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an alternative treatment of this class of expansion, for general hull
shapes. 1In particular, we demonstrate very strong effects of gravity near

the center plane of pointed bodies.

We also observe that at all Froude numbers, the low-aspect-ratio
flat-ship integral equation possesses a "similarity" solution, such
that the pressure distribution has the same shape at all stations. This
linearized but gravity-dependent result should not be confused with the
well-known conical similarity solution for non-linear planing or water
entry in the absence of gravity (Gilbarg, (1960), p. 360). In fact the
present geometrical requirement is for a cusped parabolic waterplane shape
but an arbitrary section shape, whereas the non-linear zero-gravity solution

requires a triangular plan form and section shape.

The low-aspect-ratio flat-ship integral equation is amenable to
direct computation, and we present here some preliminary examples of its
numerical solution. Much more work needs to be done to derive efficient
procedures, and the present computer program can only be considered as a
crude first attempt. However, the results are of considerable interest,
indicating rather dramatic gravity effects especially near the center
plane, as predicted analytically, and confirming Maruo's (1967) estimate

of the lift coefficient of a delta wing at sufficiently high Froude number.



2. The General Flat Ship Problem

We use a rather unconventional co-ordinate system (x,vy,s), as in
Tuck and von Kerczek {1968) and as sketched in Figure 1. The ship is
supposed fixed with its bow at s=0 and stern at s=L in a stream U. Thus

the total flow field velocity is
q = V(s +¢) , (2.1)
where ¢ is the perturbation velocity potential.
The body equation is
y = N(x,s) , (2.2)

where N 1is generally expected to be negative, "-n" being the depth
of the buttock line x=constant at station s. Equation (2,.,2) is supposed

to hold for

|x| < b(s), (2.3)

where b(s) 1is the half-waterplane width at station s. For lxl > Db
we may suppose that (2.2) defines the water surface elevation. The hull

boundary condition is
by = (U + dg)ng + dNy (2.4)

to be applied on the exact hull surface y=n .
We first make the small-draft approximation, introducing a small
parameter O measuring the draft/length ratio. Keeping only leading

order terms with respect to O , the boundary condition (2.4) reduces to
¢y =g , ony = 0, (2.5)

It is important to note that the small- 0 approximation is a regular one,
as distinct from the (potentially) singular perturbation represented by
the small-€ slenderness approximation to be applied next, where ¢€
measures the beam/length ratio. We shall assume that o<<e€ so that
(2.5) may be taken to hold quite accurately when we come to make the small

€ approximation.*

*It is of interest to note that, according to Acosta and DelLong (1971), the
infinite-Froude-number slender-planing-surface analysis of Tulin (1956) is

valid in the opposite limit e<<d .



Figure 1: Sketch of Co-ordinate System



The boundary condition (2.4) also correctly gives the exact kinematic
condition on the unknown free surface y=n for |xl >b . This has to be
supplemented by the dynamic condition

P 1
Ziup, v Rl =0, @.6)

if the excess of pressure over atmospheric at the free surface is P; usually
P=0. Again, the small-draft approximation enables linearization not only

of (2.4) but also of (2.6) to give

P
5 + Upg +gn =0 , on y=20, (2.7)
which combines with (2.5) to give the linearized free-surface condition

U

If P=0, this reduces to the usual equation

gdy + U = O. (2.9)

However, we shall generate solutions by means of pressure distributions P,
the velocity potentials then satisfying (2.8) whenever P # 0. Note that
(2.9) results from the small-0 approximation, and that alone; when we

subsequently take € as small, (2.9) may be considered as exact.

The general flat-ship problem, with € not necessarily small, is that

of solving the full Laplace equation

byux + ¢YY + bgg = 0 (2.10)

in the space y<0, subject to the hull condition (2.5) on the portion
|x|<b(s) of the plane y=0 occupied by the projection of the hull, and the
linearized free-surface condition (2.9) on the portion |x|>b(s). In
addition we expect to require some kind of radiation condition at infinity,
and a Kutta-type condition that the pressure reduces to atmospheric
pressure at any sharp trailing edge in order that the free surface leave

such an edge smoothly.

This problem can be converted into an integral equation, which is
the finite-Froude-number analogue of the lifting~-surface integral equation
of aerodynamics. Maruo (1967) gives one method for accomplishing this;
perhaps more directly we may set ourselves the task of finding an unknown

surface pressure distribution P(x,s) which generates the free-surface



displacement n(x,s). The corresponding integral connection* between P
and 1n may be obtained from well-known formulae, e.g. Wehausen and Laitone

1960, p. 598. For example
/2
m2pu?ng (x,8) =-ij5d£dGP(£,0) g d6secd (2.11)

w 0]

g ax K2 1k (s=0) cosB |\ i £)sind)
0

g 2
k—a—; sec“f

where the path of k-integration goes above the pole.

We shall not attempt to solve this integral equation here, since our
concern is with the low-aspect-ratio case. However, several questions are
worth noting. Maruo (1967) states that "the kernel of the integral equation
is complicated enough to frustrate any attempt at solving it." This view is
perhaps a little too pessimistic. The kernel is simply the complete solution
for a travelling three-dimensional pressure point, and a number of similar
computations have been carried out on an ad hoc basis recently (e.g. Monacella
and Newman (1967), Gadd (1969), and van Oortmerssen (1972)). Of course there
is more to the solution of the integral equation than just evaluating its
kernel; however, direct numerical attack on this general flat-ship problem

would seem worthwhile, and some effort is being put into this.

The role of the Kutta, or constante-pressure, condition at the trailing
edge is worth comment. There is a degree of non-uniqueness about the integral
equation (2.11); the homogeneous equation with MNg=0 has a non-trivial set
of solutions. This is illuminated by performing an indefinite s-integration
of (2.11), introducing thereby an arbitrary function of x on the left-hand
side, say C(x). The resulting integrated operator permits a unique solution,

the non-uniqueness being now absorbed into C(x). This unknown function must

*An interesting physical interpretation of this connection is the statement:
"Every planing surface is hydrodynamically equivalent to some hovercratt."

The equivalent hovercraft does not, of course, have a uniform base pressure.



somehow be determined by the requirement that P(x,s) vanishes at the
trailing edge. Physically, this indeterminateness is equivalent to a
degree of indeterminateness about the vertical location of the hull, and
indeed at infinite aspect ratio (g&-f 0) , C is a constant, reflecting
bodily upward or downward shift of the original given foil relative to the

undisturbed free surface at infinity.

The zero~ and infinite-Froude-number limits of (2.11) are of interest.

In the zero-Froude-number case we obtain simply
P(x,s) = -pgn(x,s), (2.12)

i.e., the appropriate pressure is hydrostatic. This is the apparent basis
for the original flat-ship formula of Hogner (see Havelock, (1932)) which is
however inconsistent, if used in a wave-resistance calculation at finite
Froude number. At infinite Froude number, the integral equation reduces
exactly to that of aerodynamic lifting-surface theory, so that the ship is
equivalent to a lifting wing with camber surface y=n(x,s). The role played
by the Kutta condition is mathematically the same; it eliminates a degree

of non-uniqueness in the general solution of the integral equation.

The analogy between the flat-ship theory and lifting-surface theory,
which becomes an exact equivalence at g=0 , illustrates a disturbing
feature of the low-aspect-ratio flat-ship theory, namely that we shall not
in general be able to satisfy the Kutta condition once the low-aspect-ratio
approximation has been made. That is, the pressure predicted by the low-
aspect-ratio theory at the edge of the transom stern will not in general be
atmospheric. This would be a most unfortunate conclusion, were it not for
the fact that low-aspect-ratio wing theory also suffers from this deficiency,
yet nevertheless has proved useful. What presumably happens is that in a
small neighborhood of the trailing edge there is a rapid change of pressure
back to atmospheric. The hope is that this occurs over a dynamically-
insignificant portion of the total hull and has no significant upstream
effect. Some work has been done (e.g. Rogallo, (1970)) on the corresponding

aerodynamic problem.



3. Derivation of the Low-Aspect-Ratio Flat-Ship Integral Equation

We now assume that the hull has a low aspect ratio, i.e. that it is
slender, in the sense that its beam B is much smaller than its length L,
say B=0(g)* L. Note however that there is a definite heirachy of smallness

in this problem, thus
"Draft<<Beam<<Length".

The case when the draft and beam are comparable gives ordinary slender-ship
theory, as in Tuck (1964) for low-to-moderate Froude numbers, and Ogilvie

(1967) for moderate-to-high Froude numbers.

In the present case we are going to treat moderate-to-high Froude numbers,

such that

v =3 (3.1)

is of order unity. This means that the conventional length-based Froude
number is large, specifically
19)

-1
— =0(/L/B) = O(c 9. (3.2)
/gL

F =

This is the regime treated by Ogilvie (1967) and by Maruo (1967).

In fact the appropriate integral equation can be obtained by specializing
Ogilvie's (1967) inner problem, for the case of small draft/beam ratio.
Ogilvie's (1967) general problem requires solution of a non-linear two-
dimensional free-surface problem in each cross-section. The small-draft
approximation linearizes this problem and can lead to the same integral
equation as is obtained by the reverse procedure, i.e. of "small ¢, then

small €," rather than "small € , then small 0",

Since the body is slender, we expect as usual to have to solve a
two-dimensional problem in the (x,y) cross-flow plane, i.e. dropping ¢ss

from the Laplace equation (2.10) to give

d)xx + ¢YY =0 (3.3)

In the Froude-number range in which Vv=0(1) it is clear that both terms in

the free-surface condition (2.9) must be retained, since é%-= o™ ') and
3 _ -1
Iy o(B 7).



If we temporarily define a "pseudo-time" co-ordinate t by the equation
s = Ut, (3.4)

the free-surface condition (2.9) becomes

g¢y + ¢tt =0 (3.5)

which is identical to the usual unsteady linearized free-surface condition
for water waves. Thus, since ¢ now satisifies (3.3), not (2.10), we can
use any solution for unsteady two-dimensional linearized water waveé, replacing

t by s/U.

The solution of most direct use is again that of a pressure distribution
P(x,s) over the free surface. This is now to be interpreted as "time"-
varying pressure distribution imposed on a segment |x! < b(s) of the

axis y=0, whose width 2b(s) also varies with "time".

The solution is given by Wehausen and Laitone (1960, p. 615). It is
convenient to write it in terms, not of the velocity potential ¢(x,vy,s),
but rather of its conjugate, the stream function VY(x,y,s). In fact, since
from now on we shall be concerned only with y=0, for brevity we write

Y(x,s) for VY(x,0,s). Thus

s b (o)
puY (x,s) = do age (g,0) K(x-§,s-0), (3.6)
o -b (0)
where
K(x,s) = ;1T- 32 dAsinAx cos /%_2- s (3.7)
0
=iz F'W (3.8)
. S2
with w? = ZEgT;T g (3.9)
and F'(w) =1 + 2ﬁI' ar sin (g2-w?) (3.10)
0

w
=4 2_ 2
= g arz cos{(C~-w ).
0
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The function F'{w) can be expressed in terms of Fresnel integrals,

e.qg. i
_ . ]
s { i
F'(w) =1+ 2w 5-{cos w? s (/E-w) - sin w? C{/g-u»% (3.11)
A2 W &
P il cose? _ sinu® _ f(/-z-- w) ] (3.12)
- {2 2 2 m .

where S,C are Fresnel integrals, and £(Z) is an auxiliary function
(Abramowitz and Stequn (1964), p. 300). The function F'(w) has convenient
series and asymptotic expansions, respectively
OO‘ _ " m
Flw =1+ 9, (~dw’) , (3.13)
m=l11°3°*5° ... (4m-3)°(4m-1)

which can be used for small w , and

M,
<~ l . ° s .. - . -~
F' (w) = /g-w(coswz—sinwz) - 2. 3 2.2 (4m=3) * (4m-1)
m=1 (-4w*)™

(3.14)
which can be used for large w , for a suitable stopping point m .

The kernel K and function F' (w) occur also in classical Cauchy-
Poisson problems (e.g. Lamb (1932), p. 384) and the physical description of
the spreading waves produced is well~known. Indeed one can view the
representation (3.6) as resulting physically from a "time" history of
pressure pulses, the pulse P(x,s) at "time" 0=s being applied in order
to cancel out instanteously the spreading waves produced at earlier "times"
0<s. Our aim is to choose P(x,s) so that the stream function which is left
over after this cancellation correctly satisfies the hull boundary condition.

Somewhat similar ideas were used by Cummins (1956).

The boundary condition (2.5) is written in terms of ¢ . However,

¢ we have

using the Cauchy-Riemann equation ¢y=—¢x

X
voos) = -u [ ng(E,s) at (3.15)
0

Note that we have used the natural antisymmetry condition ¥=0 at x=0.
Thus once the hull shape n(x,s) 1is given, VP (x,s) may be treated as

a known function, and (3.6) then represents an integral equation to
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determine the unknown pressure P(x,s). For example, if the "ship" is

a flat plate* at an angle of attack d then

nix,s) = ~0s , (3.16)
and we have immediately
Y(x,s) = Uas. (3.17)

The analytical character of the integral equation (3.6) is of some
interest. The equation is of Fredholm character with respect to the
(space-like) variable x with dummy & , and of Volterra character with
respect to the (time-like) variable s with dummy O (Tricomi 1957).

This means physically that information at all values of & is needed to
determine the solution at any x, whereas only information at further forward
stations g<s is needed to determine the solution at a particular station

s. We may hope to solve the equation in the s-dimension by a time-stepping
or marching process, proceeding systematically from bow to stern, as in

an initial-value problem for a differential equation. But at each station

s we must expect to solve the Fredholm integral equation with respect to

% in a manner more like a boundary-value problem for a differential

equation.

Furthermore, the Fredholm equation in the x direction is singular.
This is most apparent at g=0, where w=0 and F'(w) = F’(0) = 1. Thus

at g=0 , K(x-£,s-0) , and the E-integration is to be interpreted

= T (%X-¢)
in the sense of Cauchy. In fact for any g#0 and O#s the singularity is

in a sense worse than the simple Cauchy pole, for as w*® we have from

(3.14)

F'(w)+j§ w (coswz—sinwz). (3.18)

*0r, in fact, any hull differing from that given by (3.16) by addition
of a function of x alone, for example, a triangular section with
a constant deadrise angle qualifies. Only the longitudinal slope Ng
is hydrodynamically significant.
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Thus as &*tx,

2
g ~-3/2 g(s-0) ﬂ
- -0)> - - 2o .19
K(x-&,s-0) 52 (s-0) (x-&) cos[4U2(X_£) 7. (3.19)
Hence if 0#¥s , the kernel function behaves like a "-3/2" power
multiplied by a rapidly oscillating function, as &+x. This behavior
may be expected to cause some degree of numerical difficulty, and does.
Instead of tackling the integral equation for the pressure P
itself directly, it is somewhat more convenient to work in terms of a
function @ whose s derivative is P, namely
s
Q(x,s) = g P(x,0) 40, (3.20)
-0

Although the lower limit of (3.20) is written as "-oo", it may equally well
be replaced by zero, or in fact by so(x) , Where so(x) is the station

s at which x=b(s) 1i.e., the function so(x) is the mathematical inverse
of the function b(s). This is because P=0 outside the hull projection on

the plane y=0.

The function Q(x,s) is of course the loading on a unit-width strip
of the hull at offset x, extending from the leading edge to station s.
Hence, for example, the total 1lift force Fy in the y direction is obtained
in terms of the values of Q at the trailing edge s=L, namely

b (L)
F,, = Q(x,L) dx, (3.21)

y
-b (L)

More-complicated formulae involving Q at all stations s apply to the
pitching moment and the drag. At infinite Froude number, Q is proportional

to the velocity potential ¢; specifically
Q = =-pU¢. (3.22)

However, as is clear from the boundary condition (2.8), no such identification

is possible if g#0.

On substituting P(&,0)=Q4(£,0) in (3.6), and integrating by parts with

respect to O , we have
b (o)

pUY (x,8) = H ago(g,o) K(x—E.s-o)}gzz
-b (o)
s b (0)
-f do s dgQ(&,0) Ky (x~§,8-0)
0 -b(0)
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b(s) s b (0)
= dEQ(E,s)K(x—E,O) - \( do j. de(E,O)KO(X—E,s—O) '
-b(s) 0 -b{0)
(3.23)
using Q=0 at x=b(s).
The first term of (3.23) involves K(x-£,0) which is simply ETE:ET .

Thus this term must be interpreted in the sense of Cauchy, and takes the
form of a finite Hilbert transform (Tricomi, (1957), p. 173) which we

write symbolically as

b (s)
.1 atQ(E,s)
Fy (6)209) (436 7 S x-£ (3.24)
-b(s)
Thus (3.23) becomes
s b (0)
pUU}(X,S) =¢"b(S)Q(X'S) - S‘do I dEQ(EIO)KO'(x—EIs_G) .
0 -b (0) (3.25)

Equation (3.25) is the principal integral equation we shall attempt to
solve. The kernel Ky may, after some manipulation, be written in the form

2

Ko(x—E,s—0)= o)

(I
5E F'(w) (3.26)
where

w" = Quz[x-g] (3.27)

Equation (3.25) agrees with the result of integrating Maruo's (1967) equation
(57) with respect to (our) & , from £=0 to &=x. Table 1 shows the
equivalence of the various symbols used. Note that the function F(x,y)

used by Maruo in his equation (58) et seq. was never defined, but is

related to our K(x,s) . Maruo's equation (56), when similarly integrated

with respect to (our) & , also agrees with our equation (3.6).



TABLE 1.

EQUIVALENCE OF SYMBOLS

THIS PAPER MARUO (1967)
s,0 x+2,x'+2
X, Y.v'

Y A
ni(x,s) f(x,y)
P(x,s) pUY (x,y)
Q(x,s) pu?g(x,y)
-ns(x,S) w(x,y)
P(x,s) g”mx,y')dy'

0
b(s) bs(x/%)
B = 2b(L) 2b
L 22

-1/2

F (ZXO)
v 2X02,/b
F L
¥
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4. The High=Froude-Number Limit

The limit g*0 may be carried out either on (3.6) or (3.25). 1In
any case, if g=0 the kernel K(x-§,s-0) = %TifiT is independent of s

and 0. Hence in (3.25), Kg=0 and the integral equation reduces to

Hro(x,5) = pUb(x,s). (4.1)
There is now neither upstream nor downstream influence of the loading at
one station on another, and the problem is solved immediately by inversion
of the finite Hilbert transform, using the inverse Hilbert transform
operator defined symbolically by

E - 4 -

gﬁb 1 _(bz_xz)l/g?%(bz_xz) 1/2 (4.2)

>

(Tricomi, 1957, p. 179).

Thus
o(x,s) = _pU(bz_xz)l/z bf(bz_xz)-l/zw(x’s)
__pumie)-x) 2 P apy,s
" 4 (b2 (s)-E2) /2 (x-E)  (4.3)

Normally the inverse operator #}-1 is not uniquely defined, and to
b

any solution such as (4.3) we must add a multiple of the function
(bz—xz)“l/2 whose Hilbert transform vanishes (Tricomi, (1957), p. 174).
However, we can exclude this possibility in the present case, since this
would generate velocity and pressure distributions with inverse 3/2 power
singularities at the leading edge x=b(s). 1In order to retain only
integrable (inverse square root) pressure singularities, we must require a

square-root zero in Q, leading to the solution (4.3).

Since Q is proportional to the velocity potential when g=0 , the
solution (4.3) could also have been obtained directly from the boundary-
value problem with ¢=0 as the free-surface condition, and simply expresses
the fact that conjugate harmonic functions such as ¢ and Y are Hilbert
transforms of each other on the x-axis. This solution is of course well
known in aerodynamic low-aspect-ratio wing theory (see e.g. Newman & Wu,

(1973). The solution for a flat plate is simply

-15-
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0(x,s) = pUZOlez(s)—xz , (4.4)

the usual "elliptic loading distribution”.

We are here interested rather in the first correction term to Q,
resulting from finite-Froude-number effects. That is, we seek an
asymptotic expansion for small g (or more correct%y for small values of

gL”~ . . .
L UZB)' which begins with
a term Q=0Q given by (4.3). Maruo (1967) has performed such an analysis

the appropriate normalized gravity parameter V=

cn the lift coefficient in a special case and has proved that the first
correction to the infinite-Froude-number lift is a factor of order Vv .
That is, the asymptotic expansion at least begins like a Taylor series with

respect to V .

A logical procedure for constructing this expansion is by successive
approximation, i.e. since (4.3) resulted from dropping the last term of
(3.25) entirely, the first correction to (4.3) is obtained by substitution

oo
of Q into this particular term. Thus if we put

Q=g"+ ¢ (4.5)
where Q1+O as g or V0, we have
s b (0)
1 _ 00 n .
AN S' a0 S dEQ™(E,0) K (x~E,5-0) . (4.6)
0 -b (O)

While (4.6) may be a useful formula as it stands, we can simplify further,
since K itself still depends on gravity g. But if for example we were to

use the (truncated) series (3.13) to estimate Ky for small g, we should

only obtain terms of O(gz), not 0(g) as expected from Maruo's analysis.
Furthermore, the resulting integrals would diverge because of a non-integrable
singularity at &=x . The highly-oscillatory behaviour of the kernel near

£=x , as indicated by (3.19), suggests that the limit g*0 needs special
treatment, and it is clear by analogy with the method of stationary phase

that only the neighborhood of &=x contributes significantly to the integral
(4.6), to leading order.

Thus we expand Q% in a Taylor series about &=x , giving
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s
= S\do ‘f dE{Qw(x,O) + (E—X)Q:(X,O) +...]K0

0 (nbhd
of x) (4.7)

However, & can only take values near to x for Sg (x) <0<s where sg(x)
is as defined below equation (3.20). Further, in view of (3.26), the

term of (4.7) in Qm(x 0) integrates to zero, and we are left with

S X+
Eii ! 1 2. me(xrc) 9 .
EbeQ T S 40 =55 S‘ dg(g'x)'g'gf' (w) (4.8)
so(x) x—OO
- Q% (x,0) S‘ .
= NS do =555 aX[F' (@ -11 (4.9)
s (X) 0

2 _ g(s-0)*

avzy . On changing the variable of

€

where x=|E-x| and
integration from ¥ to w , we have
s
o - 2 g S 40 (5-0) 02 (x,0) f E_SM aw,  (4.10)
SO(X)

The last integral with respect to ®w is a pure constant, taking the value

"-2m". Thus, finally,

s

. 4 oo

%b(s)Ql (X,S) = - (—J% y dO(S-O)Qx(X,O). (4.11)
So (%)

The procedure for computing the leading-order gravity effects on
the flow ( and in particular on the pressure distribution) is thus to
compute first the infinite-Froude-number solution ©Q%(x,s) by (4.3),
substitute into (4.11), and then take a further inverse Hilbert transform
to find Ql(x,s) . Except in very special cases this procedure may be
nearly as difficult as direct numerical solution of the integral equation
(3.25). However, we note that the leading-order dependence on gravity g
is linear, as is Maruo's (1967) estimate for the 1lift coefficient of a

flat delta wing.
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In the special case of the flat plate we may proceed a little further.
Thus on use of (4.4) for Qm in (4.11), we have

S
zféng = 4gpax do(sg) | (4.12)

[ Pl 2
5 (x) b (0)-x

It should be observed that the denominator vanishes at the lower limit
O=so(x) of the 0 integration. 1In the further special case of a triangular

waterplane
b(s) = s, (4.13)
we can integrate (4.12) explicitly to give

o 1 x|
¢#le = 4gp X‘X[f%og(s+/sz- ;59 - E-fsz— %;— -sfog —%—

~ (4.14)

Although no doubt the inverse Hilbert transform could now be obtained
to generate Maruo's solution, our purpose here is rather to observe the
remarkable introduction of singular behaviour alcng the center line =0,
as evidenced by the term of (4.14) in "Qoglxl". This behaviour is
characteristic of pointed flat plates. For example, if we consider the
more general class of waterplanes whose behaviour near the bow is of the

form
b(s) = As® (4.15)

for some positive exponent n, then the behavior of the integral (4.12) as
x¥0 is of the form of an analytic function of x, plus a contribution of

n
x1/

the order of s. , n#l, or s.x %og x, n=1.

Thus for all n>1l, the slope of the graph of the function §¢5Q1
against x is infinite at x=0. The function 4¥le is of course an odd

function of x.

The corresponding result for Q1 itself is that Q1 behaves like
an analytic even function of x, plus a contribution of the order of
s.lx‘l/n for all n#l/2, and s.leog|x| for n=1/2. Specifically we

have

0 (x?), 0<n<1/2
Ql(x,s) = Ql(O,s) + s.O(x220g|x|), n=1/2

s.0(]x]™, n>1/2 | (4.16)
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It should be noted that since P=QS , and the singular terms of (4.16)
are linear in s, (4.16) indicates that the pressure distribution P
itself has the same singular structure, with the strength of the

singularities invariant along the length of the ship.

Thus for 0<n<l/2 , the pressure is well behaved, for n=1/2
(blunt parabolic waterplane) the lateral pressure gradient vanishes
at x=0 but the lateral curvature of the graph of pressure against x
is infinite, and similarly for 1/2§n<l . For n=1 (triangqular water-
plane) the lateral pressure gradient is discontinuocus but finite at
x=0 while for all n>1 the lateral pressure gradient is infinite at
x=0. That is, there is a very sharp but finite-magnitude pressure peak

along the center line of any sharply-pointed flat plate.

The above result is of course essentially a gravitational effect,
and stands in sharp contrast to the smooth behaviour of the elliptic
loading (4.4) in the gravity-free case. The singularity is presumably
due to the profound effect of the diverging waves generated at the
extreme bow, whose wave length tends to zero along the track of the
bow, irrespective of Froude number (Ursell, (1960)). Although the above
analytic conclusions were obtained from a high-Froude-number expansion,
it is probable that the essential character of the singularity is the
same at all Froude numbers, and the numerical solution of section 7

tends to verify this. Experimental verification is eagerly awaited.



5. A Similarity Solution

We seek in the present section a solution P(x,s) of the integral
equation (3.6) which has the same basic shape at all stations s. That
is, the pressure distribution at any one station s is obtained from
that at any other station by a simple scaling of P and x. The x-wise
scale is obviously b(s), and it is easy to see that the only possible
multiplicative scale on P is some power of s. Thus we seek a solution

of the form

= gVp(—X—
P(x,s) s lj(b(s) ), (5.1)
for some constant Y and some function P(x) of a single variable

X.

Of course we have no guarantee that such a solution ever exists,
and in particular could not expect it to exist without some special
restriction on b(s). In fact,we shall now show that (5.1) is a valid
solution if and only if the waterplane consists of cusped parabolas,
i.e. if

b(s) = As? (5.2)

for some constant }\=B/2L2 . The body shape mn(x,s) and thus the
stream function Y(x,s) will also possess a similarity character, and
we shall verify that, for example,

_ Ymly e X
Y(x,s) = s ?(b(s) ) . (5.3)

The above are the most general assumptions which permit a similarity
solution. To verify that they are consistent, and to find the equation
satisfied by E(f) , we substitute (5.1) and (5.3) into the integral
equation (5.6).

Thus we have

s 1
pUsY“tg(S-f-‘;)— ) = Xv docYb(O)g dEP (E)R(x-ED(0) ,5-0) = (5.4)
0

-1

on substituting £=£b(0) . Putting x=xb(s) , and using the form
(3.8) of K gives

-20-
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s 1
pus" Y (x) = = g do GYX %— F' () , (5.5)
¢] -1
where
K = b(s)/b(o) , (5.6)
and

2 _ g(s=0)2/b(0)
w —-W . (5.7)

If we put 0O=st in (5.5), we have

1 1
Yoo
oo =2 [ agpp [EEEEG (5.8)
-1 o 7
where now
U = b(s)/b(st), (5.9)
and
2 2
w? = 35 (1-t) 7/b(st) (5.10)

av?fux-g[ -

So far, we have not made the assumption (5.2). In order that the
original assumption (5.1) be valid it is necessary that (5.8) represent
an integral equation for E(f) ;, i.e. that it be independent of the
station co-ordinate s. The parameter U is independent of s if and
only if b is proportional to some power of s , while the parameter w
is independent of s if and only if that power is exactly 2. Thus if

(5.2) is satisfied, we have

U=t X (5.11)
and

w? = —-?’—-——4)\112;59 = 2V —I(;:B;I . (5.12)
Thus, finally, the integral equation for E(f) can be written

pUY (x) = ¢ dEP(E)K(x,8) | (5.13)
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where 1
Y+2
1 dt t
I~<(§,§) = Ff *-FtZ F'(w) , (5.14)
0

with ® determined by (5.12).

The task of solving the one-dimensional integral equation (5.13)
would appear to be considerably simpler than that of solving the general
two-dimensional equation (3.6). However, the kernel 5 is obviously
extremely complicated, and highly singular as §+§ . Hence numerical
similarity solutions have so far been obtained only indirectly, via

the general equation, and will be presented in section 7.

The quantity Q(x,s) whose s derivative is P also obeys a

similarity law, of the form

sTHl o X . (5.15)

Q(x,s) = QG

On differentiation with respect to s, we establish the connection

P(x) = (Y+1) Q(x) - 2x Q' (x) (5.16)

between the similarity profiles of P and Q . An integral equation for

0 may also be obtained by substitution of (5.15) into (3.25),

namely
1
pUg(g) = lg(f) +'r dgg(g)g%gl(g,g) . (5.17)
-1 ~
where
! Y+1
_2 dat t ey
K (x,8) == y—l_t [F'(w)-11, (5.18)
0

w being given by (5.12) again.

The allowed shapes of the hull are of interest. Clearly we are
allowed only the very specific cusped waterline prescribed by (5.2).
However, considerably greater latitude is allowed in the shape of the
cross-sections and some latitude is allowed in the longitudinal profile.
Thus it is clear that the hull function n also has a similarity

character, with
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= oV n(—%_
n(x,s) = s Q(b(s) ) . (5.19)

The arbitrary exponent Y therefore characterizes the longitudinal
profile or keel line, which is straight if <vy=1 , blunt if vYy<l and
cusped if Y>1*. The case of a flat plate is included, with vy=1

and Q(§)= -~g=constant. More generally, any cross section shape defined
by Q(f) is allowed, but the hull shape must of course be similar for
all stations, according to (5.19). The connection between the shape
function Q(f) and stream function T(f) may be obtained from (3.15),

and we have

P(x) = 2AUxN(x) - AU(Y+2)

~ o~

(g)d& . (5.20)

Oc_fﬁ(x
3

A physical justification of this similarity solution may be attempted
as follows. At these high Froude numbers we are concerned only with
the diverging part of the ship wave pattern near the ship's track,
since the transverse wavelength 2ﬂU2/g far exceeds the ship length.
The diverging waves are (Ursell, (1960)) short in wavelength even for
vanishing gravity, and in fact their crests asymptote to the axis x=0
according to the parabolic law, x~s2. Thus the growth of the waterplane

(5.2) precisely matches the spreading of the diverging waves.

Given this physical picture we may speculate on the character of
the solution, especially near the leading edges, for other waterplanes.

For example, if the waterplane is more highly cusped than (5.2), i.e.

n<2 in (4.15), the rate of spreading of waves exceeds the rate of
growth of waterplane, and at some station the diverging waves must emerge
from beneath the hull, changing fundamentally the character of the leading

edge singularity and hence the spray sheet.

* Remarkably, the special case Y=2 allows similarity solutions with the

non-linear free surface condition (2.6).



6. Numerical Procedure

In this section we discuss a procedure for numerical solution of
the integral equation (3.25). The program used is quite unsophisticated,
and further work is needed to develop more efficient programs. However,
the accuracy attainable with the present method is satisfactory for

some purposes.

The only numerical difficulty in solving (3.25) is with the double-
integral term. Routines for efficiently inverting finite Hilbert
transforms are easy to construct, so that the first term on the right of
(3.25) gives no trouble. Notice that the double-integral term contains
all "time"-history effects; that is, it and only it introduces an
influence of previous stations 0<s on the pressure at the current
station s. 1In this connection it is important to note that the kernel

K0 vanishes at the current station, ie. when O=s.

We make use of this property in a "time"-stepping procedure, by
first using the ordinary trapezoidal rule on the O-integration. Having

chosen a station spacing As,we write

Q,(x) = Q(x,nls) (6.1)
¢, (x) = ¥(x,nls) (6.2)
bn = b{nAs) (6.3)

and approximate

n-1 bk
pUY._(x) =3{’bngn(x) - Bs kZ’,l { aEQ, (E)K_(x-E, (n-k) bs)
=i =Dk

(6.4)

Equation (6.4) can be written in the form of a recursive algorithm

for Qn’ namely

9, (x) ='#;l R (x) (6.5)
n
where
n-1 b
' k
R (x) = pUy_(x) + As Z S' dgQ, (EYK, (x-E, (n-K)As) .
k=l =by (6.6)

-24-
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Note that Rn is determined from the known quantity wn(x) , together
with all Qk(x), k=1,2,...n-1, which are known at the n'th step.

The next problem is evaluation of the £-integral in (6.6).
We use a very crude estimate, in which Qn(E) is taken as a constant,
say ij , on each of 2M segments, j=%1,%*2,...*M , where the j'th
segment is defined by

£5y <E<Ej=p sin SUA (6.7)

Note that the same number 2M of x-wise segments is used at every

station s, the segment size increasing with waterplane width 2bk.

Using the formula (3.26) for Kc and integrating explicitly with

respect to we have
P £ 1 M

o]

- E=¢,
- _2 A [ ' ] 3
Rh(X) = Dan(x) - 5: —" z: ij_F (w) £t (6.8)
k=1 j=-M j-1
j#0
with
2 2
2 _ gl(As)“(n-k)
w® = g = . (6.9)
We now evaluate (6.8) at a point X=X. which is approximately the
mid-point of the i'th segment, namely
. (i-k)m
x{ = bk sin T ’ (6.10)

obtaining a set of values Rin=Rh(xi) . Finally, a numerical inverse
Hilbert transform, essentially evaluating an expression like (4.3) by

the mid-point rule (after removing the Cauchy singularity), provides a
corresponding set of values of Qin = Qn(xi) . We now proceed to station
n+l , etc. Note that no matrix manipulation (especially no inversion)

is ever required in this method.

Difficulties arise because of the highly-singular nature of the
kernel near &=x , as indicated by (3.19). Of course we never evaluate
exactly at this point, and in obtaining (6.8) from (6.6) have integrated
analytically through this singularity. Nevertheless, there is bound to
be trouble in (6.8) due to large values of ®w whenever the point of

evaluation X=X, at some station s is close to an end point E=Ej
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of any segment at a previous station O . Physically, each end point
of a segment looks like an isolated singularity, which leaves its own
"trail” in the form of wildly-oscillating waves (Ursell, (1960)). A
better numerical method could be one in which the step-function
character of Qk(E) with £ was replaced by a smoother variation,

thereby moderating the apparent singularity.

This problem manifests itself in the form of apparently-random
small fluctuations of Rh(x) as a function of x, superposed upon a
"believable" smooth wave. It is cured in a not-altogether-satisfactory
manner by two separate smoothing procedures. In the first place, we
test each end point Ej while evaluating the sum (6.8) to ensure it is
not too close to the current evaluation point X . If it is as close
to x; as 20% of the ith segment size, we shift xg (staying within the
ith segment) by that 20% amount. Secondly, after complete evaluation of
)

the Rn(xi) , we smooth by replacing Rh(xi) by the mean of Rn(xi-
).

1
and Rn(xi+l
The particular trigonometric lateral spacing (6.7) was chosen to

provide a sufficient density of segments near the edges to counter the
rapid (square-root) drop to zero of Q. In fact, explicit use is made of
the nature of this spacing to make the inverse Hilbert transform most
efficient, and for example the program reproduces exactly the result
(4.4) for flat plates at infinite Froude number. However, this decision
was made before the singular character of Q near the center plane was
discovered. Actually the investigation of Section 4 was only carried
out as a result of the appearance of the numerical results, and in

retrospect it would appear that a greater density of points near the

center plane would have been desirable.



7. Discussion of Computed Results

Figure 2 shows results for Q/pUzab(s) plotted against §=x/b(s)
at various stations s, for the case of a flat plate with the cusped
parabolic waterplane (5.2). This is the case in which a similarity
solution exists, such that the quantity plotted should be independent
of s. The results shown are for M=20 and a maximum value of n=20 |,
with the speed chosen so Vv=1.25 . For example, with a length/beam

ratio of 5.0, this would correspond to a conventional Froude number F=2.0 .

We observe that at this fairly-high Froude number, a similarity
profile is reasonably well achieved by about the mid-section of the
ship. In fact departure from similarity very near the bow is inevitable,
since the program starts with Rl(x) = 0 in (6.5). That is, at the very first
station n=1 there is an apparent infinite-Froude-number or zero-gravity
solution, irrespective of the actual Froude number. This is shown as
the s=0 curve in Figure 2, and is simply the elliptic loading
(4.4). The behavior for the first few stations is quite erratic, but

the oscillations apparently die out as s increases.

If we now vary V , i.e. vary the Froude number, we obtain the
family of similarity profiles shown in Figure 3. These are essentially
plots of 9(5) » as in (5.15) with vy=1. However, they are actually
obtained as in Figure 2 from the general program at s/IL=1.0 .
Similarity is harder to achieve numerically as V increases, i.e.
as the effect of gravity increases, especially near the center plane.
The curves are dashed wherever an uncertainty of more than about 5%
exists, and discontinued altogether as soon as the uncertainty reaches

10%.

Corresponding curves of the actual pressure E(E) could be
obtained from (5.16), but the necessary numerical differentiation would
reduce the accuracy of the results unacceptably. However, it is
clear that the general character is of a sharp but finite pressure peak
at the center plane, with a pressuvre minimum about half-way out, followed
by an infinite positive-amplitude (inverse-square-root) peak at the

edge x=1. This infinity corresponds to the leading-edge spray sheet.

=27~
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Similarity check for cusped waterplane. Scaled loading
distribution at various stations, for fixed v = gL?/U’B
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Figure 3: Trailing edge loading distribution for cusped waterplane
at various values of v = gL?/U?B
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Figure 4 shows the loading Q at the trailing edge s/L=1.0 for
the case of a triangular waterplane, i.e. for a delta wing, at various
values of VvV . The results are analogous to those of Figure 3, but
the profiles are no longer self-similar with respect to s. On the contrary,
Figure 4 has an alternative interpretation as a plot of scaled loadings
at various stations s for a fixed value of Vv . For example, at
v=2.5 the loading at the mid-section s/L=0.5 1is precisely half of the

result shown in Figure 3 for the trailing-edge loading at Vv=1.25.

In both Figures 3 and 4 the center-plane singularity suggested by
the analysis of Section 4 is qualitatively evident. Unfortunately,
program accuracy in this region is, not surprisingly, least satisfactory,
so that we are not able to verify the differences in tne actual degree

of singularity, as indicated by (4.16).

Perhaps a more significant difference between Figures 3 and 4 is
in the strength of the pressure singularity at the edge §=1, which
appears approximately invariant with Vv for the similarity profiles of
Figure 3. 1In the case of the delta wing, however, there appears to
be a real weakening of the pressure singularity as V increases, or
as we move from bow to stern at fixed v . In fact for all v>2.1
the computer program predicts small negative loadings very near to x=1.

~

Since this implies a negative infinity in the pressure, it is not a

physically~acceptable result. Unfortunately it is hard with the present
crude program to tell whether these are genuine theoretical predictions,
or numerical errors. However, the fact remains that no such negative

values are ever obtained in the similarity case of Figure 3.

This effect is anticipated by the discussion at the end of Section

5, and we can illustrate it more strongly by use of the even-blunter

waterplane n=1/2 in (4.15), ie. one which is parabolic in s against x.
Figure 5 shows loadings for this case. There is now no doubt from the
computer output that for Vv>1.1 the predicted edge loading is negative.
What actually happens here is not clear; what is clear, however, is that
the present theory is no longer valid. Note also from Figure 5 that for
this blunt body, the center-plane singularity has almost disappeared and
the pressure gradient now appears to vanish at §=0 , as predicted by

Section 4.
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Figure 4: Trailing edge loading distribution for triangular
(delta wing) waterplane, at various values of v = gL?/U’B
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Figure 5: Trailing edge loading distribution for blunt waterplane
at various values of v = gL?/U?B
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Figure 6 shows the variation with Vv of the lift force F_,
computed according to (3.21) and scaled with respect to the infinite-

Froude-number (i.e. v=0) value
® Ll 2 2
Fy = E-OU ofb(L)] . (7.1)

Results for all three waterplanes discussed above are shown. For the
triangular case only, comparison may be made with Maruo's (1967)

very-high-Froude~number approximation

oo

F /F_ =1+ 0.211v 7.2
¥y ' (7.2)

a straight line which clearly gives the correct asymptotic behavior for

small Vv .
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APPENDIX: Computer Program Listing

MAIN PROGRAM

LCW ASPECT RATIQ FLAT SHIP THEDRY
COMPLTES LCADING @ (=STATICNWISE PRESSURE IMNTEGRAL) AND THE
RESULTING LIFT COEFFICIENT FUR SHIPS JF SMALL DRAFT AND BEAM
REFERENCE: MARUO 1567, TULK 1574

DIMENSIUN R{50),QQ(50)+PS5I(50,50),0Xx(50)
COMMCN XMU50)y SXU(50) oMyUPHIOPsA(5014TTU50)46G9XX{50)4Q(50,50),TPDT

M = NUMEER OF LATEKAL PUINTS (OFFSETS,BUTTOCKS) IN A HALF-WIDTH
OF THE SHIP. NOTE: SAME FCR ALL STATIONS. SPACING IS SQUARE ROOT
8IASSEC TOWARD EUGEs SCALED WRT HALF BEAM A(J) AT STATION J .

N = NUMBER OF STATICNS, EQUALLY SPACEU

REAC (549) M,yN

9 FORMAT{2110)
WRITE(6,21) M,N

21 FCRMAT(4HL M=91493H N=y9ldy//7/4324 J T7T(J4) AlJ) PSI(JsK))
EM = M
DPHIOP = (C.
DPHI = 3.14l16 * DPHIQP
HFCPHI = C.5 * DPPHI
DO 2 K = 1,M
PHI = K*[CPHI
XX(K) = SIN(PHI)
PHI = PHI - HOPHI

5/7€EM
1l

XM(K) = SIN(PHI)

SX{K) = CCS(PHI)

DX(K) = SX{K) * DPHI
2 CONTINUE

PRESENT PRUGRAM GENERATES HULL DATA INTERNALLY FOR FLAT DELTA
WINGyHALF APEX "ANGLE"=0.ly ANGLE OF ATTACK "SLOPE"=0.1l, SO THAT
THE HALF WATERPLANE wIDTH IS AlJ) = 0.1 * TT(J) « TT IS THE
STATICN COORDy GUES FROM C TU 1 o GENERALISATICN TO MORE GENERAL
WATERPLANES [S EASY; JUST REPLACE DEFINING STATEMENT FOR A{J).
GENEZRAL ISATICN TO OTHER THAN FLAT PLATE REQUIRES MORE EFFORT, SEE
TUCK 1974, TO SET UP MATRIX GF STREAM FUNCTICN PSI{J,K)

SLOPE = 0.1
ANGLE = 0.l
DT = 1./N

TPDT = 0.63661 * DT
AREAWP = 0O,

DO 1C5 J = LN

TT(J) = DT * J

AlJ) = ANGLE * TT(J)
AREANP = AREAWP + Al(J)
DO 100 K = LM

100 PSI{JyK) = SLCPE * XMIK)*A(J)
105 WRITE(69106) JeTTLU) yALJ) oIPSI(JyK) oK = 14M)
10€ FORNMAT(16,412F9.5)

AREAWP = 2.%UT*{AREAWP-0.5%A(N))
APCCEF = 0.5 * AREAWP / A{N)
ASPECT = (4. * A[N)*%2 ) / AREAwP
BL = 2. * A(N)
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Main Program (continued)

WRITE(6461) BLyASPECT yWPCUEF
€1 FORMAT(14H OEAM/LENGTH =4F8e4415H ASPECT RATIO =9F8.4+19H WATERPLA
LNE (CEFF =4FB8.4)

INPUT VALUES OF G=1/F*%2 o, F=FROUDE NG. BASED ON LENGTF.
NEGATIVE G FAS EFFECT UF ZERU G {(INFINITE F )
ZERQO INPUT G VALUE (THAT IS,BLANK CARD) STCPS PROGRAM

QOO0 O0O

10 REAL{L,11) 6
11 FCRMAT (F10.5)
IF(C) 12+13,14
12 wWRITE(6415)
15 FCRMAT (5HL1 G=0)
G = 0.
GC T7C 17
14 FROUDE = 1./7SQRTIG)
WRITE(6416) GsFROLDE
16 FORMAT{4HL G=)F6.3y THFRUOUDE=,F6.3)
17 WRITE(6,€3)
63 FORMAT{26H Qluel) Cltdr2) ETC )
DO 101 J = 1N
CALL FLATI(J +R)
CALL SMOCTH(R)
DG 1C2 K = 14M
102 RIK) = PSI(JsK) — R{(K]}
CALL HILBIN{QJQsR)
OC 44 K = 1M
44 C{J JK) = QQ(K)
101 WRITE(6,103) (Q{J ,K}K=1,M)
103 FORMAT(10F10.5)
CLIFT = Q.
DO €0 K = 1.M
60 CLIFT = CLIFT + Q{NeK) * DX{K} * A(N)
CLIFT = 4, * CLIFT /7 AREAWP
WRITE(6,€62) CLIFT
€2 FORMATI{FLl0.5)
Go TO 10
13 S1QP
END

End of Main Program. Listings follow for Subroutines FLAT, SMOOTH,
HILBIN and FPRIM2.
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SUEBROUTINE FLAT(NL4R)

C EVALUATES R{J) o AS IN TULCK 1574

101
102

OO0

VIMENSICON R(50)

CLMMCN XNM(50), SX{50) ¢MyDPHIOP yAL50) s TTI5C) 9GoXX(50)4Q(50,50),TPDT
DU 5 KK = 1,M

R{KK) = Q.

[FINL=1) 100,100,101

[F(G) 100,100,102

N = NL -1

XCLD = = A{NL) * XM(1)

DO 3 KK = 14M

X = AINL) * XM{KK)

THIS IS A CRITICAL DECISICN CARD. OXCRIT IS THE CRITICAL

CLUSENESS BETWEEN THE CURRENT FIELD POINT ANC THE TRACK OF A
PREVIOLS PRESSURE PCINT. THE NUMBER "0.2" USED IS RATHER ARBITRARY
VALUES OF 0.1 AND 0«3 GIVE SIMILAR RESULTS

CXCRIT Ue2 * (X = XCLD)
SUMCUT 0.

CC 2 J = L,N

T = TTINL) - TT(UN)

SUMIN = 0.
WNUM = 04,25 % (G % T*%2
FKOLD = 0.

DC'1 K = 1,M
XI = A(J) * XX(K)
AX = ABS(X-XI)

C HERE IS WHERE UXCRIT IS USED. IF “AX"IS BELOW DXCRIT, WE SIMPLY
C REPLACE IT BY OXCRITy THUS CALLING THE FRESNEL INTEGRAL ROUTINE
C AITH A SUBSTANTIALLY REDLCED ARGUMENT. A VERY RCUGH TKICK

100

IF(AXLTDXCRIT) AX = DXCRIT
WMNLS2 = WNUM/AX

WPLLS2 = WNUM/Z(Xx+XI)

FKERN = FPRIM2 (WMNUS2) - FPRIMZ(WPLUS2)
SUMIN = SUMIN + Q(JsK) * (FKERN - FKOLD)
FKCLD = FKERN

SUMGUT = SUMOUT + SUMIN/T

XGLD = X

RUKK}=TPDT*SUMOLT

RETULRN

END

SUBROUTINE SMOUTH(R)

C SMOOTHS R BY REPLACING CLD R WITH THt AVERAGE UF ITSELF AND
C wWHAT WE GET BY LINEAR INTERPULATING SEVTWEEN THE 2 NEAREST VALUES.

COMMON XM(50)y SX(50)¢yMyDPHIOPsALS50) yTTI5C)9GoXX{50)9Q(50,50),TPOT
UDIMENSIGN R(50) 4+ RN{(50)

ML = M-1

DO1 J = 2,M1

M =y -]

JP = J + 1

D = 1o 7 (XMU4P) = XMIJIM) )

AM = ( XM(J) = XM{JM) ) * O

AP = [ XM(J) - XMI(JP) ) % D
RN{J) = MM * R(JP) - AP * R(JM)
RN(VM) = {{1l. = XM(M) ) / (L. - XM{ML) } ) * R(M1)
DO 2 J = 2.M

R{J) = 05 * { R{J) + RN(J) )
RETURN

END
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SUBROUTINE HAILBIN (QsR)

INVERSE HILBERT TRANSFCRMER, USES MID PT RULE
QUTPUT Q AT SAME (COSINE) SPACINGS AS INPUT R
SPACINGS MUST BE COSINE, THAT IS SQUARE RUOT B8IAS TO ENDS
ASSUMES ANTISYMMETRY OF INPUT R , SYMMETRY OF CUTPUT < , ABOUT
CENTERLINE X = Qo USES CALY POSITIVE X*'S, BLILDS IN SYMMETRIES.

-~

-0 o O

COMMON XM(50), $X{50) s MeUPHICP
DIMENSION FI(50), R{50), Q(50)
DC 1 L = 1+M

SUM = Q.

DC 2 K = 1,M

IF { K= L ) 34293

FIK) = (R{L)=RIKII/ZEXMILI-XMIK)) + (RAL)I+R{KIDIZEXMIL) ¢XM{K))
CONT INUE

IF(L-I) 4’415

F(l) = 2.*F(2) - FI(3)

GG T4 8

IF‘L‘N’ 6'797

FIM) = 2.%F({M-1) - FI{M-2)

oL TO 8

FIL) = 0.5 * (FLL-1) + FIL+L) )
DC 9 K = 1M

SUM = SUM + F(K)

QIL) = DPHIUP * SX(L) * SUM
RETURN

END

FUNCTION FPRIM2{wWW)

FRESNEL INTEGRAL RGOUTINE

W

DOUBLE PRECISION ZZ,DLC,TER,FPRIM
[F{Wni-16e3 19242

Il = = 4o % WWEXRQ
FPRIM = 1.
TER = 1.

D0 3 M = 1,500
MM = 4 % M - |
DD= MM * (MM-2)

TER = TER % 22/ 0D

FPRIM = FPRIM + TER
IF(CABS{TER) - 0.000001) 443,13
CCNTINUE

FPRIMZ2 = FPRIM

RETUEN

W = SCRT (wvN)

L ==4, % Whkk2

SUM = 1.

TERM = 1.

D0 5 M = 1,20

MM = ¢ x M - ]

D = MM % {MM-2)

TERM = TERM * D / Z

SUM = SUM + TERM

IF{ABS({TERM) - 0.0030C1l) 6+45,5
CCONT INUE

FPRIM2 = 1o — SUM #* 1.253314 * W * (COS{Wh) = SIN(WW))
RETLRN

END
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