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ABSTRACT

The diffraction problem of a fixed slender ship in inci-
dent waves is formulated. Both the conditions of zero and
constant forward velocity are considered. The waves are
assumed to be of the same order as the beam of the ship and
are from an oblique heading.

The boundary value problem is linearized with respect to
wave amplitude and solved by the method of matched asymptotic
expansions. The first order zero speed solution is des-
cribed in terms of an integral representation and means for
numerically evaluating it are given. The forward speed
potential is solved to two orders of magnitude. The first
order is just the zero speed case while the second order
problem involves solving a boundary value problem with a
non-homogeneous free surface condition. The solution to this
second order problem is given in terms of three auxiliary
potentials, each satisfying a separate part of the boundary
conditions.

For zero forward speed, the sectional exciting force is
calculated and compared with the commonly used integrand
of the Khaskind relations. The two give different values,
but when integrated over the hull both show the same total
exciting force.

The pressure distribution on an ore carrier for both zero
forward speed and an abbreviated form of the forward speed
case are given and compared with experiments. The thebry
compares well with the measured pressures on the mid-ship
section, and on a forward section with stern seas.

However, the theory does not compare well for the case of
a forward section and bow seas.
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Chapter I
INTRODUCTION

The scattering of waves by an object has always been of
interest to the theoretical hydrodynamist. However, except
for a few simple shapes, the complexity of the problem has
prevented analytical solutions from being found. In
ship motions theory the force due to the diffraction of
waves is of primary interest, and consequently, methods for
finding the total exciting forces have been derived. 1In the
more mathematically correct methods (see Khaskind (1957) and
Newman (1965)) the diffraction problem has been replaced by a
forced oscillation one. As a result, the sectional force
distribution due to an incident wave has been lost even though
the total force on the ship is found.

With the advent of larger, longer ships, such as super-
tankers and Great Lakes ore carriers, the maximum stresses
due to wave induced loads have become important design con-
siderations. Since bending moments and shear stresses are
functions of the longitudinal force distribution, an accurate
method of determining the sectional force is desirable. The
wave-excited main vibration of the ship's hull, commonly
called "springing", has been investigated by numerous authors,
e.g. Goodman (1971), where the usual strip theory is used for
calculating wave-excitation forces. Springing is basically
a short wave phenomena that occurs at different heading angles
and different ship speeds. The use of the current strip
theory in finding bending moments and springing stresses in
short waves is not mathematically correct, yet there have
been no investigations into the amount of error introduced by
using it.

Newman (1970) showed that for zero forward speed, the deter-
mination of the sectional forces due to incident waves should
have involved solving a Helmholtz equation in the cross plane

instead of Laplace's equation as the usual strip theory did.



He stated that the integration of the solution to those two
problems should have yielded the same total forces in an
asymptotic sense. However, since those total forces are
only mathematically equivalent as the wave length goes to
zero, it is not obvious for non-~zero wave lengths that the
two will give equivalent total forces.

Ogilvie (1974) arrived at the same formula for the sectional
force as Newman. He differed from Newman in that his deriva-
tion used a three dimensional approach whereas Newman simply
used Green's theorem in two dimensions. Ogilvie also hypothe-
sized that in assuming a short wave length theory, the result
may not be asymptotically consistent but should be numerically
consistent. In other words, as long as the assumptions in-
volving the longitudinal behavior of the sectional forces are
correct, the short wave approximation will give the proper
numerical answers for longer waves.

The diffraction of waves by a ship for the special case of
head seas has been investigated by Faltinsen (1971). He con-
sidered both the zero speed and forward speed cases and calcu-
lated the actual diffraction pressures rather than just the
sectional exciting forces. The theory was based on a short
wave assumption and compared well with experiments indicating
that Ogilvie's hypothesis may be true. However, Faltinsen
found only the results for a circular cylinder and did not
indicate how the theory would produce answers for ship-shapes
in waves from oblique headings.

The intention of this thesis is to solve the diffraction
problem for a slender ship with zero and forward speed in
oblique waves. Certain assumptions will be made in order to
make the problem tractable. The validity of these assumptions
will be shown through comparisons of theory and experiments.

As mentioned previously, Newman (1970) and Ogilvie (1974)
have shown that the sectional force may be found by defining
an auxiliary problem that can be physically interpreted as a
forced oscillation potential that satisfies a Helmholtz equa-

tion in the fluid domain. The objection to this sort of



reciprocity relation is that the diffraction pressures have
been lost through the use of Green's theorem. This thesis
solves the total diffraction problem, consistent with the
assumptions made. Once the diffraction potential is known,
the pressures can be found and then integrated to give the
sectional forces and moments.

Four restrictions are applied to the theory as follows:

(1) The ship hull should represent a slender body, i.e., the
beam and draft must be small in comparison with the
length, and the transverse sections must vary slowly
along the length.

(2) The wave length is small, comparable with the beam of the
ship. This restriction is applied for both the zero and
non-zero speed cases.

(3) When considering speed effects, the forward speed is of
order one.

(4) The heading angle is for oblique seas. For example, if
€ is a slenderness parameter, k = 27/)\ the wave number,
and v=k cos X the wave number in the longitudinal direc-
tion where X is the heading angle, then k = O(e” '),

v = 0(e ) and /&2 - V2 = ote™l) as e-o.

The second restriction is worth noting. 1In a work which
justified the use of strip theory, Ogilvie & Tuck (1969)
assumed a short wave theory of k = O(s-l) for zero speed,
but maintained the same order for the frequency of oscilla-
tion for forward speed which resulted in longer waves, i.e.
« = 0(e"Y/?). Faltinsen (1971) used the same restriction
on wave length as used in this thesis which resulted in a
theory that compared well with experiments. 1In addition,
his forward speed solution was just a function of speed
times the zero speed potential. We will see that this simple

correction for forward speed does not extend to oblique



seas. We will also see that the results of this thesis may
be correct for wave lengths larger than the second restriction
implies.

The formulation of the zero speed problem is very similar
to that found by Newman (1970) and Ogilvie (1974). The dif-
fraction potential must satisfy a two-dimensional Helmholtz
equation in the cross plane and a body boundary condition that
requires its normal derivative to be equal to the negative
of the normal derivative of the incident wave potential. An
integral equation is derived and solved numerically by
assuming the hull to be represented by circular arc segments.

The forward speed problem is solved by a perturbation
analysis. The first term in the expansion is just the zero
speed problem. The second term has some similarities with
the results found in Ogilvie & Tuck (1969); however the
governing differential equation is always a Helmholtz equa-
tion rather than Laplace's. The inner expansion of the
second order problem requires in part, that there be linearly
growing waves as the inner variables become large. This is
a result of the inclusion of a non-homogenous boundary
condition on the free surface. The solution to the second
order problem is then written as the sum of three potentials,
each satisfying different parts of the boundary conditions.



Chapter II
FORMULATION OF THE PROBLEM

The ship is assumed to be fixed in an incident stream of
velocity U. The coordinate system, as shown in Figure 1, has
the z-axis in the upwards direction, the y-axis positive to
starboard and the x-axis parallel to and in the same direction
as the incident stream. The incident waves make an angle ¥

with the x-axis, where X = O represents head seas.

I P X
Figure 1: The Coordinate System.
The equation of the hull is given as:
y = h(x,z), (1)
and the free surface is given as:
z = r(x,y,t) (2)

The usual assumptions are made about the fluid being in-
viscid, incompressible and irrotational. There exists a velo-
city potential ¢(x,y,z,t) that satisfies:



i) the Laplace equation in the fluid domain,

2 )2 .
a¢+a<§+a¢=o; (3)

axz Yy oy

ii) the dynamic boundary condition which states that the

pressure is zero on the free surface,
1),.2 2 2 _ 1.2 =
gt + ®t+5{bx+ <I>y+ Qz}— 2U r On z =g(x,y,t) (4)

iii) the kinematic boundary condition which states that parti-

cles on the free surface remain there,

o T, + ¢ycy - Qz +c, =0, on z = g(x,y,t); (5)

iv) and the hull boundary condition which states that parti-
cles do not penetrate the hull,

d

L]

Qs
o]

=0, on y = h(x,z). (6)

The ship is assumed to be a slender body characterized by
a slenderness parameter €. This parameter is considered to
be small and indicative of the fact that the ship changes
shape slowly along its length.

In the near field this assumption has a profound effect on
differentiation. It can be stated as:

"Derivatives of flow variables in the transverse direc¢-

tion are larger than longitudinal derivatives by an

order of magnitude with respect to the slenderness
parameter."

This implies the following:

= 0(1); % = o(e”

1 1

) 3 _ -
X% ); 3% - O(e ™) (7a)
The characteristics of the hull can be interpreted as follows:

Yy = h(x,2z) = eH(x,z), where H(x,z) = 0(1);



and the inward normal n(x,y,z) = (nl,n2,n3) has components

n, = O(¢e), n, = o(1), n, = 0 (1) (7b)

The wave length, A, of the incident waves is assumed to be
of the same order as the beam. The wave number, k, is written
as

o(e™h)

2n/ X

K

This results in a wave number in the y direction of
« sin y = /k?2 - v =o0(e™h

The dispersion relation, relating the frequency to wave
length, is

w2 =«
0 g

where w, is the frequency and g is the gravitational constant.
In the chapters that follow, these assumptions based on the
slenderness parameter € are applied to the governing equations
to produce solvable problems.
For a more complete discussion on perturbation analysis in
hydrodynamics, see Van Dyke (1964) or Ogilvie (1970). The
latter has a detailed description of slender body theory.



Chapter III
THE ZERO SPEED PROBLEM

The method of matched asymptotic expansions is really not
necessary to determine the solution for the zero speed case.
We could make a very reasonable guess, just as Ogilvie (1974)
and Newman (1970) did, to find the first approximation.
However, in solving the zero speed problem formally, we lay
the groundwork for solving the more difficult forward speed
problem where reasonable guesses are not adequate.

We start the analysis by assuming the total potential is
equal to the sum of the incident wave potential, ¢ and the
diffraction potential, ¢D. o is given as

Il

gco i(wot— VX) kz - iy/&z— v2

. © ©
0

¢I(X.y.z,t)

i(w t - vx)
(o]

e ¢o(y,z).

Setting U equal to zero, eliminating ¢, and dropping the
higher order terms in equations (4) and (5) yield the usual
linearized free surface boundary condition of

-kd + @z = 0, on z = 0. (8)

Since ¢ is written as

on ¢

9 @D 3 @D 3 @D
+ + =0 in the fluid domain, (9)
2 2 2
ox 3y 9z
—K®D + %3 = 0 on z =0 (10)



and

8¢D _ 3¢I

on  9n

on y = h(x,z). (11)

The Near Field Problem

Since the incident wave has the factor el (¥ t = vx)’ and
the ship is slender and the waves are short, it seems
reasonable to expect the diffraction wave also to have this
oscillatory behavior. This assumption is not valid near the
ends, but then the assumptions implied by (7), i.e., things
change slowly in the x direction, is not valid there either.

It is for these reasons we assume that

QD(lerzrt) = ei(wot B VX)¢7(X,Y,Z) (12)

where ¢7(x,y,z) is some slowly varying function of x.

Putting (12) into (9), (10) and (11) gives, respectively

2

2
9 ¢ 97 ¢ ¢ "¢
T+ 27 - V3, - iv—a;{z+ 27 =0 (13)
Yy 9z ax
—K¢7 + ¢7z =0 on z = 0, (14)
and
9¢ 09
7 _ _ o _

We will now assume that ¢7 can be expanded in an asymptotic
series of the form

N
¢7(X,Y,Z) ~ X wi(errZIE)- (16)
i=1

As usual y, satisfies Vopq = o(yn) as e+0 for fixed X,¥,2.
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Substituting (16) into (13), (14) and (15) and recalling
the ordering of the derivatives given in (7a) and (7b), the

governing equations for the first order problem, wl, are:
2 2
97y, Yy 2
5 + 5~V wl =0 in the fluid domain, (17)
dy oy
Ky, + wlz =0 on z =0 (18)
and
awl _a¢o
=5 = 5% on y = h(x,z). (19)

Here N is the two dimensional normal with components only
in the transverse plane. Equation (19) was found by

realizing that

=Eov =E.V

3-D + O(e).

9
on 2-D

There are two noteworthy observations of the wl problem:

i) wl is dependent upon x only in a parametric sense.
That is, once a section of the hull is given for a
value of x, wl becomes a problem involving only the
transverse dimensions, y and z. As a result, wl

will now be written as wl(y,z;x).

ii) There is no radiation condition for wl as /yz + zz +o0
and without it, wl is indeterminate. The radiation
condition will come from matching the expansion of
the inner region with that of the outer region.

Though we might guess that wl will represent outgoing
waves at large distances from the body, there is no
formal justification for this. And while this guess
would be correct for zero speed, it will be incomplete
in the forward speed case ultimately leading to incor-

rect results. For this reason we will find the far
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field expansion for the zero speed problem thus
gaining valuable insight into the forward speed

problem.

The Far Field Problem

In the far field, we expect the ship to appear as a
line distribution of pulsating sources and horizontal
dipoles on the free surface. The dipoles are needed since
the body boundary condition given in (19) has both a sym-
metric and an asymmetric part to it. The symmetric term
will generate even waves which will be represented by the
sources and the asymmetric term will generate odd waves
which will be represented by the dipoles.

On the free surface in the far field we expect waves to
exist. Yet, if the formal rules of slender-body theory
are applied, there are no gravity waves. To explain this
contradiction we follow a rationale outlined in Ogilvie
& Tuck (1969). "We include (inconsistently) all terms
which could possibly be of importance in the far field
and we obtain the solution to this more general problem.
The real difficulty is that the far-field includes
several regions in which there are different behaviors of
the solutions. Thus our initial solution covers all of
these regions." When we find the inner expansion of the
outer, we will then only keep terms that are consistent

with our level of approximation.
iw _t
Let tps(x,y,z)elwo be the far field source potential.
Then ws(x,y,z) satisfies
2 2
) ws ) ws %Y

=+ =+ = 1lim Z(x)eiivxﬁ(y-i)ﬁ(z-n)
9x Ay 0z £+0 ’

n=>o (20a)
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and

(i + w2 b+ gwsz= 0, on z =0 (21)

Here ) (x) is a slowly varying source distribution and U is
the artificial Rayleigh viscosity that will be allowed to
go to zero to give the proper radiation condition.

The solution for ¥, (x,y,2z) can be found by taking the
double Fourier transforms* of (20a) and (21), solving the
resulting ordinary differential equation with variable co-
efficients by, say, the method of variation of parameters,
and finally taking its inverse. Then with £ = O and n = O,
ws(x,y,z) takes the form of

il . © ily+vk"+17 2z
b (x,y,2) = lim{-—= [ ak J*(k+v)el™™ fa1 8

u-p 417 -= —o Vk2+1 -éu%-iu)z

- _:1_2 [ ak I*(k+v)e™* 1 (x) (22a)
Tl' - 00

where |* (k+v) is the Fourier transform of e-ivxZ(x) and

o i1y+/k2+1 z

I (k) = lim [ d1Se—str . (23a)
s uro - Yk7+1° —éu%—iu)z
If we set v = O in (22a), we find that our result is

equivalent to the potential for a line of pulsating sources
given in Ogilvie & Tuck (1969).

iw t
Now let y_(x,y,z)e © De the far field dipole potential.

Then wD(x,y,z) satisfies

*The definitions of the Fourier Transform and its inverse
as used in this work are

[+

£X(k) = [ axe M) f(x) = b I dk etK¥gx (k) |

- O
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2 2 2
9 wD 9 wD 9 wD -ivx

>+ 3 + > = lim B(x)e 8 (y=£)8 (z-n)
9x ay 9z £-0
n=0 (20b)
and the same free surface condition as ws(x,y,z). Only

horizontal dipoles are needed to give the necessary asymmetry.
Here B(x) is a slowly varying dipole distribution, and the
differentiation of the delta function is with respect to the
singularity point, £. Then, in the same manner that ws(x,y,z)
was found, wD(x,y,z) has the form

-]

i ikx ¢ 1eity*Vk 417 2
Vp (x,y,2) = lim(-—=5 [ dkB* (k+v)e fdlﬁl—
U0 417 - - kK +1 -E(wo'i”)

=- - 7 dk B* (k+v)e ™ ¥ 1_ (x), (22b)
417 -
where B*(k+v) is the Fourier transform of B(x)e"i"x and
- o le11y+/§7:I7 z
o7 o L4 m-é(%-iu)z 235)

Kellogg (1929), in his classic work on potential theory,
shows that differentiation of a source with respect to its
source point yields a dipole. We can see from (20a) that
differentiation with respect to § is the same as differentia-
tion with respect to -y. This is also true for (21). 1If
the negative sign is included in the definition of B, then
differentiation with respect to y will give (22b). This
will be the method that we will use to find the expansion
of the dipole potential in the rest of this work.

From Appendix C we can write down the approximate values
for Is(k) and ID(k) if the assumption of short waves from
obligue headings is made. These results are contained in
Table 1 and Table 2, where a substitution of k=k'-v was

made, and then the primes were subsequently dropped.



Table 1

Values of Is(k) for Different Ranges of k with U Equal to Zero.

k>v + k or k<v - k

vV = k<k<v +

I (k)

2 2
2mce” vyl V(v-k)“-k“ +zk

VoK) 2= 2

Table 2

—ZTTiKe—i |y[/|< -{v-k) +zx

/;<2-(\)-k)2

Value of ID(k) for Different Ranges of k with U Equal to Zero.

k>v + Kk or k<v - «

VvV - Kk<k<v + k

ID(k)

ly| Y(v-k)=kZ+zk

-sgn(y) 2mke”

-sgn (y) 2mk e_i|Yl k2= (v-k) 2+zk

The Inner Expansion of the Outer Expansion

Using the results found in Table 1 and Table 2, along with

expressions (22a) and (22b), the following expressions are

approximations to the potentials for line sources and

dipoles:

v - K
‘Ps (Xry'z) = 2 e

-ivx+kz

vV+K *
-1 [ ak] (x) &

V=K * e
[dax ] (k)

ikx- |yl (v-k) " -k

/(v—k)T—Kz_

i(kx- |y} vk "= (v-k)“)

V=K

s [ a3t )

vk~ = (v=k)
e ikx-|y|V(v-k) -k

V+K

14

v (v-k) -KE

(24a)
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and

~ivx+kz v}K(ﬂ(B*(k)eikx-lylf(v—k) -K

- 00

vtk
i(kx—IYIVKz-(v-k)z)

+ [ dkg*(k)e
V=K

¥y (X,¥,2)=sgn (y) 5= e

Y{v-k) —Kz

+ [ dkg* (k) elkx- 1yl
v+K

(24b)

A substitution of k = k' - v was used in expressions (22a)
and (22b). The primes were then dropped in (24a) and (24b).
The expression given in (24a) can be checked by setting
Vv = 0 and comparing it with the outer expansion for a line
distribution of sources found in Ogilvie & Tuck (1969) or
by setting v = k and comparing it with the outer expansion
for a line distribution of sources found in Faltinsen (1971).
The expressions are identical except for factors of 1/2w
which is due to the different convention used by those authors.
This is as it should be since (24a) represents the general
case of waves incident for an arbitrary angle while the
Ogilvie-Tuck potential represents beam seas and the Faltinsen
potential represents head seas. In the inner expansions of
(24a) Ogilvie & Tuck (1969) showed, in effect, that the first
and last integrals were of higher order, while Faltinsen
got contributions from all three. An essential assumption
in their analyses was that the Fourier transform of the source
strength behaved like 1/k3 for large values of k. We will
also assume that ]*(k) and B* (k) have this behavior.
It is interesting to note that Faltinsen's final result
showed an attenuation of the incident wave as it progressed
down the length of the ship. This is a direct result of the
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inclusion of the first and third integrals of (24a) into
his theory. One would expect this behavior to be limited
to a very small range of heading angles near head seas.
For the oblique seas case, we suspect that (24a) and (24b)
can be approximated by only the second integral, just as
in the Ogilvie-Tuck potential. When we find an upper bound
for the discarded integrals, we will be able to relate it
to the heading angle X, and thus indicate asymptotically
how close to head seas the one term inner expansion of the
source potential for oblique seas may be used before the
effects of these terms must be included. The assumptions
here are consistent with those made by Faltinsen (1971).
Consider the third integral in (24a). Since k is of the
order e-l and « + v is of the same order, the integral can

be bounded as follows:

F(ﬂqx*(k)eikx—|ylf(v—k) -K ? ax c
<
vk V(v-k) 2-k? = vie k3 (v-k) Z-k?

This uses the same assumption that Ogilvie & Tuck (1969)
used concerning the behavior of z*(k) for large values of k.
The constant of proportionality, C, was chosen so that the
inequality is valid. For the range of k considered, the

following inequality holds:

1 1

k3/(v-k) 2~k 2 k2/&k2- (vik) 2

I

and it follows that

[ dk 1 < [ ak 1

VK x3/(v-k) 2=« VER k2 k2 (i) 2
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vk —(\)+|<)2

(V+K)2k

V+iK
= 0(82)

This will be of higher order than the rest of the terms,
even for head seas. Faltinsen (1971) found that an integral
of this type contributed to his second order expansion. We
are just interested in the first order approximation and
can therefore disregard any effect due to this term.

For the first integral in expression (24a), k is less than
v-k and

1 1
V(v-k)2 -2 /Z = (v-x)?
Then the integral can be bounded as follows:
ikx-ly|/(v—k) -K V=K
<| | ak—s—=
/(v-k)z-x2 - k »’(v—k)z-K2

In

v}K dk T*(k)e

V=K

dk

*C
jL k2¢k2—(v—K)

) V=K
4. Sl 0%l I .———L——-cos'lE% (V—Kﬂ

2 (v=k)2 K 2 (v-i) 3 i

o[—-l-—B—] (25)
(v=-x)

The integral identities are found in Gradsteyn and Ryzhik

(1957) . The assumed behavior of 2*(k) was again proportional

I A

= Co

to l/k3 for large values of k. We assume that k<v-k is large
enough to satisfy this requirement.
For the oblique seas, we can see that (25) is o(e)since

V=K is assumed to be of order:
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1

V- k =0[k(l - cos x)] =0(e" ") » 0(1 - cos x) (26)

and 1 - cos x is not asymptotically small there.

To examine the behavior of the term v ~ k as x+0, define
v -k =0("? (27)

where o takes on values of =~»<a<l. Here a-+1 corresponds
to oblique seas and o->- corresponds to head seas. From
(27) one can see that (25) is O(e>%). If we require that
(25) be of higher order than the middle integral in (24a),
then o must satisfy

0(e%) = o (e)

or
a > 1/3

This requirement implicitly states that if the integral in
(25) is of order €, it can no longer be ignored.
From (26) and (27), a value for X can be found:

ole™l (1 - cos X)1 = 0(6-1/3)
which implies
o(l - cos x) = 0(e2/3)

2
Expanding cos x as 1 - %T + .... allows us to substitute
2
1 - cos y = 5
or
o(x) = 0(el/3),

The result can be summarized in words:
If the above assumptions are true, then in the first

order approximatiop for values of X outside a small
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neighborhood of x = 0, the potential for the line
distribution of sources in oblique waves will not repre-
sent any of the longitudinal effects predicted by Faltin-
sen (1971) for the case of head seas. Thus we are able to
relate the two theories and at least get a feel for the
extent of their validity, even though we cannot attach

a numerical value to the limiting value of ¥.

It should be emphasized that the above conclusion depends
upon a number of assumptions, some of which may not be very
likely. To reiterate, the assumptions are the following:

i) The Fourier transform of the source strength, }*(k),

behaves like l/k3 for large k. This requires that
) (X) be zero at the bow. See, for example, Ogilvie &
Tuck (1969).

ii) The minimum value of k in the first integral is large
enough to use the first assumption, i). In other
words, v - k = 0(e” %) is large enough to approximate
J* (k) by 1/k3.

iii) We require that (25) be of higher order than the
middle integral of (24a) without stating explicitly
what this order must be. This implies that the
analysis should be valid in the asymptotic limit
as e+0. However, since we are interested in hull
forms that have non-zero values of €, we may need

a more stringent requirement.

To continue, equation (24a) can then be approximated as

VK Z* ei(kx—]yIVK -(v-k) %)
-ivx+kz dk )" (k) (28)
© / /- (v-k)?

ik
IJ”s(x’y’z):mr
V=K

Using an argument similar to that found in Ogilvie & Tuck
(1969), assume that the major contribution to the integral

in (28) comes from around k = O. Then at the upper square
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root singularity, Z*(v+K) is small enough that the contribu-
tion to the integral from the neighborhood of the singularity
is of higher order. At the lower limit, v - ¥k = k(1 - cos X) .,
and again it is assumed that this is large enough that

J*(k)n~ 0(1/%x’) in the neighborhood of the singularity. The
contribution to the integral there should be of O(g). We

can then expand the radicals for small values of k as follows:

v/rcz-(\)-k)2 = /& V2 /l+2%'12—

K =V

i
A
]
<
—
[
+
<
S
+
o

b}
N
[
<

+
-

and

1 1

/%2—(v-k)2 /%2—v2

and finally

eilylfn —(v-k)? ~ (eilvl|Yx vy (eily|vk/VT-v )

The reason for not neglecting the ily|vk//k®-v?> term in the
exponent is that the exponent can be of the same order as
eikx and hence adds a major contribution. Using these ex-
pansions in (28) gives .

ik -i\)x+|»<ze-ilyI - V}K i(kx—|y|vkﬁﬁ§— 2)
b (x,y,2) =50 e [2_2 V_dez*(k)e MO
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Extending the limits of integration to +» introduces an

error of higher order and (28) can finally be written as

iKe-ivx+Kz—i|y|VK2—v

® . /2 2
Vg (Xry,2)= T3 2 Ak ke tR Iy hus s v
K =V —o00

. . /2.2
- 1K Z(x_ly|v/,4§_v2)ekz—1(vx+ly| K=v') (29)

K -V

Expression (29) corresponds to the velocity potential for
a pulsating line distribution of sources with the e ivx
behavior found in Ogilvie (1974). The method used in that
paper for finding the potential was based on stationary phase
principles and hence different from the method for finding
ws(x,y,z). As stated previously, our method of solution for
the zero speed problem was selected as a means of getting
information on the forward speed problem, and so the pre-
ceding derivation is more than mere redundancy.

Some caution has to be exercised in finding the inner ex-
—1VX

pansion of (29). The e term should be factored out first,

since the inner expansion of w (x,y,2) should match with the

-ivx
even part of the outer expansion of e

ivx

$,(x,y,z). Letting

|y|=0(e), the inner expansion of e ws(x,y,z) is

le

T (x) e K2~ ily]| Yk - v?

Vo (x,y,2)2——
K -V

(30a)

Similarly, the inner expansion of the dipole potential,
expression (24b) is given by

kz=i|y|[/k=v

PRy (x,y,2) = sgn(y)kB(x)e (30b)
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There are a number of things worth noting about expressions
(30a) and (30b). First, both represent two dimensional out-~
going waves whose amplitude is a function of x. Second, as
v>k, i.e., head seas, the source potential becomes singular
like l/x:—vz while the dipole potential remains bounded. In
fact, since wD(x,y,z) is a measure of the asymmetry of the
problem, B(x) should go to zero as v+k since for head seas
the diffraction potential is an even function with respect to
Y. Third, as v+0, i.e. beam seas, ws(x,y,z) becomes the same
expression as found in Ogilvie & Tuck (1969). The transition
from oblique seas to beam seas is a continuous one, and as
will be shown in the following chapters, the inner region
potential will be valid for a range of heading angles from
oblique to beam seas. And finally, fourth, since the body
boundary condition has an odd and even component of the same
order, the dipole and source must generate waves of the same
order from which we conclude B = O(el).

Matching the Expansions

We have the inner expansion of the far field given in ex-
pressions (30a) and (30b). We will now show that this matches
with the outer expansion of the near field without stating
explicitly the solution in the near field.

Ursell (1968) has shown that a solution satisfying a Helm-
holtz equation and free surface boundary condition, (17) and
(18) respectively, and general hull boundary conditions
valid outside some radius r, can be written as the sum of a
wave source, a wave dipole, regular waves and wave-free
potentials located on the free surface. Since (30a) and (30b)
represent outgoing waves, the regular wave term can be dropped.

In the near field then, wl(y,z;x) is given as
u)l (y,z:x) = Asl (X)S(YIZ) + ADl (X)D(Y,Z)

+
m

He~18

A 00 w2l w0 e (o1
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where S(y,z) is a wave source given as

1 ? du vcosh u
T J v coshu -k
-~

S(y,z) = exp(vz cosh p)cos(ky sinh u),

D(y,z) is a wave dipole given as

D(y,z) = ;% ‘[dllcosh M sinh y

cosh u - k/v exp(vz cosh u)sin(ky sinh u),

—_—\

and O(;)(y,z) and O(e)

m(y,z) are odd and even wave-free poten-

tials given as

(o) - . _ .
On‘(y,z) = K2m_l(vr)51n(2m 1)o + 32m+1(vr)s1n(2m+l)9
+ (ZK/v)sz(vr)sin 2mo ,

(e)
o (y,2z)

sz_z(vr)cos(Zm—Z)O + KZm(vr)cos 2mo

+ (2K/v)K2nl(vr)cos 2mo

The Ki(vr) term is the K Bessel function of order i and r
and © are just the cylindrical coordinates in the (v,z) plane,
where 6 is the angle between r and the -z axis.

wl(y,z;x) then has the behavior for large r of

iKASl(x) eKz—i[yIJKZ-vz

wl(y,z;x)+ _t sgn(y)KADl(x) (32)
K =V
Clearly, the expansion will match if Ag, (x) = }(x) and

ADl(x) = B(xX). The means of finding Asl(x) and ADl(x)

will be given in later sections. What is important here is
that the far field has provided a radiation condition that

allows us to define the inner region problem.
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Summary of the Zero Speed Problem

The diffraction potential near the ship, to the first
order, is defined by

2 2
3‘1)1 311)1 2

=+ > ~ V¢, =0, in the fluid domain; (17)

oy 0z

—kY; + Yy =0, on z = 0; (18)
z

3y, 3¢,

IRt S ony = h(x,z); (19)

and a radiation condition of

ikA_ . (x) . [2 2
wl(y,z;x)+ —3s Sgn(y)KADl(x) eKz—llyl K-V, (32)
Ke =~V

as /y2+ z° e .

The multi-pole expansion given in (31) is valid outside
some circular section and could be used to find wl(y,z;x)
if we restricted our interest to circular cylinders. For
ship shapes, however, the series may not converge every-
where in the fluid region if this method is used. In order
to consider an arbitrary hull shape, we derive an integral
equation and present a numerical scheme for solving it in
the next chapter. This will allow us to find wl(y,z;x)

for any given cross section.



Chapter IV
Method of Solution for the y, Problem

Formulation of an Integral Representation: w1= fdloG

Classical potential theory has shown how bodies with known
hull boundary conditions can be replaced with surface distri-
butions of singularities; e.g., Kellogg (1929). Various
papers have dealt with the problem of a body in the presence
of a free surface and at least one, Frank (1967), developed
a numerical scheme for actually solving the flow field around
a two dimensional hull. One of the drawbacks of using an
integral representation is the existence of certain "irregular"
or eigen frequencies for which the fluid motions cannot be
computed. These frequencies were first shown by John (1950),
computed numerically by Frank (1967) and discussed thoroughly
by Ohmatsu (1975). Fortunately, these frequencies usually
occur beyond the range of practical interest. '

The derivation of an integral representation for a Helmholtz
equation without a free surface is done in Lamb (1932). It
is a simple procedure to include the free surface and the

details will be omitted. We can then write:

Y (yrzix) = f dG(y,z:&,n)o(g,n) (33)
Cy (x)

when o0(£,n) 1is the source strength of the singularity dis-
tribution over the hull, CH(x) is the section of interest,
and df% 1is a function of (&,n).

The form of G(y,z:;0,0) has already been given as the wave
source S(y,z) used in (31). Ursell (1962) has given a series
expansion for S(y,z) valid for small vr , where r = /§7127 .
Extending that expansion to include a general source point
requires the addition of the source's basic singularity, the
Ko (vr) Bessel function, and subtraction of its image, Kg(vr'),
times an appropriate factor. For small values of vr we have
then

25
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G(y,z;€,n) Ko(vr) + Ko(vr')

2y cothy[Io(\)r')+22(-1)mcoshm.y Im(\)r')cos mo ']

m=1

4 cothymZ{-l)msinhym [g% (Im(vr') cos mo')]

2mi cothy Eo(vr') +2 J(-1)"coshym I (vr"') cos1n9]
m=1 (34a)
where Ip(vr') is the I Bessel function of order m,

r = /(y-£)2+ (z-n)2
r' = /(y-£)2+ (z+n)? '

cosh y = /v ,

and © is the angle between r' and the z axis where

@ = 0 is directed towards 2z > =-w,

Another form of the same potential, valid for all vr, but
especially easy to compute for moderate and large values of
vr 1is given by Khaskind (1953). It has the following form:

G(y,z:&,n) = Kglvr) + Ko(vr')

z
+ 2 k &7 J dae™ ®* Ry (v/(y-EiZ + (a+n)?)

K e|<(z+n) - i|y—£|v’l<2—\)2
K=V

-2mi (34Db)

The following items are of interest:

i) Since the imaginary components of (34a) and (34b)
must be equal, the series representing the imaginary
part of (34a) can be greatly simplified, i.e.,

ek (Z M og (|y-£ | kZ-vE) = Ig(vr) +

2 ) (-1)" coshmyI (vr')cosme’
m=1
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ii) Both forms can easily be shown to represent a logarithmic
source as v+0 and both become singular in their imagi-
nary part like 1//kZ-vZ as v-k.
iii) The integral term in (34b) is much more easily evaluated
numerically than that given in S(y,z) (see (31)) for
moderate and large values of vr.

For a more thorough discussion of G(y,z;&,n) , see Appendix
A.

Derivation of an Integral Equation

The integral representation given in (33) contains two
unknowns, %_ and 0. In order to find o , we recall that
awl/aN is known on Cy(x). Applying the operator B/BN(y,z)
where N(y ») is the two dimensional normal at the point (y,z)
on the section, we have

oW(y,z) B

—_— = 2 daG 12378, ’ 35
3N(y,z) W(y,z) J (y,z:€,m)o(E,n) (35)

Cy (x)
on y = h(x,z), where the integration on Cy(x) is done in
a clockwise direction.

We proceed now as Kellogg (1929) did for the Laplacian
potential and note that G(y,z;&,n) is singular as (E,n)>(y,z).
From equation (34b) for points not on the free surface,
G(y,z;&,n) is singular like Kg(vr) where r = /(y-E)2 +(z=-n)? .
Inspection of the rest of the terms in (34b) show that they

are continuous as (£,n)>(y,z) and do not cause any difficulty
in the limit.

The singular nature of G(y,z;&,n) prevents us from inter-
changing differentiation with integration when (y,2) is on
the hull. We will simplify our investigation by considering
a shift of the axis that places a straight section of Cg(X)
at the origin and then consider the behavior of (35) as the
hull is approached from the fluid. Taking a limiting process
allows us to jnvestigate the behavior of g%fleo before G
becomes singular. Consider a portion of Cy(x) as shown in
Figure 2 , and the point (0,z)limz*yin the fluid domain.
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N
CH(X) ]‘
H -y
-c| +¢
©0,2z)
Figure 2: Hull Surface for Finding §%3fd2Gc
Here 2 =2 and (35) becomes
oN 3z
9 .
lim ._El(o,z,x) = lim 2 dsG(o,z;E,n)o(E,n)
92 92z
z>0 z->0 cl (x)

H

= { ag %G(0,0;Em)o(irn)

CH(X)

-€

+ lim J ag g% Kk (vr)o(g,0).

b Aade] €

(36)

As the limit is approached, the first integral in (36) is
understood to exclude the hull segment of -e<y<e.

The last integral comes from looking at that small incre-
ment deleted in the first where now the only contribution
comes from the singular Ko(vr) term. Since for small
arguments, Ko(vr): - log(vr) (see Abramowitz and Stegun,
1974), the last integral becomes the following.

-€ =€

lim J g = K_(vp)o(£,0) = -0(0,0) Lim J dE 5= log (v VEZ+z2)

z>0 +e z¥>o +¢
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Il

-6(0,0) %im .Idg-—ii—a—
z+o  te £+ z
—£

-0(0,0) %im tan'lg

z>+0
+e

-710(0,0)

Now expressing the results found above for any general axis

system, we find the following integral equation:

Bwl

3
=5 (Yrzix) =-1f0(y,2)+)[ d% sRG(y,z:E,m)a(g,n) (37)

Cyx (x)

for y = h(x,z). The left hand side of (37) is known from
the boundary conditions leaving only ¢ unknown.

The above derivation was not meant to be rigorous. Rather,
it was intended to indicate the method commonly used in
potential theory by which an integral equation is formulated

from an integral representation.

Solution of the Integral Equation

As mentioned earlier, Frank (1967) has solved the two
dimensional problem where logarithmic sources were distributed
over the hull section. He solved an integral equation simi-
lar to (37) and his method will be reviewed here for comparison.

There are two basic assumptions used in Frank's analysis.
Given a hull section described by n offsets, consider the
points surrounding the ith point, as in Figure 3, where dag
is the actual arclength between the i-1 and i points and
ds; is the straight line arclength between the i-~1l and i
points. Frank's first assumption was that the source strength
o(2), varied slowly enough to be considered as constant over
a given arc. Here the value of o(2) at the midpoint of each
arc was used. Next, he assumed that the ship's hull could be
represented by straight lines. These assumptions were used
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)

(yi+1’zi+1

Figure 3: A Section of the Hull

to simplify (37) in the following manner:

3")1(". Zs: - = d - =
jﬁr.YIlzlrx) =-mo(¥;,21) + J dg IN G(yi,2i:&,n)o(&,n)
Chx (x)
= -mo(Y;,24) + ) J das gﬁ-G(yirzi;E,n)O(i,n)
I=14y.
3
. n-1 r 3
= -1o(¥i,23) +.Z o(¥;,2i) Jdl a5 C(¥irZi:E.m)
j=1 ax,
J
. - n-1 [ 3 _
= -TTO'(Yi,Zi) +'2 O(Yilzi) ds B—N G(Yi,EiFE,T’l):
J_l de
i=l, ... n-1 (38)
where (yj,Zi) is the midpoint of the i*®  1ine segment.

The utility of (38) is that the integral term, [ ds g% G,
is a known integral that can be found in closed torm for
sources that satisfy Laplace's equation.

A question one might ask of Frank's solution is, "How
dependent is the solution on the assumption that the source
strength is constant over a given arc?" For an infinite
number of arcs, this approximation becomes exact. However,
for a finite number, say on the order of ten to twenty, (38)

implies that same number of jumps in ¢. In other words, o
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is not a continuous function over the given station in
question, though a major assumption in the theory of surface
singularities (see Kellogg (1929)) states that it is. 1In
this thesis, we will show an alternate method of solution
that will avoid having to answer this question.

The method used in this thesis utilizes a fact mentioned
by Tricomi (1957) and Wehausen and Laitone (1960). They
show that if one distributes logarithmic singqularities over

a section, then a term corresponding to the integral in (37),

i.e. fdl-aiN-log (/(y-g)z-r(z—n)?)c(g,n), does not have a
singular integrand as (&,n)>(y,2z) but in fact approaches a
limit that is proportional to the curvature at the point
(y,2). Indeed, that some limit exists as (&,n)>+(y,z) can
be implied from physical considerations. Stated in words,
the kernel of the integral represents the velocity induced
in the direction of the normal at (y,z) on the point (y,z)
by a source located at (£,n). As (&,n)>(y,z) the magnitude
of the velocity becomes very large; however, most of the
velocity is in the tangential direction and in the limit,
the velocity in the normal direction appears to be bounded.
For example, if the point (y,z) lies on a straight section
of the hull, as (&,n)+(y,z) all of the induced velocity is
tangential and the normal component is zero. Of course, the
above is based on the assumption that the hull is a smooth
arc whose second derivative exists.

Since our basic singularity is the K,(vr) Bessel function
which behaves like -log(vr) for small values of vr, we
expect the same statement concerning the nature of the inte-
grand in (37) to be true. In order to show this, consider
Figure 4:
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Figure 4: The Behavior of é%xo(vr)as (E,n)>(y,2z)

where N is the normal to the curve Cyx(x) at (y,z) with com-

ponents (nz,n3),

T is the tangent to the curve Cy(x) at (y,z),

B is the angle N makes with the z axis,

Y is the angle between T and r,

O is the angle r makes with the z axis,
and r = /(y-£)? + (z-n)* . From Figure 4, we see that
© = m/2-Y-8, ny = -sinB, and n3 = cosfB .

Using the relations g% =V,.p °* g_awhere avz_D is the
gradient operator defined as V,_p= == i+3;k o
Ko'(z) = -K, (2) (see Abramowitz and Stegun, 1964) and
(y=¢) = -r sin 0, (z-n) = -r cos 0, we find

g% Ko (vr) = -v[n,K, (vr) iX%EL + ngK, (vr) LE%HL_]

= =v K;(vr) [sin B sin® - cos B cos 0]
=V Kl(vr) sin vy

and as vr»0, K;(vr)~> é%-, then

9 siny T
o Ko (vr) » 22T o 2(¥,2) (39)

oON
Where T (y,z) is the curvature at the point (y,z). The
details in expression (39) can be found in Tricomi (1957)
and will not be reproduced here. Equation (39) has the
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desired behavior in that, as (£,n)>(y,z), r and Y both
go to zero.

There is one point that may need some clarification. In
the discussion that followed (35), we stated that the Green's
function had a singular nature associated with it and
hence we had to exclude a small element of arc length to
examine this singular behavior. That investigation led
directly to the -mo(y,z) contribution in the right hand side
of (37). Now we have just proceded to show that the integrand
in (37) is not really singular at all, but rather one that is
nice and continuous. One may ask why we did not use the fact
of the continuity of g% Ko(vr) in the analysis following
(35). The resolution of this apparent contradiction is that
to arrive at (37), we realized that bringing the differential
operator g% inside the integral could not be done until a
limiting process such as that in (36) was used. Once this
was done, the integral could be interpreted as it was.

Now, using the fact that the integral in (37) can be evalu-
ated at the point (y=f, z=n) , we have as a numerical solu-

tion for o(y,z) the following:

awl(Yilzifx) — z:) + f 4 3 G(y 3 o (E )
T Lz = ir24i7
v YirZj cp(x) ON 1r2i75.0 &

n
-1o(yi,23) + ) gy G(¥4:217€5,15)0(E5,n5)05 (40)
5=1

IR

for i=1, ... n. Here wy is just an integrating factor based

upon the integration quadrature selected. For example, if
the trapezoidal rule is used, then

wy = dzj/z j=1, n

w )

5 = (d25_1+d%;)/2 j =2, ... n-1

where df#; is the arc length as given in Figure 3. While
equation (40) is a simpler relation than (38); its accuracy

can be improved by merely selecting\different weighting
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functions, i.e. wy's . The source strength ¢ can now be
found through any of the routines that solve simultaneous
linear equations.

In this thesis, the weighting function used is based on the
trapezoidal rule. While it is not possible to state explicitly
how the source strength varies over a given arc, it is possible
to say that o(y,z) is at least a continuous function and the
product of o(g,n)g% G(y,z;E,n) 1is assumed to vary linearly
between points. _

The arc length, df, is approximated by a circular arc. That
is, given three points, a circular arc is fitted through them
and the normal and radius of curvature are then found for the
middle point. The arc length is divided evenly between the
angles formed by the three points and the center of the
calculated circle.

The exception to this approximation occurs when the point
is designated at a chine. Then straight line segments are
used between points, the normal is just the average of the
normals to the two line segments and the curvature is arbi-
trarily set equal to zero.

The advantages of this sort of procedure over a method
similar to that used by Frank are the simplicity of computation
and the assumed continuity of the source strength. These
advantages should mean a substantial saving in computer time.

The disadvantages are choosing the proper integration
quadrature that satisfactorily approximates the integrand and
handling the source strength correctly when it gets very large.
Consider the following as an example of the first: if
different hull shapes required different quadratures, then
the utility of any program using (40) would be limited. It
was found that the trapezoidal rule gave high levels of
accuracy for full ship sections with a minimum number of input
points. As the sections became finer, such as the bow sections
of ships with bulbqus bows, more offsets were needed, indicating

the advantage (40) enjoyed over (38) had diminished somewhat.
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The second disadvantage can be illustrated by considering
the problem of a rectangle in forced vertical oscillation
governed by Laplace's equation. See Figure 5, where the
imaginary part of o(y,z) is plotted as a function of
position along the hull section. The real part of the
source strength has the same behavior. We know that the
source strength is singular at the corner, yet if we put
in the points so that they describe a rectangle, we must
return the value of the source strength at that singular
point. The solid line, which represents the rectangle, has
a near-zero value at the chine, indicating that it represents
some sort of average between two very large numbers, one
negative, the other positive. The dashed line represents
rounding the corner off with a bilge radius of .05 times the
draft. As can be seen from Table 3, the added mass and damping
coefficients compare quite well with those given in Frank
(1967) for the same problem. Obviously, the singularity in
o(y,z) is an integrable one, and from Table 3 it appears that

TABLE 3.
Heaving Rectangular Cylinder
B/T=2.5 , 2n/A « B = 2.0 Added Mass Damping
Rectangular Cylinder (Frank (1967)) 1.08 .20
Rounded corners (Figure 5) 1.06 .20
Chine (Figure 5) 1.08 .19

it does not make much difference whether one takes the pre-
caution of rounding the corner or not.

For numerical examples of (40), see Chapter VI. .
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Figure 5: The Behavior of the Source Strength for a

Heaving Rectangular Cylinder.

The Determination of the Potential

As described in Appendix A, it is an easy matter to find
both G(y,z;&,n) and g%G(y,z;E,n) at the same time. For
every input point where o is found, G is given also. The
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potential, wl(y,z;x) » could then be found through the

integral representation given in (33). There is one source
of difficulty though. While we have shown that %% is
continuous as (£,n)+(y,z) , the integrand of (33) has an

integrable singularity there. As a result, we have to modify
our numerical scheme slightly to find wl(y,Z;X) .

Briefly, we use the same integration quadrature over the
entire section for all of the non-singular terms in G and
for the Ky (vr) terms where (y#£) and (z#n) . For the point
(y,z)=(£,n), we assume that the source is a linear function
between that point and the surrounding points, and that ds

could be approximated by dr where r = /(y=£)2 + (z-n)2 .
- This means we have to evaluate integrals of the form

dIr'i dri
a J dr Ko (vr) and b J dr r Ko(vr) . : (41)
o o

Here a and b are functions of the source distribution, o ,
and known. See Figure 6 for a description of dr;.

)

Figure 6: Description of drj.

For the arc length drj, the constants a and b in (41) are

given as
a = o(yj,zj) and b = [o(Yj4+1s2541)~ o(yi,zi)]1/dr; ,

and can be represented in a similar manner for dri—l' For
methods of finding these integrals, see Abramowitz and Stegun
(1964).
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In order to simplify the notation when writing the algorithm
for (33), define gl(y,z;E,n) as

G(y,z;&,n) = Kolvr) + g(y,z;&,n) (42)

where, from (34a) it is clear that

KZ

gl(y,z;E,n) = Ko (VE) + 2«xe doe™ “%Kg (v (y-E) 2+ (a+n) )

8 *———=N

< (z+n) - i|y-g]|vVk2-v2

- 27i (43)

kKZ-v
For points not on the free surface, g(y,z;&,n) contains all
of the non-singular terms of G(y,z;&,n). For values of
wl(y,z;x) on the hull, expression (33) can then be written

as

¥, (yi,ziix) = J dG(yi,zii€,n)o(g,n)
Cy(x)
i-1

= jgl G(yi,zi:84,M5)0(E5,n5)wg

n
+ 1 G(yjrzii€5,n3)0(E5,n5)w]

j=i+1
i+l
+ L 9(yirzii&5,n4)0(E4,n5) W]
j=i-1
dri
* J dr (a+br) K, (vr) . (44)
drj-1

where o(£;,nj) is the known source strength, wj , is an
integrating factor like the wj used in (40), g(yi,zi;gj,nj)
is given in (43) and the integral term is composed of such
integrals as those in (41).

Now that we can galculate wl(y,z;x) on the hull, we can
use Bernoulli's equpation to find the pressure. See the

section on numericgl results for calculations of ¥, and
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comparisons with experiments.

A Frank-type program was not at our disposal and so we
could only compare our results with those published by Frank
(1967). As a comparison between the two methods, the
results given by him for the pressure distribution on a
heaving circular cylinder represented by 21 input points on
a half circle have been duplicated to the same accuracy using
only 8 input points. Both of these methods reproduce the
results of Porter (1960), who used a multipole expansion.

While we agree that most people familiar with Frank's
program would use only 5 to 7 input points on a half section
to get what is considered reasonable results for added mass
and damping coefficients, we would like to point out the
following:

i) Getting an acceptable accuracy in forces does
not necessarily mean that the margin of error
in the calculated pressures is the same. For
example, if one is interested in the heave
force, the pressure near the free surface could

be wrong and still not effect the force.

ii) What we considered to be good comparisons were
results that did not vary from Porter (1960)
or Frank (1967) by more than a fraction of a

per cent.



Chapter V
The Forward Speed Problem

In this section we will examine the effects of forward
speed on the diffraction problem. The coordinate system is
shown in Figure 1 and the governing equations are Laplace's
equation, the free surface boundary conditions, and ;he hull
boundary conditions given in (3), (4), (5) and (6), fespec—
tively. Recall that the ship is fixed in space.

Assume that the total potential ¢(x,y,z,t) is the sum
of four potentials, Ux, ¢g(x,y,z), ¢1(x,y,2,t) and @D(x,y,z,t)
where Ux represents the steady stream, ¢4 the steady state
‘potential, ¢1 the incident wave potential and 9p the
diffracted wave potential. ¢ can then be written as

¢(x,y,z,t) = Ux + dg5(x,y,2) + @1(x,¥,2,t) + Op(x,y,2z,t)

(45)
where
op = %Loo o i (wt-vx) encz—iy/;f__\,?
s (46)

As stated in the initial assumptions, w , the frequency of

encounter, is
w = wg + VU =0(e"1) (47)

and the dispersion relation is

wo? = kg = 0(e~1) .

Also, the speed U is assumed to be 0O(1l).

The solution for the steady motion problem, ¢g , is already
known and only pertinent facts will be presented here. For
details, see Tuck (1965). A brief summary of the problem is

stated in the follqwing:

40
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In the near field, a first term expansion of ¢g(x,y,2z)

satisfies
¢5yy Qszz =0 , in the fluid domain;
9ng _ _ 12 = 0
= = st 5 @Sy y On z 0;
°Sz =0 , on z = 0;
and
o0dg hy
IN = 71_'_—h%- ’ on y = h(X,Z) .

ng(x,y,2z) is the wave amplitude due to a steadily moving ship.

Far from the body, the inner expansion behaves like
a(x)logr plus some function of x. Here a(x) is proportional
to the longitudinal rate of change of the sectional area and
r=/yZ+zZ . In the near field s and its derivatives have
the following order of magnitudes:

0(%g) = 0(%g,) = O(ng) = O(e?) ,

O(bgy) = 0(8g,) = Ole) .

Sz

Also, @sy(x,y (x),0)=yd(x) where yo(x) is the half-beam at

the waterline.

The Near Field Problem

Since there is no reason to expect the steady-speed wave
amplitude to be dependent upon the incident wave amplitude,
two small parameters will be defined. Given the assumption
on the forward speed, the steady speed potential is related
to the slenderness parameter € which characterizes the hull
geometry. The diffraction potential is a function of both
the incident wave and the hull shape, and hence will be based
on both the slenderness parameter ¢ and an incident wave
parameter §. Specifically, the incident wave amplitude zq
will be of the following order:
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Zo = O(ed) (48)

This insures that the wave amplitude will always be smaller
than the beam even as €+(0. The explicit relations between
the hull geometry and € are given in (7a) and (7b).

Putting (47) and (48) in (4), (45), and (46) we find that
the incident wave potential is of the following order:

¢o(y,2) = 0(e3/2¢)

Our purpose is now to expand the diffraction potential in
a perturbation series. We will see in the following pages
that the first term in the near field expansion is just
the zero speed potential while the second term includes
the forward speed effects. The first term will be shown
to be of the same order as the incident wave potential

while the second term will be O(e:l/2

) higher.
The governiny equations will now be found to an order
consistent with the above statement. We will define the

following quantities:

i(wt-vx)

z(x,y,t) = ng(x,y)+e [no(y) + n7(x,y)]

and

¢p(x,y,z,t) = el(wt-vX)¢7(XrY:Z) .
Here ¢ is the total wave amplitude composed of the steady
wave amplitude ng, the incident wave amplitude ne and the
diffraction wave amplitude, n7. It can easily be shown
from (46) and Bernoulli's equation that

iyv’Kz—v2

No (Y) = -iz;oe_

Using the above relations and discarding terms of higher
order, the dynamic boundary condition on the free surface
given in (4) is
+ i o - - +
gn7 + lugdy ¥ -Uby, - Uldy, + do )ogy (49)
[e8] [e%/28]
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on z = 0,

and the kinematic boundary condition on the free surface
given in (5) is

¢

g iwgng = Un7, + U@sy(noy+ﬂ7y) + UQSyy(no+n7) (50)

[e!/25] [e8]

on z = 0. The orders of magnitude are given under each of
the equations. We take the liberty to state them here even
though they are not known until the end of this section.
The derivation of (49) and (50) is similar to that used in
Ogilvie & Tuck (1969) to derive the free surface boundary
conditions for the forced oscillation problem and the details
are omitted.

Using the fact that ng=-iwy$, when combining (49) and
(50) yields

-wd 07+g¢7, = -2iw0U¢7x—2imou(¢oy+¢7y)@sy—iwouésyy(¢o+¢7) (51)
[e1/25] [e6]
on z = 0.

Since %%$ = 0 on y=h(x,y) , the body boundary condition,

(6), for the first two terms in the diffraction problem is

] ]
7%% = - 7%? on y = h(x,y) , (52)

where N is the two dimensional normal in the transverse plane.
The equation of continuity, Laplace's equation for three
dimensions, becomes a Helmholtz equation in two dimensions

of the form:

2 32
9%¢7 , 3707
dy? 3z?

- v, =0 , (53)

valid in the fluid region.
As in the zero speed problem, assume that ¢5 can be

expanded in a series expansion of the form
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o~

¢

7(x,y,2) ~ Vn(x,y,2;€68) . (54)

i=]1
Then the first two terms of the series expansion satisfy

the following equations:
The ¥, problem is

v;_le - v2w1 =0 , in the fluid region; (55)
-mgw1+ g, =0 |, on z = 0; (56)
and
Y 3¢
e , ony=h(x,z) . (57)
N N
The wz problem is
v;_Dw - vzwz =0 , in the fluid region; (58)

_w%w2+ngz = -2iwouw1x—2inU¢sy(¢oy+¢ly)-iwo@syyu(¢o+¢l),(59)

on z = 0;
and
3P,
a8 = o , ony = h(x,z) . (60)

Comparing equations (55), (56) and (57) with (17), (18),
(19) shows that the ¢; problem for the forward speed case
corresponds to the first order in the zero speed case. This
problem has already been discussed in the previous chapter
and only its solution will be presented here:

Y, (y,2zix) = J dfc(g,n)G(y,z:&,n) . (33)
Cy(x)

The ¢, term appears to be quite a bit more complex. It
satisfies a homogeneous differential equation and a homogeneous
body boundary condition but a non-homogeneous free surface
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condition. The terms on the right hand side of equation (59)
can be grouped into two parts: one, which can be considered as
local effects, and the other which extends to infinity.
(That is, infinity in the sense of the near field. Remember
that infinity in the inner variables corresponds to the outer
variables approaching zero). The term which extends to
infinity has an oscillatory nature to it, characteristic of
the wave-like behavior of wl at large distances from the
body.

If we were to apply an oscillating pressure distribution on
the free surface of the form

fwt ot . .
e p(y) = ™ [=21woUb1,~21woUldoy+P1y) &5y ~iugls, Uldoty, )

(61)

on z = 0, the resulting problem would have precisely the same
free surface condition as that given for v, 1in (59). Also,
this pressure distribution is forcing the free surface at

the same wave number and "natural" frequency that occurs in

the free wave solution of (58) satisfying
-wgy, + ngz = 0 on z=0.

This sort of resonance phenomena is similar to the applied
pressure problem found in Ogilvie & Tuck (1969), but differs
in that the differential equation is a Helmholtz one, instead
of the Laplace equation in two dimensions. The solution to
this applied pressure problem is given in Appendix B.

It should be emphasized that without solving the y; and
wz problems, stating equations (58), (59) and (60) in the
form given is little more than speculation. These are only
correct if ¢,=0(el/2yy) , which we will presently show.
The usefulness of the far field expansion is that it will
provide us with a radiation condition, indicating the proper
relationship hetween y, and ¥v,. In (58), (59) and (60), we
take the liberty of stating the equations in their correct

form, using information not yet derived.
<
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We will conclude this part by stating the outer expansion
of the near field. If we let y and z get large and use the
behavior of the inner expansion of ¢g for large distances

from the body, we see that (59) becomes

Kby * ¥y = - 206 U,
X

We know the behavior of wl for large values of y and z from
the zero speed problem. From (32) we see that

o ifﬁéLifl eKz-inIVKz-v2

+ sgn(y)kA'py (%)
as vy2+zZ +» o
1f we want the behavior of y, for large Yy2+zZ2 , we can

see from (61) that it can be obtained by applying the following
pressure on the free surface:

~7-42 | iKA'sy (x)

-2iw -i V4=
ply) = %0 pye ily|Ve%=-v — + sgn(y)kA'p, (x)

In Appendix B we show that the outer expansion for a problem
with this pressure distribution, and consequently the outer
expansion of wz , is the following:

—2i Lily| /RZE | iKRTsy (X)
» ~2ilwo ye-ilylVk=-v +sgn(y)kd' ) (x)]| z-i]y] K

v g ;KE—\)5 VY

Using this result and the outer expansion of y;, given in (32),

we find that the two term outer expansion of a two term inner

expansion is

. ———7 | ikA_, (x)
W1+¢2 . oXZ 1|y|/K v ___§l____+ sgn(y)KADl(X)

K=V

- 3 i '
2iw, ikA Sl(x)

g U /Kz—_\;z + sgn(y)KA'Dl(x z—i‘./__l__le___L (62)

K =V
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Recall that AD1=O(eAsl) (See the discussion following (30b)).
We will have to match this with the two term inner expansion
of the two term outer expansion.

From (59) we see that there is a local pressure distribution
on the free surface and as a result, the wz problem will in-
clude outgoing waves. However, in the outer expansion these
waves are of higher order and hence dropped from (62).

The Far Field Problem

The derivation of the zero speed problem has given us the
necessary background to proceed with the forward speed case.
Since many of the details are similar and at times redundant,
only the major points will be presented.

As in the zero speed case, we expect an odd and even part
to the potential, indicating that both sources and horizontal
dipoles will be needed. The dipole potential will be found
by differentiating the source potential with respect to its
source point. Also, as explained for the zero speed case, we
have a free surface condition that allows for the existence
of surface waves, even though this will mean including higher
order terms in the far field. When we find the inner expan-
sion, we will only keep terms that are consistent with our
level of approximation.

For a line distribution of pulsating sources in an incident
stream, let the velocity potential ¢ be the sum of an incident

stream potential and a source potential. That is, let
d(x,y,2,t) = Ux + elwt Vg(x,y,2) (63)

Then the governing differential equation is

v_Vs(x,¥,2) = lim L(x) e ™ §(y-£)8(z-n) (64)
£+0
n->0

and the free §urface boundary condition is

lim (jutUpse + W2 bgtavg, =0 onz =0 (64)
u->0
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Here w=wg+vu , wd/g=k and u is a fictitious viscosity that
insures outgoing waves. Solving (64) subject to (65) by the
method of Fourier Transforms yields

R AT T ity+ ke’ 2
Vg (x,y,2) = 1lim - f dke Z*(k+v) j dag
+0 47
" o Co VK492 - %(w+kU—iu)2
==L | ak eFF T (kv T (k)
ar’ s ' (66)
where ]* (k+v) is the Fourier Transform of e VX 1* (x) and
[ (k) = lim f ag __ etttk =
HY0 o k2 4g? -é(w+kU-iu)2 (67)

If U=0, then w=w, and (67) corresponds to (23a). As in the
zero speed case, the details for the simplification of Is(k)
are given in Appendix C and the results are shown in Table

4. The values for kl and k, are also given in Appendix C.

TABLE 4

Is(k) for different values of k and U not equal to zero.

Is ()
. /T b vt 2 s 2
k>k ‘Zﬂiéiyﬁiéw°+k0) (V=k) =, gglwotkt) Tz | l(wo+kU)2
1 g
/é-é(wo+ku) - (v-k) 2
- 12 -1 4 1 2
oy o=y (V=) 2 Wotk0) | (ugtkm 2z Lo o
k2<k<k1 3
/?\)-k) 2 - éz (wo+kU)“
. 1 ", ) 2 1 2
2‘[]'iely'/§2 ((Do+kU) - (\) k) ° eg (wo+kU) z ° l(wo_'_ku) 2
k<k2 =
/éz (wo'l'kU)“ -(v-k) 2
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The potential Yg(x,y,z) given in (66) can now be approxi-
mated. First, make the substitution k=k'-V in (66), then
use the results of Table 4 to find

Vg (x,y,2) = Z#%'e 1Vx -J dk elkX Z*(k)Znielyﬁp*WﬂkU) (v=k)
k

1

1 2
. o5 (WotkU) 2z % (wo+ku) 2/VE (wg+ku)* - (v=k) 2

g9
k

1 / 1 2
i - - 2 —.
+ I dk e***7x (k) 2me ¥V (V7K g2 o™ KO
k
2

L 2
. o9 (WotkU)" z | é- (wo+ku)2/l2 (v-k) 2= (w+k V)"
g

k
2 i Py /L B _ (vog) 2
+ J dk elkx X*(k) 27 ely/%f(wo+ku) (v-k)

e

1 2 '
. eglWotkU)“z | é‘(wo+ku)2/y;21— (wotku)* = (v-k) 2 |(68)

Remember that (68) is valid for y>0 and the range of integra-
tion in the first integral includes the value k=0. Then,

in an analysis similar to the zero speed problem, the Fourier
Transform of the source strength is assumed to behave like
1/k3 for large values of k and hence the last two integrals
can be shown to be Of(e) . The details are similar to
that leading to (25) and are omitted here. Also, extending
the lower limit of the first integral to -~ does not effect
the accuracy of the potential to the order considered, as

can easily be verified. The potential, VYyg(x,y,z) , can then
be written as

i ig/ L B _ (yok) 2
ws(x,y,z) = 5= e dk e1kx X*(k) e iy ‘-g-z(u)o+kU) (v-k)

T
],ET -1VX J
-0

1 2
. g Wotk )%z é(wo+kug%9g% (WotkU)* = (v=k)2 . (69)
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Following the argument used for the zero speed problem
(see the discussion following (28)), assume that the major
part of the integral in (69) comes from values of k near to
zero. Then we can show that the square root singularities
have only a higher order effect on the integral and conse-
quently the terms in (69) can then be expanded about k=0. For

example, define

f (k) EV/éz(wo+ka*—(v—k)2

- iTT __k ., 02 2
vkZ-v [1 * ki—vD) (2 wh +v) + k J
. iTT __k 5 ?
=2 yké=y [l + K2-v7) 2 g ] (70)
and
= E (k)2
h(k) = g (Uo
= k(1 + 220 (71)
Wo
Dividing h by f gives the following:
LK 2U _ 2Uk?
hik)/£(k) = == [.1 +k (wo ESTE’:373)} (72)
We will now put the approximations of (70), (71) and (72)
into (69). These are small k approximations but the limits

of integration, which are -» to =, are retained producing
only higher order errors. The potential yg can then be

written in the following manner:

o]

e , ST
b (x,y,z) = 5 Jdk eFX Tx (k) 7YY (x2-v2) wo

-=CO

2

2ky 2
k (l+——) z K 20 _ 20k
e wo T+ ST [:1 * k(g m) (73)
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This is the two term far field expansion. We can check (73)

against the potential given in Ogilvie & Tuck (1969) represent-
ing a line of pulsating sources without the e VX dependence.

If we set v=0 , and add a higher order term of no consequence,
k(z-iy) U2k2/4 2

i.e. e , we find that (73) can be written as
LT i Uk, 2
Vg (X,y,2) = o= Jdkelkx % (k) eX(FTIYI DT
-0

Except for a factor f%-, which is the difference in definition
of source strength used in (64), the two are equivalent.

Thus, the relation give in (73) is valid for modeling the far

field diffraction behavior of both beam seas and oblique seas.
We will now proceed to determine the behavior of (73) in the

inner region of the far-field.

The Inner Expansion of the Far-Field Expansion

To find the two term inner expansion of (73), let y=0(¢g)
and z=0(e). Then the exponetials can be approximated by

2
-iy/xZ2-vZ [1 + Zk 5 2UE

© (v fe wo/KZ=V2
o]

- e—iy/Kz—vz [ _ iszUK2
and

2kU w_2U
T L L [1+kz og ] .

Now, noting the Fourier-transform properties of
o

1 f ikx

Z(X) —ﬂ Jdke

- 00

¥* (k)

and

I'(x) = f% Jdk et*® k7% (x)

and dropping k2 and higher terms in (73), we obtain the
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following:
0
- . . z Z K .
. L -1vx-1y/:< “VEtKz ikX ok
Vg (x,y,2) = on © T2 Jdk e y* (k)
20  2uk? 2Uu iyk ikx
+ |- - +——Q(Z-—=¥——-) Jdke k){k
Wo  wg(k2=v?) g Yi*-v? I'ti)
== 00
- ki e-—ivx-—iy/Kz-—v2 +KzZ 5 (%)

V2=-y?

2 :
-i' o | B2 - 2 +2U;’Q (z —/%——,IK ﬂ .

0 wg(kZ=-v?) K4=v

The first term is just the zero speed potential (see (30a))
and the second term, which is of order gl/? higher, has a
regular wave term and a wave-like term that grows linearly in
the y and z coordinates. This is not the total inner expansion
since ) (x) should also be expanded in an asymptotic series
like

Y(x;e) ~ ZI(X;E) + Zz(x;e) + ...

where 22=o(21). This will add another regular wave term at
the second order. Thus, the final form of the two term inner

expansion is

: . - ‘/ 2442
el\)x lbs(errZ) ~ /K%vekz 1!Y| K=V zl(x) + zz(x)
s 2u _ 2uk? 20w ilyl
-1 21(")[% g (k2-v2) T —g (7 “TEy)

(74a)

Note that y has been replaced by |y|. We can do this, since
the source potential is an even function in y.

To find the horizontal dipole potential, we just differen-
tiate (74a) with respect to its source point, £. We see from
(64) that differentiation with respect to & is equivalent
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to differentiation with respect to -y. Consequently, we can
immediately write down the two term inner expansion of the

dipole potential vYp(x,y,z) as

sgn (y) k eKz—ilyIVKz—\)2

14

eiVX wD(x,y,Z) Bl(X) + B,y (x)

igY (x) [%‘1 + 2o (, _ il-Y—Iﬁﬂ . (74b)

o g9 YkZ-yZ

Note that the minus sign has been absorbed into the dipole
constant B(x) . We will now match these expansions with the
outer expansion of the near field.

Matching the Expansions

The difficult work is now done and it is just a matter of
comparing expressions to see if they are equal. The two-
term outer expansion of the two-term inner expansion is given
in (62) and it should match the two-term inner expansion of
the two-term outer given in (74a) plus (74b). We see that if

we set:

I1x) = ag (x)

Bl (x) = AD]. (x) r

Lov 2U 2uk?

Io(x) = i]{(x) [—; - ;;7;;:;;3 '

and
[ U
8y () = 181 (0) 22,

all the terms will match. It is important to note that in
setting Jj (x)=Ag; (x) and B;(x)=Ap;(x) both the first order
terms and the linearly growing second order term match
identically.

Up to this point, no mention has been made as to the method
of determining Agj(X) and Apj(x). We will address our-
selves to that problem now.
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If we have the solution to y; on the hull given in the
form of (33), then we can use the asymptotic nature of
G(y,z:;&,n) to find Ag; and Ap;. Specifically, from (32)
and (34b), where we use the nature of G for large values of

y2+z2 , we write:

eKZ‘i|Y|/K =V A ik {
sl /;_:;_ + ADl sgn(y)%] ~ JdﬁO(ErH)G(XrY7€rn)
Cy (x)
Yrires N

i (z+n)—i|y-€|/K2-v§
= -|ldra (g, _IK__ K
I : n)/Kz—Vz ©

CH(X)

(75)

Since %%% on the hull is composed of an even plus an odd

function, ¥; can be written as wl=wl(e)+wl(°)=fdlo(e)G
(O)G or g= o(e)+c(°) . It follows that: ¢

+fdlo
o' (g,m = % [6(E,n) + o(=E,1)]
and
1

= [o(E,n) - g(-g,n)l .

o' (g,m) = 3

Then from (75), it is clear that

f igy Z_92
A1 (x) =] dno(® (g,n) e<NFEEKTTY (76a)
Cy (x)
and
-3 i /Kz-v2
Anq (X) = 1 szo‘“(g n) e<Ntit (76b)
D1 YKk2=y2 ’
CH(x)

These relations give us the values of Ag) and Apj SO
that the second order problem Y, can be determined.

We are through with the far field expansion. Its useful-
ness has been in verifying the representation of the second

order term in the near field given by equations (58), (59)
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and (60). We can now state that the forward speed effects,
represented by the second order term, are of an order el/2
higher than the.zero speed term, represented by the lowest

order approximation.

Summary of the Forward Speed Problem and Its Solution

The preceding material in addition to the applied pressure
problem with its solution described in Appendix B, gives us
the necessary information to write down the solution to the
forward speed potential. The near field potential can be
approximated as follows:

The first term, ¥, , in the asymptotic series (54), satisfies

v;_le—v2wl= 0, in the fluid region  (55)
~wdY +gb,, =0, on z =0 (56)
and
3 _3¢g
3N 3N ’ ony = h(x,2z) (57)

The solution of by is given by

(33)

-

ll’l(y,z;x) = Jdlc(a,n)G(y,z;E,n)
CH (x)

and methods for solving this numerically have been discussed
in Chapter 1V.
The second term in (54) , ¢2 , satisfies

V§_Dw2-v2w2 =0 , in the fluid region; (58)
~wdy,+g = =2ig U, =-2iwUld~. +U, )®. —-iw-Ud .
owz lpzz ° wlx o u’Oy lply Sy Wo Syy(¢0 ¥1)
(59)

on z =0 ;
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and

v,

-5 = 0, ony = h(x,2) . (60)
Let 1, be composed of three potentials Wl ’ Wz, and T3.
These auxiliary potentials will each satisfy a particular
part of the boundary conditions with their sum satisfying
(59) and (60).

For the ¥, problem, consider an oscillating pressure on the

free surface extending to infinity and in the absence of any
body. 1In particular, let

vi_ ¥, ,-vZ¥, =0 in the fluid region;
and
k¥ +Y = —21;0 U [i';gé_\()j;) + Sgn(y)KAl')l(Xﬂ e'ilyl'/:t‘Tz
—ilyl/EfoT

[p; + sgn(y)p2l e on z=0.

Here we define p; and p, which are functions of x only and
thus can be considered as constants. The terms Ag; and Apy
are given by (76a) and (76b), respectively. This free surface
condition is just the behavior of (59) for large values of

/yz+z2 . From Appendix B, we can write down the solution for
Wl as
. _ —ilyl/Kz—Vz+KZ z- iIYIK . s
v (y,2;x) = [pl+sgn(y)p2] [e — + i+,
1 Yké=v
(77)
where
- T -|y k 1zvkZ-v2 -izvk“-v
i, = B1 77 Idk —_ _l : — | ——s + &
1 ” (ik+vVk 2=V )(ik-VkZ-v9 |-k+ivké-v? k+ivks-v<
\Y

Pal -
2 = 89n(Y) =5 [dk(ikwKZ-vZ)(ix-./KZ-vZ) SeAI/RTVT T A IRE Y
v

H-
n

and
. 7 ke-|y|k { eiz#k!-vz e-izlkz-vz}
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Now consider Wz as a local pressure distribution on the
free surface, also in the absence of a body. Since we know
the asymptotic nature of Wz for large values of /;7157 r We
subtract this behavior from (59) and are left with strictly
local effects. Let Wz satisfy

Vi _p¥,mviY, =0 in the fluid region;
and
-2iw 2iw iw
- = 2% py, 219 ~1%
KY,+¥ 5, 5 wlx 3 U(¢oy+¢1y)‘1’sy 3 Udgyy (9ot¥))
. ikAg, (x) 53
2iw 1 -ily|Vk%=v
+ 20 U| ——=——— + sgn(y)kAL,(x)] e ¥
g YkZ-v2 D1
= p3(y;x) on z =0 .

where p3(y) is a function of y and goes to zero as |y| gets
large. Then from Appendix B, we can write the solution for

Y, as
m .
Y, (y,25%) = 1 rdkelky+z/vz+k2 dge_igkp (£;%) (78)
2 (yr2ix) = oy AT 3 (&7
—-v-—r\—’

The integral has two poles and the path of integration is
indented as shown.

Since the sum of Wl and Wz satisfy (59) on z=0, we can now
consider W3 which will satisfy a homogenous free surface
boundary condition and a given hull boundary condition. 1In

particular, let

2 —-y2 = . . N
VZ_DW3 vy, 0 in the fluid region;
—wéW3+gW3z =0 on z =0 ;
oY oY
and == - 2L s Eﬁi on y = h(x,z).
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Its solution can then be written in terms of a surface
singularity distribution similar to (33). Thus, Ta is given
by

W3(y,2:x) = Jdla(E,n)G(Y,Z;EIH) (79)
Cy(x)

and methods for numerically solving this have been given in
Chapter IV. It is easily verified that the sum of ¥, , ¥,
and y3 satisfy all the governing equations of the ¥; problem
given in (58), (59) and (60).

To summarize, the second order term, y, , is given as

Yoly,zix) = ¥Yy(y,2z;x) +¥,(y,2z:x) +¥3(y,2;X) (80)
where ¥; , ¥, and Y3 are given in (77), (78) and (79),
respectively.

The Pressure and Force on the Hull

To find the pressure on the hull, we apply the Bernoulli
equation as follows:
B — + 0, + = [02 + 02 + 02] - y2/2 (81)
p - 9T T 7 kT Ty T Tz
Where ¢ has the assumed form given in (45). To find just the

dynamic pressure, put (45) and (54) into (81) and retain
terms of 0(e3/28) and lower to find

“Pp _ i - .
_p_ ~ el((l)t vX) [l‘*’o(¢o+¢7)+U¢7X+U¢Sy(¢°y+¢7y)+u®sz(¢°Z+¢7z)]
i(wt-vx) . :
N e.‘L () X [lwo(¢o+‘p1)+lw0w2+lex+U®sy(¢°y+wly)
[e6] [e3/2§]
U +U 82
+ Uog, (g0, +¥) )1 (82)
[e3/26]

The first term is 0(e§) and represents the zero speed pres-
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sure. Note that the Froude-Krylov pressure, i.e., the

pressure due to the undisturbed wave, is the same order as
the first term of the diffraction pressure represented by
¥, - The speed dependent terms are 0(e!/2) higher.

Some observations should be made here as to the ease of
computing the dynamic pressure py given in (82). The lowest
order terms are relatively easy to find as described in
Chapter IV and as illustrated in Chapter VI. One 0(e3/2§)
term invovles differentiating Y, with respect to x. This can
be done numerically and should not involve a lot of work
since y; is assumed to vary slowly with respect to x. The
term that causes considerable difficulty is the iwow2 term
whose solution is given in (80). In particular, note that the
contribution from (78) involves a double integral of an inte-
grand that is only known numerically. It seems that this is
a tedious calculation to find only a higher order correction
to the zero speed, lowest order term. If we are just interested
in the sectional exciting forces we will see that by defining
an auxillary problem, the forced oscillation potential, some
of the tedium can be removed.

Only the longitudinal force distribution will be derived
here. The roll moment can be found by using the same analysis.
In the cross plane there are two force components, F, , the
sway force distribution and F3, the longitudinal heave force
distribution. The general dynamic force distribution can be

written as

Fi(xrt) = = JdQPD(X:Ernrt)ni(Ern) (83)
Cy (x)

where pp is given in (82). Then using (82) we find

; - f
el (wt \)X)J

Fi(x,t) = p AL [1wg (0o+¥1) +iwgh, +U¥ )

Cy (x)

X

+ U@sy(¢oy+wly)+U®sz(¢oz+wlz)lni Pi=2,3 (84)
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The terms wly and b1, should be easy to find once y; is
known. As noted earlier, VY;. will have to be found numerically,
though as shown in the numerical examples, this is not too
difficult. The steady speed potential, &g, and its deri-
vatives are considered as known. This means the only term
that makes the determination of the section force distribution
difficult is the second order Y, term. Let us examine a number
of simplifications that can be made.

First, define a forced oscillation potential ¢; ., i=2,3,
where ¢; satisfies the following:

2 —y?2 = : - T
Vo _pPiTVt; = 0 in the fluid domain;
-K¢i+¢iz =0 on z =07
and
3¢ _ _
N n; ony = h(x,2z).

Also, if there are two functions A and B that satisfy a
Helmholtz equation in two dimensions, then it can easily be

shown that Green's Theorem takes a form

3B _ poa
JdZ(AaN B§ﬁ )

C

=0

where N is the normal to the closed curve C.

3
Using ¢i , Green's Theorem, and (60), (i.e. 7%% =0), the

i-th sectional force due to Y, can be written as follows:

6
szniq)z = -[J + J + J]dl —%Il- Yy - ¢i%l%2—:l (85)

Cy (x) F.s. S|yl=m S?=_m
where F.S. is the mean free surface represented by z =0,
S!y!=m are the two vertical planes at y=i® and §,__, is

a horizontal plane at 2z=-x .
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Since o5 will decay in the -z direction like 2 , it

will dominate the linear growth of y, and hence the integral
over the plane S, __, will contribute nothing.

Now consider the behavior of ¢; and Yy, at the planes S|Y|=R
as R+« . We know from the discussion of the outer expansion
of y, that the behavior of ¢; as /yZ+z7+= is

ik -i|y|/k%2-v2+kz

d)l -+ Ci oy e (86)
where C3 is a constant and C; is a constant multiplied by
sgn(y). As stated previously, ¥, behaves like

e . 7 _. 2 . ] '
v, ~ 2iw Kz-llyl/K v 1KAgil + sqn(y)kA z - i K
2~ Tg°ve JeToyz T SIRYIEAnL M
(87)

In the interst of brevity, we will only examine the heave
sectional force. The sway sectional force is similar and
its description is omitted.

For the heave sectional force then, the contribution to

(85) from the planes Sly as R»» can be found by using

==
(86) and (87) and noting that g% = ig% on these planes.
It is the following:
3¢5 Yo _ 2C5k? v oW (2| R| /RZ=v2
Al | = ¥Yo-t3—| = 1lim Ao 20 e~ i2
] J [aN 2-9373N Row  (k2-y2)3/2 S1g €
ly|=e (88)

Equation (88) has no meaning if we let R go to infinity.
However, we expect to have the same trouble with the free
surface integral in (85) and fortunately these two difficulties
cancel each other.

On the free surface, g% equals g% . Using this, and the
free surface boundary conditions for ¢3 and Yo , we have for

the free surface integral in (85)
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3¢5 Y2 [ (21w 2iwg
sz[aN ¢2_¢3 BN] = JdY[ l;) U¢1x¢3 + lg U¢8y¢3(¢oy+wly)
F.S. F.S

+ }-%)-QU@syy¢3(¢o+wl):| (89)

The terms involving the derivative of ¢4 go to zero for large
values of y but the term containing ¥;,¢3 represents an

outgoing wave of amplitude iC3K iKA'sl

- sgn(y)KAbl .
JeZ=vZ | /kZ-v?

It is precisely this sort of term that we wish to cancel in

(88), and we can accomplish this by adding and subtracting

an outgoing wave of this amplitude. If y,(x) is the half-

beam at the waterline, then (89) can be re-written as

Yo =®
33 3, ° 21
Jd—aﬁ‘”z“"s—aﬁ} [+ a g Uooythy ) 9syt3
S.

o —yo

i 2iw
1wo + o
t g0 0looth ) 05y 03t U‘¢3w1x

+sgn(y)KAl')l e

ic ke [iKAbl } —2i|y|/K2—v%]

iz ey
2
b lim ——2 g} U[%‘ziYO'K VT g7 ARV '“%
maw (k2-v2)3/2 Sl 7g (90)

The last term contains one part that exactly cancels the
oscillatory nature of (88) and another part that is easily

found. The term containing ¢ can be integrated once by

Syy
parts and then using the fact that @sy(x,yo(x),o)=y6(x) we
have \
Yo =%
( — -—
[o o] —yo

Y="Y° Y=Y¥Yo
o - 00

Yy
= J‘*de¢sy[(¢oy+wly)¢3 + (¢o+¢1)¢3yl
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Using this and (90) in (85), we have, finally, the fol-
lowing expression for the contribution by wz:

Yo =®
= 1w, U
CH(X) ® -Yo
2iw _ic3k (ikA%1 -2i|y]| 7k —v]’
2oy iy AL L o son ) cagy 0”17
K=V Z=0
2C3'<2 w -2iy Vk2-v2
- —_———— Aél -0 ge YoVKo=V
(2-v2)3/2 g
- v6 [83(00%101) | - ¢3(¢o+¥;) 1] (91)
=-Yo Y=¥o
Z=0 Z=0
ilylv'lcz—\)2

The integrand is bounded by e y for large y and
thus the integral exists.

The sectional heave force can now be found by putting (91)
into (84). Using the sectional force in this form means that
we do not have to evaluate the double integral in (78).
However, the free surface integral is still not simple and
its calculation may be of little use in actual design
procedures. In Chapter VI we have attempted to show the
relative order of the forward speed correction to the zero
speed term by finding the value of lex on the hull. As
will be shown for the case considered, this term did not
appreciably affect the zero speed results.

/



Chapter VI
NUMERICAL RESULTS

In this chapter we will present numerical results that
illustrate the material found in the preceding sections.
The theory was derived for oblique seas but as beam seas
are approached, i.e., as v+0, the Helmholtz equation reduces
to the Laplace equation, and the results are uniformly valid
as the transition is made. As head seas are approached, i.e.,
as v+*k, the imaginary part of the Green's function (see (34b))
becomes singular like l//Kz—vz. As a result, the analysis is
not valid near head seas. The pressure distribution on an
ore carrier for zero speed is found for oblique seas and the
results are compared with experimental values and the theoreti-
cal predictions given by the Laplace equation. For forward
speed, the total pressure is given by the terms in (82).
Some of the higher order terms (in particular the b, term)
will not be calculated in this work due to their complexity.

However, one higher order term, the wl term, will be found.
X
This will indicate the effect the higher order terms have on

the zero speed potential. It may also be considered as an
"engineering approximation" of the forward speed problen,
since for time-dependent functions, differentiation with
respect to time in a coordinate system moving in the x-direc-
tion is accomplished by applying the operator g% + U-£; to

the original function. (The pressure, to the first order, is
proportional to the time derivative of the potential.) The
sectional force on a ship for zero speed is found and compared
with the integrand of the total force given by the Khaskind
relations. This integrand has been wrongly interpreted as
being equivalent to the sectional force. (See Ogilvie (1974).)
And finally, the total exciting force on a fixed ship with
zero speed will be found by both the Khaskind relations and

the integrated pressure distribution of the diffraction problem.
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Pressure Distribution

The pressure distribution for zero forward speed was found
for the midship section of an ore carrier tested by Nakamura,
et. al. (1973). Two different wave lengths were used.

Figure 7 and Figure 8 show the magnitude of the pressure and
its phase for L/A = 1.96 and L/\A = 1.44 respectively.

The pressure is given by the lowest order terms in (82) and
includes both the Froude-Krylov pressure plus the first order
diffraction pressure. The pressure amplitude is nondimen-
sionalized with respect to pggo, where p is the water density,
g is the acceleration of gravity and Zo is the incident wave
amplitude. The solid line represents the solution using the
Helmholtz equation for the diffraction pressure. The dashed
line represents the solution of the same boundary value prob-
lem, but using Laplace's equation as the governing equation.
This is the diffraction problem that would be solved if the
usual assumptions in strip theory are used.

The experimental results published by Nékamura, et. al,.
(1973) are shown for the waves coming from both the bow
(x = 45°) and the stern (x = 135°). There is only one theo-
retical line for both wave directions because the two dimen-
sional problem is identical for both wave directions. The
experiments show some difference in the pressures for the
two directions which is probably due to experimental error
and some slight interference between sections. The Helmholtz
and Laplace solutions are in close agreement on the windward
side of the ship but show some differences on the leeward
side. The phase angles are approximately the same on the
windward side but again there are differences on the leeward
side. The variations in the pressure amplitude and phases,
when combined, can cause substantial differences in the inte-
grated sectional exciting forces as seen in Table 5.

Fz(x) and F3(x) are the complex sectional exciting forces
in the horizontal and vertical directions respectively. They

65
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are nondimensionalized with respect to pgcoB/Z where B is
the beam of the ship.

Nakamura, et. al. (1973) did not give phase angles, either
theoretical or experimental in their work. The curves for
the phase angles were calculated by the computer program
that generated the pressure potential for the Helmholtz
equation. This was accomplished by maintaining the same
boundary condition but replacing the oblique seas Green's
function by one that is correct for beam seas. The pressure
amplitudes found this way agreed with those calculated by
Nakamura, et. al. (1973).

Table 5

Sectional Exciting Force for a

Midship Section of Ore Carrier (x=45°)

L/A = 1.96 L/A = 1.44
Helmholtz Laplace Helmholtz Laplace

Mag. |[Phase | Mag. | Phase Mag. |Phase | Mag.| Phase
F,(x)

1.11] 120° )] .95 115° 1.14 118°| .97 117°
Pgt_B/2
Fj(x)

.49 -55°| .47 ~-57° . -48°| , -41°

ngoB > 57 71 48 73 41

The relation used for the forward speed pressure is an
abbreviated form of (82). It is the following:

-P

D i(wt-vx)| .
T N oe [1wo(¢o+ wl)+Uw1x]
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The pressure distribution was found for the same hull
form as before. Instead of the midship section, a forward
station located 15% of the ship's length from the bow was
used. The experimental values were taken from SSRJ (1974)
and represent the pressure distribution for two wave
headings and three Froude numbers.

We will digress for a moment and describe the manner in
which wl was found. If we are given wl and the change of
Y1 in the direction of the two dlmen51onal normal to the
hull, then wl can be found. Consider the following:

Awl(xo,yo,zo) Ewl(xo+Ax,yo+Ay,zo+Az) - wl(xo,yo,zo)

V1, 0% + U By + ) Az

under the constraint [ij+ Az k]//(Ay)z + (Az?: N
where N is the normal in the transverse plane. Then

Vi, Ay * ¥y 8z _ oy 20
Y(oy)2 + (8z)?

from equation (57) and it follows that

“’lx & [Alpl + B_E;Qﬁ_ /(Ay)2 + (Az)z]/Ax on y = h(x,z).

The results are given in Figure 9 and Figure 10 for stern
seas (x = 135°) and bow seas (x = 45°) respectively. The
theoretical values for zero Froude number are the same in
both plots. The addition of lex for a Froude number of
0.2 (Fh = 0.2) did little more than thicken the lines for
either heading.

We can see that for a midship section the Helmholtz equa-
tion is in rather good agreement with experiments (see Fig-
ures 7 and 8) for zero speed. For a forward section the
Helmholtz equation still seems to be good for stern seas
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Figure 9: Girthwise Pressure Distribution for a
Forward Station of an Ore Carrier in Oblique Seas.
(L/A = 2.0, x = 135°)

(x = 135°) on both sides of the hull while the theory only
agrees with experiments on the windward side for bow seas

(x = 45°). The forward speed effect is more pronounced on
the leeward side for bow seas than for stern seas. In fact,
for stern seas, the forward speed effects do not differ
enough from the zero speed effects to be considered as
showing definite trends. In other words, the forward speed

data occur within the range of experimental scatter of the
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Figure 10: Girthwise Pressure Distribution for a
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zero speed data. This does not appear to be the case for
the bow seas.

We can speculate as to the reasons for the difference of
the pressures in bow seas and stern seas for sections near
the end of the hull. If we consider acoustical waves im-
pinging on a symmetrical form as shown in Figure 11, then
for short waves, there will be a shadow region on the lee-
ward side of the body.
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Figure 11: The Shadow Region of an
Obstacle in Incident Waves.

For two values of x (x = +a), we expect that the potential
will be nearly equivalent on the windward side. However,
as a result of the close proximity of the leeward side of
the section at x = -a to the edge of the shadow region,
there will be a definite contribution to the potential

from the incident waves while the section of x = a should
see relatively little effect. We suggest that it is this
sort of phenomena that causes the variations in bow and
stern seas as shown in Figures 9 and 10. This is only

speculation and a possible topic for further research.

Sectional Force Distribution

If the motion of a ship without' forward speed in a seaway
is to be known then the hull response characteristics, the
added mass and damping, in addition to the exciting force
must be found. Khaskind (1957) and later Newman (1965)
showed how the forced oscillation potential used in the
calculation of added mass and damping coefficients could
also be used to find the exciting force due to the diffrac-

tion problem. Thege relations are referred to in the
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literature as "Khaskind relations." The use of these rela-
tions meant that the diffraction problem did not have to be
solved.

To illustrate the form of these Khaskind relations, con-
sider the total vertical exciting force Z. The method
is to define a new potential function ¢3, such that
3®3/3n = n, on the hull and then use Green's theorem on the
integral of the diffraction pressure so that one can replace
@D with ¢3, where @D is the diffraction potential. Then
®3 is assumed to satisfy the two dimensional Laplace equa-
tion in the immediate vicinity of the hull which gives rise
to the usual application of strip theory. This results in
an expression for Z in the following form:

Z2 = -ipw [ ds(n,e - ¢, 2 0 , (92)
H

where H is the ship's hull. The first term is the usual
Froude-Krylov force, i.e., the force due to the undisturbed
wave. The second term in the integrand in (92) is then
approximated in the usual strip theory sense:

[dse, 2o = [ax [ al 6, o o (93)

I
H
L CH(x)

where N is the two dimensional normal in the transverse
plane, L is the length of the ship and CH(x) is a given
section in the y-z plane. ®3 is now assumed to satisfy
the Laplace equation in two dimensions.

Newman (1970) and Ogilvie (1974) point out that the sec-
ond integral in (93) cannot, in general, be identified with
the sectional force on the hull. Since Green's theorem was
used, any association with the diffraction pressure has been
lost. They formulate the problem that can be associated with
the sectional force distribution. It has the same form as
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the second integral in (93), only now, the ®3 forced oscil-
lation potential satisfies the Helmholtz equation in the
cross plane instead of the Laplace equation. For example,

see the description of ¢ifollowing equation (84).

As beam seas are approached, the Helmholtz operator
(V2— vz) becomes the Laplace operator (V2) since v»0. Con-
sequently, the second integral in (93) approaches the value
of the sectional force as the seas go around to the beam.
In Figures 12-17, the magnitude and phase of both the ver-
tical and horizontal sectional exciting force distributions
along the length of a Series 60, CB = .70 parent hull form

~1VX dependence

are shown. The phase does not include the e
found in the x - direction. The forces, which include both
the Froude-Krylov force plus the diffraction force, are
non-dimensionalized by pggoB/Z as in Table 5. There are
two heading angles, x = 60° and x = 30°, and three wave
lengths L/X = 3.33, 2.0, 1.43. The curves are not continued
to the ends of the body because as with any slender body
theory in which only two dimensional problems are solved,
the results in this region are not valid.

The solid line shows the sectional force as found by
integrating equation (82) with U equal to zero. This
includes the solution of the Helmholtz equation, which is
a mathematical statement of the problem. The dashed line
contains the second integral in (93) which when integrated
over the hull equals the total diffraction force. However,
it is not to be considered as the sectional force unless
the seas are from the beam. In most present day strip
theory computations, though, the dashed curve is the sec-
tional exciting force commonly used. Both curves include
the same Froude-Krylov force.

For seas with a heading angle of x = 60°, the two curves
are in close agreement. For seas with a heading angle of
x = 30°, there are substantial differences. We can conclude
that for the sectional exciting force, either the Laplace
representation or the Helmholtz representation will give
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reasonable results for seas from the beam or nearly from
the beam. For oblique seas, i.e., x = 45°, there are

major differences between the two results. And finally, as
the seas become either head or following, we have seen that
the Green's function, and hence our theory, becomes un-
bounded and one must use an analysis similar to Faltinsen's
(1971). As we have tried to indicate in Chapter III, this
Faltinsen effect should be restricted to a small region
around head seas.

Total Force

Newman (1970 stated that the total force found by inte-
grating the sectional force as derived from the Helmholtz
equation should equal the force found from a Khaskind re-
lation (i.e., equation (92)) in an asymptotic sense. This
means as the small wave length-beam parameter € goes to
zero, the two forces are equivalent.

In an effort to see how small € had to be in practical

situations, the force distribution was found for the

Series 60, C_ = .70 parent hull form (see Figures 12-17) and

integrated oser the hull. The wave lengths ranged from
L/A = 3.33, which can be considered as short and thereby
encompassed by the theory, to L/X = 1.0, which is rela-
tively long and hence not really within the limits of a
"small €". The results are plotted in Figures 18 and 19
for heading angles of x = 120° and y = 30°, respectively.
Following Vughts (1970), the vertical force amplitude [Z],
was nondimensionalized by pgcko

L
of the waterplane. The horizontal exciting force amplitude

where A i
, where wr 1S the area

|¥|, was nondimensionalized by pgt Vk where V is the vol-
ume displacement of the ship. The results given by the
dashed lines are from the Khaskind relations like equation
(92) for the vertical mode and an equivalent one for the

horizontal mode. These curves, along with the experiments,
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were given by Vuguts (1970). The solid line represents the
total exciting force found by integrating the zero speed
part of the wave induced pressure given in equation (82).

The differences in the amplitudes of the total exciting
forces as found by the two methods are slight. This may
have been expected for x = 120°, since we have already
seen from Figures 12-17 that there is little difference
between the sectional force predicted by the Khaskind
relations and that predicted by the mathematically correct
Helmholtz equation for seas off the beam. This should be
true for even long waves. However, the results for y = 30°
are more surprising. The two methods agree to the accuracy
of the plot for both short and relatively long waves. Thus,
the integration of the wave induced pressure as given by
the lowest order of equation (82) over the hull yields a
total exciting force that is comparable to that predicted
by the use of the Khaskind relations. The phase angles
plotted in Figure 20 for a heading angle of x = 30° show
similar agreement.

As the wave length gets large, the v2 term in the Helmholtz
equation becomes of a higher order than the V2 operator
and consequently the governing equation is approximated by
Laplace's equation to the first order. If the wave length
is long relative to the beam, then there will be little
difference between the results given by the Helmholtz equa-
tion and the Khashkind relations to the first order. This
may explain the agreement between the two methods for the
longer wave lengths in Figure 19.
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Chapter VII
SUMMARY AND CONCLUSIONS

In this work, we have found a potential that approximates
the behavior of a diffracted wave of short wave length on
a slender body at rest and moving forward at moderate
speeds. The incident waves were considered to be from an
oblique heading. The potential is expanded in an asympto-
tic series where one term is found for zero speed and two
terms are found for forward speed. The two terms in the
forward speed expansion include wl, which is just the
lowest order zero speed approximation and wz, which includes
the velocity effects. The potential wl satisfies the fol-

lowing:
52 v, - v v, =0 in the fluid region; (55)
—le + wlz = 0 on z =0 ; (56)
and
Bwl 3¢o
T i 4 on y = h(x,z). (57)

The solution to the wl potential can be described as a
distribution of surface singularities in the following

manner:

b, (y,zix) = [ d%o(g,n) Gly,z:E,n) . (33)

CH(x)

The second order potential, Yy satisfies:

2 2 . . .
V2_D wz v wz =0 in the fluid region; (58)

86
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2 94 Y s
_QB ¢2+w22 leolex leou(q3+ wl) ¢s 1on®s (¢o+ wl)

y Y Y Yy
(59)
on z =0
and
sz
=5 = 0 on y = h(x,2). (60)

The steady motion potential is given by @s and the incident
wave by ¢ The solution to the ¢ problem is given by (80).
The evaluation of the source strength o in (33) is found

by forming an integral equation and solving for the value
of o at a number of discrete points. For an alternate
method of solving (33), see Choo (1975). He assumes that

o is constant over finite line segments similar to the des-
cription given of Frank's method in Chapter IV. Once the
source strength is known, it can be integrated over the hull
to find the potential wl

The sectional force is given for both zero and forward
speeds. We have shown that one does not have to solve the
w problem in order to determine the sectional force. By
deflnlng an auxiliary problem, the forced oscillation po-
tential, we derive an equation in the form of (91) that
eliminates the need to know wz.

Included are numerical results for the zero speed pressure
and an abbreviated form for the forward speed pressure.

The theory shows good correlation with experiments except
where end effects dominate. When these pressures are inte-
grated over the hull to give a sectional force or a total
force, we have found that for oblique seas, the Helmholtz
equation gives different results than the commonly used
Khaskind relations for the sectional exciting force, but
similar results when the entire exciting force is found.

The theory as stated, is a short wave theory and hence
there is no reason to integrate the diffraction pressures
to find the total exciting forces. The Khaskind relations
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are much better suited for finding them. In addition, as
the wave-length gets short, the dynamic pressure over the
length of the hull will tend to average out to zero with
only the contribution from the ends being felt. Since this
theory is a strip theory, it is not walid in that region as
can be seen from Figure 10. The value of this theory is
that it can predict the longitudinal variation of forces
that produce bending moments and shear stresses.

Finally, there should be a comment on the selection of
the order of magnitudes. Making the order of the wave
length the same as the beam led to a Helmholtz problem in
the transverse plane. For zero speed this assumption is
the same as found in the head seas problem described by
Faltinsen (1971) and the forced oscillation problem described
by Ogilvie & Tuck (1969). For forward speed, this work, like
Faltinsen (1971), maintains the same wave length assumption
and changes the frequency of encounter. However, the
Ogilvie-Tuck report kept the same frequency of oscilla-
tion, which means the exciting waves are longer. McCreight
(1973), in considering the diffraction problem, has shown
that the Ogilvie-Tuck ordering will lead to a first order
potential that satisfies Laplace's equation and a second
order potential that satisfies a Helmholtz equation. We
have seen from Figures 7 and 8 that for the model and wave
lengths tested, a Helmholtz equation gives better agreement
with experiments than Laplace's equation for zero speed.
For forward speed, we have also seen from Figure 9 that
when end effects do not dominate, a Helmholtz equation
still gives reasonable results. This would seem to indi-
cate that if the diffraction pressures are desired, an
assumption on the wave length that leads to a Helmholtz
equation in the lowest order would be more appropriate
than one that would lead to Laplace's equation. We note,
however, that the stated purpose of the Ogilvie-Tuck report
was to see what assumptions were necessary to arrive at a
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mathematical justification for strip theory. McCreight
(1973) extended the use of their oscillation potential

to include a form of the Khaskind relations for the ex-
citing forces. With this goal in mind, there would be

no reason to complicate their analysis by insisting that
the initial assumptions produce an accurate description
of the diffraction pressures in addition to finding the
total exciting forces. Hence, it is clear that while our
short wave assumption may be necessary to find pressures,
the utility of the assumptions made in the Ogilvie-Tuck
report, which greatly simplify the calculations for total
exciting forces, cannot be denied. We also should emphasize
that strip theory has been in use for some time, and the
comparison of theoretical values with experimental values
(see Vugts (1970)) for ship motions is quite good.

The range of applicability should be included in this
discussion on orders of magnitude. 'The stated assumption
is that the wave length is the same magnitude as the beam
and both are much shorter than the length of the hull. We
have seen that the total exciting forces displayed in
Figures 18 and 19 are effectively the same whether found by
integrating the pressures given by the Helmholtz equation,
or by using the Khaskind relations. This appears to be
true for wave lengths much longer than the stated assumption
implies. Also, from Figure 8, the pressure distribution
for a wave three-quarters the length of the hull compares
well with experiment. That the results compare well for
wave lengths longer than expected seems to be in
line with the conjecture made by Ogilvie (1975). He stated
that in the region of transition between short waves and
long waves, a short wave assumption may be asymptotically
inconsistent but numerically correct. In the diffraction
problem, it seems one ought to adopt a short-wave hypothesis

except where waves longer than the ship are to be considered.



APPENDIX A
The Green's Function

In this appendix we investigate the behavior of the
Green's function G(y,z; £&/n) given in (34a) and (34b). The
two forms are necessary since we wish to evaluate G for a

range of /Qy-£)2-+ (z-n)2 from near zero to large values and
a range of v/k (recall v = k cos x) from near zero (i.e.,
beam seas) to a value near one (i.e., oblique seas). We will
discuss the advantages and disadvantages of each form and
then state our procedure for finding G and its normal deriva-

. 9G
tive 3N °

Ursell (1962) gave a series expansion of G(y,z;&,n) for

small values of vr = v/Qy-E)2+ (z-n)2 as shown in (34a).
It will be repeated here for convenience:

G(y,z;&,n) = K (vr) + Ko(vr') - 2y cothy [Io (vr'")

+ 2

h>~18

(—1)m coshmy I]m (vr')cos m eﬂ

m=]1

- 4cothy ] (-)™sinhmY £=(I (vr')cosme')
m=1 m m

- 2wicoth Y[Im(vr'%+2 Z(—l)mcoshmY]ﬁ(erCOSmeﬂ
m=1

(34a)

where Im(vr) is the I Bessel function of order m (see
Abramowitz and Stegen (1964)),

r'= Jy-£)%2 + (z+n)? ,

cosh Y = k/v ’

and ©' is the angle r' makes with the z axis.

90
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The advantages of this form of G is that it can easily be
evaluated for small values of r by taking a limited number
of terms. There are two prominent disadvantages. First,

as v»0 (i.e., beam seas) the Kb Bessel functions have a

2 logv singularity and the series requires the determination

of terms like cosh:wy%évr) where one term is getting very

large and the other is getting very small. We want to empha-
size that analytically this form of G is correct as beam seas
are approached, but numerically it is very difficult to find.
The second disadvantage is that for moderate values of vr,
the series has a slow rate of convergence. The Im(vr) term
grows exponentially and an efficient method increasing the
convergence rate of the alternating terms was not found.

This form of G was used for only small values of

/%y—£)2+ (z-n{z for seas from oblique headings.

The form of G given (34b) as derived by Khaskind (1953)
will also be repeated here:

G(y,z;&,n) = KO (vr) + Ko (vr')

Z
+ 2 kek? / dae_KaKo(v/Qy—ng-+(a+n)2)

- 27
YK =V

The integral term of (34b) can be integrated once by parts

ik eK(z+n)—i|y-—£lVK -V

(34b)

to give the following form of G:

G(y,z:&,n) Ko(\)r) - K, (vr')

+ 2V f dae_Ka(a+z+n)1{l(\)/(y—£)2+ (a+z+n)2)
(o)

»/(y-E)2 + (0L+z+n)2

N 21r§|< eK(z+n)-—i|y—Elv‘K -V (A1)
K =V
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One advantage of this form of G is that the integrand of

the integral term is in a form similar to that needed to

find %% and thus computation time is saved.

For large values of /%y—£)2-+(z-nf the integral can
easily be approximated by a four or eight point Laguerre
quadrature (see Abramowitz and Stegen (1964)). For mode-

rate values of MQy—£)2+ (z--n)2  the integrand is not

suited for the same treatment, since the Kl(v/Qy—£)2+(a+z+n)2)
term begins to have a hump in it in the range of integration.

We add and subtract the behavior of K1 for small values of

/ky-£)2+ (o+z4n)? and, the integral term becomes:

R

T . -xa (a+z+n) .7 -xa (o+z+n) 1
2v (j; dae — R Kl(\)R)—Z\)({ dae — R Kl(VR)"\)—ﬁ

+ 2 ? dae”K® (a+z+n)

o R2

Using formula 5.1.44 from Abramowitz and Stegen, we find

2 jdae_Ka-(—a%_Tl)_ = 2eK(Z+n) Re[elKly_EIE EK‘(Z‘H’])""iKIY-EIJ
o R !

where El(z) is the complex exponential integral. Combining
all of this with (Al) yields the following form of G:
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G(y,z;&,n) = [Ko(vr)—Ko(vr')] + 2y dae™ ¢ -(-oﬂ'—lz;—w—)-[:xl(vR)-

o]

L
VR

+ 2 eK(zFn)o [eiKIY‘ElEI [K(Z+n)+iK|Y‘€|j]

. . /2 2
- o 1K eK(z+n)—1|y-£| K =V . (A2)
YK -V

Note that as v+O (beam seas), the Ko(vr) - Ko(vr') term
goes to -logr + logr' and the integral term goes to zero.
G for beam seas is then

G(y,z;&,n) ~ (-logr + logr')

¥ > eK(z+n)Re[%iK|Y-€|E1[K(z+n)+iK|y—E|ﬂ

- 21rie'<(z+n)_i'<ly_El as v-+0 .

This form represents a source oscillating with an eiwt

time dependence. When multiplied by (-1) and corrected for
an e_iwt time dependence, the above form of G is the same

as used by Frank (1967) to solve arbitrary cylinder problems

governed by Laplace's equation. Thus, equation (A2) can be

used for all values of /Qy—§)2+ (z-n)zr as beam seas are
approached with the only restriction being that v can never
equal zero exactly. Using this form of G, we were able to
verify our computing scheme by checking its results against
those published by Frank (1967) and Porter (1960).

In summary, then, for small values of r for seas from
oblique headings, (34a) was used. For large values of r for
seas from oblique headings (Al) was used. And finally, for
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moderate values of r for oblique seas and all values of r
for near beam seas, (A2) was used. The actual mechanics
of the computer program were designed in such a manner as
to minimize the computing time and the details will not be
presented here.

We have already shown in Chapter IV that %% is continuous
on the hull. This is also true as the free surface is
approached by the field point if the ship is wall sided at
its water line. Requiring the ship's hull to be orthogonal
to the free surface at the point of intersection was
suggested by John (1950) in his classic paper on the motions
of floating bodies. It does not seem unreasonable to make
the same restriction here.



APPENDIX B
The Applied-Pressure Problem

In order to match the near-field behavior with the far-
field behavior of the forward speed potential, we need
information on the following problem:

Given a two-dimensional pressure field applied on the
free surface:

P(y,t) = p(y)e®®*
where the governing equation for the velocity potential is
a Helmholtz one, find the potential.

There is a strong similarity between this problem and the
applied-pressure problem solved in Ogilvie & Tuck (1969).
However, they had a potential that satisfied Laplace's
equation and therefore could use complex analysis to solve
for it. Since our two dimensional potential is not harmonic,
we must select another method. 1In particular, we will use
the method of Fourier transforms.

The undisturbed free surface is the y-axis and z is positive
upwards. Since this problem is related to the near field

potential, it must be valid for small /y2+z2 . We will
actually investigate three problems here. The first one
will be a symmetric pressure distribution extending to
infinity. The second will be an anti-symmetric pressure
distribution extending to infinity and the third will be
a local pressure distribution. The solution to the third
type of problem (a local pressure distribution) for two
dimensional flows in a domain governed by Laplace's equation
can be found in Wehausen and Laitone (1960).

Consider the following problem:

2

’ih ¢ - v2¢ = 0 in the fluid region; (B1)

2

95



96

and -k¢ + ¢z = p(y) on z=0. (B2)

The elwt

dispersion relation is w? = Kg. Also, the relation between

time dependence has been factored out and the usual

k and v 1is as before: v = kcosy where x is the heading
angle. If p(y) equaled zero (the homogenous free surface
boundary condition) then the free wave potential, designated

¢f.w.’ 1s

¢ o eKz-iy{K -V
f.w.

This is an indication that when p(y)«e_iIY|VK YV, we

will be forcing the system at its resonant frequency. As

a way around this difficulty, we will use a device suggested
by Ogilvie & Tuck (1969). That is, we will define a pre-
liminary problem of the following form:

. 2_u2
P(Y) = poe"UIYI"lIY|V/'Y -V (B3)

where u is a small positive constant and y#k. After this
problem is solved, we will let u»0O and y»k. u will have
the same effect as a Rayleigh viscosity does in the usual
water wave problems in that it insures outgoing waves.

A pressure of the form (B3) represents the first type of
problem that we will consider. We define the Fourier trans-

form and the inverse Fourier transform respectively as

o* (k;z) = [ dy e *¥¥ ¢(y,2)

and

0(y,2) = 5= [ aket™ ¢r(kiz).
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Then, after requiring that ¢* has less than exponential
growth in the negative z direction, the solution to the
transform of (Bl) becomes,

vy +k z

¢*(k;z) = C(k)e

Here C(k) is a constant determined from the transform of (B2):
-kC + /v2+ki C = p* (k) on z =0.

To find p*(k), the transform of p(y), we note from (B3) that
P is an even function and hence use the cosine transform.
From (B3) then, it follows:

V; - \)2

p* (k)

2p_ [ dy cos(ky)e *¥~1Y
o]

1 1
+
—puti (k- A2 v%) —p-i (k+ A2- )

Hence, C(k) can be written as

-2y - 2i/Yy° -V

C(k) = -p e
[i(k—kl)][—i(k—kz)][-n<+/v?-—k2

= -Pp

(o]

where we have defined

k.= #&"-v® =iy

1

k = -/Yz-vz + ip

2

Using the definition of the inverse transform, the solution

for the symmetric problem, ¢S(y,z), is

0 (y z) = _22_ I dk eiky+zV\) + k (zu + 2i /Yz_\)z )
(4 ,"- T ———
S - (k=k,) (k=k,) (- + /o2e x2)

(B4)
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To evaluate (B4) we will use the residue theorem. The

integral has branch points at iko and poles at k k

l'-" 4’

where

The branch cuts are taken on the imaginary axis.
Also, note that as u-+0 and y-k, k1->-k3 and k2+]<4.

If we restrict our attention to y>0, then we can apply the
residue theorem to the curve shown in Figure Bl.

e
Figure Bl: Contour of Integration in the k-Plane
We can now set u=0, since its primary purpose was to show

us the dirébtion in which to indent the contour on the real

axis. The residue theorem then states
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[+ [+ [+ [+ [+ [akelky*z/V +k" . L2 %)
-e C @ @ ¢ ¢

e 1 2 3 T s (k=k,) (k-k,) (-k+/A% + k2)

= 27i [Res (k2) + ReS(k4):|

The arcs Cl, C3, C5 contribute nothing. In a method simi-
lar to the evaluation of (Cl) in Appendix C, we can show
that

. Vv .
f dk e1ky+z¢\) + k (Zim) _ f idk e-yk+1z/k -vE(Zi/?-_\)—Z)
S (k-k ) (k-k,) (~k+/v2+ k2) (ik=k ) (ik-k,) (=k+ i/kZ7)

and

-}

[ak et Y*EYV K (93 ATV2) | fiak e YRTi2TK -V 7007
4 (k=k ) (k-k,) (—c+/A% + k%) Y (ik-k,) (ik-k,) (~k=ivke= v°

The residue at k2 is given as

ik y+zvv + k
Res(kz) =e 2 2(2iVY2- v©)
(kz—kl)(—K+/v2+k§)

= e PWY VT 4 vz 53 N23

(-2/4% - v2) (—k+y)

As y+k, the Res (k2) term becomes singular. It should not
be surprising that the Res (k4) exactly cancels this
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singular behavior. If we define y=k-8 where 8/k<<l and
|6y|<<1 and |8z]<<1, then as 6+0, it follows:

K
N A N TZ_ 2 + 0(8%)
and

Res (k,) © lim ie
60

iv’K - v y+k2 [ . K :J
1/6=-(z=iy——xr=)| .
JZ- V2

In a similar manner, we can show that the residue at k4 is
the following

iy v e [ AT

Res(k, ) =
4 (Kz_Yz) /KZ_\’Z
_ie—iVK =V y + Kz
~ 1lim 3 .
§-+0

The sum of the two residues is just

—i|y|v’l< - v2 + Kz

Res(k2)+Res(k4)==-1e

(z-iIYI——/'Q_K_—;T) -‘
K -—

There are two comments. First, we have replaced y by |y]l.
The contour for y<O is closed in the lower half of the k

plane and since the details are similar, they were omitted.
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Second, the contribution from the residues becomes unbounded

if we formally let /yz+ z2 +o , This does not matter since
we only use this analysis to find the behavior of the
diffraction potential near the body and it only has to
match the inner expansion of the outer expansion.

Now, combining the contribution from the residues and
the arcs C2 and C4 we find that the potential ¢S from (B4)
1s given as:

_ —i|y|r'|< -V -Kz
¢ (v, 2) =p_e

(Z-i|Y! '——/_2_:—-—-_2.
K -V

Py rK TV }D dke-lylk eiz»’k -V e—izv’kz-\)2
T = + —
v (ik=-vVk™=v7)(ik+VKk~v )-K+i;v+k k+iv/v+k

(B5)

To find the behavior of ¢s far from the origin, we see that
the integral term in (B5) can be bounded as follows:

) —|y|ki—isz -V © _l |k

[ ax = =——|<|fdak__e” ¥
v (ik-vk2-v2) (ik+/c2-v2) (+k+iv2+k S 2. 2 2
T K(k“+Kk“=v?)

-lylve -lylx

<|8 [dk e
K —————————————
o) k2+K2
o lylv
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The last equality comes from Abramowitz and Stegan (1964).
In the near field y = O0(e) and O(ky) = O0(1) = O(vy), and
both terms in (B5) are of order e. In the outer expansion

of the inner expansion, O(y) = 0(z) = O0(l). As a result,
-1

the integral terms are bounded by O(ee” ® ) which is

exponentially small and the residue terms are of order one.

This assumes that the constant P is also of order one.

Consequently, the asymptotic behavior of ¢s for large values

of /y2+ z2 is

e—i|y|v'|< -V + Kz
o]

g (y,z) = p (B6)

(z_iIYIT_Z—K_Z_)
K =V

The problem of the anti-symmetric pressure distribution
is similar to ¢S and some of the details will be omitted.
The potential will be designated as ¢AS and the pressure on
the free surface is given as follows:

~uly|-ilyl/y - v

P (y) = sgn(ylp_e (B7)
At an appropriate point we will let u+o and y+k as before.
Since p(y) is an odd function p* (k) can be found using a
sine transform. Then, in an analysis similar to that
preceding (B4) we find

-ip © iky+¢\)2+ k z
ke

O

b (¥r2) = — [ dk ———
AsS Toce (k-k) (k—kz)(—K+/\)2- k2)

(B8)

where k., = JYE-VZ - iy and k2 = —/YZ- v2 +ip .

1

Now we can evaluate (B8) as (B4) by using the residue
theorem in connectjion with Figure Bl. Using the same

limiting procedure as before, we can show that
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—ilylVK —v2 +Kz

)

(z-1i lYl/ﬂZ—z
K=V

¢,5(¥Y,2) =p_ sgnl(yle

1P mdkke_iﬂk

+—2 sgn(y) .
m v (ik—yni—vi) (ik+7.<§—v5)

izvk“-v -izv’kz—v2
.le + &
-K+i;V§+k§ K+i;v§+k

(B9)

Similarly, it can also be shown that the asymptotic

behavior of ?As for large values of /yz+-z2 is

iy |- v 4 k2

g (¥Ys2) = p sgn(y)e (z-i|y|

K )
YK =V

With the information we have at hand, the potential, ¢L,
for an arbitrary local pressure distribution can be written
down. If the pressure is defined by P(y), then using the

definition of the inverse Fourier transform we can write

L, oikyV24k? 2
¢ (y,z) = 5= [ dk

- (—K+/v2+]<2)
-

P* (k)

iy HOLRE 2 ®
elky-+ va+k Idie 1k€P(g)

-—00

l [+
- —|<+/v2+k2

(B10)

Y

The integral has two poles and the contour is indented in

such a manner as to insure outgoing waves.



APPENDIX C
Simplification of I(k)

The inner integrals of the potential for the line singu-
larities given by (23a) and (67) can be simplified as a
result of the assumptions of short waves from oblique
headings. We will consider the case of zero speed first.

Make a change of variables of k' = k + v and recall the
dispersion relation. Then (23a) becomes

[+

I (k') = f as eig'Y*" (k"\’)2+22 z
S

=% (k' =v)Z +42 = (k=ip")

limu-=>0

. (c1)

2) , and since u-+0, we
2 . 2(1)0 H
drop the p~ term and define u' = .

g

1 o2 _ 1.2 4.
Here E(wo i) “ = g(wo 21m°u + u

We will now drop the primes, and note that (Cl) contains
2

both branch points where /Qk - v)2 + &
simple poles where the denominator goes to zero. Through

equals zero and

the use of the residue calculus we will evaluate Is(k).

The poles are given by values of £ equal to %o, where

po= +/(k-im®- (v-k)? (C2)

and the branch points are given to & equal to 21 where

g = +i/(v-k? = +i|v-k| . (C3)

1

The branch cuts will be taken on the imaginary axis from
+i|v-k| to +iw .
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Consider 20. If [RZ— (v—k)2]<0, then 20 is imaginary

and if Eg —(v—k)23>0 then 20 is real. This gives the
following intervals on k:

Case i) k>v + « 2 is imaginary

LY

Case 1ii) v - k<k<v + « ; £ is real

Case iii) v - k>k

o)

is imaginary .

Case i) From (C2), define 20= +i/(V-k)2'-K1 and consider
y>0. Then the contour in Figure Cl will yield I(k).

-00

Figure Cl: Contour of Integration for k>v + «

The residue theorem states that

I, (k)=2miRes (& )- [+ [+ [+ +] dleily*-/(v:k)z: 22 2
@ % & &4 S Jv-u)%+ 2?2 ¢
To find the residue at %+ we know from 1' Hospital's
rule that
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ify+Y(v-k)"+ L% 2z

Res (20) = lim (l—lo)e
. Jv-K) 2422 -«

. / 2 2
igy+Y (v=K) "+ ¢ 2z
= & Q V2.°+(\)-k)

[

o

e—yV(v—k)z— K+ 2K
i/h»kf - K:

= K

The contribution from C3 is zero and since y is greater
than zero, ¢; and C also contribute nothing. On C, and C,
we will get a non-zero contribution that will be shown to
be of higher order.

If we make the substitution of 2 = if' into the radical

f(v-KF+-22 after considering Figure C2, then on c, the

radical takes the value of

Yv-k)2 + 22 = i/4'2 = (v=k) 2

and the integral along c, becomes

Cvvid o2 4 52 - :
[ ageityt v-kTeat z ilvfkl . e—l'y+iv/§2— vok)2 2
C g _ g o —_ﬁ_——
2 Jiv-k)Z+ 2% -« i/2% - (v-k)? -k

24 }° ag e—z'y+i/z'2- (v-k)° 2
|v=x] Y/
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v (\)-K)2+ L

4

C

Figure C2: Contour Around the Branch Cut in the

£-Plane and /QV-K)Z + 22 Plane

Similarly, along c4, the radical takes the value of

Jv=k)? + 22 = -i/u?- (v-k)?

and the integral becomes

e12y+v‘(v-k) + L =z © /2,2_“_}('2 2

a2 ——— =i ] awe¥yl
4 V(v-k)¥+ 27 -« | v-x| “i/ZC vk -x

Now, dropping the primes and recalling that k = O(s_l)and
y = 0(1), the two integrals can be bounded as follows:

P ~2y+ive e - |v-k[? 2 w
Iv[kl df e < f as e-ly
+iv/8' %= | v-k | -« [v-x| K
=1 -ylv-k|
K
= o(ee”™ /%)
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Case ii) Here zo is real and the contour has to be deformed
around the singularities. This is where the artificial

vicosity will be useful. From equation (C2),

+ lim/(k-ip)*- (v-k)°
H+o

o
i

= ei[%] |:|<2— |v—k|2} /2 exp I:Etan—l (-2.<u/(1<2— (v—k)z)ﬂ/z:l

limpy~o

‘}2 _ |v_k|2} 172 _i(®)+ in”
i [Kz— I\)-klz] e ei["z""—-J

Consequently, 10, when negative, approaches the real axis
from above and when positive approaches the real axis from

below. Figure C3 defines the contour for evaluating Is(k).

Figure C3: Contour of Integration for v-k<k<v+k
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Again using the residue theorem, we find

as ei2y+v' (v-k) +2 z
VY {v=k)“ + 22 -K

©1 % & G

I_(k) = 2miRes (=2 )=| [+ [+ [+ [+]
S o &

5

where Is(k) is now interpreted as a contour integral on the

real axis as shown and 2°= /Kz— (v—kf . The residue can
be calculated as before:

eily+t’(\)—k) + £ z
v (v=k) -+22 -K

Res (-4;) = limg>e o)

2 2
e-2°y+v/(\)—k) + 2 z

— o) 2 2,1/2
= ) (2°-+(v—k) )
(o]
_ ke iyVkT- (v-ic_L <z
/|<2— (v-k4)2-

As in case i), the contours from Cl’ C3 and C5 contribute

nothing. The integrals on 02 and C4 can be bounded as
follows:

[f + I]dzei2y+/(v—k)2+22 z 1 -v|v-x|
4

—_— K
/Qv—£;§+ 22 - K

O(e),
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since in the second case O<|v-k|. Note that this is a
weaker upper bound than that found for case i). However,

it still is of higher order than the residue terms.

Case iii) This is very similar to case i) though the
contour is indented in an opposite manner. The residue

is given by:

VY (v-k) - KZ + zk

i/ (v=k) 2 - k2

ke ¥

Res(lo) =

-1/¢

and the rest of the integrals are O(ce ) or higher.

The results are summarized in the following table:

TABLE C1

Values of Is(k) for Different Ranges of k and U

Equal to Zero.

k>v+k or k<v-k v=k<k<v+k

_'IY|'(\)-k)2-K2 + ZK _2niKe—i|y|VK '(V'k)2+ZK
V(v-k)" -« /2= (v-k)?

Is(k) 2Tke

Here y has been replaced by |y|. For y negative, the
contour is taken below the real axis instead of above. The
details are very similar to those described in the pre-
ceding section and will be omitted.

To find the approximation to (23b), the dipole inner
integral, an analysis similar to that for the source inner
integral could be used. However, as noted in Chapter III,
differentiation of the terms in Table Cl, will give the
same results. The dipole inner integral ID(k) is given in

Table C2.
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TABLE C2

Values of ID(k) for Different Ranges of k and U

Equal to Zero.

k>v+k or k<vy-x V=K <k<v+k

VY (v-k) “~k“ +kz Yk - (v=k) < +kz

I, (k) ‘5‘»<311(Y)-'27H<e_lyI -sgn(y)2m<e"iIYI

If we include forward speed, then Is(k) is given by
equation (67). We will now simplify Is(k)as in the zero
speed case by assuming short waves from oblique headings.
First, make the substitution k' = k + v and recall that
w - VU = w, + Then (67) becomes

I_(k') = Llim }Odzei”*'/“"k"z‘“ v
S

(C4)

Hro = /(\)-'k' )2+Q,2 2 _é_(wo_‘_k,u _iu)Z
We will drop the primes and note that (C4) contains both
branch points and simple poles, just as (Cl) did. The

branch points given by 21 are the same as in the zero
speed case:

L=t i/ (v-k)? = + ifv-k| . (C5)

As in (C3) the branch cut will be taken on the imaginary
axis from +i|v-k| to +ie
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The poles are somewhat more complex than those given in

(C2). Let the poles be designated by 20 where
= 4% 4_ (v-
b, = 25 ko) - -k, (C6)

Here, u has been set equal to zero. It will be useful
only in determining the path of integration which will be
considered later.

Since k varies from +« to =-w; lo will be real or imaginary

for various values of k. For example, when
1

;5 (wo-+kU)4>(\)—k)2 ’ 20 will be real and when

;% (wo+ kU)4<(\)—k)2 ’ 20 will be imaginary. Consider
g

then, the values of k when

S+ kv - (v-K)?= 0 (€7
g
There are two real and two complex roots to (C7). Since k

is a real variable, we are only interested in the real roots
which are as follows:

k =k = E(2w0U+g)+ /aulvg + 40 _Ug + gz] /20°

and

k = k,= -[ (2w _U+g) + Yautvg + 4w Ug + g” ]/ZU2

It is easily shown that for k>kl, and k<k2, 20 is real
and that for k2<k<kl, lo is imaginary. Consider the three
intervals of k in evaluating Is(k) given in (C4) for y>0:



113

i) k>k1

Note that kl<0, which means that this interval includes
the region around k = 0. The integration in (C4) is done
on the real axis and its path will have to be indented around
the poles. To find the direction of this indentation, let
p+0. In a manner similar to that done for the zero speed
problem, 20 can be shown to approach the axis in the £-
plane from below for 20>0 and from above for 20<O. The

contour on the real axis is given in Figure C4.

/L 4 _ 142
-8 == gz(wo+-ku) (v-k)
- £\ i

w . 2—

Figure C4: Contour of Integration on the Real Axis for k>k1.

ii) k2<k<k1

Here 20 is imaginary and the path of integretation does

not have to be indented. For this range of k, define %)as

L = i/ (v-k)? - giz (w_+ xu)Y? (C8)

iii) k<k2
As in the first interval, 20 is real and the contour has

to be indented as shown in Figure C5. The details for deter-

mining this are similar to that used in the zero speed case.
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O,

1
Y et 4 2
~ 25 —/gz (wg+kU) "~ - (v-k)
- ./

Figure C5: Contour of Integration on the Real Axis for k<k2.

Equation (C4) can then be written in the following manner:

dleizy+/(v-k) +22 z
) JroeZi 2 1 2 !
(v=k)“+ 2 g(wo+kU)

I (k) = [
S c ik (€3)

where C(k) is the contour given for the three ranges of k.

As in the zero speed problem (C9) can be simplified through
the use of residue analysis. For k>k1’ use the contour given
in Figure C3 and values of 20 given in (C6). Then the arcs
Cl’ C3, C5 contribute nothing. The contribution from arcs
C2 and C4 is O0(e) and, consequently, dropped for being of
higher order. Is(k) is then approximated by 27mi times the
residue at —lo. Similarly, for k2<k<k1, use the values of
20 given in (C8) and the contour in Figure Cl. Again the
lowest order approximation to Is(k) is given by the residue
at 20 multiplied by 2mi. For k<k2, the contour is similar
to that of Figure C3, though it is indented in an opposite
manner, i.e., the indentation is above the axis for 20
negative and below the axis for 20 positive. The only
contribution consistent with the level of approximation is
from the residue. To summarize, the results are given in
Table C3. This is for y>O.
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TABLE C3

__:_[s (k) for Different Values of k and U
Not Equal to Zero.

I (k)

1

..o s1 Z 2 1
.1y/—-2(wo+ kU) - (v=k) ] eg(“’o+ xU)2z

k>k1 ~-2Tie -
/57 (u_+ kU)*~ (v-k)?
2m e‘Y’/‘\"k’z"}ﬂw w0 ? é(“’o*kmz .1 + kU)?
k2<k<k1 g o e g(wo )

.1 2
3 (m°+kU)

/(v-x)2%- —;-2 (w_+ kU)*

2 2
iyv/sr}’(wo+k0) - (v-k) 2 (w+k0)’e 1
K<k 2nie - e9 .

{w +kU)2
o

_ g
/2 workn)? - (k)7
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