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Introduction 

Chapter one and two share a similar theme as we are using the same fluid-dynamic system 

to understand the deformation of the lower crust. Specifically, we use unidirectional 

Poiseuille flow with both uniform and depth-dependent viscosities to model lower crustal 

flow. In the first chapter, we examine the lithospheric dynamics of the lower crust in the 

Tibetan region. Previous studies have inferred depth-independent lower crust viscosities of 

the region based on topographic gradient of the Tibetan Plateau. Assuming that upper crustal 

deformation mainly depends on the flux of the lower crustal flow and not on the details of 

the flow at depth, we consider models of lower crustal flow with depth-dependent viscosity 

which generate identical channel flux as the uniform viscosity model, and draw connections 

between the depth-independent viscosity and the equivalent depth-dependent viscosity 

profiles. In Chapter two, using the same fliud-dynamic model, we examine lower crust 

deformation under the Cholame section of the San Andreas Fault. With non-volcanic 

tremors found at the base of the lower crust and occurring parallel to the surface trace of the 

San Andreas Fault, it is proposed that the San Andreas Fault is extending to the base of the 

crust and is dipping at depth. Here we evaluate whether the occurrence of NVT on the deep 

extension of the SAF is consistent with lower crustal flow. We do so by constraining the 

range of viscosities of the lower crust which would allow a localized fault to exist in the 

lower crust over a time scale of 1 Myr. 

* Section 4.1 of Chapter 1 is contributed by Professor Eric A. Hetland. I've retained this 
section in the thesis so that Chapter 1 is presented as it will appear in published form. 
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Abstract

It has been proposed that crustal deformation is a result of material flow

in the lower crust over time scales of several million years (tectonic time

scale). Pervious studies demonstrated that over these time scales, upper

crustal deformation mainly depends on the flux of the lower crustal flow

and not on the details of the flow at depth. As temperature increases with

depth, the viscosity of the lower crust is expected to decrease. Thus a ho-

mogeneous Newtonian viscosity over an assumed homogenous viscous lower

crustal channel is merely an apparent viscosity of the crust. In this paper,

we consider models of a lower crustal flow with depth-dependent viscosity,

in order to draw connections between this apparent viscosity and equivalent

depth-dependent viscosity profiles. We find that there is a large range of

depth-dependent viscosity profiles that are consistent with an inferred ap-

parent viscosity. Also, the apparent viscosity is in general biased toward

the lowest viscosities in the lower crust. Furthermore, the apparent viscosity

can be lower than the lowest actual viscosity in the lower crust, if the lower

crustal channel is underestimated. We finally consider unidirectional flow

1This chapter is to be submitted to Earth Planet. Sci. Lett. in April 2011.
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in models with nonlinear, depth-denpendent viscosity. We find that very

low apparent viscosities are only consistent with either high temperatures or

strong stresses driving lower crustal flow.

Keywords:

lower crustal flow, lithospheric dynamics, apparent viscosity

1. Introduction

Several studies have proposed that lower crustal flow drives the deforma-

tion of the crust over time scales of several million years, hereafter referred to

as “tectonic time scales” (e.g., [1–7]). By linking observations indicative of

crustal deformation to lower crustal flow, some of these studies were able to

infer an apparent viscosity of the lower crust. Most of these models simplify

the crust, for instance by describing the lower crust with a single Newto-

nian viscosity. The effective viscosity of the lower crust is expected to vary

with depth, with a variation up to several orders of magnitude (e.g., [8]).

Moreover, the dominant deformation mechanism in the lower crust is likely

dislocation creep, and thus the viscosity is non-linear (e.g., [8–10]).

Kruse et al. [2] and Kaufman and Royden [3] demonstrated that any in-

ference of a Newtonian lower crust viscosity is only a proxy for the viscous

properties of the lower-most crust. Kruse et al. [2] demonstrated that nu-

merical models with non-linear lower crust viscosities predicted upper crustal

deformation over tectonic time scales similar to that predicted in simplified

models with a homogeneous Newtonian viscosity. Kaufman and Royden [3]

also demonstrated that flow in the lower crust with a depth-dependent, non-

linear viscosity was similar to flow in a lower crustal channel with a homoge-
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neous Newtonian viscosity. As a consequence of this similarity, a model-based

inference of a uniform Newtonian lower crust viscosity is merely an apparent

viscosity of the lower crust [3]. Clark and Royden [4] showed that the evolu-

tion of topography is sensitive to the apparent viscosity divided by the cube

of the channel thickness. Hence, an apparent Newtonian viscosity in any

thickness lower crustal channel can be found by rescaling an inferred appar-

ent viscosity determined over a given channel thickness. Ideally, the thickness

of the channel should correspond to the thickness of the lower crust that is

significantly flowing, although that thickness is not a-priori known. Since

the apparent viscosity of the lower crust trades-off with the thickness of the

assumed channel, we refer to the channel over which the apparent viscosity

was determined as the “apparent channel.” While an apparent viscosity in

a simplified model of lower crustal flow may be uniquely constrained from

observations of upper crust deformation, there may be an infinite collection

of depth dependent viscous profiles that are consistent with the observations.

Clark and Royden [4] proposed a model in which unidirectional flow in a

15 km thick lower crustal channel is the driving force for the change in crustal

thickness and the evolution of topographic gradient. In their model, crustal

deformation depends only on the flux of flow in the lower crustal channel, and

not on the details of the flow at depth. The position of the viscous channel in

the lower crust was not included in their model, although it it is likely that

the channel would be in the lower-most crust where viscosities are expected

to be smallest. Based on present topographic gradients in Tibet, Clark and

Royden [4] argued for heterogeneity in the apparent lower crust viscosity

in Tibet, from 1016 Pa·sec under the flat central plateau, to 1018 Pa·sec in
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the southeast and 1021 Pa·sec at the eastern edge of the plateau adjacent to

the Sichuan basin. Clark et al. [6] subsequently proposed a more detailed

model that included 2D horizontal flow around a rigid barrier approximating

the Sichuan basin, and found that the topographic gradient surrounding the

Sichuan basin was consistent with a lower crust viscosity of 1018 Pa·sec.

A low viscosity of 1016–1018 Pa·sec is broadly consistent with magne-

totelleuric measurements and seismic reflectivity in Tibet that indicating

partial melt and/or fluids present in the lower crust (e.g., [11–15]). However,

several studies have questioned the lower crust viscosity being this low (e.g.,

[16–21]). For instance, Hilley et al. [16, 19] used GPS measurements of inter-

seismic deformation to infer viscosities in the range of 1–200 ×1019 Pa·sec.

Complicating the comparison of the two studies, the models of Hilley et al.

[16, 19] did not contain a separate lower crust and upper-most mantle, and

it is not clear how their single viscosity estimate relates to the viscosity of

the lower crust and/or mantle [22].

Here we use dynamic modes of pressure driven unidirectional flow in a

2D channel, with both uniform and depth dependent viscosity, to explore the

connection between an apparent lower crust viscosity and models of depth

dependent viscosity throughout the lower crust. Specifically, we show that in-

ferred apparent viscosities of the lower crust are consistent with a large range

of depth-dependent viscosity profiles of the lower crust. Over tectonic time

scales, surface observations of upper crust deformation are only sensitive to

the viscous properties in the weakest crust (i.e., with the lowest viscosities),

even when stronger regions (i.e., with larger viscosities) participate in lower

crustal flow. We illustrate the depth sensitivity of inferences of lower crust
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viscosity using the dynamic model proposed by Clark and Royden [4]. We

first describe unidirectional flow with depth-dependent viscosity, and second

we illustrate our model for the case of an apparent lower crust viscosity of

1018 Pa·sec. We end with a brief discussion of these results and the effect of

non-linear viscosity in the lower crust.

2. Unidirectional Viscous Flow

Unidirectional flow (u) along an infinite length, 2D channel is governed

by
d

dz
η(z)

d

dz
u(z) = −dP

dx
(1)

where z is depth, x signifies the along channel direction, η(z) is depth-

dependent viscosity, and dP/dx is a lateral pressure gradient. In these mod-

els, dP/dx is due to lateral changes in topography (i.e., a topographic gradi-

ent). For constant viscosity (ηo), the solution to (1) with no-slip boundary

conditions at the top and bottom of the channel is

u(z) =
1

2ηo

dP

dx

(
z2 − hz

)
(2)

where h is the thickness of the channel. Equation (2) is the well known

Poisseuille flow, in which flow is greatest in the middle of the channel.

In Earth materials, viscosity decreases exponentially with increasing tem-

perature (η ∝ e1/T ), and as temperature increases with depth, viscosity de-

creases with depth (e.g., [8–10]). Neglecting a stress-dependence of viscosity,

potential material changes, and/or depth variations in water content in the

lower crust, the highest viscosity in the lower crust (ηH) will be below the

brittle-ductile boundary, and the lowest (ηL) at the Moho. For simplicity, we
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initially assume a relatively simple functional form of viscosity given by

η(z) = Ae−z/ζ +B (3)

where both A and B are functions of ηH and ηL, and ζ is a decay constant

(Fig. 1a). It is important to reiterate that with equation (3) we are implic-

itly assuming that the lower crust composition is homogeneous, and thus

that viscosity is only dependent on temperature. We also ignore possible

non-linearity in viscosity, and we consider the impact of non-linear viscosity

in the Discussion section. An analytic expression for unidirectional pressure

driven flow in a lower crust with depth-dependent viscosity can be obtained

by solving equation (1) using equation (3) and no-slip boundary conditions

at the top and bottom of the channel, which we do using Mathematica. We

verified the analytic solution numerically using a discritized multi-layered

model, where each layer has uniform viscosity. With depth-dependent vis-

cosity, flow is greater in the lowermost crust where the viscosities are lowest.

As expected, models with exponentially decreasing viscosity produce larger

flow deeper than in models with constant viscosity (Fig. 1b).

3. Sensitivity of Depth-Dependent Viscosity

In the models of Clark and Royden [4] and Clark et al. [6], the evolution of

topographic gradient depends only on the depth-integrated flow, and not on

the flow velocities at any particular depth. Therefore, two models with the

same channel flux but different viscosity distributions will produce identical

topographic gradients. For example, the two flow models in Fig. 1a, one

with a constant viscosity (ηo) channel and the other with a depth-dependent
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viscosity, have the same channel flux. In general, ηo is greater than ηL but

is lower than the average viscosity of the depth-dependent viscosity. Each

depth-dependent viscosity profile has a unique apparent viscosity, although

each apparent viscosity is not uniquely related to only one realization of

a depth-dependent viscosity profile. In other words, there are an infinite

number of combinations of ηH , ηL, and ζ which have the same apparent

viscosity.

When the viscosity exponentially decreases with depth, the largest flow

will be in the lower portion of the channel (Fig. 1b), and thus it might be

more appropriate to compare the flow in the depth-dependent viscosity model

to that in a homogeneous viscosity model with a smaller channel thickness.

As the thickness of a uniform viscosity channel decreases and for a constant

pressure gradient, the viscosity of the thinner channel will likewise need to

decrease in order to maintain the same depth integrated flow (Fig. 1). Hence,

it is possible that if one calculates an apparent viscosity using a uniform

viscosity model with a thinner apparent channel than the ductile lower crust,

the apparent viscosity may actually be lower than the lowest viscosities in

the lower crust.

3.1. Illustration for an Apparent Viscosity of 1018 Pa·sec

We further explore the concepts presented above, using a 15 km thick

apparent channel with apparent viscosity of 1018 Pa·sec, with flow driven by

a pressure gradient of about 40 Pa/m (equivalent to an elevation decrease

of 4 km over a distance of 2500 km). This model is inspired by the pre-

ferred model of Clark and Royden [4] for Southeastern margin of the Tibetan

Plateau. We first assume that the crust above and below the viscous channel
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does not flow in response to the topographic pressure gradient, and we sec-

ond consider that the entire non-seismogenic crust flows. In both cases we

assume the viscosity decreases exponentially with depth according to equa-

tion (3), and we consider a large range of depth-dependent viscosities, with

ηH varying from 1017 to 1025 Pa·s, and ηL from 1015 to 1024 Pa·s, exclud-

ing any combinations in which ηH < ηL. For each ηH and ηL combination,

we determine a corresponding ζ value such that the depth-integrated flow is

identical to the channel flux produced with uniform viscosity of 1018 Pa·sec.

3.1.1. Flow restricted to a 15 km lower crust channel

In this first set of models, we consider that the flow is only within a 15

km thick channel. We find a suite of depth-dependent viscosity profiles that

generate the identical flux as that in a channel with uniform viscosity of

1018 Pa·sec (Fig. 2). In other words, the apparent viscosity of these viscosity

profiles is all 1018 Pa·sec. We only show viscosity profiles with ηH ≤ 1024

Pa·sec, although there is no upper limit of ηH . On the other hand, the upper

limit of ηL is the apparent viscosity of 1018 Pa·sec. As above, in all cases, the

average viscosity of each depth-dependent profile is larger than the apparent

viscosity.

3.1.2. Flow in the entire non-seismogenic crust

In the second set of models, we consider that the entire lower crust below

the brittle-ductile transition flows in response to a pressure gradient. We

continue to assume that the apparent viscosity of 1018 Pa·sec was determined

over a uniform viscosity channel 15 km thick. Furthermore, we neglect any

depth dependence of the horizontal pressure gradient resulting from variation
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of densities in the crust, and we do not consider vertical flow that may result

from depressions of the Moho under the plateau. We remark on both of these

in the Discussions section.

Our choice of the thickness of the ductile lower crust is based on the

inferred thickness of the lower crust in Tibet. The Moho beneath the Tibetan

Plateau is approximately 65 to 70 km below the Earth surface, and we assume

that the brittle-ductile transition is at the base of the seismogenic upper crust

at approximately 20 km at depth (e.g., [11, 13, 15]). We then assume that

the ductile lower crust is 40 km thick. While the choice of how much of the

crust may be flowing due to topographic pressure gradients depends strongly

on the rheology of the entire crust, our main focus here is to demonstrate

the range of depth-dependent viscosities that all have the same apparent

viscosity. We take 40 km as an upper limit of the lower crustal thickness

that would be flowing in response to topographic gradients.

As before, we also find a wide range of depth-dependent viscosity profiles

that generate the same channel flux (Fig. 3). We only show viscosity profiles

with ηL ≥ 1016 Pa·sec and ηH ≤ 1024 Pa·sec, although there is no lower or

upper limit of ηL or ηH , respectively. If the entire 40 km thick ductile lower

crust flows in response to the topography induced pressure gradient, then

ηL can be as large as 1019.2 Pa·sec, which is about 15 times larger than the

apparent viscosity of 1018 Pa·sec. If ηL ≤ 1018 Pa·sec, then ηH ≥ 1020 Pa·sec,

whereas if ηL is larger than 1018 Pa·sec then ηH may be as low as 1019.4 Pa·sec

(Fig. 3c).
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4. Discussion

In the above analysis, we assume a single pressure gradient driving unidi-

rectional flow in a linearly viscous lower crust with a simple decrease in vis-

cosity with depth. We also assume a particular apparent viscosity, motivated

by the apparent viscosity inferred in eastern Tibet by Clark and Royden [4]

and Clark et al. [6]. Poisseuille flow models with either a uniform or a depth-

dependent viscosity depend linearly on the pressure gradient. As long as the

pressure gradient is the same in the uniform viscosity and depth-dependent

viscosity models, the equivalence in viscosity profiles shown in Figs. 2 and 3

will be the same. Uniform Poisseuille flow depends inversely on the apparent

viscosity, and thus the depth-integrated flow also depends inversely on the

apparent viscosity. If matched to another apparent viscosity, the equivalent

depth-dependent viscosity profiles shown above would be offset by the ratio

of the new apparent viscosity and 1018 Pa·sec. For example, if we had con-

sidered an apparent viscosity of 1016 Pa·sec, which is the apparent viscosity

in the central region of the Tibetan plateau Clark and Royden [4], then the

equivalent depth-dependent viscosity profiles shown in Fig. 2 and 3 would be

uniformly 100 times lower viscosity.

We implicitly assume that the lower crust is a homogeneous material,

where viscosity variations with depth are due only to increasing temperature.

Since we considered a wide range of viscosity profiles, our analysis does not

depend on a particular geothermal gradient or material. The geothermal

gradient and material that would result in any particular combination of

ηL, ηH , and ζ in equation (3) might be implausible in the Earth, and in

this paper we do not attempt to use mineralogy or geothermal gradient as

10



constraints on the equivalent depth-dependent viscosity profiles. If there is

material heterogeneity in the lower crust, the viscosity profile may not be

approximated by equation (3). For example, if there is a transition from wet

quartzite in the mid crust to dry dunite in the lower crust, the depth variation

in viscosity would be such that the lowest viscosities might be at the base of

the mid-crust quartzite layer (e.g., [23]). We could include such layering of

depth-dependent viscosity; however, as our analysis is based on the flow flux

in the lower crustal channel, and not on the details of the depth-dependent

flow, our main conclusions would not change if the depth distribution of flow

was different. The apparent viscosity is biased towards lowest viscosities. If

the lowest viscosities were at a shallower depth in the lower crust, then the

apparent viscosity would depend most strongly on those values, and would

be relatively insensitive to the larger viscosities elsewhere in the lower crust.

We assume that a single lateral pressure gradient drives lower crustal

flow, along an infinitely long channel with constant thickness. However, it

is probable that crustal thickness will co-vary with topography to maintain

isostacy, and thus the lower crust will have variable thickness. Additionally,

density variations between a thickened crustal root under high topography

and lithospheric mantle under adjacent thinner crust would also affect the

distribution of pressure gradients in the lower crust. The result would be

that instead of lower crustal flow being unidirectional as we assumed, there

may be a contribution of vertical flow, particularly at the edge of the crustal

root (e.g., [2, 24]). In models that allow for both vertical and horizontal

pressure driven flow, the vertical rates are most important when the lower

crust is thinner than about 25 km, and that these models of 2D lower crustal
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flow can still be approximated by unidirectional flow [2].

4.1. Non-linearity of viscosity

Deformation in the lower crust is most likely in the dislocation creep

regime, and thus viscosity non-linearly depends on both temperature and

shear stress (e.g., [8–10]). Linear viscosity in models of crustal deformation

over tectonic time scales can approximate non-linear viscosity when the de-

formation is only sensitive to the flow flux [3]. We consider models with

non-linear viscosity in light of our above results, and discuss how models

with non-linear viscosity differ from those with simply a prescribed depth-

dependent viscosity.

Pressure driven flow in a temperature dependent, non-linear viscous chan-

nel can be derived from equation (1) assuming an effective viscosity given

by

ηeff = A−1/ne
Q

nRT (z)

(
1

2

du

dz

) 1−n
n

(4)

where R is the universal gas constant, n is the power-law exponent, and A

and Q are viscous properties. We use Mathematica to solve for the flow

distribution, assuming that n = 3 and that temperature increases linearly

with depth. In Fig. 4a, we show the non-linear unidirectional flow over a

40 km thick lower crust for two temperature gradients, assuming three sets

of viscous properties. The viscous properties in the first model approximate

wet Quartzite [9], while in the second two models we arbitrarily decrease A

by an order of magnitude, or increase Q by 16% (Table 1). Each flow model

is chosen so that the depth-integrated flow is the same as in a model with

a 15 km thick channel with a linear Newtonian viscosity of 1018 Pa·sec (i.e.,
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the apparent viscosity of the non-linear models). We choose to illustrate

our models with a wet Quartzite rheology so that reasonable geothermal

gradients can lead to sufficiently low effective viscosities at depth. In the

second two models we permute the viscous parameters in order to generate

the same depth-integrated flow with hotter temperatures.

A 15 km thick apparent channel roughly correlates with the depths of the

largest flow in the non-linear models. We choose a 40 km thick channel as a

conservative choice, in that thinner non-linear viscous channels are equivalent

to larger apparent viscosities for given viscous properties and temperature

gradients. In other words, if we had assumed a thinner channel, the appar-

ent viscosities over a 15 km apparent channel would be larger for a given

pressure gradient. Due primarily to increasing temperature, ηeff decreases

near-exponentially with depth (Fig. 4a). There is a singularity in ηeff in the

center of the flow, as the strain-rates go to zero in the plug-like flow. Es-

sentially, in the region around the singularity in ηeff , the lower crust appears

infinitely viscous as it is flowing uniformly with little shear strains.

For pressure driven unidirectional flow using a temperature-dependent,

non-linear viscosity model, the flow is non-linearly related to the pressure

gradient (e.g., [3]). As a result, the apparent viscosity of non-linear flow

models will increase non-linearly as pressure gradient decreases (Fig. 4b).

This non-linear decrease in apparent viscosity is in contrast to the Newtonian

models presented above, where the apparent viscosity will decrease linearly

with decreasing pressure gradient. The flow is non-linearly related to the

temperature profile in the channel, and thus as the vertical temperature

gradient increases, the apparent viscosity also increases (Fig. 4b).
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4.2. Applicability to the low apparent viscosities of central Tibet

Clark and Royden [4] concluded that the apparent lower crust viscosity

under the central regions of the Tibetan plateau was at most 1016 Pa·sec. The

low inferred viscosity was based on the very low topographic gradients in the

plateau. Models of postseismic deformation from earthquakes in the plateau

also resolve rather low viscosities, although most viscosity inferences are on

order of 1018 Pa·sec (e.g., [18, 20]). Based on postseismic deformation mea-

surements over about a year following a smaller earthquake on the Tibetan

plateau, Ryder et al. [21] found that the viscosity of the ductile lithosphere

was no smaller than 3 × 1017 Pa·sec, and due to the short record of post-

seismic observations they were not able to further constrain the viscosities.

As in the above cases for an apparent viscosity of 1018 Pa·sec, if Clark and

Royden [4] underestimated the thickness of the crust that is flowing, it may

be that their apparent viscosity of 1016 Pa·sec is consistent with lower crustal

viscosities no lower than about 1017 Pa·sec. A viscosity of 1017 Pa·sec is still

an order of magnitude less than postseismic models of larger earthquakes

and using longer postseismic records (e.g., [18, 20]) We note that postseismic

models may not have the same sensitivity to viscosities at depth as models

of pressure driven flow over tectonic time scales. Transient effects due to

increases in stress below the base of the fault following the earthquake will

also likely result in effective viscosities over postseismic time-scales different

from those over tectonic-time scales (e.g., [25]).

Assuming a wet quartzite rheology of the lower crust, plausible geother-

mal gradients, and the ductile lower crust being 40 km thick, we find that

for the lower crust to have an apparent viscosity of 1016 Pa·sec, the pressure
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gradient would need to be significantly larger than 100 Pa/m (equivalent to a

topographic gradient greater than 4/5000 km/km; Fig. 4b). This is because

in order to sufficiently lower the effective viscosities, the flow needs to be

driven by a very large pressure gradient. The need for such a large pressure

gradient is opposite to the model of Clark and Royden [4], in which a low

topographic gradient indicates a low apparent viscosity. The unidirectional

pressure driven flow model proposed by Clark and Royden [4] may not be a

complete model to explain the lack of substantial topographic gradients in

the central plateau.

An apparent viscosity of 1016 Pa·sec might be possible with a gentle pres-

sure gradient if the crust was significantly hotter (either with larger geother-

mal gradient or larger temperatures), or was composed of a much weaker

material. For a wet quartzite rheology, we find that the temperature gradi-

ent of the crust would need to be about 25◦C/km with a pressure gradient

of about 40 Pa/m, for the apparent viscosity to be as low as 1016 Pa·sec.

For a temperature of about 250◦C at the brittle-ductile transition, and a

40 km thick ductile lower crust, and gradient of 25◦C/km would predict a

temperature of 1250◦C, well above the solidus temperature of wet quartzite.

There are geophysical indications of partial melt in the Tibetan crust (e.g.,

[11–15]), and xenoliths in northern Tibet show evidence of heating to 1350◦C

[26].

5. Conclusions

There are several models that seek to explain observations representa-

tive of crustal deformation due to lower crustal flow over times scales of
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several million years (e.g., [1–7]). In those models, upper crustal deforma-

tion depends most strongly on the the total flux of lower crustal flow (i.e.,

the depth-integrated flow), and not necessarily on the particular distribution

of depth-dependent flow [3]. By dynamically linking observations to lower

crustal flow, many of those studies constrained an apparent viscosity of the

lower crust. We explore the connections between apparent viscosity of the

lower crust and equivalent depth-dependent viscosity profiles. We find that

the apparent viscosity over these time scales is biased towards the lowest

viscosities in the lower crust. Due to this, the viscosities in the lower crust

may be much larger than the inferred apparent viscosities. For instance, in

a channel with an apparent uniform viscosity of 1018 Pa·s, depth-dependent

viscosity profiles over that same 15 km thick channel can have a maximum

viscosity larger than 1018 Pa·s and a minimum as high as 1018 Pa·s. If more

of the lower crust participates in the flow, then the lowest viscosities in the

lower crust might actually be up to an order of magnitude larger than the

inferred apparent viscosity. This suggests that the seemingly low apparent

viscosity of 1018 Pa·sec suggested by Clark and Royden [4] and Clark et al.

[6] for eastern Tibetan plateau may be consistent with a depth-dependent

viscosity profile, in which the minimum viscosity is up to 1019 Pa·sec, if they

underestimated the thickness of the lower crustal channel that is significantly

flowing due to topographic gradients. Likewise, an apparent viscosity of 1016

Pa·sec for the central plateau may be consistent with minimum viscosities

in the lower crust of about 1017 Pa·sec. This viscosity is close to the lower

bound of viscosity inferred by Ryder et al. [21], but is still an order of magni-

tude below what other studies have suggested for the viscosities in this region
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(e.g., [16–20]). Based on non-linear viscous unidirectional flow models with

a wet quartzite rheology, an apparent viscosity as low as 1016 Pa·sec requires

either a very hot lower crust or a strong pressure gradient driving the flow.
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model n A (Pan/s) Q (1/Jmol) To (◦C) φ (◦C/km)

A 3 1.388× 10−22 120,000 250 12.5

B 3 1.388× 10−23 120,000 250 17.9

C 3 1.388× 10−22 138,600 250 17.9

Table 1: Viscous and temperature properties in the three non-linear viscous models in

Fig. 4. Viscous properties in model A are after the viscous properties for wet quartzite

from [9]. To is the temperature at the top of the viscous channel, and φ is the temperature

gradient.
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Figure 1: (a) Three models of non-dimensional viscosity (η′) over a non-dimensional chan-

nel thickness (z′): constant viscosity from 0–10 (blue), depth-dependent viscosity from

0–10 (red), and constant viscosity from 0–5 (green). (b) The non-dimensional Poisseuille

flow (v′) corresponding to the viscosity models in (a). All models have the same flux.
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Figure 2: (a) Depth-dependent viscosity models (red) all with an apparent viscosity of

1018 Pa·sec over a 15 km thick apparent channel (blue). (b) Resulting Poisseuille flow for

each of the depth-dependent viscosity models in (a; red), and the Poisseuille flow for a

uniform viscosity of 1018 Pa·sec (blue). (c) ζ value required for a depth-dependent viscosity

model to have an apparent viscosity of 1018 Pa·sec; white region indicates that there is

no depth-dependent viscosity model with apparent viscosity of 1018 Pa·sec. Solutions are

only shown for ηL ≥ 1015 Pa·sec and ηH ≤ 1022 Pa·sec, although there is no lower or

upper limit of ηL or ηH , respectively.
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Figure 3: a) Depth-dependent viscosity models (red) all with an apparent viscosity of 1018

Pa·sec over a 15 km thick apparent channel (blue). (b) Resulting Poisseuille flow for each

of the depth-dependent viscosity models in (a; red), and the Poisseuille flow for a uniform

viscosity of 1018 Pa·sec (blue). (c) ζ value required for a depth-dependent viscosity model

to have an apparent viscosity of 1018 Pa·sec; white region indicates that there is no depth-

dependent viscosity model with apparent viscosity of 1018 Pa·sec. Solutions are only shown

for ηL ≥ 1016 Pa·sec and ηH ≤ 1023 Pa·sec, although there is no lower or upper limit of

ηL or ηH , respectively.
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Figure 4: (a) Poisseuille flow (solid lines) for a uniform Newtonian viscosity over a channel

from 25–40 km depth (blue), and three non-linear viscous models (labelled A, B, and C; see

Table 1 for viscous properties and temperatures). The pressure gradient in is 40 Pa/m, and

all models have an apparent viscosity of 1018 Pa·sec (blue dashed line). Effective viscosity

(ηeff) of the three non-linear viscous models (colored dashed lines). The temperature at the

base of the channel (TH) is indicated. (b) Apparent viscosity of non-linear viscous models

as a function of either horizontal pressure gradient (solid lines) or vertical temperature

gradient (dashed lines). Models are shown with the temperature at the top of the channel

(TL) either 200◦C (blue lines), 250◦C (black lines), or 300◦C (red lines).
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Inferences of the Lower Crust Viscosity at the San

Andreas Fault1

K.Y. Semechah Lui and Eric A. Hetland
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Abstract

Under the Cholame section of the San Andreas Fault (SAF), non-volcanic

tremors (NVT) have been observed at a depth of 26 km below the Earth

surface. The tremors occur along a linear trace parallel to the surface trace

of the SAF, and are likely to reflect shear slip on the lower crustal fault shear

zone. The tremor indicates that the SAF extends to the base of the crust and

is dipping at depth. Here we test whether the occurrence of NVT on the deep

extension of the SAF is consistent with lower crustal flow. Assuming a fault

perpendicular pressure gradient of 100 Pa/m, we find that if the lower crust

is a uniform viscosity greater than 1020 Pa·s, then the perturbation to a lower

crust fault or shear-zone would be less than 1 km laterally. If we consider

viscosity to be depth-dependent, minimum viscosity in the lower crust can

be less than 1020 Pa·s, but only in the lower part of the flow channel. We

also evaluate the effect of differential velocity between the upper crust and

the uppermost mantle, and find that only a very low differential velocity is

consistent with a small fault perturbation.

1This chapter is to be submitted to Geophys. Res. Lett. in July 2011.

Preprint submitted to EPSL April 17, 2011
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1. Introduction

The Cholame section of the San Andreas fault (SAF), which belongs to

the central part of the SAF, has a brittle-ductile transition (BDT) inferred

at a depth of 15 to 20 km (e.g., [1]). Below this depth, crustal materials are

inferred to deform plastically with the presence of high temperature (e.g.,

[2–4]). Since energy is unable to accumulate, seismic events are commonly

assumed to be absent.

Recent studies indicate that non-volcanic tremors (NVT) are present un-

der the Cholame section of the SAF at a depth of 26 km [5]. This depth

is approximately 10 km below the deepest regular earthquakes on the fault.

The NVT occur in a near-linear structure in map view, slightly eastward at

the SAF, but striking parallel to the fault, within a width of 1 km. The

NVT are likely to be reflecting shear slip on the lower crustal fault shear

zone, similar to as in subduction zone tremor. Shelly et al. [5] therefore pro-

pose that the SAF may extend to the base of the crust, and that the NVT

are occurring on the deep extension of the SAF. The fact that the NVT are

located only slightly to the east of the surface trace of the SAF suggests that

the SAF is dipping at depth.

The presence of the deep NVT presents several questions regarding the

dynamics of the non-seismogenic region. Here we focus on whether the oc-

currence of NVT on the deep extension of the SAF is inconsistent with lower
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crustal flow. Specifically we investigate whether flow in the lower crust will

lead to perturbation of the fault, and if so, by what extent. In other words,

with the indication that lower crust faults exist, we seek to constrain the

range of viscosities of the lower crust which would allow a localized fault to

exist in the lower crust over a time scale of 1 Myr. We use pressure-driven

unidirectional flow in a 2D channel and consider only flow perpendicular to

the SAF. We argue that topographic gradient evolves depending only on the

depth-integrated flow, and not on the flow velocities at any particular depth

(e.g., [6, 7]). In this study, we evaluate separately both uniform and depth

dependent viscosity models. A channel with uniform viscosity is the simplest

case, in which flow is the largest in the center of the channel. A uniform

viscosity is, nonetheless, not geophysically reasonable, as lower crust viscos-

ity is expected to decrease with depth due to a temperature change (e.g.,

[2, 3, 8]). It is more plausible to assume that viscosity is depth-dependent.

In this case, we expect the flow distribution to vary much more significantly.

As temperature increases with depth, viscosity is expected to be the lowest

at the base of the channel. Thus crustal flow is believed to concentrate in

the lowermost part of the crust, where the maximum flow velocity is also

assumed to occur. Furthermore, we consider the effect of differential velocity

between the upper mantle and the upper crust. In the following, we describe

three simple models of lower crustal flow and apply them to investigate the

stability of a fault on shear zone in the lower crust over 1 Myr. We end with

a brief discussion and conclusion.
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2. Modeling equations

2.1. Uniform Viscosity

Unidirectional flow (u) along a 2D channel with infinite length is governed

by
d

dz
η(z)

d

dz
u(z) = −dP

dx
(1)

where z is depth, x signifies the along channel direction, u(z) is viscosity as

a function of depth, and dP
dx

is the lateral pressure gradient. In these models,

dP
dx

is approximated based on changes in topography (i.e., lateral topographic

gradient). Assuming that u(z) equals a constant value (ηo) and solving with

no-slip boundary conditions at the top and bottom of the channel, the solu-

tion to Equation (1) is

u(z) =
1

2ηo

dP

dx

(
z2 − hz

)
, (2)

where h is the thickness of the channel. Equation (2) is the well-known

Poisseuille flow, in which the maximum flow occurs in the middle of the

channel.

2.2. Depth-dependent Viscosity

Assuming that the lower crust is homogeneous and that variation of vis-

cosity with depth is due only to temperature. For simplicity, we approximate

the viscosity in the lower crust by

η(z) = Ae−z/ζ +B, (3)

where both A and B are functions of maximum viscosity (ηH), minimum

viscosity (ηL) , and ζ is a decay constant. Note that by using Equation (3)
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to describe viscosities in the lower crust, we do not attempt to constrain

viscosity profiles based on rock deformation experiments. Rather we seek to

find plausible distributions of viscosities in the lower crust that lead to small

perturbation of a lower crustal fault perpendicular to the SAF. Using the

same no-slip boundary condition as above, we use Equation (1) and (3) to

obtain an analytic expression for unidirectional pressure driven flow in the

lower crust.

2.3. Differential velocity between the uppermost mantle and the upper crust

In the third model, we take into account a differential velocity between

the uppermost mantle and the upper crust to account for a potential coupling

of the upper mantle and upper crust. With constant viscosity (ηo), the flow

is also governed by Equation (1) but with a different boundary conditions

u(0) = 0 and u(z) = uo. The solution in this case is

u(z) =
1

2ηo

dP

dx

(
z2 − hz

)
+ uo

z

h
(4)

The velocity of the base of the lower crust (uo) can be either positive or

negative, depending on the direction of mantle motion relative to the pressure

gradient driving the Poiseuille flow in the lower crust (Fig.1). Equation (4)

is simply the addition of Poiseuille and Couette flow.

3. Illustration for the lower crust beneath the San Andreas Fault

The average crustal thickness in Southern Californian is approximately 30

km (e.g. [1, 9]). The depth of the brittle-ductile transition is inferred to be

at about 15 km based on seismicity observations. For simplicity, our studies

involve a constant pressure gradient perpendicular to the SAF. By primitive
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approximation, there is a decrease of 600 m in elevation over a lateral distance

of 330 km from the Basin and Range to near the SAF region. Therefore, we

take a lateral pressure gradient in the neighborhood of 100 Pa/m to be a

conservation reference value. We assume that only fault-perpendicular flow

perturbs the pattern of the fault. Hence at the depth where maximum flow

is found, we also expect that the maximum finite offset is

δ = uT (5)

where T is the timescale over which lower crust flow will perturb a lower

crustal fault or shear zone. Here we arbitrarily use T = 1 Myr. Since Shelly

et al. [5] observe the localized deformations to span a width of ≤ 1 km away

from the surface trace of the SAF, we consider models of lower crustal flow

of ≤ 1 km to be plausible.

4. Results

When testing models with uniform viscosity, we consider lower crustal

flow assuming a wide range of viscosities with dP
dx

= 100 Pa/m and T = 1 Myr.

As flow is inversely proportional to a uniform viscosity, fault perturbation

decreases with increasing viscosity (Fig.2). For a perturbation less than 1

km, we find that viscosity values have a lower limit of approximately 1020

Pa·s, but do not have an upper limit.

When considering depth-dependent viscosities, we use the same dP
dx

and

T . Our models are based on a large range of ηH and ηL, and ζ, excluding

any ηH-ηL combinations in which ηH ≥ ηL. In general, maximum fault

perturbation decreases with increasing ηL values. For all the models with
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fault perturbation within a magnitude of 1 km, the position of the maximum

offset is biased toward the lower half of the flow channel (Fig.3). Among

the models tested that have fault offset of less than 1 km. ηL can be as low

as 1016 Pa·s, but in this case ηH needs to be larger than 1021 Pa·s (Fig.4).

Given a 15-km thick channel, if we consider lower crust viscosity to be depth-

dependent, it is possible to find η(z) ≤ 1020 Pa·s over the lowermost 8,500 m

of the lower crust (Fig.5).

For simplification, we only consider a lower crust with uniform viscosity

in the case of differential velocity between the upper crust and the uppermost

mantle, using the same dP
dx

and T . As mentioned in Section 2.3, the velocity

of mantle can be either positive or negative depending on the direction of

motion. In this case, we find that if the differential velocity exceed 1.5 mm/yr,

fault perturbation perpendicular to the SAF will exceed 1 km. We also find

that if the differential velocity is opposite of the dP
dx

flow, the minimum of

the lower crust viscosity can be ≤ 1020, but only very slightly at 1019.8 Pa·s

(Fig.6).

5. Discussion

In the uniform viscosity models, we found that the lower crust viscosity

needs to be larger than 1020 Pa·s in order for fault perpendicular flow not

to have offset a lower crust fault for more than 1 km laterally. This lower

limit of viscosity depends on the choice of dP
dx

and time scale over which we

consider the fault to be perturbed. We assume a lateral pressure gradient of

100 Pa/m in our study, which is fairly high. Poiseuille flow is linearly related

to dP
dx

, so a drop in pressure gradient to 10 Pa/m will reduce the lower bound
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of viscosity by an order of magnitude (Fig.2). Similarly, the length of time

scale (T ) over which the lower crustal flow perturbs the SAF is also unclear.

There is an inverse linear relationship between T and the magnitude of fault

offset. For a longer time period of 2 Myr, the fault offset will be doubled with

the same viscosity. In other words, as T increases by two times, the lower

limit of viscosity is approximately 1020.3 Pa·s, which is doubled the viscosity

value when T is 1 Myr (Fig.2). Therefore, the absolute limit of lower crust

viscosity can vary depending on how we determine the other parameters in

the equation, but it can be easily found by simple scaling.

Based on the assumption that crustal deformation depends on the flow

flux in the lower crust and not the flow distribution at depth, there is a

wide range of depth-dependent viscosities that is consistent with an inferred

apparent viscosity [10, 11]). However, among these depth-dependent viscosi-

ties, crustal flow distribation can vary significantly, depending on ηH and ηL

at the channel boundary, as well as how the viscosity is decaying with depth

(ζ in Equation (3)). In other words, for a given crustal flow with a uniform

viscosity at ηo and maximum flow velocity at Vo, if we are to generate another

crustal flow with identical flow flux but with depth-dependent viscosities in-

stead, such crustal flow can have a maximum flow velocity of up to twice

the magnitude of Vo. Hence the estimation of the extent of lower crust fault

perturbation can vary significantly depending on the viscosity model chosen

to evaluate the lower crustal flow.

In section 4, we illustrate that for a fault offset of less than 1 km, the

maximum differential shear motion (vo) between the upper crust and the

uppermost mantle cannot exceed 1.5 mm/yr. We include this differential
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velocity to approximate cases of which the upper crust is weakly coupled to

the uppermost mantle (i.e. with upper crust moving at a different rate than

the mantle.) If the upper crust is strongly coupled to the underlying mantle,

the differential velocity will be less than with weak coupling. 1.5 mm/yr

indicates strong coupling of the uppermost mantle and the upper crust. It

is important to note that at vo ≤ 1.5 mm/yr, the maximum fault offset is

expected to be at the base of the lower crust. Such constant shear will result

in merely a 2◦ dip of a originally vertical fault or shear zone. Thus this is

still consistent with our understanding to the geometry of the SAF.

6. Conclusion

The discovery that non-volcanic tremors occur in the lower crust under

the SAF, and are almost parallel to the trace of the SAF, have led to the

suggestion that the SAF extends to the base of the crust as a discrete fault or

narrow shear zone [5]. The fact that the SAF extends throughout the lower

crust can be argued as a distinct shear plane, the lower crust is flowing due to

loaded pressure, and only the effect of fault-perpendicular flow is considered,

we evaluate the ranges of possible lower crust viscosities which are consistent

with the observed deformations. Considering only fault-perpendicular lower

crustal flow over a 1-Myr time scale and assuming a channel with uniform

viscosity driven by a pressure gradient of 100 Pa/m, we find that as long as

the viscosity of the lower crust is larger than 1020 Pa·s, fault perturbation

will not exceed 1 km. This pressure gradient is equivalent to a decrease in

elevation of 600 m over a distance of 330 km, representing a gross topographic

gradient from the Basin and Range to the SAF. If the pressure gradient is one
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order of magnitude lower, the acceptable viscosity will also be one order of

magnitude lower. If we model the lower crust with depth-dependent viscosity,

ηL can be as low as 1016 Pa·s. Although in this case, ηH cannot fall below

1021 Pa·s, and viscosity ≤ 1020 Pa·s can only occur in the lowermost 8,500 m

of the flow channel. We also find that with uniform viscosity, the maximum

differential velocity is 1.5 mm/yr if we consider a differential velocity between

the upper crust and the uppermost mantle, reflecting possible but small

decoupling throughout the lower crust.
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Figure 1: Two possible end-members of the overall flow profiles (purple, solid) in a 15-

km lower crust if we consider the effect of a differential velocity between the upper crust

and the uppermost mantle. Here we assume two possible directions of mantle flow (blue,

dashed) with the unidirectional deformation creep (red) in the lower crust.

11



19 20 21 22 23 24
η (10x Pa.s )

0.5

1.0

1.5

2.0

2.5

3.0

Δ(km)
Fault Displacement (∆ )

101        101.5       102        102.5       103

Figure 2: The relationship of uniform viscosity in the lower crust (η) and the magnitude

of fault perturbation (δ). Numbering on individual curves are lateral pressure gradients in

Pa/m. All solid lines represent displacement (δ) over a time scale of 1 Myr. The dashed

and dotted lines indicate displacement under 102 Pa/m in 2 Myr and 2.5 Myr respectively.
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Figure 3: All lower crustal flow profiles corresponding to a range of depth-dependent vis-

cosities. Among all the flow profiles, the maximum fault perturbation is biased toward the

lower-half of the flow channel. Considering a 15-km channel, the maximum perturbation

in the upper-half is less than 0.8 km, while that in the lower-half can reach as large as 1

km.
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Figure 4: In the case of depth-dependent viscosity, the diagram above shows all combi-

nations of maximum and minimum viscosities (ηH and ηL) in a 15-km flow channel that

generate fault perturbation of less than 1 km. The color scale indicates the magnitude of

fault displacement in km.
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Figure 5: Among the models tested with 1016 Pa·s ≥ ηL , ηH ≤ 1020.5 Pa·s (excluding all

ηH -ηL combination in which ηH is less than ηL), Fig.5 shows all plausible depth-dependent

viscosity profiles which correspond to a channel flow that perturb the fault by less than

1 km. In depth-dependent viscosity models, it is possible for ηL to be ≤ 1020, but these

viscosities can only occur in the lowermost 8,500 m other flow channel.
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Effect of Differential Viscosity on the Lower Crust
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Figure 6: The diagram above illustrates the lower limits of viscosities in a 15-km uniform-

viscosity lower crustal flow channel, under the effect of a differential shear motion, ranging

from -1.5 mm/yr to 1.5 mm/yr, between the upper crust and the uppermost mantle. The

color scale indicates the magnitude of fault displacement in km.
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