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ABSTRACT

The exact ideal-fluid boundary-value problem is formulated for the
diffraction of head-sea regular waves by a restrained ship. The problem is
then simplified by applying four restrictions: 1) the body must be slender;
2) the wave amplitude is small; 3) the wave length of the incoming waves is
of the order of magnitude of the transverse dimensions of the ship; 4) the
forward speed is zero or it is O(el/z—a) r 0<axl/2, where € is

the slenderness parameter.

The problem is solved by using matched asymptotic expansions. The re-
sult shows that the wave is attenuated as it propagates along the ship. The

result is not expected to be valid near the bow or stern of the ship.

The pressure distribution and force distribution along a ship model
with circular cross-sections have been calculated. The total force on the
ship has been compared with the wvalue predicted by the Khaskind relation.

The agreement is good.

The experimental and theoretical pressure distribution along a pro-
late spheroid have been compared. The predicted attenuation of the peak
pressure is very well confirmed by the experiments. In addition, theory
and experiment agree that the peak pressure near the ship generally leads

the Froude-Kriloff pressure peak by 45°,
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NOTATION

used in the description of the order of magnitude of the

velocity U; U = O(el/z—a), 0<ax<l/2

beam at midships when used in the figures

gh
%o

U/vLg, Froude number

acceleration of gravity

G(kY,kZ;kE,kn) See (88)

h
h(x,y)

I(k)

wave amplitude of the incoming wave
function defining the wetted surface of the ship

See (19) for zero-speed problem. See (112) for forward-speed
problem.

equal to V-€ in the sections about the near-field problem and
the matching. Otherwise integration variable in the Fourier
transform.

0

- L (20 Uu/g+l)
u? °

length of ship

coordinate-axis in the direction of the outward normal on the
wetted surface of the ship.

See (66)

coordinate-axis normal to and out of a cylinder with the same
cross—-section as the ship at a given section.

i=1,2,3¢: the x~,y-,2- component of the unit normal vector
to the wetted surface of the ship.

radial coordinate used in the chapter: "Numerical Calculations"
(see Fig. 8).



t time variable

T draft of the ship midships
U forward speed of the ship
X,V 2Z Cartesian coordinates (see Fig. 1).( The ship moves in the direc-

tion of the negative x-axis , 2z is measured upwards, y to
starboard.) .

X,Y,2 Stretched coordinates (see (66) or (169)).
V-k . . . .
o = |—?7—| where k is an integration variable
B very small positive number
51 very small positive number
62 very small positive number
€ slenderness parameter
CL(x,y.,t) free-surface displacement
8 angular coordinate used in the chapter: "Numerical Calculations"
(see Fig. 8). O = 0 1is a point on the centerplane.
A wave length of the incoming wave
M fictitious (Ravleigh) viscosity. (Note that u{arg) has another mean-
ing.)
2
v = Yo _am
g A
o density of water (mass per unit volume)
i (wt-vx) . . . . . . .
o(x)e source density per unit length in line distribution of sources.
[+ o]
o* (k) = f daxe K% (x)
-00
wyu
T = —
g

¢{x,y,2z,t) velocity potential in forward-speed problem and in zero-speed
problem *

¢I(x,y,z,t) velocity potential of the incoming wave

¢D(x,y,z,t) velocity potential of the diffracted wave

*
Note, however, that it means the time dependent part of the velocity poten-

tial in the Chapter "Numerical calculations".
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¢ (x,v,2) (1/U)* perturbation-velocity in steady motion problem
s b
¢T(x,y,z,t) time~dependent part of velocity potential

®(x,y,2) see (16) and (17) for zero-speed problem. See (109) and (110)
for forward-speed problem.

Yx,y,2z) see (62) in zero-speed problem. See (164) in forward-speed

roblem.
P N
wi i=1,2,...8 , Yy~ 2: wi .
1=l
wo wave frequency of the incoming wave
w = +
wo VU

vii



I. INTRODUCTION

The intention in this thesis is to derive a method to find the pressure
distribution along a ship due to head-sea regular waves. The ship is res-
trained from oscillating, and the ship meets the waves with a high frequency.
The wave length of the incoming waves is assumed to be of the order of magni-
tude of the transverse dimeénsions of the ship. For the zero-speed case, the
frequency of the wave is the same order of magnitude as the frequency of os-
cillation used in Ogilvie & Tuck (1969).  Ogilvie & Tuck considered the forced
heave and pitch oscillation of a ship when there were no incoming waves. Due
to linearity, the forces obtained in Ogilvie & Tuck and the forces obtained
in this thesis can be superimposed to give the hydrodynamical forces on a
ship which oscillates in a steady-state condition in regular head~sea waves.
In the forward-speed case, the assumptions in Ogilvie & Tuck (1969) and in

this thesis are different.

Ogilvie & Tuck got a strip theory result and it is well-known that strip
theory gives good results for a wider range of wave lengths than Ogilvie &
Tuck restricted themselves to (see Salvesen, Tuck, & Faltinsen (1970)). So
it is the hope that the theory presented in this thesis also will cover a
wider range of wave lengths. But it is only our experience that is going to
tell us for how large wave lengths our theory is capable of predicting the
pressure distribution along the ship. The theory predicts that head-sea
waves of small wave length are deformed as they propagate along the ship.
Abels (1959) observed this fact for a wave length which was half of the
length of the ship, but he did not observe it for a wave length which was

three~fourths of the length of the ship.

By integrating the pressure in an appropriate way over the submerged
part of the ship, we are able to predict the exciting force and moment on the
ship. For the zero-speed case there is another way to obtain the exciting
force and moment on a ship, namely to use the Khaskind relation (see Newman

(1962)). The disadvantage of the Khaskind relation is that it cannot predict



the pressure distribution along the ship. Further it is a formula derived
on the basis of a general mathematical relationship,and so it does not give

us much insight into the physical problem.

The method of matched asymptotic expansions has been used in solving
our problem, and an important part of our solution in the near-field problem
is Ursell's solution (1968 a) of a closely related problem: He obtained a
general expression describing wave motions which can exist in the presence
of an infinitely long horizontal cylinder, the wave motion being periodic
along the cylinder. Our solution for the total potential in the near-field
can be written as Ursell's solution multiplied with a function of x ( x is
the longitudinal coordinate. See Fig. 1). The function of x contains the

factor (x + L/2)-l/2

, where -L/2 is the x-coordinate of the forward perpendi-
cular. Our solution is not assumed to be valid near the bow or stern. Ursell
was somewhat discouraged with his solution because it became unbounded laterally
at infinity (when y + * ®. Seeé Fig. 1l). But in our case this does not matter
because Ursell's solution is only a part of our near-field solution, which is
not assumed to be valid at infinity. The only important thing is that our

near-field solution should match with the far-field solution, which it does.

II. GENERAL FORMULATION

The coordinate system which is going to be used is shown in Figure 1.

-L/2 L/2

FIGURE 1
COORDINATE SYSTEM



The coordinate system is fixed to the ship. The plane 2z = 0 represents
the undisturbed free surface. The z-axis is positive upwards and the posi-
tive y-direction is in the starboard direction. It is assumed that the ship
moves with a constant velocity U in the direction of the negative x-axis.
Since we will refer everything to the coordinate system in the ship it will
look as if there is an incident, undisturbed flow with velocity U in the

direction of the positive x-axis.

It is assumed that the fluid is incompressible and the flow irrotational,
so that there exists a velocity potential ¢ which satisfies the three-dimen-

sional Laplace equation,

2 2 2
9%¢ + 3%¢ N 9°¢ - 0
ox2 dy? 9z2

(1)

in the fluid domain. The ship is restrained from performing any oscillatory
motions, and so the boundary condition on the wetted surface of the ship will

be
=~ = 0 on z = h(x,y) . (2)

Herxre =z = h(x,y) is the mathematical description of the wetted surface of
the ship. 09/9n denotes the derivative in the direction of the outwards nor-

mal on the surface of the ship.

The conditions on the free surface, =z = r(x,vy.,t), are,neglecting surface

tension,
(A), the dynamic free surface condition

gL+ b +1/2 097+ +9. % =1/20% on z=g(xy,t) (3)

(B), the kinematic free surface condition

d’x‘:x + ¢y€y - ¢z t L, = 0 on z=Cxy,t). (4)

g is the acceleration of gravity.



We must also satisfy a radiation condition. We will be more specific

about that later.

It is assumed that the fluid has infinite depth, the free surface has infi-

nite extent, and there are no bodies other than the ship.

We will assume that there are incoming, regqular gravity waves propagating
along the positive x-axis. The wave amplitude is assumed to be small so that
the classical linear free-surface theory is applicable. We will later linear-
ize the problem with respect to the wave amplitude. The potential ¢I of the

incoming waves will be given by

EE-evz ei(wt - vx)] (5)

o = 2 [F

Here Re means the real part. As is usual we are going to drop the notation
Re. We will write the potential in complex form, and it should be understood

that we should take the real part. This is only a matter of convenience.

h is the wave amplituderwo is the wave frequency, V is the wave number,
W the frequency of encounter and t is the time variable. The wave number V

can be written as

where A is the wave length. The relation between v,wo,w, and U for head-sea

waves is

w = W + VU (7)

We will assume that the ship is slender, and we will introduce the
slenderness parameter €. It is a measure of the transverse dimensions of the
ship compared with the length of the ship. So € is a small quantity. If we
denote the x,y,z-components of the normal n on the wetted surface of the ship

by nl, n2, n_ respectively, then we can set

3



nl = 0(eg), n2 = 0{(1), n3 = 0(1) (8)
We will assume that the frequency of the wave has the following asymp-

totic behavior

W= o(e—l/2

o ) (9)

Using (6) this means that

A = 0(e) (10)
III. THE ZERO-SPEED PROBLEM

The frequency of encounter, w, is the same as the frequency of the waves,
wo, for the zero-speed case (see (7)). The time dependence of the incident

wave is given by elwt (see (5)). It is expected that the time dependence for

the total potential is also given by elmt. This means that 9/9t is equiva-

lent to multiplying by iw. We will use this fact and now write down the equa-
tions to determine the velocity potential. From (1), (2), (3), (4) and the

assumption about linearity it follows that ¢ satisfies

2 2 2
-EJE + 2—2- + 2—9' = 0 in the fluid domain, (1)
ox? dy? 3z2
¢ _ -
E = 0 on z = h(X:Y) ’ (2)
w2 + g2 = i
g e - 0 on z =0 outside the body. (11)

In addition, the diffraction part of the potential must satisfy a radiation

condition.

We will write ¢ as

¢ = q) + ¢ = ﬂ e\)z ei (ﬂ.)t"\)x) + ¢

I D ® D (12)



Here ¢D denotes the diffraction potential. To find ¢D we are going to
use the method of matched asymptotic expansions (Van Dyke (1964), Ogilvie
(1970)). As is usual, we introduce a far-field description and a near-field
description. The far-field description is expected to be valid at distances
which are 0(l) and larger from the ship. The near-field description is wvalid

near the ship at distances which are 0O(g).

There are four parts in this chapter: (1) derivation of the far-field
source solution due to a line of pulsating sources located on the x-axis
between -L/2 and L/2 (see Fig. 1); (2) derivation of a two-term inner
expansion of the far-field source solution; (3) comparison of the expression
found in part (2) with the result obtained by another method; (4) formulation
of the near-field problem, and the matching of a two-term near-field solution

with the far-field solution.

l. Far~field source solution

In the far-field description, we expect to have waves. In order to have
waves, we must satisfy the condition (11). This means that the two terms in
(11) must be of the same order of magnitude in the far-field, and so
a/d9z = O(E_l). The existence of a surface wave implies that 9/9z and,say,
d/9ds are the same order of magnitude, where s is measured normal to wave
fronts. In the far-field, we cannot in general say that the normal to the
wave fronts should be neither along the x-axis nor along the y-axis. This im-

plies that 3/9x and 9/dy must also be of order 8_1 in the far-field.

From a far-field point of view, one cannot see the shape of the hull.
As € > 0 the disturbance from the hull to the far-field seems to emanate from
a line of singularities located on the x—-axis between -L/2 and 1/2. The
dominant far—away effect is expected to appear to be due to a line of sources.
Since the incoming waves vary as el(wt—vx), it is expected that the line of

sources has a source density of the form

0(x)ei(wt-vx).

. lo
Due to the slenderness of the ship we assume §§-= 0(o).



These physical arguments can be given a mathematical formulation. We can
replace the Laplace equation (1) by the Poisson equation
2 2 2
3 ¢D 3 ¢D d ¢D

N + = omer CFVE) 5 )82z ) | (13)
ax? dy? 0z 2 °

Here § is the Dirac-delta function, and initially we take zo< C. When the

solution of ¢D is found, z, will be set equal to zero. If we set z, = 0

first, we would be in difficulties solving the problem.

We cannot expect that the far-field solution will satisfy the boundary con-
dition on the hull given by (2), but it must satisfy a broper radiation condition.
We must be sure that the diffraction potential ¢D does not contain an incoming
wave. This is most easily taken care of by introducing the artificial Rayleigh
viscosity U (see Ogilvie & Tuck (1969)). The free-surface condition (11) will

then be modified to

(iw+u)2¢D + g e = 0 on z=0 (14)

At an appropriate later point, we will let H go to zero.

The solution to (13) and (14) with zO = 0 can be found in Ogilvie &
Tuck (1969) and is

oo
1 iwt i -3
¢D(x,y,z,t) = - Zﬁf'el J[ ax elKX F {o(x)e 1vx}
-—00
(15)
[+ <]

1i as eiEy + zvkZ ¥ 272
«lim

W0 o Vk? 4+ 92 - &{w - iy)?

Here
o

F{o(x)e—ivx} = ‘/- dxe—ikx O(X)e_i\)x = g* (k+V)

-—00



Expression (15) can be rewritten in a form which is more convenient
to handle for our purposes. I will follow a procedure described by Ogilvie

(1969), and what I am going to do is based on his work.

We first introduce

in (15). We can then write

(2]

. _ o
qu(x,y,z,t) = - # el(mt Vx) f dak' elk X g% (k')

-Q0

RESI zv/ (k' -v) 2 + 22

«1im al
. -
W0 o VK 02 + 22 - (v-ipd' )
' 2 , .
Here ' = —g— We drop the primes and write
i (Wwt-V
¢, (x/¥,2,t) = O(x,v,2) et x) (16)
where
@(XIYIZ) = - L f dk elkx o* (k)
am?
-0
(17)

- ; T tomy 2
Lim f aL el!Ly + zV2%+ (v-k)
>0 Y2ZE(v-k) % - (v-ip)

We will let y = O(l) and we are going to assume that y > 0. The
derivation for y < 0 will be quite similar, and we are not going to go
through that. Since we are operating with sources, we can later use the

fact that

¢D(x,-y,z,t) = ¢D(x,y,z,t) (18)



We now define
[+ +]

iy + zv22%+ (v-k)2
I(k) = lim J[ a Y T E (v-k) (19)

w0 V224 (v-k) 2 - (v-ip)

The poles of the integrand are important in the evaluation of I(k). They

are given in the limit u - 0 by:
2% = (2v-k)k.

Let us first study the case in which these singularities are imaginary, which

means k < 0 or k > 2v. Then we study case II, in which 0 < k < 2v.

Case I: k<0 or k > 2V. We define

L = ivk(k-2v)

(e}
We introduce a closed curve ABCDEA in the complex f£-plane, as shown in

Figure 2.

FIGURE 2
COMPLEX INTEGRATION PATH
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The integrand in (19) has a branch point at ifv-kl, and we choose the branch
cut along the positive imaginary axis. By using the residue theorem, letting

B>+, C> +jo, E = +j, A > -, we will get

I(k) = 2mi Res (20)
i 1zv8%- (v-k) 2 ~izv/ 9% (v-k) 2
+ [ iap e ¥ [ e . ° }
1/22-(v-k) 2=y -iv2%- (v=k) 2~y

vk |
(20)

]

- - : 2 2 -3 2_.2
evz yvk (k-2V) Jf -3 [elvz/& -0 e ivzy22-g, }
+ al e
vk (k-2vy)

2TV

— A
Y/2-02+ i V9%-02 - i
a

v-k . . . .
where o =|—3—|. @ will be greater than 1, since we are considering the case

k<0 or k > 2v.

We want to show that the integral in (20) is exponentially small as

€ > 0. The following inequality must be valid

[s 2] (o]
-vyl * ivz/27-a? -vy4
dal e < al e (21)
RZE ¢ 4 ;P A
This can be written as
© 9 o 0
-vy "
2 dm ~Vyvm®+0, -VvyGcosh
[ d_——;:z— = '*2'____2 e 4 =f e yocos udu=Ko(\)y0L) (22)
V%~ 5 Ym%+0, 5

See Abramowitz and Stegun (1964). K_ is a modified Bessel function of the
1
),

y 0(l) and o > 1, the argument of K is
o}

large. By using the asymptotic expansion of Ko for large arguments, we can

second kind. Since Vv = O(e_

show that the integral term in (20) is bounded by a quantity Which is

O(e-l/e). So we can write
vz - yvk(k-2v) _
I(k) = 2TVve + O(e 1/6)
vk (k-2V)

(23)
for k <0 or k > 2v, and y=0(1)
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Case II: 0 < k < 2V. The poles of the integrand of (19) are now real.

The Rayleigh viscosity will help us to determine how to indent the integration

path of I(k) around the poles. If we define

L= vk(2v-k), (24)

0

the poles will be at i20 when U = 0. The integration path will be as shown

in Figure 3.

®

D N N
./ )

FIGURE 3
COMPLEX INTEGRATION PATH

In the same way as we did for Case I, we introduce a closed curve ABCDEA in
the complex {#-plane and use the residue theorem to evaluate I(k). The closed

curve is shown in Figure 4.

FIGURE 4

COMPLEX INTEGRATION PATH
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Noting that

vz - iyvk (2v-k)
Res (%) = Ve , (25)
~vk (2V-k)

we get by use of the residue theorem in the same way as for Case I that

vz - iyVi?ES:ET

I(k) _ 2Tive
vk (2v-k)
(26)
covg [ LiVERT -ivzv/iP-a?
+j’ ag e ¥ [e +
V2-02 + i ve2-02 - i

a

Here o = |265-|< 1.

As long as o is not of order € or less, we can use the same argument
as for Case I to show that the integral in (26) is exponentially small with
respect to € as € *-0*. But when o = O(g) we see from (22) that the argu-
ment of the bounding function KO is of order 1. We therefore have to use

another procedure.

We can write

> +ivzye2-¢2 > Vyo
’ ,[ ag e VY £~ |« j( ap e VYt _ e = o(e)
g ve2-0% % i b vy

When o = 0 it can be shown that the integral term is of O(g). Since k is
o(v) = o(e'% when g = O(g) or less, it is easily seen that the first term
in (26) is O0(l1). So the integral will be of higher order than the first
term in (26) when o = O(g), as well as when ¢ = O(l). We now have the re-
sults (0<y = 0(1)).

Ve - yRE

<
2 + ... for k<0
vk (k=2V k> 2V
I(k)= ( ) F rpTrer (27)
... vz - iyvk(2v-k)
- 2Tive + ... for 0<k<2v
vk (2v-k)

* It will be evident later why k is related to €, and therefore why «
is related to €.
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By using equation (17) and (19), we can write

0 .
g I\ ax Mx T YR Gy,
X,¥,2 = 2T vk
J (k-2V)
2V
ikx - iyvk (2v-k)
. J[ dk e o* (k) (28)
5 vk (2v-k)
. f ax oikx - vhkk-2v) o ]
2 vk (k-2V)
+ higher order terms
We rewrite (28) as _F—(l—51) —_—
v - ikx - =
@(XIYIZ) = - v; - [ / dk elkx Y/]((k 2\)) g* (k)
m J vk (k-2V)
0 ikx - yvk(k-2v)
.\ [ dk e o* (k)
2 -(1-61) vk (k-2v)
5(1-51)
. J[ dk e1kx - iyvk (2v-k) o* (k)
J vk (2v-k)
(29)
2V . ;
/- (1-81) vk (2v-k)

3 vk (k-2V)

Here §; is some very small positive number. It will be evident in the next

-(1-681)

section why we have introduced € .

It can easily be shown that the first integral in (29) is exponentially

small. So we drop that term.
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We prefer to write the last two terms in another way by introducing
the new variable u = k-2V. After introducing the new variable in the last
integral, we drop the contribution from integrating from 6-(1—61) to « ;
the argument is the same as that used above in dropping the first integral

in (29). Equation (29) can now be written as

0 . TR
R ak oikx - y/k (k-2v) o* (k)
Q(XIYIZ) == 27 —
J - (1-61) vk (k~-2V)
E-(l-51) ' N Ty
L ak e1kx - iyvk (2v~k) o* (k)
5 vk (2v-k) (30)
0 . . . /_—_—‘“—_‘
. Jf au e1ux + i2vx - iy (u+2v)6u)c*(u+2v)
-—l e
- (1=61) v (u+2V) (-u)
g~ (1-61) _ . _
. Jr au elux + i2vx T y/(u+2v)u G* (u+2V)
5 /(u+2v)u

This is the final form of the far-field source solution. It is valid for

y = 0(1).

2. Inner expansion of far-field source solution

We are now going to find a two-term inner expansion of the far-field

source solution. The result is given by equation (54).
We now let y be of order € , and we reorder the terms in (30).

In the first integrand we want an expansion of
e-yfk(k—Zv)

. (31)
vk (k-2V)
, . . -(1-61) ., ,
It will now be evident why we introduced ¢ in the previous
- (1-8 P .
section. Since k cannot be greater than € ( 1), ka(k—zv) will be

o(l). We expand (31) and keep two terms
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-yvk (k-2V)
€ = 1 -y +... (32)

vk (k-2v) vk (k-2V)

The omitted terms are higher order. Further, we expand

1
vk (k-2V)
We can then write (31) as follows
e-YVk(k—zv) _ 1 [ 1+ % s (33)
v y+...

vk (k-2V) /bv]kl

We want to keep only the two lowest-order terms in the first integral in

(30). k in the first integral will be O(e » where Q) can be greater

than or equal to §; , depending on k. So the first term in (33) will be

O(El_al/z) 1+03/2

;» the second term O0Of(e ), and the third term O(e). When
(33) is put into the first integral in (30), the second term in (33) will give
the highest-order term. The two lowest-order terms in the first integral in
(30) will be

0

vz .
- e f dk eFX gx (k) [*l - yJ : (34)

4 (1-81) v2v|x|

In a similar way we will find that the second integral in (30) can be

written as
e-(l—51)

vz .
Ve J[ ak eiF* c*(k)[_f__ - iy] . (35)
3 v2vk

We are going to follow the same procedure as above to evaluate the third
and fourth integrals in (30). It will be evident later that the latter will
give a contribution which is of the same order of magnitude as the higher-
order terms in (34) and (35). We will therefore keep only the lowest-order
terms in the two last integrals. But we must be careful with the third inte-
gral. The lower integration limit is O(V) = O(E_l). For the integration

variable u of order V we cannot truncate the series expansion of
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e—iy/(u+2v)(—u)

Y (u+2v) (-u)

after two terms in the same manner as we did in (32). But let us set the

lower integration limit in the third integral equal to -e_(l_dl). The dif-
ference between
0 . Y P
f du elux e 1y/(u+2\))( u) o* (u+2V) (36)
- - + -
2-(1-81) Y (a+2v) (-u)
and
0 . Y AR
- + -
Jf du elux e 1y/(u 2v) (-u) o* (u+2V) (37)
Ze~(1-61) v (a+2v) (-u)

is higher order. As long as we only want the lowest-order term of (36),

we should be safe in changing (36) to (37).

We now do for the third integral as we did for the first integral. We

will get
0
vevz i2vx iux O* (u+2v)
i r e du e —_— (38)
-(1-6¢1) V2vTu]

-e

And for the fourth integral we will get

8-(1‘51)
vz . .
+
_ Ve e12\)x f du e:|.ux o* (u+2v) (39)
2m 3 v2vu

By now putting the expressions (34), (35), (38) and (39) for each of

the four integrals into (30), we can write
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0
vz .
?(x,y,2) = [_ ve_ f ak o Tl
-E-(l—sl) vY2Vik
5 8-(1‘51)
z .
" v:ﬂ i J[ dk e1kx o* (k)
5 v2Vk
- (1-61)
Vevz ikx
+ v dk e o* (k) (40)
27 —(1-84)
vz 0

. Ve i2vx iux g* (u+2v)

+ i = e Jr du e _
_e‘(l"dl) vzvlul
- (1-61)

_ vevz ei2vx du e:Lux o* (u+2v)

2 Y2vu

0

+ higher order terms

Note that the first brackets contain the lowest-order terms, the second

brackets the next-lowest-order terms.

Because we want to apply Fourier-transform techniques, we want to set
€_(l-61) equal to «. For the three higher-order terms in (40) we could do
that; the effect would be only to introduce higher-order, negligible effects.

But we must be careful with the lower order terms:

0
*

f ak otkx or(k) (41)

—E— (1-687) VZ\)IkI
and

e (1-61)
J[ dk oikx O*(k) | (42)
3 2Vk

We will consider especially the integral (42). We can write it as
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f g oiKX OE(K) f ax kX O*(R) 3)
3 Y20k Z-(1-61) vY2vk

We will try to find the order of magnitude of the second integral. We then
need to know how o*(k) behaves for large k . We will assume that o(x)

and 0'(x) are continuous in the interval ~L/2 < x < L/2 [including the end
points] (see Fig. 1). Outside -L/2 <x<L/2, O(x) = O*. It can then be
shown (see Lighthill (1958)) that ,kLIao*(k) remains bounded as k =+ +o ,

So the second integral in (43) can be bounded by

® ikx O* (k) 2C
[ o o
e (1-67) 2Vk

dk__ 71 _(1-81)-5/2

Cl j(m
o E—(l-—61) k7/2 5/

<

C1 is a constant determined so that the inequality above is satisfied.

If we now put (43) into (40) and use the estimate above of the order of mag-

nitude of
[¢]
i *
j' ak elkx o* (k) .
-(1-81) vY2vk

€

it should be obvious that we can replace

o~ (1-61)
f ax iKX O*(K)
2 2k
by
f g JLkX g% (k)
3 V2Vk
in (40).

In a similar way, we can show that we can replace

* It should be noted specifically that we assume o(+L/2) =0 , o' (xL/2) = 0,

and continuity in the neighborhood of x = *L/2.
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0
j’ ak oikX  O*(k)
_E—(l—él) V2\)lkl

by
0
3 *
f dk oikx g*(k)
4 V2V[k]
in (40).

We can now write (40) as follows:

0 . © .
vV vz ak ¥ gu (k) &k e gu(x
<I>(1"11er) = - E? e f _if € )
<4 V2K g V2VK

[¢+]
-y f ak e** gx (k)
-=00

i2V ¥ du eiux *
—jet2Vx f g* (u+2v) (44)
o vzv]u
m .
+ei2\)x J( du elux o* (ut+2v) ]
0 ¥Y2vu

+ higher order terms.

This is now in a form that can be greatly simplified through use of the pro-
perties of Fourier transforms.

We define

1 k< 0
k
F*(kx) = . (45)
i} k>0
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F* (k) denotes the Fourier transform of a function F(x). So

0 ik * ik
_1_j’dke“‘ _Lf ax e™F
2T 2T

J . VK] 2 vk

F(x) =
(46)
[e 0]
= 1-i gk {coskx + sinkx}
2m vk
0
. -im/4
1-1i ™ { e
= —\/ 1 + sgnx} = =——+— H(x) ,
2T 2|xl /,ﬂ;l—
where H(x) is Heaviside step function.
We also define
- i u<o
G*(u) = /ET (47)
1 >0
Yu
So
0 . co .
G(x) = __j;fduelux + i_j du '
- 27 27
< VTu] 5 Yu
(48)
[=-]
1o du -in/4
= =_% — {cosux - sinux} = — H(~x)
A VAT
By using (45) and (47) we can rewrite (44) as follows:
v =]
z .
o(x,y,2) = - = f ak e™* gr()Fr (k) + vye“? o(x)
2TV2V
(49)
vz i2vx :
Xe__e;__. f du elux g* (u+2\)) G* (u) -
2mMV2V

-00
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We now apply the convolution theorem to (49) and use (46) and (48). We get

vz 3 -im/4 vz
®(x,y,2) = -ve J( ato(g) —=—— H(x~&) + vye = 0(x)
2 21TV | x~§
' . > B -ir/4
- veVZ 12VX / aEo@e 2 e T Ly
< 2mV [ x-&
(50)
X
_ _veVz e-1ﬂ/4 J[ dg o (&) + vy eVz o (x)

2L/2 V2ﬂle—£l

Lr2 -i2vg

- pe¥? Gi2vx -im/4 J[ d&o (&) e

< vzwle—gl

In the last expression we have used the definition of the Heaviside step

function and the fact that the source density O is zero outside the ship.

The integral

L/2 .
_[ dEo (£) e 12VE

x-g

(51)

X

can be further simplified. It is a Fourier integral. The integrand has a
singularity at the lower integration limit, x » and it is zero at the upper
integration limit. (See discussion following (43).) The theory for finding
asymptotic expansions of such integrals can be found in Erdélyi (1956). We

find that (51) can be written

L/2 -3
f aoe 2V oi2VR iT/A oL (52)
Vv

— 2V

X

So, by putting (52) into (50), we get
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x
-im/4 g V =1im,
¢(x,v,z) = -\)e\)z e in/ _______dE (€) + Vye 2 o(x) - evze /2 ___G(zx) (53)
12 27V [ x-§
+ higher order terms.
We remember that we have assumed y > 0 . But we can use (18) together
with (16),
i(wt-v
¢D(x,y.z,t) = ®(x,y,2) e ¢ x) ' (16)
so that we can write down a two-term inner expansion of the far-field source
solution
X
i - AV -im/4
q)D(x,y,z,t) N el(wt Vx) e z [—\)e i/ M
212 V2™ x-&
(54)
-7 2
+vlylox) - e i/ 9{;1.]

3. Comparison with another method

The method applied above by using Fourier transforms is a very good
method and has been applied to many problems in ship hydrodynamics. (Ogilvie
(1970)). Other methods can also be applied to find inner expansions of
far-field expansions, but generally speaking it is very difficult to obtain
the inner expansion by other methods than the Fourier transform method as

used above. Sometimes it even seems to be impossible.

Below I will attack the above problem by another method. I cannot
obtain all three terms in (54), but I will obtain the two terms which remain
when y = 0. These two terms will agree with the two relevant terms in (54).

This is a good check on our result.

In Ogilvie & Tuck (1969), it is described how a far-field solution of

the velocity potential, ¢(x,y,z,t) , of a line distribution of sources of
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density Ll(x)elwt spread along the line y =2z =0 |, -L/2 < x <L/2 ,

in the presence of a free surface, can be written as

¢(x,y,2,t) = Re[db(X.y,Z)eiwt] , (55)
where
/2 d dk k e? ————s
$(x,y,2) = -2 f agu (&) f v T [-8) % y%) . (56)

(55) is a solution of (1) and (11), and it satisfies a proper radiation
condition. The inner integral is a contour integral, indented at the pole

as indicated. J0 is a Bessel function of the first kind.
In our problem we must set

~-iv
4mU(E) = G(E) e 2 ’ (57)
in accordance with what we did in the previous chapters. The factor 47
is needed because of the different normalization of source strength here and

in Ogilvie & Tuck (1969).

Ogilvie & Tuck (1969) simplified the expression (56) for y = 0O(l) and

we only state the result here. We get:

L/2 s N =
Vv Vz-if/4 g(€)e ivg e iwWi(x-£)%+ y
blay,z)= S for e 4 2, 2,174 : (58)
“1/2 ((x-&)“+ ve)

We want an inner expansion of (58), which means that y = 0(e). It is Qiffi-

cult to do anything with (58) when y = O(g) » but, if we simply set y = 0 ’
we can get a special case of the inner expansion of (58). By setting y =0 ,
we get
x . L/2 . .
. ~ivx - +
o [N vz-in/4 [ dio(§)e N f dEo (£)e 12VE 1\)x]
2T :
ZL/2 x_g Z 1 4 IX"EI

(59)
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By using (52) in the last integral, we can write (59) as

X .
_ v eVZ‘iTT/4 [f M + %— e—i\)x—iﬁ/l; o(x) ] (60)

2
" 2L/2 /Tx-E]

By combining this with (55) we get two of the terms in the inner expansion

of the far-field solution:

X
o1 (WEvx) vz [_\)e—in/4 f d&o (§) _omiT/2 g(x) ] (61)
2mV [ x-§ 2
-L/2

We see that (61) agrees with the two terms in (54) that remain when y = 0.
Since we set y = 0 , we could not get the y-term in (54), and, as said above,
it is very difficult to get the y-dependent term by this method. I will not

go further with this method, but I think we have a good check on our result.

4. The near-field problem and the matching

We are now going to formulate the near-field problem and perform the
matching between the near-field and the far-field solutions. A one-term

far-field solution is found to be due to a line of sources with source density

gy (x) ei(wt—\)x)
spread along the line y =2z =0, -L/2 <x < 1/2 (see Fig.l1l), and a one-
term near-field solution will be found to be the negative of the incident
wave. The matching between the lowest-order term in the near-field problem
and the lowest-order term in the far-field problem gives an integral equation
for O;(x) (see (78)). 01 is needed in the second order near-field solu-

tion. The two-term near-field solution is given by (94).

It should be noted that "Near-field" means the region near the body,
where the distance from the body is O(€) . However, we do not expect the

near-field approximations to be valid near the bow and stern.
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We will express the potential of the diffracted wave as follows:

_if(wt-vx)
¢D = e w(errZ) . (62)

By putting (62) into the Laplace equation, (1), we get

_8_2!1_ azw - 2 - 2' ﬂ a—z‘p. =
dy? * 9z? vy o ox * ox2 ° (63)

in the fluid region. The free-surface condition, (11), is:

0 onz =20 . (64)

|

1
&

il

The body boundary condition, (2), together with (12), gives

oy - . _ gﬁ_ vz
1 3x [ivn, = va,]

Y Y
[n —3-§+n 3z

- ivn_ Y + n
2 v lp

3

(65)
on z = h(x,y).

nl ' n2 , and n3 have been explained before equation (8). A last con-
dition on Y is that it must match with the far-field solution.

We will assume that Y varies very slowly in the x-direction compared
with the variation of Y in the transverse Plane. We assume that the rate
of change of ¢y in the transverse plane is governed by the order of magni-
tude of the transverse dimensions of the body and that the rate of change

of Y in the x-direction is governed by the order of magnitude of the longi-

tudinal dimensions of the body.

We therefore stretch the coordinates

€Y , z=€Z , n =€eN , x =X (66)

a
]

Here B/anD denotes the directicnal derivative normal to and out of a

cylinder with the same cross-section as the ship at a given section.
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We assume that, in the near-field

H-ow . R-ow . Booy

Y _
Y EY] }

= = oW (67

It should be noted, however, that the rate of change in the x-direction

of the diffraction potential, ¢D + as given by (62), is of the same order

of magnitude as the rate of change of ¢D in the transverse dimensions.

We will assume an asymptotic expansion of Y of the form

N
w v Z i~IJ:n(erlz;€)

(68)
n=1
where wn+l = o(wn) as € > 0 for fixed X,Y,Z. By putting (68) into
(63) we get
(69)
92 32 _ 2.2 Z pinye2 O
( Fovea + T vee®) ( wl + wz +...) 2ive % ( wl +.o.0) +..

The free-surface condition, (64), gives

a - = -
T (wl + ¢2 +oud) vs(wl + wz +eod) 0 on Z = 0, (70)

The body boundary condition, (65), becomes

1 3 _ . - 9
T W ( wl + wz +...) = ( 1\)nl n, 32-) ( wl +...)
(71)
. gh vz _ gh vz -
+ 1an w e vn3 o © on z h(x,y),

We introduce

(72)
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We will set

gh _
"= =c . (73)

Since the problem is linear in C , we shall not be bothered with the order

of magnitude of C .

The lowest-order equations become:

3 3 -

( BYZ + BZZ - kz) wl =0 i (74)
9

( 3z " k) wl =0 onzZ=0 ; (75)
d kZ

gﬁ'(wl) = - Cnjke on the body. (76)

In addition, wl must match with the far-field solution.
A one-term far-field solution is assumed to be the potential associated
with a line distribution of sources of density

Gl(x) ei(wt—\)x)

spread along the line y =2z =0, -L/2 S x < L/2 . That solution has been

obtained in a previous chapter, and a one-term inner expansion of a one-term

far-field solution can be found from (54). For any fixed x greater than

-L/2 , it is obvious that a one-term inner expansion is

X
o1 (wt=vx) { W2 X k2 -inga f dgo_ (&) ] -
2
" 42 VTET

1/2

and that the second-order term in the inner expansion is of order ¢

compared with the first-order term.
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(77) should match with a one-term outer expansion of wl el(wt_vx) ’

as determined from (74), (75) and (76). Ursell (1968a)* has given a solu-
tion to that problem, but it does not appear to match with (77). However,
if we say that the one-term near-field solution is just the negative of

the incident wave (this is a special case of Ursell's solution), then (74),

(75) and (76) are satisfied, and if we require that

: X ako, (&)
’5%_8-1/2 ekz e—1ﬂ/4 1 _ Cekz (78)

212 [x-E

then we see that a one-term outer expansion of the one-term near-field solution
matches with a one-term inner expansion of a one~term far-field solution.
So we have the solution

X

- I’ -i dago. (&)
wl(xlylzie) = =g 1/2 2_];_ ekz e im/4 f __l*
~L/2 4 IX_EI
(79)
= —CekZ

We solve (78) for Ol(x) formally by letting it be an equality for
all x > -L/2 . We recognize (78) as Abel's integral equation (see Dettman
1965)), which has the solution

_ 2 [T dm/a
o lx) =€ Vikan/z) © c (80)

This solution is singular at x = -L/2 , which is a violation of the assump-
tions made earlier. However, this is not a serious difficulty if we do not

try to use our results very near the bow of the ship. The near-field expan-
sion of which (79) gives the first term,is not uniformly valid near x = -1/2.
In order to examine the solution precisely in the neighborhood of x = -L/2 ,

we should construct a separate expansion for a region in which x + L/2 = O(ey),
for some 7Y > 0 . One may expect then that cl(x) is not given in that

region by (80); rather, Ol(x) will decrease continuously to zero at x = -L/2,

* Ursell's solution will be needed in the second order term and will be dis-
cussed then.
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as physical considerations require that it must. Using (80) to express
Ul(x) produces a higher-order, i.e., negligible, error in the velocity po-
tential, provided that we restrict our attention to a region in which

EY = o(x+L/2).

We wish next to find wz » but first we need to say some more about

the far-field.

We expect that a two-term far-field expansion is obtained by a line dis-

tribution of sources of density

(0, (x) + 0, (x)) el (WEVx) (81)
1 2
spread along the line y =z = 0 r “L/2 < x<L/2 . It is assumed that
02 = o(ol) (82)

A two-term inner expansion of this two-term far-field expansion can be ob-

tained from (54), and it is

X
ei(mt—\)x)[ V2 JE xz _-in/a f dgo, (&)

2
" Zn/2 [x-Z]

X
- - dgo, (&)
_e~1/2 ’% K2 mim/a /’ 2 (83)
“L/2 /Tx=E]

~imy2 91 &) K2 ]

+ekZ lelOl(x) -e 3

i(wt-v . . .
Let us now look at the second term, wze ( x)  in the near-field. Since

awl/ax =0 , it follows from (69) that w2 has to satisfy the Helmholtz
equation

32 32
(—+— -x?) vy =0 (84)
By g2 2
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From (70) it follows that wz satisfies the free~surface condition

(——k)lp2=0 on Z = 0. (85)
In the body boundary condition, (71), we know that i\)nlwl cancels

. gh. vz e s .

1\)nl (F-)e . Further Blpl/ax = 0 , and so the only possibility is

= = 0 on the body, (86)

In addition 11!2 must match with the far-field solution.

Ursell (1968a) has derived a solution of (84), (85) and (86). It can

be written as

wz = A2(x)[ ekz + f ku(s;k) -+ [ G(ky, kz; k&(s), kn(s))
C(+)
(87)
+ G(kY, kZ; -k&(s), kn(s)) 1 ds ]
where
G(kY, kz; k&, kn) = K [k V(¥-8)* + (z-m)?]
(88)

(=] <0

1 coshi + 1 . _ :

+ 2 [)L + 7( ]Eos—hﬂ —] ©Xp [ ik (¥-§) sinhp + k(2+n) coshy ] du
- 00 -00

The symboljc denotes integration along a contour passing below the double
pole at U =0 , with a corresponding meaning for jc . Ko "is a modified

Bessel function of the second kind. In (87) C(+) denotes the half of the

boundary curve of the submerged cross-section at x for which y > 0 ;
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Y=28(s) , 2Z=n(s)

are the parametric equations of the curve
H(s,k)

C(+).
is determined from satisfaction of the bedy boundary condition (86).

It should be noted that (84), (85) and (86) will be satisfied for an arbi-

trary A2(x) in (87). The reasons are that 1) none of the equations (84),

(85) ,and (86) involve differentiation with respect to x , and 2) (84),

(85), and (86) are homogeneous. AZ(X) has to be determined by the matching

procedure.

In order to match, we need an outer expansion of (87).

Ursell (1968a) has
done that. The result is

Az(x) [ekZ - 4akx?7 l%l_ ekz U(s,k) ekn(s) ds]

(89)
C(+)
A three-term outer expansion of the two-term near-field solution,
i(wt-vx
(Y, + ¢.) e ( ) , (90)
1 2
can now be written down. It is
x
. . dgo._ (&)
- - Xk -
o (wt-vx) [ 2 Xk -in/a J( 1 o1)
<L/2 x-¢
+a, (x) % - A G ax? lﬁl'ekz (s, k) M) 44 ]
C(+)

The last term is the lowest-order term and the first term is the next lowest-

ordex term. (91) should match with (83) and we see that it does if we set

o, (x)
1
A2(x)

a4k u(s, k) eKN8) 4o
C(+)

1/2 2 im/4
_ " Ve © ¢

(92)

4k K (s,k) ekn(s) ds
(+)
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(01 is given by (80)), and if also

X
-1/2 k -im/4 f dgcz (&)
-€ J o7 © —_—

/2 'lx—gl

i g, (x)
in/2 12 (93)

A2(x) + e

1 e-ln/z

+ ——]
4Kk c/- H(s,k) ekn(s) ds 2
(+)

. 1/2 2 im/4
€ Jﬂk (x+L/2) © ¢

= [ -

which is a condition to be satisfied by 02 . Equation (93) gives us Abel's
integral equation, and it can be solved in principle. It is to be noted
that the term in the brackets is a function of x , which is determined

in practice by numerical computation.

It is the near-field solution that has the pPrimary interest. So let us

summarize our result: A two-term near-field solution of the diffraction

172 2 im/4
= g o

4kTm H(s,k) ekn(s) ds
(+)

potential is given by

(g + oy, ) FWEVR i) [_Cekz

(94)

.[ekz + f ku(s;k) [ G(kY,kz;kE(s),kn(s)) + G(kY,kZ; k& (s),kn (s))] ds]]
C(+)

where k and C are given by (72) and (73), and G is given by (88). The
first term in (94) is just the negative of the incident waye and so (94) tells
us that the total (incident- plus diffracted-wave) potential near the body

(except near the bow and stern) will have a decay factor
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1/2

(x+L/2) " (95)

in the x-direction. But note that U in (94) is also a function of x ,
and so (95) does not give the total x-dependence. However, U will be
the same for similar cross-sections. So, if the cross-sections are not
varying much in the x-direction, the potential will, roughly speaking,

-1/2

drop off with the factor (x+L/2) in the lengthwise direction. Note that

we have assumed that the wave length is of the order of magnitude of the trans-

verse dimensions of the ship.

IV. THE FORWARD-SPEED PROBLEM
We write the total potential ¢ as follows:
¢(xIYIZIt) = Ux + U¢S(XIYIZ) + ¢T(xly121t) ’ (96)

where U¢S is the perturbation velocity potential in the steady motion

problem. ¢s satisfies the three-dimensional Laplace equation

3%¢ 3% 3%¢
s 4 S 4 S = 0 (97)

ox? oy 2 0z

in the fluid domain and the body boundary condition

a — —
o (Ux+U¢S) =0 on z = h(x,y) . (98)
Since ¢ satisfies (1) and (2), this implies that ¢T satisfies

3%¢ 9%¢ 3%
T + T + LA 0 (99)
ox? dy? 922

in the fluid domain and the body boundary condition
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= = 0 onz=h(x,y) (100)

By combining (3) and (4) and using the assumption about linearity, it can

be shown that ¢T satisfies the free~surface condition

2 ad)

P ] T _ -
[§E—+ U 5;} ¢T + g . 0 on z=0 (101)

(see Ogilvie & Tuck (1969)). Since the time dependence of the incident wave

is given by emt (see (5)), it is expected that the time dependence for the
potential ¢T is also given by elwt . This implies that we can write
equation (101) as
9 : 3¢T
1 + —_— + — = =
[1w U Bx] ¢T g oy 0 on z=0, (102)
We will write ¢T as
— _ gh vz i(wt-vx)
op = G+, = T e o, (103)

o]

where ¢D denotes the diffraction potential. ¢D must satisfy a radiation
condition. As in the zero-speed problem we are going to use the method of

matched asymptotic expansions to find ¢D .
We will assume that

1/2 - a

U = 0(e ) » 0<ax1l1/2 (104)

In the steady forward-motion problem we know that there is a length scale

in the x-direction which is connected with the wave length éﬂUz/g . So
(104) implies that this length scale is large compared with the transverse
dimensions of the ship, and that it can be of the same order of magnitude as
the length of the ship. In some way, I expect this length scale will enter
our diffraction problem and affect the rate of change of the variables in the
x-direction. But it turns out that it will not have any influence on the

first two approximations of the diffraction potential. The important length
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scale in the x-direction will be connected with the wave length of the incom-
ing wave, in the same way as for the zero-speed problem. As we remember

from equation (10), this wave length is assumed to be of order € .

If, however, we had assumed that a were zero in (104), we would have
been in difficulties finding the second approximation to the diffraction po-
tential. The reason must be that there then are two important length scales
of order € in the x-direction, one connected with the wave length of the
incoming wave and one connected with the forward speed, and it is difficult

to separate out the effect of one of the length scales from the other.

Using (7) and (9), we can show that (104) implies that the order of

magnitude of the frequency of encounter, w will be

w o= o(e* , o<aciz . (105)
We then see that the order of magnitude of T = %?- is
-2
T = -“;ﬂ= o “) , 0 <ax<1/2 (106)

It is obvious that T will be larger than 1/4. This is important,
because the solution will be singular when T = 1/4 (see Ogilwvie and Tuck

(1969)).

There are four parts in this chapter: (1) derivation of the far-field
source solution due to a line of pulsating, translating sources located on
the x-axis between -L/2 and L/2 (see Fig. 1); (2) a two-term inner expan-
sion of the far-field source solution; (3) comparison of the expression found
in part (2) with the result obtained by another approach; (4) formulation
of the near-field problem, and the matching of a two-term near-field solution

with the far-field solution.

1. Far-field source solution

In the far-field description we expect to have waves. It is difficult
to say how differentiation changes order of magnitudes in the far-field. So,

to be careful, we would rather keep too many terms in the far-field. But we
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have to be sure that we have a system of equations that describes a wave
motion.

Using arguments similar to those in the section "Far-field source solu-
tion" in the chapter on the zero-speed problem, we can find that ¢D must

satisfy the Poisson equation,

320 0%¢9. 0% { (e
D, D, 2 . o (x) ot (WETVX) G(Y)(S(Z'zo) '
9x? oy?  oz?

where zo < 0. We write the free-surface condition as follows:

o¢
: 3 2 D
(iw+U . H) ¢D 9 32 0 on z=0 |,
where | 1is the artificial Rayleigh viscosity, which will approach zero at

a proper later point. This equation system does give waves.

The solution to the equation system with zb = 0 can be found in

Ogilvie & Tuck (1969). It is

[o o]
¢ (x,y,z,t}) = - 2 g1t [ dk eJ‘kx F{O(x)e_lvx}
D 2
4T
=00
(107)
- Ry + zvk?+22
. A i
*lim 1 ,
wo 4 YkPeR? - 3 (wHUk-ip) 2
where
[ o]
F {o(x) e—1Vx} = J{ dx e-lkX O (x) o VX
-0
= g% (k+Vv) .

We will rewrite (1l07) in a way similar to the way we did with (15) in

the zero speed problem. We introduce:
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k' = k+v ,
(107) can then be written:
[e o]
3 —-— : ]
¢D(x,y,2.t) = - _Tzulr el(wt Vx) f dk* elkxo*(k')
- OO
(108)
> iy + z/(k'-v)2 + 22
. lim /’ dl e
wo S Vk'-v)Zs 22 - é (WU (k'-v) - ip)?
We drop the primes and write
i (wt~vx
¢D(x,y,z,t) = 0(x,y,2) e ( ) , (109)
where
[+ ]
¢(x,v,z) = - —ji; J( dk elkx o* (k)
4T
- (110)
[e2]

as eiky + zV/(v-k)?2 + 22

wo J V(v-k)2 + 22 - p (wo + Uk - ip)

We will let y = O0(1) > 0 . The derivation for Yy = 0(1) < 0 will be
similar and, instead of going through that, we use the fact that ¢D is a

source solution, which implies that

¢D(X,-Yp2-,t) = ¢D(x1errt) . (111)
We now define
h iy + zvV/2%+ (v-k)?
I(k) = 1imf dt e © o (112)

PO - Y22+ (v-k) 2~ é (w_+Uk~ip)?
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The poles of the integrand of (112) are important. They are given in

the limit by:

g =+ \/% (mo+Uk)" - (vk)?2 . (113)
g

We have to study the sign of the radicand in order to determine the
location of the poles in the complex £ -plane. We study therefore the

equation:

. _
— (w +Uk)* - (v-k)2 = 0 ,
g °

which is the same as
1 2 1 2
[ = (w+UK)C = (V-kK)] [ (W+Uk)“ + vk ] = 0. (114)
g 0 g o]

The zeroces of the first factor are:

k = k1 =0 , (115)
ZwOU
k=k2=—l +l] s (116)
u2 g

and the zeroes of the second factor are:
2w U 1 2 [ 20 U 2 )

- 0 _ 3]s\ /f9 o _ 4| _gg o

u? g ] ut g u? g

2W U y
- - R IV S SN T
U2

+

2

But from (106) and the text that followed (106), we know that T = %?.> 1/4 .

This means that the latter pair of zeroes of (114) are imaginary. But k is

a real variable, and so this means that the quantity
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=1 2 4 oy
E(k) = 5 (@+UK)? + vk (117)

can never be zero. And since expression (117) for large k behaves like
1 2
= +
g (wo Uk) '
we see that (117) has to be a positive quantity.
Going back now to expression (113) we can conclude:
a) when k>kl =0 or k<k2 = - jl-(2on/g + 1) » the poles of

u?
the integrand of (112) are real;

b) when k2< k < 0 the poles of the integrand of (112) are imaginary.

The integration path in (112) is along the real L~axis, and so, when
the poles of the integrand are real, we have to know how to indent the inte-

gration path at those poles. The Rayleigh viscosity U helps us to do that.

For u # O , the poles of the integrand are given by

2]2

1 (W +Uk-ip) * - (k-v)2
gz °

]

(k=k;)  (k=k,) f(k)Uz/gv4(wO+Uk)aiu/g2 + oy .

where kl' k2, and f(k) are given by (115), (116), and (117), respectively.

The poles of the integrand of (112) are then given by

2(wo+Uk)3 iy
2 = % V(k-k.) (k=k,) £(k)u?/g [1- + o(u)]
gu? (k=k,) (k-k,) £(k)

(118)
for k # kl and k # k2
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For the case k > kl , the imaginary part of the factor in parenthesis

in (118) is negative. This means that the integration path of (112) for

k >k, will be shown in Figure 5, where +|Rbl and ‘Izbl are the poles of
the integrand

®
-12 ™\ k>0

FIGURE 5.
COMPLEX INTEGRATION PATH

When k < k2 ,» the imaginary part of the term in the parethesis in (118)
is positive. This means that the integration path of (112) will be as shown

in Figure 6.

Y AY +1, | ;
—IQOI U

FIGURE 6
COMPLEX INTEGRATION PATH

Let us now study I(k) , given by (112), for different ranges of k :

Case I: k <k < kl . This is the case in which the poles are imagi-

.
“

nary. We define:

20 = iV (v-k)? - (¢,,O+Uk)'*/g2

We introduce a closed curve ABCDE in the complex f&-plane in the same way
as we did for the zero-speed case. See Figure 2. The residue at & = Rb

is



-4]~

ily + zv22+ (v-k)?

lim (2-% )

Res (£ ) o e —————
oy A Y2+ (v-k) 2 - (W +Uk) */g

. 2
el,Q,oy e\)z (1+Uk/wo) v (l+Uk/wo) 2

L
0

By using the residue theorem we can write

o}

N ivzy2-g?
I(k) = 2mi Res(% ) + f aL e ¥ [ c =
0 V%-a? + i[1+ U—]2

w

a
o
—_— 119
e—i\)m/R,Z—OI.2 ( )
+ =
V%-a? - i[1+ %]2 ] '
wO
where l | > 1 , since k 1is negative.
The integral terms in (119) can be bounded by
2_.2 o 3
\)yﬂ, ivzvy/ 2%-a -vyl
/22 [ + %]2 222
w o}
o]
Using 1) equation (22) ,
> %
al e VY
= = K (vya) , (22)
Vi°-a

2) the fact that v = O(E—l) vy Y=0() , a>1 , and 3) the asympto-

tic expansion of Ko for large arguments, we see that the integral terms

in (119) are exponentially small with respect to € . So we can write
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ukqe 1HY V2 [1 * gi]z
2TiV [1 + m—]2 e e 0
I(k) = 0 + 0(e V5
2
o}
(120)
< <
for k2 k kl
Case II: k > k. . Let us define
L, = —/(wo+Uk) */9%2 - (v-k)2 .

We have earlier studied how to indent the integration path of the expression

for I(k) at the poles i%o . See Fig. 5. 1In the same way as before, we

introduce a closed curve ABCDEA in the complex f-plane . We can use

Fig. 4, noting that -%) in Fig. 4 is the same as 20 defined above.

We have to evaluate the residue at l=2b . It is given by

iloy vz [l + Eﬁ] 2

V|l + g#jze e ub
-0
Res (£ ) = .
o} SLO
By the residue theorem
> —uvd, eivz/lz—az
I(k) = 27mi Res (L) + f ag e Y [
o V2-a? + i[l + g-li]z

0

omivzy £ -a? I

+
V82-0% - i[l + JK)2 ]

As before, Ko(vya) is a bounding function for the integral terms.
- V=~ . .
But when k = 0O(V) = 0O(e 1) , O = |—3£l is of 0O(g). This means that the
argument of the Kb function is 0(l), and so we cannot say that the inte-

gral terms are exponentially small when o = O{€) , and it does not seem



probable that there exists any such bounding function when o =

should note that

when k = O(€-l)

is exponentially small when k = O(E_l)
(121) exponentially small when k = 0(8_1) .
keep the integral term in (121) when k = O(g ) .

I(k)

I(k)

For all other wvalues of k

(see (104) and (9)).
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O(e) We

a

= = o(g_ ) + 0<acx<1l1/2

This means that

vz [l + HE] 2

e Yo

 Which makes the first term in

So we should be careful to

1 We can write
UKy, Y V2 [1 + glf-]z
2TiV [l + ——J e e C
0
2
0

+ exponentially small terms

= (1-a+63)

for 0< k< ¢ r 0<ax1l1l/2 .

(52 is some very small positive number)

m »
ei\)z/ﬂ,z-oc2 e--l\)z/ﬁl,""—oc2

f as e—\)yﬁl, t
V%-0? + i [1 + g_k]z V#-a? - i

o7
0

+ exponentially small terms

for o= |2K] < U6
Vv
(S is some very small positive number)

1

in Case II, I(k) will be exponentially small.
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Case III: k < k2_. We define

%, = /(wo+Uk) “/g2 - (v-k)?2

We have earlier studied how to indent the integration path of I (k)
at the poles 1'2.0. See Fig. 6. In the same way as before, we introduce

a closed curve ABCDEA in the complex f#-plane . See Fig. 7.

- Q,O

FIGURE 7

COMPLEX INTEGRATION PATH
The residue at & = 2,0 is

Uk iﬂ.oy vz [l+ g—k] 2
v [l e 2 e e o
_ 0
Res (2.0) = .
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By means of the residue theorem we get

® —vy L eiVZVQZ—uz
I(k) = 27i Res (&) +f ag e V¥ [ =
V%-0% + i [1 + —]2
a w
o
-ivzv?-q?
NE ]
ve2%-a% - i [1 + %5]2
o

As before, Ko(vya) is a bounding function for the integral terms. For

this case, o = -BiE] > 1 , and so the integral terms are exponentially

small. So we can write

il y vz [l + HEJZ
W

Uk 5

. (o)
amiv [1 + w—]2 e e

I(k) = 9

L
0

(123)
+ exponentially small terms

k <
for kz.

By using (110), (112), (120), (122), (123), and the fact that the expo-
nentially small terms in I(k) will only give exponentially small terms in

the expression for ¢ , we can write

| , _e~ (1-a=p) o e fl-a-B)
g [ ] L
Z ¥ = (1-a-B) 3
(124)
e~ (1-a+dy) - Uk}
) J[ ] dk eikx 0*(k)[l . gg]z e;loy eVZ [l + wo]
= (1-a-B) Qb/v



-46-

In the first integral, 20 = /(wo+Uk)“/92 -

(\)—k)2 . In the second and third

%, = iv(v-x)? -

—/(wo+Uk) Y/g% -

integrals,

L
o

(v-k) 2 .

Further,

B

is some very small
k, (0.)
1 471

am?

k3(a1)

< >
Here k3(al) Vv and k4(al)

and we choose

We will write

where the integration in Ial

i ation in I
integr a2

We introduce o = | v

Ial !

This means:

is from k = k3(a1)

is from k =

as a new integration variable in (125).

(wo+Uk)"/g2 . In the fourth and fifth integrals,

number, 0 < a <1/2 , and
o -
. ivzv/2-a?
ax e* gx (k) f A e \’Y’L[e -
/%2—a§+i[1 + ——]2
a W
o
v 25)
e
/zz-az—i[l + HEJZ

0

Voo al is chosen in accordance with (122),

=81, (126)
+

Ial IO‘2 5 (127)

to k =V , and the

V to k= k4(dl)

So, for
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O o
ivx s -
I - Ve do e 1vox o* (V-av) dl e vyl
ol am? 1-6
e 1 o
(128)
ivz 2-a? -ivzv2%-02
. € + e .
[ = Uw, UWw ]
vV 2-a? +i [1 + = (l—a)] 2 a252 —i[l + ?O(l—oc)] 2
For LI
k-V
o == .
This means:
" 1701 ©
1VX .
I = - Ye do. elvax o* (V+V0,) dat e vyk
o2 4,"2
0 o (129)
ivzy 82-02 o-ivzvei-o?
Uw — Uw

V-a? +i [1 + TO (1+a)]2 vaZ-a? —i[l + To(l+0t)] 2

We note that the second and third integrals in. (124) could be written as
one integral. The reason for not doing so will be obvious in the next sec-

tion. The same is true for the fourth and fifth integrals in (124).

2. Inner expansion of far-field source solution

We are now going to find a two-term inner expansion of the far-field

source solution. The result is given by equation (161).

We now let y be of order € , and we reorder the terms in (124).

We will first take a look on the integrand of the fourth integral in (124).

We note that

\/[1 : w%]’* .-[1 - %]2 = o(l) (130)
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This is because ¢ Uk is the lowest order term in (130) and that the lowest

o]
possible order of Uk is
(o}
1l/2-a
of & . oi——a‘“Sl) = oe® = o (131)
w -1/2
(o] e
This means we can write
-ivy\/[l + U—k—]" - [1 - E]Z
%o v UK1a K12
e = 1-ivy [1+——]-[-—]
w AY
o}
(132)
+ higher order terms
Further
[l+(ti—]‘=—]2
0 - 1
1+ OK1% _ 11 - K2 [1_75_]2
w v 1 - Vv
° 1+ IK]e
[+ o]

o

Since %E-= o(l) (see (131)) we get by Taylor expansion

0

1

1
k]2 2, 4u 1 U u? .

[1_ _] [_-k__i - kz[___+ 8 — + 10 ———] + higher order terms
v Voow, v2 w,Vv w 2

[1+ ij—k] # °
o

1 -

- 1 [1 + 3k
\/k [Zw + 2uv] vwo(zw + 20V)

\)wo

= L [1+ o(eBl)]

(w? + 6UWY + 3U2v?) . ]

V[

o}
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Here Bl >8>0 . Further
-B. /2
1 _ o(e 1 )
2w + 20V
e [ 2552
=
and

e Wo = &Y% (1 + oePly)

This means that, in the integrand of the inner expansion of the fourth inte-

gral in (124), we can write

[1 . wo] -1\)y\/[l + —-] - [1 - ]\‘7]2 v [1 + g_z_ 2

O
Uky, VZ [1 + g_k]z
adalal (o}
[l * wo] uk)z V2 [l * %]2
= - 1\)y[l+-w—] e o4 4+ ...
(0]
\/[1 + %]‘* - [1 2
Wy V)
vz
= ° - ivye + O(eﬁl/z) 7 Bl>3>0
20420V
\)(1)0 k

Thus, the inner expansion of the fourth integral in (124) can be written:

€ o* (k) i [1 + e Wo
1 ‘*’0
2T
° \/[“a‘?]-[-%]z
- (1-a-B) ©
e\)zl ik 1 (133)
= o j dk el x o* (k) [ —_— ivy] + higher order terms
0 2(.L)+2U\)k
Vuw

0
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Let us now study the inner expansion of the third integral in (124).
The derivation is quite similar to that for the fourth integral in (124) '

and so we only state the result

0 ax *F* gx (x) [1 + 95—] e
oL f %o
27
e~ (1ma-®) \/[l - E]2 - [1 + %]“
\Y wo
(134)
e\)z ¥ ikx 1
=-S5 J( dk e a* (k) [ = Vyl|+ higher order terms
% So— x|
vwo

We will now study the inner expansion of the fifth integral in (124).
We then need an asymptotic formula for o*(k) as k > ® ., We will assume
that 0(x) and 0'(x) are continuous in the interval -L/2 <x < L/2
[including the end points] (see Fig. 1). Outside -IL/2 <x<L/2 , O(x)=Z0.
It can then be shown (see Lighthill (1958)) that IkLlsc*(k) remains bounded

as k> o

The fifth integral in (124) can be bounded by

o~ (1-a+é;) g~ (1-a+dy)
f dk|o* (k) <. le & (135)
=" (1-a-B) 2~ (1-a-B) x3

C1 is a constant determined so that the inequality above is satisfied.

It is obvious from (133), (134), and (135) that the inner expansion of the
fifth integral in (124) will give a term of higher order of magnitude than
the highest-order terms already retained in the inner expansion of the third

and fourth integral in (124). So we can drop the contribution from the

fifth integral in (124).

Let us now study the inner expansion of Ia in (124). Ia is given

by (127) as
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o Ial a2 (127)

where Ial and Iaz are given by (128) and (129), respectively. Since
the argument of o* is large both in (128) and (129) we can use the pre-
viously stated fact that IkLlac*(k) remains bounded as lkl-ﬂ*° . For the

inner integrals in (128) and (129) we can write

_lsz%z-a
| [ | f e
~al * 1+
Vi2-a? i [1 t ( )] g
(136)
= & < 1 = 0(1)
Vy Vy
So the inner expansion of (128) can be bounded by
0
C.,*v
1 do
—_ f —_— (137)
vy * 2 12 21-61 (v-ov)

A similar bounding function can be found for the inner expansion of (129).
It should be obvious, for the same reasons used to drop the contribution
from the inner expansion of the fifth integral in (124), that we can drop

the contribution from the inner expansion of Ia in (124).

Let us now look at the first two integrals in (124). We have to be

careful since the integrands have a pole at

where

= aind
k, ” (20,U/g+1)

We will study the first integral first. We introduce the new variable



-52-

This means that

o b

4o_
(1+Uk/wo) = H3 9

(1-k/Vv)2 = H " H. 2

3 1
where
H =1 - Vz (138)
\)H3
Uv
H,=1- (139)
2 on3
= g
=1+
By =1+3% (140)
o
We can now write the first integral in (124) as
ik, _x 0 ivx . 2 &_— 2 2. 2
* - +
e 2 av e o* (v+k,) ivyH, th H VzH °H,
i e (141)

- C0

_ 2 L
V1 H) /H2

We write this integral as a sum of two integrals. The first integral

is from - to —E—(l_a-B) . The integrand is well-behaved, and the
upper limit is a large number. So, since the infinite integral from -«

to O necessarily has to converge, the first integral has to be of higher
-(1-a-B)
-€

E-(l-a—B)

order than the second integral from to 0 . It will be evi-

dent later on that the integral from -~ to 0 will give a term
which is of the same order of magnitude as the highest order terms already
retained in the inner expansion of the far-field source solution. So we drop

the integral from -* to _8‘(l—a-8)

We therefore write (141) as

elkzx ; 0 av V¥ o* (v+k,) ivyH32vh2“-H12 + vzH32H22
T f 7% © (142)
% (1-a-B) /1—Hl /8,
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We note that

2 40 W _ 02 _
VYH, /hz H, o(l) (143)
This is because
91\ - a, _
0 (on) o(e?) o(1) (144)

and that the order of magnitude of the lowest order term under the square

root sign in (143) is

w H

0 ( oy ) - o(efy - o (1) (145)
03

Here Bl >B>0

We can therefore write

ivyH32/h2“—le
e = 1 + higher order terms (146)
in the integrand of (142). Further using (144), (145), and the fact
that 0O(vz) = 0(1l) , we can also write
vzH_%H_2

) 32 2 e\)z + higher order terms

in the integrand of (142).

By using (144), (145), Taylor expansion and the fact that

+
0 ( . ) = o(e? B1) , B.>B>0 (147)
\)H3 1 —
we can write the expression
-1 (148)
/1—H12/H2q
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in (142) as

1

[2w+2Uv]
_—V
W
[o]

+ higher order terms (149)

This means we can write (142) as

e1k2x + Vz ) 0 av e1vx o* (v + kz)
- o j {150)
Zmramg) | fwraov ) o
\){.Uo

+ higher order terms

Setting the lower integration limit equal to -® can only introduce higher
order terms. This means that the inner expansion of the first integral

in (124) can be written as

ivy/(1+Uk/wo)“-(1—k/v)2+vz(1+Uk/wo)2

L ko ax ¥ o% () 1 (1+Uk/w ) 2e
21 Zo /(1+Uk/wo)q - (l—k/\))2
. . (151)
e1k2x + vz . 0 av e1vx o% (v+k_ )
= - > + higher order terms
“ 20420V I V'
\)wo

Let us now study the inner expansion of the second integral in (124).

As for the first integral we introduce

as a new integration variable. We then set the upper integration limit
equal to E—(l—a—B) instead of —kz-e—(l-a_s) using the argument that

this will only introduce higher order negligible effects. Then we expand
the integrand in the same way as we did for the inner expansion of the first
integral in (124). We will find that we can write the inner expansion of

the second integral in (124) as
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. -(1-a-B) ,
1k2x + Vz € av elvx o% (v+k_)
e 2
} S f (152)
S 2w+2UV v

vw
0

Since it will only introduce higher order negligible effects to set the upper

integration limit equal to ® , we can now write the inner expansion of the

second integral as

e : -vyY (1-k/V) 2= {1+Uk/w_) *+vz (14Uk/w_) 2
. e (1-a-B) ak eJ.kx 0*(k)(l+Uk/wo)2 o] 0
2m j /A7 = (Aru/e) T

k2
(153)
e1k2x + Vz d av e1vx O*(v+k2)
T + higher order terms
5 20+20V
Vwo

So by using (133), (134), (151), (153), and the fact that the last two terms
in (124) gave higher order terms, we can write the inner expansion of the

far-field source solution (124) as

0 -(l-a-B)
vz kx * x *
@(XIYIZ) & - _e2'n' [ f e o (k) -i f dk e o* (k) ]
(1-a-B) \ /2w+2U\) /2w+2uv
\) [«+]
z .
+ e f ak e*** g% (k) (154)
27
-00
1k2x + vz' 0 av eivx O* (vHk_ ) 0 gy eXVX o* (v4k_)
_e i J{ 2 -i -/' 2 ]
2T [ w+2UV 2w+20V v

2 .
- = - v 0 —_—
® \/7\)(130 vl VW,

We note that in the third integral we have set the integration limits equal

to o ., We could do that because the third integral is one of the terms
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of highest order magnitude retained in (154) and because the integration

-(l-a-f8)

limits were large and equal to *¢ before we set them equal to

+oo

We must be careful in setting ie_(l_a—B) equal to *® in the first two
terms in (154). The reason is that those two terms are the two lowest order

terms in (154).

We write the second integral as

-(1-a-B)

o oo

j e. * e o*k) _ f e’ cr*(k) _f e. e~ o*(k) (155)
§ /2w+2uv 5 /2w+zuv (1—a—B) ‘/2w+2uv

But by using the previously stated fact that IkLI3 0* (k) remains bounded

as k »t® it is not difficult to see that the last term in (155) will

give a higher order term in (154). We can therefore set the upper integra-
tion limit in the second integral in (154) equal to «® . Similar arguments
can be used for the first integral in (154) to show that we can set the lower

integration limit equal to -~» .,

By using (45), (46), and the convolution theorem we can now write

vz-iT/4 x
Oo(x,y,z) = - 9——:;:——— J( dgo (€) + vyevz o(x)
m -L/2 \/zgsigz-lx—gl
© (156)
ik,x + vz + im/4 x -ik,§
e f dEo(E) e
l/'l? -1/2 \/Zw:iuv lx_gl
o)
The integral
x —ik2€
déa(§) e (157)
x-£

~-L/2

can be further simplified. It is a Fourier integral. The integrand has a

singularity at the upper integration limit, x , and it is zero at the lower
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. integration limit. The theory for finding asymptotic expansions of such

integrals can be found in Erdélyi (1956). We find that (157) can be writ-

ten as

-ik_x-in/4
I'(1/2) e 2 0(x) + higher order terms, (158)

‘/_k2

where [' is the Gamma function. Further we note that

260
20+20v g
\/[—w:T']g{[ 5 +l] =’/2_[2+wu]

o U o
(159)
= 2v/2 + higher order terms
So we can write (156) as
, X
vz-iT/4
e déo
Q(XIYIZ) = = /_ —g (E)
his 2W+20v
12\ [ |x-£]|
(160)
vz
+ \)ye\)z 0(x) -— m
2v/2
We remember that we have assumed Yy >0 . But we can use (111) together
with (109)
i(wt-v
¢D(x,y,2.t) = ®(x,y,z) e ( x) (109)

so that we can write down a two-term inner expansion of the far-field source
solution as

- X
P dEo (E)

% 2W+20V
"L/2 \/—*\,q |x-¢|

¢D (xIYIzIt)’\‘e

i(wt-vx) vz [
e

(161)

+ vly|ow - 0‘—"’]
2v2
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We note that (161l) does not reduce to (54) when U = 0 . It should not be

expected that (161) reduce to (54) when U = 0 since we have assumed

T = %? > 1/4 and since this assumption has been an important part in our
analysis (See the text following (116)). We should note that the last term

in (16l) represents a disturbance arising from upstream while the last term

in (54) represents a disturbance arising from downstream.

3. Comparison with another approach

In the zero-speed problem the inner expansion of the far—-field source
solution gave two integral terms (see (50)), an integral from -L/2 +to x
and an integral from x to L/2 . To avoid confusion in the notation,
let us now temporarily call the x-axis shown in Fig. 1 for the £-axis.

Then the integral from -L/2 to x represents the integrated effect of
sources with local source density G(E)e-ivg . Because of our assumptions,
the sources are many wave lengths away from x , and so the expression

for a source at £ 1is the asymptotic expression which is valid for large
V(x-£) . A similar interpretation can be given to the integral from x to

L/2.

One could try to interpret the integral terms in the inner expansion
for the forward-speed problem in a similar way as above. One should, how-
ever, note an important difference between an oscillating source with zero
speed and an oscillating source with great enough forward speed so that
T > 1/4 . 1In the zero-speed case the disturbance will only depend on the
distance from the source. For the forward-speed case, however, the main
disturbance will be downstream. This means that for the forward-speed problem

we should only expect to get an integrated effect from -L/2 to x .

Newman (1959) has derived an asymptotic expression for a translating
oscillating source valid at large distances. The following asymptotic expres-
sion for large positive V(x-§) for a source located at (£,0,0) can be

obtained from Newman's asymptotic expansion
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2 172 2 —. . .
et 1/2 \)H3 e\)H3 (z+i(E-x)) + im/4 + iwt
Ix—El l+2on/g
(162)
_ 81 172 v 172 e\)(z+i(£—x)) + i3m/4 + iwt
]x—EI 1+2on/g
where
g
H,o= 1+ —
3 wOU
We multiply (162) by a local source density u(E)e—lvg and integrate from
-L/2 to x . We get
vz-im/a X
gy i @EV) [ e — f dEU(E)
T 20420V
/2 ([ ]
0
2 . . -ik_ &
\)zH3 + 1k2x + im/4 be AEN (E)H.e 2 ]
_ & 3
v 2W+20V
Tz \[RRE g
0
where
k, = - < (2w _U/g+1)
2 2 0
U
. g\ _ a . .
Using the fact that O(w U) = 0(e") (see (144)) this can be written as
o]
vz-in/4 K
= gy o (wtmVx) [_ e — j’ A& (E)
m 20420V 1
~L/2 \/_\)w— Ix—El
0
ik _x+vz+im/4 X -ik_&
e 2 dEu(E) e 2
- = ] (163)
ks 20+20V
L/2 \/L_qu;_ |x-&|

+ higher order terms



-60~-

(163) should be compared with the integral terms in (156) combined with
(109). Taking into account the different normalization of source strength
here and in Newman (1959), we see that (163) is the same as the integral
terms in (156) combined with (109). This provides a good check on the result

we have obtained for the inner expansion of the far-field source solution.

4. The near-field problem and the matching

We now formulate the near-field problem and perform the matching be-
tween the near-field and the far-field solutions. A one~term far-field

solution is found to be due to a line of sources with source density

. (x)el(wt-VX)

1
spread along the line y=2z =0, -L/2 <x<L/2. (See Fig. 1), As in
the zero-speed problem, a one-term near-field solution is found to be the ne-
gative of the incident wave. The matching of the far-field solution and

the near-field solution determines Ol(x) in a similar way as for the zero-

speed problem. The two-term near-field solution is given by (193).

It should be noted that "Near-field" means the region near the body
where the distance from the body is O(€) . However, we do not expect the

near-field approximations to be valid near the bow and stern.
We will express the potential of the diffracted wave as follows:

i{wt-
e {wt-vx)

¢D = lP(x,Y,Z) (loe4)
Using (103), (99), (102), and the fact that the incident wave potential
satisfies the Laplace equation and the free-surface condition (102), we get

that ¢D will satisfy the Laplace equation and the free-surface condition

(102).
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Putting (164) into Laplace equation gives

2 2 2
u + a_w - \)21‘() - 2iv -a—w + —a—w = [o] (165)
dy? 9z2 ox x>

in the fluid region.

The free-surface condition is

o
: 9,2 _D _ -
(iwtu ax) ¢D + g . 0 on z =0, (166)
Putting (164) into (166) gives
2

- W Zw + g ﬂ. + 2iUw ﬂp. + U2 é_w = 0 on z=0, (167)

0 0 2

oz 9x ox

The body boundary condition (100) together with (103) gives

[n §}E—+ n é-‘E---i\)nllp +n §yz—]

2 dy 3 9z 1 ox
(168)
= [ i\)nl - Vn3 1 %E-evz on z = h(x,y)
(0]

A last condition on Y is that it must match with the far-field solution.

As in the zero-speed problem, we stretch coordinates
y=€Y , 2=€Z , n =€eN , x=X (169)

to express that Y varies very slowly in the x-direction compared with the

variation of Y in the transverse plane.

We assume an asymptotic expansion of Y of the form

N
YD U (X,Y,25€) (170)

n=1



where wn+l = o(wn)

as €>0 for fixed X,Y,Z.
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By putting (170) in (165), we get

32

[S—+ -

oy?

2ive? g; Wy + ) + e

82
922

The free-surface condition (167) becomes

3
a—z (wl+'q)2+ cea)

The body boundary condition (168) becomes

0 = s
Eﬁ'(wl+w2+ «..) = (iven

. 0 ]
-ZITEK(WI‘— eee) +

Uw

h vz
+ ive g - VEn
nl o ©

As in the zero-speed problem, we introduce

and

0

The lowest-order equations become

32

[— +

oY

2

82

0z2

Ve = k
gh _ .
w
0
- 12
K219,

- va(wl+w2+

0

3

.e)

d

2

on

2.2
veie® 1 I wl + wz + ... ]

on Z =20

l+ ees)

z = h(x,y)

(171)

(172)

(173)

(174)

(175)

(176)
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[ gE - k] wl = 0 on Z=0 (177)
gﬁ'wl = - Cn3kekz on Z = hix,y) . (178)

In addition wl must match with the far-field solution.

A one-term far-field solution is assumed to be the potential associated
with a line distribution of sources of density

01(x)ei(uut-\)x)

spread along the line y =2z =0 , =-L/2 <x < L/2 . That solution has
been obtained in a previous section, and a one-term inner expansion of the

far-field solution can be found from (l6l). For any fixed x greater than

-L/2 , a one-term inner expansion is

, vz-in/4 /& dfo. ()
el(wt-Vx) [ _ e — 1 ] (179)
™ 2W+20V
-1L/2 ————va lx—EI

In a similar way as for the zero-speed problem, one sees that the only pos-
sibility for a solution satisfying (176), (177), (178), and matching (179)

is by requiring that

evz—iﬂ/4 x dEOl (&) vz
— = ce (180)
T 4 \[&\j’& |x-£]
(0]

and letting a one-term near-field solution of the diffracted wave be the ne-

gative of the incident wave. So

Yy = ~Ce (181)
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We solve (180) for cl(x) formally by letting it be an equality for
all x 2> -L/2 . We get Abel's integral equation to solve (See Dettman
(1965)). The solution is

. [2wt20v in/4
OI(X) —\/nwov(x+L/2) e ¢ (182)

The discussion that followed the expression of Ol(x) for the zero-speed
problem (see after equation (80)) can also be applied for the forward-speed
problem. The conclusion was that we had to construct a seperate expansion
for a region in which x+L/2 = O(SY) + (Y some positive number), and that

Ol(x) is not given in that region by (182).

We wish next to find wz , but first we need to say some more about

the far-field.

We expect that a two-term far-field expansion is obtained by a line

distribution of sources of density

i (wt-vx)

(cl(x) + Oz(x)) e (183)

spread along the line y=2z=0 , =-L/2 <x<1L/2 . A two-term inner

expansion of this two -term far-field expansion can be obtained from (161).

It is
X X
o1 (wt-vx) [_ eV -in/a dko, (£) _e¥F -insa f dEo, (€)
v/ 20+20V Vr 20420V
“L/2 [ S x| L/ x-E |
° 0
+ vly[evz Ul(x) - %?:evz cl(x) ] (184)

In the same way as for the zero-speed problem we will find that wz

will satisfy

2 2
[a—+ B——kz] zpz =0 (185)
Y2  3z? :
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3 ] _ _
[ ~7 k wz =0 on Z2=20
awz
N = 0 on the submerged part of the body,

In addition wz must match with the far-field solution.

Ursell (1968a) has derived a solution to (185), (186), and (187).

can be written as

¥, = B, () [ekz + K (s;k) * [ G(kY,kZ;kE(s) ,kn(s))
S+

+ G(kY,kZ;~-kE(s) ,kn(s)) ] ds]

For an explanation of (188), see the discussion following equation (87)

(186)

(187)

It

(188)

in the zero-speed problem. Bz(x) in (188) is unknown at the moment now,

but will be determined by matching.
The two-term near-field solution,

[ wl + wz ] ei(wt—\)x) ,

has the following three-term outer expansion:*

X

o1 (wt-vx) [_ e -im/a f dga, (&)
m 2W+20V
-L/2 TUTJ—I x~ l

+ B2(x)ekz - B2(x)4k2W l%L ekz Jr u(s,k)ekn(s)ds ] .

C(+)

We see that (190) matches with (184) if we set:

(189)

(190)

* See (89) and the text in connection with (89).
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o, (x)
B, (x) = - =
4km f u(s,k)ekn(s)ds
C(+)
(191)
20+20V ei’n‘/4 c
'rr\)wo(x+L/2)
4k1rf u(s,k)e ) gq
C(+)
and
: "1”/4 f dgo,, (£)
“L/2 2w+2le _gl
(192)

V2
= + —
B, (x) 2 91 (x)
Equation (192) gives us Abel's integral equation to solve. B2 (x) on
the right hand side of (192) has to be numerically determined (see (191)).
We are only interested in the fact that the near-field and far-field solu-

tions match, and we are not going to find ©

2

It is the near-field solution that has the primary interest and we have

found that a two-term near-field solution of the diffraction potential is

[‘Pl*wz ] ei(uut—\)x) - ei(wt—\)x) [-Cekz

(193)

[ 2wt2uv em/ 4 ¢ [ekz

TG, (*+L/2)
4k7rf n(s, k) e (8)y

C(+)

+ j ku(S;k)IG(kY,kZ;kg(S):kn(s))+G(kY,kZ;-k€(S),kn(S))]dS]]
C(+)
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V. NUMERICAL CALCULATIONS

1. Theoretical background

It would be time consuming to evaluate the solutions we have found
(see (94) and (193)) for a ship with arbitrary cross-sections. But if the
ship had circular cross-sections, there is a faster way to find the solutions.
We can use the solution given by Ursell (1968b) for a circular cross-sec-
tion. Ursell has used a different coordinate system than we have used earlier,
and I find it convenient using Ursell's coordinate system when talking about

Ursell's solution. The coordinate system is shown in Fig. 8.

FREE SURFACE

1
X\ {
\ /
\ r=a /
AN 4 FIGURE 8

N 7 URSELL'S COORDINATE SYSTEM

| Y

The two-dimensional problem which Ursell solves is given by the Helmholtz

equation
2 2
[L+9__\)2]¢=0 (194)
ox2  9y?

in the fluid domain, and the boundary conditions

v + g§-= 0 when y =0, |x| > a (195)
and
%%-= 0 when r=a, -7/2<6<n/2 (196)

He shows that a solution of (194), (195), and (196) can be written in the

form
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[~}

¢ = 133{A0so (x,y) + exp(~Vy) + m§1 Amom(x,y)} (197)

The functions So(x'Y) and Om(x,y) will be discussed presently.

Ursell considered an infinitely long cylinder and there were no ap-
propriate conditions for x - t« that could determine the arbitrary cons-

tant B3 in (197). But we consider a ship, and we have found a condition

when x + *© that will determine B3 . This is similar to what we did

in finding the solutions (94) and (193). Then we used an integral equation
approach to solve (194), (195), and (196). But for this special case with

a circular cross-section it is more convenient to write the solution as (197).
We will later come back to the determination of B3 after we have discussed

the terms in (197) some more.

The source term S0 can be written as
s, (x,y) = 1/2 SOSMH__ oyp (-vycoshy+ivxsinhy) (198)

The paths in the two integrals pass respectively below and above the double

pole at u =0 .

We are going to rewrite (198) so that we can more easily evaluate it

numerically. We introduce

£ = Vsinhp (199)

as a new integration variable. We can then write (198) as

- . an LRy AT
So (x,y) = 1/2 [)L + f ] — {200)
AT -

—00 «00
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We will now assume x > O . The derivation for x < 0 will be quite simi-
lar, and we are not going to go through that. Since we are operating with a

source term, we can later on use the fact that
SO (-x,y) = SO (x,v) (201)

We introduce complex integration paths as shown in Figure 9.

E|c

—re
==

Ji\)

— N -
</

COMPLEX INTEGRATION PATHS

We need the residue at £ =0 . The integrand in (200) has a pole of second

order at % =0 . The residue is given by

-V
= 2iVxe ¥

Res (f=0) = lim

a [ ILzeiﬁzx—y/v% 22 ]
£0

ar W22 -y
By using the residue theorem, letting B>® , C > +i® , E - +iw ; A > -

in Fig. 9, we will get
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e 02 42 s 2_,2 .
- -— + -
N e/nvly e/n\)ly vy
SO = idne + — - 2Tvxe
5 ivn2-v? -y ivn2-v? +v
(202)
oo — — —
-2 j dne_xn [/T]z—\)2 cos [ vn%-v? y 1-Vsin [ |/r]2—\)2 y ]J
2
v n
- 2ﬂvxe_vy
We now introduce
u = vn2-v?
as a new integration variable and get
[=+) ———
s = 2-/. du u [ucos(uy) = Vsin (uy) e—x/b2+u2
° 5 YW24u? v24u?
- 2ﬂvxe—vy
This is true for x > 0 . Using (20l) we can write for all x
o]
. 2, 2
- -— + -—
s, = 2] du u [ucos(uy) \)51n(uy)] . |x| A2+ 2mv|x|e VY (203)
Wiiu? vZ4u?

So has now been written in a form that makes it easy to evaluate it

numerically. We will come back to this point later.

The other unexplained terms in (197) are the wave-free potentials Om .
They are given by

Om(x,y) = K, o (Vr)cos (2m-2)6

2
(204)
+ 2 ~
KZm_l(vr)cos(Zm 1)0 + sz(Vr)COSZme ’

mn=1, 2, 3,
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(Ursell denoted these functions by O(e) .)

m

Kn are modified Bessel functions as defined by Abramowitz and Stegun (1964).

The coefficients AO and Am in (197) are determined by satisfying

the body boundary condition (196). This leads to an equation of the form

ad 80m -VrcosB
A =— + Z A <=—— = VvcosBe =0 on r=a, (205)
e or

We have assumed here that we can differentiate the infinite series in (197)

term by term, and we have used the fact that

x = rsin® , y = rcosf . (206)

a0

m
or
and Stegun (1964). so

in (205) is obtained from (204) and by using 9.6.26 in Abramowitz

2m-2 .
3t {- szrl(vr) + —5;—-K2mr2(vr) } veos (2m 2)6

2m—-1
Vr

+

2 { - sz(Vr) + K2m_l(vr) } vcos(2m-1)6

2m

+{-x +l(\)r)+\?

o sz(vr) } vcos 2m6

We will now describe in more detail how to solve (205) numerically and how

S
numerically to evaluate S0 in (197) and —2 in (205) .

or

Equation (205) is solved by setting up a least-square condition. One
assumes that the infinite sums in (197) and (205) converge sufficiently
rapidly so that a finite number of terms in the infinite sums gives a satis-

factory approximation. One calls this number M and sets up
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N M
9s (r,0.) 90 (r,6,) _
F = [A —1 4 A B 1 yeose e Vacost ] 2 (207)
= o or & or i

for r = a.

*
N should be chosen so that N > 3/2M . It is only necessary to choose

ei in the first quadrant and they have been chosen as follows:

=T+ T - i =
ei..4N + 55 (7D , i=1,2, ..., N (208)

In accordance with the least-square technique, we apply the condition that

' n=20,1, ..., M. (209)

This leads to the linear equation system

M N N
3 6 ] 6 20 0,
Op (F:°;) 90, (x,5) -Vacosf; n (%95
A =V cosf. e P — (210)
m or or — i r
m=0 1= 1=
aso 800
for r=a. n goes from zero to M . We have set i = 3 in (210).
(210) can be solved by standard methods.
BSO
S0 in (197) and 3 in (210) are numerically evaluated in the following
way. We introduce (206) into (203) and write SO as
SO = - 27r\)rsin9e_\)rc°se
A
du u (ucos(urcose)—vsin(urcose) -rsinfv/v2+u?
t2 T €
5 A2+u? | v24u?
(211)
w of ————
+ 2J[ du u ucos (urcosf) —vsin(urcose)] e-rsine/\)2+u2
3 W2 L v24u?

N = 10 was found to give satisfactory results.
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as
We have dropped the absolute value sign, since So and 3;9- will only be

evaluated for 0 < 0 < /2 (See (208)). A in (211) is chosen so that
the contribution from the last integral in (211) is sufficiently small.

For the last integral we can write

o0

Jr du u ucos (urcos8) =-vsin (urcosH) ] e—rsine/\)2+u2
W24u? v o+ u?

A

© [ . 2 2

W) . o ~rsinbvV4+A

<f du u e-—rsine/\)2+u2 <f du u e-—rs:.nev/\)2+u2 _ e
i v24yu? W2+u? rsinb

We note that sin® # 0, since 0 < 0 < T/2 . So we can write (211) as

SO = =2TVr sinb e—vrcose
A 2.2
2 - .
+2 -/- du u 7 cos (urcosf) e rsindv/\V%+u
(v2+u2)
A e
du uv , -rsinf/AV2+u?
-2 —————;—375-51n(urcose) e (212)
(V2+u )
0
+ O(Bl) for 0 < 6 < m/2

e—rsine/\)zﬂ-\2

where B . For a given small number B the correspond-

17 rsinb 1
ing value of A is given by
1 ] 2
[log [ rsinb Bl ]
A= - V2 (213)

(rsinB)?2

It was found that it was satisfactory to use Bl = 0.0001 .
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Each integral in (212) was evaluated by first locating the zeroes for

the integrand. For the first integrand the zeroces are easily found to be

u=0 and u = S| — (2m+l), m =0, 1, 2, ..., and for the second
2rcosb

integrand the zeroes are u = s, m=20,1, 2, ... . Between

rcosd ™
each zero in an integrand we then used Simpson's formula. As is seen above
the length of the interval between each zero depends on 6 , and so the
number of points used in the Simpson integration should depend on 6 .
When 6 was close to T7/2 , as many as 50 points were needed in the Simp-
son integration. But when 6 was close to 0 , it was only necessary to
use 8 points. If A was less than u at the second zero of an integrand,

then Simpson's formula was only used between 0 and A .

We will denote the first integral in (212) by GI1 and the second inte-
gral by GI2 , so that

S0 = =2TVrsind e—VrcosG + 2*°GI1l - 2°GI2

(214)

for 0 < 0 < m/2

e—rsine/b2+A2
+o(

rsinb

Values of GI1 and GI2 obtained by numerical integration are shown

in Figures 10 through 15 as functions of 0 for different values of vr .

Let us now define a domain Go consisting of all ©0€[0,n/2] and all
r€ele,M] . Here ¢ >0 and M is finite. ¢ and M are selected so that
[c,M] contains all r-values of interest. It is not difficult to see that

the infinite integral which corresponds to GI2

oo

Jr du Vu sin (urcos@) e-rsinev/\)2+u2

3/2

(215)

2,..2
5 (Ve+u“c)

is uniformly convergent on Go . Further the integrand of (215) is conti-

nuous on [0,°°]XGO . It is then known (see Jones (1966)) that
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=}

) du vu sin(urcos9) -rsinf8/AV%+u?
lim 3/2
8-+0 (VZ+u?)
(216)
00
- J[ du Vu sin(ur)
(v2+u2)3/2
0
By using Gradshteyn and Ryzhik (1965), we can write
[s¢]
f 1‘5’“—5% = vr K_(vr) (217)
(vZ+u?)

0

In this way we can find analytically determined values of GI2 when
O =0 . We can see from Figures 10 through 15 that the agreement between
analytically determined values of GI2 and numerically determined values of

GI2 is very good.

The infinite integral which corresponds to GIl1 is not uniformly conver-
gent on GO s SO it is not possible to check the numerical values of GI1

in the same way as we did above for GI2 .

as
Let us now consider the numerical evaluation of 5;9 . We write
S as
o]
[e¢]
s =2 J[ du u [ ucos (urcos6) -vsin(urcose)] e—rsin@/\)2+uz
° 5 /bz+u2 \)2+u2
(218)
- 2TVrsinb e—Vrcose for 0 <6 < w2
Bso
(See 203) and (206)). We will only be interested in values of e for

finite values of r and for 6-values satisfying 0 < 06 < m/2 . Let us
define a domain Gb consisting of all ©0e€[b,7/2] and all re[c,M] . Here
b>0, ¢>0, and M is finite. b is selected so that [b,T/2] contains
all O-values of interest, and ¢ and M are selected so that [c¢,M] contains
all r-values of interest. Further, let us denote the integrand in (218)

by £ . It is easily seen that
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00
of . . of .
3;'du is uniformly convergent on Gb , and that 3¢ 1S continuous
0 0 co
on [0,®]XG . It is then known that a_ f du = ég—du (See
b or or
0 0
Jones (1966)).
So we can write
as -
o _ 5 du u -u’cosBsin (urcosf) - vucosfcos (urcosf) -rsinfvvi+u?
or ST P e
9 vT+u L vo+u
(219)
w P~
_ . —_— s 2, 2
+2 Jr du u ucos (urcosb) v51n(urcose)] [—sin@/b2+u2]e rsinbv/v%+u
A Wiia? | v2+u?
—2ﬂvsin6e—vrcose+ 211\)2rsin6cosee_vrcoSe
By rearranging the terms in (2192) we can write
[o+]
9s 2
0 a . -rsi 24u?
37 = 2 Jr -Jiii——7§75 [—VCose -sin6vv2+u? ] cos (urcosB)e rsindy/viu
(u2+v?) / '
0
- (220)
- et 2,..2
42 J[ duu [—uzcose+Vsin6/b2+u2 ] sin (urcosf)e rsind/vi+u
(u2+\)2)3/2
0
. -Vrcosf 2 -vrcosf
-27vsinfe +2mV°rsinbcosbe
28

The integrals in 5;9 were numerically evaluated in a way similar to that
used for the integrals in So . The approximation to the first integral
in (220) multiplied with r is called DGI1 and the approximation to the
second integral multiplied by r is called DGI2 .

The values of DGI1 and DGI2 as functions of 6 for different values

of Vr are shown in Figures 16 through 21.

We have now explained how to obtain numerically the terms in the brack-
ets of (197). We will refer to these terms as "Ursell's solution" and

denote them by ¢u . So
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¢ = B3¢ (221)

(See 197). ¢u has been plotted in Fig. 22 as a function of vr for dif-

ferent values of 6 and in Fig. 23 as a function of 0 for different va-

lues of vr .

We now have to find B3 in (221). B3 will of course be determined

in the same way as we did in the previous chapters where we solved the zero-
and the forward-speed problem. We prefer now to use the coordinate sys-

tem shown in Fig. 1.

If we take an outer expansion of (221), the term which is linear in Yy

will be

-33A02ﬂv|y|evz (222)

(See (197) and (203)). 1In accordance with what has been done in the previous
chapters, (222) should (for both the zero-speed and forward-speed cases)

match with
Vv i (Wwt-
vlyle™ o, ) et WEmVK) (223)

where Ol(x) can be written for both cases as

_ [ _(2wt2uv)  im/4 gh
Ol(x) B ﬂwov(x+L/2) e W, : (224)

By equating (222) and (223) and putting the expression for B3 into (221),

we can write the potential

o - - e [Guratv)  gh _i(ut-vx) o ,
B 2mA MWV (%+L/2) W u (223)

Using Bernoulli's equation, it is now easy to find the pressure. To

the leading order the pressure will be
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- 131/4 20+20V o o1 (WE-VX) (226)
ogh 2mA MW,V (x+L/2)  Tu

The force and moment on a part of the ship or on the total ship can easily

be found from the pressure.

One should note the simple forward-speed dependence in (226). ¢u and
Ao will only depend on the wave length. So for a given wave length the
amplitudes of the pressure, force and moment for a given forward speed can be
obtained from the corresponding values at zero speed by multiplying the zero-

speed results by a constant factor.

2. Numerical example

The "ship-like" form that we applied the theory to is shown in Fig. 24.
It shows the water plane of the ship. The ship has fore and aft symmetry

L |

l L=20

FIGURE 24
SHIP MODEL USED IN THE NUMERICAL EXAMPLE

and circular cross-sections, with radius equal to one half of the beam at the
water plane. Further, L/B = 10 and LM/B =8 , where L is the total
length, B is the beam midships at the water plane, and LM is the length
of the parallel midbody of the ship.

We applied the theory for A/L = 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55,
0.6, and Froude numbers 0.0, 0.1, 0.2, 0.3. To stop using the theory at
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A/L = 0.6 was in a way arbitrary. We cannot predict how large the wave
length should be for the theory to fail. Experience is going to tell us
that.

The chosen wave length range is important in the determination of the dyna-

mic loads on a ship. (See Faltinsen (1970)).

We have plotted the pressure amplitudeidistribution along the ship for
6 = 0.0785 (24.50) for different wave lengths (See Fig. 25 through 32).
The pressure amplitude due to the incident wave potential has also been plot-
ted; this is called the "Froude-Kriloff pressure". Even where the "theoreti-
cal" values of the pressure near the bow and stern have been plotted, one
should note that they are not assumed to be valid (See the chapters about
the zero-speed and forward-speed problems.). The very high "theoretical"

values at station 1 are mainly due to the factor (x+L/2)-l/2 (See (226)).

The pressure has a decaying factor (x+L/2)—l/2 along the parallel mid-
body. This predicted trend seems to be confirmed by experiments of Abels

(1959) and Lee (1964).

Multiplication factors to multiply the zero-speed result to make them
valid at a given forward speed (see the text following (226)) , have been

given in the figures.

The cross-sectional variation of the pressure amplitude at station 10
for different wave lengths is shown in Figures 33 through 40. The Froude-
Kriloff pressure amplitudes have been plotted too. In Figure 38 there are
shown some experimental values. The experimental model has nearly the same
L/T - ratio as the model we calculate for. (See Fig. 24). T denotes the
draft at midships, and the B is the beam midships. The B/T-ratio for

our model is 2.0 but the B/T-ratio for the experimental model is 2.74.

*
The pressure amplitude is non-dimensionalized with respect to pgh ,

where p 1is the density of water, g is the acceleration of gravity, and
h is the amplitude of the incoming wave.
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The experimental model does not have circular cross—sections (See Abels
(1959)). The experiments seem to agree with our theoretical prediction
but it is, of course, very difficult to conclude anything as long as our

model and the experimental model are different.

We have also calculated the vertical force over different parts of the
ship. The parts of the ship are from forward perpendicular to different
stations. So the amplitudes of these forces are shown as a function of
station number for different wave lengths in Figures 41 through 48. The

Froude number is zero.

When calculating the vertical forces according to our theory, we have
used the "theoretical" values also in the bow region. This is not in ac-
cordance with our assumptions. Due to the unrealistically high pressures
calculated in the bow region, our theory will surely predict too-large
forces. The forces have been compared with values computed by the pProcedure
described in Salvesen, Tuck and Faltinsen (1970). One should note that
Salvesen, Tuck, and Faltinsen (1970) did not show that their procedure to
calculate exciting force over parts of the ship was correct. But recent
work of Ogilvie (1971) seems to indicate that it is a correct procedure.

By comparing the values obtained by our new theory and by the Salvesen-
Tuck-Faltinsen procedure and taking into account that the forces over the
bow region have to be reduced, one can conclude that there is a good agree-

ment between the two procedures.

The total force on the ship has also been calculated for different wave
lengths in the zero-speed case. See Fig. 49. We have compared our theore-
tical values with the Khaskind formula (Newman (1962)). But note that we
have used strip-theory approximation for the heaving potential in the
Khaskind formula. Strictly speaking this can only be justified for parts
of the ship away from the bow and stern regions, and when the wave length
is short compared with the length of the ship and of the order of magnitude
of the transverse dimensions of the ship. But due to the oscillating factor
e_i\)x in the Khaskind formula, the potential at the ends of the ship will
not be unimportant in the Khaskind formula when the wave length is short

compared with the length of the ship.
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Thus, strictly speaking, the Khaskind formula with strip-theory ap-
proximation cannot be rationally justified for any wave length. But, for
lack of anything better, it has been common to use the strip-theory approxi-
mation in the Khaskind formula, and one must admit that the results have

been good.

For the same reason given with respect to the forces over parts of the
ship, one must conclude that our theory will predict too-large forces. Taking
this into account, one can see that the agreement between our theory and
Khaskind formula with strip-theory approximation is good except in the vici~-

nity of A/L = 0.45 .

3. Comparison with experiments

C.M. lLee has measured the pressure-distribution along a restrained,
semi-submerged,prolate spheroid which was towed at a constant speed in regular
head-sea waves. He used the experimental pressure values to calculate a longi-
tudinal force distribution along the spheroid (C.M. Lee (1964)). He did not
publish the data for the pressure distribution along the spheroid, but he was

kind and gave us those data.

The surface of the prolate spheroid that C.M. Lee used can be described

by the equation:

2 2, 2
X_ L yrzt 1,
2 p?
(0]
where £ = 19.8" and bo = 3.3" . x,y,z are defined by Figure 1. He

measured the pressure at cross-sections located at x -16" (called CF ),
-12.5" (called BF Y, x = -=-7" (called AF ), x=0 (called @& ),

7" (called AA ), x = 12.5" (called BA ), x = 16" (called CA Y.

He did the experiments for A/L = 0.5, 0.75, 1.0, 1.25, 1.5, and 2.0 where

X

X

A is the wave length and L is the length of the model. The Froude num-
bers of the model were Fn = 0.082, 0.123, 0.164, 0.205, 0.246, 0.328 .
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Because we have assumed that the wave length should be short compared
with the length of the ship, we have only compared experiments and theory
for A/L = 0.5 . Further there were evidently some irregularities in the
experiments for Fn = 0.328 , and so we did not compare experiments and
theory for that Froude-number. We decided to present the comparisons be-
tween experiments and theory for Froude-numbers 0.082 and 0.205, but the
agreement between theory and experiments was just as good for Froude-numbers

0.123, 0.164, and 0.246.

In Figures 50 through 55 are shown the comparisons of the pressure ampli-
tudes for Froude-number 0.085. Figure 50 shows the longitudinal distribution
of the pressure amplitude along the keel of the spherocid. It is seen that
the experiments confirm the theoretically predicted longitudinal deformation
of the wave along the ship. Figure 51 shows the pressure-variation along the
cross—-section BF . (The index F indicates that the cross-section is on
the forward part of the model.) The variable 6 , the abscissa in the figure,
is 7/2 for a point in the undisturbed free-surface and 0 for a point lo-
cated on the center plane of the model. It is seen that the agreement be-
tween theory and experiments is reasonably good. Similar comparisons are
made for cross-section AF in Fig. 52, cross-section ¢ in Fig. 53, cross-
section AA in Fig. 54, cross-section BA in Fig. 55. (The index A indi-
cates that the cross-section is on the after part of the model.) It is seen

that the agreement is good, especially for the after cross-sections.

In Figures 56 through 61 are shown the comparisons of the pressure am-
plitudes for Froude-number 0.205. Fig. 56 shows the longitudinal distribu-
tion of the pressure along the keel of the spheroid. Figures 57-61 show
the pressure variation on the cross-sections BF' AF' ® , A, and BA ’
respectively. It is seen that the agreement between experiments and theory
is at least as good as in the case of the smaller Froude-number. Since the
theory is not assumed to be valid near the bow or stern, no comparisons have

been made for cross—-sections CF and CA .

In Fig. 62 is shown the comparison between theory and experiments for the
longitudinal distribution of the phase angle of the pressure. The theory pre-

dicts that for all Froude-numbers the phase-angle of the pressure is m/4



-83-

before the phase-angle of the Froude-Kriloff pressure. For a given cross-
section, the experimental value of the phase angle varied somewhat. So the
presented data are averages. The variation is, roughly speaking, not more

than *10° . It is seen that the agreement between experiments and theory

is good.
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FIGURE 10

INTEGRALS IN THE SOURCE FUNCTION AS A FUNCTION OF 6

FOR vr = 0.3142

8 (radians)
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FIGURE 12

INTEGRALS IN THE SOURCE FUNCTION AS A FUNCTION OF ©

FOR Vvr = 0.6283
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FIGURE 15
INTEGRALS IN THE SOURCE FUNCTION AS A FUNCTION OF 6
FOR vr = 1.3963
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INTEGRALS IN THE DERIVATIVE OF THE SOURCE FUNCTION AS

A FUNCTION OF 6 FOR vVr = 0.3142
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0.4189




-92-

TN _~—"_ oG

0.5 1 / 0 (radians)

\_. DEI1

FIGURE 18
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A FUNCTION OF 6 FOR Vr = 0.6283
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INTEGRALS IN THE DERIVATIVE OF THE SOURCE FUNCTION AS
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PRESSURE VARIATION ALONG THE CROSS~SECTION BA
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