 30w cos%}fdg In (KE) (A-50)
= =00 o

From Gradshteyn and Ryzhik (6.511),

[ ag snwxe) = & (a-51)
0

Substituting (A-51) into (A-50) gives

(o]

I Jn(ky) cosm - (A-52)
n==—o

-
win

Using the relationship J_n=(—l)nJn , (A-52) becomes

_ 2 -
I,= % [J0—2J2+2J4+...] . (A-53)

Using the formula (9.1.47) from Abramowitz and Stegun (1964),
(A-53) becomes

r _ 2 -
I, = x cos (ky) . (A-54)

Substituting (A-54) into (A-47), I, becomes

k(z+z)
_ dke cosk (y-n) -
I, = J =y . (A-55)
0
Ve
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Using (A-42) and (A-55) into (A-45) vyields

1 o[ dxeX (2¥0)
b = EFszc[loggylogRo-zj =V cos{v(y-n)}1 . (A-56)
C 0
My

The 2-D Green's function has been obtained from the 3-D
Green's function. The 2-D source density is the limiting
value of the 3-D source density for the infinitely long

uniform cylinder.



APPENDIX B
NUMERICAL METHOD FOR INTEGRAL EQUATION

1. General procedure

Figure B.1l Plane quadrilateral element and unit normal
)

The integral equation is approximated by a set of linear
algebraic equations. °The approximation involves the approxi-
mate evaluation of the integral of the Green's function and
approximate representation of the body surface. The body
surface is approximated by a number of plane guadrila-
teral elements over which the source density is assumed con-

stant. Then the integral equation (23) is approximated as

op) ¥ 1 3G(P,Q)
2 g6, (Q) = == ds = n. (p) , (B~1)
2 Q=ll [JS(Q)4ﬂ Bnp i

where S(Q) is the area of the element Q.
The plane quadrilateral element is formed from the four
input points. Geometric information such as the coordinates

of the centroid, the element of the transformation matrix,
the maximum diagonal, the area, and the second moment of the

area, are computed. The unit normal vectors are computed

by taking the cross product of the two diagonal vectors.
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In matrix form, we get

[I(P, Q)] {c(@)} = {n;(®)},
where :
_ _ _1[3G(P,Q) _
1(p,Q) = 4“”3% ds(@) for » #q , (B-2)
= _ 1 1{[sG(P,Q) =
=-3- Z?J[EHP ds(Q) for P = Q .

The induced velocity vector at the centroid of the P-th
element due to Q-th element with unit source density is com~
puted. The induced normal velocity at P is obtained by
taking the dot product of the induced velocity vector with
the unit normal vector of the P-th element.

The boundary value nj (P) is computed by using the
geometric information of the unit normal vector. For the
linear motion of the rigid body, ng is defined by

n=(n,n, n), fori=1,2,3.
For the rotational motion of the rigid body, n, is defined
by

TxA=(n,, ng, ng) , for i = 4,5,6 .
For the vertical mode of the vibration, we get n, as

where wi(x) is i-th mode of the vertical vibration.

Once we compute the kinematic boundary condition on the
hull, we can solve the linear algebraic equation by matrix
inversion or decomposition methods. The influence coef-
ficient matrix is computed only once for all modes of mo-
tion. The left-hand side of the integral equation does not
change unless we make use of the symmetry characteristics.
Computation of the influence coefficients is the most time
consuming part of the total computation.
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When the solution for the source density is obtained,
the velocity potential is computed at the centroid of each
element (P) by integrating the product of source density and
Green's function over all the elements (Q) :

N
¢ (p) = -4—,}Qzlc Q) Hsc(g),g) as (@) . (B-3)

In discrete form, we get

[J(,Q)] {c (@)} = {o(P)} ,

where J(P,Q) is the influence coefficient for the induced
velocity potential which is given by

T

J(,Q = -4—1” G(P,Q) dS(Q) . (B~4)
s (Q)

For symmetrical bodies, only the nonredundant part of
the body surface is necessary to construct plane quadrilat-
eral elements. The reflected part of the body is taken into
account by using a symmetrical or antisymmetrical relation of
its source density with the source density of its original

element.

;

Figure B.2 Symmetry of the ship
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a. Symmetrical ship with one plane of symmetry

For a body with one plane of symmetry (x-z plane), only
a half of the body surface is needed to solve the egquation.
The source density on the reflected element of the ship is
symmetrical or anti-symmetrical with that of the original
element. For the heave or any other symmetrical mode of

vertical vibration,
G(qg) =0(Q ) ,
1
where the subscript o denotes the basic element, and the sub-
script 1 denotes the 1lst reflected element with respect to x-z

plane (See Figure B-2). By using symmetry of the source
density, we get :

N
= (
n;(B)= 3 [0(Q)I(R ,Q) + 0(Q)I(2,,0)] ,
Qi=1
N
= 2 o(Q) [I(P ,Q0) + I(P ,Ql)] . (B-5)
Q;=1 0 o o o)
In order to compute I(PO’Q1)’ certain symmetrical or anti-
symmetrical relations in the derivative of G are used. For
example, x component of the induced velocity at P, due to
Q, is identical to that of induced velocity at P, due to Q,.

Thus we get

- 1 3G(P_,Q ) 3G(P_,Q. ) 3G(P_,Q.)
I(PO'Q1) = 4W[J nsx ©° 1 +nyay o' 1 +nzaz o’>1’]as,
5(0))
I & 3G(P, ,Q )__ 3aG(P ,Q ) 3G(P, ,Q )
= 4njj[nx8x 17¥%g nay 1o +nz—""1"%0 las.
S(Qgy) (B-6)

All the geometric quantities for the reflected element are
obtained from its basic element. Once the induced normal
velocity at P due to all reflected elements is computed, in-
duced normal velocity at the next P-th element due to the
same Q-th element is computed to make use of the already com-
puted geometric data of Q-th element. The influence coeffi-
cient I(P,Q) is computed column by column.

Similarly to the induced normal velocity, the velocity

potential is given by
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$(P ) = Z[0(Q)I (P ,Q ) + 0(Q)I(P_,2)],

I

ro(Q ) [ ,0) + 3 ,Q)]. (B-7)

A symmetry condition,
J(PO'QI) = J(PI'QO) ’

is used to computed the induced potential at P, due to the

reflected element Q .
1

b. Symmetrical ship with two planes of symmetry

For the body with two planes of symmetry (x-z and y-z
planes), only a quadrant of the body surface is needed to
sovle the problem. For the heave or symmetrical mode of
vertical vibration, the source density on the reflected ele-

ments are identical:

2

0(Q)) = 0(Q;) =0(Q,) =0(Q,),
where subscripts 2 and 3 denote the 2nd reflected and 3rd
reflected elements of the basic element. (See Figure B.2)

By using the relationship between the source densities of

the reflected elements, we get

N
n,(Py)= 3 o(Q)LI(P_ ,Q)+I(P_,Q )+I(P_ ,Q,)+I(P_,Q.)]

Qi (B-8)
By applying the symmetry or antisymmetry in the derivatives
of Green's function, we get alternative form of I(Po’Qz):

___;” 3G(P_,Q.),  3G(P ,0,), 3G(P_,Q,)
I(Po’Qz) T 4y [nxan o "2 +nyay =g +nzaz o’*27]as,
$(Q,)
_ _1ffr_ 8G(P,,0)__ 3G(P,,Q ), 3G(P,,Q.)
= 4ij[ n - 2’70 nyay 2770 +n _=—=""2"%0 Jas.
S(QO) (B-9)

Similarly, we get

= _Lffr_. 8G(P,,Q ) 9G(P,,Q ) 9G(P,.,Q ) q:c
I(POIQ3) = 4WJJ[ nxax 3 o) +ny8y 3 o +nzaz 3'%0’]ds.

S(Qo) (B-10)
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The velocity potential is given by
N
9(By) = L o(Q)LI(P ,Q)+I(P ,Q)+T(P ,0,)+3(P_,Q.)].
= (B-11)
By applying the symmetry relations, J(PO,Q2)=J(P2,QO) and
J(POIQ3)=J (PS IQO) r We get
N
¢(Po) =

L0 II(R,,Q,)+T (P, 1Q)+T(R,,Q,)+T (P;,Q) ]
1

(B-12)
The other modes of motion can be treated in a similar manner

using the symmetry or anti-symmetry of source density.
2.

Influence coefficient matrix

The induced velocity potential at the centroid

of the P-th element due to the Q-th element with constant
source density is computed by |

= -1 1
J(PIQ) = 4_’.er r—m‘

1 1
das - YT s(Q){G-;}.
S(Q)

(B-13)
Three different formulas are used to compute the inte-
gral of (B-13).

Figure B.3

Local coordinate system
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a. Exact formula

A — -

S, N

x,&

4

4)

Figure B.4 Semi-infinite strips with uniform source density

Following procedures similar to those used by Hess and
Smith (1962) and Faltinsen and Michelsen (1974), the integral
is decomposed as the sum of the induced potential due to the
two semi-infinite source strips whose boundaries consist of
the side of the quadrilateral and semi-infinite lines paral-
lel to one of the coordinate systems. The source density
value of the strip on the right is +1/2, while the source
density of the strip on the left is -1/2. When summed over
the four sides, the surface integral over the quadrilateral
is recovered, while the integrals outside of the element

cancel each other:

1 4
f [ T,y B T4 (B=14)
S(Q)
where L €i+1 n® 4o .
o e[ gt
i 2 £ —o Il (x=E) 2+ (y-n) F42? 7
. Ni41-"4 . .
and n” =n71. + ———————(E-Ei), and (£i,ni) is the coordinates

T 8541-8
of the i-th corner point. (See Figure B.4)
The inside integrals of (B-15) are given by

-

[ [ e
n* Y (x=£) 2+ (y-n) 2+22

-0
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= =2 logl (y=-n")+/(x-E)2+z2+(y-n")2 ] . (B-16)

Substitution of (B-16) into (B-15) yields

gi+l
J dg[ -log{ (y-n")+/ (x-€) 2+ (y-n") 2+2%}].
&1
When the argument of log becomes close to zero, we
encounter numerical difficulty. 1In this case an alternative

form is used:

i+1
Ki=‘[ ag [-log{ (x-£) 2+2?}+log{- (y-n") +V(x-&) *+(y-n") “+2°}].
€.

1

The first integral is given by

Sisl
a4t logl (x-8) *+z%}= 2(8;,1~E;) = (x-F;) log{ (x=E;) *+2°)
&
_ (x_g') - (x-E. )
-ZIZItan l_[_z_[l_ + (x-g1+1)109{ (X-€i+l) 2+zz}+2.ztan l——’——r—zl+l B
(B-17)

The second integral is computed numerically.

b. Approximation formula by quadrupole and simple pole

When the field point P(x,y,z) is far from the Q-th ele-
ment, approximate formulas are used to compute the induced
velocity potential.

The integrand is expanded in a power series in £ and n
about the origin,

1
Y (%x-E) 2+ (y-n) 2+z

~ W= - 2 2 -
7 =W-W_E wyn+%wxxg +ny§n+%wyyn (B~18)

where W = -t  and subscripts denote the partial

/x2+y2+z2

& ]
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derivatives. Substituting (B-18) into the integral, (B-14),
and taking constant terms out of integral, we get

ds -
”/(x-a) Th (yon) 2ez2 T (M A,
S (Q) (B-19)

+-:-L-(W I +2W I +I W ),
2 xx xx Xy Xy Yy ¥y

where A is the area of the element Q, Mx is the first moment
of the area in x, M is the first moment of the area in y,
IXx is the second moment of the area in x,Ixy is the second
cross moment of the area in x-y, and Iyy is the second moment
of area in y. The first term is a source at the origin of
the Q-th element coordinate system. The second terms are the
dipoles, the axes of which are along the x axis and y axis,
respectively. The third terms are quadrupoles.

Since the origin of the coordinate system is taken as
the centroid of the element, all first moments Mx’My vanish.
Thus the dipole moments are zero. Only a source and quad-
rupole exist.

Two approximation formulas are used: one uses a source-
quadrupole for the intermediate distance; the other uses
source only for a far distant point. As a criterion, the
ratio of the distance of field point P to the maximum dia-
gonal of the quadrilateral element is used to decide which
approximation formula is chosen. The source-quadrupole for-
mula is used for the ratio of 2.45, and the point source for-
mula is used for the ratio beyond 4. Figure B.5 shows the
velocity potential induced from the unit source distribution
over the plane gquadrilateral element by three methods: exact

formula, source-quadrupole formula, and source formula.
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Figure B.5 Induced potential due to the plane quadrilateral
element with a uniform source density
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