NAEGLE

Trances Gilvie No. 104

December 1970

OPTIMIZATION OF BOW BULB CONFIGURATIONS ON THE BASIS OF MODEL WAVE PROFILE MEASUREMENTS OPTIMIZATION OF BOW BULB

S. D. Sharma

J. N. Naegle

This research was carried out in part under the Naval Ship Systems Command General Hydromechanics Research Program Contract No. N00014-67-A-0181-0009, Subproject SR 009 01 01, administered by the Naval Ship Research and Development Center.

Reproduction in whole or in part is permitted for any purpose of the United States Government.

THE DEPARTMENT OF NAVAL ARCHITECTURE AND MARINE ENGINEERING

THE UNIVERSITY OF MICHIGAN **COLLEGE OF ENGINEERING**

OPTIMIZATION OF BOW BULB CONFIGURATIONS ON THE BASIS OF MODEL WAVE PROFILE MEASUREMENTS

S. D. Sharma and J. N. Naegle

This research was carried out in part under the

Naval Ship Systems Command General Hydromechancis Research Program Subproject SR 009 01 01, administered by the Naval Ship Research and Development Center.

Contract No. N00014-67-A-0181-0009 Reproduction in whole or in part is permitted for any purpose of the United States Government.

Department of Naval Architecture and Marine Engineering
College of Engineering
The University of Michigan
ORA Project No. 01491

CONTENTS

	Page
Nomenclature	i
List of Figures	ii
Introduction	1
Theory of Bulb Optimization	3
Experiments	8
Analysis	10
Discussion	13
Acknowledgements	15
References	16
Tables	18
Figures	22

NOMENCLATURE

The standard nomenclature adopted by the Presentations Committee of the International Towing Tank Conference in 1966 has been used throughout with the following exceptions.

$C_{W} = 2R_{W}/\rho V^{2}S$	Coefficient of wave resistance				
E (u)	Nondimensional amplitude spectrum				
F(u)	Sine component of E(u)				
G(u)	Cosine component of E(u)				
<u>L</u>	Dimensional model length				
$L = \underline{L}g/V^2$	Nondimensional model length				
P or p	Relative bulb size				
Q or q	Relative bulb location				
\underline{R}_{W}	Dimensional wavemaking resistance				
$R_{W} = \underline{R}_{W} g^{2} / \rho V^{6}$	Nondimensional wavemaking resistance				
R wm	Wavemaking resistance of main hull alone				
R _{wt}	Wavemaking resistance of system hull and bulb				
S	Nondimensional longitudinal wave number				
u	Nondimensional transverse wave number				
$\eta = R_{wt}/R_{wm}$	Bulb influence factor				

LIST OF FIGURES

- Fig. 1 Bow lines of Model 1094
- Fig. 2 Bow lines of Model 1094-B2
- Fig. 3 Bow lines of Model 1094-B4
- Fig. 4 Bow lines of Model 1094-B5
- Fig. 5 Resistance coefficients for Model 1094
- Fig. 6 Resistance coefficients for Model 1094-B2
- Fig. 7 Resistance coefficients for Model 1094-B4
- Fig. 8 Resistance coefficients for Model 1094-B5
- Fig. 9 Wave resistance coefficients from form factor analysis
- Fig. 10 Resistance comparison for an assumed ship length of 680 ft.
- Fig. 11a,b Free-wave spectrum of Model 1094 at 5.01 ft/sec
- Fig. 12a,b Free-wave spectrum of Model 1094 at 5.36 ft/sec
- Fig. 13a,b Free-wave spectrum of Model 1094-B2 at 5.01 ft/sec
- Fig. 14a,b Free-wave spectrum of Model 1094-B2 at 5.36 ft/sec
- Fig. 15a,b Free-wave spectrum of Model 1094-B4 at 5.01 ft/sec
- Fig. 16a,b Free-wave spectrum of Model 1094-B4 at 5.36 ft/sec
- Fig. 17a,b Free-wave spectrum of Model 1094-B5 at 5.01 ft/sec
- Fig. 18a,b Free-wave spectrum of Model 1094-B5 at 5.36 ft/sec
- Fig. 19 Bulb influence contours predicted from Bulb B-2 at $F_{\rm n}$ = 0.250
- Fig. 20 Bulb influence contours predicted from Bulb B-4 at $F_{\rm n}$ = 0.250
- Fig. 21 Bulb influence contours predicted from Bulb B-5 at $F_{\rm n}$ = 0.250
- Fig. 22 Bulb influence contours predicted from Bulb B-2 at $F_n = 0.267$
- Fig. 23 Bulb influence contours predicted from Bulb B-4 at $F_n = 0.267$
- Fig. 24 Bulb influence contours predicted from Bulb B-5 at $F_{\rm n}$ = 0.267
- Fig. 25 Comparison of bulb influence predictions at a given location
- Fig. 26 Comparison of bulb influence predictions for a given size

INTRODUCTION

Several techniques have recently become available for determining the wavemaking characteristics of a hull form from a suitable analysis of wave profiels measured in a model experiment [1].* The most promising application of this new experimental tool seems to be in the area of wave resistance reduction by the use of optimal multi-hull configurations. The term multi-hull may be used to denote any assembly of hulls or hull components, each of which can be considered as a separate entity from the point of view of wavemaking. Examples of simple multi-hulls to which this technique has already been applied are bulbous bow hulls [2], twin-hull catamarans [3], and semi-submerged ships (submarine hulls with surface piercing superstructures) [4]. In view of current shipbuilding practice, the most urgent of these problems is probably the optimization of bulbous bows.

Basically, one might distinguish two different approaches to the problem of bulb design for a given main hull. First, there is the possibility of model testing several randomly or systematically chosen alternative bulbs and measuring the comparative values of resistance or propulsive power. This seems to be the favorite current practice. However, in view of the enormous number of model tests required for a truly exhaustive search, this is clearly an uneconomical and therefore unsatisfactory approach. Second, one could apply a purely computational

^{*}Numbers in square brackets denote references listed at the end of the report.

procedure based on the analytical theory of wave resistance for determining hull-bulb combinations of low wave resistance. Pioneering attempts of Wigley [5] and Weinblum [6] in this direction have been followed up by many others recently. However, as a result of the approximations implicit in the linearized theory of wave resistance, such calculations invariably lead to overly optimistic predictions which are at unacceptable variance with experimental facts [7].

The present approach to bulb design may be regarded as a synthesis of the experimental with the theoretical method. The basic wave patterns of the main hull and the bow bulb are obtained from measurements in the model tank. The theory is then applied for predicting the effect of changes in bulb size and location on the wave pattern and for calculating the wavemaking resistance from the wave pattern. This combination allows the extraction of maximum useful information from a minimum number of experiments. The original conception of this method should probably be attributed to Inui [8] but the technique actually used here is the one devised by Sharma [2].

A crucial hypothesis in this method is the approximate theoretical principle of simple linear superposition of the free-wave spectra of the main hull and bow bulb to yield the total free-wave spectrum of the composite bulbous bow hull form. A practical problem lies also in deciding just how a bulb shape should be altered so as to effect any desired changes in the amplitudes and phases of the bulb wave spectrum. The purpose of the present study was to verify by a few simple experiments the actual validity of this method as a practical design tool.

THEORY OF BULB OPTIMIZATION

The present method of bulb optimization starts from the assumption that the free-wave spectra of the main hull and of a suitable trial bulb are known. In practice, these spectra will be obtained from a Fourier transform analysis of suitable transverse or longitudinal wave profiles measured in the model tank by methods described in [1]. However, in principle, one or both of the spectra could also be derived from purely analytical theory. Main disadvantages of the latter approach are i) restriction to mathematically simple forms and ii) unrealistic estimates of spectrum due to fundamental simplifications in the analytical theory.

The significance of the free-wave spectrum lies in that it determines for all practical purposes the wavemaking characteristics of the object in question. Suppose, for instance, that F(u) and G(u) represent the sine and cosine spectrum (as functions of transverse wave number u) respectively of a certain hull form in unrestricted deep water at a definite Froude number. Then the wavemaking resistance is given by

$$R_{W} = \frac{1}{16\pi} \int_{-\infty}^{\infty} \{F^{2}(u) + G^{2}(u)\} \frac{\sqrt{1 + 4u^{2}}}{(1 + \sqrt{1 + 4u^{2}})} du$$
 (1)

Moreover, in a righthanded Cartesian coordinate system $O_{\rm XYZ}$ moving with the ship (with x pointing forward and z vertically upwards) the free-surface deformation

$$z = \zeta(x,y) \tag{2}$$

can be expressed asymptotically in terms of the free-wave spectrum:
-x→∞:

$$\zeta(x,y) = \frac{1}{4\pi} \int_{-\infty}^{\infty} \{F(u) \sin(sx + uy) + G(u) \cos(sx + uy)\} du$$
(3)

where $s = \{(1 + \sqrt{1 + 4u^2})/2\}^{1/2}$

is the longitudinal wave number [1].

In the preceding equations the nomenclature of references [1,2] has been used and all quantities are understood to have been rendered nondimensional by use of a fundamental unit system comprising the ship speed \underline{V} , acceleration due to gravity \underline{g} and water density $\underline{\rho}$. Note, however, that the present definitions of F(u) and G(u) differ from those of [2] by a factor 4π .

Suppose now that the spectrum $F_m(u)$, $G_m(u)$ of the main hull and the spectrum $F_{to}(u)$, $G_{to}(u)$ of the hull fitted with a trial bulb have been determined from measured model wave profiles. Then from the principle of linear superposition of wave patterns (which can be justified as a first approximation in potential flow wave theory) the spectrum of the trial bulb itself becomes

$$F_{bo}(u) = F_{to}(u) - F_{m}(u),$$

$$G_{bo}(u) = G_{to}(u) - G_{m}(u)$$
(4)

One may now reasonably assume that for small suitable changes in bulb size the wave heights will be uniformly changed in the same ratio. Moreover, if the bulb is shifted in the longitudinal direction, it will simply carry its wave pattern with it and hence

by virtue of equation (3) the spectrum will experience a mere phase shift. On this hypothesis, the spectrum of a new bulb of arbitrary size p (relative to the trial bulb) and longitudinal location q (relative to the trial bulb, but expressed as a fraction of hull length L) becomes

$$F_{b}(u) = p\{F_{bo}(u) \cos (sqL) + G_{bo} \sin (sqL)\}$$

$$G_{b}(u) = p\{G_{bo}(u) \cos (sqL) - F_{bo} \sin (sqL)\}$$
(5)

Again from the principle of linear superposition the spectrum of a hull fitted with this new bulb becomes

$$F_{t}(u) = F_{m}(u) + F_{b}(u)$$

$$G_{t}(u) = G_{m}(u) + G_{b}(u)$$
(6)

and the wave resistance can be computed from the general formula (1).

One might introduce a bulb influence factor

$$\eta = \frac{R_{W_{t}}}{R_{W_{m}}} \tag{7}$$

defined as the ratio of the wave resistance of the hull with bulb to the wave resistance of the main hull. By plotting contours of η in the feasible domain of the p, q plane one can obtain a complete picture of the wave resistance modifications to be expected for any size or longitudinal location of that type of bulb. As is evident from the form of equation (1), these contours will show effects of interference between hull and bulb wave systems and, in general, there will be a point of minimum wave resistance in the

feasible p,q range. The effect of other changes in bulb configuration (a vertical shift of the centroid for instance) must be determined, of course, from new experiments.

It is appropriate at this point to refer to one fundamental difficulty which arises in the practical application of this method. Suppose, for example, that the n contours in a given case reveal it to be desirable to change the "size" of the trial bulb by a factor p₁ and move its "location" by a fraction q₁ of hull length. The practical question is, what physical changes to bulb geometry are necessary to effect the precise change in spectrum implied by equation (5)? A practical answer to this question can only be obtained from experiments, but some guidance is available from the theory of waves generated by solid bodies in steady translation.

First, consider the question of changes in "size." known general theory to determine how an arbitrarily shaped body should be modified so that its wave pattern will remain unchanged in phase but be scaled in amplitude by a constant prescribed However, there exist approximate theories for special classes of bodies. For a thin body, one might apply the classical Michell approximation. Thus in case of a thin bulb one would keep the longitudinal and vertical offsets unchanged and just change all transverse offsets in the ratio $p_{,}$ to yield an affine transformation of the old bulb. If the bulb appears to be an axi-symmetric slender body, one might use the slender body approximation, i.e., keep the axis of symmetry fixed and change the cross-sectional area throughout by the factor p. . If the bulb is nearly spherical, the deeply submerged body approximation requires

that the centroid be kept fixed and the volume changed in the ratio p_1 . A generalization of this method to spheroids is possible [9]. In this case an isofocal, rather than a geometrically similar transformation is required. The foci must be held constant and the dipole moment (rather than volume) changed by factor p_1 . In practice, one would have to use one or the other of these approximations depending on the general shape of the given trial bulb.

Next comes the question of changes in location. At first sight it might seem trivial, because if a body is simply shifted in the horizontal plane, it is just like moving the origin of the coordinate system. However, the necessity of fairing the bulb into the hull makes it very difficult to implement pure changes of location. In fact, the effect of fairing on the wave interference between hull and bulb is so complicated that it can be assessed only by experiment. It is evident then that in the actual application of this method certain elements of personal judgement cannot be avoided.

EXPERIMENTS

The basic plan of these experiments was to carry out bulb optimization calculations on the basis of several different trial bulbs and then compare these predictions against each other.

Models of a suitable main hull (Model 1094) and a reasonably good bulb (B2) were already available at The University of Michigan from a previous investigation [10]. Two further bulbs, designated B4 and B5 were designed for this study. Bulb B4 has the same size and shape as B2, but is located 2% of hull length forward of B2. Bulb B5 has the same location as B4, but is 50% larger in size. All three bulbs have an approximately hemispherical nose. It is assumed that the center and volume of this hemisphere determine the bulb location and size respectively. The main dimensions and basic form parameters of the four models are listed in Table 1, and the bow lines are shown in Figures 1 through 4.

Basically, two different experiments were carried out with each of the four models: the standard resistance test over a large speed range, and longitudinal wave profile measurements at two selected speeds. The resistance was measured in the usual way by means of a strain-gage dynamometer and weights. The models were allowed to float freely, and turbulence was stimulated by rows of study near the bow.

The wave profile measurements required new equipment. A conductance wire type wave probe was constructed by Mr. W. H. Roth following the Hamburg design [11]. This probe is capable of

measuring both wave height and slope simultaneously, but only the former was recorded in the present tests. The probe was mounted at a fixed point in the towing tank, and as the model passed by, a time record of the wave height at the location of the probe was taken on a Sanborn strip chart recorder. Assuming steady state conditions, a simple transformation of the time scale yielded the desired longitudinal wave cuts in a coordinate system moving with the model. The relative position of the model was fixed by recording (on a separate channel) an event signal generated by the passage of the model across a sharply controlled light beam spanning the tank width. Owing to the relative narrowness of the towing tank the models had to be towed 2 feet off center, and the wave cuts were taken at a transverse distance of about 4 feet from the model center plane. The two speeds selected for wave measurements were 5.01 and 5.36 ft/sec corresponding to Froude numbers of 0.250 and 0.267 respectively.

Wave measurements on Models 1094 and 1094-B2 were conducted in July and August 1968. Resistance values were already available from previous work [10]. Wave and total resistance tests on Models 1094-B4 and 1094-B5 were carried out in March and May 1969 respectively.

ANALYSIS

The topic of primary interest in this study is, of course, the wave profile analysis. But it is simpler to begin with the resistance component analysis based on measured total resistance. The original test data (measured values of speed and resistance) are listed in Table 2 for all models. The total resistance values were analysed to achieve an empirical breakdown into viscous and wavemaking components. For this purpose, the ITTC-1957 friction line

$$C_{F} = \frac{0.075}{(\log_{10} R_{n} - 2)^{2}}$$
 (8)

was used and a graphical technique due to Hughes and Prohaska [12] was employed to determine the viscous form factors based on this line. The final results of this analysis are shown in Figures 5 through 8. The empirical wave resistance coefficients determined in this way for the four models are compared in Fig. 9. Also added for the sake of interest is a design oriented resistance comparison in Fig. 10 for an assumed full scale ship length of 680 ft [10]. It is evident that all three bulbs lead to a significant reduction in total resistance for $F_{\rm n} > 0.2$. The low resistance of bulb B5 at the design Froude number is obtained, however, at the expense of an unusual hump at low Froude numbers. It should be mentioned that the actual wetted surface area and displacement of each model has been used in the preceding analyses. However, the Reynolds and Froude numbers are based on a common length of 12.5 ft for the model and 680 ft for full scale.

The measured wave profiles were analysed by the longitudinal cut method described in References [2] and [1]. The first step in this method is to obtain the free-wave spectrum by a modified Fourier analysis of the wave profile. The results are displayed in Figures 11-12 for Model 1094, in Figures 13-14 for Model 1094-B2, in Figures 15-16 for Model 1094-B4 and in Figures 17-18 for Model 1094-B5. For each model and each of the two speeds tested, two alternative diagrams are provided, one showing the variation of the sine component F, the cosine component G and the total amplitude $E = \sqrt{(F^2+G^2)}$ with transverse wave number u, and the other showing the same quantities as a function of the corresponding longitudinal wave number s. It may be observed that the basic wave length of $2\pi F_{n}^{2}$ clearly shows up in the variation of amplitude with longitudinal wave number s, as one would expect from simple considerations of wave interference between bow and stern. It is also evident that each of the three bulbs is to some extent effective in reducing wave amplitudes at both speeds tested.

The next step is to calculate the nondimensional wave resistance $R_{_{
m W}}$ from the free-wave spectrum by use of equation (1). The results are listed in Table 3 and show clearly the significant reduction in wavemaking resistance achieved by each of the three bulbs. The table also provides a comparison of the results of wave analysis with corresponding numbers derived from a form-factor analysis of measured total resistance using the relations

$$C_{w} = C_{t} - (1 + k)C_{f}$$
 (9)

and
$$R_W = (g^2S/2V^4)C_W$$
 (10)

Obviously, our wave analysis underestimates the quantity (C_t-C_v) at these Froude numbers. The reason for this is not yet understood. However, it is only of side interest in the present study which is concerned mainly with the prediction of relative effects produced by the bulb.

Once the spectra are available, it is easy to combine them in pairs (main hull and any given bulb) and generate predictions of wavemaking resistance, or better still of the bulb influence factor $\eta=R_{\rm wt}/R_{\rm wm}$, for feasible variations of bulb size and location as explained in a previous section. This was attempted for all six possible combinations, namely main hull 1094 with bulbs B2, B4 and B5 at $F_n{=}0.250$ and at $F_n{=}0.267$. The results appear as Figures 19 through 24. Assuming the wave profile measurements to be sufficiently accurate and the principle of linear superposition of free-wave spectra to be strictly valid, the three diagrams at each Froude number should be perfectly equivalent. This will be discussed further in the next section.

Incidentally, the preceding analysis is almost fully automated. As described in Reference [13] our computer programs will accept digitized wave profile data as input and produce numerical and graphical output of spectrum (as a function of wave number) and of bulb influence factor (as a function of bulb size and location), as exemplified by Figures 11 through 24 which are all entirely computer generated.

DISCUSSION

The basic question to be examined here is whether the three different trial bulbs tested lead to identical, or at least similar, predictions of optimum bulb size and location. As noted above, the crucial test lies in examining the three supposedly equivalent Figures 19, 20 and 21 (or 22, 23 and 24) for mutual consistence. In comparing these diagrams however, it should be remembered that while the contour function n always has the same meaning, the scales for size p and location q are, in general, not the same everywhere for they are reckoned relative to the bulb on which the particular diagram is based.

For the ease of comparison, therefore, certain cross curves have been taken from the η contours and plotted on a common base. Thus Figure 25 illustrates the effect of change in bulb size for a fixed bulb location, assumed for instance to be coincident with B4. Since B4 and B5 have the same location, vertical cross curves were taken at q=0 from Figs. 20 and 21, but at q=0.02 from Fig. 19 as B2 is 0.02 L aft of B4. After adjusting the p values (only necessary for B5 as B2 and B4 are of same size) and replotting, Fig. 25 is obtained. In theory, the three curves should have collapsed into one. Actually, the three curves diverge with increasing p and there are appreciable differences in the η predictions. However, the optimum value of bulb size p is roughly the same in all cases.

Similarly, Figure 26 displays a comparison of horizontal cross sections taken from Figures 19-21 at p=1, 1 and 2/3 respectively after a suitable adjustment in the q scale of B2. Again, it is

evident that there is some divergence between the three curves, but their minima (the points of optimum bulb location) are fairly close to each other.

Finally, one might go a step further and compare the η predictions only at certain selected values of p and q corresponding to the cases actually tested. This results in the two matrices of cross prediction presented in Table 4. Since total resistance values were also available at these points the corresponding η values based on the form-factor analysis are also included as the last row of each matrix marked "EHP". It is encouraging that the discrepancies in the η values from wave analysis and from form-factor analysis are not as bad as the discrepancies between the corresponding $R_{_{\rm W}}$ values of Table 3. The cross predictions of η values themselves are pretty good with a few exceptions.

In summary, one can conclude that the semi-empirical technique of optimizing bow bulb configurations by linear superposition of free-wave spectra (derived from measured longitudinal wave profiles) holds promise as a useful design tool for economically predicting optimum bulb size and location with a minimum of model experiments. Although the absolute values of wave resistance are considerably underestimated by this method, the predicted ratios of wave resistance reduction seem to be fairly reasonable.

ACKNOWLEDGEMENTS

The authors are grateful to Professor F. C. Michelsen for initiating this project, and take pleasure in acknowledging the special help of Messrs William H. Roth and Arthur M. Reed without whose contributions this study would not have been possible.

W. H. Roth constructed the wave probe and carried out the wave profile measurements on the first two models: 1094 and 1094-B2.

A. M. Reed wrote Fortran IV computer programs for wave analysis and bulb optimization. Thanks are also due to David C. Lowery who programmed the spectrum and contour plotting subroutines.

The general cooperation of the staff of the Ship Hydrodynamics Laboratory, University of Michigan, in carrying out the experiments is appreciated. Besides the sponsoring agency noted on the title page, this work was also supported by the Department of Naval Architecture and Marine Engineering, and the Office of Research Administration of The University of Michigan.

REFERENCES

- [1] K. W. H. Eggers, S. D. Sharma, and L. W. Ward, "An assessment of some experimental methods for determining the wavemaking characteristics of a ship form," Trans. SNAME vol. 75 (1967) pp. 112-144, 157.
- [2] S. D. Sharma, "An attempted application of wave analysis techniques to achieve bow-wave reduction," Proc. Sixth Symposium on Naval Hydrodynamics, Washington, D.C., 1966, pp. 731-773.
- [3] J. T. Everest, "Some research on the hydrodynamics of catamarans and multi-hulled vessels in calm water," Trans. NECIES vol. 84 (1967-68) pp. 129-148, D29-34.
- [4] S. D. Sharma, "Der Wellenwiderstand eines flach getauchten Körpers und seine Beeinflussung durch einen aus dem Wasser herausragenden Turmaufbau," Schiffstechnik vol. 15 (1968) pp. 88-98.
- [5] W. C. S. Wigley, "The theory of the bulbous bow and its practical application," Trans. NECIES vol. 52 (1935-36) pp. 65-88.
- [6] G. Weinblum, "Theorie der Wulstschiffe," Schiffbau 1936 pp. 55-65.
- [7] A. Kracht, "Lineartheoretische Abhandlung über die optimale Verringerung des Wellenwiderstandes gegebener Schiffsformen durch einen Wulst in symmetrischer oder asymmetrischer Anordnung,"
 Institut für Schiffbau, Hamburg, Bericht Nr. 183, 1967.
- [8] T. Inui, "Wavemaking resistance of ships," Trans. SNAME vol. 70 (1962) pp. 282-326, 353.
- [9] T. H. Havelock, "The wave resistance of a spheroid," Proc. Royal Society A vol. 131 (1931) pp. 275-285.

- [10] F. C. Michelsen, J. L. Moss, and B. J. Young, "Some aspects of hydrodynamic design of high-speed merchant ships," Trans. SNAME vol. 76 (1968) pp. 214-230, 237.
- [11] H. Luft, "Wave probes for model tanks," Hamburg Model Basin Report No. F46/67 Translated from German by W. H. Roth and S. D. Sharma, University of Michigan, Department of Naval Architecture, July 1968.
- [12] G. Hughes, "An analysis of ship model resistance into viscous and wave components," Trans. RINA vol. 108 (1966) pp. 289-297, 302. Discussion by C. W. Prokaska, p. 301.
- [13] A. M. Reed, "Computer programs for the analysis of longitudinal ship wave profiles," University of Michigan, Department of Naval Architecture, May 1969.

TABLE 1-MODEL PARTICULARS

MODEL

 $L_{PP} = 12.5 \text{ ft}$

T = 6.25 in

 $\lambda = 54.4$

SHIP

 $L_{PP} = 680 \text{ ft}$

 $T_{\rm FL} = 28.333 \ {\rm ft}$

B = 100 ft

MODEL		0 0		MODEL		SHIP		
MODEL	C _B .	C _M	M C _P	S (ft²)	∇ (ft³)	S (ft)	∆ (tons-59°F)	
1094	.521	.976	.534	24.228	6.2312	71,700	28,680	
1094-B2	.525	.976	.538	24.701	6.2844	73,100	28,925	
1094-В4	.526	.976	.539	24.910	6.2904	73,720	28,950	
1094-B5	.527	.976	.540	24.991	6.3020	73,960	29,010	

NOTE: Reference [10] gives the following for model 1094:

$$C_{B} = 0.517$$

$$C_{\mathbf{M}} = 0.976$$

$$C_{\mathbf{p}} = 0.530$$

Data under test conditions gives values calculated above using:

$$C_{B} = \frac{\nabla}{LBT}; C_{P} = \frac{C_{B}}{C_{M}}$$

TABLE 2-MEASURED TOTAL RESISTANCE VALUES

MODEL	109	4	1094	4-B2	109	4-B4	1094	-B5	
∇-ft³	6.2312		6.2844 6.2		6.2	904	6.3020		
S-ft ²	24.228		24.701 24.			24.991			
TEMP °F	69.5		689			F	72	72°F	
SERIAL NO.	V (ft/sec)	R _T (1bs)	V	$R_{\mathbf{T}}$	V	RT	V	R_{T}	
1	1.98	.355	2.28	.535	2.01	.45	*1.99	.42	
2	2.07	. 39	2.74	.76	2.22	.55	2.00	.44	
3	2.29	.49	3.32	1.07	2.41	.63	2.22	.51	
4	2.51	.58	3.54	1.19	2.62	.73	*2.23	.51	
5	2.84	.75	3.64	1.28	2.80	.82	2.43	.62	
6	3.09	.87	4.05	1.56	3.00	.93	2.62	.70	
7	3.32	1.01	4.53	1.93	3.20	1.05	2.84	.84	
8	3.52	1.13	5.07	2.48	3.42	1.18	3.00	.93	
9	3.84	1.35	5.65	3.10	3.62	1.30	*3.22	1.06	
10	4.12	1.55	6.05	3.65	3.82	1.44	3.38	1.175	
11	4.43	1.80	6.13	3.79	4.02	1.57	3.59	1.32	
12	4.63	2.25	6.49	4.31	4.20	1.73	*3.60	1.29	
14	4.85	2.00	6.99	5.82	4.42	1.91	*3.78	1.40	
14	5.13	2.53			4.61	2.05	*4.01	1.55	
15	5.49	2.91			4.80	2.24	4.03	1.57	
16	5.64	3.08			5.01	2.40	4.18	1.70	
17	5.83	3.32			5.21	2.69	4.29	1.75	
18	6.12	3.72			5.41	2.88	4.66	2.05	
19	6.48	4.35			5.61	3.15	4.78	2.16	
20	6.75	5.03			5.82	3.40	5.03	2.42	
21	6.98	5.88			6.00	3.67	5.18	2.58	
22	7.09	6.37			6.43	4.32	5.39	2.77	
23	7.30	7.40			6.83	5.28	5.51	2.90	
24					7.21	6.93	5.79	3.23	
25							5.95	3.51	
26					30		6.25	3.90	
27							6.38	4.05	
28							*6.65	4.70	
29	Ì						*7.00	5.90	
30							*7.20	6.75	

^{*} denotes data taken at 74°F.

TABLE 3—COMPARISON OF $R_{\overline{W}}$

MODEL	R _W FROM EHP TESTS F _N = 0.250	R_W FROM WAVE CUTS $F_N = 0.250$	R_W FROM EHP TESTS $F_N = 0.267$	R_W FROM WAVE CUTS $F_N = 0.267$
1094	0.0127	0.0050	0.0106	0.0039
1094-B2	0.00567	0.0022	0.00570	0.0024
1094-в4	0.00306	0.0015	0.00457	0.0016
1094-B5	0.00409	0.0015	0.00419	0.0017

TABLE 4---CROSS PREDICTION MATRICES

Summary of results of wave analysis and bulb optimization for Model 1094

I. $F_n = 0.250$ (V = 5.01 ft/sec)

n PREDICTED F	OR	R
---------------	----	---

5'		В2	В4	В5
FROM	В2	0.44	0.43	0.36
TED	В4	0.58	0.32	0.24
PREDICTED	В5	0.53	0.39	0.29
PRE	EHP	0.446	0.241	0.322

II. $F_n = 0.267$ (V = 5.36 ft/sec)

η PREDICTED FOR

≶.	_	В2	В4	В5
FROM	В2	0.61	0.72	0.76
TED	В4	0.53	0.42	0.34
PREDICTED	B5	0.64	0.51	0.44
PRE	EHP	0.538	0.431	0.395

MODEL 1094

FIGURE 1

MODEL 1094-B2

FIGURE 2

MODEL 1094-B4

FIGURE 3

MODEL 1094-B5

FIGURE 4

MAY 3,1969 . 1.3. 3,70 3,70 MAVE SPECTRA FOR MODEL 1094-B5 AT V=5.01 FT./SEC. 3,40 3,40 3,40 3.10 FIGURE 17B 3,10 2.80 2.50 S 2.20 1.90 1.60 1,60 1.30 91. 3s. ΣÉ.

WAVE SPECTRA FOR MODEL 1094-B5 AT V=5.36 FT./SEC. MAY 3,1969 . 8 8 8.00 7.00 FIGURE 18 A 6.00 6.0 s.00 U 5.00 5.00 4.00 3.00 3.00 2.00 2.00 1.00 1.00 <u>oc</u>.8 80. 80. 3€. h2*-91 JS.

(69) MAY MODEL 1094 AND 1094-B5

NAVAL SHIP RESEARCH AND DEVELOPMENT CENTER DISTRIBUTION LIST

- 40 Commander
 Naval Ship Research and
 Development Center
 Washington, D. C. 20034
 Attn: Code L41 (39)
 Attn: Code 513 (1)
 - 2 Commanding Officer
 Naval Ship Research and
 Development Laboratory
 Anapolis, Maryland 21402
 Attn: Library
 - 2 Commanding Officer
 Naval Ship Research and
 Development Laboratory
 Panama City, Florida 32402
 Attn: Library
- 6 Commander
 Naval Ship Systems Command
 Department of the Navy
 Washington, D. C. 20360
 Attn: Code 037 (1) ADF
 Code 2052 (3)
 Code PMS 381 (1) ABCDF

Code 03412 (1)

- *12 Director
 Defense Documentation Center
 5010 Duke Street
 Alexandria, Virginia 22314
 - 1 Chief of Naval Research
 Department of the Navy
 Arlington, Virginia 22217
 Attn: Mr. Ralph D. Cooper
 Code 438
 - 1 Director
 Office of Naval Research
 Branch Office
 495 Summer Street
 Boston, Massachusetts 02210

- 1 Director
 Office of Naval Research
 Branch Office
 219 S. Dearborn Street
 Chicago, Illinois 60604
- 1 Office of Naval Research
 Resident Representative
 207 West 24th Street
 New York, New York 10011
- 1 Chief Scientist
 Office of Naval Research
 Branch Office
 1030 East Green Street
 Pasadena, California 91101
- 1 Director
 Office of Naval Research
 Branch Office
 50 Fell Street
 San Francisco, California 94102
- 3 Director
 Naval Research Laboratory
 Washington, D. C. 20390
 Attn: Library, Code 2029 (ONRL)
- 5 Commander
 Naval Ship Engineering Center
 Department of the Navy
 Center Building
 Prince Georges Center
 Hyattsville, Maryland 20782
 Attn: Code 6110
 Code 6114D
 Code 6120 AC
 Code 6136
 Code 6140 ADEF
- 1 Eastern Research Group
 P.O. Box 222
 Church Street Station
 New York, New York 10008

*Note: The DDC Form 50, "DDC Accession Notice" which is attached to this list must be forwarded with the 12 copies to the Defense Documentation Center.

- 1 Commanding Officer
 Naval Air Development Center
 Johnsville, Warminster
 Pennsylvania 18974
 Attn: Technical Library
- 1 Commanding Officer and Director Naval Applied Science Laboratory Flushing & Washington Avenue Brooklyn, New York 11251
- 1 Director (Code 2027)
 Naval Research Laboratory
 Washington, D. C. 20390
- 1 Commanding Officer
 Navy Underwater Weapons Research
 and Engineering Station
 Newport, Rhode Island 02840
- 2 Commander
 Naval Ship Engineering Center
 Department of the Navy
 Center Building
 Prince Georges Center
 Hyattsville, Maryland 20782
 Attn: Code 6144G ADEF
 Code 6034B
- 1 Commander
 Boston Naval Shipyard
 Boston, Massachusetts 02129
 Attn: Technical Library
- 1 Commander
 Charleston Naval Shipyard
 Naval Base
 Charleston, South Carolina 29408
 Attn: Technical Library
- 1 Commander ABCF
 Long Beach Naval Shipyard
 Long Beach, California 90802
 Attn: Technical Library

- 1 Commander
 Norfolk Naval Shipyard
 Portsmouth, Virginia 23709
 Attn: Technical Library
- 1 Commander
 Hunters Point Naval Shipyard
 San Francisco, California 94135
 Attn: Library
- 1 Commander
 Pearl Harbor Naval Shipyard
 Box 400, Fleet Post Office
 San Francisco, California 96610
 Attn: Code 246-P
- 1 Commander
 Philadelphia Naval Shipyard
 Philadelphia, Pennsylvania 19112
 Attn: Code 240 ABCF
- 1 Commander
 Portsmouth Naval Shipyard
 Portsmouth, N. H. 03801
 Attn: Technical Library
- 1 Commander
 Puget Sound Naval Shipyard
 Bremerton, Washington 98314
 Attn: Engineering Library
- 1 NASA Scientific and Technical
 Information Facility
 P.O. Box 33
 College Park, Maryland 20740
- Library of Congress
 Science and Technology Division
 Washington, D. C. 20540
- 1 U. S. Coast Guard
 1300 E Street N.W.
 Washington, D. C. 20591
 Attn: Division of Merchant
 Marine Safety

- 1 Commandant (E)
 U. S. Coast Guard (Sta 5-2)
 1300 E Street N.W.
 Washington, D. C. 20591
- 1 University of Bridgeport
 Bridgeport, Connecticut 06602
 Attn: Prof. Earl Uran
 Mech. Engr. Dept. ABDE
- 4 Naval Architecture Department
 College of Engineering
 University of California
 Berkeley, California 94720
 Attn: Librarian (1)
 Prof. J. R. Paulling (1)
 Prof. J. V. Wehausen (1)
 Dr. H. A. Schade (1)
- 1 Cornell University
 Graduate School of Aerospace Engr.
 Ithaca, New York 14850
 Attn: Prof. W. R. Sears
- 1 The University of Iowa Iowa City, Iowa 52240 Attn: Dr. Hunter Rouse
- 2 The University of Iowa
 Iowa Institute of Hydraulic
 Research
 Iowa City, Iowa 52240
 Attn: Dr. L. Landweber (1)
 Dr. J. Kennedy (1)
- 1 Long Island University
 Graduate Department of Marine
 Science
 40 Merrick Avenue
 East Meadow, New York 11554
 Attn: Prof. David Price

- 5 Massachusetts Institute of
 Technology
 Department of Naval Architecture
 and Marine Engineering
 Cambridge, Massachusetts 02139
 Attn: Dr. A. H. Keil (1)
 Prof. P. Mandel (1) ADE
 Prof. J. R. Kerwin (1)
 Prof. M. Abkowitz (1) ABCDE
 Dr. J. N. Newman (1) ACD
- 3 University of Michigan
 Department of Naval Architecture
 and Marine Engineering
 Ann Arbor, Michigan 48104
 Attn: Dr. T. F. Ogilvie (1)
 Prof. H. Benford (1)
 Dr. F. C. Michelsen (1)
- 2 Anthony Falls Hydraulic Lab University of Minnesota Mississippi River at 3rd Ave. S.E. Minneapolis, Minnesota 55414 Attn: Director (1) Dr. C. S. Song (1)
- 2 U. S. Naval Academy Annapolis, Maryland 21402 Attn: Library (1) Dr. Bruce Johnson (1) ADF
- 1 U. S. Naval Postgraduate School
 Monterey, California 93940
 Attn: Library (1)
- 1 New York University
 University Heights
 Bronx, New York 10453
 Attn: Prof. W. Pierson, Jr.
- 1 The Pennsylvania State University Ordnance Research Laboratory University Park, Penn. 16801 Attn: Director (1) ABDE

- 2 Scripps Institution of
 Oceanography
 University of California
 La Jolla, California 92038
 Attn: J. Pollock (1)
 M. Silverman (1) ABCF
- 3 Stevens Institute of
 Technology
 Davidson Laboratory
 711 Hudson Street
 Hoboken, New Jersey 07030
 Attn: Dr. J.P. Breslin (1)
 Dr. S. Tsakonas (1)
 Library (1)
- 1 University of Washington Applied Physics Laboratory 1013 N.E. 40th Street ABDF Seattle, Washington 98105 Attn: Director
- 2 Webb Institute of Naval
 Architecture
 Crescent Beach Road
 Glen Cove, L. I., N. Y. 11542
 Attn: Prof. E. V. Lewis (1)
 Prof. L. W. Ward (1)
- 1 Worcester Polytechnic Institute
 Alden Research Laboratories
 Worcester, Massachusetts 01609
 Attn: Director ADE
- 1 Aerojet-General Corporation
 1100 W. Hollyvale Street
 Azusa, California 91702
 Attn: Mr. J. Levy
 Bldg 160, Dept 4223
- 1 Bethlehem Steel Corporation
 Central Technical Division
 Sparrows Point Yard
 Sparrows Point, Maryland 21219
 Attn: Mr. A. Haff, Technical Mgr
- 1 Bethlehem Steel Corporation ABC
 Attn: H. de Luce,
 25 Broadway
 New York, New York 10004

- 1 Bolt Beranek & Newman, Inc.
 50 Moulton Street
 Cambridge, Massachusetts 02138
 Attn: Dr. N. Brown (1) A
- 1 Cornell Aeronautical Laboratory Applied Mechanics Department P.O. Box 235 Buffalo, New York 14221
- 1 Electric Boat Division General Dynamics Corporation Groton, Connecticut 06340 Attn: Mr. V. Boatwright, Jr.
- 1 Esso International
 15 West 51st Street ABCD
 New York, New York 10019
 Attn: Mr. R. J. Taylor, Manager
 R. & D Tanker Department
- 1 Gibbs & Cox, Inc.
 21 West Street
 New York, New York 10006
 Attn: Technical Library
- 1 Grumman Aircraft Engineering Corp
 Bethpage, L.I., N. Y. 11714
 Attn: Mr. W. Carl
- 2 Hydronautics, Inc.
 Pindell School Road
 Howard County
 Laurel, Maryland 20810
 Attn: Mr. P. Eisenberg (1)
 Mr. M. Tulin (1)
- 1 Lockheed Missiles & Space Co. AE
 P. O. Box 504
 Sunnyvale, California 94088
 Attn: Mr. R. Waid, Facility #1
 Dept 57-01, Bldg 150
- 2 McDonnell Douglas Aircraft Co.
 Douglas Aircraft Division
 3855 Lakewood Blvd DE
 Long Beach, California 90801
 Attn: Mr. John Hess (1)
 Mr. A. M. O. Smith (1)

- 1 Measurement Analysis Corporation 10960 Santa Monica Blvd Los Angeles, California 90025 DF
- 1 Newport News Shipbuilding and
 Dry Dock Company
 4101 Washington Avenue
 Newport News, Virginia 23607
 Attn: Technical Library Dept.
- 1 Oceanics, Incorporated
 Technical Industrial Park
 Plainview, L.I., N. Y. 11803
 Attn: Dr. Paul Kaplan
- 1 Robert Taggart, Inc.
 3930 Walnut Street
 Fairfax, Virginia 22030
 Attn: Mr. R. Taggart
- 1 Society of Naval Architects and
 Marine Engineers
 74 Trinity Place
 New York, New York 10006
- 1 Naval Ship Engineering Center
 Norfolk Division
 Boat Engineering Department
 Norfolk, Virginia 23511
 Attn: Mr. D. L. Blount
 Code 6660
- 1 Woods Hole Oceanographic Institute
 Woods Hole, Massachusetts 02543
 Attn: Reference Room ABCDF
- 1 Prof. Jerome Lurye
 Department of Mathematics
 St. John's University ABCDE
 Jamaica, New York 11432
- 1 Stanford Research Institute
 Menlo Park, California 94025
 Attn: Library

1 Cambridge Acoustical Associates,
 Inc.
129 Mount Auburn Street
 Cambridge, Massachusetts 02138
 Attn: Mr. M. C. Junger ABDF

Security Classification						
DOCUMENT CONT	ROL DATA - R 8	& D				
(Security classification of title, body of abstract and indexing a	annotation must be e	ntered when the c	verall report is classified)			
1. ORIGINATING ACTIVITY (Corporate author)	28. REPORT SECURITY CLASSIFICATION					
The University of Michigan		Unclassified				
College of Engineering		2b. GROUP				
Department of Naval Architecture						
3. REPORT TITLE						
OPTIMIZATION OF BOW BULB CONFIGURATIONS ON THE						
BASIS OF MODEL WAVE PROFILE MEASUREMENTS						
4. DESCRIPTIVE NOTES (Type of report and inclusive dates)						
Final Technical Report						
5. AUTHOR(S) (First name, middle initial, last name)						
Som D. Sharma and John N. Naegle						
6. REPORT DATE	7a, TOTAL NO. OI	FPAGES	7b. NO. OF REFS			
December 1970	60	60 13				
8a. CONTRACT OR GRANT NO.	9a. ORIGINATOR'S REPORT NUMBER(5)					
N00014-67-A-0181-0009	104					
b. PROJECT NO.						
SR 009 01 01						
	9b. OTHER REPORT NO(5) (Any other numbers that may be assigned this report)					
d.	Project No. 01491					
10. DISTRIBUTION STATEMENT	·					
This document has been approved f	or public	release	and sale;			
its distribution is unlimited.	-					
11. SUPPLEMENTARY NOTES	12. SPONSORING MILITARY ACTIVITY					
	Naval Ship Systems Command General					
	Hydromechanics Research Program					
	<u> </u>					
13. ABSTRACT						

A semi-empirical method for designing bow bulb configurations of low wave resistance on the basis of wave profile measurements in the model basin is critically examined. The fundamental assumption under investigation is the principle of linear superposition of the individual free-wave spectra of the main hull and the bow bulb to yield the free-wave spectrum of the composite bulbous bow hull form. It is concluded that wave resistance predictions based on this hypothesis are reasonably accurate so as to encourage the use of this method as a heuristic design tool.

14. KEY. WORDS	LI	LINK A		LINK B		LINK C	
	ROLE	WT	ROLE	wт	ROLE	WT	
		ľ			n		
	Bow bulb design				İ		
	Ship wave resistance						
	bhip wave resistance						
	Wave profile measurement]		
	Wave pattern analysis						
	Wave resistance reduction						
	wave resistance reduction						
					ļ		
		ľ					
-						-	
			İ		ļ		
					İ		
					1		
	Z Z						
				İ			
						ì	
					-		
	•						
						14	
				•			
				*			
	(2)	I					

DD FORM 1473 (BACK)

(PAGE 2)

UNCLASSIFIED
Security Classification