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Abstract

The control of a surface ship along a prescribed straight-line path is
formulated as a stationary linear, state-variable control problem. The open-
loop characteristics of this problem are studied using data for a Mariner
type ship at two speeds and varying water depth-to-draft ratio and for the
tanker Tokyo Maru at one speed and varying water depth-to-draft ratio using
data obtained by Fujino. Optimal stochastic control systems using a Kalman-
Bucy filter and a state-feedback controller are designed for both vessels
at various conditions. These designs are developed to control the ship when
subject to random, zero-mean disturbances. The design disturbances are the
yaw moment and sway force due to a passing ship which are modeled by first-
order shaping filters in the design derivation. The selection of a set of
measurements adequate to provide effective path control is studied. System
performance is studied by the evaluation of the Root Mean Square (RMS) response
of the controlled ship to the modeled design disturbances and by digital
computer simulation of the response of the controlled ship to initial condition
errors and the specific disturbances due to a passing ship. The effects of
vessel speed and water depth on the design and performance of these controllers
are studied in detail. These results yield guidance for the selection of
design conditions for the design of constant-gain controllers and provide an
assessment of the need for adaptive controllers which can adjust the gains
to remain optimal as the ship characteristics change with vessel speed and
water depth. A sensitivity study is presented to show quantitatively which
of the system coefficients which change with water depth can be assumed
constant and which of the coefficients must be considered variables in an

adaptive path control system design.
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Nomenclature

A state weighting matrix (nexne); helmsman transfer function
gain

a helmsman transfer function gain
B control weighting matrix (mxm) or ship beam [m]
Bi helmsman error function weighting factor; i=1,2,3
c optimal control gain matrix (mxne)
Ef...] expected value or ensemble average of quantity
e helmsman error function
Fe estimator open-loop dynamics matrix (nexne)
Fn=U//§f Froude number based on ship length
Fg -1 system open-loop dynamics matrix (nsxns)
F'=T "FgT Jordan~form open-loop dynamics matrix (nexne)
fij element i,j of F, or Fg
Ge estimator control distribution (nexm)
Gg -1 system control distribution matrix (nsxm)

'=T "Gg Jordan-form control distribution matrix (nexm)
G(s) helmsman transfer function
g acceleration of gravity [m/s?]
H water depth [m]
He estimator measurement scaling matrix (pxne)
Hj discrete measurement scaling matrix
Hg system measurement scaling matrix (pxns)
H'=HgT Jordan-form measurement scaling matrix (pxne)
I, ship yaw mass moment of inertia [kgm?]
I,z '=2155/pL° nondimensional yaw mass moment of inertia
J optimal control cost function
J RMS cost, eq. (71)
Jzz yaw added mass moment of inertia [kgm2]
Jzz'=2Jzz/pL5 nondimensional yaw added mass moment of inertia
j V-1
K Kalman-Bucy filter gain matrix (nexp); gain in Nomoto's

eq(102)
K3 discrete filter gain matrix
ki gains in helmsman transfer function, i=1,2,3
L ship length between perpendiculars [m]
M discrete estimate error covariance after time update
m control vector dimension or ship mass [kg]
m'=2m/pL3 nondimensional ship mass
my surge added mass [kg]
m sway added mass [kg]
my'=2my/pL3 nondimensional sway added mass
total yaw moment or yaw moment disturbance [Nm]
N'=2N/pL3U2 nondimensional N
Ny derivative of yaw moment w.r.t. yaw angular velocity
[Nms/rad]
Nr'=2Nr/pL4U nondimensional Ny
Ng derivative of yaw moment w.r.t. drift angle [Nm/rad]
N6'=2NB/DL3U2 nondimensional Ng
Nj derivative of yaw moment w.r.t. drift angular velocity
[Nms/rad]
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'=2Y/pL2U2

nondimensional N

derivative of yaw moment w.r.t. rudder angle [Nm/rad]

derivative of yaw moment w.r.t. rudder angle rate [Nms/rad]

nondimensional Ns

dimension of augmented state vector

dimension of state vector

covariance of error in estimate of augmented state

% (nexne)

discrete filter estimate error covariance after measurement
update

steady-state value of P

dimension of measurement vector

process disturbance power spectral density matrix (gxq)

discrete process disturbance covariance matrix

dimension of disturbance vector

diagnonal element i,i of Q

measurement noise power spectral density matrix (pxp)

discrete measurement noise covariance matrix

yaw angular velocity [rad/s]

nondimensional yaw angular velocity

yaw angular acceleration [rad/s?]

nondimensional yaw angular acceleration

diagonal element i,i of R.

solution to optimal control Riccati equation

steady-state value of S

Laplace transform variable

modal matrix of eigenvectors of F; ship draft [m]; time
constant in Nomoto's eq. (102)

helmsman transfer function time constant [sec]

nondimensional helmsman transfer function time constant

nondimensional correlation time of yaw moment disturbance;
helmsman transfer function time constant [sec]

nondimensional helmsman transfer function time constant

nondimensional correlation time of sway force disturbance

nondimensional rudder control time constant

time ([s]

nondimensional time

ship speed [m/s]

longitudinal component of ship speed [m/s]

control vector (mxl)

lateral component of ship speed [m/s]

measurement noise vector (pxl)

process disturbance vector (gxl)

surge force [N] or covariance of augmented state (nexne)

derivative of surge force w.r.t. longitudinal velocity
[Ns/m]

covariance of estimate of augmented state (nexne)

longitudinal axis of ship

state vector (nsxl)

augmented state vector (nexl)

estimate of augmented state vector (nexl)

error in estimate of augmented state vector (nexl)

total sway force or sway force disturbance [N]

nondimensional Y
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Y derivative of sway force w.r.t. yaw angular velocity [Ns/rad]

r

Yr'=2Yr/pL3U nondimensional Y,

Yy derivative of sway force w.r.t. yaw angular acceleration
[Ns2/rad]

Yf'=2Yf/pL4 nondimensional Y.

YB derivative of sway force w.r.t. drift angle [N/rad]

YB'=2YB/pL2U2 nondimensional Yg

Ys derivative of sway force w.r.t. rudder angle [N/rad]

Y6'=2Y6/DL2U2 nondimensional Yg

Yé derivative of sway force w.r.t. rudder angle rate [NS/rad]

vy transverse axis of ship

z measurement vector (pxl)

drift angle [rad]
angle between normal mode i and measurement j
. drift angular velocity [rad/s]
'=BL/U nondimensional drift angular velocity
estimator disturbance distribution matrix (nexq)
discrete disturbance distribution matrix
system disturbance distribution matrix (nsxq)
=1~1rg Jordan-form disturbance distribution matrix (nexq)
element i, j of T
rudder angle [radl]
§=8"' commanded rudder angle [rad]
§(t-1) Dirac delta function
§* desired rudder angle [radl
n lateral offset from nominal track [m]
n'=n/L nondimensional n
0 eq. (25)
eij angle betweeen normal mode i and control j
A=T‘1FeT Jordan-form open-loop dynamics matrix (nexne)
i nondimensional eigenvalue i of open-loop or closed-loop
system
position along nominal track [m]
Jordan—-form state vector (nexl)
water density [kg/m3]
standard deviation
measurement noise standard deviation vector used to estimate R
measurement noise standard deviation vector used in simulation
dummy time variable or correlation time
discrete open-loop dynamics matrix
heading angle [rad]
vector quantity
derivative w.r.t. time
steady-state value of quantity, t=« .
root mean square (RMS) value of quantity (except J)
error in gquantity
initial value of quantity; desired value of quantity on
prescribed path; acceptable value of quantity used in
forming A and B weighting matrices
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1. Introduction

The problem of controlling surface ships along prescribed paths in
maneuvering situations is becoming increasingly important from operational,
safety, and environmental viewpoints. In these situations, the ships are
subjected to short-term disturbances due to passing ships, current and wind
changes, waves, and bank and bottom changes. To complicate the problem, the
dynamic characteristics of surface ships change significantly with depth-
under-keel and vessel speed. These maneuvering situations can place severe
demands on pilots, conning officers, and helmsmen. Thus, some form of
automated path control may become highly desireable or necessary in the
future. An adaptive system which can automatically account for the charnges in

ship characteristics with changing depth and speed may be needed.

With the increasing size of ships, more meaneuvering is now performed
in waters which must be considered shallow; i.e., when the ratio of water
depth H to ship draft T becomes less than 3 or so and significant changes

L has shown that as ships

in maneuvering characteristics occur. Fujino
enter shallow water they usually become less course stable as H/T approaches
about 2 and then become more course stable in even shallower water. Some
ships, such as the 150,000 deadweight ton tanker Tokyo Maru tested by Fujino,
are course stable for large and small values of H/T but are unstable

for some intermediate range of depth-to-draft ratio. The water depth would
then be expected to have a significant effect on the design and performance

of surface ship path controllers.

Most surface ship autopilots or controllers in use today are designed
to provide only heading control in deep water. These are usually analog
controllers which utilize various dead bands and operator adjustments to
improve performance in waves, adapt for speed changes, etc. In the maneuvering
situations of interest here there is a need to control along a prescribed path
rather than just maintain a prescribed heading. Similar needs exist in
underway replenishment and mine sweeping. 1In path control, the objective
is to control the deviation of the ship from the prescribed path as well as
the heading. A multiple-variable control problem such as this is best treated
using modern, state-variable control methods. These methods are directly
compatible with the use of digital computer controllers. Further, since

most of the disturbances which the ship experiences are random and/or unpre-



dictable in advance it can be helpful to treat the ship motion and disturbances
as stochastic processes when developing the control systems.

The theory for the optimal control of linear stochastic systems was

3,4 and Gelb5 are

well developed in the 1960's. Presentations by Bryson
particularly clear and useful. Timman6 introduced the use of optimal stochastic
control systems for ship control in this country in 1972. Some investiga-

tions concerning the use of stochastic control systems for surface ship

path control have recently appeared outside the United States. Zuidweg7’8
developed an optimal, stochastic path controller for a ship subjected to
random disturbances due to waves, wind, and current in deep water. Millers9
developed an optimal, stochastic path controller for the maneuvering of a
large tanker through a narrow passage involving a slight turn in the approach
to Brofjorden, Sweden. We feel the use of optimal, stochastic control
systems such as these offers considerable promise for improved surface ship

control and safety in the future.

There have been primarily three objectives in the research which we have

recently completed.

* the formulation and general characterization of the surface
ship path control problem in shallow water using the state
variable approach;

* the study of the feasibility and effectiveness of using optimal
stochastic controllers for surface ship path control in shallow
water including an evaluation of the effects of speed and depth
changes on controller design and performance and an assessment
of the need for adaptive systems; and

* the development and careful documentation of computer-aided
tools for the design and evaluation of optimal stochastic

controllers.

This paper presents the results of the first two portions of this work.
Section 2 presents the derivation of the linear state-variable equations of
motions for the movement of a surface ship along a straight-line path.

The effect of water depth and vessel speed on the open-loop characteristics of
the Mariner type ship and Tokyo Maru studied rujino is also presented. In

Section 3 we formulate the optimal stochastic control problem and present



the results for the design of a controller for the Tokyo Maru at one of its
least course stable depth-to-draft ratios. Section 4 presents an investigation
of the effect of ship speed and water depth on the design and performance of

the optimal stochastic path controllers. In Section 5 we briefly discuss the
digital computer simulation of stochastic controllers and present selected
simulation results for the controllers we have designed for the Tokyo Maru.
Finally, in Section 6 we present an evaluation of the need to adapt path control
systems for water depth dependent changes in the various terms in the equations

of motion.

The final objective of our research has been the development of computer-
aided design tools. Much of our work utilized the OPTSYS programlO which was
originally developed under A.E. Bryson, Jr. at Stanford University by W.E.
Hall, Jr. and extended by other Stanford students. We gratefully acknowledge
Prof. Bryson for providing the version of this program which we have modified
and adapted for our use under the Michigan Terminal System (MTS). This
program provides very fast and efficient solutions to the steady-state,
linear optimal control and filtering problems including root mean square
(RMS) response evaluation and controllability and observability evaluation.
The principal new tool developed in support of the work reported here is the
SHIPSIM/OPTSIM program for the simulation of the response of stationary linear
optimal stochastic control systems to initial condition errors and specific
process disturbances while subject to measurement noise. Our separate

report on SHIPSIM/OPTSIMll

includes user's documentation, programmer's
documentation and listings for this program plus user's documentation for
our version of the OPTSYS program. This reference is a useful supplement

to the material presented here.



2. Equations of Motion

The development of the linearized, state-variable equations of motion
for a surface ship moving in the horizontal plane presented here begins with
the formulation presented by Fujino2 except that a canal wall is omitted.
The coordinate system for the problem is shown in Fig. 1. The O-fn system
is fixed in space with the desired straight ship path along the £-axis.
The CG-XY system is fixed at the center of gravity of the ship. The direction
of the arrows define the positive sense of the drift angle B, the heading
angle Y, and the rudder angle 8. We consider here only motion in the
horizontal plane and assume that roll is negligible. Thus only three

coordinates x, y, and ¥ need to be considered.

g‘ -~ u = dx/dt
v = dy/dt
U= (u2+v2)1/2
CG r,N r = dy/dt
g Y,Y,v
1'%
0 / oA

Figure 1. Coordinate System for Path Control

The exact equations for the horizontal plane movement of a ship are
integro-differential equations in which convolution integrals represent the

12,13 Alternatively,

history effect of the fluid to previous ship motion.
the equations can be written as differential equations in which the

coefficients are frequency dependent. Recently, Fujinol4 has shown that

for maneuvers of interest here the frequency dependence is negligible and
constant-coefficient differential equations can be utilized. For small
deviations as will be true with effective path control, the differential
equations can be linearized about the nominal path by taking small perturbations
from the equilibrium state and retaining only the linear terms. Applying

the usual symmetry arguments, these linearized equations can be reduced to the

following2:



e}
(mimy) g = Kutts (1)
(m+my)g%-= Y v + (-mU+Y¥y)r + Yi£+Y56+Yéé ’ (2)
(IZZ+JZZ)% = NVV + Nrr+N"7\.7+N66+N&6 ’ (3)

where the derivative X, is the partial derivative of the surge force with
respect to a longitudinal velocity perturbation wu with all other quantities
at the equilibrium straight-line, constant speed U condition, etc. In the
linearized, small perturbation equations, the longitudinal or surge equation
decouples and thus need not be considered further here. Further, the terms

involving 6 are small and can be neglected.

For the path control problem, we are also interested in the lateral offset
or deviation from the desired path, n, which is given by the additional

differential equation,

dn _ . _
d_t-_USln (v-B) (4)

for which the following approximation is valid for small deviations,

— = U (y-B). (5)
It is common to utilize the drift angle instead of the lateral velocity
in ship maneuvering work. These are related by,

v = -U sin B8, (6)
for which the following approximation is valid for small deviations,

v = ~U8 . (7)

Using eq. (7), eq. (2) and (3) can next be expressed in terms of the drift

angle B ,
- (m+ )U§§-= Y B+ (~mU+Y..) r+y £+Y § (8)
By)Y3E B e e
(Toot3,)SE = N_B+N,_r+N, B+N .6 (9)
2z ZZ dt B r B 8 °

Finally, we can nondimensionalize eq. (5), (8), and (9) as indicated in the

Nomenclature to yield,



] 1 dB' = ot _m ' ' ] l'l [N ]
= (m'+my )EET'_ YB B'+(-m Y _')r +HY, e Y §'+y' , (10)
] ar'! _ Yot 1,1 el pt v e '
(Izz +Jzz )F = NB B +Nr r +N6 B +N(5 §'+N ’ (11)
an' _ o i_g

where an external sway force disturbance Y' and yaw moment disturbance N'

have been included for generality.

Equations (10) and (11) can be transformed into state-variable form by
solving eq. (11) for r' and substituting this into eq. (10) and by solving
eq. (10) for é' and substituting this into eq. (11). These can then be

rearranged to yield,

dr’

Frre foor'+fy3B +Eo58 +Y 5 N4V 50Y" (13)
dBL - £ rieE, Bref ST4y N'+Y,_ Y' (14)
at’ 32 33 35 31 32 '
where the coefficients fij and Yij are defined as follows:
' ' Y _Ne® {—m! '
Nr (m +my ) N8 (—m +Yr )
£2 T 5 ' (15)
N.' ' "V -N-'Y 1
£ - E o my ! BB (16)
23 0 ’
1 L TY _Ne ! ]
_ NG (m my ) NB Y6
f25 - 0 r (17)
(m'+myf)
Yo1 = e =5 — (18)
Né'
Yoo = fpy =5 ¢ (19)
—_m T v ¥ 'Y 4Vt 1
(-m'+Y ') (T, 4T )Y Ny
f32 = = O I (20)
' L 4 o ! 1
g (Izz Jzz )+¥3'Ng
f33 = - 9 ’ (21)
] v ' o ! 1]
Yo' (T, "+, ") +Yp Ny
f35 = - @ ’ (22)
Yol
=f, =-—% (23)




(I,"+T,,")

'
zZZz

Y32 =y ST (24)
and where,
0 = (m'+my')(Izz'+Jzz')+Yleé' . (25)

Now to complete the state-variable formulation we can add the definition

of the yaw rate,

tl

[e)
<

|

=r', (26)

Qu

and represent the rudder control system by a first-order system with time

constant T, as given by the following in nondimensional form:

-1 Y
acr 1, '8N (27)

where GC' is the commanded rudder angle. Equations (12), (13), (14), (26),

and (27) can now be rewritten in vector form,

P 01 0 00 [v] [o 0 o

a ¥ 0 f3p £23 0 f25 |[|r'| |0 Y21 Y22|[y

o |B'|= [0 £32 £33 0 f35 Br|+0 §'c *+ [Y31 Y32 I:y} (28)
n' 10 -1 00 n'| o 0 0
8" 0o 0 o0-l/qp ([8] |1/p, 0 0

Equation (28) is now in state-variable form; i.e.,

nsxl ’ mx1 gxl
X =Fgx+Ggu + Igw (29)

where the dimensions, vectors and matrices are defined by direct comparison
between eq. (28) and (29). The subscript s 1is used on the open-loop

dynamics matrix Fg, control distribution matrix Gg , and disturbance distribu-
tion matrix Tg to signify the system equations in contrast to the augmented
state equations used below in the stochastic controller design.

At this point it is useful to present typical numerical values for the
coefficients of the state equations. The principal source of maneuvering
coefficients for surface ships in various water depths is the work of
Fujino.™’ Fujino conducted planar motion mechanism (PMM) and oblique tow
tests of models for a Mariner type ship and for the tanker Tokyo Maru at

various water depth-to-draft ratios, H/T. Table 1 gives selected characteris-



tics of Fujino's models.

corresponding to 7 and 12 knots full-scale.

The Mariner tests were-conducted at Froude numbers

The Tokyo Maru tests were

complete only for a Froude number corresponding to about 10.7 knots full-

scale.

we have assumed his Froude number to be correct.)

this study.

15

Series 60 hulls has been recently presented by Loeser.

Fujino's data was transformed using eq.

(Fujino apparently quotes this speed incorrectly as 12 knots;
These data were used for

Additional shallow water data for a Mariner type ship and two

(15) through (25) and the

resulting fij and Yij coefficients are given in Tables 2, 3, and 4.

Table 2 presents coefficients for the Mariner at 7 knots full-scale and

values of H/T equal to 1.21, 1.50, 1.93, 2.50, and .

were conducted at about H/T=30.

The deep water tests

Table 3 presents coefficients for the

Mariner at 12 knots full-scale and values of H/T equal to 1.50, 1.93, 2.50,

and .

Tests at H/T=1.21 were not feasible at this speed due to squat.

Table 4 presents coefficients for the Tokyo Maru at 10.7 knots full-scale

at values of H/T equal to 1.30, 1.50,

1.89, 2.50, and .

The significant

variation in these coefficients with water depth and vessel speed is evident

from these Tables.

Mariner type ship Tokyo Maru
linear scale ratio, A 64.37 145.0
length between perpendiculars, mm 2,500.0 2,000.0
breadth, mm 359.8 327.6
draft fore, mm 106.5 110.3
aft, mm 125.5 110.3
mean, mm 116.0 110.3
displacement, kg 61.4 58.4
block coefficient, Cp 0.5888 0.8054
ICB, mm from amidships 39.4 aft 50.8 forward
rudder area, mm - 3,390.9
propeller diameter, mm 104.2 53.8
pitch, mm 108.1 39.8
expanded area ratio 0.565 0.619
number of blades 4 5
Table 1. Characteristics of Fujino's Mariner and Tokyo Maru Models




H/T 1.21 1.50 1.93 2.50 oo
f29o ~4.,4390 ~-2.6960 -2.3764 -2.1962 -2.1939
fo3 10.413 7.5634 5.6534 4,2852 3.3658
fas -0.96338 -1.3331 -1.4537 -1.5947 -1.4609
v21=f26 712.14 822.90 909.93 963.51 971.78
Y22=f27 17.386 14.392 -1.8014 -4.6587 -4.4228
f30 -0.58224 0.012533 0.15168 0.18097 0.28585
f33 -1.5734 -0.98808 -0.80288 ~0.72058 -0.89059
f3g ~-0.26338 -0.19531 -0.23307 ~0.20998 -0.20813
Y3l=f36 75.829 30.465 23.556 23.294 13.082
y32=f37 -29.013 -42.020 -50.808 -55.058 ~-64.162

Table 2. Coefficients of Mariner versus H/T at F,=0.0905 (7 knots full-scale)

H/T 1.21 1.50 1.93 2.50 ®
f55 * -2.8841 -2.4840 -2.2777 -2.3735
fa3 * 12.099 6.9127 5.2893 3.9383
fog * -1.1092 -1.4273 -1.4299 -1.4789
Y21=f5¢ * 844.31 1008.1 1042.0 1119.6
Y22=£57 * 37.953 ~-11.624 -8.0196 -4.2418
f3o * -0.0182982 0.087791 0.16516 0.29637
£33 * ~-0.87677 -0.65628 ~0.75592 -0.80577
f3g * -0.19512 ~0.25534 -0.19323 -0.19941
Y3l=f36 * 57.380 75.242 30.551 14.603
Y32=£39 * -29.783 -48.715 -52.591 -62.167

*not possible due to squat
Table 3. Coefficients of Mariner versus H/T at Fp=0.155 (12 knots full-scale)

H/T 1.30 1.50 1.89 2.50 e
fs9 -1.6508 -1.7136 -1.7657 -1.8177 -1.9515
fo3 9.3157 6.6235 5.7359 4.6112 3.1591
fag ~-0.55543 -0.79235 -0.88074 -1.0416 -1.0410
v21=£2¢ 346.69 385.98 477.68 536.00 567.13
Yoo=f59 4.8040 -2.2145 -5.0043 -5.8625 2.3365
f35 0.02974 0.13890 0.17199 0.23621 0.31507
£33 -1.0388 -0.71895 -0.52766 -0.54560 -0.63651
f35 -~0.09995 -0.12092 -0.15607 -0.16639 -0.16163
v31=f3¢ 11.825 14.230 21.141 21.942 16.844
v32=f37 -19.216 -23.123 -28.233 ~31.490 -37.384
Table 4. Coefficients of Tokyo Maru versus H/T at F,=0.103 (10.7 knots full-scale)
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The final coefficient in eq. (28) requiring numerical definition is the
nondimensional time constant of the rudder control system T,. Typically,
oceangoing ships have a maximum rudder capability of *35° and are required
to have a rudder rate capability of at least 2.33°/s. For a first-order
system as assumed in eq. (27), the time constant T, is the time at which
the response to a step change in commanded rudder angle reaches l—e—l=0.632
of its final or commanded value. With an initial rudder angle of zero and a
commanded 35° rudder, it would require 9.5 seconds to reach 0.632x35=22.1°
at the minimum rate. It is thus reasonable to assume a dimensional time
constant of about 10 seconds as done by Millers.® Figure 2 illustrates this
situation. The time constant of 10 seconds corresponds to a maximum rudder
rate of 3.5 °/s. with a 35° command. Since the nondimensionalization used
here is speed dependent, a 10 second rudder time constant becomes Ty=0.223
for the Mariner at Fp=0.0905 or 7 knots full-scale and T,=0.382 at Fn=0.155
or 12 knots full-scale. A 10 second rudder time constant becomes T,=0.189

for the Tokyo Maru at Fp=0.103 or 10.7 knots full-scale.

commanded 35° rudder

l.O.r
3.5°/s /] 2.33%s<]
é%— 0.6321 ‘“xJ“urudder response
time constant t[s]
t 1 =
0 10 20

Figure 2. Response of First-order Rudder Model to 35° Step Command

With numerical values established for all terms in eg. (28) it is now
possible to study the open-loop eigenvalues for the uncontrolled ship. These
were found using the OPTSYS program which utilizes Wilkinson's QR algorithm
to solve the open-loop eigensystem. The ship path control problem
as formulated in eq. (28) has five eigenvalues. Two eigenvalues are zero and
thus independent of vessel speed and water depth. A third eigenvalue is
associated with the rudder control system. This eigenvalue equals -1/T,
and in dimensional form is also independent of vessel speed and water depth.

In the nondimensional form used here this eigenvalue appears to be vessel speed
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dependent. The remaining two eigenvalues vary with both vessel speed and water
depth and are of primary interest here. Table 5 presents the open-loop
eigenvalues for the Mariner at the Froude numbers corresponding to 7 and 12
knots full-scale. The vessel is course stable under all conditions. The
results for 7 knots show an initial decrease in stability as shallow water

is entered (H/T=2.50) and then greatly increased stability in very shallow
water (H/T<1.50). The two eigenvalues converge at about H/T=1.4 and then
become a conjugate pair for lower values of H/T. Table 6 presents the open-
loop eigenvalues for the Tokyo Maru at the Froude number corresponding to

10.7 knots full-scale. The eigenvalues are real for all H/T. The tanker is much
less course stable than the Mariner and becomes unstable (eigenvalue with
positive real part) for the intermediate range of water depth-to-draft ratio
around H/T=2.50 and H/T=1.89. These results, of course, correspond to the

behavior shown earlier by Fujinol using a different approach from the same data.

F,=0.0905 F,=0.155
A= A 0.0 0.0
Ag=-1/T, -4.478 -2.615
H/T X4 AS X4 AS
o -.3646 -2.720 -.2549 -2.924
2.50 -.3095 -2.607 -.3116 -2.722
1.93 -.3745 -2.805 -.3693 -2.771
1.50 -.9343 -2.750 -.9986 -2.762
1.21 ~3.006 * 2.002j not feasible

Table 5. Open-loop Eigenvalues for Mariner

A= A, 0.0

Ag=-1/T -5.281
H/T g Asg
w© -.0992 -2.489
2.50 .0405 -2.404
1.89 .0237 -2.317
1.50 -.1358 -2.297
1.30 -.7360 -1.954

Table 6. Open-loop Eigenvalues for Tokyo Maru at Fp=0.103
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The open-loop eigenvectors for the uncontrolled ship are also of interest.
The repeated, zero eigenvalue has only one linearly independent eigenvector
[O,O,O,l,O]T; i.e., Jjust n'. This can be viewed as the steady-motion
condition where the ship has constant lateral offset; i.e. r'=g'=y'=6'=0
but n'#0. A second, generalized eigenvector16 can be associated with the
zero eigenvalues. This eigenvector can be shown to be [0,0,0,1,0] where o
is any nonzero gquantity. This can be viewed as the steady-motion condition
where the ship has a constant heading away from the desired track; i.e.,
r'=p'=8'=0 but Y'#0 and ﬁ'#o. The remaining three eigenvectors associated
with A3, A4, and Ag are vessel speed and water depth dependent. These
eigenvectors are shown for the Mariner at four water depth and vessel speed
conditions in Table 7 and for the Tokyo Maru at F,=0.103 in Table 8. The
eigenvector associated with A3 is the only one containing a &' component
as expected. This eigenvector has some water depth dependence but strong
vessel speed dependence as shown in Table 7 due primarily to the improved
rudder effectiveness with vessel speed. The eigenvectors associated with
A4 and 15 show much smaller vessel speed dependence but a much larger water
depth dependence for both types of ships. The eigenvector associated with
the dominant eigenvalue XA, shows a major change in character as the ships

become extremely course stable in very shallow water.
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eigenvector associated with A= -1/Ty

Fn 0.0905 0.155 0.0905 0.155

H/T © o 1.50 1.50
y' component -0.1179 0.3300 -0.1021 -0.3138
r' component 0.5278 -0.8629 0.4571 0.8205
B' component 0.0067 0.1782 0.0477 0.0597
n' component 0.0278 -0.0581 0.0335 0.1429
§' component 0.8406 0.3338 0.8816 0.4521
eigenvector associated with A4

Fn 0.0905 0.155 0.0905 0.155

H/T o o 1.50 1.50
y' component -0.2890 -0.2813 -0.5257 ~0.5455
r component 0.1054 0.0556 0.4911 0.5447
B component 0.0573 0.0299 0.1144 0.0849
n component 0.9498 0.9738 0.6851 0.6313
8" component 0.0000 0.0000 0.0000 0.0000
eigenvector associated with Ag

Fn 0.0905 0.155 0.0905 0.155

H/T © 0 1.50 1.50
Y' component -0.3405 -0.3201 -0.3392 -0.3377
r' component 0.9262 0.9361 0.9329 0.9328
B' component -0.1447 -0.1309 -0.0066 0.0094
n' component 0.0720 0.0647 0.1210 0.1256
§' component 0.0000 0.0000 0.0000 0.0000

Table 7.

Open-loop Eigenvectors for Mariner at Four Conditions




-14-

eigenvector associated with A3 = -1/T,

H/T © 2.50 1.89 1.50 1.30
Y' component -0.0541 -0.0496 -0.0387 -0.0341 -0.0178
r' component 0.2859 0.2621 0.2046 0.1801 0.0938
B' component 0.0139 0.0208 0.0247 0.0206 0.0228
n' component 0.0129 0.0133 0.0120 0.0104 0.0077
§' component 0.9566 0.9635 0.9777 0.9828 0.9951

eigenvector associated with Ay

H/T L 2.50 1.89 1.50 1.30
' component -0.0933 0.0412 0.0238 -0.1304 -0.5220
r' component 0.0093 0.0017 0.0006 0.0177 0.3842
B' component 0.0054 0.0007 0.0002 0.0042 0.0377
n' component 0.9958 0.9991 0.9997 0.9913 0.7606
§' component 0.0000 0.0000 0.0000 0.0000 0.0000

eigenvector associated with Ag

H/T © 2.50 1.89 1.50 1.30
P' component -0.3669 ~-0.3792 -0.3913 -0.3942 -0.4450
r' component 0.9132 0.9115 0.9067 0.9053 0.8693
B' component -0.1553 -0.1159 -0.0871 -0.0797 -0.0283
n' component 0.0850 0.1095 0.1313 0.1369 0.2133
§' component 0.0000 0.0000 0.0000 0.0000 0.0000

Table 8. Open-loop Eigenvectors for Tokyo Maru at F,=0.103




3. Optimal Stochastic Path Controller Design

This section will begin with a brief introduction to the optimal control
of stochastic linear systems. Readers already familiar with these ideas can
continue to the second subsection.

3.1 Introduction to Optimal Stochastic Control3’4’l7

Many physical control problems can be realistically represented using
stochastic disturbances and measurement noise. This is particularly true where
disturbances are of a random nature or where they cannot be defined specifically
in advance. The response of a system subjected to stochastic disturbances and
measurement noise can also be treated as a stochastic quantity. The engineering
approach can be to model stochastic physical systems as Gauss-Markov pro-
cesses. These can be represented by the state vector of a linear dynamical
system forced by a gaussian purely-random process where the initial state
vector is also gaussian or normally distributed. Thus we can represent the
system by eq. (29) which we repeat again here for reference; i.e.,

nsx1 mx1 gxl
X =Fx + Ggu + Psﬂ- 4 (29)

The system open-loop dynamics matrix Fg , the system control distribution

matrix Gg , and the disturbance distribution matrix T. are assumed constant

(]
here. The condition of this system is completely represented by the mean
value vector g:and the covariance matrix X for the ns differentiated or

state variables; i.e.,

x(t) = E[x(£)] with x(t)) = xg , (30)

X(t) = E[(x(t)-x(£)) (x(£)-x(£))"1 with X(t;)=X, , (31)

where E{[...] 1is the expected value or ensemble average over the many
possible observations at time t. The m non-differentiated variables in

u are the control variables. The g variables in w are the process
disturbances which are gaussian purely-random processes or white noise.
White noise is an idealized, very-jittery process which can be viewed as the
limit of a sequence of impulses with random magnitude and random time of
occurrence. The impulses average zero over time but have an average square

magnitude given by 0o(t) squared. We thus have,

-15-
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Elw(t)] =0 , (32)
T

Elw(t)w(t) ] = Q(£)8(t-1) , (33)

where Q 1is the power spectral density matrix which can be related to o(t)
and 6 (t-1) 1is the Dirac delta function. It is also assumed that there is
no correlation between the process disturbance and the initial condition of

the system; i.e.

Elw(t) (x(tg)-%Xg) 1 = O . (34)

The control problem is to develop the optimal state-variable feedback

control,

u=cCx |, (35)

where C 1is the control feedback gain matrix. In general, not all of the
needed states in X are readily measured. Further, it is not necessary to
measure all the states if it is possible to estimate the remaining states from
those which are most easily measured. In the stochastic case we may have p
available measurements represented by,

pxl

z=Hgx +v (36)
where Hg is the measurement distribution matrix (assumed constant here)

and v 1is a vector of white measurement noise with statistical properties,

Elv(t)] =0 , (37)
E[v(t)v(T)T] = R(£)8(t-1) (38)
Elv(t)w(1) ] = E[v(t) (x(t5)-x,) "1 = O . (39)

The matrix R is the power spectral density of the measurement noise.

Equation (39) states that there is no correlation between the measurement

noise and the process disturbance or the initial state of system. The elements
of 2z may be measurements of specific states or linear combinations of the

states.

In modeling physical systems, it is not always realistic to assume that
the process disturbance or measurement noise is white noise. If the process
disturbance is a random quantity which changes very rapidly compared to the

time response of the system, it is reasonable to assume the process disturbance
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is white noise as in Eg. (29). However, if the process disturbance is a
random quantity which changes very slowly compared to the time response of

the system (perhaps a tidal current effect on a passing ship), it is reasonable
to assume the process disturbance to be a random bias or constant. This can

be incorporated into the above treatment by defining an additional state

variable or variables such that,

Xn+1 = 0 (40)
and xp4](ty) 1is random. This state variable is included in an augmented
state vector of length n+l with the n+l component from the disturbance equal

to zero.

If the process disturbance is a random quantity which changes on about
the same time scale as the response of the system, it must be modeled as
something between white noise and a random bias. This is accomplished by the
use of various shaping filters and again augmenting the state vector. The
simplest shaping filter produces an exponentially correlated disturbance3
by driving a first-order system by white noise. A new state variable is

defined as follows:
T Xn41 ¥ ¥p41 =W (41)

where 1 is the disturbance correlation time and w is white noise. The
state vector can then be augmented to an n+l vector and the total system

is still disturbed by white noise as in eq. (29). The shaping filter processes
the white noise to produce a new disturbance xp4; which is random but with

a characteristic time constant T of about the same order as the response
time of the system. Other higher-order shaping filters are possible to model

more complex disturbances.3’5’18

If shaping filters are used to model some ne-ns of the disturbances, the
augmented state vector is then of length ne and the stochastic controller
design is performed using a set of augmented or estimator-design state
equations combining eq. (29) and ne-ns equations like eq. (41); i.e.,

ne§l mx1l agxl
X' =FeX' +Gou+Tew (42)

where the disturbance w is composed of only white noise with a power spectral
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density given by Q. To complete the formulation, the measurement eq. (36) can
now be expressed in terms of the augmented state vector to be,

z = [Hg|0] x' + v = Hex' + v . (43)

The Separation Theorem3 states that the optimal way to control the system
eg. (29) which has been modeled by eq. (42) using the information available
in the noisy measurements eq. (43) is to design controller gains neglecting
w and v and thus assuming perfect knowledge of x' . This control would be

given by,

u=0Ccx' . (44)

The noisy measurements 2z can then be utilized in an optimal stochastic
observer (state estimator) or Kalman-Bucy filter to produce a maximum-
likelihood estimate of the augmented state vector & which includes estimates
of the actual states x plus estimates of any augmented states created in the
modeling. This estimated state vector is available to be used in eq. (44)

so the optimal control will then be given by,
u=°Cg . (45)

Thus, the controller design can be completely separated from the processing
of the noisy measurements to produce the best estimate of the current state
of the system. An overall schematic of such a stochastic control system is
shown in Figure 3. The measurements z from the sensors are used in the
optimal stochastic observer to produce an estimate of the states & which
are then used in the optimal controller to produce the control signals u

given to the actuators.

An optimal control can be defined in many ways. The most common when
we want to control x near zero using reasonable values of control u is

to use the control which minimizes a linear quadratic cost function,

te
J = “'J (§fTA§f + E?Bg)dt ' (46)

to

where the A and B matrices are initially established by the designer to

reflect the relative weighting of errors in the various states and the use
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Figure 3. Overall Schematic of Optimal Stochastic Control System

of the various controls. The A and B matrices are usually diagonal with

at least some nonzero diagonal elements selected to be,

A, = and B.. = , (47)

where uoj is an acceptable amount of control j to be used when the state

i deviates x from zero. It is usually necessary to modify the weighting

oi
matrices A and B and iterate on the design based on the evaluated response

3,17 can be utilized to

of the controlled system. The calculus of variations
show that the control which minimizes eq. (46) for a stationary system is
given by,
-1, T
C=-B G/S, (48)
where S is the steady-state solution of a matrix Riccati equation which is

independent of the process disturbance w and Q and the measurement noise
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v and R; 1i.e.,

1

s = -SFe—FeTS+SGeB— GeTS—A . (49)

The open-loop dynamics matrix F, and the control distribution matrix Gg
are for the augmented state equations (42) actually used in the controller
design. If shaping filters are not used in the modeling of the process
disturbances, eq. (29) and (42) are identical so ne=ns, Fg=Fg, Gg=Gs, and
F'e=T'g .+ BAn efficient way to obtain the steady-state solution to eq. (49),
S, is to utilize the technique of eigenvector decomposition first proposed
by MacFarlane19 and Potterzo. This method was developed into a practical
design computer program by Bryson and HalllO in Hall's OPTSYS program which
uses the QR algorithm to solve the eigensystem. User's documentation is
availablell for the Michigan version of the OPTSYS program as used in this

study.

The second half of the design problem is to develop the optimal stochastic
. C s 17 ‘s
observer. Again, the calculus of variations can be utilized to show that

the maximum-likelihood estimate of the state is produced by the filter given

by,

= FeX + GoU + K(z-HeR) ; %(to) = x5 (50)

ES

where the filter gain matrix K for a stationary system is given by,

T -1
K = P_Hg R . (51)

where P_  is the steady-state solution of the matrix Riccati equation,

. T T -
P = FoP + PFo  + ToQTo" - PHe R HP . (52)
The matrix P is the covariance of the error of the estimate of the state;

i.e.,
P(t) = [E(gjt)-§xt))(gﬁt)-gkt))T] . (53)

In eqg. (50), it can be seen that the estimate X 1is assumed to follow the
same dynamics as x' (excluding I'w) and that whenever the measurement which

would result from £ (excluding v) deviates from the actual measurement z

a correction is introduced to drive £ «closer to x' . In eq. (52), it can
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be seen that, as expected, large process disturbances (high Q) and large
measurement noise (high R) will increase P, the error in the estimate produced
by the stochastic observer. BAn efficient way to obtain the steady-state solu-
tion to eq. (52), P_ ., is again by eigenvector decomposition as implemented

in the OPTSYS program used in this study.

Summarizing, if a physical system, its disturbances, and measurement
noise are modeled as described above, a design program such as the OPTSYS
Program can be used to produce the optimal control gains C and the optimal
filter gains K. The OPTSYS program can also produce the Root Mean Square
(RMS) response of the system to the design disturbances as represented in
the power spectral densities Q and R. The RMS response is, however, not that
meaningful to many engineers. Further if specific physical disturbances were
modeled in the design process using shaping filters, the designer may also
want to know the response of the controlled system to the specific disturbances.
Thus, there is often a need to simulate the response of the optimal stochastic
control system to specific process disturbances and initial condition errors
while subject to the measurement noise. The SHIPSIM/OPTSIM simulation
programll which we have developed as a complement to the OPTSYS program
allows the simulation of these systems with a minimum of effort and computer

programming.

3.2 Process Disturbance Modeling

A ship moving along a prescribed path can be subjected to many types of
short term disturbances. Waves provide a relatively high frequency disturbance.
Changes in current, banks, and bottom can also provide significant disturbances.
For this study, we selected as the design disturbance the yaw moment and
sway force due to a passing ship which constitute one of the strongest
disturbances a ship can experience in maneuvering situations. Data given by
Newton21 was utilized to establish a representative magnitude and time history
for this disturbance. His particular data were for a Mariner moving in deep
water. Yung22 and Abkowitz, Ashe, and Fortson23 show a significant increase
in the disturbance yaw moment and sway force due to a passing ship as water
depth decreases so Newton's data is clearly lower than would be expected in
shallow water. For the purposes of this study, we wanted only a representative

disturbance so the yaw moment and sway force design disturbances shown in
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Fig. 4 were chosen and assumed to be independent of ship type, and water depth,

and vessel speed.

Ships beam-to-beam at t'=0

[

Figure 4. Design Yaw Moment and Sway Force Disturbances due to
Passing Ship

Disturbances as assumed in Fig. 4 can be reasonably modeled as exponen-—
tially correlated disturbances as produced by first-order shaping filters

driven by white noise. Thus, two new states were defined by,

1
N%%T = NP+ wy (54)
ay' ,
Tyger = 78 * Wy o (55)

where the correlation times were taken as Tjn=Ty=l1 or dimensionally the

time it takes the ship to travel its own length. The power spectral densities
for the white noise wy and wy were defined based on the Root Mean Square
(RMS) values of N' and Y', respectively, during the t' period (-2,+1.5)

shown on Fig. 4; i.e., I’:I'=O.880xIO—4 and ?'=2.118x10—4. The white noise power

spectral densities are then given by3,

q, = 2(&’)21‘N = 1.548x10°° (56)
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for wy and,

a,, = 2(¥")%1y=8.970x10"° , (57)

for wy. The design disturbances are fully defined by g q l=0'

117 T22r 27
and eq. (54) and (55). Simulation of the controlled ship subjected to the
specific disturbances shown in Fig. 4 have confirmed the validity of this

modeling approach as will be discussed below.

With two shaping filters used to model the yaw moment and sway force
disturbances, the augmented system eq. (42) used in the stochastic control

system design combine eq (28), (54), and (55) to give,

1] 01 o 00 0 0 [y ] [0 0 0
r' 0 f22 f23 0 fa5 f26 f27 B 0 0 0
alB'l =[O f32 £33 0 £35 f35 f37 r' 0 0 0 -
| 10 -1 00 0 0 nt| + o [8.'+|0 0 I;N] (58)
8' 00 0 O0-1/T O 0 8 1/T, 0 0 Y
N’ 00 o0 00O -1/Ty O N 0 1/Ty O
y'| [0o0 o 00 0 -1/1y) Y] [0 0 1/1y]

The dimensions, vectors, and matrices of eq. (42) are defined by direct
comparison with eq. (58). Notice that the upper right (5x2) partition of

Fe in eq. (58) is Iy in eq. (28); i.e. f26=Y21’ Y36=Y3l' etc.

3.3 Selection of Measurements

The measurements eq. (43) and associated measurement noise power spectral
density matrix R were established next. In this study, we considered the
use of a Y' measurement from a compass or gyro compass, an r' measurement
from a rate gyro, a '‘=-v' measurement from a doppler sonar, and an 0'
measurement from radar or DECCA. Rudder angle could be easily obtained but
was not considered here. The first consideration to answer in selecting
measurements is whether or not all the states of the path control problem are
observable with a given measurement or set of measurements z. If a state
is not observable with a given z , it is impossible to design a filter which
can produce the augmented state vector estimate X from the measurement

vector z.

One way to establish the observability of eq. (42) and eq. (43) is through

. 16 A
the use of a Jordan-form transformation . If the open-loop eigenvectors of
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Fo are grouped together as columns of a transformation matrix T, the problem

can be transformed into its equivalent Jordan—-form using the transformation

§f=T_l§_. Using this transformation eq. (42) and (43) become,

E' = Af +G'u+ T'w , (59)
and,

z=HE+vVv , (60)
where,

-1

A =T "F,T , (61)

¢ =16, (62)

re =t (63)

H' = HgT .

In this form, the various modes of response of the system are completely
decoupled provided the eigenvalues of F, are distinct. In that case, matrix
A is a diagonal matrix with the open-loop eigenvalues of Fe down the

diagonal. The structure of H' can be studied to quickly establish the
observability of each mode of the system with each measurement in Z. Similarly,
the structure of G' can be studied to establish the controllability of each

mode of the system with each component of the control wvector u.

The ship path control problem as formulated in eq. (58) has seven eigen-
values, two of which are zero, but only six independent eigenvectors. The
Jordan-form transformation can be performed using these six eigenvectors plus
an additional, generalized eigenvector o 0 0 1 0 0 O ]T, 0>0 as discussed in
Section 2. Four of the eigenvectors are identical to those presented in
Section 2 with two zeros added to make them of dimension (7xl1). Two additional
eigenvectors are associated with the shaping filters. The essential elements
of the resulting Jordan-form structure are shown in Fig. 5 where £5' is
associated with the generalized eigenvector for the repeated eigenvalue
A1=A,=0 . The OPTSYS program was utilized to perform the Jordan-form trans-
formation and to establish numerical values for matrices G', H', and T''. 1If
Hjl' is zero it shows directly that mode gl' is not observable with measure-
ment j, etc. Likewise, if G31' is zero it directly shows that mode £3'

cannot be controlled with the single control GC' , etc.



-25-

1 ¥
oo N N
21 S-A, ™ s-A, ™51
1 53' (rudder)
! - [
L G31 E——— S_)‘3 ij3
]
1 €4
control = Gyp > o o H, ' measurement
u=6." 41 SV ja
w X z,
— . J
. 1 €5 . repeated
1 Cs1 ——> 5o —p-H. g for j=1,2,...,P
1 56' (N' filter)
-l 0 e —— o{H,
S—XG 36
1 57' (Y' filter)
> 0 b—» "
S—A7 :]7

Figure 5. Simplified Jordan~Form Structure of Path Control Problem

The OPTSYS program also presents the elements of H' in a normalized
manner based on the orthogonality between the eigenvector of T associated
with mode i and the row of H associated with measurement 3j. A result
cosBij=l indicates that mode i is fully observable with measurement 3j; a
result cosBij=0 indicates that mode i cannot be observed (or estimated)
based on measurement j. The numerical value between 0 and 1 thus indicates
quantitatively how observable each mode is with any particular measurement.
The observability results for the Tokyo Maru at H/T=1.89 and Fp=0.103
are shown in Table 9. This shows that mode El' is only observable with a
measurement of n' so as a minimum n' must be measured. A measurement of
n' also gives good information on modes &2' and £3' and will allow
estimation of the sway force disturbance represented in mode £7'. The
observability of the other modes with n' is much weaker so at least one more
measurement is probably necessary. Adding anr' measurement gives good obser-
vability of modes 54', ES' and the yaw moment disturbance represented in
mode 86'. Thus, measurement of r' and n' would probably be sufficient. 1In

our study, we have used measurements of ¥', r', and n' as the base set of
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measurements P r' B! n'
mode &q' 0.0000 0.0000 0.0000 1.0000
mode &5 f (a)#0 0.0000 0.0000 1.0000
mode 53' 0.0238 0.0005 0.0002 0.9997
mode &4' 0.3913 0.9067 0.0872 0.1313
mode £5' 0.0388 0.2046 0.0247 0.0120
mode Eé(N') 0.5881 0.5881 0.5542 0.0339
mode Ef(Y') 0.5487 0.5487 0.0773 0.6260

Table 9. Observability cosBi. of Tokyo Maru Modes with
Various Meagurements

measurements but Table 9 shows that the ' measurement could probably be
omitted to simplify the control system without serious loss of controller
performance. Table 9 also shows that the use of a doppler sonar to produce

a drift angle measurement B' could probably not be justified.

Using the measurements of ¢', r', and n' eq. (43) becomes,

(65)
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The measurement noise power spectral density matrix R for the vector vV can

be estimated for each measurement by assuming an RMS noise value 3 and a

correlation time T4 (much faster than time constants of the ship). The

J
. . . . . 3
white noise power spectral density component for measurement is then given by,

ryy 2(cj)2Tj . (66)

The numerical values for the noise power spectral densities of the four
possible measurements used in this study are summarized in Table 10. In the
nondimensional form shown in Table 10 the resulting power spectral densities

are different for each ship and speed. Data o:; and T: for the

J 3
Data for the doppler

sonar are estimated based on information for the Furuno MF—lOODS.24 Using

r..
J3J 9
measurements of ¢P', r', and n' are from Millers.

measurements of ¢', r', and n' as in eqg. (65), the matrix R is diagonal

with associated diagonal elements taken from Table 10.
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"33
measurement source Oj Tj Mariner Mariner |Tokyo Maru
F,=0.0905 | F,=0.155 |F,=0.103
P! gyro compass 0.2° 0.1ls. 5.44lx10_8 9.320x10-84.612x10_8
r rate gyro |0.01°/s| 0.1s. |2.728x10 /|1.593x10 /|3.218x10/
B' doppler . |0.05%/s| 0.1s. 8.629x10”/|5.007x10" |3.139x10"
n' radar 10m 0.1s. |1.725x107°|2.955x107%4.502x107°
Table 10. Measurement Noise Power Spectral Densities
The ship path control problem as formulated in eq. (58) is known to be
controllable with the rudder. The G' matrix established for this problem
using the OPTSYS program verifies this by having nonzero elements G21I’ G3l"

G41" and GSl' which indicate that all the real states of the system can be

controlled using the rudder command Gc ' As shown in Fig. 5, elements G6l'

and G71' are zero indicating, again as expected, that the rudder command Gc'
has no influence on the yaw moment and sway force disturbances represented

in mode £_.! and mode £.', respectively.
6 7

3.4 Design Results for the Tokyo Maru at H/T=1.89

The example results to be presented in this section are for the Tokyo
Maru at Fn=0.103 and H/T=1.89. As will be shown in the next section, if
the stochastic path control system is to be designed for ship characteristics
at a single depth it is best to choose one of the depths at which the vessel
is least course stable. The Tokyo Maru is course unstable in the approximate
range 1.75<H/T<2.75 so a design depth of H/T=1.89 was selected for the base
case to be presented here. The system is fully defined by eqg. (58), eq.
(65), and the various data presented above. The only remaining requirement
is to establish the state weighting matrix A and the control weighting
matrix B used in eq. (46) to define the basis for determining the optimal

control gains C.

For the ship path control problem, we want to control n' and ¥' near

zero without using excessive amounts of control Gc' and thus also §'. For
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this study, we assumed that we would be willing to commit 5° rudder usage

for path control when the ship heading deviates 5° or the ship reaches a
lateral offset ng of 10.43m for the Tokyo Maru or 5.79m for the Mariner.
This lateral offset is exactly a quarter beam (B/4) for the Mariner and
slightly less than a quarter beam for the Tokyo Maru. A 5° heading deviation
for either ship will cause the ends of the ship to be about the same

distance from the desired track as the assumed Ng value (12.7m for

Tokyo Maru; 7.0m for Mariner). Using eq. (47), the A and B matrices were

taken as zero except for the following elements:

A, = (5/57.3)"% = 131.332 for v, (67)
By, = (10.43/290) "2=772.463 for n', (68)
Agg = (5/57.3) "% = 131.332 for §' , (69)
B = Bll=(5/57.3)‘2=131.332 for §_' . (70)

These A and B matrices were used for all Tokyo Maru and Mariner designs
presented here. These state deviation and control weighting terms can be
modified at the designer's discretion based on the performance of the
controlled system. Increasing the value of a term in the A matrix will

produce a system design which will more closely control the associated

state at the expense of increased deviation of the other states and the use

of more control. Increasing the value of B will reduce the amount of commanded
rudder (and also §') at the expense of greater deviations in the other

states. For the purposes of the study presented here, the A and B matrices
were held constant (following preliminary investigations) to provide

meaningful comparisons among competing designs.

Using one control Gc' to control five states simultaneously, it is
difficult to directly compare the RMS response of the ship to the design
disturbances when using various control systems. We have therefore used
an additional control measure-of-merit which we call the RMS cost J. This
quantity is based on eqg. (46) and reflects the weighting implied by eq.
(67) through eq. (70). The RMS cost is defined by,

(2

5,2 ~ %,2 % 42
J ] +(A44n +A556 +Bll<3c )/All , (71)

where (.7.) indicates the RMS value of the particular quantity. This RMS



~29-~

cost J is just twice the cost J defined by eq. (46) divided by A

i1’
For the numerical values used here this becomes,
~ - ~ 2 ~ ~
J = ¢'2+5.8818n' +6'2+6c'2 . (72)
The cost J or J provides the most meaningful single quantity with

which to compare the RMS response of a ship when controlled by two different
control systems which were developed using the same state and control weighting

matrices.

Using eq. (58), eq. (65), and the A and B weighting matrices defined
above, the OPTSYS program was used to determine the optimal control gains
C and the optimal filter gains K for the Tokyo Maru at F,=0.103 and H/T=

1.89. The resulting gains are as follows:

[ 5.6470] [ 2.6321 0.9164 0.0015

2.6848 6.3936 12.2380 -0.0724

o | 6-3147 1.4384 3.2622 -1.2160
c'=| 2.4252|; K = | 0.1447 -1.0125 1.5367] »

-0.8079 0.0000 0.0000 0.0000

675.14 0.0263 0.1673 0.0130

-50.154] [-0.0287 -0.1710 0.0319

Notice that the estimates of the yaw force disturbance N' and the sway

force disturbance ¥ produced by the filter are included in the augmented
state feedback; i.e., Cl6#0, Cl7#0. Also notice that the Kalman-Bucy filter
does nothing (fifth row of K is zero) to improve the existing estimate of the
rudder angle 8'. This is because &' 1is not measured and its response depends
only on the current &6' and the commanded rudder Gc' independent of the

disturbances w.

The RMS response of the Tokyo Maru at F,=0.103 and H/T=1.89 to the modeled
design disturbances using measurements of ¢', r', and n' and the above
control and filter gains is shown in the middle column of Table 11. The RMS
cost established using eq. (72) is also shown. Dimensionally this response
is $=0.43°, #{=3.55m, and &=2.6°. The optimal stochastic control system
is therefore very effective in controlling the ship when subjected to the
modeled design disturbances. Notice that by properly processing the three
available measurements the controller can control ﬁ to 3.55m even though

the RMS error in the n measurement is 10m. Also shown in Table 11 are the
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RMS responses of the Tokyo Maru to the modeled design disturbance when controlled
by optimal stochastic controllers designed using the same A and B matrices but
one measurement n' or four measurements (¢',r',B8',n'). As expected from

the discussion above concerning observability, control based on an n'
measurement alone is very ineffective; i.e., ﬁ=20m. Also, the addition of a

B' measurement produces very little improvement in controller effectiveness.

measurements n' only ', r', o' ', ', B', n'
b 0.04643 0.00755 0.00756
r 0.05145 0.00876 0.00876
B! 0.01436 0.00501 0.00502
n 0.06921 0.01223 0.01211
8 0.11841 0.04521 0.04500
3! 0.14275 0.05180 0.05154
3 0.06473 0.00566 0.00560

Table 11. RMS Response of Tokyo Maru to Design Disturbance
using Various Measurements

A brief look at the eigenvalues associated with the optimal stochastic
controller for the Tokyo Maru at F,=0.103 and H/T=1.89 is of value at this
point. Table 12 shows the open-loop eigenvalues for the ship in this
condition as presented in Section 2. The dominant eigenvalue A4=0.0237
indicates that the ship is course unstable. Table 12 also shows the closed-
loop eigenvalues for the ship controlled with the optimal control gains C
presented above. The optimal controller design guarantees a stable controlled
ship which is verified by these results. The dominant poles have a real
part of -0.5538 which indicates good course stability. For the Kalman-Bucy
filter to be effective in processing the noisy measurements to produce the
state estimate X it is necessary that the error in this estimate have
dynamics which are faster than the ship. If this is true, the filter will
produce an acceptable estimate X quickly enough after some change that it
can be used effectively to control the ship. The estimate error eigenvalues
are shown in Table 12 and the dominant eigenvalues indicate that the filter

will respond about twice as fast as the ship. This should prove acceptable

as will be confirmed by computer simulation results presented below.
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open-loop closed-loop estimate error
0.0 -.5538% .8669 j -.9111+ 1.157 j
0.0

0.0237 -0.9534 -1.824
-2,317 -2.311 -2.638
-5.281 -7.470 -5.281
-1.000 |[shaping -1.000 (shaping ~7.208% 7.274 ]
-1.000 filters -1.000 filters

Table 12. Eigenvalues for Optimal Design for Tokyo Maru

The optimal stochastic path controllers as developed here provide
effective path control provided sufficient measurements, such as ¢', r',
and n', are utilized. 1In the following sections, we study the effect of
the changes in ship characteristics due to changing water depth and ship
speed on the design and performance of these controllers. The response of
these controllers to initial condition errors and the specific disturbances

shown in Fig. 4 as obtained by computer simulation will also be presented.



4. Effects of Speed and Water Depth on Controller Design and Performance

As shown in Section 2, the characteristics fij and Yij for a surface
ship change considerably as vessel speed and water depth change. The purpose
of this section is to establish how these changes affect the design of the
optimal stochastic path controllers and more importantly how these changes
affect the performance of the optimal stochastic path controllers. These
results help establish which speed and depth conditions should be used in
design if constant control and filter gain matrices are to be utilized.

These results can also indicate whether or not an adaptive path control
system is necessary. Three measurements ¢', r', and n' are used through-

out this section.

4.1 Tokyo Maru Controller Design and Performance

1,2

The shallow water data presented by Fugino for the Tokyo Maru is
only complete for the single Froude number F,=0.103. Therefore, we could
only evaluate the effect of water depth on the design and performance of
the Tokyo Maru controllers. The versatility of the OPTSYS program allows
a very meaningful study to be conducted. As presented in Section 3 for
H/T=1.89, the optimal controller gain matrix C and the optimal Kalman-Bucy
filter gain matrix K can be established for any water depth and the RMS
response of the controlled ship to the modeled design disturbances can be
evaluated. It is also possible to establish the RMS response of the
controlled ship at any water depth using a specified set of gain matrices.

This allows an evaluation of the performance of a controller designed for one

water depth when operating at another water depth.

Optimal stochastic path controllers were designed for the Tokyo Maru
for the five depth-to-draft ratios for which specific data were presented
in Section 2. Table 13 gives the optimal control gains as a function of

H/T. The gain on 7', is constant with respect to H/T which could

C14’

simplify implementation of an adaptive system. Two of the gains C13 on

B' and C17 on Y' show major changes in value as water depth changes.

. ' .
Gain C16 on N' shows a somewhat smaller change. Gains Cll’ Cl 15

show relatively small changes. Table 14 gives the optimal Kalman-Bucy filter

o and C

gains for the three water depths H/T=», H/T=1.89, and H/T=1.30. The

gains K =0 for all depths as noted in Section 3 for H/T=1.89. 1In

51"K55=K5 3

-32-
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general, the optimal filter gains change less with water depth than do the
optimal control gains. Some gains such as Kll and Kl2 change very little;
others such as K41 change by as much as a factor of three. The most important
aspect, however, is not how much the gains should change with water depth to
remain optimal but how much operating at an incorrect water depth affects

the control performance.

H/T 1.30 1.50 1.89 2.50 oo
C1l 5.605 5.566 5.647 5.659 5.984
C12 2.632 2.722 2.685 2.561 2.489
C13 10.985 7.630 6.315 3.998 1.887
C14 2.425 2.425 2.425 2.425 2.425
C15 -0.723 -0.779 -0.808 -0.806 -0.760
C16 547.1 563.0 675.1 693.7 731.6
C17 -79.25 -56.05 ~50.15 -26.29 7.033

Table 13. Optimal Control Gains for Tokyo Maru versus H/T

The important considerations of how water depth affects controller
performance and what water depth should be used in a constant-gain controller
design can be addressed by studying Tables 15, 16, and 17. In these three
Tables we present the RMS response of optimal stochastic controllers designed
for the Tokyo Maru at H/T=~, H/T=1.89, and H/T=1.30 when the ship is
subjected to the modeled design disturbances at these same three depths. Table
15 shows the RMS response and RMS cost J when the ship is operating at H/T=«
using controllers which were designed to be optimal at H/T=1.30, H/T=1.89, and
the existing H/T=«. Based on RMS cost, which is the best single criterion,
the design for H/T=>~ is superior as expected. The optimal design for H/T=1.89
shows an RMS cost increase from the optimal of 0.00681 to 0.00783 or 15 per
cent. The RMS lateral offset ﬁ increases from 4.7 m to 6.5 m. The optimal
design for H/T=1.30 shows a larger RMS cost increase to 0.01056 with an RMS
lateral offset increase to 8.95 m. Table 16 shows the RMS response with the
same three control systems when the ship is operating at H/T=1.89. The

middle column for the optimal design is a repeat of the results given in
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optimal filter gains K for H/T=«

2.6319 0.9158 0.0013
6.3892 13.0320 -0.0594
1.5709 2.9049 -1.9634
0.1245 -0.8312 1.9697
0.0000 0.0000 0.0000
0.0294 0.1840 0.0093
-0.0180 -0.1026 0.0421
optimal filter gains K for H/T=1.89
2.6321 0.9164 0.0015
6.3936 12.2380 -0.0724
1.4384 3.2622 -1.2160
0.1447 -1.0125 1.5367
0.0000 0.0000 0.0000
0.0263 0.1673 0.0130
-0.0287 -0.1710 0.0319
optimal filter gains K for H/T=1.30
2.6252 0.8906 0.0037
6.2137 10.2795 -0.0476
0.8253 1.9779 -0.4600
0.3619 -0.6658 0.9457
0.0000 0.0000 0.0000
0.0324 0.1587 0.0105
-0.0406 -0.1815 0.0245

Table 14.

Optimal Filter Gains for Tokyo Maru versus H/T
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Section 3. The optimal design for H/T=«» shows a decrease in the RMS lateral
offset n' with increased @' and increased rudder usage. Since manipulation
of the A and B matrices can alter the relative magnitudes of these values, this
illustrates the need to utilize a single, rational basis upon which to compare
the various designs. Based on the RMS cost, the design for H/T=« shows an
increase from the optimal 0.00566 to 0.00644. The design for H/T=1.30 shows

a smaller increase to 0.0061l1 with an increase in ﬁ‘ but decreased &' and
decreased rudder usage. Table 17 shows the RMS response of the three control
systems when the ship is operating at H/T=1.30. The design for H/T=1.89 shows
a much smaller degredation in RMS cost at this shallower depth than does the
design for H/T=~, Both designs show improved RMS lateral offset n' but

increased Y' and increased rudder usage.

Design for Design for
H/T=1.30 H/T=1.89 Optimal Design
E 0.00936 0.00850 0.00965
21 0.00749 0.00753 0.00982
g! 0.00718 0.00756 0.00834
n' 0.03087 0.02238 0.01607
8" 0.04548 0.04533 0.04773
30' 0.05288 0.05249 0.05406
J 0.01056 (+55%) 0.00783 (+15%) 0.00681

Table 15. RMS Response of Tokyo Maru Operating at H/T=c

Design for Design for
H/T=1.30 Optimal Design H/T=o
L 0.00675 0.00755 0.00989
£t 0.00751 0.00876 0.01266
g! 0.00469 0.00501 0.00571
n' 0.01577 0.01223 0.01033
8 0.04445 0.04521 0.05035
Sc' 0.05124 0.05180 0.05639
J 0.00618 (+8%) 0.00566 0.00644 (+14%)

Table 16. RMS Response of Tokyo Maru Operating at H/T=1.89
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. . Design for Design for
Optimal Design H/T=1.89 H/T=o
@' 0.00697 0.00790 0.00904
r' 0.00830 0.00970 0.01228
g 0.00234 0.00248 0.00274
ﬁ' 0.01133 0.01083 0.00984
3" 0.04318 0.04459 0.05017
Sc' 0.04850 0.05003 0.05562
J 0.00502 0.00524 (+4%) 0.00626 (+25%)

Table 17. RMS Response of Tokyo Maru Operating at H/T=1.30

A study of the results presented in Tables 15, 16, and 17 points the way
to a choice of design water depth if a constant-gain stochastic control system
is to be utilized. We conclude that if the design is to be optimal at a
single water depth, it should be designed to be optimal at an intermediate
water depth where the ship is least course stable. For the Tokyo Maru, the
design which is optimal at H/T=1.89 provides the best overall performance.

All three controllers are stable in all three conditions but the design for
H/T=1.89 is developed to be optimal when the ship is most difficult to

control and this seems to provide the best performance over the range of

water depths. For ships of this type, however, we feel that the results of
Tables 15, 16, and 17 show the justification for the development of an adaptive
system which could automatically adjust the C and K gain matrices to be

optimal at any operating H/T.

4.2 Mariner Controller Design and Performance

The Mariner is course stable in all water depths so the effect of water
depth on the controller design and performance could be expected to be less
than shown above for the tanker Tokyo Maru. Since Fujino's data for the Mariner
included two speeds, we conducted a study to see how both vessel speed and
water depth affected controller design and performance for this type of ship.
This was begun by developing optimal designs for the Mariner at the four combina-
tions of Froude numbers 0.0905 (7 knots full-scale) and 0.155 (12 knots full-
scale) and water depth~to-draft ratios H/T=« and H/T=1.50. Table 18 gives the
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resulting optimal control gains for the four conditions. The results are

similar to those shown in Table 13 for the Tokyo Maru. The gain on 7', Cl4'

is a constant 2.425 for all conditions and thus appears independent of ship

type, vessel speed, and depth-to-draft ratio. Gains Cl3 on B' and C17 on r' show

a strong dependence on both speed and H/T. Gain C shows a larger speed

dependence than depth-to-draft ratio dependence; gain C

15

shows the opposite

12
behavior.

Fpn 0.0905 0.155 0.0905 0.155
H/T 1.50 1.50 © ©
Ci1 4.997 5.203 5.361 5.658
Ci2 1.525 1.471 1.955 2.042
Cis3 4.039 8.077 1.170 2.020
C14 2.425 2.425 2.425 2.425
Cis -0.806 -1.110 -0.840 -1.149
C16 698.8 861.8 947.5 1176.1
C17 -41.013 -62.744 8.960 -10.976

Table 18. Optimal Control Gains for Mariner at Four Conditions.

Table 19 gives the optimal Kalman-Bucy filter gains for the Mariner in
the four water depth and vessel speed conditions studied. As with the Tokyo
Maru the optimal filter gains show relatively less variation with depth-to-
draft ratio than do the optimal control gains. There appears to be a greater
vessel speed dependence in the optimal filter gains but the conclusion varies

from term to term as can be seen by study of Table 19.

To study the effects of vessel speed and water depth on the performance
of the optimal stochastic controller for the Mariner, we used the design for
Fp=0.155 and H/T=» as the base design. This was the least course stable
condition for this ship as shown by the open-loop eigenvalues given in Table
5. The RMS response of the ship to the modeled design disturbances while
using this control system design was then established at F,=0.155 and H/T=
1.50, at Fp=0.0905 and H/T=», and at F,=0.0905 and H/T=1.50. Table 20 gives
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optimal filter gains K for F,=0.155 H/T=
1.3069 0.9836 0.0008
1.6806 23.3700 -0.0118
0.5647 5.9375 -1.0798
0.2459 -2.1920 1.4612
0.0000 0.0000 0.0000
0.0029 0.2727 0.0036
-0.0035 -0.1745 0.0133
optimal filter gains K for F,=0.0905 H/T=«
2.2369 0.9559 0.0007
4.7926 18.5577 -0.0218
1.1006 4.2767 -1.4516
0.2114 -1.3801 1.6954
0.0000 0.0000 0.0000
0.0138 0.2061 0.0047
-0.0100 -0.1269 0.0199
optimal filter gains K for Fp=0.155 H/T=1.50
1.3066 0.9780 0.0016
1.6711 20.2666 -0.0065
0.2712 4.1025 -0.2179
0.5045 -1.2028 0.6561
0.0000 0.0000 0.0000
0.0037 0.2632 0.0026
-0.0049 -0.1894 0.0083
optimal filter gains K for F,=0.0905 H/T=1.50
2.2357 0.9451 0.0010
4.7386 16.7166 -0.0206
0.7675 3.8652 -0.6359
0.3313 -1.3004 1.1166
0.0000 0.0000 0.0000
0.0160 0.1947 0.0051
~0.0155 -0.1648 0.0149

Optimal Filter Gains for Mariner at Four Conditions

the RMS response of the base design at Fp=0.155 and the two depths H/T=~ and
H/T=1.50. The response with the optimal design for the shallower depth is

also shown for comparison. The RMS response at H/T=« is ¢=92°, ﬁ=4.1m., and
§=3.64° which is comparable to the Tokyo Maru response even though our constant
design disturbance appears relatively larger to the Mariner. At the shallower
water depth the base design shows a decreased RMS lateral offset n' but

increased P' and increased rudder usage compared to the optimal as was
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Operating H/T 1.50 1.50 ©

Design Fp Optimal 0.155 Optimal

Condition H/T Design ® Design
P l' 0.01104 0.01241 0.01606
' 0.01531 0.01920 0.01835
B 0.00421 0.00479 0.01271
n' 0.01643 0.01239 0.02566
8 0.05078 0.05838 0.06356
8" 0.06549 0.07822 0.08263
J 0.00858 0.01058 (+23%) 0.01500

Table 20. RMS Response of Mariner Operating at F,=0.155

Operating H/T 1.50 1.50 o oo
) Fp Optimal 0.155 Optimal 0.155
Design
Condition H/T Design L Design ©
&' 0.00910 0.00850 0.01366 0.01243
r' 0.01194 0.01155 0.01504 0.01276
B’ 0.00557 0.00564 0.01184 0.01144
n' 0.01422 0.01032 0.02142 0.02245
8 0.04636 0.04963 0.05717 0.05551
Sc' 0.05340 0.06255 0.06667 0.06837
J 0.00627 0.00707 (+13%) i 0.01060 0.01087(+2.5%)

Table 21. RMS Response of Mariner Operating at F,=0.0905

shown with the Tokyo Maru. The RMS cost increases 23% compared to the optimal.
Table 21 gives the RMS response of the base design when the ship is subjected
to the modeled design disturbances while operating at F,=0.0905 and water
depths H/T=» and H/T=1.50. The RMS response of the ship with the optimal
control system design is shown in both conditions for comparison. The change

in speed in deep water shows only a small 2.5 per cent degredation in RMS
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cost compared to the optimum. The RMS lateral offset n' decreases but @'
and rudder usage increase. Notice that these effects of slowing down are
opposite to the effects of entering shallow water. This apparently explains
why the degredation in RMS cost compared to the optimum is less at slow
speed in shallow water, F,=0.0905 and H/T=1.50, than at the control system

design speed F,=0.155 in the same depth water.

In general, the performance of a constant-gain stochastic control system
for the Mariner shows a smaller loss of performance as vessel speed and water
depth change than shown for the Tokyo Maru as water depth changes. An
adaptive system might still be justified but the dimensional response is good
for all vessel speeds and water depths; i.e., the worst case gives ﬁ=4.lm.,
@=.92°, and §=3.64°. A constant-gain design should be a very effective
controller for a ship such as the Mariner which is course stable under all

conditions.



5. Simulation of Optimal Stochastic Path Controllers

This section presents a general discussion of the digital computer
simulation of optimal stochastic path controllers. We also present simulation
results for the controller designs developed above for the Tokyo Maru. These
results are used to evaluate the validity of using first-order shaping filters
to model the yawing moment and sway force disturbances in the controller
design. The section closes with a comparison of the effectiveness of the
optimal controller designed for the Tokyo Maru at H/T=~ with the control

which might be provided by a human helmsman.

The OPTSYS optimal stochastic controller design program can evaluate
the RMS response of the controlled system to the design stochastic disturbances
represented by the power spectral density @ while using measurements which
are contaminated by noise represented by the power spectral density R. These
RMS results are very useful in evaluating the designs but often they are
difficult for designers to fully interpret. To more completely show system
effectiveness there is also a need to simulate the response of the controlled
system to initial condition (start-up) errors and specific process disturbances
while the controller is receiving measurements containing randomly generated
noise. To perform the simulations needed as part of this work, we developed
the SHIPSIM/OPTSIM simulation program for stationary, linear, optimal
stochastic control systems.ll This program uses the same data sets used
with or produced by the OPTSYS program so the two companion programs provide
a valuable capability for the efficient design and evaluation of these

controllers.

5.1 PFormulation of Simulation Equations

The physical system being controlled is represented by the system

equations (29); i.e.,

X =Fgx + Ggu + TgWw , x(t5) =%, , (73)
and the measurement equation (36),

z=Hgx +v . (74)

The optimal stochastic controller design is actually based on the augmented

or estimator-design state equations (42); i.e.,

-41~
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%' = Hgx' + Geu + Tgw (75)

whenever shaping filters are used to model the process disturbances. If
shaping filters are not used x'=x, Fo=Fg, Gg=Gg, and T'.=Tg; i.e., eq. (73)
and eq. (75) are identical. The optimal stochastic controller design

produces the optimal control law eq. (45); i.e.,

]

=Ccg , (76)

and the Kalman-Bucy filter given by eq. (50),

[ 2o

= FeX + Ggu + K(z-Hek) R(to)=%, . (77)

Substituting eq. (74) and eq. (76) into eg. (73) and eq. (77) produces the

state and state estimate equations which must be simulated,

Fsx + GSC_}’:{_ + I‘SE ’ E(to)':l{o ’ (78)

|

|3¢m
|

= Fe® + GoCR +KHgx + Kv-KH.& , R(ty))=%, . (79)

Equations (78) and (79) combine to give the (ns+ne) system of coupled
first-order differential equations which the SHIPSIM/OPTSIM program simulates;

i.e.,

(ns+ne)x1l (g+p)x1

4 (xX|_| Fs GgC -IE I's Of|w
2] |kag Fercec-xug) [Htlo x| - (80)

These equations are integrated by SHIPSIM/OPTSIM from a user-specified

initial condition,

x(to) |_[%0

using any process disturbance vector w(t) produced by a user-supplied

process disturbance subroutine. The zero-mean, gaussian measurement noise
vector v(t) is randomly generated in accordance with a user-specified

standard deviation ¢'. SHIPSIM/OPTSIM can also integrate additional differen-
tial eguations and calculate any non-integrated quantities desired as part of
the printed or plotted output. User's Documentation, Programmer's Documentation,

and a listing for the SHIPSIM/OPTSIM program have been published separately.ll
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5.2 Selection of Integration Method and Noise Modeling

For a proper simulation of eq. (80), the selection of the integration
method and the treatment of the measurement noise must be performed with
care to ensure that the correct stochastic response is achieved. The most
direct approach is to utilize a fixed step-size Euler or rectangular inte-
gration scheme. This has the effect of approximating the continuous
Gauss-Markov process eq. (80) by a discrete Gauss-Markov sequence. In
developing the design of the optimal control system, eq. (66) was used to
establish the measurement noise power spectral densities. The noise was
first assumed to be exponentially correlated with an RMS magnitude 0

and a correlation time T+ which is much faster than the time constants

J
for the ship. Equation (66); i.e.,

= 2y,
sy 2(0J )TJ , (82)

was then used to calculate the magnitude of the noise power spectral density-
This was then assumed constant when the noise was approximated as white
noise. The RMS magnitude o

J
standard deviation component 04' to use in the simulation of the system

used in eq. (82) is not, however, the correct

using Euler integration.

The use of a fixed step-size Euler integration has the effect of
approximating the continuous Gauss-Markov process eq. (73) and eq. (74) by

the discrete Gauss-Markov process given by,

X4 = ¢i§i + Fiyi R i=0,1,...,N (83)

41 = Hi§i + v R i=0,1,...,N (84)

Elw.w.T] = Q.8.. , (85)
—i~3 ivij

E[v.v.T] = R.S.. (86)
—i—j i7ij !

Elw;v;T] = Elw; (x5-%) "] = Elvi (x5-x)T1 =0, (87)

where Qi and Ri are now covariance matrices and Gij is the Kronecker
delta function. The control can be omitted in this discussion without loss

of generality. If we take P; as the error covariance of the discrete Kalman
filter estimate at point i, the covariance can be propagated to the next

measurement point i+l wusing a time update to give the error covariance
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prior to the measurements Mi+l and then the measurements can be processed

in the measurement update to give Pi+l . Governing update equations can

be expressed as,

My = 9;P;0; + T,0.T; (time update) , (88)
Pi+l = Mi+1 - Ki+1Hi+1Mi+1 (measurement update) , (89)
where,
K; = PiHiRi-l = MiH'jI:(HiMin+Ri)_l . (90)
When Euler integration is used with an integration step-size At,
X (t+At) is approximated using eq. (73) to be,
x(t+bt) = x(t) + Fex(t)At + T w(t)At (91)

where again the control is omitted for the purposes of this discussion. The
error covariance equation (52) is not included in the simulation but the
use of Euler integration has the effect of approximating the error covariance

P (t+At) as,
P(t+At) = P(t) + FP(t)At + P(t)FTAt + TQUIAt-K(t)HP(t)At (92)

where the filter gain matrix is given by,

K = P(t)HR T . (93)

For a simulation to be valid it is necessary that the discrete error covariance
given by eq. (88), (89), and (90) be the same at the end of each integration
step as the continuous error covariance given by eg. (92) and (93). We show
in ref. 11 that this is true if the disturbance and noise covariance matrices
in eq. (85) and (86) are related to the continuous system power spectral

density matrices as used in the system design by,
QiAt =Q , (94)
and

R.At = R . (95)
1

The correct measurement noise covariance Ri to use in a simulation thus
depends on the integration step-size At. If cj' is the standard deviation

for noise element Jj (square root of diagonal element Jj of Ri which is
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constant), a correct simulation must utilize,

2
. ﬁl/z_ 20j 5 1/2
9" = [At] = | At ’ (96)

with the integration performed by Euler integration using a fixed step-size
At. SHIPSIM/OPTSIM uses a fixed step-size Euler integration and in our
simulations, eg. (96) was used to relate the noise standard deviation vector
g' to the design measurement noise level represented by the power spectral
density R. A non-dimensional step-size of At=0.005 was found to be

satisfactory for most of these simulations.

5.3 Simulation Results for Tokyo Maru at H/T=1.89

The SHIPSIM/OPTSIM program was used to perform a number of simulations
of the Tokyo Maru controlled by the optimal controllers we have developed.
Some of the results for the Tokyo Maru operating at a water depth-to-draft
ratio H/T=1.89 are presented here to further illustrate the effectiveness
of these controllers. Recall that the controllers we have studied are for
stationary systems; i.e., the statistics of the disturbance and measurement
noise (R andQ) and the various system matrices are assumed constant. The
resulting control feedback gains and Kalman-Bucy filter gains are also

constant.

An important question with a stationary, constant-gain control system
is how the controlled system will respond if the controller is first turned
on while an initial condition error exists. We simulated the start-up response
of the Tokyo Maru controlled by the optimal stochastic controller designed
for the existing depth H/T=1.89 as presented in Section 3. All initial states
were taken as zero except the lateral offset N, which was taken as one half
breadth B/2 (23.75 m. full-scale). The filter has no prior knowledge at
start-up so the estimate of all the states & was taken as zero. This
corresponds to the situation where the ship is just entering the restricted
path area and is on a pathparallel to but offset B/2 to starboard (n>0) of
the prescribed path when the controller is turned on. The lateral offset
response and rudder angle response are shown in Fig. 6 and Fig. 7, respectively.

The lateral offset is unchanged for about one ship length while the filter

generates an estimate of the initial lateral offset error, the rudder responds
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to a commanded turn to port, and then the ship responds. The ship crosses

the prescribed path after four ship lengths (t'=4.0) and then overshoots

only about 3.2 m. before settling onto the prescribed path. The small
oscillations about the path after about t'=10 are due primarily to the measure-
ment noise which is present throughout the simulation. The excellent startup
response with the optimal controller is clearly shown by Fig. 6. The maximum
rudder usage shown on Fig. 7 is dimensionally about 3.4°. The continuing
rudder movement due to the measurement noise after about t'=10 has peak values
of only about 1° and while this would be undesirable for steering system wear
reasons in continuous operation it should be very acceptable for short-term

operations in restricted waters.
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Figure 6. Lateral Offset Response to B/2 Initial Offset: Optimal Control
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Figure 7. Rudder Angle Response to B/2 Initial Offset: Optimal Control

The design process disturbance used to develop the optimal controllers
was based on the yaw moment and sway force due to a passing ship as shown in
Fig. 4. These disturbances were modeled by two first-order shaping filters
as described in Section 3. Since it is of interest to see how the optimally
controlled system would respond to the actual yaw moment and sway force
disturbances shown in Fig. 4, the Tokyo Maru with the optimal controller
was next simulated to pass the ship respresented by these disturbances. The
simulation was begun with no initial error; i.e., x=%=0, and the two ships
were simulated to passed beam-to-beam at t'=7. Simulation results are shown
in Fig. 8, 9, and 10. Figure 8 shows the lateral offset response of the
Tokyo Maru. The maximum response is only about 1.7m. which occurs at about
t'=8.5 or one ship length after the ship has passed. This response is low
for two reasons. First, the disturbances shown in Fig. 4 are relatively
small for a ship the size of the Tokyo Maru. Secondly, the optimal control
system is very effective in controlling the ship. While response to the
measurement noise after t'=18 appears large due to the plot scaling, it has
a peak value of only about 0.6 m. The maximum response due to the passing

ship would increase roughly linearly with the disturbance magnitude if the
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passing ship were larger or closer or if the effect of shallow water were to
increase the disturbance magnitude significantly as discussed in Section

3.2. The disturbance magnitudes shown in Fig. 4, are, therefore, completely
valid for linear control system design and evaluation. The rudder angle
response is shown in Fig. 9. The maximum rudder angle of about 6.9° occurs
just a few seconds after the maximum disturbance at t'=7 when the ships are
passing beam-to-beam. The estimate of the yaw moment disturbance N produced
by the Kalman-Bucy filter is shown in Fig. 10. Notice that the maximum

value of -19.4x107°

-20.0x107°

at t'=7 compares very favorably with the peak value of
shown on Fig. 4. This peak value also occurs when the ships are
beam-to-beam or t'=7 in this simulation. The estimate of the sway force
disturbance Y is less effective. The effectiveness of the Kalman-Bucy
filter to process the noisy measurements of ¢', r', and n' to produce good
estimates of the yaw moment and sway force acting on the ship will be studied

further below.
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The particular lateral offset response shown in Fig. 8 is strongly
affected by the sequence of randomly generated measurement noise included in

our simulation. SHIPSIM/OPTSIMll

uses the IBM Scientific Subrouting Package
random number generator subroutine RANDU to generate the sequence of random
numbers which establish the noise level for each measurement at each integration
step in accordance with the user-specified standard deviation ¢'. To allow

a valid comparison among competing control systems SHIPSIM/OPTSIM always begins
with the same initial random number seed. Thus, all runs utilize the same
sequence of randomly generated numbers unless the program is specifically
modified to change the initial seed. When the disturbance magnitude is

fairly small as used here, the response due to the disturbance is roughly
comparable to the response due to the measurement noise and the maximum

system response is noticeably affected by the particular sequence of measurement
noise used in the simulation. The response shown in Fig. 8 is such that the
ship is already moving to port (n<0) due to measurement noise when the
disturbnace due to the passing ship is first felt (t'=5). This causes the
maximum lateral offset of the ship, which is also to port, to be increased.

To clarify this, Fig. 11 shows the lateral offset response of the Tokyo Maru

to the same passing ship disturbance when there is no noise in the measure-
ments received by the filter; i.e., g'=0. The maximum lateral offset is about
1.5 m. in lieu of 1.7 m. as shown in Fig. 8. It is also possible for the
measurement noise to reduce the maximum lateral offset. This is illustrated

by the lateral offset response in the simulation shown in Fig. 12. This
simulation was conducted with a modified initial random number seed. For

this sequence of measurement noise, the ship happens to be moving to star-
board (n>0) due to the measurement noise when the disturbance due to the
passing ship is first felt. This causes the maximum lateral offset to port

due to the passing ship to be reduced to only about 1.2 m. compared to the

1.5 m. shown in Fig. 11 with no measurement noise and the 1.7 m. shown in

Fig. 8.

Simulation results can also show the degredation in controlled system
response which would occur if the controller were designed to be optimal at
some water depth other than the water depth in which the ship is operating.

We simulated the response of the Tokyo Maru operating at a water depth-to-draft

ratio H/T=1.89 while being controlled by a controller which was designed to



-51-~

0.04

0.02

el
— —

02
.

o4
e

~0.08

&0.10

00 .00 8.00 12.00 18,00 .00 26.00 32.00 38,00 u

20.00
TIME
T-H. HW/T=1.88. C&K FOR H/T=1.88. PRSSING SHIP. NO NOISE

Figure 11. Lateral Offset Response to Passing Ship: Optimal Control; No Noise

0,04

02
~1]
]
—

)

-0.10

0,00 4.00 8,00 12,00 16.00 24,00 20.00 32.00 38.00 L

20,00
TIME
T-M. H/T=1.88. C&K FOR H/T=1.88, PASSING SHIP. NOISE. RANDOM SEED = 9839

Figure 12. Lateral Offset Response to Passing Ship: Optimal Control; Modified Seed



-52-

to be optimal in deep water H/T=w. Figure 13 shows the lateral offset
response to a B/2 initial lateral offset error. This response can be
compared directly with the response shown in Fig. 6 for the Tokyo Maru when
the optimal control and filter gains are used. The initial return to the
Prescribed path is noticeably faster with the non-optimal, deep water
controller. The maximum overshoot however, is, about 15.4 m. in lieu of the
overshoot of only about 3.2 m. shown in Fig. 6 and it takes the ship about

4 ship lengths longer to settle onto the prescribed path. The loss in
performance with the use of non-optimal control and filter gains at H/T=1.89
is evident from a comparison of these two figures. Figure 14 shows the lateral
offset response to a passing ship as represented by the yaw moment and sway
force disturbance shown in Fig. 4 when the Tokyo Maru is again controlled by
a controller which was designed to be optimal at H/T=«. This response can be
compared directly with the response shown in Fig. 8 for the Tokyo Maru when
controlled by the optimal controller for the existing H/T=1.89 water depth.
In this situation, the maximum response does not degrade as much as in the
initial offset simulation. The maximum lateral offset is about 1.9 m. with
the non-optimal H/T=% design compared to about 1.7 m. with the optimal H/T=1.89
design controller. This result could be expected based on the RMS response
results for the Tokyo Maru controlled by these two controllers at H/T=1.89 as
shown in Table 16. There the design for H/T=» showed a 14 percent increase
in RMS cost but a 16 percent decrease in RMS lateral offset compared to the

controller designed to be optimal at H/T=1.89.

In general, we feel that these simulation results confirm that the
optimal stochastic path controllers developed here would provide very
effective ship path control in restricted waters. The effectiveness of these
controllers will be further compared to the control which could be expected

from a human helmsman in Section 5.5 below.
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5.4 Verification of Disturbance Modeling

In this section, we look a little more closely at the effectiveness of the
Kalman-Bucy filter to estimate the state of the ship. 1In particular, the
effectiveness of the filter to estimate the yaw moment and sway force acting
on the ship due to a passing ship is studied in more detail as a means of
verifying the validity of using first-order shaping filters to model the yaw
moment and sway force disturbances. We also compare the effectiveness of
the optimal controller design presented in Section 3 with that of an optimal
controller designed without the use of shaping filters; i.e., the yaw moment
and sway force disturbances are assumed to be white noise instead of exponential
correlated disturbances. We feel these results clearly show the validity

of our disturbance modeling approach.

Figure 15 shows a more detailed presentation of the yaw moment distur-
bance estimates N' produced by the optimal Kalman-Bucy filter in the
simulation runs shown in Fig. 8, Fig. 11, and Fig. 12. Also shown in Fig.

15 for comparison is the yaw moment disturbance N' actually used in these
simulations as shown in Fig. 4. The yaw moment disturbance estimate for the
simulation run without measurement noise; i.e., 0'=0, represents the expected
average of estimates over a large number of runs. This estimate was obtained
in the simulation run shown in Fig. 1l1. Comparing this estimate with the
actual yaw moment disturbance shows the filter to be generally very effective
in estimating the yaw moment disturbance. This is remarkably fast when one
considers that the filter can only estimate N' after the ship begins to
respond to the disturbance and this is reflected in the measurements ¢', r',
and n'. The estimate is low in peak value by about 20% for the initial
positive peak and by about 13% for the maximum disturbance when the ships are
beam~-to-beam at t'=7. The filter is less effective at the final positive
peak where the estimate is low by about a factor of 4. The yaw moment
disturbance estimates for the simulation run using the standard measurement
noise initial random number seed as shown in Fig. 8 and for the simulation
run using the modified seed as shown in Fig. 12 are also shown in Fig. 15 to
illustrate the effect of specific sequences of measurement noise on the

estimate N' produced by the Kalman-Bucy filter.
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Figure 15. Yaw Moment Disturbance Estimates for Passing Ship

Figure 16 shows the sway force disturbance estimates ¥ produced by
the optimal Kalman-Bucy filter in the simulation runs shown in Fig. 8,
Fig. 11, and Fig. 12. The actual sway force disturbance Y' wused in these
simulations as shown in Fig. 4 is also shown for comparison. Again the
sway force disturbance estimate for the simulation run without measurement
noise represents the expected average of estimates over a large number of
runs. In this situation, the filter is much less effective in estimating the
sway force disturbance than it is in estimating the yaw moment disturbance.
The filter is about 0.2 ship lengths behind and about a factor of 3 low in
estimating the peak sway force disturbance which occurs when the ships are
beam-to-beam. Since the optimal stochastic controller provides excellent
response in general, this inability to estimate Y' as accurately as N' does

not seem to be a practical problem.

The lack of ability of the filter to effectively estimate Y' 1is at
first not apparent from a look at the observability of each mode of the system
with each measurement as shown in Table 9. This is because each row in
Table 9 reflects the relative observability of each mode with each measurement.

If this Table included measurements of all seven states, the elements of each
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Figure 16. Sway Force Disturbance Estimates for Passing Ship

n
row would be seen to be orthonormalized; i.e. .IX cos? Bij = 1 , when the

measurements are just the states. These data goonot reflect the absolute
observability of one mode compared to another. Comparisons made within each
row of Table 9 are therefore valid but numerical comparisons within each
column of Table 9 are not valid. The primary reason for the poor estimate
of Y' is due to speed at which the disturbance occurs compared to the

time constants of the controlled ship. The Y' disturbance occurs about
twice as fast as the N' disturbance and as a result is too fast to have
much of an effect on the ship. This Y' disturbance therefore has a low
level of .absolute observability. A test run using a Y' disturbance which
is identical to the N' disturbance shown in Fig. 4 resulted in a good
estimate Y' and confirms this conclusion. For the same physical reasons
that Y' in Fig. 4 does not affect r', ¥', and n' significantly resulting
in a low level of absolute observability, a weak estimate ¥' does not

seriously affect the overall controller performance.

The effectiveness and validity of modeling yaw moment and sway force
disturbances as first-order filters in the optimal stochastic controller

design can be further illustrated by comparing this controller with an optimal
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controller design developed for the Tokyo Maru at H/T=1.89 without the use

of the shaping filters. In this case, the yaw moment and sway force distur-
bances were considered to be white noise with power spectral densities given
by eqg. (56) and eq. (57). The resulting optimal design produces feedback
gains on V', r', B', n', and ' which are identical to those presented in
Section 3 for the design which utilizes the shaping filter modeling of the
disturbances. The closed-loop eigenvalues are therefore identical to the
first five eigenvalues shown for this design in Table 12. The dimension of
the Kalman-Bucy filter is reduced to 5; i.e., & includes just the system
states and not the yaw moment and sway force disturbances. Table 22 shows
the RMS response of the optimal controller designed for the Tokyo Maru at
H/T=1.89 without shaping filters with that of the optimal controller designed
using shaping filters. This latter data is a repeat of that given in Tables
11 and 16. The RMS cost increases 3.5 times when the shaping filters are not
used in the design; the RMS lateral offset from the prescribed path increases
from 3.55 m. when shaping filters are used to 8.61 m. The control system
developed without the use of the shaping filters is much less effective

based on the RMS response to the design disturbances.

without shaping filters| with shaping filters
P .02108 (1.21°) .00755 (.43°)
7 .03342 .00876
B! .00898 .00501
nt .02968 (8.61m) .01223 (3.55m)
8t .07651 (4.4°) .04521 (2.6°)
éc' .09044 .05180
J .01966 .00566

Table 22. RMS Response with Optimal Controllers Designed
with and without Shaping Filters

A comparison of the effectiveness of the optimal controllers designed
with and without the use of shaping filters to model the yaw moment and sway

force disturbances is perhaps clearest when simulation results are studied.
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Figure 17 shows the lateral offset response of the Tokyo Maru at H/T=1.89

to the passing ship disturbance shown in Fig. 4 when the ship is controlled
by the optimal controller developed without the use of shaping filters to
model the disturbances. This response can be compared directly with the
response shown in Fig. 8 for the Tokyo Maru controlled by the optimal controller
developed with the use of shaping filters. The maximum lateral offset in
Fig. 17 is 4.9 m. compared to 1.7 m. shown in Fig. 8. Thus the use of
shaping filters to model the disturbances results in an optimal stochastic
controller design which is almost three times as effective in limiting the
lateral offset from the prescribed path when a ship passes. Figure 18 shows
the rudder usage in the simulation shown in Fig. 17. The maximum rudder

angle is about 5.3° compared to a maximum of about 6.9° shown in Fig. 9.
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5.5 Comparison with Human Helmsman Control

.The final simulation results to be presented area comparison between the
control provided by the optimal stochastic controllers developed here and the
control which might be expected by a human helmsman. To be judged effective,
the stochastic controllers should probably be at least as good as a human.

If the two were about equal based on typical performance, the automated
control might still be justified and desirable since it is the "human error"
and occasionally bad, non-typical human performance which usually gets a

ship into trouble. An automated system could provide a more consistent,
repeatable performance which would be less affected by fatigue, stress,

distractions, etc.

In order to perform a digital computer simulation representing human
helmsman control, a human model must be available. Suitable human models for
ship control research are very limited. Human models for the ship heading

control problem have been presented by Hooft25 and Stuurman.26 These can be
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shown to be essentially equivalent. Stuurman presents data for a single

ship. Hooft presents specific data for helmsmen control for a wide range of
course-stable ships. For our work, we adapted Hooft's model to apply to path
control and have extrapolated his data to apply to the Tokyo Maru in deep
water where the ship is course stable. It would be expected that the helmsman
would be less effective in controlling the Tokyo Maru at H/T=1.89 where it is
course unstable but the human model data necessary to allow simulation at

this water depth is not available.

Hooft's model for human heading control was derived from the response of
helmsmen who were instructed to steer a ship in a land-based simulator along
a prescribed sinusoidal path. In the modeling, he first assumed that the
rudder angle § would be positioned proportional to the course error Ay

and the yaw rate error Ar; i.e.,

§ = klAw + szr . (97)
He then assumed the helmsman would compare the existing rudder angle § with
that required rudder angle 6*=k3w needed to steer along the prescribed

sinusoidal course. This gives an error between the existing and required

rudder angles,

Ag* = §*-§ ' (98)
or,

k3Aw = k3¢—6 ' (99)
which gives,

Ay = y-8/kq ) (100)

Combining eqg. (97) and (100) yields Hooft's helmsman heading control transfer

function,
k2
—= s+1
8 kqk k Trs+1
Gls) = Aw((ss)) Tk l+k3 Klz - @ TL +1 (101)
17%3 s+1 NS
kl+k3

Hooft conducted the simulator experiments with helmsmen to establish the

parameters a, Tp, and Ty. Since the helmsmen respond differently
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when controlling different types of ships, Hooft obtained his data as functions

of the K and T in Nomoto's maneuvering equation27; i.e.,
Tr + r = K§ . (102)

The data a, Ty, and Ty therefore apply to a wide range of ship dynamics but

were unfortunately limited to course-stable ships.

Hooft's model does not apply directly to ship path control but provides
the best available helmsman model. We therefore adapted the model to path
control by assuming that the transfer function eg. (101) applied not just to
a heading error Ay but to an error function which includes a weighted sum
of a heading error, a yaw rate error, and a lateral deviation error. We

thus used,

6(5) TLS+1
G(s) = e(s) @ Tys+l ' (103)
where the error function was given by,
e = By (Y-y,) +B, (r-ro)+B3(n-no) = Bl\p+B2r+B3n . (104)
since wo=ro=no=0 on the prescribed path. To implement the transfer function

in the simulation, eq. (103) was first written,

T, s+1/'rL s+l/TL
G(s) =a — ——— =2 ——= (105)

TN S+1/TN s+l/TN

which can then be implemented by an additional state~variable equation
representing an internal helmsman state,

y' = -,f;—. y' + A(Bllll'+B2r'+B3n') , (106)

and a rudder command equation,

TI_TI
L
S e

T'T r'+Bn') . (107)
L

2
These equations were used in a simulation to approximate helmsman path control
of the Tokyo Maru at H/T=«. In nondimensional form, Hooft's data yields A=13.20,
Ty~0.6630, and T£=0.5835 for the Tokyo Maru characteristics at H/T=w.
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Since the helmsman model was only available for a course-stable condition,
the helmsman results cannot be compared directly with the optimal stochastic
controller simulations performed at H/T=1.89 and presented above. The optimal
stochastic controller designed for deep water was therefore simulated with
the passing ship disturbance shown in Fig. 4 to provide a basis for comparison
with helmsman control. Lateral offset response is shown in Fig. 19. Since
the Tokyo Maru is course stable at H/T=«, the optimally controlled ship is
also more course stable than at H/T=1.89. The maximum lateral offset is only
0.75 m. compared to the 1.7 m. shown in Fig. 8 for H/T=1.89. The rudder
angle response is shown in Fig. 20. The maximum rudder angle is about 6.4°.
The degredation of controller performance with changing water depth can be
further seen by comparing the results shown in Fig. 19 and Fig. 14. The
performance of the optimal controller operating at its design depth H/T=«
degrades in maximum lateral offset response from the 0.75 m. shown in Fig.

19 to the maximum response of 1.9 m. shown in Fig. 14 as the ship is brought

into the shallower, H/T=1.89 water.
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Figure 19. Lateral Offset Response to Passing Ship: Optimal Control at H/T=w
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The response of the Tokyo Maru to the passing ship disturbance shown in
Fig. 4 while operating at H/T=» under control of the helmsman defined by eq.
(106) and (107) is shown in Fig. 21 and Fig. 22. For these simulations we
have used B

=0.8, B,=0.1, and B3=0.l . These quantities include both

1 2
weighting considerations and scaling differences among V', r', and n' errors.
For these simulations, the helmsmen was given the same noisy measurements

used by the stochastic controller. This is very conservative since human
reaction to a measurement display will introduce additional error. Further,
the helmsman will not read each measurement at each decision point. This

will be particular evident in the n measurement if there is no automated
output of the lateral offset from the prescribed path and the helmsman or an
assistant must establish n manually from a radar screen. The lateral offset
response in Fig. 21 can be compared directly with the response with the
optimal stochastic controller as shown in Fig. 19. The maximum lateral offset
response is 1.5 m. compared to the 0.75 m. shown in Fig. 19. The maximum

rudder angle response in Fig. 22 is about 10.3° which can be compared directly
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with the 6.4° maximum rudder angle shown in Fig. 20. 1In general, the optimal
stochastic controller provides a level of control which is superior to that
provided by a helmsman given by Hooft's model as implemented in eq. (106) and

eq. (107).
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6. Performance of Partially-Adapted Controllers

This final section presents the results of an evaluation of the need to
adapt path control systems for water depth dependent changes in the various
terms in the equations of motion. In general, the optimal stochastic path
controllers studied here provide very effective control. In Section 2, we
showed how the ten coefficients fij and Yij in the linear equations of
motion for a ship moving along a prescribed straight-line path vary with
both water depth and vessel speed. 1In Section 4, we studied the effect of
water depth and vessel speed on the design and performance of the optimal
stochastic path controllers. For ships such as the Tokyo Maru which are
course unstable at some water depth-to-draft ratios H/T, we concluded that
if a design is to be optimal at a single water depth (constant C and K
gain matrices) it should be designed to be optimal at the depth-to-draft ratio
at which the ship is least course stable. For these course-unstable ships,
however, we noted the need for an adaptive path control system which could
automatically adjust the C and K gain matrices to be optimal at any
operating H/T. In these systems, the coefficients fij and Yij could be
identified on-line along with the estimation of ¥ . The C and K matrices
could then be updated to remain optimal and reflect the changing ship charac-

teristics with changing H/T.

The need to simultaneously identify all ten coefficients in eq. (28); i.e.,
£oor £i30 Fo50 Yoqs Yoot f32, £330 f35, Y31r Y3+ could greatly complicate the
design of an adaptive path controller. We therefore performed a sensitivity
study to see how important it would be to adapt for changes in each of the
individual coefficients. If a specific coefficient were not to be identified
on-line, the controller design would most likely be based on the value of
that coefficient at the ship's least course-stable water depth-to-draft ratio.
The study was therefore conducted by first using the OPTSYS program to design
optimal controller gains C and K for the Tokyo Maru using the F, matrix
in eq. (58) which has all coefficients fij correct for H/T=wx except one.

The value of this remaining coefficient was set at its value at H/T=1.89,
the ship's least course-stable condition. This simulates the gain matrices
which a partially-adapted path controller would produce if it were to identify

all coefficients except the one while the ship is operating at H/T=«. The

-66—
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resulting gain matrices were then used again in the OPTSYS program with the

Fe matrix which was fully correct for H/T=» to establish the resulting RMS
response and closed-loop eigensystem. This is the response of the ship at
H/T=* while under control of the partially-adapted controller which identifies
all coefficients except the one. This process was repeated for each of the
coefficients in succession in order to establish a quantitative sensitivity
measurement which indicates how important it would be to adapt for the changes
in each of the individual coefficients. An adaptive controller which would
only need to identify and adapt for changes in two or three instead of ten

coefficients might be greatly simplified and therefore be more feasible.

The RMS response results for the Tokyo Maru at H/T=» with the partially-
adapted controllers are shown in Table 23. Also shown for comparison are
the RMS response when the ship is controlled by the optimal controller for
the existing H/T=», which represents the fully-adapted controller, and the
RMS response with the optimal controller designed for the ship's least
course-stable water depth of H/T=1.89, which represents the non-adapted
controller. The results are arranged in the order of increasing RMS cost 3;
i.e., the order of increasing importance for adaptation. Based on the RMS
350 Yoor Fa30 fppr Y3y
very little effect on the response if the controller does not adapt for their

cost, seven of the coefficients (Y3l’ £ and f32) have

Yo1 and f25 have a somewhat

larger effect on the RMS response. The final coefficient f23 , the coefficient

of B' in the r' state equation (13), has by far the greatest importance

changes individually. Two of the coefficients

based on this measure. Notice that the three most important coefficients are
all in the r' state equation. Notice also that these coefficients do not
necessarily experience the largest numerical variations with H/T shown in
Table 4. An adaptive control system could probably provide most of the
potential improvement in performance to be gained with adaptation if only
f23, f25, and Y21 were identified on-line. To verify this conclusion, we
repeated the partially-adapted controller design and evaluation process for
the case where the design did not adapt for all seven of the coefficients
Y3l’ f35, Y22, f33, f22, Y32, and f32 simultaneously. This represents the
situation where the controller would adapt only for changes in the coefficients

f23, f25, and Yo with water depth. The RMS cost J in this case was 0.00683.,

The cumulative effect of not adapting for the changes in seven of the coefficients
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f -
o;iizaid2§ted all adapted all adapted all adapted
H/T=oo except Y31 except f35 except Y,,
&' 0.00965 0.00966 0.00967 0.00960
r' 0.00982 0.00982 0.00984 0.00976
B 0.00834 0.00834 0.00835 0.00832
n' 0.01607 0.01609 0.01607 0.01610
3t 0.04773 0.04771 0.04774 0.04770
c' 0.05406 0.05404 0.05405 0.05405
J 0.00681 0.00681 0.00681 0.00681
all adapted all adapted all adapted all adapted
except f33 except f22 except Y32 except f32
&' 0.00946 0.00966 0.00955 0.01032
r' 0.00968 0.00963 0.00968 0.01047
g 0.00831 0.00831 0.00830 0.00850
n' 0.01590 0.016l6 0.01611 0.01629
8 0.04783 0.04755 0.04770 0.04780
c' 0.05432 0.05410 0.05409 0.05365
J 0.00681 0.00682 0.00682 0.00683
all adapted all adapted all adapted non-adapted
except Yo1 except f25 except f23 optimal at H/T=1.89
@' 0.01029 0.00834 0.00846 0.00850
r' 0.01038 0.00855 0.00769 0.00753
é' 0.00841 0.00806 0.00768 0.00756
ﬁ' 0.01775 0.01539 0.02066 0.02238
X 0.04690 0.04824 0.04556 0.04533
cl 0.05224 0.05599 0.05279 0.05249
J 0.00689 0.00693 0.00746 0.00783
Table 23. RMS Response with Partially-Adapted Controllers at H/T=w
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increases the cost only about 0.3 per cent and is no worse than the effect of

just the most important of these f32 .

The closed-loop eigenvalues for the Tokyo Maru at H/T=~ with the partially-
adapted controllers are shown in Table 24. Also shown for comparison are the
closed-loop eigenvalues when the ship is controlled by the optimal controller
for the existing H/T=>~ (the fully-adapted controller) and the closed-loop.
eigenvalues with the controller designed to be optimal at H/T=1.89 (the non-
adapted controller). The coefficients Y17 Yoor Ygpv and Y35 do not affect
the feedback control gain matrix C and thus partially-adapted controllers
which do not adapt for these coefficients have the same closed-loop eigenvalues
as the fully-adapted case. These coefficients do affect the filter gains
K and therefore affect the RMS response as shown in Table 23. The partially-
adapted controller closed-loop eigenvalues are presented in Table 24 for the
remaining coefficients. These results are presented in the order of increasing
importance for adaptation based on RMS cost J as shown in Table 23. The
dominant closed-loop eigenvalues for these partially-adapted controllers and
the fully-adapted and non-adapted controllers are shown in Fig. 23. Again,
coefficient £ is the most important single coefficient and as a minimum

23

an adaptive system should identify £ on~line and update the control and

23

filter gain matrices to reflect changes in f23 with water depth. Adaptation

for changes in coefficients f25 and Yo1 would also appear justified.

fully-adapted

f35 jw
H/T= design “‘-\\N\ﬂ5 J=.00681 A

J=.00681 *\f32 l.s

£33 " +\\c”r=.00683

J=.00681 . 1
f22

fo5 J=.00682 T-6

J=.00693

£33 " ® 1

non-adapteq_

J=.00746 H/T=1.89 .4
design L
J=.00783
+.2
T e e o e T e
-.8 -.6 -.4 -.2 0 o

Figure 23. Dominant Closed-loop Eigenvalues with Partially-Adapted Controllers
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fully-adapted

all adapted

all adapted

all adapted

optimal at
H /T=oo except f35 except f33 except f22
-.5226 + .7991 j | -.5218 + .8008 j |-.5446 * .7908 j |-.4820 * .7628 j
-0.8913 -0.8903 -0.8838 -0.9357
-2.476 -2.476 ~-2.470 -2.667
-7.470 ~-7.463 -7.468 -7.396
-1.000 -1.000 -1.000 -1.000
-1.000 -1.000 -1.000 ~-1.000

all adapted

all adapted

all adapted

non-adapted

except f32 except f25 except f23 optimal at
H/T=1.89

-.4725 + .8382 j | -.5756 £ .6679 j |-.3496 * .5331 j |-.3208 * .5111 j

-0.889 -1.

8893 1.102 =2.115 £ .7323 j |-2.249 + .916l1 j

-2.434 -2.472

-7.499 -7.093 -7.378 -6.997

~1.000 -1.000 -1.000 -1.000

-1.000 -1.000 -1.000 -1.000

Table 24.

Closed-loop Eigenvalues with Partially-Adapted Controllers at H/T=




7. Conclusions

The principal general conclusions of this work are summarized here for reference.

* With sufficient measurements, the optimal stochastic path controllers
as developed here can provide very effective control of a surface
ship in shallow water. Measurement of lateral offset is necessary.
Additional measurements of heading and yaw rate are needed to
provide effective control. The further addition of a drift angle

measurement from a doppler sonar is not justified.

+ The water depth-to-draft ratio H/T can have significant effect on
the performance of optimal stochastic path controllers when they are
designed for a specific water depth and then operated over the feasible
range of water depths. The effect of speed changes on the performance
of fixed-gain controllers is less than the effect of changes in depth-

to-draft ratio.

» The effect of operating an optimal stochastic path controller at a
speed which is slower than its design speed appears opposite to the
effect of operating in a water depth which is shallower than its
design depth-to-draft ratio. As a result, operation at a condition
which is slower and shallower than the design condition provides
performance closer to optimal than operation at the controller's

design speed in the same, shallower depth water.

* Constant gain stochastic path controllers should be designed to be
optimal at the ship's least course-stable open-loop water depth-to-
draft ratio. For ships which are course-stable under all depth-
to-draft ratios, this approach should provide a robust design which

provides very effective control under all conditions.

* For ships which are course-unstable under some conditions, constant
gain stochastic path controllers which are designed to be optimal at
the ship's least stable open-loop condition should provide effective
control under all conditions. Significant improvement in performance
will be possible for these ships, however, with the use of an adaptive
control system which can adjust the gains to remain optimal or near

optimal for all operating conditions.
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Two features of the control and filter gains could be utilized to
simplify the optimal stochastic controller implementation and adapta-
tion. The control gain on lateral offset is constant independent
of ship type, vessel speed, and water depth. Filter gains for the
rudder angle estimate are zero independent of ship type, vessel speed,

and water depth.

Digital computer simulation confirms the very effective performance
of the optimal stochastic path controllers. Simulation also confirms
the validity of using first-order shaping filters to model the

design passing ship yaw moment and sway force disturbances. The
Kalman-Bucy filter is very effective in estimating the yaw moment
disturbance but much less effective in estimating the sway force
disturbance. The poor sway force estimate occurs because the sway
force has a relatively small influence on the ship. Fortunately,

the filter's poor estimate of the sway force disturbance does not
degrade the effectiveness of the controller for exactly the same

reason.

A comparison of simulations of the Tokyo Maru controlled by an
optimal stochastic path controller and by the helmsman heading
control model presented by Hooft and adapted here for path control
show the optimal stochastic path controller to provide a superior
level of control. This conclusion is only as valid as the human

helmsman modeling used.

The optimal stochastic path controllers developed here are designed
to estimate and control zero-mean disturbances. As a result, these
designs cannot accommodate a continuous, non-zero-mean disturbance
such as a lateral current. These disturbances can be accommodated
by including two additional shaping filters for a constant yaw moment
bias and a sway force bias in the design. We are proceeding with the
development and study of these controllers. These results will be

reported separately later.

The sensitivity study conducted by the design and evaluation of

partially-adapted controllers shows that an adaptive path control

system could be almost as effective as the optimal (99.7 percent as
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effective for the Tokyo Maru based on the RMS cost 3) if it were

to identify and adapt for changes in only three of the ten coefficients
in the system equations which change with depth-to-draft ratio.
Coefficient £ of B' in the ' equation is of greatest impor-

23

tance. Coefficient f2 of &' and Yoq of N' in the r!

equation are also of significance. Changes in the remaining seven
coefficients with depth-to-draft ratio have a negligible effect on
the controller performance. We are proceeding with a development

and study of adaptive ship path controllers. These results will be

reported separately later.
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