: :i\; ' No. 104 /

Q) December 1970

OPTIMIZATION OF BOW BULB
CONFIGURATIONS ON THE BASIS OF
MODEL WAVE PROFILE MEASUREMENTS

S. D. Sharma
J. N. Naegle

This research was carried out in part under the Naval

Ship Systems Command General Hydromechanics Research

i‘% Program Contract No. N0O0014.67.A-0181.0009, Subproject
SR 009 01 01, administered by the Naval Ship Research

and Development Center.

Reproducfion in whole or in part is permitted for any
s\‘v 0,. _ purpose of the United States Government.




No. 104
December 1970

OPTIMIZATION OF BOW BULB CONFIGURATIONS
ON THE BASIS OF MODEL WAVE PROFILE MEASUREMENTS

S. D. Sharma and J. N. Naegle

This research was carried out
in part under the

Naval Ship Systems Command
General Hydromechancis Research Program
Subproject SR 009 01 01, administered
by the Naval Ship Research and Develop-
ment Center.

Contract No. N00014-67-A-0181-0009

Reproduction in whole or in part is
permitted for any purpose of the
United States Government.

Department of Naval Architecture and Marine Engineering
College of Engineering
The University of Michigan
ORA Project No. 01491



Nomenclature

List of Figures
Introduction

Theory of Bulb Optimization
ExXperiments

Analysis

Discussion

Acknowledgements
References
Tables

Figures

CONTENTS

Page

ii

10
13

15
16
18

22



NOMENCLATURE
The standard nomenclature adopted by the Presentations Com-
mittee of the International Towing Tank Conference in 1966 has

been used throughout with the following exceptions.

CW = ZBW/pVZS Coefficient of wave resistance

E (u) Nondimensional amplitude spectrum

F (u) Sine component of E(u)

G (u) Cosine component of E(u)

L Dimensional model length

L = Lg/V? Nondimensional model length

Porp Relative bulb size

Q or g Relative bulb location

R, Dimensional wavemaking resistance

R, = ngz/pv6 Nondimensional wavemaking resistance

me Wavemaking resistance of main hull alone
th Wavemaking resistance of system hull and bulb
S Nondimensional longitudinal wave number
u Nondimensional transverse wave number
n=R_/R Bulb influence factor

-i-
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INTRODUCTION

Several techniques have recently become available for deter-
mining the wavemaking characteristics of a hull form from a
suitable analysis of wave profiels measured in a model experiment
[1].* The most promising application of this new experimental
tool seems to be in the area of wave resistance reduction by the
use of optimal multi-hull configurations. The term multi-hull
may be used to denote any assembly of hulls or hull components,
each of which can be considered as a separate entity from the
point of view of wavemaking. Examples of simple multi-hulls
to which this technique has already been applied are bulbous
bow hulls [2], twin-hull catamarans [3], and semi-submerged ships
(submarine hulls with surface piercing superstructures) [4]. In
view of current shipbuilding practice, the most urgent of these
problems is probably the optimization of bulbous bows.

Basically, one might distinguish two different approaches
to the problem of bulb design for a given main hull. First,
there is the possibility of model testing several randomly or
systematically chosen alternative bulbs and measuring the com-
parative values of resistance or propulsive power. This seems
to be the favorite current practice. However, in view of the
enormous number of model tests required for a truly exhaustive
search, this is clearly an uneconomical and therefore unsatis-

factory approach. Second, one could apply a purely computational

*Numbers in square brackets denote references listed at the end
of the report.



procedure based on the analytical theory of wave resistance for
determining hull-bulb combinations of low wave resistance.
Pioneering attempts of Wigley [5] and Weinblum [6] in this
direction have been followed up by many others recently. How-
ever, as a result of the approximations implicit in the linear-
ized theory of wave resistance, such calculations invariably lead
to overly optimistic predictions which are at unacceptable
variance with experimental facts [7].

The present approach to bulb design may be regarded as a
synthesis of the experimental with the theoretical method. The
basic wave patterns of the main hull and the bow bulb are obtained
from measurements in the model tank. The theory is then applied
for predicting the effect of changes in bulb size and location on
the wave pattern and for calculating the wavemaking resistance
from the wave pattern. This combination allows the extraction of
maximum useful information from a minimum number of experiments.
The original conception of this method should probably be attri-
buted to Inui [8] but the technique actually used here is the
one devised by Sharma [2].

A crucial hypothesis in this method is the approximate theo-
retical principle of simple linear superposition of the free-wave
spectra of the main hull and bow bulb to yield the total free-
wave spectrum of the composite bulbous bow hull form. A practical
problem ]jes also in deciding just how a bulb shape should be al-
tered so as to effect any desired changes in the amplitudes and
phases of the bulb wave spectrum. The purpose of the present
study was to verify by a few simple experiments the actual validity

of this method as a practical design tool.



THEORY OF BULB OPTIMIZATION

The present method of bulb optimization starts from the
assumption that the free-wave spectra of the main hull and of
a suitable trial bulb are known. 1In practice, these spectra
will be obtained from a Fourier €ransform analysis of suitable
transverse or longitudinal wave profiles measured in the model
tank by methods described in [1]. However, in principle, one
or both of the spectra could also be derived from purely analytical
theory. Main disadvantages of the latter approach are i) restriction
to mathematically simple forms and ii) unrealistic estimates of
spectrum due to fundamental simplifications in the analytical
theory.

The significance of the free-wave spectrum lies in that it
determines for éll practical purposes the wavemaking characteristics
of the object in question. Suppose, for instance, that F(u) and
G(u) represent the sine and cosine spectrum (as functions of trans-
verse wave number u) respectively of a certain hull form in un-
restricted deep water at a definite Froude number. Then the

wavemaking resistance is given by

_1 7 2 vI ¥ 4uz
R, = T67 ‘o {F(u) + G (u)}(l P du (1)

Moreover, in a righthanded Cartesian coordinate system Oxyz
moving with the ship (with x pointing forward and z vertically

upwards) the free-surface deformation

z = 7(x,y) \ (2)



can be expressed asymptotically in terms of the free-wave spectrum:

c(x,y) = f%— I, {F(u) sin (sx + uy) + G(u) cos
(3)
(sx + uy) }du
where s = {(1L + VT ¥ duz)/2}1/2

is the longitudinal wave number [1].

In the preceding equations the nomenclature of references [1,2]
has been used and all quantities are understood to have been
rendered nondimensional by use of a fundamental unit system com-
prising the ship speed V, acceleration due to gravity g and water
density p. Note, however, that the present definitions of F(u)
and G(u) differ from those of [2] by a factor 4m.

Suppose now that the spectrum Fm(u), Gm(u) of the main hull
and the spectrum Fto(u)' Gto(u) of the hull fitted with a trial
bulb have been determined from measured model wave profiles.

Then from the principle of linear superposition of wave patterns
(which can be justified as a first approximation in potential flow

wave theory) the spectrum of the trial bulb itself becomes

F__(u) = Fto(u) - Fm(u),

bo
(4)

Gbo(u) Gto(u) - Gm(u)

One may now reasonably assume that for small suitable changes
in bulb size the wave heigh#s will be uniformly changed in the
same ratio. Moreover, if the bulb is shifted in the longitudinal

direction, it will simply carry its wave pattern with it and hence



by virtue of equation (3) the spectrum will experience a mere phase
shift. On this hypothesis, the spectrum of a new bulb of arbi-
trary size p (relative to the trial bulb) and longitudinal lo-
cation g (relative to the trial bulb, but expressed as a fraction
of hull length L) becomes

Fp(u) = p{FbO(u) cos (sqL) + Gy, sin (sqL) }

(5)

Gy (u) = p{Gbo(u) cos (sqL) - F,  sin (sqL)}

bo

Again from the principle of linear superposition the spectrum

of a hull fitted with this new bulb becomes

Ft(u) = Fm(u) + Fb(u)
(6)

Gt(u) = Gm(u) + Gb(u)

and the wave resistance can be computed from the general formula (1).

One might introduce a bulb influence factor

Ry,
n = —=t (7)

Ry,

m

defined as the ratio of the wave resistance of the hull with bulb
to the wave resistance of the main hull. By plotting contours of

n in the feasible domain of the p, d plane one can obtain a complete
picture of the wave resistance modifications to be expected for

any size or longitudinal location of that type of bulb. As is
evident from the form of equation (1), these contours will show
effects of interference between hull and bulb wave systems and,

in general, there will be a point of minimum wave resistance in the



feasible p,q range. The effect of other changes in bulb con-
figuration (a vertical shift of the centroid for instance) must
be determined, of course, from new experiments.

It is appropriate at this point to refer to one fundamental
difficulty which arises in the practical application of this method.
Suppose, for example, that the n contours in a given case reveal
it to be desirable to change the "size" of the trial bulb by a
factor P, and move its "location" by a fraction q, of hull length.
The practical question is, what physical changes to bulb geometry
are necessary to effect the precise change in spectrum implied by
equation (5)? A practical answer to this question can only be
obtained from experiments, but some guidance is available from
the theory of waves generated by solid bodies in steady translation.

First, consider the question of changes in "size." There is no
known general theory to determine how an arbitrarily shaped body
should be modified so that its wave pattern will remain unchanged
in phase but be scaled in amplitude by a constant presc;ibed
factor. However, there exist approximate theories for special
classes of bodies. For a thin body, one might apply the classical
Michell approximation. Thus in case of a thin bulb one would
keep the longitudinal and vertical offsets unchanged and just
change all transverse offsets in the ratio P, to yield an affine
transformation of the.old bulb. If the bulb appears to be an
axi~symmetric slender body, one might use the slender body approx-
imation, i.e., keep the axis of symmetry fixed and change the
cross-sectional area throughout by the factor p,- If the bulb is

nearly spherical, the deeply submerged body approximation requires



that the centroid be kept fixed and the volume changed in the

ratio P,- A generalization of this method to spheroids is possible
[9]. In this case an isofocal, rather than a geometrically

similar transformation is required. The foci must be held con-
stant and the dipole moment (rather than volume) changed by

factor P,. In practice, one would have to use one or the other

of these approximations depending on the general shape of the

given trial bulb.

Next comes the question of changes in location. At first
sight it might seem trivial, because if a body is simply shifted
in the horizontal plane, it is just like moving the origin of
the coordinate system. However, the necessity of fairing the
bulb into the hull makes it very difficult to implement pure
changes of location. 1In fact, the effect of fairing on the
wave interference between hull and bulb is so complicated that it
can be assessed only by experiment. It is evident then that in
the actual application of this method certain elements of

personal judgement cannot be avoided.’



EXPERIMENTS

The basic plan of these experiments was to carry out bulb
optimization calculations on the basis of several different trial
bulbs and then compare these predictions against each other.
Models of a suitable main hull (Model 1094) and a reasonably
good bulb (B2) were already available at The University of
Michigan from a previous investigation [10]. Two further bulbs,
designated B4 and B5 were designed for this study. Bulb B4
has the same size and shape as B2, but is located 2% of hull
length forward of B2. Bulb B5 has the same location as B4,
but is 50% larger in size. All three bulbs have an approximately
hemispherical nose. It is assumed that the center and volume of
this hemisphere determine the bulb location and size respectively.
The main dimensions and basic form parameters of the four models
are listed in Table 1, and the bow lines are shown in Figures 1
through 4.

Basically, two different experiments were carried out with
each of the four models: the standard resistance test over a
large speed range, and longitudinal wave profile measurements
at two selected speeds. The resistance was measured in the usual
way by means of a strain-gage dynamometer and weights. The models
were allowed to float freely, and turbulence was stimulated by
rows of studs near the bow.

The wave profile measurements required new equipment. A con-
ductance wire type wave probe was constructed by Mr. W. H. Roth

following the Hamburg design [11]. This probe is capable of



measuring both wave height and slope simultaneously, but only the
former was recorded in the present tests. The probe was mounted
at a fixed point in the towing tank, and as the model passed by,
a time record of the wave height at the location of the probe was
taken on a Sanborn strip chart recorder. Assuming steady state
conditions, a simple transformation of the time scale yielded the
desired longitudinal wave cuts in a coordinate system moving with
the model. The relative position of the model was fixed by record-
ing (on a separate channel) an event signal generated by the passage
of the model across a sharply controlled light beam spanning the
tank width. Owing to the relative narrowness of the towing tank
the models had to be towed 2 feet off center, and the wave cuts
were taken at a transverse distance of about 4 feet from the model
center plane. The two speeds selected for wave measurements were
5.01 and 5.36 ft/sec corresponding to Froude numbers of 0.250 and
0.267 respectively.

Wave measurements on Models 1094 and 1094-B2 were cqnducted
in July and August 1968. Resistance values were already available
from previous work [10]. Wave and total resistance tests on Models
1094-B4 and 1094-B5 were carried out in March and May 1969

respectively.



ANALYSIS

The topic of primary interest in this study is, of course,
the wave profile analysis. But it is simpler to begin with the
resistance component analysis based on measured total resistance.
The original test data (measured values of speed and resistance)
are listed in Table 2 for all models. The total resistance values
were analysed to achieve an empirical breakdown into viscous and
wavemaking components. For this purpose, the ITTC-1957 friction
line

0.075 (8)

C =
- 2
F T (log R~ 2)

was used and a graphical technique due to Hughes and Prohaska [12]
was employed to determine the viscous form factors based on this
line. The final results of this analysis are shown in Figures 5
through 8. The empirical wave resistance coefficients determined
in this way for the four models are compared in Fig. 9. Also added
for the sake of interest is a design oriented resistance comparison
in Fig. 10 for an assumed full scale ship length of 680 ft [10].

It is evident that all three bulbs lead to a significant reduction
in total resistance for F,o > 0.2. The low resistance of bulb B5

at the design Froude number is obtained, however, at the expense

of an unusual hump at ;ow Froude numbers. It should be mentioned
that the actual wetted surface area and displacement of each model
has been used in the preceding analyses. However, the Reynolds and
Froude numbers are based on a common length of 12.5 ft for the model
and 680 ft for full scale.

10
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The measured wave profiles were analysed by the longitudinal
cut method described in References [2] and [l1]. The first step in
this method is to obtain the free-wave spectrum by a modified
Fourier analysis of the wave profile. The results are displayed
in Figures 11-12 for Model 1094, in Figures 13-14 for Model 1094-B2,
in Figures 15-16 for Model 1094-B4 and in Figures 17-18 for Model
1094-B5. For each model and each of the two speeds tested, two
alternative diagrams are provided, one showing the variation of the
sine component F, the cosine component G and the total amplitude
E = /(F?+G?) with transverse wave number u, and the other showing
the same quantities as a function of the corresponding longitudinal
wave number s. It may be observed that the basic wave length of
21TFn2 clearly shows up in the variation of amplitude with longitu-
dinal wave number s, as one would expect from simple considerations
of wave interference between bow and stern. It is also evident that
each of the three bulbs is to some extent effective in reducing
wave amplitudes at both speeds tested.

The next step is to calculate the nondimensional wave resistance
Rw from the free-wave spectrum by use of equation (1). The results
are listed in Table 3 and show clearly the significant reduction in
wavemaking resistance achieved by each of the three bulbs. The table
also provides a comparison of the results of wave analysis with cor-
responding numbers derived from a form-factor analysis of measured
total resistance using the relations

Cw = C¢ ~ (1 + k)Cf (9)

and R

v (gZS/zv")cw . (10)
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Obviously, our wave analysis underestimates the quantity
(Ct—CV) at these Froude numbers. The reason for this is not yvet
understood. However, it is only of side interest in the present
study which isconcerned mainly with the prediction of relative

effects produced by the bulb.

Once the spectra are available, it is easy to combine them in
pairs (main hull and any given bulb) and generate predictions of
wavemaking resistance, or better still of the bulb influence factor
n = th/me » for feasible variations of bulb size and location as
explained in a previous section. This was attempted for all six
possible combinations, namely main hull 1094 with bulbs B2, B4 and
B5 at Fn=0.250 and at Fn=0.267. The results appear as Figures 19
through 24. Assuming the wave profile measurements to be sufficiently
accurate and the principle of linear superposition of free-wave
spectra to be strictly valid, the three diagrams at each Froude num-
ber should be perfectly equivalent. This will be discussed further
in the next section.

Incidentally, the preceding analysis is almost fully automated.
As described in Reference [13] our computer programs will accept
digitized wave profile data as input and produce numerical and gra-
phical output of spectrum (as a function of wave number) and of bulb
influence factor (as a function of bulb size and location), as
exemplified by Figures'1ll through 24 which are all entirely computer

generated.



DISCUSSION

The basic question to be examined here is whether the three
different trial bulbs tested lead to identical, or at least similar,
predictions of optimum bulb size and location. As noted above, the
crucial test lies in examining the three supposedly equivalent
Figures 19, 20 and 21 (or 22, 23 and 24) for mutual consistence.

In comparing these diagrams however, it should be remembered that
while the contour function n always has the same meaning, the scales
for size p and location g are, in general, not the same everywhere
for they are reckoned relative to the bulb on which the particular
diagram is based.

For the ease of comparison, therefore, certain cross curves
have been taken from the n contours and plotted on a common base.
Thus Figure 25 illustrates the effect of change in bulb size for a
fixed bulb location, assumed for instance to be coincident with B4.
Since B4 and B5 have the same location, vertical cross curves were
taken at q = 0 from Figs. 20 and 21, but at q = 0.02 from Fig. 19
as B2 is 0.02 L aft of B4. After adjusting the p values (only nece-
ssary for B5 as B2 and B4 are of same size) and replotting, Fig. 25
is obtained. In theory, the three curves should have collapsed into
one. Actually, the three curves diverge with increasing p and there
are appreciable differences in the n predictions. However, the
optimum value of bulb size p is roughly the same in all cases.

Similarly, Figure 26 displays a comparison of horizontal cross
sections taken from Figures 19-21 at p = 1, 1 and 2/3 respectively
after a suitable adjustment in‘the q scale of B2. Again, it is

13
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evident that there is some divergence between the three curves, but
their minima (the points of optimum bulb location) are fairly close
to each other.

Finally, one might go a step further and compare the n pre-
dictions only at certain selected values of p and g corresponding
to the cases actually tested. This results in the two matrices of
cross prediction presented in Table 4. Since total resistance values
were also available at these points the corresponding n values
based on the form-factor analysis are also included as the last row
of each matrix marked "EHP". It is encouraging that the discrepancies
in the n values from wave analysis and from form-factor analysis
are not as bad as the discrepancies between the corresponding R.W
values of Table 3. The cross predictions of n values themselves
are pretty good with a few exceptions.

In summary, one can conclude that the semi-empirical technique
of optimizing bow bulb configurations by linear superposition of
free-wave spectra (derived from measured longitudinal wave profiles)
holds promise as a useful design tool for economically predicting
optimum bulb size and location with a minimum of model experiments.
Although the absolute values of wave resistance are considerably
underestimated by this method, the predicted ratios of wave resis-

tance reduction seem to be fairly reasonable.
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LPP = 12.5 ft

T = 6.25 in

TABLE 1—MODEL PARTICULARS

A = 54.4

SHIP

Lpp = 680 ft

Tpr, = 28.333 ft

B = 100 ft

MODEL SHIP
MODEL CB_ CM CP S ] S A
(ft2%)| (ft%)| (ft )| (tons-59°F)

1094 .521(.976|.534|24.228|6.2312|71,700 28,680
1094-B2|.525|.976(.538|24.701|6.2844|73,100 28,925
1094-B4|.526|.976(.539(24.910(6.2904|73,720 28,950
1094-B5(.527(.976|.540|24.991|6.3020(73,960 29,010

NOTE: Reference

Cg = 0.517
Cy = 0.976
Cp = 0.530

Data under test conditions gives values calculated above using:

_ vV .
Cg = LBT'

[10] gives the following for model 1094:

Cp =

Cp
Cm

18



TABLE 2—MEASURED TOTAL RESISTANCE VALUES

MODEL 1094 1094-B2 | 1094-B4 | 1094-B5
V-ft3 6.2312 6.2844 6.2904 6.3020
S-ft? 24,228 24.701 24.910 24,991
TEMP °F 69.5°F 68°F 66°F 72°F
SERIAL NO. (ftjsec) (1§£) V | B | V [Rp | V | Ry
1 1.98 .355 |2.28{.535{2.01| .45[{*1.99] .42
2 2.07 .39 [2.74|.76 |2.22| .55| 2.00| .44
3 2.29 .49 [3.32]1.07{2.41) .63| 2.22{ .51
4 2.51 .58 |[3.54/1.19|2.62| .73{*2.23| .51
5 2.84 .75 |3.64{1.28|2.80| .82 2.43| .62
6 3.09 .87 |4.05/1.56|3.00| .93| 2.62| .70
7 3.32 |1.01 |4.53{1.93!3.20/1.05| 2.84| .84
8 3.52 |1.13 |5.07|2.48{3.42|1.18| 3.00{ .93
9 3.84 |1.35 |5.65(3.10{3.62|1.30|*3.22|1.06
10 4.12 |1.55 |6.05(3.65[3.82|1.44] 3.38]|1.175
11 4.43 |[1.80 |6.13|3.79{4.02{1.57| 3.59{1.32
12 4.63 [2.25 [6.49|4.31{4.20{1.73|*3.60]1.29
14 4.85 [2.00 [6.99|5.82{4.42{1.91(*3.78]1.40
14 5.13 |2.53 4.61|2.05{*4.01|1.55
15 5.49 |2.91 4.80(2.24| 4.03{1.57
16 5.64 [3.08 5.01}2.40| 4.18|1.70
17 5.83 [3.32 5.21{2.69| 4.29(1.75
18 6.12 |3.72 5.41(2.88| 4.66[2.05
19 6.48 [4.35 5.61(3.15| 4.78|2.16
20 6.75 |5.03 5.8213.40| 5.03|2.42
21 6.98 |5.88 6.00/3.67{ 5.18|2.58
22 7.09 ]6.37 6.43|4.32| 5.39/2.77
23 7.30 |7.40 6.83|5.28| 5.51/2.90
24 7.21/6.93} 5.79!3.23
25 5.95{3.51
26 6.25]3.90
27 6.38]4.05
28 *6.65|4.70
29 *7.00]/5.90
30 *7.20/6.75

* denotes data taken at 74°F.
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TABLE 3—COMPARISON OF RW

Ry FROM Ry FROM Ry FROM Ry FROM
MODEL |EHP TESTS |[WAVE CUTS |EHP TESTS |WAVE CUTS
FN = 0.250|Fy = 0.250 Fy = 0.267|Fy = 0.267
1094 0.0127 0.0050 0.0106 0.0039
1094-B2 0.00567 0.0022 0.00570 0.0024
1094-B4 0.00306 0.0015 0.00457 0.0016
1094-B5 0.00409 0.0015 0.00419 0.0017

20



TABLE 4---CROSS PREDICTION MATRICES

Summary of results of wave analysis and
bulb optimization for Model 1094

I. F
5
[
=¥
]
£
B4
O
H
:
%
-

II. F
n

n PREDICTED FROM

0.250 (Vv = 5.01 ft/sec)
n PREDICTED FOR
B2 B4 B5
B2 0.44 0.43 0.36
B4 0.58 0.32 0.24
B5 0.53 0.39 0.29
EHP 0.446 0.241 0.322
0.267 (V = 5.36 ft/sec)
n PREDICTED FOR
B2 B4 B5
B2 0.61 0.72 0.76
B4 0.53 0.42 0.34
B5 0.64 0.51 0.44
EHP 0.538 0.431 0.395
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