Forward Speed Effects on the Sway, Roll, and Yaw Motion Coefficients

Armin Troesch

This research was carried out under the Naval Sea Systems Command General Hydromechanics Research Program Subject SR 009 01 01, administered by the Naval Ship Research and Development Center. Contract No. N00014-76-C-0345

Reproduction in whole or in part permitted for any purpose of the United States Government

Approved for public release; distribution unlimited
Title: Forward Speed Effects on the Sway, Roll and Yaw Motion Coefficients

Author: Armin Troesch

Performing Organization Name and Address:
Department of Naval Architecture and Marine Engineering,
The University of Michigan, Ann Arbor, MI.

Report Date: November 1975

DISTRIBUTION STATEMENT (of this Report):
Approved for public release; distribution unlimited.

KEY WORDS: Roll, Added mass and damping, Forward Speed, Sway, Yaw

ABSTRACT:
The added mass and damping coefficients for sway, roll and yaw are formulated for a ship with forward speed. The theory is similar to that given by Ogilvie and Tuck (1969) for the heave and pitch coefficients of a slender ship. Numerical results are presented for the cross-coupling coefficients.
ABSTRACT

The added mass and damping coefficients for sway, roll and yaw are formulated for a ship with forward speed. The theory is similar to that given by Ogilvie and Tuck (1969) for the heave and pitch coefficients of a slender ship. Numerical results are presented for the cross-coupling coefficients.
ACKNOWLEDGMENTS

I would like to thank Professor T.F. Ogilvie for his assistance in this work and Ms. Kay Sober for aiding me with the report preparation. Acknowledgment is also made to the Naval Sea Systems Command General Hydromechanics Research Program Subproject SR 023 01 01, administered by the Naval Ship Research and Development Center, which sponsored this work under contract N00014-76-C-0345.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF ILLUSTRATIONS</td>
<td>xi</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>STATEMENT OF THE PROBLEM WITH RESULTS</td>
<td>3</td>
</tr>
<tr>
<td>EQUATIONS OF MOTION</td>
<td>3</td>
</tr>
<tr>
<td>ADDED MASS AND DAMPING COEFFICIENTS</td>
<td>5</td>
</tr>
<tr>
<td>NUMERICAL RESULTS</td>
<td>9</td>
</tr>
<tr>
<td>APPENDIX</td>
<td>19</td>
</tr>
<tr>
<td>FORCE AND MOMENT ON THE HULL</td>
<td>19</td>
</tr>
<tr>
<td>NUMERICAL METHOD FOR DETERMINING THE</td>
<td>23</td>
</tr>
<tr>
<td>ADDED MASS AND DAMPING COEFFICIENTS</td>
<td></td>
</tr>
<tr>
<td>REFERENCES</td>
<td>25</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
</tr>
<tr>
<td>Figure 1</td>
<td>Coordinate System</td>
</tr>
<tr>
<td>Figure 2</td>
<td>Sway response to unit roll moment</td>
</tr>
<tr>
<td>Figure 3</td>
<td>Roll response to unit roll moment</td>
</tr>
<tr>
<td>Figure 4</td>
<td>Yaw response to unit roll moment</td>
</tr>
<tr>
<td>Figure 5</td>
<td>Added mass coefficients A_{62} and A_{26}</td>
</tr>
<tr>
<td>Figure 6</td>
<td>Damping coefficients B_{62} and B_{26}</td>
</tr>
<tr>
<td>Figure 7</td>
<td>Added mass coefficients A_{64} and A_{46}</td>
</tr>
<tr>
<td>Figure 8</td>
<td>Damping coefficients B_{46} and B_{64}</td>
</tr>
<tr>
<td>Figure 9</td>
<td>Relative importance of free surface integrals</td>
</tr>
<tr>
<td>Figure 10</td>
<td>Relative importance of free surface integrals</td>
</tr>
</tbody>
</table>
INTRODUCTION

A substantial amount of effort has gone into predicting the added mass and damping coefficients of an oscillating ship. Historically, a large part of this effort has been concentrated on the vertical plane motions of heave and pitch with some interest shown in the horizontal motion of roll. Korvin-Kroukovsky and Jacobs (1957) emphasized the importance of coupling coefficients in the vertical plane motions, i.e. the pitch force due a heave motion and vice versa. Their method of calculating these coefficients was based on strip theory with some adjustments made to include forward speed and three-dimensional effects. However, their method for finding these "dynamic coupling" terms appears to be incomplete in that these terms do not satisfy the symmetry relations established by Timman and Newman (1962).

Salvesen, Tuck and Faltinsen (1970) applied a more consistent approach to the problem of ship motions and developed a theory for both the vertical and horizontal modes of motion. Their cross-coupling coefficients did satisfy the Timman-Newman (1962) relations and gave improved results when theory was compared with experiment.

Ogilvie and Tuck (1969) found the added mass and damping coefficients for heave and pitch by using a systematic application of matched asymptotic expansions. Their results satisfied the Timman-Newman (1962) symmetry relations but differed from the coefficients given by Salvesen, Tuck and Faltinsen (1970) in a number of ways. The Ogilvie-Tuck coefficients included a term which represented the integral of the square of the velocity potential evaluated on the free surface. They did not include a velocity-squared term which they considered to be of higher order. In an effort to determine the relative importance of the free surface integral terms, Faltinsen (1974) evaluated them and compared them with both experiments and the terms given by Salvesen, Tuck and Faltinsen. The results indicate that the Ogilvie-Tuck heave-pitch coupling coefficients are important and compare better with experiment than previous theories.

Timman and Newman (1962) included the horizontal motions in their symmetry relations. Specifically they reported that the cross-coupling terms between roll and yaw and yaw and sway were antisymmetric with respect to forward velocity. Inspection of the Salvesen, Tuck and Faltinsen coefficients show that they satisfy these conditions.
One motion coefficient in the horizontal plane that has received some attention is the roll damping coefficient. Typically the damping coefficient is composed of a velocity independent part, calculated from potential theory, and a correction factor used to account for viscous effects. In an effort to more clearly understand these various effects on roll motion, Sugai and Yamanouchi (1963) conducted a series of experiments using a self-propelled model with opposing gyroscopes to provide a rolling moment. One of the results of these experiments was the indication that rolling motion becomes more linear as forward speed is increased. In other words, the non-dimensional quantity of roll motion divided by roll exciting moment (multiplied by the appropriate constant to correct for the units) becomes less a function of the actual magnitude of the rolling moment. This implies that roll damping is speed dependent and that this dependency may be at least as important as the viscous damping. Watanabe (1977) applied the principle of thin ship theory to this problem and produced results that show a speed dependency on the roll damping coefficient. However, he did not conclusively state what effects a non-thin ship would have on his theory.

Using the same assumptions made by Ogilvie and Tuck (1969) for the vertical plane motions, we will consider in this paper the following two questions: First, will a consistent slender body theory produce roll damping coefficients that reduce roll motions as the speed of the ship increases? And second, will the theory produce numerically significant terms to the ones derived by Ogilvie and Tuck.
STATEMENT OF THE PROBLEM WITH RESULTS

EQUATIONS OF MOTION

Similar to that shown by Salvesen, Tuck and Faltinsen (1970), the coupled equations of motions for sway, roll, and yaw may be given as follows:

\[
\begin{align*}
(A_{22} + M_{c})\ddot{\eta}_2 + B_{22}\dot{\eta}_2 + (A_{24} - M_{c})\ddot{\eta}_4 + B_{24}\dot{\eta}_4 + (A_{26} + M_{c})\ddot{\eta}_6 + B_{26}\dot{\eta}_6 &= F_2 e^{i\omega t} \\
(A_{42} - M_{c})\ddot{\eta}_2 + B_{42}\dot{\eta}_2 + (A_{44} + I_4)\ddot{\eta}_4 + B_{44}\dot{\eta}_4 + (A_{46} - I_4)\ddot{\eta}_6 + B_{46}\dot{\eta}_6 &= F_4 e^{i\omega t} \\
(A_{62} + M_{c})\ddot{\eta}_2 + B_{62}\dot{\eta}_2 + (A_{64} - I_4)\ddot{\eta}_4 + B_{64}\dot{\eta}_4 + (A_{66} + I_4)\ddot{\eta}_6 + B_{66}\dot{\eta}_6 &= F_6 e^{i\omega t}
\end{align*}
\]

(1)

(2)

(3)

where

- \(M\) is the mass of the ship
- \(A_{jk}\) and \(B_{jk}\) are the added mass and damping coefficients respectively
- \(I_j\) is the moment of inertia about the \(j\)-th axis
- \(I_{jk}\) is the product of inertia
- \(z_c\) is the vertical location of the center of gravity
- \(F_j e^{i\omega t}\) is the force or moment in the \(j\)-th mode due to waves
- \(C_{44}\) is the hydrostatic roll restoring moment
- \(x_c\) is the longitudinal location of the center of gravity
- \(\omega\) is the frequency of encounter
- \(\eta_j\) for \(j = 2, 4, 6\) is the sway, roll, and yaw displacement, respectively.

(The dots denote time derivatives, i.e. \(\ddot{\eta}_4\) is the roll acceleration.)

The coordinate system used is a right-hand one with the origin located in the plane of the undisturbed free surface and the \(z\) axis passing through midship. See Figure 1 for definitions of positive sway, roll, and yaw.
Consider the coordinate system as fixed in an incident stream with velocity U flowing in the positive x direction and the ship swaying, rolling, and yawing about that system. We now desire to find the added mass and damping coefficients, A_{jk} and B_{jk}, for sway, roll, and yaw using assumptions similar to the ones used by Ogilvie and Tuck (1969).

If we define the motion of the ship in a two parameter expansion, ε, a slenderness parameter related to the beam to length ratio, and δ, a motion-amplitude parameter related to the smallness of motion, we can require that the motion be smaller than the beam of the ship even as $\varepsilon \to 0$. Specifically, assume that

$$\text{displacements resulting from } \eta_j = O(\delta \varepsilon)$$

where η_j is the motion in the j-th mode. Also assume that the frequency of encounter is of the following order:

$$\omega = O(\varepsilon^{-1/2}).$$

Then the velocity potential for the complete (linearized) solution can be represented as follows:

$$\phi(x,y,z,t) = Ux + Ux(x,y,z) + \psi(x,y,z,t)$$

where the first two terms give the solution of the steady-motion problem as shown by Tuck (1965) and the last term represents everything that must be added in order to satisfy the boundary conditions. We assume that $\psi(x,y,z,t)$ has a time dependence of $e^{i\omega t}$ and the velocity U is of order one.

As shown by Ogilvie and Tuck (1969), we may put equation (4) into the governing equations describing the boundary value problem of the oscillating ship. We next linearize the problem with respect to the amplitude motion, but
keep higher order terms of the slenderness parameter expansion. The time-dep-
dendent part of the potential then is found to satisfy the following equations:

\[\psi_{yy} + \psi_{zz} = 0 \quad \text{in the fluid domain,} \] \hspace{1cm} (5)

\[-\omega^2 \psi + \psi_z = -i\omega U (2\psi_x + 2\chi_{yy} \psi_y + \chi_{yy} \psi) \quad \text{on } z=0, \] \hspace{1cm} (6)

and on the hull

\[\frac{\partial \psi}{\partial n} = i\omega n_2 (n_2 + n_6) + i\omega n_4 (n_3 - zn_2) + Un_2 n_6 \]

\[-U(n_2 + n_6) (n_2 \chi_{yy} + n_3 \chi_{yz}) + U n_4 \left[(n_3 \chi_y - n_2 \chi_z) \right] \]

\[+ z(n_2 \chi_{yy} + n_3 \chi_{yz}) - y(n_2 \chi_{yz} + n_3 \chi_{zz}) \] \hspace{1cm} (7)

where \(n \) is the unit normal directed out of the fluid, \(n_2 \) and \(n_3 \) are the
components of the unit normal in the \(y \) and \(z \) direction respectively and
variables subscripted with \(y \) and/or \(z \) denote partial differentiation with
respect to that coordinate.

The form of the above equations (5) - (7) can only be correct if the for-
nal rules of matched asymptotic expansions are followed. In other words, the
far field expansion of the \(\psi(x,y,z,t) \) potential must match, to an appropriate
order, an inner expansion of a potential representing a line of pulsating
sources and dipoles. To show that this is indeed the case, we could use a
method similar to that used by Troesch (1975), where he applied the theory
of Fourier Transforms or use the method of complex variables as shown by
Ogilvie (1974). In both cases, the authors were solving anti symmetric prob-
lems, which are applicable to the sway, roll, and yaw potential discussed in
this paper.

A solution for the complete \(\psi(x,y,z,t) \) problem can now be given in much
the same manner as shown by Troesch (1975) for the case of an anti symmetric
pressure distribution on the free surface. The actual solution is fairly com-
plex and it is not necessary to repeat it here. Rather, we note that since a
solution exists, we may find the pressure from Bernoulli's equation and sub-
sequently the hydrodynamic force acting on an oscillating ship. The details
are given in the appendix.

ADDED MASS AND DAMPING COEFFICIENTS

Following Ogilvie and Tuck (1969), the generalized hydrodynamic force,
\(F_j \), may be related to the added mass and damping coefficients in the following manner
\[
F_j(t) = \sum_k \left[\omega^2 A_{jk} - i\omega B_{jk} \right] \eta_k(t) = \sum_k [T^{(0)}_{jk} + T^{(1)}_{jk} + T^{(2)}_{jk}] \eta_k(t)
\]
where the superscript \((0)\) denotes the usual zero speed strip theory terms. The velocity dependent terms, which are of higher order are found in \(T^{(1)} \) and \(T^{(2)} \). These coefficients can then be given in terms of the steady motion potential, \(\chi \), and the usual zero speed forced oscillation potential, \(\phi_j \), defined in the following manner:

\[
\phi_{j_{yy}} + \phi_{j_{zz}} = 0 \quad \text{in the fluid domain}
\]

\[
\frac{\partial \phi_j}{\partial N} = N_j, \quad j = 2, 4, 6, \quad \text{on the hull}
\]

\[-\omega^2 \phi_j + g \phi_j = 0 \quad \text{on } z = 0\]

and

\[
\phi_j \pm iA_j e^{-iy} \quad \text{as } y \to \pm \infty
\]

where \(N \) is now the two dimensional normal in the \(y-z \) plane and \(N_j \) is given as follows:

\[
N_2 = n_2
\]

\[
N_4 = n_3 y - n_2 z
\]

\[
N_6 = x n_2
\]

The complete expressions for the complex factors \(T_{jk} \) are given in the Appendix. If we make two assumptions, we can simplify the expressions for \(T^{(1)}_{24} \), \(T^{(2)}_{24} \), \(T^{(1)}_{46} \), and \(T^{(2)}_{46} \) considerably. First assume that the ship is symmetrical. (For a symmetrical ship the half-beam at the waterline, \(y_0(x) \), is an even function with respect to \(x \) and the \(y \) and \(z \) derivatives of the steady motion potential, \(\chi(x,y,z) \), are odd functions with respect to \(x \).)

Next assume that the ship in question has long sections of parallel mid-body, that is, long relative to its end section. (This has the effect of making the end contributions to \(T^{(1)}_{jk} \) and \(T^{(2)}_{jk} \) higher order than the mid-body contributions.) The complete factors \(T_{jk} \) may then be written in the following manner:
\[T_{22}^{(0)} = -\rho (i\omega)^2 \int_{L} dx \int_{C(x)} d\ln n_{2} \phi_{2} \equiv \int_{L} dx \, t_{22}^{(0)} \]

\[T_{44}^{(0)} = -\rho (i\omega)^2 \int_{L} dx \int_{C(x)} d\ln (n_{3}y - n_{2}z) \phi_{4} \]

\[T_{66}^{(0)} = \int_{L} dx \ x^2 \ t_{22}^{(0)} \]

\[T_{24}^{(0)} = T_{42}^{(0)} = -\rho (i\omega)^2 \int_{L} dx \int_{C(x)} d\ln n_{2} \phi_{4} \]

\[T_{26}^{(0)} = T_{62}^{(0)} = \int_{L} dx \ x \ t_{22}^{(0)} \]

\[T_{46}^{(0)} = T_{64}^{(0)} = -\rho (i\omega)^2 \int_{L} dx \ x \int_{C(x)} d\ln n_{2} \phi_{4} \]

\[T_{j}^{(1)} = 0 \ , \ j = 2, 4, 6 \]

\[T_{26}^{(1)} = -T_{62}^{(1)} = \frac{U}{i\omega} \ t_{22}^{(0)} \]

\[T_{24}^{(1)} = T_{42}^{(1)} = 0 \]

\[T_{64}^{(1)} = -T_{46}^{(1)} = \frac{U}{i\omega} \ t_{22}^{(0)} \]

\[T_{j}^{(2)} = 0 \ , \ j = 2, 4, 6 \]

\[T_{26}^{(2)} = -T_{62}^{(2)} = \rho (i\omega)^3 \frac{2U}{g} \int_{L} dx \left[\int_{y_0}^{\infty} dy (\phi_{2}^2 - A_2^2 e^{-2i\gamma y}) \right. \\
\left. - \frac{i}{2\nu} A_2^2 e^{-2i\gamma y_0} \right] \]

and

\[T_{46}^{(2)} = -T_{64}^{(2)} = \rho (i\omega)^3 \frac{2U}{g} \int_{L} dx \left[\int_{y_0}^{\infty} dy (\phi_{4}^2 + A_2 A_4 e^{-2i\gamma y}) \right. \\
\left. - \frac{i}{2\nu} A_2 A_4 e^{-2i\gamma y_0} \right] \]
where

\[\rho \text{ is the water density} \]
\[C(x) \text{ is the hull contour at station } x \]
\[L \text{ is the ship length} \]
\[\nu \text{ is the wave number found from } \omega^2 = \nu g \]
\[g \text{ is the gravitational constant} \]
\[y_0(x) \text{ is the half-beam at station } x \]

and

\[A_j e^{-ivy} \text{ is the behavior of } \phi_j \text{ as } y \rightarrow \infty. \]

The added mass and damping coefficients are then given by the relations

\[A_{jk} = \frac{1}{\omega^2} \text{Re} \left\{ T_{jk}^{(0)} + T_{jk}^{(1)} + T_{jk}^{(2)} \right\} \quad (8) \]

and

\[B_{jk} = \frac{-1}{\omega} \text{Im} \left\{ T_{jk}^{(0)} + T_{jk}^{(1)} + T_{jk}^{(2)} \right\} \quad (9) \]

where \(\text{Re} \) and \(\text{Im} \) denote the real and imaginary parts of the complex expression respectively.

Before we compare these coefficients with those derived by Salvesen, Tuck and Faltinsen (1970), write \(T_{26}^{(2)} \) and \(T_{46}^{(2)} \) following a notation established by Ogilvie and Tuck (1969) and used by Faltinsen (1974). Let

\[\rho (i \omega)^3 \frac{2U}{g} \int \limits_{F} ds \phi_2^2 \equiv T_{26}^{(2)} \]

and

\[\rho (i \omega)^3 \frac{2U}{g} \int \limits_{F} ds \phi_2 \phi_4 \equiv T_{46}^{(2)} \]

where a bar has been drawn through the integral sign to indicate that the integral does not really exist as written, and \(F \) denotes that the limits of integration extend on the free surface from the body to infinity.

The added mass and damping coefficients derived by the two different methods are given in Table 1. The ship is assumed to be pointed at both ends so that the end terms given in the Salvesen, Tuck, and Faltinsen (1970) coefficients do not appear. Also \(a_{jk} \) and \(b_{jk} \) represent the usual two dimensional sectional added mass and damping coefficients.
NUMERICAL RESULTS

Recall that we are addressing ourselves to two questions. First, will this theory show a speed dependence for the roll damping coefficient and, second, are the extra terms, $T_{jk}^{(2)}$, numerically significant? In order to answer the first question, set F_2 in equation (1) and F_6 in equation (3) equal to zero and let F_4 in equation (2) be some constant. This corresponds to the experiments described by Sugai and Yamanouchi (1963) where they applied a pure roll moment to a moving model. A computer program was written that solved equation (1) - (3) using the added mass and damping coefficients given in equations (8) and (9). The hull offsets used were from a Series 60, $C_B = .70$ hull and the model was assumed to have the following additional characteristics:

\[
\begin{align*}
 z_c &= -0.2d \\
 I_4 &= M[(0.397B)^2 + (z_c)^2] \\
 C_{44} &= MgGM \\
 GM &= -z_c \\
 I_6 &= M(0.25L)^2 \\
 I_{46} &= 0.0
\end{align*}
\]

where d is the draft of the ship, B is the beam, and L is the length.

The computer program that calculated the horizontal plane coefficients also returned the ones for the vertical plane, i.e., the Ogilvie-Tuck added mass and damping coefficients for heave and pitch. The Series 60 hull form was selected in order to compare the results returned for heave and pitch with those reported by Faltinsen (1974). (The comparison was satisfactory.) While the hull form selected is not truly symmetrical and does not have large sections of parallel mid-body, it should satisfy the conditions of symmetry and relatively constant cross sections to a sufficient degree to answer the two questions posed in the Introduction.

The method used for evaluating the free surface integrals is described in the Appendix. The results of the forced rolling tests for three different Froude numbers ($F_n = .15, .20, .30$) are shown in Figures 2, 3, and 4. Inspection of Table 1 shows that B_{44} is independent of speed. Therefore, the only way that the roll motion at resonance will be influenced by speed is through
<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Salvesen, Tuck and Faltinsen (1970) (1)</th>
<th>As given by the theory in this paper</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_{22}</td>
<td>$\int a_{22} , d\xi$</td>
<td>$\int a_{22} , d\xi$</td>
</tr>
<tr>
<td>B_{22}</td>
<td>$\int b_{22} , d\xi$</td>
<td>$\int b_{22} , d\xi$</td>
</tr>
<tr>
<td>A_{44}</td>
<td>$\int a_{44} , d\xi$</td>
<td>$\int a_{44} , d\xi$</td>
</tr>
<tr>
<td>B_{44}</td>
<td>$\int b_{44} , d\xi + B_{A_{44}}^*$ (2)</td>
<td>$\int b_{44} , d\xi$</td>
</tr>
<tr>
<td>A_{66}</td>
<td>$\int \xi^2 a_{22} , d\xi + A_{22} U^2/\omega^2$</td>
<td>$\int \xi^2 a_{22} , d\xi$</td>
</tr>
<tr>
<td>B_{66}</td>
<td>$\int \xi^2 b_{22} , d\xi + B_{22} U^2/\omega^2$</td>
<td>$\int \xi^2 b_{22} , d\xi$</td>
</tr>
<tr>
<td>A_{24}</td>
<td>$\int a_{24} , d\xi$</td>
<td>$\int a_{24} , d\xi$</td>
</tr>
<tr>
<td>B_{24}</td>
<td>$\int b_{24} , d\xi$</td>
<td>$\int b_{24} , d\xi$</td>
</tr>
<tr>
<td>A_{42}</td>
<td>$\int a_{24} , d\xi$</td>
<td>$\int a_{24} , d\xi$</td>
</tr>
<tr>
<td>B_{42}</td>
<td>$\int b_{24} , d\xi$</td>
<td>$\int b_{24} , d\xi$</td>
</tr>
<tr>
<td>A_{26}</td>
<td>$\int \xi a_{22} , d\xi - B_{22} U/\omega^2$</td>
<td>$\int \xi a_{22} , d\xi - B_{22} U/\omega^2 + \text{Im} \left[(\rho \omega^2 U/g) \int \text{d}s \phi_2^2 \right]$</td>
</tr>
<tr>
<td>B_{26}</td>
<td>$\int \xi b_{22} , d\xi + A_{22} U$</td>
<td>$\int \xi b_{22} , d\xi + A_{22} U + \text{Re} \left[(\rho \omega^2 U/g) \int \text{d}s \phi_2^2 \right]$</td>
</tr>
<tr>
<td>Coefficient</td>
<td>Salvesen, Tuck and Faltinsen (1970) (1)</td>
<td>As given by the theory in this paper</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>A_{62}</td>
<td>$\int \xi a_{22} d\xi + B_{22} U/\omega^2$</td>
<td>$\int \xi a_{22} d\xi + B_{22} U/\omega^2 - Im[(\rho \omega^2 U/g)] d\phi^2$</td>
</tr>
<tr>
<td>B_{62}</td>
<td>$\int \xi b_{22} d\xi - A_{22} U$</td>
<td>$\int \xi b_{22} d\xi - A_{22} U - Re[(\rho \omega^2 U/g)] d\phi^2$</td>
</tr>
<tr>
<td>A_{46}</td>
<td>$\int \xi a_{24} d\xi - B_{24} U/\omega^2$</td>
<td>$\int \xi a_{24} d\xi - B_{24} U/\omega^2 + Im[(\rho \omega^2 U/g)] d\phi_2^2$</td>
</tr>
<tr>
<td>B_{46}</td>
<td>$\int \xi b_{24} d\xi + A_{24} U$</td>
<td>$\int \xi b_{24} d\xi + A_{24} U + Re[(\rho \omega^2 U/g)] d\phi_2^2$</td>
</tr>
<tr>
<td>A_{64}</td>
<td>$\int \xi a_{24} d\xi + B_{24} U/\omega^2$</td>
<td>$\int \xi a_{24} d\xi + B_{24} U/\omega^2 - Im[(\rho \omega^2 U/g)] d\phi_2^2$</td>
</tr>
<tr>
<td>B_{64}</td>
<td>$\int \xi b_{24} d\xi - A_{24} U$</td>
<td>$\int \xi b_{24} d\xi - A_{24} U - Re[(\rho \omega^2 U/g)] d\phi_2^2$</td>
</tr>
</tbody>
</table>

(1) The end effects in the Salvesen, Tuck and Faltinsen (1970) theory were dropped.

(2) B_{44} is a quasi-linear viscous-damping coefficient. Viscous effects are ignored in the theory presented in this paper.
the coupling between roll and sway and roll and yaw. Figure 3 indicates that this effect is negligible. Only the motion of yaw, in Figure 4, shows any speed effects. We can conclude that slender body theory, as derived in this paper, will not show an increase in the roll damping coefficient as forward speed increases. This result can be contrasted with the results given by Watanabe (1977) where an application of thin-ship theory did produce larger roll damping coefficients as the forward speed increased. It should be noted, however, that the theory of that paper included a trailing vortex sheet and consequently differed fundamentally from the theory presented here. In a recent paper by Ikeda, Himeno and Tanaka (1978), it is suggested that the "wave damping component" of a moving, rolling ship is, to a large extent, independent of speed for values of τ greater than 0.5. Here τ equals $U\omega/g$. The "wave damping component" corresponds to the damping coefficient B_{44} presented in this paper. Our assumptions make $\tau=0(e^{-1/2})$, which represents high speed and/or high frequency of rolling. Thus it appears that B_{44} is consistent with the results presented by Ikeda, et.al. (1978).

To demonstrate the difference between the added mass and damping coefficients as derived by the theory presented in this paper and those coefficients derived by Salvesen, Tuck and Faltinsen (1970), Figures 5 through 8 are presented. The coupled sway-yaw added mass and damping coefficients are non-dimensionalized by ρVL and $\rho VL/g/L$ respectively. Here V is the volume displacement of the ship. The coupled roll-yaw added mass and damping coefficients are non-dimensionalized by ρVL^2 and $\rho VL^2/g/L$ respectively. They are all plotted as functions of $\sqrt{\omega L/g}$. The results are shown for a $F_n=0.2$ only. Froude numbers of 0.15 and 0.30 showed similar tendencies. From the figures, it is clear that there are some differences. Figure 5 which shows the added mass coupling coefficient A_{62} of sway into yaw also has included results of experiments conducted by Vugts (1970). The experiments were forced motion tests on a 10 foot segmented model. The sectional added mass components were added to give the results shown in the figure. The comparison between theory and experiment, at least for the coefficient of A_{62}, seems reasonable. (Recall that the expressions A_{62} and B_{62} are unaffected by the antisymmetry and constant mid body assumptions. Consequently, they should be more applicable to ship shapes than any of the coefficients resulting from a coupling with roll.)

In Figures 9 and 10, the ratios of $T^{(2)}_{jk}$ to $T^{(1)}_{jk}$ are plotted as
functions of \(\omega \sqrt{L/g} \). These ratios are speed independent since both \(T_{jk}^{(2)} \) and \(T_{jk}^{(1)} \) vary linearly with velocity. From Table 1, it is clear that the real part of \(T_{jk}^{(1)} \) corresponds to the velocity dependent part of the Salvesen, Tuck and Faltinsen added mass and the imaginary part of \(T_{jk}^{(1)} \) corresponds to the velocity dependent part of their damping coefficient. Since \(T_{jk}^{(2)} \) represents the free surface integrals, we can see from these plots the relative importance of these terms to the usual forward speed terms as given by Salvesen, Tuck, and Faltinsen (1970). For some frequency ranges, \(T_{ij}^{(2)} \), the free surface integral, is equal to or larger than the usual forward speed term.
Figure 2 Sway response to unit roll moment

Figure 3 Roll response to unit roll moment
Figure 4 Yaw response to unit roll moment
Figure 7 Added mass coefficients A_{64} and A_{46}

Figure 8 Damping coefficients B_{46} and B_{64}
Figure 9 Relative importance of free surface integrals

Figure 10 Relative importance of free surface integrals
APPENDIX

FORCE AND MOMENT ON THE HULL

Since most of the details for finding the force and moment on the hull due to horizontal motions are similar to those for vertical motions as presented by Ogilvie and Tuck (1969), only a brief summary of the derivation will be given here.

The time dependent solution is given by the \(\psi(x,y,z,t) \) potential. It must satisfy equations (5) - (7) which are repeated here for convenience

\[
\psi_{yy} + \psi_{zz} = 0 \quad \text{in the fluid domain} \quad (5)
\]

\[-\omega^2 \psi + g \psi_z = -i\omega U(2\psi_x + 2\psi_y^\prime + \psi_y \psi_y^\prime) \quad \text{on} \quad z=0 \quad (6)\]

and on the hull

\[
\frac{\partial \psi}{\partial n} = i\omega n_2 (n_2 + x n_6) + i\omega n_4 (y n_3 - z n_2) + Un_2 n_6 \\
-\psi y (n_2 x_{zz} + n_3 x_{yz}) + Un_4 \left[(n_3 x_y - n_2 x_z) \\
+ z(n_3 \chi_{yy} + n_3 \chi_{yz}) - y(n_2 \chi_{yz} + n_3 \chi_{zz}) \right] \quad (7)
\]

There is also a radiation condition that must be satisfied. More will be said about this later.

In order to simplify the solution of the forced oscillation potentials, Ogilvie and Tuck (1969) defined the following quantities:

\[n_j \text{ and } m_j \text{ for } j=2,4,6 \text{ where}\]

\[n_2 = n_2\]

\[n_4 = y n_3 - z n_2\]

\[n_6 = x n_2\]

\[m_2 = -n_2 \chi_{yy} - n_3 \chi_{yz}\]

\[m_4 = \chi_y n_3 - \chi_z n_2 + z(n_2 \chi_{yy} + n_3 \chi_{yz}) - y(n_2 \chi_{yz} + n_3 \chi_{zz})\]

\[m_6 = n_2 - x n_2\]
Let the mean hull surface be defined by the equation

\[S_0(x, y, z) = 0. \]

Then define a potential \(\psi_j \) where

\[\psi_{j,yy} + \psi_{j,zz} = 0 \quad \text{in the fluid} \]

\[\frac{\partial \psi_j}{\partial N} = n_j \quad \text{on } S_0 = 0 \]

and

\[-\omega^2 \psi_j + g \psi_{j,z} = 0 \quad \text{on } z=0. \]

Note that \(\psi_6 = x \cdot \phi_2 \)

Next define a potential \(\varphi_j \) where

\[\varphi_{j,yy} + \varphi_{j,zz} = 0 \quad \text{in the fluid} \]

\[\frac{\partial \varphi_j}{\partial N} = m_j \quad \text{on } S_0 = 0 \]

and

\[-\omega^2 \varphi_j + g \varphi_{j,z} = 0 \quad \text{on } z=0. \]

Finally define a potential \(\Omega_j \) where

\[\Omega_{j,yy} + \Omega_{j,zz} = 0 \quad \text{in the fluid} \]

\[\frac{\partial \Omega_j}{\partial N} = 0 \quad \text{on } S_0 = 0 \]

and

\[-\omega^2 \Omega_j + g \Omega_{j,z} = -(2\psi_{j,x} + 2\psi_{j,y} + \psi_{j,yy}) \quad \text{on } z=0. \]

Then \(\psi = \sum (i\omega \phi_j + U \varphi_j - \omega^2 \Omega_j) n_j \) satisfies all the equations in the boundary value problems (equations (5) - (7)) to the order considered. The radiation conditions for the \(\phi_j \) and \(\varphi_j \) problems are the usual ones which require out going waves. The \(\Omega_j \) potential represents an anti-symmetric pressure distribution on the free surface, and as shown by Troesch (1975), its radiation
condition is represented by linearly growing, anti-symmetric out-going waves.

As shown by Ogilvie and Tuck (1969), the pressure can be found from Bernoulli's equation and then integrated over the mean position of the ship's hull to give a total force consistent to an order of $0(e^{3/2\delta})$. It has the following form:

$$
F_j(t) = -\rho \int_{S_0} ds \left\{ \hat{n}_j(i\omega)^2 - U \hat{m}_j(i\omega) \right\} \hat{\phi}_k \eta_k + U \hat{m}_j \sum_k (i\omega)^2 \eta_k \\
+ (i\omega)^3 \Omega_k \eta_k \}
$$

As done in the main text, let us define several quantities as follows:

$$
F_j(t) \equiv \sum_k \left[T_{jk}^{(0)} + T_{jk}^{(1)} + T_{jk}^{(2)} \right] \eta_k(t).
$$

Then

$$
T_{jk}^{(0)} = -\rho (i\omega)^2 \int_{S_0} ds \, n_j \phi_k,
$$

$$
T_{jk}^{(1)} = -\rho i\omega U \int_{S_0} ds (n_j \psi_k - m_j \phi_k),
$$

and

$$
T_{jk}^{(2)} = -\rho (i\omega)^3 U \int_{S_0} ds n_j \Omega_k.
$$

See the main text for the complete expressions for $T_{jk}^{(0)}$ when $j=2,4,6$ and $k=2,4,6$.

Consider now $T_{jk}^{(1)}$. The far field behavior of ϕ_j and ψ_j are given as

$$
i\omega \phi_j \eta_j \rightarrow \text{sgn}(y) A_j(x) e^{i v y} e^{i(\omega t - v|y|)}
$$

and

$$
i\omega \psi_j \eta_j \rightarrow \text{sgn}(y) B_j(x) e^{i v y} e^{i(\omega t - v|y|)}
$$

as $y \rightarrow \infty$. Here ν is the wave number given by $\omega^2 = \nu g$. Using this fact and Green's theorem for two dimensions, we can follow the method used by Ogilvie and Tuck (1969) to easily show that

$$
T_{jj}^{(1)} = 0
$$
and
\[T_{jk}^{(1)} = -\rho i u \int_{S_0} ds (\phi_j m_k - \phi_k m_j) \]

The following expressions are given for specific modes of motion:
\[T_{26}^{(1)} = -T_{62}^{(1)} = -\rho i u \int_{S_0} ds \ n_2 \phi_2 \]
\[T_{42}^{(1)} = -T_{42}^{(1)} = -\rho i u \int_{S_0} ds (\phi_4 m_4 - \phi_4 m_2) \]

and
\[T_{46}^{(1)} = -T_{64}^{(1)} = -\rho i u \int_{S_0} ds x (m_2 \phi_4 - m_4 \phi_2) + \int_{S_0} ds n_2 \phi_4 \]

To simplify \(T_{jk}^{(2)} \), we need the far field behavior of the \(\Omega \) potential. Using the method shown by Troesch (1975) for an anti-symmetric pressure distribution on the free surface we can write
\[-\omega^2 \Omega n_j \rightarrow \text{sgn}(y) e^{iyz+i(\omega t-y)} \left[C_j(x) - \frac{2i u \Omega}{g} A_j(x) (z-i|y|) \right] \]

as \(y \rightarrow \infty \).

Then we can show, using a method similar to that used by Ogilvie and Tuck (1969), that
\[T_{jj}^{(2)} = 0 \]
\[T_{26}^{(2)} = -T_{62}^{(2)} = \rho (i \omega)^3 \frac{2u}{g} \int_L dx \left[\int_{Y_0}^\infty dy (\phi_2^2 - A_2 e^{-2i\nu y}) \right. \]
\[\left. - \frac{i}{2\nu} A_2 e^{-2i\nu Y_0} \right] \]

and for roll, when either \(j=4 \) or \(k=4 \) and the other subscript equals 2 or 6
\[T^{(2)}_{jk} = -T^{(2)}_{kj} = \rho (i\omega)^3 \frac{2V}{g} \int_0^L \int_{-y_0}^y \left(A_j A_k e^{-2i\nu y} \right) \]
\[- (\phi_j x_k - A_j A_k e^{-2i\nu y}) \right) + \chi_y (\phi_j x_k + \phi_j \phi_k) \]
\[+ \frac{i}{2\nu} e^{-2i\nu y_0 (A_j A_k - A_j A_k)} \right) \]

where the subscript of \(x \) means the derivative of the subscripted variable with respect to \(x \).

Note the following:

i) For symmetric hull forms \(m_2, m_4 \) and \(\chi_y \) are odd functions with respect to \(x \).

ii) In regions of constant cross sections, \(m_2, m_4, \chi_y, \phi_j x \) and \(A_j \) are equal to zero.

iii) In the end sections the beam of the hull becomes higher order than the beam at mid-ships. As a result the oscillation potentials \(\phi_2 \) and \(\phi_4 \), also are higher order there than in the mid sections.

Numerical Method for Determining the Added Mass and Damping Coefficients

The added mass and damping coefficients were found in two steps. First, the potential valid on the hull surface was determined. Next, a multipole expansion, valid outside some radius \(R \) which inclosed the body, was matched to the first potential. Using this scheme significantly lowered the computing time of evaluating the free surface integrals.

The potential in the near field was given by an integral representation of sources distributed over the hull surface. The source strength, \(\sigma_j (\zeta, \eta) \), was found by solving the following integral equation:

\[\frac{\partial \phi_j (y, z)}{\partial n} = -\pi \sigma_j (y, z) + \int_{C_H} \frac{\partial \sigma_j (\zeta, \eta)}{\partial n} G(y, z; \zeta, \eta) \]

on the hull, where \(\frac{\partial \phi_j}{\partial n} \) is the normal velocity on the hull and \(G(y, z; \zeta, \eta) \) is a Green's function given by
\[G(y, z; \zeta, \eta) = \log\sqrt{(y-\zeta)^2 + (z-\eta)^2} - \log\sqrt{(y-\zeta)^2 + (z+\eta)^2} \]
\[-2\mathrm{e}^{i\nu(z+\eta)}\Re\left(\mathrm{e}^{i\nu|y-\zeta|}\mathcal{E}_1[i\nu(z+\eta) + i\nu|y-\zeta|]\right) \]
\[+ 2\pi i\mathrm{e}^{i\nu(z+\eta)} - i\nu|y-\zeta| \]

and \(\mathcal{E}_1(x+iy) \) is the complex exponential integral. The method for solving the integral equation is given in Troesch (1975).

Once the source distribution, \(\sigma_j(\zeta, \eta) \) was known, a circle of radius \(R \), where \(R \) enclosed the entire station being considered, was found. Then the potential given by the source distribution on the hull was matched to a multi-pole expansion consisting of a dipole and wave free potentials that were odd with respect to the \(x-z \) plane. The matching took place on the circle. The multi-pole expansion had the following form:

\[\phi_j(y, z) = A_j\left[-\frac{1}{\pi}\mathrm{e}^{i\nu z}\text{sgn}(y)\Re\left(\mathrm{e}^{i\nu|y|}\mathcal{E}_1(i\nu z + i\nu|y|)\right)\right] \]
\[+ \frac{1}{\pi\nu}\frac{y}{x^2} + \text{sgn}(y)\mathrm{e}^{i\nu z - i\nu|y|} \]
\[+ \sum_{m=1}^{N-1} A_{jm}(\nu R)^{2m+1}\left[\frac{\sin(2m+1)\theta}{(\nu r)^{2m+1}} + \frac{\sin2m\theta}{2m(\nu r)^{2m}}\right] \]

where \(A_j \) and \(A_{jm} \) are coefficients determined from the matching processes, \(r \) equals \(\sqrt{y^2+z^2} \), and \(\theta \) is the angle between \(r \) and the negative \(z \) axis.

The free surface integrals, defined as

\[\int_0^{\infty} dy (\phi_2^2 - A_2^2\mathrm{e}^{-2i\nu y}) \]
and
\[\int_0^{\infty} dy (\phi_4^2 - A_4^2\mathrm{e}^{-2i\nu y}) \]

have integrands that oscillate with a period of \(\pi \). The subroutine that evaluated the integrals used Simpson's rule on 25 points for each interval of \(\pi \). The integration was terminated when a given interval made no significant contribution to the total integral.
REFERENCES

DISTRIBUTION LIST FOR REPORTS PREPARED UNDER THE
GENERAL HYDROMECHANICS RESEARCH PROGRAM

1 Office of Naval Research
 Officer-in-Charge
 Annapolis Laboratory,
 David W. Taylor
 Naval Ship Research and
 Development Center
 Annapolis, MD 21402
 Attn: Code 522.3 (Library)

7 Commander
 Naval Sea Systems Command
 Washington, DC 20362
 Attn: SEA 09G32 (3 cys)
 SEA 03512 (Pierce)
 SEA 037
 SEA 032
 SEA 033

12 Director
 Defense Documentation Center
 5010 Duke Street
 Alexandria, VA 22314

1 Office of Naval Research
 Officer-in-Charge
 800 N. Quincy Street
 Arlington, VA 22217
 Attn: Mr. R.D. Cooper (Code 438)

1 Office of Naval Research
 Branch Office
 492 Summer Street
 Boston, MA 02210

1 Office of Naval Research
 Branch Office (493)
 536 S. Clark Street
 Chicago, IL 60605

1 Chief Scientist
 Office of Naval Research
 Branch Office
 1030 E. Green Street
 Pasadena, CA 91106

1 Office of Naval Research
 Resident Representative
 715 Broadway (5th Floor)
 New York, NY 10003

1 Office of Naval Research
 San Francisco Area Office
 760 Market St., Rm 447
 San Francisco, CA 94102

2 Director
 Naval Research Laboratory
 Washington, DC 20390
 Attn: Code 2027

1 Commander
 Naval Facilities Engineering
 Command (Code 032C)
 Washington, DC 20390

1 Library of Congress
 Science & Technology Division
 Washington, DC 20540

8 Commander
 Naval Ship Engineering Center
 Department of the Navy
 Washington, DC 20362
 Attn: SEC 6034B
 SEC 6110
 SEC 6114H
 SEC 6120
 SEC 6136
 SEC 6144G
 SEC 6140B
 SEC 6148

1 Naval Ship Engineering Center
 Norfolk Division
 Small Craft Engr Dept.
 Norfolk, VA 23511
 Attn: D. Blount (6660.03)

1 Technical Library
 Naval Proving Ground
 Deihlgren, VA 22448
1 Commander (ADL)
Naval Air Development Center
Warminster, PA 18974

1 Naval Underwater Weapons Research & Engineering Station (Library)
Newport, RI 02840

1 Commanding Officer (L31)
Naval Civil Engineering Laboratory
Port Hueneme, CA 93043

3 Commander
Naval Ocean Systems Center
San Diego, CA 92152
Attn: Dr. A. Fabula (4007)
Dr. J. Hoyt (2501)
Library (13111)

1 Director
Naval Research Laboratory
Underwater Sound Reference Division
P.O. Box 8337
Orlando, FL 32806

1 Library
Naval Underwater Systems Center
Newport, RI 02840

1 Research Center Library
Waterways Experiment Station
Corps of Engineers
P.O. Box 631
Vicksburg, MS 39180

2 National Bureau of Standards
Washington, DC 20234
Attn: P. Klebanoff (FM 105)
Fluid Mechanics
Hydraulic Section

1 AFFOL/FYS (J. Olsen)
Wright Patterson AFB
Dayton, OH 45433

1 Dept. of Transportation
Library TAD-491.1
400 - 7th Street, S.W.
Washington, DC 20590

1 Charleston Naval Shipyard
Technical Library
Naval Base
Charleston, SC 29408

1 Norfolk Naval Shipyard
Technical Library
Portsmouth, VA 23709

1 Philadelphia Naval Shipyard
Philadelphia, PA 19112
Attn: Code 240

1 Portsmouth Naval Shipyard
Technical Library
Portsmouth, NH 03801

1 Puget Sound Naval Shipyard
Engineering Library
Bermerton, WA 98314

1 Long Beach Naval Shipyard
Technical Library (246L)
Long Beach, CA 90801

1 Mare Island Naval Shipyard
Shipyard Technical Library
Code 202.3
Vallejo, CA 94592

1 Assistant Chief Design Engineer
for Naval Architecture (Code 250)
Mare Island Naval Shipyard
Vallejo, CA 94592

2 U.S. Naval Academy
Annapolis, MD 21402
Attn: Technical Library
Dr. Bruce Johnson

3 Naval Postgraduate School
Monterey, CA 93940
Attn: Library, Code 2124
Dr. T. Sarpkaya
Prof. J. Miller

1 Study Center
National Maritime Research Center
U.S. Merchant Marine Academy
Kings Point, L.I., NY 11024
1 U.S. Merchant Marine Academy
Kings Point, L.I., NY 11024
Attn: Academy Library

1 Library
The Pennsylvania State University
Applied Research Laboratory
P.O. Box 30
State College, PA 16801

1 Bolt, Beranek & Newman
50 Moulton Street
Cambridge, MA 02138
Attn: Library

1 Bethlehem Steel Corporation
Center Technical Division
Sparrows Point Yard
Sparrows Point, MD 21219

1 Bethlehem Steel Corporation
25 Broadway
New York, NY 10004
Attn: Library (Shipbuilding)

1 Cambridge Acoustical Associates, Inc.
1033 Mass Avenue
Cambridge, MA 02138
Attn: Dr. M. Junger

1 CALSPAN Corporation
P.O. Box 235
Buffalo, NY 14221
Attn: Dr. A. Ritter
Aerodynamics Res. Dept.

1 Mr. V. Boatwright, Jr.
R&D Manager
Electric Boat Division
General Dynamics Corporation
Groton, CT 06340

1 Gibbs & Cox, Inc.
21 West Street
New York, NY 10006
Attn: Technical Info. Control

1 Hydronautics, Inc.
Pindell School Road
Howard County
Laurel, MD 20810
Attn: Library

2 McDonnell Douglas Aircraft Co.
3855 Lakewood Blvd
Long Beach, CA 90801
Attn: J. Hess
T. Cebeci

1 Lockheed Missiles & Space Co.
P.O. Box 504
Sunnyvale, CA 94088
Attn: Mr. R.L. Waid, Dept. 57-74
Bldg. 150, Facility 1

1 Newport News Shipbuilding &
Dry Dock Company
4101 Washington Avenue
Newport News, VA 23607
Attn: Technical Library Dept.

1 Nielsen Engineering & Research Inc.
510 Clude Avenue
Mountain View, CA 94043
Attn: Mr. S. Spangler

1 Oceanics, Inc.
Technical Industrial Park
Plainview, L.I., NY 11803

1 Society of Naval Architects
and Marine Engineers
One World Trade Center, Suite 1369
New York, NY 10048
Attn: Technical Library

1 Sun Shipbuilding & Dry Dock Co.
Chester, PA 19000
Attn: Chief Naval Architect

1 Sperry Systems Management Division
Sperry Rand Corporation
Great Neck, NY 11020
Attn: Technical Library

1 Stanford Research Institute
Menlo Park, CA 94025
Attn: Library G-021

2 Southwest Research Institute
P.O. Drawer 28510
San Antonio, TX 78284
Attn: Applied Mechanics Review
Dr. H. Abramson
<table>
<thead>
<tr>
<th>Institution</th>
<th>Address</th>
<th>City</th>
<th>State</th>
<th>Attn:</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tracor, Inc.</td>
<td>6500 Tracor Lane</td>
<td>Austin, TX</td>
<td>78721</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mr. Robert Taggart</td>
<td>9411 Lee Hwy, Suite P</td>
<td>Fairfax, VA</td>
<td>22031</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ocean Engr Department</td>
<td>Woods Hole Oceanographic Inst.</td>
<td>Woods Hole, MA</td>
<td>02543</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Worcester Polytechnic Inst.</td>
<td>Alden Research Laboratories</td>
<td>Worcester, MA</td>
<td>01609</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Applied Physics Laboratory</td>
<td>University of Washington</td>
<td>Seattle, WA</td>
<td>98105</td>
<td></td>
<td></td>
</tr>
<tr>
<td>University of Bridgeport</td>
<td>Bridgeport, CT</td>
<td>06602</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cornell University</td>
<td>Graduate School of Aerospace Engr</td>
<td>Ithaca, New York</td>
<td>14850</td>
<td></td>
<td></td>
</tr>
<tr>
<td>University of California</td>
<td>Naval Architecture Department</td>
<td>Berkeley, CA</td>
<td>94720</td>
<td></td>
<td></td>
</tr>
<tr>
<td>California Institute of Technology</td>
<td></td>
<td>Pasadena, CA</td>
<td>91109</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Docs/Repts/Trans Section</td>
<td>Scripps Institution of Oceanography Library</td>
<td>University of Calif., San Diego</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colorado State University</td>
<td>Foothills Campus</td>
<td>Fort Collins, CO</td>
<td>80521</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Florida Atlantic University</td>
<td>Ocean Engineering Department</td>
<td>Boca Raton, FL</td>
<td>33432</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harvard University</td>
<td>Pierce Hall</td>
<td>Cambridge, MA</td>
<td>02138</td>
<td></td>
<td></td>
</tr>
<tr>
<td>University of Hawaii</td>
<td>Department of Ocean Engineering</td>
<td>Honolulu, HI</td>
<td>96822</td>
<td></td>
<td></td>
</tr>
<tr>
<td>University of Illinois</td>
<td>Urbana, IL</td>
<td>61801</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Institute of Hydraulic Research</td>
<td>The University of Iowa</td>
<td>Iowa City, IA</td>
<td>52240</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The John Hopkins University</td>
<td></td>
<td>Baltimore, MD</td>
<td>21218</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kansas State University</td>
<td>Engineering Experiment Station</td>
<td>Manhattan, KS</td>
<td>66502</td>
<td></td>
<td></td>
</tr>
<tr>
<td>University of Kansas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fritz Engr Laboratory Library</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lehigh University</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Department of Ocean Engineering</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Massachusetts Institute of Technology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Applied Research Laboratory</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>College of Engineering</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stanford University</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Webb Institute of Naval Architecture</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New York University</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>National Science Foundation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>University of Connecticut</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Applied Research Laboratory</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chm Civil Engr Dept Library Lawrance, KS 60644</td>
</tr>
<tr>
<td>Fritz Engr Laboratory Library Depart of Civil Engr Lehigh University Bethlehem, PA 18015</td>
</tr>
<tr>
<td>Department of Ocean Engineering Massachusetts Institute of Technology Cambridge, MA 02139 Attn: Prof. P. Mandel Prof. M. Abkowitz Dr. J. Newman</td>
</tr>
<tr>
<td>Engineering Technical Reports Room 10-500 Massachusetts Institute of Technology Cambridge, MA 02139</td>
</tr>
<tr>
<td>St. Anthony Falls Hydraulic Laboratory University of Minnesota Mississippi River at 3rd Avenue SE Minneapolis, MN 55414 Attn: Dr. Roger Arndt M. J. Wetzel Prof. E. Silberman Dr. C. Song Dr. R. Jeppson</td>
</tr>
<tr>
<td>Department of Naval Architecture and Marine Engineering North Campus The University of Michigan Ann Arbor, MI 48109 Attn: Library Dr. T.F. Ogilvie Prof. F. Hammitt</td>
</tr>
<tr>
<td>College of Engineering University of Notre Dame Notre Dame, IN 46556 Attn: Engineering Library Dr. A. Strandhagen</td>
</tr>
<tr>
<td>New York University Courant Inst. of Math. Sciences 251 Mercer Street New York, NY 10012 Attn: Prof. A Peters Prof. J. Stoker</td>
</tr>
<tr>
<td>Department of Aerospace & Mechanical Sciences Princeton University Princeton, NJ 08540 Attn: Prof. G. Mellor</td>
</tr>
<tr>
<td>Davidson Laboratory Stevens Institute of Technology 711 Hudson Street Hoboken, NJ 07030 Attn: Library Mr. J. Breslin Mr. S. Tsakonas</td>
</tr>
<tr>
<td>Applied Research Laboratory Library University of Texas P.O. Box 8029 Austin, TX 78712</td>
</tr>
<tr>
<td>College of Engineering Utah State University Logan, UT 84321 Attn: Dr. R. Jeppson</td>
</tr>
<tr>
<td>Stanford University Stanford, CA 94305 Attn: Engineering Library Dr. R. Street</td>
</tr>
<tr>
<td>Webb Institute of Naval Architecture Crescent Beach Road Glen Cove, L.I., NY 11542 Attn: Library Prof. E.V. Lewis Prof. L.W. Ward</td>
</tr>
<tr>
<td>National Science Foundation Engineering Division Library 1800 G. Street N.W. Washington, DC 20550</td>
</tr>
<tr>
<td>University of Connecticut Box U-37 Storrs, CT 06268 Attn: Dr. V. Scottron Hydraulic Research Lab</td>
</tr>
<tr>
<td>Applied Research Laboratory P.O. Box 30 State College, PA 16801 Attn: DR. B. Parkin, Director Garfield Thomas Water Tunnel</td>
</tr>
</tbody>
</table>
Dr. Michael E. McCormick
Naval Systems Engineering Department
U.S. Naval Academy
Annapolis, MD 21402

Dr. Douglas E. Humphreys (Code 794)
Naval Coastal Systems Laboratory
Panama City, FL 32401

Dr. Allen H. Magnuson
Aerospace and Ocean Engineering Dept.
Virginia Polytechnic Institute and State College
Blacksburg, VA 24061