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ABSTRACT

A wing of zero thickness and small aspect ratio is used as a
mathematical model for a ship in steady turn. The shape of the wing
is given by the projection of the hull on the vertical plane of sym-
metry and the aspect-ratio by the relation draft/length of the ship.
As the ship moves in a turn, the angle of attack in each section is
different; this fact is approximately simulated in the model by adding

a camber to the wing and letting the wing follow a straight course.

Near the ship three regions are identified: the region downstream
of the section of maximum draft (span), in which the Kutta condition
is required to be satisfied, the region near midship, and the region
near the bow. In the first region, the condition on the free surface
is a rigid wall condition, thus permitting a reflection into the upper
space. The acceleration potential concept is used in order to des-
cribe the flow in this region. In the region near midship, a reflec-
tion into the upper space is also possible. The method of solution
is similar to the usual slender body theory for ships. 1In the region
near the bow, where the free surface suffers large deformations, the
rigid-wall condition at the free surface is no longer valid. A dif-
ferent problem is formulated here, and Fourier transform approach is

used to solve the problem in this region.

The method of matched asymptotic expansions was used to solve
the problem. Therefore, the condition at <« in each of the problems
mentioned in the preceding paragraph is given by the far-field ex-

pansion, which describes the flow far from the ship.

For a simple case, when the ship has a constant draft in the bow
region, the shape of the free surface near the ship in the bow region

has been calculated.
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NOTATION

a characteristic length in the bow region
b(x) camber function

c(p) auxiliary function

c, s C, constants arising in the solution of the integral equation
f function defining a hull geometry

f(y) auxiliary function

F Froude number

F(u) auxiliary function

FI imaginary part of ¢§(x,y,0), y > -h
FR real part of ¢:(x,y,0), y > -h

g acceleration of gravity

g(y) auxiliary function

G(u) auxiliary function

Go(x,y,z) function defining the hull surface
Gl(x,y,z) function defining the hull profile

G,(x,y,2z) function defining the free-surface

h(x) function defining the ship draft

H non~dimensional free-surface elevation
H(x) Heaviside step function

Il(x) Bessel function

Jl(x) Bessel function

k variable used in the transformed plane
Kl(x) Bessel function

2 variable used in the tra2nsformed plane
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L (x)

ij

s(p)

[

¥ =

X,y,z

n(x,z)

u(ua), uij(u)

\Y

13

P

o(x)

o*(k) = 0% + oﬁ
¢(X,y,z)

ship length

modified Struve function

homogeneous solution for the usual near-field
pressure

auxiliary function

ship speed

variable

velocity vector

Cartesian coordinates

parameter defined as o = k?U%/;

constant used in defining the order of magnitude
of b(x) :

small parameter

Dirac delta function

slenderness parameter

variable (real or complex)
variable

the free surface deformation
Rayleigh viscosity

solution of an integral equation
parameter defined as v = g/U?
variable

water density

dipole density

Fourier transform of the dipole density

perturbation velocity potential
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o*(k,y,z) Fourier transform of the velocity potential ¢(x,y,z)
®(x,v,z) velocity potential

Q(x,v,2) acceleration potential
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I. INTRODUCTION

In the study of the maneuverability of a surface ship many physical
processes are involved. These processes interact among themselves,
creating a very complicated picture, which is difficult to describe

using any realistic mathematical model.

The presence of the free-surface and its behavior along the ship
are certainly the source of the most intriguing and difficult phenomena
to be analyzed in the present context, as in many problems of ship
hydrodynamics. The simple observation of a ship as it goes through the
water is sufficient to show that the deformation of the free-surface
does not follow a regular pattern along the ship. In the region near
the bow one can observe a very large deformation of the free-surface,
and eventually, as the ship speed increases (or the bow becomes blunter),
spilling of water occurs, which is more commonly known as '"breaking'.
Downstream of the bow region, the deformation of the free-surface be-
comes more gentle, as if the effects of gravity were strong compared to
the dynamic acceleration of the water particles, to the point of pulling
the free-surface to a nearly horizontal plane. In ship maneuverability
problems one should not neglect these distinct flow patterns, since, for
instance, the turning moment of a ship can be largely affected by these

distinct patterns of flow.

In the present work, in an attempt to get a better understanding of
the flow around a ship in steady turn, a mathematical model is adopted
which has the most relevant features of the real flow and which is simple
enough that a boundary value problem can be formulated and solved in a
rational way. We replace the ship hull by a wing of small aspect ratio
and zero thickness. The aspect ratio is given by the draft/length ratio
(the draft is assumed to be small compared to the length) and the shape of
the wing by the projection of the ship hull on the vertical plane of sym-

metry. As the ship moves in a steady turn in calm water, the angle of



attack for each section will be different (see Fig. 1). As an approximate
description of this fact, a camber is added to the wing model and the

wing is assumed to follow a straight path.

In linearized wing theory one can separate the thickness effects
from the camber effects. In this thesis only the camber effects are
considered. The thickness effect (which is not considered here) would
give a zero net lateral force and a symmetric (with respect to the ship

plane of symmetry) displacement of the flow.

Because of the model adopted and some assumptions, about order of
magnitude, to be made later on, the ship hull will be referred to as a

"slender body" or a "slender wing' as well.

FIGURE 1

THE MATHEMATICAL MODEL



In an earlier work, Fedyayevskiy and Sobolev [2]*used the same type
of model in order to find the forces and moments acting omn a ship hull
in steady turn. They write the integral equation for a lifting surface,
where the unknown is the vortex density, then they simplify the equation
using the fact that the wing is of small aspect ratio, and they obtain
a solution. Unfortunately, their solution gives zero lift generation
in the section downstream of the section of maximum span (which corresponds
to the maximum draft), which is all right for a flat wing but certainly
is not good for a cambered one, as in the present model. Another point
that should be observed is that their solution is valid for an infinite
fluid region; this would be of no harm if the ordinary slender body theory
were to be used, since in this theory the free-surface boundary condition
reduces to a rigid wall condition, and a reflection on the upper side is
possible, therefore transforming the free-surface problem into an infinite-
fluid problem (see details in Chapter II). However, the use of the ordin-
ary slender body theory does not allow us to analyze properly the variation

of the flow pattern near the bow.

A different approach is necessary in order to solve the boundary
value problem derived from the model, if these effects are of importance.
A quick look into the literature related to the present work could pro-
vide a guide in how to attack the problem. Jones [4] has studied the
problem of a low aspect ratio wing in an infinite fluid region. He
used an intuitive "'strip approach", and he concluded that "for a low-
aspect-ratio wing the development of the 1ift depends on the expansion
of the sections in a downstream direction." Jones' theory says that a
decreasing section would require a negative lift and infinite pressure
on the trailing edge, thus violating the Kutta condition. A more recent
approach to the problem of a low-aspect-ratio wing in an infinite fluid
region was given by Wang [15]. He used the method of '"matched asympto-
tic expansions" and he was able to give "a unified approach for treating

wing problems of almost all aspect ratios.'" But yet the question of how

* Numbers in brackets denote references at the end of the text.



to treat the sections downstream of the section of maximum span, for

a cambered wing, was left open (for the subsonic case).

Two exact solutions to the linear problem for wings of special
shapes in an infinite fluid region are known. The circular planform
wing problem was solved by Kinner [5] and the elliptic by Krienes
[6]. Both authors solved the problem in terms of an "acceleration
potential" [11] expressed in special coordinate systems. The solutions
were given as a series, and it was possible to find solutions corres—
ponding to shock-free entry, which were superposed on the solution
for a flat plate at an angle of incidence to give the solution to the
problem of a cambered wing with an angle of attack. Kinner's solution
was given in terms of Legendre functions, which enables one easily to
do a thorough analysis, in particular in the wake region. Krienes'
solution is more closely related to the present problem. From his
solution it is possible to obtain the results for an elliptic wing of
a very low aspect ratio. This was done by Jones, and it showed a good

agreement with his "strip approach.'

Wu [17] showed how to use the acceleration potential and slender
body theory together in analyzing the flow around wings that cannot be
treated by the method of Jones or of Fedyayevskiy and Sobolev. Wu's
procedure can be used for cambered wings with span decreasing in the
downstream direction. (In fact, he develops the method even for time-

dependent flows.)

The method of matched asymptotic expansions is used in order
to find the solution to the present problem. This method requires a
description for the regions far from the ship (the "far field" region).
The method of solution for the far field is very similar to the slen-
der-body-theory of ship motions by Ogilvie and Tuck [8). 1In the near
field, the coordinates are stretched and an analysis of orders of

magnitude simplifies the boundary value problem (see Chapter II).



In the sections downstream of the section of maximum span, the
sections are decreasing in span and the Kutta condition is required.
In this region the concept of'acceleration potential" is used, as
developed especially by Wu[l7]. In the mid-ship sections the solu-
tion is the one given by the ordinary slender body theory. For the
region near the bow, where large deformation of the free~surface is
present and the flow has characteristics of a high Froude number
flow [9], some complications are introduced [10]. The formulation of
the problem in this region leads us to a boundary value problem, with
a partial differential equation in two dimensions (y and z), but
with a condition on the free-surface containing a derivative in the
x~-direction. A Fourier Transform approach is used to solve this problem.
In the bow region the free-surface elevation near the ship is calcu-

lated numerically for the simple case of a ship of constant draft.



ITI. GENERAL FORMULATION

1. Definitions and Assumptions

In order to formulate the general boundary value problem corres-
ponding to the mathematical model presented in the introductory chap-
ter, let us make use of Fig. 2. The above mentioned model corresponds
to an idealization of the real flow around a ship (which has some res—
trictions on its geometrical characteristics, to be mentioned later),
in steady turn, in the presence of a free-surface. Let us take a
coordinate system fixed on the ship such that the origin is located
at the intersection of the bow and the undisturbed free-surface (the
ship is assumed not heaving, pitching , or undergoing any other

motion except the steady turn, the water is assumed to be calm),

Lo

G2 (X’y’z) = 0

AN
| \\\———Go(x,y,z) =0

G, (x,y,2) =0

W

FIGURE 2

THE COORDINATE SYSTEM AND THE BODY DEFINITIONS



the x-axis is taken along the ship length, the y-axis vertical up-
wards and the z-axis horizontal. The section of maximum draft (span)
is assumed to be located at mid-ship. In this way, a uniform flow

with velocity U 1is assumed parallel to the positive x-axis.
The ship hull is defined by the following relations:

The hull surface is expressed by

Gy(x,¥,2) = z-b(x) = 0 (1)

The hull contour or ship profile, defined as the hull projection

on the vertical plane of symmetry, is
Gl(x,y,z) = y~-h(xx) = 0 (2)

The free-surface will be deformed by the movement of the ship.

It will be defined by
Gz(x,y,z) = y-nx,z) = 0 (3)

One should note that, in defining the hull geometry, certain
simplifications were made, i.e., it was assumed that the hull surface
and contour could be defined by using only two coordinates, x and
y or =z . It is possible, however, to take more general definitions,
i.e. to define the hull surface and contour by three coordinates.

This more general case was not followed here since it would introduce
some more complications to the treatment without introducing any

interesting new feature to the problem.

Concerning the geometry of the hull, the following assumptions

about the orders of magnitude will be made:



h(x) = 0()

bx) = oy | 0<y<1/2
A& - @ = olf@)]

X

where:

f(x) 1s any quantity describing the hull geometry.

€ 1s the slenderness parameter, say for example, the

aspect ratio as defined in the introduction.

The quantity <Yy dis used in defining the order of magnitude of
b(x) because of some problems we will face later, when applying the
body boundary condition. Note that the above assumptions are part of

what are called '"the slender-body-theory assumptions".

Concerning the fluid and the fluid region, the following assump-

tions will be made:

— the fluid is ideal;
~ the fluid region extends to infinity in every direction in the

lower half space.

Finally, concerning the flow and the mathematical approach, the

assumptions below will be accepted.

- There are two different characteristic lengths besides the
ship length, and so it is possible to define two different
Froude numbers. Each will have special significance in a

specific region.

- The boundary value problem derived from the mathematical model

can be linearized.

The existence of different characteristic lengths is suggested by
observations and measurements in the towing tank. Experiments [18]

show that the flow in the bow region presents characteristics of high



Froude number, much higher than the Froude number defined by using the

ship length.

The Froude number based on the ship length is usefﬁi in describing
the flow over most of the ship. However, in regions near the bow this
Froude number based on the ship length is not so useful as a "bow
Froude number" based in a local characteristic length. The latter
has been used not only in Baba's experiments, but also in other towing
tanks for relating data from tests on different scales. As one can
expect, this "bow Froude number" must be higher, which implies the
existence of a smaller characteristic length in this region; let us

denote it by a . It will be assumed that
a = O(El/z)

About the assumption made with respect to the linearization of
the boundary value problem, one should say that it is rather strong.
One can say, for example, that if the angle of attack is not small,
separation occurs and our mathematical model breaks down. Or one can
say that maneuverability problems are highly non-linear. This is
quite true, but the non-linear problem is quite intractable and it is
our hope that our linearized problem will lead us to some useful
results which can be applied even if the angle of attack is not so

small as it is in many airfoil problems.

2. The General Boundary Value Problem

The fluid being ideal and the flow irrotational and steady, the
existence of a velocity potential &(x,y,z) , is assumed. As the fluid
is incompressible, the continuity of the medium is expressed by the
Laplace equation:

2 2 2 i
9°% 4 979 + 9”2 in the fluid region (Ll)
ox?2 dy? 9z2
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The condition that the ship hull is a solid non~porous boundary
is expressed by the body condition
D i
0 = 57 Gy(x:y,2) on G,(x,y,z) =0 (H)
where the operator D/Dt indicates the substantial derivative, which

is given in the steady-state case by

L =
Dt [Bt v vl
-5
= V-V
where
Vv o= Vo

The mathematical model used is a wing and therefore a condition on
the trailing edge must be applied, i.e., the Kutta condition, which

says that one must have bounded velocity on the trailing edge:
0d 0d 0d i
|5§1, 1551, |§;1 bounded on Gl(x,y,z) =0 (K)
x > L/2

On the free-surface, two conditions must be satisfied. The dynamic
condition expresses the fact that on the free-surface the pressure is

constant and therefore that

1,09

1002 | 9%y2 . 0%y2, _ Ly = 1
gn + 2[(ax + (By) + (az) ] const, on y = n(x,z) (A7)
The kinematic condition says that a particle on the free-surface
must remain on the free surface. This fact is expressed by
D i
0 = == G,(x,¥,2) on y=n(x,z) (B™)

Dt
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Besides the above described conditions, one should not expect to

have waves far upstream. This condition is called '"radiation condi-

tion" and will not be precisely stated now. We will call it condition

&Y.

The velocity potential &(x,y,z) can be written as a sum of the

potential for the uniform stream in the positive =x direction and a

perturbation potential:

‘P(X’Y’Z) = Ux + ¢(x,y,2)

Introducing (4) in the above formulated problem, one has:

2 2 2
0 = A + o 9 + G in the fluid region

9x2  dy? ' 3z?

0 = Ub' + b’ %%—— %%- on z = tb(x)

_ 99, L0y, @by 29y
0 = gn+ugt+ lEHT @H ghe
on y = n(x,z)
- pon . 9no¢ 239  9n 3¢
0 = Uxtoxox "5y ¥ oz 3z
on y = n(x,z)
3 9 3
]521’ Iﬁgw’ |§§1 bounded on G,(x,y,z) =0

x > L/2

Radiation Condition

Note: The following notation will also be used.

_ 39 L)
¢X = 3% ’ ¢y ay etc.

f' the x derivative of f , if f 1is any geo-

metric hull characteristic.

(4)

(L)

(H)

(8)

(8)

(K)

(R)
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It is next assumed that the perturbation potential can be express—

ed by an asymptotic expansion

N
$(x,y,2) = ), b (x,,2;€) (5)
n=1
such that
¢
IafLLEQL] = o(l) as € >0
n

and therefore one can also write

N
0(x,y,2) = ), ¢ (x,,z;€) (6)
n=0
where
¢, (x,v,2) = Ux (6a)

In this thesis only the first term in the perturbation velocity

potential will be considered and so we will accept the simpler notation,

¢ (x,y,2) ~ ¢,(x,¥,2,€) (7)
Accepting (7) the problem defined by (L), (H),(A),(B),(K), and

(R) is also the problem for ¢, (x,y,z). Later on, this problem will

be further simplified after making suitable assumptions.

3. The Method of Matched Asymptotic Expansions

In order to best describe the flow around the ship it is convenient
to visualize the flow with different "magnifications" in several re-
gions with individual flow characteristics. This is the usual way
employed by those working with the method of matched asymptotic expan-

sions.
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Let us first identify the '"far-field region'". 1In this region one
wants to have an overall picture. For that, one has to be far from
the ship (hence the name far-field) and therefore all the details near
the ship are lost and cannot be '"seen'. As will be described later,
all that can be "seen'" is a flow apparently generated by a line of

singularities (in the present case: dipoles).

If one wants to know the details near the ship, some '"magnifica-
tion" has to be used, which is equivalent to stretching the coordinates.
One then moves to regions close to the ship ~ the near field region.
There is not a precise boundary between the far and near field, but
one can assume roughly that thenear-field is characterized by distan-

ces of order e .

In order to stretch the coordinates, let us assume that

x = X4§ *
y = Y&
z = Z€
and
o _
w 0(1)
3 0 _
5y » 5z - 9w

Note: For simplification in the algebra involved and for typographic
reasons, the above notation will not be used, and the following

relations will be understood in the near-field.

x = 0(8)

v,z = 0()

3 _ e O - A -1
-3-}_{— = 0(6 ) s ay > Jz 0(8 )

* The reason for using & and not € will be clear below. In the
present work & will be different from € .
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In physical terms, this means that in the near field one stretches
the coordinates in order to see the details since the gradient of the
flow characteristics is very large. 1In the above relations, assuming
§ # € , we are allowing for two different scales even in the near
field, which means two different rates of change. It will also be
assumed that & > € , which means that the change in the flow charac~
teristics in the longitudinal direction is smaller than the change in

the transverse directions.

If 6§ =1 , one has the usual slender body theory. Then the above
assumptions, together with those made about the orders of magnitude of
the hull geometry (see Section II.1) form what are called the slender
body assumptions. This set of assumptions seems to be reasonably good
for the near-field in general. The region in which it is approxi-

mately valid will be called the 'usual near-field region".

However, a closer look at the physical picture seems to indicate
that & should be smaller than unity at the end, near the bow. Very
close to the bow the usual slender ship theory does not give good
results and puts too much emphasis in gravity effects. Formally, if
we stretch the longitudinal coordinate in slender ship theory, we
are deemphasizing the gravity effects. We will therefore assume that
§ <1 . Observations of the flow near the bow show that the afore-
said is true; one sees a sudden longitudinal deformation of the free—
surface, to the point that the action of gravity, combined with surface
tension, is not strong enough to hold the water particles, and
the spilling and wave breaking occur. Of course this is an extreme
case beyond our hope to analyze; our concern is to be able to get

some results for the case before the breaking starts.

Reported observations and experiments [18] in the towing tank seem
to indicate the necessity of using a local Froude number, higher than
that usually defined by the ship length, for a best description of the
flow. This implies the existence of a local characteristic length, a

much smaller than L . This length is comparable to the distance
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from the bow to the section in consideration. If an accurate descrip-
tion of the flow characteristics is desired in this region, one must
stretch the coordinates, in such a way that the unit length in the
stretched coordinate is of the same order of magnitude as the charac-

1/2)

teristic length. InSection II.1, it was assumed that a = 0(e 3

therefore, let us take

In the bow region, this assumption seems to be reasonable, since
it will lead to a formulation of the problem that admits local waves
and high fluid acceleration, not negligible compared to the accelera-
tion of gravity, thus manifesting an upward motion of fluid particles
in contrast to what is predicted by the usual slender body theory;
i.e., a clamped free surface on the plane y = 0 , with zero vertical
velocity. It should be mentioned that it has been noticed that the
usual slender body theory puts much emphasis on the gravity effects.

5 = 12

The "bow-near-field" will be identified by using > in the
above formulation and using the same assumptions concerning the hull

geometry.

For purpose of analysis, it is sufficient to identify these two
near-fields. However, it is interesting to note that for x > L/2 ,
one extra condition, the Kutta condition is required, i.e., for the

regions where the draft (span) decreases as one moves downstream.

Table I on the following page summarizes symbolically what was

discussed above.
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Table I

SEVERAL REGIONS AND THEIR PROPERTIES

Usual Bow
Regions Far Field Near Field Near Field
Dimensions
X 0(1) 0(1) 0’2y
y 0(1) 0(e) 0(e)
o) 0(g) 0(e)
Rate of Change
-1/2
9/9x 0(1) o) o(e )
3/3y 0(1) o™ o™
3/3z 0(1) o™ o™y
Characteristic 1/2
Length L =0(1) H= 0(g) a = 0(¢ )
Froude Number L. 0(1) S . O(e_l/z) LI O(E:_-l/4
VgL /gH Vga




III. THE POTENTIAL FUNCTION

1. The Far-Field

The far-field, as identified before, is the region of a distance
equal or greater than unity from the ship. At that distance, all
the details near the ship are lost and only a disturbance caused by
the hull can be seen. A ship turning creates a flow pattern which is
hardly symmetric. The asymmetric disturbance caused by the hull can
be represented in the far-field description by a line of horizontal
dipoles. The source distribution is not considered since the ship
is assumed to be of zero thickness. One should not expect to be
able to satisfy the body condition nor the Kutta condition by merely
using the far-field description, however, the radiation condition (R)

must be satisfied.

To these physical arguments, it is possible to give a mathema-
tical formulation. First, the Laplace equation is replaced by the

Poisson equation:

2 2 2
076 , 870, 3¢ _ Sxysy - ¥0)8' (z) (8)
ax%  o9y?  3z?

where
§ is the Dirac-delta function
§! is its derivative
¥,<0 will be set equal to zero at the appropriate time

0(x) 1is the dipole density

The free-surface conditions can be linearized to:

(@]
]

gn + U on y =0

o
[

un, - ¢y

* The application of the free-surface conditions on the plane y=0
implies that these conditions have been transferred from the actual

free-surface [16]. - 17 -
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and then combined to give:
0 = U%__ + g ony=0 9")

Perhaps the easiest way to satisfy the radiation condition, which
excludes the possibility of waves upstream of the ship, is to intro-
duce the concept of the "Rayleigh fictitious viscosity" M , which is
set equal to zero at an appropriate time (see Ogilvie & Tuck[8]). Con-

dition (9') is then modified to:

0 =~ Wi +PH ey,  on y=0 9)

Two alternative solutions to (8) and (9) can be found as follows:

1 o dkelkxo*(k)|k|z Kl(lk]/yz + z%)
¢(X,Y,Z) = IR

2m? - Vy? + z?

(10a)
oo} (e o]
_ iu%g j’ ake 200 () 14m & Sexp[ilz + yk?+ 22 ] '
42 wo 2 AT AT Z - Lok - B2
—O0 g

and

(10b)

co o]

i . Y
$(x,y,2) —2—1— f dke ™ ¥ox (k) 1im |- _2}5 f df_ie_?fg[liz +y/k?+ 2]
" w0 - Vk?+ 92 - g(Uk - ;éu)z

—00

where

Kl(—~m) is the Bessel Function {see [1]).
% indicates the Fourier transform defined as:

o

FT[£(x)] = f£%(k) = fdx o ikxe

]
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The above expressions satisfy the 3-D Laplace equation in the
fluid region except at the line of singularities, satisfy the ''rad-
iation condition", i.e., there are no 'waves upstream of the ship,and

satisfy also the free-surface condition (9').

However, the solutions are singular as one approaches the body,
consequently not allowing the application of the body boundary con-
dition as mentioned above. This fact is the reason why one cannot
determine the dipole density right now. It is possible to find the
behavior of these solutions as one approaches the ship (see Appendix
I) and then determine the dipole density, o(x) , through a matching

process to be presented later on.

2. The Near-Field

As mentioned before,for a detailed description of the flow
characteristics near the ship, i.e., in the near-field,it is necessary
to stretch the coordinates. It was also mentioned that two near-

fields are considered, the 'usual near-field" and the "bow near-field".
2.1 The Usual Near-Field

In this region the variation of the flow characteristics in the
transverse direction is much larger than the variation observed in
the longitudinal direction and so one assumes that differentiation
in the longitudinal direction does not change order of magnitude

. . . -1
whereas in the transverse directions it does by O0(eg 7).
Let us accept then that

Froude Number = 0(1)

o -
% 0(1)

o »

9 s 9 _ -1
oy dz 0e ™)

in the regions near the ship, except very close to the bow.
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With these assumptions, expressions (L), (H), (A), (B), and (K)

take the form (if only the leading terms are considered):

0 = ¢yy + ¢zz in fluid region (Li)
0 = ¢y on y=20 (Fi)
6, = Ub'(x) on 3>;>%21 o)
Kutta condition (Ki)

About the above formulated problem, it is worth to note that:

i i o
a) In conditions (F) and (H ) the boundary condition was transfered
from the actual place to the mean position. For the transfering of
the boundary condition (Hl) it was necessary to use the assumption that

b(x) = 0™y, with 0 <7y < 1/2 .

b) The usual radiation condition is missing from this formulation
of the boundary value problem in the near-field. A condition at infini-
ty which guarantees the uniqueness of the solution is provided by the

matching process.

c) Condition (Fl) is the result of combining conditions (A) and (B)
by eliminating the free-surface deformation and derivatives. Only the

leading term is considered.

Figure 3 shows a sketch of the problem formulated above for the
range x < L/2 , in which the Kutta condition is not required. The

section located at x = L/2 is assumed to have the maximum span.
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For x < L/2 y

. z
¢ p— N—
¢, = Ub'(x)

-h(x)

Prescribed conditions as lzl >

FIGURE 3

TWO-DIMENSIONAL BOUNDARY VALUE PROBLEM FOR THE
USUAL NEAR-FIELD REGION

If x<L/2, i.e., for the sections where the span (draft) is
not decreasing (see Chapter II) the Kutta condition is not required
and a solution to the boundary value problem can be obtained by
using methods of complex variables. Condition (Fi) allows an anal-
ytic continuation into the upper half plane, transforming the prob-

lem into an infinite-fluid problem. The solution is

0(x;y,2) = Re {Ub'(x)[vz® + n® -]} + M, (x) (11)
where
g = z + iy
M,;(x) = a solution of the homogeneous problem
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The function Mll(x) will be determined by the matching process.
Mll(x) represents an interaction among the sections. This interac-~
tion, if significant, can be interpreted partly as the effect of the

wake in changing the local angle of attack.

It can be readily oberved that the above solution is not good for
the regions where x > L/2, since its derivative is unbounded for
£ =0 - ih . In order to satisfy the Kutta condition, one could pro-
ceed mathematically by adding an eigensolution, but it seems that a phy-

sical argument could lead us to a simpler way of solving the problem.

Let us first make a transverse cut in the region for which
x>L/2. What one sees is a distribution of free vortices in the plane
of the wing extending from the tip of the section to a point which
corresponds to the tip of the section of the maximum span (under the
assumption that b is small). Condition (Fi) is still wvalid and
an analytic continuation into the upper half plane is also possible

here. A sketch of this is presented in Fig. 4.

For x> L/2

h(L/2)
h(x)

: z
¢, = 0-/ YL\#cbz = Ub' (x)
. / ~h(x)
bound vortices —__—_/////’ ~h(L/2)
free vortices

byy T 072 7 O

Prescribed conditions as lzl > ®

FIGURE 4

TWO-DIMENSIONAL BOUNDARY VALUE PROBLEM FOR x > L/2



_23_

The next thing to be observed is that there is no jump in the
pressure across these free-vortices, which form the wake. This fact
indicates the physical quantity to deal with; namely, the pressure

instead of the velocity potential.

From the Bernoulli equation (neglecting higher order terms), one

has that:

- _
B o= w,

This suggests the use of the concept of acceleration potential
[11], [17]. Following Wu, let us define the acceleration potential

function Q(x,y,z):

Q(X,y,z) = U‘bx(X,Y,Z)

The function so defined satisfies the Laplace equation. The velocity

potential can be recovered from the following:

X

¢ (x,y,2) = ¢(L/2, y,2) +% f Q(x,y,2z)dx (13)
L/2

One can express the boundary value problem in terms of the acceler-

ation potential as follows:

0 = Q +Q in fluid region (L")
vy zz
0 = Qy on y = 0 (Fll)
— 2411 on z = 10 ii
QZ = Ub (X) 0 > y > -h (H )
|Q| bounded for Iz] < h(L/2) (Kii)

Observing the formal analogy of this problem with that sketched

in Fig. 3, one can write the solution:
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Q(x,y,2) = Re{UZb"[VZ%+ h? - ]} + iy, (%) (14)

and using the inversion formula (13),
r X
b(x,y,2) = ¢(L/2,y,2) +% f dx Re{U?b"[vz2+ B®-2]} + Mlz(x/‘]
L/3 ]
/ (15)
where M12(x) is the solution of the homogeneous problem, and

will be determined by the matching process.

Solution (15) satisfies the required condition (Kl) and is taken

as the solution for the near-field region, when x > L/2 .

Let us observe that solutions (11) and (153) do not satisfy the
radiation condition in the usual sense. However, something can be
said about their behavior as one moves from the ship in the transverse
direction. They must have a definite behavior so as to match the

far-field solution as presented by equation (10).

2.2 The Bow-Near-Field

In contrast to what is found along almost the entire ship length,
the region near the bow presents flow characteristics which are com-
pletely different. As discussed in Chapter II, the flow presents
characteristics of a high Froude number flow and the rate of change
of these characteristics in the longitudinal direction, although
smaller, is not negligible, as compared with the rate of change in

the transverse direction.
Let us assume in the bow near-field the following:
a. The characteristic length, a , 1is such that
a = 0(81/2)

and the Froude number, F , dis obtained from
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P2 = U%/ag = o /Y

b. The orders of magnitude of the rate of change of the flow charac-

teristics are given by:

y -1/2

ax - 0(8 )

5 8 -1
'5—}; s gz_ = 0(e )

Introducing the above assumptions in equations (L), (H), (4),

and (B), and taking only the leading terms, one has:

iii

0 = ¢yy + ¢zz in fluid region ™)
- 2 _ iii

0 = U ¢xx + g¢y on y 0 (F )
_ ' on z = X0 iii

6, = Ub'(0) 05y @

In the above formulated problem, several features are worth

taking note of:

] iidi iii .
a) In condition (H ) and (F ) the transfering of boundary con-
dition was effected and the latter condition is the result of the
elimination of the unknown free-surface elevation (and derivatives)

from equations (A) and (B) .
. iii, .,
b) In condition (H ) it was assumed that
b'(x) = o) .

It was also assumed that in the bow near~field the following ap-

proximation is wvalid:

b'(x) = v’'(0) .
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. iii . R
¢) Condition (F ) presents the most intriguing feature. One has a
iii
)s

Laplace equation in two-dimensions (y and z), (L and a free-surface

condition which contains a derivative in the x-direction .

d) As usual in the near-field, the condition at large distances is

that the solution matches with the far-field solution.

The presence of the second derivative with respect to x in
condition (Fiii) does not allow us to use the known methods of a com-
plex variable, as before. By taking the Fourier Transform in the x
direction, however, one can eliminate the derivative with respect
to x . One then gets a boundary value problem in y and z to

solve, having the transform variable k as a parameter.

Taking the =x Fourier Transform has its complications. For ins-

tance, the body boundary condition says:

¢z = Ub'(x)

and its Fourier Transform is
(o)

-ikx
¢p* = [dx ¢_(x,y,0)e
z z
—C0
i.e., ¢§ contains information from - to +® ., For x < 0

the approximation ¢z =0 on z =0 seems to be reasonable (note that
this would not be true if it was an infinite fluid problem). It is also
known that in slender ship theory the influence of the flow downstream
on the upstream regions is of higher order, therefore one can write

approximately,

¢§ = J[ dx Ub'(O)e"ikx
0

= f dx Ub' (o)e'ikxﬁ(x)

—-00
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where

H(x) is the Heaviside step function.

According to Lighthill [7], one has
% = Ub'(0)[ME(K) + ]
z ik

After taking the x Fourier transform, the boundary value

problem to solve is

= % * ; ; .
0 ¢yy + ¢zz in fluid domain )
29 2 .
0 = Uk o* — ¢* on y=20 Yy
g y
0% = Ub'(O)[MS(K) + =]  on z = %0 @)
z ik
condition for |z|-><>° given by the inner expansion
of the far-field potential.
The above problem is sketched in Fig. 5.
Formally, this problem is equivalent to the problem of finding
. iv iv iv
a velecity potential satisfying conditioms @, F ), ), and
the required condition at infinity.
From Appendix I, the inner expansion of the far-field potential
in the bow region is obtained, and from that, the behavior of ¢%
for z > o is
o* v ¢* = [o%(k) ae %eosaz - o*(k)oe 0Lysgn(,k)sinozz]
i . 8 (16a)

ay

+i[-0§(k) oe OcycosOLz - Of(k) ce sgn (k)sinoz] z > 4o
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x = 0(a) y

z
o* - o% = 0 — ¢§ = Ub'(0) [mS (k) + 1/ik]

* 4+ % = (0
¢yy ¢zz
Prescribed conditions as |z| >

FIGURE 5

TWO-DIMENSIONAL BOUNDARY VALUE PROBLEM
FOR THE BOW REGION

d* v ¢fm = [—0§(k) aeaycosaz - Oﬁ(k) aeaysgn(k)sinaz]
(16b)
R ay oy .
+1[0§(k) oe °costz - O%(k) oe “sgn(k)sinoz] z > -«
where
o*(k) = of(k) + i0% (k)
U%k?
a =
g
The elementary solutions ¢im and ¢fm satisfy the required
conditions (le) and (Flv) and the condition for z > fe® However,

it is not possible to satisfy the body condition using only combinations
of these elementary solutions. There is another elementary solution

for (@'Y) anda V).
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¢Z = e uz(u cosuy + o sin uy); z >0 (17

where

u 1is any positive real number.

Following Ursell [13], we attempt to write the solution to the

proposed problem as

O * [{s(p) + ic(p)le P*(pcospy + osinpy)dp z > 0 (18a)

ox =
0
o* =

¢fm - J/’{s(p) + ic(p)}epz(pcospy + osinpy)dp 2z < 0 (18b)
0

where the unknown O% ’
using the body boundary condition.

Gﬁ , s(p) and c(p) are to be determined by

It should be noted that for z = 0

3¢ B¢

9z T 3z

Some other relations for ¢i s ¢f and their derivatives on

z =0 will be required and stated at the appropriate time.

If one denotes

the velocity potential is recovered by taking the inverse Fourier

transform:
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The Dipole Density and Functions c(p) and s(p).

Let us denote

2 ) + e 2= 0 (19)
with

f(y) = FR for 0>y >-h (20)

gly) = FI for 0>y >-h (21)

FR + iFI = FT[¢z(x;y,O)]' 0>y >-h (22)

Introducing (18) into (19), and using a Lemma given by Ursell
[12],

0
-acﬁ sgn(k) = 2 ~/ﬁ dy eayf(y) (23)
0
s(p) = =~ %‘“———;L———— J[ dy £(y) (pcospy + asinpy)
plp*+ a?) _J (24)
0
—ao% sgn(k) = 2 j[ dy eayg(y) (25)
0
c(p) = - % 1 f dy g(y) (pcospy + asinpy)
p(p*+ a?) (26)

=00

The continuity of the fluids requires that for z = Q s

B9k ogx
‘5.}7—=W —h)y)—oo



- 31 -~

and therefore

¢x = ¢* z=20; (ch >y > - (27)
since
¢* and ¢* >0 , as y > -

+

From (18) and (27) one has

(o]
0% we™ = - _/P dp s(p) (pcospy + dasinpy) (28)
0
[e ]
oy \
oﬁ oe = dp c(p) (pcospy + osinpy) (29)
0
Substituting the values of 0% s Oﬁ » s(p) , and c(p)
one gets
0 - G0)
—ﬂeaysgn(k) .]fdgeagg(g) - J[duf(u) d/‘dp(pcospu-kdjlnpz)(pcospyi-a51npy)
00 —00 P(P + a)
+ osi ;
ﬂeaysgn(k) -/'dgeagf(g) _ _/'dug(u{/ﬁdp(pcospu u512pu)§pcospy + asinpy)
—00 -—00 0 P(P + o )

which is a pair of coupled integral equations. By changing variables

as

these equations can be decoupled [12] into
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o u
fdu[afg<£)dg+g<u>][ L
0 0

V2"' uz

v2- u?

% u
f du[ocff@)ds + EQu)][ ——
0 0

Since f(v) and g(v) are known for

write (32) and (33) into

o]

[du[a Glu) + g(w)] 21 - =2,
vi- u
h
1
_/- dula F(u) + £(u)] " " = Aas
v~ u
h
where

h u
34 -jdu[ot fg(E)dE + g(u)ll L
0 O VZ__ u2

>
]

>
Il

h u
s —f dula ff<£>d£+f(u>][ 3
0 0

Vz"' u2

u

F(u) = J/-f(i)di
h
u
G(u) = J[ g(&)dg
0

If one calls

paq(u) o Glu) + gu)

uas(u) = o F(u) + £(u)

|
o

h<v <

h<wv<w®

I
o)

0 <v<h , one can re-

o h
]_J( dufo df-g(i)dill
h 0

[e¢]

h
]—J[ dula d/—f(i)dil[

h 0

V2" u2

v

2

1

1

—

u2

(32)

(33)

(34)

(35)

]

]
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equations (34) and (35) fall into the more general type of equations

oo

[M = >\(V) h<v<w

2 2
vi- u
h

which has the following solution [13]

3 Yl
H(w) = cu + 4 u -jﬁk(v)/b h
Yu?- h?  m? Ju®- hn? 0 v(v?- u?)

dv (36)

where ¢ 1is a constant to be determined.

For the present problem two constants ¢; and ¢, , arise
and can be eliminated by using equations (23) - (26),(28) and (29)
and the relations stated below. The Fourier transform of the dipole

density and the functions c¢(p) and s(p) are then determined.

Some relations are stated now, and will be used later on in the

next chapter.

Te() - (V) -
2[ [f(v)} e My =f [}J::(v)} e Vav (37)
h h
g (v) Ty, (O] 1y, ()

,[- £ (v) (pcospv - Gsinpv)dv = »p ~j~[“35(v4 _{u35(w)J cospvdv -

h h
(38)

U, ()
- “35(”) sinph

3. The Matching Process

According to Van Dyke [14] the expansions for the far field and
the near field potential should obey the following:
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"the m term inner expansion of the n term outer expansion
must match with the n term outer expansion of the m term

inner expansion."

Because of the way the velocity potential is written (see 4)),
one can say that ¢0 » the first term in the outer or inner expansion,
is trivially the uniform flow. It was also stated that only the
first term, ¢1 » in the perturbation potential ¢ is going to
be considered, and therefore we set ¢ = ¢1 . It is easy to see that
in order to satisfy Van Dyke's rule one must have a matching with
the first leading term in each expansion, i.e., the leading term
in the outer expansion of ¢; (inner) should match the leading term

in the inner expansion of ¢, (outer).

3.1 Far Field - Usual Near Field

The expressions for the velocity potential in the far-field are
given by equations (10). For the matching it is required to know
the behavior as one approaches the ship. From Appendix I, the lead-

ing term in the inner expansion of the outer expansion is

O#x) . y2+z£T (39)

¢(x,y,2) v

The above equation expresses the condition at <« that the velocity
potential has to satisfy in the usual near field. The velocity poten-
tial for the usual near field is expressed by equations (11) and (15)
valid for x < L/2 and x > L/2 respectively (except for regions very
near the bow). For the matching process it is required the behavior
of these expressions as one moves far away from the ship, i.e., it
is required the outer expansion of the inner expansion. From Appendix

II, one has the leading term
) (40)

. (L OR*E) | UG ~L/2) du b"(u)h? (u)] + M (x)

¢ (x,y,2) v ;
vt z L/?
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where

X if x < L/2

L/2 if x > L/2
H(x - L/2) 1is the Heaviside step function.

If the matching between (39) and (40) is performed, one has

M(x) = 0 )
X
' 2
) Ub (§>h (&) | UH(x - L/2) dub” (w)h? (u)
T L/2 (42)

The fact that M(x) = O shows that the interaction among sections,
to this approximation is of higher order. This can be expected in
an infinite fluid problem, but it is not so obvious in a free-surface

problem.

3.2 Far Field - Bow Near Field

The matching of the far field with the near field in the bow
region was already performed, when in Section III.2.2 the condition

on ¢* for =z > *e | was taken as expressions (16).

The matching process need not be discussed,therefore,for the bow

region.



IV. NUMERICAL RESULTS AND CONCLUSIONS

In this chapter, the free-surface elevation near the ship is cal-

culated for the bow region.

For the simplest case, when the draft is constant, some numerical

values are obtained.

It is predicted that the wave elevation is anti-symmetric with
respect to the center plane of the ship. In a test with a model, this
fact probably cannot be observed since thickness effects (which are

not considered here) will have some influence.

1. Free-Surface Elevation for a Ship of Constant Draft

If the ship has a constant draft in the bow region, the calcula-

tions are simplified.

The dynamic free~surface condition, if only the leading term is

taken, is:
0 = gn+ U¢x on y = 0
Therefore, the free surface elevation near the ship is

n = - % ¢X(x’0’0) (43)

or

no=- 2m

o0
i f dke¥Kko% (x,0,0)

(1o et

Using (18), one obtains
(x,40) = 3 22 | ake®u{[o* (k)0 - i0%(K)a]
nix,= t g 2m I R

—C0

(44)

+ jr[S(p) + ic(p) lpdp}
0
- 36 -
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The above equation already shows the anti-symmetry in the wave
elevation, mentioned before.
The determination of 0§ , O§ » s(p) and c(p) proceeds as fol-

lows:
From (H''), (20), (21), and (22)

Hh
]

FR(k) 0>y >-h
g = FI(k) 0>y >-h

i.e., £ and g are independent of y . The right-hand sides of
(34) and (35) are:

2
b = = Gl v G- DG 108 TID)
v+ h
S log(vz_ = ) + (5 - ——)(— log -—)?

and the solutions of (34) and (35) are:

c,u 2FIa -1 h
Uy, = —=——+ u sin (< + FI(l - ah) (45)
Vu?- h? m v
c,u 2F_0O -1 h
Uge = + usin (=) + F_(1 - ah) (46)
Yu?- h? i u R

Using identities (37) and (38) in equations (23) through (26),

one gets:
. oh
R 2
= acisgn(k) = :;'(l + P uKl(u)du) + cthl(ah) (47)
0
. oh
- aoksgn(l) = — (L+2 | uk (wdu) + ¢;hK, (ah) (48)
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ph

,  Fo e,
s(p) = - - {- > ./f uJ, (u)du - ‘E—‘Pth(Ph)} (49)
mp (p +0.°) 6
) Fa PP e,
c(p) = - - {~ > qu(u)du - —5—'phJ1(ph)} (50)
Tl'p(p +a%) 0

where J, and K, are Bessel functions.*

Equations (28) and (29) give us two new relations, which make it

possible to determine the constants ¢, and c,
2F oh -
O"':EOL = 0 f uIl (uw)du + 3 C20Lh11 (ah) (51)
0
2F oh .
Oﬁa = - uIl(n)du - E—clahll(ah) (52)

where I, 1is a Bessel function.
Equations (47), (48), (51), and (52) give us a system of algeb-

raic equations for determining c, ¢ , 0% , and 0% . Before
A g

2 I R
solving it, a simplification is still possible. From Appendix I,

it is assumed that the contribution for the inverse Fourier transform
when k is in the neighborhood of zero is negligible. Therefore one

can neglect the contribution of

FR = 78(k)

as given by @Yy,

* All the special functions are defined according to Abramowitz

and Stegun [1].
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The constants are then expressed as:

¢h
. Fo K, (ch) 2
c, =- - " [ 3 (1 +-E uK, (u)du)
h[m°I7(ch) + Kj(ah) g
271, (ah) oh
+ I f uIl(u)du]
0
WFIsgn(k)
c, = - [Il (ah) + Ll (ah)]

oh[m*1%(ah) + K2 (oh)

where L is the modified Struve function.

1

The desired functions in equation (44) can now be calculated as

being:
. K, (ah)
- aof = “Ubk(()) . ! [I,(ch) + L, (oh)]
o m21%(oh) + K2 (ah)
2 ] I (ah)
aoy = T (O0)sen() : [1, (oh) + L, (oh)]
& 212 (ah) + K% (ah)
“pJ, (ph)
) [,
; pz+ a
fs@)pdp - (Oggsgn(k) . 02 : - * [1;(ah) + L, (oh)]
; m°I1% (ah) + Ki(oh)
ph
?
- © qu(u)du
fc(p)pdp - - 2! O [o L Ub'(0)
g o P@**0®  k[r?If(oh) + K (ah)

o

K (oh) 5 A 271, (ah) “pJ; (
-[————(1+-—/ uk, (u)du) + —————f ul, (uw)du] f
™ o
0. P

ph)

a?

dp
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For purposes of numerical calculation, the non-dimensional

coordinates below are used.

2
. - x/,/hU
g
[1172
K = k hU
g
n

[u?h
g

Figure (6) shows a plot of H/b'(0) versus X . Equation (44)

was used for the computations. The numerical calculations were made
using the facilities of the University of Michigan Computer Center.
Figure (6) shows also an asymptotic estimate of the free-surface
elevation for large X . This estimate is obtained from equation (44)
by using a theorem of the theory of Fourier transform [7]. For large

X , the following asymptotic behavior for H/b'(0) is obtained:

B, 12

BT?EY e for X > o

2. Conclusions

The theory presented in this thesis led us to a method for calcu-
lating the hydrodynamic reaction acting on a ship hull in maneuver. The
effects caused by the presence of the free-surface were taken into ac—
count in the present theory. These forces can be calculated by using
the Bernoulli equation in order to find the pressure which is then in-
tegrated over the hull surface. This method does not give us all the
terms in the general equation of motion for a ship in maneuver. As
mentioned, only the hydrodynamic reactions for a hull in steady turn

can be obtained.

It should also be emphasized that thickness effects were not con-

sidered.
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APPENDIX I

INNER EXPANSION OF THE FAR-FIELD POTENTIAL

1. Inner Expansion of the Far-Field Potential in the Usual Near-Field

In order to find how the far-field potential behaves as one ap-
proaches the line of singularities (i.e., the ship) in the region down-
stream of the bow region, it is convenient to start with the expression

(10a) which is:

L ket o) [klz &, (k|57 22)
b(x,y,2) = f ————
2n? - Vy2+ z?
- (I-1)
[ee]
[e 0]

los]

f1r2 X X A2, o2
_ iu’g ~[—dkelkxk20*(k) 1im _/-Rexp[llz + yvk +l£ ]1d% .
4?2 I e S U Ot

Our problem is to find out how this potential behaves as R = /&2+ z?

goes to zero or,more precisely,for R = 0(g)

Let us first define

) oodkelkxo*(k) lklz Kl(lk'/yz"' zz)
bpGy,2) = ;;; J( /92t 22 (1-2)
eq72 . . —2__2_
(bB(x’y’z) = - ..:LU_g. [dkelkxkzo*(k) 1im fﬂ,exp[lﬁz + y/k +f, ]d,Q, -
4'”’2 w0 /k2+ 2/2 [}/k2+ 22_ E (Uk _ T)Z]

—00 —00

(1-3)

The behavior of ¢A for R = 0(e) is easily found by expanding

the Bessel function for small argument [1]. It is:
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[}

¢, (%,,2) v ZZ - 12 fdkeikxc*(k) + 0(0)
v+ 2z 2n® -
(1-4)
VOB 2y o))

ﬂ v+ z

The behavior of ¢B for R = 0(e) 1is now shown to be of negligible
magnitude as compared with ¢A . The work by Ogilvie & Tuck is then
followed. Let

g —
I = 1im fzexp[izz + v+ iz]dz .
AP AT 2= 2 Uk - 5]

(I-5)

w0

-00

In the limit, the integrand has singularities given by

v+ 22-(Uk)?/g = O
or
/k2+-£§ = k2/v where Vv = g/u?
Ly = % lx] vk2- v?
Vv

As 10 one has a contour integral and it is necessary to determine
how to indent it around the singularities. First let us see where the
singularities are located in the &-plane .

If k| >v , 2, 1is real

Ikl <v , %, is imaginary

Now the "ficticious viscosity' plays its important role; i.e.,
it tells us how &, approaches the real axis as u*0 and therefore
shows how one must indent the contour. Take 20 as a limiting value

as w0 .
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82 = 1—2(Uk - 2 - x? as 10
g
= k*/v? - k2 - 2103 + o(u?) as W0

Therefore, the three following cases are possible.

a) k>v>0

+
If we define &, by

we have that:

+

Re 20 >0

Im 20+ <0

and

Re &, <0

Im&, >0
As p*0 we have to indent the contour in equation (I-5) as
shown in Fig. (I-a).
b) k < -v

In this case, the analysis is the same and the contour is indented

as in Fig. (I-b).
c) -v<k<vy

In this case, as W0 , 20 becomes imaginary and we do not have

to indent the contour. (See Fig. I-c.)
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a) k>v
k|vk2- v?
'Q'O -7 Vv @
<7 e 2 =
_ k] k2= V2
v
b) k < -v, _
e 2_ .2
® %, = [k[vVk2= v
v
N - . —
N o
0 o Lkl Ve
0 v

c) -v<k<vy

_ |k V2= 2
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THE SINGULARITIES OF THE FAR-FIELD POTENTIAL
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Under the hypothesis that z > 0 let us evaluate the integral I

for the three different cases.

a) k>wv

The integrand of I is analytic in the upper-half plane, except
on the imaginary axis above & = ik = i]kl , therefore one can close

the contour as shown in Fig. II, and use the residue theorem.

FIGURE II

THE CONTOUR OF INTEGRATION FOR k > v

. )
I = 2m Res(%,) - f Qefp[lfz +2y‘/k2+f 1d% - —-[ —f
FAB ;/k+2[»/k+2,—g(Uk)] g e
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and, as the points B,C,D,F move to infinity, one has
joo

Lexp[ilz + yvk2+ 22]d4R

I = 27 Res (20) + Va2 Z 2 2 1 2
i]x] k+2,[/k+9,——g-(Uk)]
w0 (I-6)
Lexp[ifz - y/EE:TEEde
, v+ 2202+ 22+ L (uk) 2]
ikl g

sifice the integral along the paths ¢, and c¢, vanish.

1 2

The residue of the integrand at 20 can be calculated as fol-

lows:
_ " Y
Res (%,) = Lim (2 Qo)legp[lzz I yvk+ 2%]
8L ViP+ L2 [VAPH 27 2 (Uk) 2]
. FTT 2
= exp[- 1z|kl/k Voo y {Tﬂ

The branch contribution can be evaluated as follows:

o]

~ J/r - J/r fexp[-fz + iy/8% - k2] dQ

e 02 _ 127rs 02 _ 2 _ 1 2
FAB Ik' ive k2[iv2 k 2 (Uk)?]

N J/fa&exp[—ﬂz ~ iyV/2%- k%148

H V8%~ K2[1/22%- K2 +§ (Uk) 2]

where use of the transformation £ = if was made. Further,
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_ J/r _ fexp[-fz + iy/2%- k%1d4
T 1 2r/i2 12 . 1 2
FAB | Va2 - k2[/2%- k* + 2 (Uk)“]
B Qexp[-Lz - iyv/&%~ k?]d8
1
22— K2[/82- k? - = (Uk)?
] e L (wi)?]
Call
K Lexp[-2z * iyv2*- k?]dL
NI kI[Ve2- k22 L (uk)?]
k| g
now let £%- k? = u? . Therefore,
S 124 s
Ai » J/‘du exp| z:h.+ k“ * iyu] . ou = K2/
u t iug 0
0

letting y and =z approach zero at the same time would lead to a
divergent integral. Let us first expand the exponential function with

real argument

0

Tiyu -

Ai = J/FQEE_T_"'[l + z/u’+ k% + R
u * iu,

0

Taking only the leading term and using the transformation
t = 7iy(y * iuo)

one has the contours of integration shown in Fig. III with the fol-

lowing results:
At = ire o1yl 4 Ei(lyluo)e|y|u°

where Ei 1is an exponential integral [1].
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FIGURE III

PATH OF INTEGRATION IN THE t-PLANE

Therefore, one has

2
- fm _omi el VIEE/Y (1-8)
FAB

and expanding the exponential function in the residue as well as in

the branch contribution for small arguments

i|kl/§z~ viz) +

2
1 = 2mi[l + (_ys + cennel]

2
—omi[l +X\1j—+ ]
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I 2ni[ﬂkl‘/§2" vz + 0(e?)] (1-9)

Noticing that the leading term is O(e), one concludes that the

inner expansion of ¢B (see I-3) is negligible compared to ¢A (see

I-4).
b) k < -y

The same general approach is used. The contour is closed as shown

in Fig. IV.

FIGURE IV

THE CONTOUR OF INTEGRATION FOR k < -v
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The residue is:

s ho .2 2
Res(Zo) = exp[&ElBJ{?EJZLL +y %}1 (I-10)

and the same estimate for the branch contribution as in Case a) is
valid, leading to the same argument about the order of magnitudes

of the inner expansions of ¢A and ¢B .
c) -v<k<k

Again the same general approach is used. The contour, however,

must be closed as in Fig. V.

®

FIGURE V

THE CONTOUR OF INTEGRATION FOR ~-v < k < v
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Now the singularity is located on the imaginary axis, but below

the point & = i]kl .
The residue is:

. o2 12
1z|k|5b -k +y S

k2
—1 (I~-11)

Res(%,) = exp[-
and the same estimate for the orders of magnitude of the inner ex-
pansion of ¢A and ¢B can be reached.

If now the assumption that 2z < 0 is made,the same result holds

true.

The inner expansion(considering only the leading term) of (I-1)

is therefore given by the leading term of ¢A sy 1.4,

o(x) Z
m y2+ Z

(b(x’y’z) v N + ofo(x)] (I-12)

2. Inner Expansion of the Far-Field Potential in the Bow Region

For the matching of the far-field with the bow near-field, it
is required to have the inner expansion in the bow region of the outer
expansion; in other words, the behavior of the far-field potential
in the region near the bow. In the main text the bow region was

/2

characterized by distances which are 0(8l ) in the longitudinal
direction, and distances which are 0(e) in the transverse direction.
In order to find the required behavior of the velocity potential in
the bow region, we first restrict ourselves to a region where the

l/2) from the point of intersection of the bow

distances are O(e
and the undisturbed free surface, in all directions. Later, we will
restrict even more the region of interest by letting the distance

0(e) in the transverse direction from the ship.
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Let us introduce the non—-dimensional coordinates *

x = E&a
y = na
z = Ca

where a is a length which is 0(81/2).

For the present purpose it is convenient to start working with the
expression (10b) of the far-field velocity potential, given in the
main text. We can rewrite expression (10b) in non-dimensional coor-

dinates as follows:

o o (I-13)
$(E,m,8) = - —— fdkeikgg*(k) 1im fﬁexp[i’%?; + /8% Kk2]ds
g wo_g AT 27 - (e - e

As we did in the previous section of this Appendix, let us define

L= lim [zexp[izg + nv/k2+ 22]dR
B 2, 02 _ L1 _ipge
w0 2 vk L ) (Uk - =7)

(I-14)

Loe}

As far as the singularities of this expression are concerned, we
can note a formal analogy with the expression (I-5). We can then
identify three cases and the path of integration has to be indented
as shown in Fig. VI, This figure also shows how we close the contour

in order to use the residue theoren.

£, n, &, should cause no confusion with the main text, since

they are used as non-dimensional coordinates only in this Appendix.
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¢) -1/F% < k < 1/F? B|F

@

FIGURL VI

THE CONTOUR OF INTEGRATION FOR THE POTENTIAL
IN THE BOW REGION
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Under the assumption that ¢ > 0 let us consider three cases

and then, if the square of the Froude number is

2 -
- _rg;a_ - o Y2y

as defined in the main text, we have:

a) k >-¥L
FZ

The contour of integration is shown in Fig. VI a) . By the residue

theorem we have:

2 107 + 24 22
I = 271 Res(&,) - f Eiz‘i[if_c l”‘/k f 142 (1-15)
FAB vk2+ 22 - g—a (Uk)
if we let the points B, C and D move to infinity.
The residue is:
Res (£,) = k2F?exp] 1C|le2/k2 F?2 + nk2F?] (I-16)
The branch-cut contribution is:
fore) (o]

_ fexp[-27 + in/R?- k? 142 Lexp[-25 - inv2%- k21d2

- 2 —_ 129 2
FAB K] veE- kE - LK k]  -ive?- k2 - K

ga ga

Now we want to show that the branch-~out contribution is negligi--

ble as compared to the residue contribution.

Let us first observe the following inequalities

[oe

/zexp[—zg /2%~ K21dL < / ) </ ge*% 4y
- N

21,2 2_ L2 boh N\
lkl /02 K2 - Uk* Ik[ /I,Q k l + k°F I
ga
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If now we restrict ourselves to the bow region, y and =z are

/2

O0(e) . This means that n and [ are 0(81
1/2

) since in the spheri-
cal region defined by distances O0(e ) from the bow 1 and L were
0(1) [see the beginning of this Section]. With these orders of magni-

1/

tude for n and ¢ and remembering that F?2 = O(e 2) we can neglect

the branch-out contribution as compared to the residue contribution.

Therefore, we write:
I ~ 2mi{k®F2exp[-izkF2v/k2- F? + nk?F2]} - (1-17)
b) k < -1/F2?

The contour of integration is shown in Fig. VI b). The arguments

are the same as in the previous case and we can write

I ~v 2mi{k?FPexplig|k|F2vk2- F% + nk?F?]} (1-18)

¢) -1/F? < k < 1/F?

We now want to show that in equation (I-13) the contribution of

the integral in k , for k = 0(81/2) is negligible.

From the formulation of the boundary value problem in the main

text, we know that

d)(x,y,z) = 0(55/2) *
and that
ok(k) = -o%(k) = 0(c?) if k= 0(81/2)
R R
ok(k) = 0(e*) if k= o@el?)

* For simplicity we are assuming Y = 1/2 , see page 8.
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Let us denote

m

fexp[ifr + nva2+ k?1d4

T @ - UK

—m
ga

1/2

such that £ < Ikl =0(e"7) if —m< 2L <m

Then the following estimate is valid in the near field:

m

2

|T,| < 2 fw - oY
U2k?
0 |k| -
ga
If we denote
L Lexp[i20 + nvR2%+ k?]1dR
1 - 2,2
m V2% k% - Uk
a
we have that in the near field
() 9 1

n m -

IIll.i J[ dle” ' - __e - 0(e 1/2
n zcm - F°k ) m - F°k
m
If we denote
-/rmlexp[izg + ny/22+ k2]dg
I = —_— 21,2
2 2 2_Uk
Y%+ k za

in the near field the following is valid:

l1,] =< )

by using the same arguments as used in I1 "
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Now we can use all these facts to show that ¢°(x,y,z) = 0(e?)

is negligible as compared to ¢(x,y,z) , where

N
° (x,7,2) = - == fdkelkxc*(k)l , N =o(l?
4mr?
-N
For that, let:
N
¢ = f dkelkxloi‘{(k) + 4 f dkelkxlo§(k)
-N -N
The second integral is 0(e*) and therefore,
N N
¢° _/—dk coskx Gﬁlo + J[ dk coskx Oﬁ(ll + 1,)
-N -N
N N
+i -/—dk sinkx O§IO + —/-dk sinkx GE(I1 + 1)
=N -N
+ 0(e")

The first integral is 0(e") and the third is 0(e®) and therefore
neglected. The second integral has an odd integrand and therefore .

is equal to zero.

/2

For x = 0(1) and k = 0(8l ) the sine function can be ex-

panded in series and the fourth integral is o(e?).

This shows that

$° = 0(e?)

and can be neglected as compared to ¢(x,y,z)
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We can now use equations (I~17) and (I-18) to find the required be-
havior of the potential, by introducing them into equation (I-13).
As we are interested only in the leading term, we expand the square
root in equations (I-17) and (I-18), taking only the leading term,

then combining in a single expression:

I v 2mi{k®F2exp[k?Fn- ik|k|F2z]} (I-19)

To derive (I-19) we made the assumption that 7 >0 . If
£ < 0, we can use the same arguments; however, the patls of integration
are not those of Fig. VI, but we must close the contour in the lower

half-plane. The result is:
I - 2mi{k®FPexp[k?®F?n - ik|k|F2g]} (I-20)

Introducing (I-19) and (I-20) in equation (I-13) we have

oo

¢E,n,0) v - 55%#51 J[ dkieikgc*(k)kzeexp[k2F2n - iF%k|k]| |z]]

=00

In order to use this result in the main text, it is convenient

to express it in dimensional coordinates x, y and z . One then
gets:
o
¢ (x,y,2) "~ f%-_/-dkelkxo*(k,y,Z) (I-21)
where
. kU2 kU2 iU%k|k
9% (k,y,2z) = - sgn(z)io* (k) expl “ -y - gl el |

We call (I-21) the leading term of the inner expansion of the

outer expansion.



APPENDIX II

OUTER EXPANSION OF NEAR-FIELD POTENTIAL

1. Outer Expansion of the Usual Near-Field

In this appendix the behavior of the expression for the velocity
potential is found as one moves away from the body. From the text,
it is found that one has two different expressions for the potential
in the usual near-field. One which is valid in the region near the
ship for x < L/2 except very close to the bow [equation (11)] and
the other which is valid for x > L/2 [equation (15)].

«  Let us start with equation (11):

d(x;y,2z) = Re{Ub'[Vg*+ h%* - z]} +M,;,®)
2 (11)
h
= Re[Ub't;,/l -1 J +M,; (%)
g
and, as one moves far away from the ship
h/z = 0(¢)
Therefore, expanding the square root, we have
h? h*
b(x3y,z) = Re{Ub'g[l +—-—+ ..... =11} + M, (x)
2c* 8t
Ub'h®
¢(x3y,2) v Ref oo} + M)
2g
and
1.2
¢ (x3y,2z) v Ub_h 2 +M, &)+ (II-1)
2 2 2
v+ z

- 62 =
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This is the leading term of the outer expansion of the near-
field potential expressed by (11)

The outer expansion of the near-field potential for
is obtained as follows

x > LJ/2
X
¢ (x3y,2) =

(15)
= ¢(L/2,y,2) + %-‘j/‘dee{Uzb"[/c2+ h® -] My, &)
L/2

The first termcan be considered as the potential (11) for
x > L/2. Therefore, the outer expansion is

11.2
B(L/2;5y,2) v BB =

where ©b'
2%+ 2

b'(x = L/2)

h h(x = L/2)

In order to find the outer expansion of the integral term, one
can use the same arguments as before, and

1" ) he U b"h __l
7 /dee{Uzb [Ve2+ h? - ]} /d [— > s ceend]
L/2

L/2

o ,//-dx b"h?
2

L/2 + z

v - /dx b"h?
L/2
The outer expansion of (15) is:

1,2
6 (x;y,2) v —2— [IBRB

X
2, 2 = 2 + 5 /dx b"h?] + M;, (x) (II-2)
yTE L/2

which is the leading term in the outer expansion of the potential (15)
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One can combine (II-1) and (II-2) by giving the general expression

for the outer expansion of the usual near-field.
(11-3)

X
. z Ub'(E)h?(E) . UH(x - L/2) "
d(x3y,2) R -+ 5 //dub h?} + M(x)
L/2

where:

X for x < L/2

&= L/2 for x > L/2

H(x - L/2) = the Heaviside function.
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