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I. Introduction

The explanation of forms in the natural world using simple mathematical descriptions is one of
the oldest pursuits of both biology and mathematics. The branch of math called geometry dating back
to the Greeks even derives its name from measuring the Earth. An exciting development that allowed
the description of many more forms was the discovery of logarithms based on the natural number e.
The classic shape to use this number is the logarithmic spiral, a shape with many unique properties such
as self-similarity that made it a good candidate for describing natural forms.

One of the most familiar logarithmic spirals in nature is the coiled shell, a form that has been
explored in detail for over a hundred years (Moseley, 1838), (Thompson, 1917). Though specific
morphologies have been described for this long, the full range of possible morphologies described by
this simple spiral was first investigated by Raup, who quantitatively explored this coiling morphospace
and found that not all possible coiled forms exist in nature (Raup, 1966), (Raup & Michelson, 1965).
Later work based on that of Raup took different approaches that allowed description of even more
coiling types, including more complex, allometric forms that had proven challenging using earlier models
(Ackerly, 1989a), (Okamoto, 1988).

Tusks, such as those of elephants and other proboscideans, are also famous for their coiled form.
Similarly to molluscan shells, they grow larger by continuous deposition of mineralized tissue
throughout the life of an individual and have a distinctive, species-specific shape. Both shells and tusks
form as stacks of cones, somewhat like a stack of ice cream cones. Tusks are solid because their
component cones extend all the way to an apex, while molluscan shells are hollow because their cones
effectively lack apices. In addition to the coiled form, another hallmark of tusks is that they have a series
of grooves or ridges running from tip to base that twist around the surface of the tusk as it coils.

Another characteristic feature of tusks, and one that is clearly anisometric and therefore different from



the other characters, is girth. The girth of a tusk increases when the animal is young but then stabilizes
and eventually begins to decrease in old age, an ontogenetic change that is difficult to reconcile with the
apparent constancy of coiling and twisting.

Just as with shells, there is a wide range of tusks forms available to study. They come from
elephants and their many proboscidean relatives that have existed across the world for more than 40
million years, yielding quite diverse forms. Some proboscidean species are clearly distinct, such as
Woolly mammoths and African elephants, but others can prove more challenging to distinguish. The
Jeffersonian mammoth is one species that has proven difficult to classify. Some treat it as a separate
species, but there is growing evidence that it is actually a hybrid between Woolly and Columbian
mammoths. Sex classification can also be confusing at times. Some techniques for identifying sex are
based on size, which can quickly become confusing in individuals that exhibit island dwarfing, such as
those from the St. Paul Island population of Woolly mammoth.

The main goal of this work was to attempt description of the three main tusk characters, coiled
form, twist, and girth change, using the logarithmic models previously developed to describe coiled shell
growth and form. Other goals involved using these mathematical tusk descriptions to quantify sexual
dimorphism and species-specific morphologies, especially in some of the difficult cases, like the
Jeffersonian mammoth. To accomplish this, tusk models were generated using shell growth equations
based on 22 digitized tusks representing 18 individuals (Table 1). The tusks came from adults and
juveniles of both sexes and were from fifteen Woolly mammoths (M. primigenius), one Columbian
mammoth (M. columbi), and three American mastodons (M. americanum). While the coiled tusk form
could be accurately described by logarithmic models, with the twisting grooves being a byproduct of
coiled growth, girth proved more challenging to model. Certain growth parameters were found to

accurately describe the taxa and sex of some adult individuals.

Specimen Name | Species Gender | Age Right/Left | Source Time

Pevek 1 M. primigenius Female | Adult Left Wrangell Island, 12-4 ka




Siberia

Pevek 2 M. primigenius Male Adult Left Wrangell Island, 12-4 ka
Siberia

Pevek 3 M. primigenius Male Adult Left Wrangell Island, 12-4 ka
Siberia

Pevek 4 M. primigenius Male Adult Left Wrangell Island, 12-4 ka
Siberia

Pevek 5 M. primigenius Female | Adult Left Wrangell Island, 12-4 ka
Siberia

Pevek 6 M. primigenius Male Adult Left Wrangell Island, 12-4 ka
Siberia

Pevek 7 M. primigenius Male Adult Right Wrangell Island, 12-4 ka
Siberia

2000-245 M. primigenius 7?7 8-10 Left Taymyr Peninsula, | 10-40 ka
Siberia

2000-246 M. primigenius Female | 8-10 Left Taymyr Peninsula, | 10-40 ka
Siberia

2000-286 M. primigenius Male? 8-10 Right Taymyr Peninsula, | 10-40 ka
Siberia

ZCHM 19 M. primigenius Female? | 10 7?7 Chukotka 10-40 ka
Peninsula, Siberia

ZCHM 20 M. primigenius Female? | 11-12 7?7 Chukotka 10-40 ka
Peninsula, Siberia

ZCHM 22 M. primigenius Male 6 Right Chukotka 10-40 ka
Peninsula, Siberia

ZCHM 23 M. primigenius Male 6 Left Chukotka 10-40 ka
Peninsula, Siberia

St Paul M. primigenius Male Late 20s St. Paul Island, AK | Late Holo

UWY-R M. columbi Male Adult Right Rawlins, WY 12 ka

uUwy-L M. columbi Male Adult Left Rawlins, WY 12 ka

HP-R (Hyde Park) | M. americanum | Male 30-40 Right Hyde Park, NY 12 ka

HP-L (Hyde Park) | M. americanum | Male 30-40 Left Hyde Park, NY 12 ka

B-R (Buesching) M. americanum | Male Adult Right Ft. Wayne, IN 11 ka

B-L (Buesching) M. americanum | Male Adult Left Ft. Wayne, IN 11 ka

Bothwell 2-14 M. americanum | Female | 22 Left Hebron, IN 11 ka

Table 1 — Specimen names and select information are shown for all tusks in this study. Names ending in ‘-R’ are right tusks,
and ‘-L’ indicates a left tusk. Specimen names beginning with the same designation (i.e. ‘Pevek’ or ‘2000’) were part of the
same collection. Times expressed as a range are for tusks that have yet to be dated and reflect the current known age-range
of individuals from that location.

1. Construction of a Digital Model

Many techniques for digitizing real forms exist, but the cheapest and most portable method is

photogrammetry, which is computer-aided 3D reconstruction from 2D images. The major advantage to

this method is that the 2D images can be obtained with cheap consumer cameras that can be easily




carried to the field, with the 3D processing done later. There are also high-resolution laser scanners,
which require less time to use than photogrammetry but are usually expensive and therefore difficult to
justify taking to the field where damage could occur. Another option for digitization is contact
digitization, a process in which points are manually digitized by moving a probe along the surface, but
this technique requires a great deal of time to get a model with high point density and is also not very
portable. For this work, models were generated from field images by photogrammetry and from in-
house tusks by laser scanning; additional models generated previously by contact and laser scanning
methods were also analyzed.
Photogrammetry Using PhotoModeler Scanner

Several programs exist to do photogrammetric reconstruction from images taken with a
consumer digital camera. There is a free option developed by Microsoft called PhotoSynth that creates
a 3D model of a scene from just a set of images of an object and no other information; however, the
images and resultant models then become property of Microsoft. PhotoSynth effectively functions as a
simple interface for another software package, Bundler, which when used independently requires
significantly more user input but allows the user to retain rights to the models. For this work, we used
PhotoModeler Scanner, which also preserves user rights but requires less user input than Bundler. A
project using this software generally requires taking many images of the object from different angles,
cross-referencing points in the images so that the program can identify the shooting angle (this is
generally aided by preparing the scene with identifiable points), trimming out parts of the images that
are not necessary, then building the model. Details vary between projects.

In this study, seven tusk models were built using PhotoModeler Scanner from photographs of
tusks at the Pevek Museum, in Chukotka, in northeast Siberia. The photographs were taken by Dan

Fisher, who also carefully prepared the tusks to facilitate the photogrammetry. The software was able



to take the multitude of 2D images and process them into 3D tusk models. All these models had a high
point density, with more than 10,000 points defining the surface of each tusk.

Tusks received different degrees of preparation before imaging because it was unclear whether
marked tape would help 3D reconstruction by providing easily-identifiable points or hinder it by hiding
natural texture from the pattern-matching algorithms. Individual tusk preparation varied from the most
intense treatment of wrapping various parts of the tusk in strips of masking tape with identifying marks,
to minimal treatment of a few, widely spaced squares of marked masking tape. Further preparation
common to all tusks involved placing them on a floor with clear markings, which had many distinct
points that could be recognized as identical between images. Other objects that also had distinctly
recognizable points separated by a known distance, such as prepared cubes, could be placed and used
to scale the images (see Figures 1 and 2 for images of prepared tusks).

The recognizable points were important because cross-referenced points in an image pair
allowed the program to do a Bundle Adjustment to determine the shooting location of the camera for
each photograph. Minimally, PhotoModeler Scanner required six different cross-referenced points in
each image—pair. Because the large tusks could obscure some points in some views, close to twenty
reference points were identified in each project, ensuring the minimum of six was met. The extra points
also helped increase the accuracy of the Bundle Adjustment. In any project, the best configuration of
reference points is one in which each photo has visible reference points surrounding the object of
interest. This is achieved most easily by strategic placement of identifiable landmarks. Elevated
reference points were especially useful for the large tusks because they could be visible, even when

positioned behind a tusk.



Figure 1 — Pevek 1, the most extensively prepared tusk, as seen in an image used to generate its model. This is taken from
the highest camera height and includes all the points used as references. The cubes are 8 cm on a side and each had the top
four corners used as references and to scale the project. The centers of the geometric starbursts were also used as
references. Photo and tusk preparation by Dan Fisher.

Figure 2 — Pevek 7, one of the minimally-prepared tusks, as seen in an image used to generate its model. This is taken from
the lowest camera height and again includes all the points used as references. However, since the tusk is so big, the
reference points behind it are obscured, except for those of the corners of the elevated cube on the right. The tusk was
placed in the same location as Pevek 1 in Figure 1; the cubes are still 8 cm on a side. Photo and tusk preparation by Dan
Fisher.

Once the reference points were established for a project, the tusk could not be moved with

respect to them, meaning the floor obscured half the tusk. To image the full tusk, it was flipped and a



second, independent set of images was created with its own internally consistent reference points. The
resultant half-models were later combined to create a whole model for that tusk. The photoset for each
half-model contained images taken at 32 different positions spanning 360 degrees in azimuth around
the tusk from 3 different camera heights, yielding a total of almost 200 photos per tusk. Because each
photo requires processing before use, using them all would require an extremely large amount of time.
However, using fewer photos in a project reduces the resolution and density of points in the final model.
After much experimentation, a good balance between model resolution and time invested was the use
of every other photo from the highest and lowest camera heights. This meant 32 photos (16 spaced by
22.5° at each of 2 heights) were used for each half-model. Once the photos for a project were selected,
the prepared points could be cross-reference in order to do the Bundle Adjustment.

The photos also had to be corrected to remove distortion introduced by the camera lens; in
PhotoModeler Scanner, this process is called idealization. This correction is based on camera-specific
data that either exist in the program or are obtained through camera calibration (see Appendix A for
details). The idealization only required a click of a button from the user, but required intensive use of
the CPU, so the program sometimes crashed if too many other computer processes were running at the
same time or if PhotoModeler Scanner had been running for some time. Therefore, before idealizing, it
was good practice to restart the program and quit any other applications.

The next step was to have the program match points between photos and triangulate their
locations in 3D space. A trim was used to mask out parts of the photo of low importance, decreasing the
number of points to locate and thereby reducing computer run time. The point-matching algorithms
were surprisingly complex and involved user-input parameters that appeared to have minimal physical
significance and are therefore best described qualitatively. The optimal set of parameters differed for
each project and perhaps even for each photograph pair, but for convenience, a single parameter set

was employed in each project. The parameters adjusted in the course of this work were sampling rate,
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matching region radius, and texture number. Sampling rate set the distance between points on the
model, measured in units that were only defined after the project scale was set. Therefore, a high value
for sampling rate decreased point density by increasing the spacing of points in the model. The
matching region radius defined the size of the area that had its pixel values compared between the
matching regions of the paired images to recognize points that were the same. When regions matched,
the location of the center was triangulated and became a point on the model. A larger value generally
meant that there was more smoothing and less noise. It was effective to change this variable in
conjunction with the sampling rate to find an optimum of low noise and high point density. The final
important adjustable parameter was ‘texture’, and according to the program documentation, accounted
for variability in the texture (coloring pattern) of the object. When increased, it tended to drastically
decrease point density, perhaps because the coloring patterns of the tusks were fairly constant, but
other projects with irregular textures might benefit from increases in this parameter. It cannot be
stressed enough that each project done in PhotoModeler Scanner has different optimum parameter
values, but these tusk digitizations were all similar enough that the best parameter sets were similar,
though not identical, between projects.

Parameter sets were evaluated by running the point matching process several times on a single
photo pair. The best set of parameters was the one that accurately resolved a large number of points in
a relatively short time. Since there were 32 photo pairs in each half-model, small differences in the
number of points and run time could add up to big differences in resolution and time consumption over
the course of the project. A good starting point for any parameter set evaluation is a matching region
radius of 20 and a texture of 1, with the sampling rate left up to the user [Dan Miller, personal
communication]. See Appendix A for additional comments on parameter selection.

Once the two half-models for a tusk were created, they had to be merged to create the

complete tusk. This was done by marking at least three points that were the same between the two
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half-models and giving each point pair its own unique name. The tape preparation was especially useful
here because the sharp corners or markings on the tape could be identified easily. Once several points
were marked, one model was merged into the other, with the labeled points telling the program how to
combine them. Refer to Table 6 in Appendix A for a complete listing of the tusk models by name, with
the settings used, the number of points generated, and the final overall relative model quality. For this
work, the macroscopic coiled tusk form was of main concern, so even the lowest-quality models were

considered successful because they captured this, though they failed to capture fine-scale surface

topography. See Figure 3 for examples of the final models.

Figure 3 a-g — These are low-resolution screen shots of the
texture-mapped photogrammetric models of tusks Pevek 1-7,

g NOT shown to scale (each is 1-2m long). The occasional white
dots are the cross-referenced points used in the bundle
adjustment and surround the tusk in most views.
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Minimally, each tusk required about 20 minutes of manual cross-referencing, 40 minutes of run-
time to complete the Bundle Adjustment, 30 minutes of manual masking, 30-60 minutes of run-time to
create both half-models for a tusk, and 30 minutes of manual merging and trimming for a total of about
3 hours. In practice, it usually took around 4 hours or longer because different settings had to be
explored for each tusk. The intensive CPU usage sometimes also caused program crashes, losing data
and increasing the processing time.

Laser Scanning With A HandyScan

Another method for creating digital models of a tusk was to use a laser scanner such as the
HandyScan. The device was self-orienting, which meant it could determine where it was scanning by
recognizing special reflective dots manually placed 4-10 cm apart on the item to be scanned (if it was
large, like a tusk) or its background (if it was smaller, like a tusk tip). The dots were placed to cover the
tusk surface without a regular pattern, so the configuration visible at each surface point is identified
uniquely. The dots were placed closely enough that at least four to five of them could be seen by the
laser scanner from any given position, but far enough apart that the software was able to distinguish
them. More dots than necessary were placed because they frequently fell off, especially on the casts
that had been treated with an anti-stick substance to facilitate removal from their molds. Dots could
also be added without issue during scanning, but fallen dots were not replaced because they could not
be replaced accurately. Inaccurate dot placement would introduce errors into location determination.

Once most of the dots were scanned in, the surface itself could be scanned. The software
determined the surface by looking at the shape of the laser crosshairs, which changed based on the
surface onto which they were projected. Complicated surface topography was difficult for the software
to reconstruct, and so the program just left a hole when it was unable to determine the shape. These

holes could generally be reduced in size or eliminated by scanning the troublesome spot from different
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directions, angles of incidence, and scanner roll orientations. However, some topographies, such as
sharp edges, could prove tricky to scan, even with several passes with the scanner in different
orientations. Because doing too many scans could overflow the CPU memory, holes that could not be
filled after several passes were better filled using the ‘Cap Holes’ function in 3D Studio Max. The final
hole-free models achieved very high resolutions; the laser-scanned tusks had surfaces of upwards of

100,000 unigue points. See Figure 4 for screenshots of the rendered models generated from laser scans.

Figure 4a&b — The right tusks of the Buesching (a) and Hyde Park (b) mastodons, NOT to scale (each is close to 2m long).
Notice the intricate surface detail captured by the laser scanner, especially on the Buesching tusk.
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Once the 3D files were created (generally as an *.st/ or some other type of file native to a 3D
rendering software package like 3D Studio Max), the best way to get them into MATLAB was to export
them from a rendering application as an ASCIl Scene Rendering file. This format identified points on the
surface and defined how to connect them to make the facets used in 3D software. Therefore, to get a
file of pure point coordinates that was easily readable by MATLAB, the extraneous header and facet
definitions were deleted in a text editor, a process that also drastically reduced the size of the file. This
new text file could be parsed easily by MATLAB (using uiimport for example), and then the surface data
could be processed from there. In order to avoid performing this procedure every time the model was
needed, it was useful to convert the imported surface data points to single precision and paste them

into a MATLAB script, known as an mfile, that could then be called to generate the tusk data model with

a single command. See Table 2 for information on the models generated and used in this project.

Specimen Name | Digitization Raw NOP Downsampled NOP | Digitization Source
Pevek 1 Photogrammetry | 18,000 3,300 This work

Pevek 2 Photogrammetry | 50,000 3,400 This work

Pevek 3 Photogrammetry | 86,000 3,500 This work

Pevek 4 Photogrammetry | 46,000 3,400 This work

Pevek 5 Photogrammetry | 25,000 3,300 This work

Pevek 6 Photogrammetry | 80,000 3,500 This work

Pevek 7 Photogrammetry | 15,000 3,400 This work

2000-245 MicroScribe 4,500 2,200 Adam Rountrey, UM
2000-246 MicroScribe 3,100 3,100 Adam Rountrey, UM
2000-286 MicroScribe 3,200 3,200 Adam Rountrey, UM
ZCHM 19 MicroScribe 3,500 3,500 Adam Rountrey, UM
ZCHM 20 MicroScribe 4,300 4,300 Adam Rountrey, UM
ZCHM 22 MicroScribe 12,000 3,000 Adam Rountrey, UM
ZCHM 23 MicroScribe 15,300 3,100 Adam Rountrey, UM
St Paul MicroScribe 16,500 3,300 Randy Tedor, U of AK
Bothwell 2-14 MicroScribe 5,100 5,100 Dan Fisher, UM
UWY-R HandyScan 25,300 2,500 Dan Fisher, UM
uwy-L HandyScan 35,600 3,600 Dan Fisher, UM
HP-R (Hyde Park) | HandyScan 126,700 3,400 This work

HP-L (Hyde Park) | HandyScan 414,800 3,200 Dan Fisher’s Lab, UM
B-R (Buesching) HandyScan 123,700 3,100 This work

B-L (Buesching) MicroScribe 3,500 3,500 Dan Fisher

Table 2 — The tusks and their methods of digitization, the number of points (NOP) before and after downsampling the points
(done to speed the analysis of Chapter V), and the source of the digitization.
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lll. Growing a Tusk Using Shell Growth Models

Coiled shell growth has long been known to be described by a logarithmic spiral form
(Thompson, 1917). One body of work that did much to reinvigorate investigation of this topic
introduced modern computer simulation technology and described coiled shell growth as a circular
curve enlarging and spiraling around a coiling axis (Raup, 1966). Because actual shell growth occurs
relative to the existing shell and not to an abstract external coiling axis, this model was modified to
mimic biological reality more closely by describing the propagation of the curve in a moving reference
frame intrinsic to the shell (Ackerly, 1989a). Complicated shell forms were explained by incorporating
differential geometry, the calculus-based study of curved spaces employed in fields such as general
relativity, and allometric growth into the internal reference frame models (Okamoto, 1988). This work
seeks to describe tusk coiled form, groove/ridge twist, and girth change with a logarithmic spiral form.
Several models including one based on Raup’s work were initially investigated to gain familiarity with
them and with programming functions in MATLAB, but only a simple logarithmic spiral model and an
Ackerly-style surface model were used in the tusk analysis described in Chapter V.
Traditional Logarithmic Spiral as a Model of the Central Structural Axis

The traditional logarithmic spiral was used to test and gain familiarity with the optimization and
GUI software because of its simplicity. Because it is just a spiral line without a surface it was only
intended to describe the central structural axis of a coiled form and be an initial indicator of whether
tusks could be described logarithmically. The model is based on the traditional Cartesian 2D logarithmic
spiral equation, except that it has additional parameters to stretch it into 3D space (Eq 1). The code for
the MATLAB mfile that builds the model, logtusk, is presented in Appendix C.

x = AePtcost

y = Beftsint Eq 1
z = Ceft
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Parameters A, B, and C when increased, stretch the tusk spiral in the x, y, and z directions,
respectively, by a scale factor, while parameters D, E, and F stretch the tusk spiral in those directions by
changing the size of the growth step. Therefore, when A = B and D = E this reduces to a traditional
logarithmic spiral in the xy plane with C and F defining how much it stretches in the z direction; their
signs define coil handedness.

Ackerly Model to Describe a Tusk Surface

To describe the twisting grooves and ridges on the surface of a tusk, the generated tusk model
had to have a surface rather than just a coiled axis. The Ackerly model was selected to create this
because it describes growth using an internal reference frame that is likely to be biologically realistic.
The model is based on a paper by Ackerly (Ackerly, 1989a), Appendix B of which was useful in writing
the code. The code for the MATLAB mfile that generates this model, ackerlyfun, is presented in
Appendix C of this document.

To summarize, the model takes a circular aperture and successively enlarges, translates, then
rotates it based on the values of the parameters. The succession of consecutive positions of the
aperture generates a coiled surface. The aperture size changes based on §, which is the apical angle of
the cone describing the tusk surface, and since the translation and rotation magnitudes are affected by
the aperture radius, 6 also affects the tightness of the 2D coil. The parameter a also describes how
tightly the 2D logarithmic spiral coils while y defines the angle between the growth direction and the
horizontal and thereby determines how much the coil spirals into 3D space. The parameters that define
the difference in orientation between the aperture and the translation direction, o and ®, were not
found to improve the fit of the generated model and were therefore ignored. The starting aperture
radius ro was also found to function as a scale factor for the entire tusk.

Additional Free Parameters Used
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In addition to the model-specific parameters that describe the form of the generated tusk, there
are several other parameters to describe its length and spatial orientation. These additional parameters
are a length parameter to describe how far the tusk has grown, an erosion parameter to remove part of
the tip as might naturally occur, three rotation parameters, and three translation parameters, for a total
of eight additional parameters. These transformation parameters were necessary for aligning the
generated and digitized models, but were not actually used in the tusk analysis since they just describe
position and orientation of the tusk in space. Refer to Table 3 for a summary of these parameters and
their uses. The length and erosion parameters were fixed to extend beyond the tusk during
optimization, described in Chapter IV, because the optimizer just looks at the nearest points to the

digitized tusk and ignores anything beyond it.

Parameter Description

Logarithmic Spiral Model

A/B/C Stretch factor in the x/y/z directions

D/E/F Step size in the x/y/z directions

Ackerly Surface Model (as defined in Ackerly 1989a)

o ‘Tightness’ of 2D coil

) Angle of cone describing tusk surface; also affects coiling
Y 3D angle of vertical coiling

o/ ® Angles between aperture orientation and growth direction
ro Initial radius

Parameters for all Models

Length How far the tusk has grown

Start Point Where along the generated model the digitized tusk tip is, to simulate erosion
0/¢p/Y Rotation

X/Y/Z Translation

Table 3 — A description of each parameter used in each model.
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IV. Fitting a Generated Model to a Digitized Real Tusk

Optimization involves finding an extreme value of a function, usually considered the “best”
value that describes something especially well. An optimization program seeks out a minimum value of
a function much as water seeks out a minimum value on a topographic surface. Like water on a
landscape, an optimizer can get stuck in a local minimum, yielding a mountaintop lake in the water
analogy, rather than a global minimum. Fortunately, optimizers are not constrained to flow to adjacent
points and can be constructed to reduce the likelihood of getting stuck in a mountaintop lake. The more
parameters that must be optimized, the more chances there are of getting trapped in a local minimum
instead of the global minimum. As with water, the closer the optimizer starts to the global minimum the
more likely it is to be found, so a good starting guess is quite important to locating the global minimum.
Manual Optimization With A Graphical User Interface (GUI)

A Graphical User Interface (GUI) called newieGUI was developed for this work to help visualize
the digitized tusks and explore how well they were described by the shell growth models (see Figure 5
for its appearance and Appendix C for code and usage). Sliders control the free parameter values and
therefore shape and spatial orientation of the generated model, dropdown menus provide selections of
both the digitized tusk and of the shell growth model to fit to it, and the quality of the fit can be visually
inspected by rotating the scene in the center. This visualization is very important because it helps

achieve a good starting estimate of tusk form and review the output of computer optimization.
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Figure 5 — A screenshot of the GUI being used to optimize an Ackerly-style model (purple) to the right tusk of the Buesching
mastodon (red). This is not yet close to being a good fit. The first six light blue sliders control tusk parameters (unused slider
grayed out), the next two dark blue sliders control length and start point, and the six yellow sliders control spatial
orientation.

Computer Optimization With Nonlinear Regression In MATLAB

Once a set of tusk parameters that represents a decent visual approximation of a digitized tusk
was found with the GUI, it was used as a starting point in a nonlinear regression optimizer that then
found a set of tusk parameters that further minimized the objective function. Nonlinear regression was
necessary because the function being optimized was not linearly dependent on the input variables.
Many appropriate optimization functions exist, but for this work the fminsearch function from the
optimtool toolbox in MATLAB was used. This function searches without bounds for the minimum of an
objective function given a starting estimate of the parameter values. In the complicated objective
functions optimized here that had up to fourteen different parameters, there were many local minima in
which an optimizer could have been trapped, so a good starting estimate from the GUI was extremely

important.
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Picking appropriate optimization and objective functions was also critical to getting good results.
Generally an objective function written to fit two things together, as was needed here, takes the sum of
the squares of the distances between points on the two objects, and this sum is what is minimized by
the optimization function. The objective function used in this work, optimtuskfun (code in Appendix C),
goes over each point in the data model and finds the distance to the nearest point on the generated
model. The sum of the squares of these inter-model distances was the value minimized and was named
the goodness-of-fit (GOF), and could be observed during optimization by checking the box in the
optimtool window labeled ‘Function Value’. When the parameters were optimized to minimize the GOF,
this objective function stretched the generated model to be near the digitized tusk. A deceptively
similar approach sums the distances from each point in the generated model to its nearest point on the
digitized model. However, optimizing this function yields a generated tusk that is miniscule and wrapped
around a single point on the digitized tusk surface. Clearly, care must be taken to choose the
appropriate objective function.

It is difficult to determine the absolute meaning of the goodness-of-fit (GOF) value because it
can be affected by a variety of factors, though a lower value generally means a better fit. Comparing
results for a single tusk, a lower GOF means that the generated model describes the digitized model
better, but it loses its meaning when comparing between tusks because a variety of things can affect it.
Between two identical tusks that differ only in that one has been scaled up, the large tusk will have a
higher GOF because all of its points are farther apart. Two identical models differing only in number of
points on their surfaces will also differ in their GOF, with the surface with more points having a higher
GOF because there are more points contributing to the sum. The exact locations of the points on the
surface will also affect the GOF in a non-predictable way because they could on average be closer or

farther from points on the generated surface than those of another model.
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Because of this variability, a threshold could not be set for the ‘best fit’ of generated models and
a quantitative definition was hard to determine. The definition used required that there be a single set
of parameters that corresponded to the lowest GOF and that the GOF was not much higher than that of
the best fit for similar tusks. If there were multiple different parameter sets all yielding the same GOF
value, this would mean that none were any better than others and no best fit could be claimed. A
qualitative definition that also had to be achieved to declare a fit “good” was that the generated and
digitized tusk models must resemble each other.

Optimization/GUI Technique

There are two general types of tusk-fitting studies contained in this work; both employ the GUI
and optimizer as above, but with different goals. The first explores relationships between the different
parameters in the models, and the second finds the best fits of generated models to digitized tusks. The
best-fit studies were done first to get an initial estimate of the shape of each tusk, then parameter-
relationship studies were done based on patterns observed in the best-fit studies to reduce the number
of variables needed, thereby improving optimization speed and accuracy. Finally, best-fit studies were
done again with the improved optimization to yield final results for pattern analysis. The results of all
these studies are presented in Chapter V.

In the best-fit studies, the GUI and MATLAB optimizers were used alternatively with the
improved results of one seeding the next. Once improvements could no longer be made with the GUI,
either because its increments changed the values in larger steps than could improve the fit or because
the fit looked good, the optimizer was used repeatedly with its results seeding its next round of
optimization. If the results of this series settled to a particular value, it was evaluated with the GUI and
if it looked good, it was declared a good fit. If it did not settle to a particular value and each

optimization yielded a different parameter set, then the process was started over from the beginning to

22



see if a different starting point yielded a better fit. Once a fit was declared good, other starting points
were tried as well in an attempt to ensure that it was indeed the best fit.

A single tusk that had an exceptionally good fit in the first best-fit study was selected for each
parameter relationship study. The parameters being explored were fixed at various values, and the
resulting optimized values for the other parameters and GOF were examined. Relationships were
determined by graphical analysis of the resultant data.

V. Tusk Analysis

The goals of this work were to determine if three important tusk characters could be described
by a logarithmic spiral model, and if so, if the parameters could be used to distinguish different species
and sexes. The techniques of all the previous chapters were employed to generate tusk models based
on shell growth models and fit them to digitized real tusks to obtain parameter values for the real tusks.
This allowed a quantitative analysis of their forms.

Sources of Digitized Models

In the course of this work, the seven woolly mammoth tusks from Pevek were digitized
photogrammetrically in PhotoModeler Scanner, and the HandyScan was used to scan the right tusks of
the Buesching and Hyde Park mastodons. The work also analyzed models digitized previously by other
workers. The left tusk of the Hyde Park mastodon and both tusks of the University of Wyoming
mammoth had been scanned by the HandyScan laser scanner. The contact MicroScibe digitizer had
been used to create models of the ZCHM, Taymyr, Wrangell Island, and St. Paul Island mammoths as
well as the Bothwell mastodon and the left tusk of the Buesching mastodon. Refer back to Table 2 in
Chapter Il for a complete listing of the tusk digitization methods.

Parameter Relationships
In the logarithmic spiral model, the most important parameter relationship was that fixing D, E,

and F to be equal. This improved optimization because it allowed spiral stretching by varying just A, B,
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and C (for parameter descriptions, refer back to Chapter Ill and Table 3). It was also found that Aand B
were frequently equal, indicating that most of the spirals were well approximated by the traditional
logarithmic spiral. Therefore, to improve the speed and accuracy of the optimization, A and B were set
to covary in the optimizer. Runs were also done with them independent for comparison. For Pevek 2, 3,
5, and 6, even when A and B were allowed to vary independently, both parameters settled to the same
value. The remaining tusks were different, though; the GOF of Pevek 1 was improved 1% when A and B
varied independently. Pevek 7 was improved 4%, and Pevek 4 was improved 10%. For additional details,

see Table 4, below.

Tusk A B C D=E=F o b y GOF A/B
Pevek 1 0.281 - 6.392 0.05 -1.91 0.26 -2.3 1.41 -
Pevek 1 0.234 0.279 6.511 0.05 -1.91 0.23 -2.17 1.39 0.84
Pevek 2 0.355 - 5.175 0.05 -2.02 -0.57 -2.07 3.2 -
Pevek 2 0.355 0.353 5.17 0.05 -2.02 -0.59 -2.06 3.2 1.01
Pevek 3 0.476 - 4.313 0.05 -2.3 -0.67 -2 3.97 -
Pevek 3  0.471 0.475 4.287 0.05 -2.3 -0.67 -2 3.96 0.99
Pevek 4 0.325 - 4.882 0.05 -1.979 -0.73 -2.05 2.8 -
Pevek 4  0.332 0.379 4.699 0.05 -2.07 -0.71 -2.07 2.51 0.88
Pevek 5 0.268 - 4.902 0.05 -1.94 -0.24 -2.11 1.53 -
Pevek 5 0.264 0.268 4.899 0.05 -1.94 -0.25 -2.1 1.53 0.99
Pevek 6 0.597 - 5.973 0.05 2.41 0.59 -0.14 5.02 -
Pevek 6 0.572 0.597 6.31 0.05 2.4 0.63 -0.17 4.99 0.96
Pevek 7 0.17 - -2.258 0.05 0.04 1.13 2.42 0.81 -
Pevek 7 0.165 0.177 -2.095 0.05 0.01 1.14 2.43 0.77 0.93

Table 4 — Optimized tusk parameters for the seven tusks from Pevek. The first of each pair, shaded in gray, were the
parameters when A and B were set to co-vary while the second of each pair, in white, were the parameters when they were
allowed to vary independently. GOF is the goodness-of-fit value.

Some of the parameters in the Ackerly model did not improve the optimizations. The aperture
orientation parameters o and ® were not found to improve the fit and were subsequently set to zero,
meaning the aperture translated in the direction it faced until it was rotated for the next translation.
Because translation step sizes were based on aperture size, the starting aperture size, ro, was effectively
a scale factor. This is important because the tusks had all been scaled to use the same units. A surprising
linear relationship was found between a and §; they were almost always related by Equation 2.

§ = —0.084a + 0.13 Eq 2
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The notable exceptions to this relationship were the juvenile tusks, for which best fits were difficult to
find, and especially ZCHM 20, known for its unusually straight shape. See Figure 6 for the graph in which

this relationship is observed.
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Figure 6 — Graphical relationship between a and 6. Only Adult M. primigenius and M. americanum appear to exhibit this
trend. Each symbol represents a different descriptor. The first, capitalized character is the age (Adult or Juvenile), the
second, lowercase letter is the first letter of the species (primigenius, columbi, or americanum), and the final, uppercase
letter is the sex (Male or Female). The unknown individuals are ZCHM 19 and 20.

Describing Tusk Coiling Geometrically

Internal structural axes of the seven M. primigenius tusks from Wrangell Island were described
well by the logarithmic spiral (Table 4, above) and all tusks were described well by the logarithmic-spiral-
based Ackerly-style model (Table 5). Mammoth tusks had models that fit them much better than the
mastodon tusks, with an average GOF of 0.26 for adult mammoths versus 0.58 for adult mastodons. The
points defining the Ackerly-style model also exhibited a twisting similar to that exhibited by the grooves
and ridges on real tusks (Figures 7&8), though this was not quantitatively evaluated. See Appendix B for

a complete set of tusks and their Ackerly-style models.
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Tusk a (o] Y o=® ry (2] ¢ (17} GOF

Pevek 1 1.523 0.004 0.873 0.031 -1.893 0.161 -2.225 0.1
Pevek 5 1.486 0.007 0.705 0.028 -1.969 -0.269 -2.136 0.12

Pevek 2 1.473 0.01 0.653 0.04 1.039 -2.41 1.225 0.22
UWY-R 1.455 -0.015 0.641 0.054 -0.794 -1.9 0.214 0.37
uwy-L 1.442 0.02 0.631 0.062 1.356 -0.921 2.375 0.61
Pevek 4 1.394 0.017 0.59 0.028 0.929 -2.202 1.265 0.19
Pevek 7 1.433 0.016 -0.569 0.018 2.877 2.02 -1.005 0.06
Pevek 6 1.465 0.009 0.487 0.05 2.472 0.664 -0.064 0.41
Pevek 3 1.499 0.006 0.427 0.041 0.788 -2.415 1.224 0.29
B-L 1.477 0.008 0.404 0.05 -0.724 -0.946 -1.538 0.41
HP-R 1.459 0.011 -0.385 0.057 2.8611 -0.5258 0.3194 0.95
B-R 1.303 0.021 -0.306 0.03 -0.711 -0.254 -2.245 0.36
HP-L 1.486 0.007 0.28 0.06 -0.55 1.138 -0.585 0.65
St Paul 1.54 0.002 0.254 0.085 1.966 -2.697 2.324 0.84

Bothwell 1.565 0.0006 0.047 0.069 0.919 1.532 0.901 0.51

2000-245 1.301 0.01 0.495 0.012 0.198 1.115 2.166 0.014

eNeoNeoNoNeoNoNol-NolloNoNoNoloNolNoNoNoNalNal =]

2000-246 1.275 0.01 0.52 0.01 0.913 0.568 -0.509 0.013
2000-286 1.303 0.02 -0.516 0.01 1.136 2.847 2.62 0.026
ZCHM19 1.415 0.009 0.334 0.04 1.206 -2.6 0.398 0.2
ZCHM20 1.052 0.014 0.017 0.031 -1.63 1.728 -0.072 0.26
ZCHM22 1.181 0.022 0.02 0.049 1.561 1.519 0 0.37
ZCHM23 1.052 0.03 0.049 0.038 -1.578 -3.127 -0.002 0.37

Table 5 — Parameters generating the best fits using the Ackerly model for each tusk, sorted by decreasing y (juveniles, which
had no best descriptive optimization, are below the dotted line as they did not contribute to the analysis). Females are in
bold, mastodons are shaded gray, and the one pair of M. columbi tusks are in italics. In this way, it becomes obvious that the
female mammoths have the highest y, followed by the male mammoths, with the mastodons having the lowest y (except for
the St. Paul individual which exhibits island dwarfism). See Appendix B for these parameters used to make models and
compared to actual tusks.
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Figure 7 — Pevek 6 with red lines indicating obvious twisting grooves
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Figure 8 — An Ackerly-style model based on the parameters of Pevek 6 demonstrating a twist comparable to that of the real
tusk. Compare the yellow trace here to the longer trace in Figure 7, the red trace here is similar to the shorter trace in Figure
7.

It was difficult to find best fits forthe tusks of the juveniles (designated by 2000 or ZCHM)
because their shape could be described equally well by many different parameter sets. Different forms
were tested by fixing y and optimizing the remaining parameters. For 2000-246, the juvenile tusk with

the lowest GOF, y was set at 0.1 increments from 0 to 1 and Pevek 7, the adult tusk with the lowest GOF,
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had y set at 0.1 increments from -0.4 to -0.7 (the negative sign indicating opposite tusk handedness).
For the juvenile tusk, the GOF only varied from 0.013 to 0.20, with an average magnitude of change of
0.0009 for each increment of y, while the adult tusk varied from 0.13 to 0.06 and back again, with an
average magnitude of change of 0.05. Therefore, the parameters found for the juveniles are unlikely to
be the “true” values and were left out of the analyses on sexual dimorphism and species-specific forms.
This would happen with any tusk that lacks a well-defined coil, so it is likely that the Bothwell tusk could
also be represented equally well by other parameter sets.
Species and Sex Differences Expressed in Parameter Set

Ignoring the parameters for juveniles, which were found to not necessarily be the best
representation of their form, allows an analysis that yields several patterns. Gamma, the parameter
that describes how much the coil is stretched out of the 2D plane, was found to be a strong indicator of
whether an individual was a mammoth or mastodon, and whether a mammoth was a male or female.
Adult M. primigenius females had this value greater than 0.70, tusks from the M. primigenius males and
M. columbi male had values between 0.41 and 0.70 in, and tusks of adult M. americanum of both
genders had values below 0.41, though the females of this species were only represented by the
Bothwell tusk, which is likely to have other parameter sets that describe it well. The St. Paul tusk gets
classified as coming from a mastodon under this scheme, and it falls into the range of male forms. Delta,
the parameter that describes girth change over time and also affects coiling, was found to be less
indicative. The general trend was for females to have lower §, though this did not hold in all cases. The
maximum 6 for males was an order of magnitude higher than that of their female counterparts, but
there were always some males with a value in the range of the females.

A few individuals had both the right and left tusks evaluated. For the Hyde Park mastodon and
University of Wyoming mammoth, the right and left tusks had nearly identical parameters, while the

Buesching mastodon had all its parameters differ greatly between its two tusks.
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Discussion

The best indication of species/sex identity based on tusk coiling parameters is y, though only
adult tusks could be differentiated in this way. The y difference between male and female M.
primigenius is consistent with qualitative observations because female tusks appear straighter, which is
a consequence of the extreme stretching into the 3" dimension overwhelming the 2D coil. The lowy in
M. americanum also is consistent with qualitative observations because they appear closer to a
planispiral coil. The tusk from the St. Paul mammoth has an extremely low y for a M. primigenius, but it
is visibly different from other Woolly mammoths in other ways, such as its small size. The y value does,
however, fall below the minimum value to be a female, so this supports the idea that it represents a
male individual. If juvenile tusks could have been optimized to a single result like the adults, their
trends could also have been analyzed.

The higher maximum 6 in males also matches well with observation because females have a
tusk of fairly constant girth all along the tusk, while males increase more markedly. That this was not
true for all tusks is interesting, but it could be caused by the nonlinear changes in girth along the length
of a tusk. Male tusks especially change girth drastically which could lead to an inappropriate
generalization of & for the whole tusk. Since 6 and a are related, the possible inaccuracy of § means
that a likely will also unfortunately not show a pattern. Therefore, if either parameter is to be used as
an identifier, some method of determining them more accurately must be invented.

The GOF values for mammoths were much better than for mastodons, leaving the question of
whether this was due to a true difference in quality of fit or just because the tusks were inherently
different. All the tusks had similar numbers of points and the adult tusks were of similar sizes, so it
seems likely that the reduced fit quality of mastodon tusks is true. The mammoth tusks were digitized
long before the models of the mastodon tusks were obtained, meaning that they were fit to shell-

growth models more often. This allowed more familiarity with them and also more chances to improve
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their fits, so it is possible that with more optimizations the mastodon tusks could be fit with comparable
quality.
Future Work

Analyzing more tusks is an obvious step for future work. Several of the species and sex groups
were just represented by one individual, and none of the juvenile tusks contributed usable parameter
sets to the analysis. More individuals would help validate the proposed boundaries between species
and sex groups. Tusks from other species, such as modern elephants or narwhals, would also be
interesting to examine to see if there are similar identifiable parameter values for them. Since one of
the goals moving forward is to use these techniques to determine if Jeffersonian mammoths are indeed
their own species or a hybrid between Woolly and Columbian mammoths, individuals of that species will
need to be evaluated, as will more Columbian mammoths.

A useful tool for this work would be a fast and accurate way of getting 3D tusk data. The current
best option, the HandyScan laser scanner, requires at least four hours of work. This means that a
maximum of two tusks can be scanned in a normal work day, but this setup only works for tusks (or their
casts) that can be brought to wherever the expensive laser scanner is used. The photogrammetric
method is the only way to get models from tusks that cannot be transported to a laser scanner or
contact digitizer, but it takes several hours to set up the photo shots and then an additional four hours
per tusk to do the photogrammetric reconstruction. Possible breakthroughs in scanning technology
include cheap, portable, homemade laser scanners or an adaptation of technology like the Microsoft
Kinect.

Alternatively, a large improvement to analysis could be development of an analog system for
determining the parameter values by making physical measurements on a tusk. This system could be
similar to Ackerly’s method of stereographic projection (Ackerly, 1989b), which tracks known points

along their growth history to determine the orientation of the axis of coiling and value of 6. Such an
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analytical measurement could be made on a small part of the tusk, and it should hold true for the rest of
the tusk because logarithmic growth is isometric, with all parts being mathematically similar to all other
parts. However, the anisometric girth change could invalidate this assumption and might require
sampling of a larger part of the tusk.

A definitive way of determining the best fit of a shell-growth model to a real tusk would also be
useful. Using the current methods requires a lot of time to determine if a fit is indeed the best because
many different parameter sets must be tried to determine the best one. This method is dependent on
the initial manual fit because the computer optimizer is incapable of changing it drastically. An indicator
that could be used to help would be that tusks from the same individual should have similar ry and
length values since they likely started and ended growing at the same time. However, this only works
for the few individuals that have both the right and left tusks digitized.

Another way to improve the optimizations would be to use a better optimization function;
MATLAB’s fminsearch worked decently but could surely have been improved. A better optimization
function would to use Markov chain Monte Carlo (MCMC) methods. These functions hop around the
parameter space, rather than moving in discrete steps, which improves the chances of finding the global
minimum in a parameter space riddled with local minima. However, these functions are not included in
the standard MATLAB package and would need to be explored using open-source modules or in a
different programming language, such as Python, which has a simple add-on for MCMC optimization.

There are many other side projects that could also improve this overall work. One thing that
might be interesting to evaluate is the effect of making the model allometric, with the parameters
changing at various points along the tusk. The tusk girth, which should correspond to §, is observed to

change nonlinearly along the tusk length, which makes a strong case for the importance of exploring this.
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It would also be important to examine other models; just because the logarithmic model
describes tusks well does not mean that it describes tusks best. Other spirals such as an Archimedean or
hyperbolic spiral exist and models based on these could be built and tested.

VI. Conclusion

The form of mammoth and mastodon tusks is described well by a logarithmic spiral that is
stretched logarithmically into the third dimension, and expanding this model to describe a tusk surface
also introduces a twisting similar to that observed in real tusks. The exact parameters of the logarithmic
spiral vary between tusks, which is why they look different from each other. The parameter y from the
Ackerly model can be used to distinguish mastodon tusks from mammoth tusks and to determine the
gender of a mammoth. By this method, the St. Paul tusk was determined likely to be from a male.
Other parameters in the Ackerly-style model, such as 6 and a, could possibly also be used to distinguish
individuals if the values were made to more accurately reflect the tusk. There is much more work to be
done, but this work makes progress in establishing the techniques needed in future projects.
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APPENDIX A - Construction of a Digital Model
Camera Calibration in PhotoModeler Scanner

An important preparatory step that must be done in PhotoModeler Scanner is a camera
calibration, to teach the program how to correct an image for the curved lens that took it. This is done
by using the same camera that took the images in the project to take a series of pictures of a sheet of
dots that can be printed from the program. The pictures of the sheet need to be taken with the camera
in its normal position and rolled 90° to each side and need to have each of those three positions looking
at the sheet from each of its four sides, for a total of twelve pictures. The dots must fill as much of the
image as possible because their locations inform the calibration. The program is not always able to
recognize all the dots in all twelve images, but six successful images is minimal for a successful
calibration. To increase the success rate of the images, the sheet can be printed on very white paper
and taken in bright light so there is high contrast. The paper can also be affixed to a flat surface with
tape. The biggest thing to vary is to take pictures from different angles of incidence, but making sure
they are low enough to produce distinct images (taking all the pictures from straight over the paper

negates the uniqueness between the different camera rolls and paper rotations).

33



Selecting the Best Parameters for Point-Matching in PhotoModeler Scanner

After some experimentation, the best combination of settings for one of the tusks was found to
be a sampling rate of 15 mm, matching region radius of 15, and a texture of 1 with the other parameters
left at the default. This averaged 250 points generated and 40 seconds of computer time required per
image pair. Other parameter sets were found to be optimal for other tusks in the work, though this first
set remained a good starting estimate for them. For tusks with minimal masking tape preparation,
setting sampling rate to 30, matching region radius to 20, and texture to 1 yielded a decent model with
exceedingly low noise. The tusks that had received lots of masking tape preparation proved difficult to
process (probably because the smooth white tape did obscure some of the natural texture) so the
matching region radius was set much lower, yielding tusk models that were excellent except for having
huge amounts of noise that had to be manually trimmed out. Generally, a matching region radius of 5
or 10 was successful for these difficult tusks, but an additional 15-30 minutes was required to manually

trim out the noisy points and leave behind a good model.

Name Sampling | Matching Texture | Raw # of Quality | Probable Main Difficulty to
Rate Region Radius Points Ranking | Photogrammetry

Pevek 1 15 mm 5mm 1 18,000 4 Received most tape bands

Pevek2 | 15mm 15 mm 1 50,000 1 Minimal tape squares

Pevek3 | 15 mm 15 mm 1 86,000 3 Abundant tape squares

Pevek4 | 15 mm 15 mm 1 46,000 2 Few tape squares, bands

Pevek5 | 15 mm 5mm 1 25,000 6 Difficult coloration

Pevek 6 | 30 mm 20 mm 1 80,000 5 Difficult coloration

Pevek 7 | 15 mm 5mm 1 15,000 7 Difficult coloration

Table 6 - The photogrammetric parameters used to generate each tusk model, indicators of its quality, and likely quality
detractors

APPENDIX B — Real and Ackerly-Style Model Tusks

| TUSK | FRONT VIEW SIDE VIEW
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Figure 9 — Adult M. primigenius tusks (photos here, models in Figure 3 in Chapter IlI) and their accompanying Ackerly-style

models (from parameters of Table 5 of Chapter V) in each of two views. Compare the twist visible in all the models to that of
the actual tusks, highlighted in Pevek 6&7 Front View and Pevek 2, 3, &5 Side View. It was difficult to select matching views

of the real tusk and model, which is why they are not identical. The models were specially generated with ackerlyslowfun,

Appendix C. NOT scaled
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ackerlyslowfun, Appendix C. NOT scaled.
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Figure 12 — The remaining contact-digitized models that did not have good fits from shell-growth models. These were
generally too straight to be characterized by a single best model and were mostly excluded from analysis and therefore do
not have fit models included here. However, Bothwell and St. Paul were both included because there were questions about
them; Bothwell is the sole female mastodon and St. Paul was of questionable gender. NOT to scale.
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APPENDIX C — MATLAB Code Used

All the programs used in this work are listed in their entirety here. They are not the most
streamlined versions possible as they were built from the ground up and tweaked as necessary. There
are likely many spandrels. Other programs not mentioned in the text include ackerlyslowfun (to
generate the tusks with different color traces rather than one discrete set), rotor (rotated points around
the origin based on input yaw, pitch, and roll), and circlepoints (based on freeware on MATLAB help
forums, generated a circle of points representing an aperture).
logtusk

This MATLAB program creates a model of the central axis of a spiraled tusk given parameter
values. It is based on the traditional equations for a logarithmic spiral.

function [x,y,z] = logtusk(A,B,C,D,E,F,leng,tuskleft, THETA,PHI,PSI,X,Y,Z)
%A,B,C,D,E,F,length are properties of the function, THETA/PHI/R/X/Y/Z are
%transformational properties

E = D; %Based on observation, D=E=F found to give best optimization
F=D;
R = 1; %this is an artifact from a previous version

NOP = 1000; %Number Of Points in curve
t=(1:NOP)/NOP*leng;
for i=1:NOP
x(1,i) = A*(exp(D*t(1,i)) *cos(t(1,i))-exp(D*t(1,1))*cos(t(1,1)));% the subtraction to zero out the model
so it rotates correctly
y(1,i) = B*(exp(E*t(1,i))*sin(t(1,i))-exp(E*t(1,1))*sin(t(1,1)));
z(1,i) = C*(exp(F*t(1,i))-exp(F*t(1,1)));
shiftx(1,i) = X;
shifty(1,i) = Y;
shiftz(1,i) = Z;
end
%rotation matrices
Rotx = [1,0,0;0,cos(THETA),-sin(THETA),0,sin(THETA),cos(THETA)];
Roty = [cos(PHI),0,sin(PHI);0,1,0;-sin(PHI),0,cos(PHI)];
Rotz = [cos(PSl),-sin(PSl),0;sin(PSl),cos(PSl),0;0,0,1];

pts = rot90(Rotz*Roty *Rotx*[x;y;z]+[shiftx;shifty;shiftz]);

[a,b,c] = cart2sph(pts(:,1),pts(:,2),pts(:,3));

%this allows it to be scaled by R, now an obsolete variablea

[x,y,z] = sph2cart(a(1:floor(NOP*tuskleft)),b(1:floor(NOP*tuskleft)),c(1:floor(NOP*tuskleft))*R);
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pts = rot90(Rotz*Roty *Rotx*[x;y;z]+[shiftx;shifty;shiftz]);

[a,b,c] = cart2sph(pts(:,1),pts(:,2),pts(:,3));

[x,y,z] = sph2cart(a(1:floor(NOP*tuskleft)),b(1:floor(NOP*tuskleft)),c(1:floor(NOP*tuskleft))*R);
Yg=----=-=-mmmmmm- End of Program

ackerlyfun
This MATLAB program generates a tusk based on the Ackerly-style model (Ackerly, 1989).
function [x,y,z] = akerlyfun(alpha,delta,gamma,sigma,r_0,~,leng,startspot, THETA,PHI,PS,X,Y,Z)

%This program is after Ackerly, Kinematics of accretionary shell growth,
%with examples from Brachiopods and Molluscs, Paleobiology 15.2.147-164,
%1989. All figure and equation references refer to that paper.

%alpha defines spiral angle, fig 3B

%delta - angle of growth cone, fig 3B

%gamma - spiraling downward angle

%sigma - angle between translation vector and previous aperture pole, fig 3A
%

%program parameters

NOP = 4; %Number Of Points in each generating curve
epsilon = 0.5; %growth step parameter

steps = 100*leng;

centroid = [0,0,0];

%initialization
r=r_0;

psi =0;
surfleng = 0;

%comment out for opposite tusk handedness (negative is right tusk)
gamma = -gamma;

%get index of place where data tusk to start on grown tusk
startspot = floor(startspot);
if startspot<2
startspot = 2;
elseif startspot>steps
startspot = floor(steps);
end

for i=2:steps
%should follow order of translation then rotation, but this starts on
%second step, so the rotation that occurs first is actually for the
%previous growth step
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%update orientations

psi(i) = psi(i-1)+epsilon*tan(delta)*tan(alpha); %Appendix eq. B6

%expand radius

r(i) = r(i-1)*(1+epsilon*tan(delta));, %Appendix eqs. B4 & B5

%move centroid

centroid(i,:) = centroid(i-1,:)+epsilon*r(i)*[cos(gamma)*cos(psi(i)-sigma+pi/2),cos(gamma) *sin(psi(i)-
sigma+pi/2),sin(gamma)]; %Appendix eq. B3

%plot generating curve

[tusksurface(surfleng+1:surfleng+NOP, 1), tusksurface(surfleng+1:surfleng+NOP,2),tusksurface(surfleng+1

:surfleng+NOP,3)] = circlepoints(centroid(i,:),r(i), NOP,gamma-pi/2,0,psi(i)-sigma);
surfleng = length(tusksurface(:,1));

end

zeroedtusk(:,1) = tusksurface(:,1) - centroid(startspot,1);

zeroedtusk(:,2) = tusksurface(:,2) - centroid(startspot,2);

zeroedtusk(:,3) = tusksurface(:,3) - centroid(startspot,3);

tusk = rotor(THETA,PHI,PSI)*transpose(zeroedtusk); %rotates

x = tusk(1,:)+X;

y = tusk(2,:)+Y;

z = tusk(3,:)+Z;

%----------- End of Program

newieGUI

A MATLAB Graphical User Interface (GUI) started with the help of MATLAB’s GUIDE, but mostly
programmed independently. Lines 113 and 114 could be changed to allow use of different data models
and generated models, respectively.

function varargout = newieGUl(varargin)

% NEWIEGUI MATLAB code for newieGUI.fig

NEWIEGUI, by itself, creates a new NEWIEGUI or raises the existing
singleton*.

H = NEWIEGUI returns the handle to a new NEWIEGUI or the handle to
the existing singleton*.

NEWIEGUI('CALLBACK', hObject,eventData,handles,...) calls the local
function named CALLBACK in NEWIEGUI.M with the given input arguments.

NEWIEGUI('Property’,'Value',...) creates a new NEWIEGUI or raises the
existing singleton*. Starting from the left, property value pairs are
applied to the GUI before newieGUI_OpeningFcn gets called. An
unrecognized property name or invalid value makes property application
stop. All inputs are passed to newieGUI_OpeningFcn via varargin.

SRS IR R N S - NP N IR NI NI N NN

*See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
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% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help newieGUI
% Last Modified by GUIDE v2.5 14-Mar-2011 22:08:31

% Begin initialization code - DO NOT EDIT

gui_Singleton = 1;

gui_State = struct('gui_Name', mfilename, ...
'gui_Singleton', gui_Singleton, ...
'‘gui_OpeningFcn', @newieGUI_OpeningFcn, ...
'‘gui_OutputFcn', @newieGUI_OutputFcn, ...
'gui_LayoutFcn', [], ...
'qui_Callback', []);

if nargin && ischar(varargin{1})

gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
[varargout{1:nargout}] = gui_mainfcn(qui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% --- Executes just before newieGUI is made visible.

function newieGUI_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to newieGUI! (see VARARGIN)

% Choose default command line output for newieGUI
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes newieGUI wait for user response (see UIRESUME)
% uiwait(handles.figurel);

% --- Outputs from this function are returned to the command line.
function varargout = newieGUI_OutputFcn(hObject, eventdata, handles)
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% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

%------ The part where | start writing...

%Initialize variables so they can be global
datums.A = 1.5;
datums.B = 0;

datums.C = 0;
datums.D = 0;

datums.E = 0.01;
datums.F = 0;
datums.length = 10;
datums.startspot = 680;
datums.THETA = 0;
datums.PHI = 0;
datums.PSI = 0;
datums.R=1;

datums.X = 0;

datums.Y =0;

datums.Z = 0;

%pevekl guess [0.6156,0.552,9.8214,0.0276,-2.09,0.45,-3.02]

%Define sliders, blue on the left and maize on the right of the graph

Aslider =

uicontrol(hObject,'BackgroundColor','b’,'Style’, 'slider','Max',1.6,'Min',1,'Value',datums.A, 'Position',[20
100 18 400],'Callback’,{@slider_Callback,handles,'A'});

Bslider =

uicontrol(hObject,'Enable’,'on’,'BackgroundColor’,'b’,'Style’, 'slider’,'Max',0.05,'Min',0, 'Value',datums.B,'P
osition',[48 100 18 400],'Callback’,{@slider _Callback,handles,'B'});

Cslider =

uicontrol(hObject,'BackgroundColor','b’,'Style’, 'slider','Max',1,'Min',0, 'Value',datums.C,'Position',[76 100
18 400],'Callback’,{@slider_Callback,handles,'C'});

Dslider = uicontrol(hObject,'Enable’,'off','BackgroundColor','b",'Style’, 'slider’,'Max',0.6,'Min',-
0.6,'Value',datums.D, 'Position',[104 100 18 400],'Callback’,{@slider _Callback,handles,'D'});

Eslider =

uicontrol(hObject,'Enable’,'on’,'BackgroundColor’,'b’,'Style', 'slider’,'Max',0.1,'Min",0,'Value',datums.E, 'Po
sition',[132 100 18 400],'Callback',{@slider_Callback,handles,'E'});

Fslider =

uicontrol(hObject,'Enable’,'off','BackgroundColor’,'b’,'Style’, 'slider','Max',1,'Min’,0,'Value',datums.F, 'Posit
ion',[160 100 18 400],'Callback’,{@slider_Callback,handles,'F'});
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lengthslider = uicontrol(hObject,'BackgroundColor',[0 O
0.9],'Style’,'slider’,'Max',100,'Min',0,'Value',datums.length, 'Position',[215 100 18
400],'Callback’,{@slider_Callback,handles,'length'});

startspotslider = uicontrol(hObject,'BackgroundColor',[0 O
0.9],'Style’,'slider’,'Max',1000,'Min',2,'Value',datums.startspot, 'Position',[243 100 18
400],'Callback’,{@slider_Callback,handles, 'startspot'});

THETAslider = uicontrol(hObject,'BackgroundColor',[1 0.92 0], 'Style’, 'slider’,'Max',pi,'Min', -
pi,'Value',datums.THETA, 'Position',[800 100 18 400],'Callback’,{@slider_Callback,handles,' THETA'});
PHislider = uicontrol(hObject,'BackgroundColor',[1 0.92 0], 'Style', 'slider’,'Max',pi,'Min',-
pi,'Value',datums.PHI,'Position’,[828 100 18 400],'Callback’,{@slider_Callback,handles,'PHI'});

PSislider = uicontrol(hObject,'BackgroundColor',[1 0.92 0], 'Style','slider','Max',pi,'Min’,-
pi,'Value',datums.PSI,'Position’,[856 100 18 400],'Callback’,{@slider_Callback,handles,'PSI'});

% Rslider = uicontrol(hObject,'Enable’,'on’,'BackgroundColor',[1 0.75
0],'Style’,'slider','Max',10,'Min',0,'Value',datums.R, 'Position’,[884 100 18
400],'Callback’,{@slider_Callback,handles,'R'});

Xslider = uicontrol(hObject,'BackgroundColor',[1 0.92 0],'Style’, 'slider’,'Max",0.5,'Min',-
0.5,'Value',datums.X, 'Position',[912 100 18 400],'Callback’',{@slider_Callback,handles, X'});

Yslider = uicontrol(hObject,'BackgroundColor',[1 0.92 0], 'Style','slider’,'Max',0.5,'Min’, -
0.5,'Value',datums.Y,'Position',[940 100 18 400],'Callback’,{@slider _Callback,handles,'Y'});

Zslider = uicontrol(hObject,'BackgroundColor',[1 0.92 0],'Style’,'slider’,'Max",0.5,'Min',-
0.5,'Value',datums.Z,'Position',[968 100 18 400],'Callback’,{@slider_Callback,handles,'Z'});

datachooser =

uicontrol(hObject, 'Style','nopupmenu’,'string’,{'Pevek1’,'Pevek2’,'Pevek3’,'Pevek4’,'Pevek5’,'Pevek6’, 'Peve
k7','BueschinglLeft’,'BueschingRight’,'wyleft','wyright', 'tusk1’,'tusk2’, 'tusk3','Bothwell’,'HydeParkLeft','"Hy
deParkRight','M43",'StPaul’,'Taimir3’,'Taimir245','Taimir246','Taimir286','’ZCHM19','’ZCHM20','ZCHM22",'
ZCHM23','none'},'position’,[475 50 150 30],'Callback’,{@datachooser _Callback,handles});
modelchooser =

uicontrol(hObject, 'Style’,'popupmenu’,'string’,{'ackerleyfun’,'none’,'ackerlycentroids’,'logtusk’,
"'oka_tusk'},'position’,[475 10 150 30],'Callback’,{@modelchooser _Callback,handles});

1

neglogtusk

%lower bounds [0,0,0,0,-pi,-pi/2,0,-1.5,-1.5,-1.5]
%upper bounds [0.5,3,3,7,pi,pi/2,1,1.5,1.5,1.5]
%start point [0.3,1,0.6,3.2,0.6,-1.4,.15,-0.3,-0.6,-1]

%Pevekl best guess bounds

%lower [0.15,0.85,0.5,3,0.3,-1.6,0.1]
%upper [0.35,1.15,0.7,4,0.7,-1.3,0.2]
%start [0.43,0.33,0.34,2.8,0.68,-1.16,0.63]

%Initialize the graph

%Define graph axes

datums.checkplot =

axes('Parent' hObject,'ActivePositionProperty’,'outerposition’,'OuterPosition',[.27 .12 .5 .8],'Box’,'on’);
hold on %so that camera position is preserved

%Set tusk source data

Pevekimaker;

datatusk = Pevek1;

%save and process the data
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datums.datatusk = datatusk(1:5:length(datatusk(:, 1)),:);

tuskplot = scatter3(datatusk(:, 1), datatusk(:,2),datatusk(:,3),".");

%fix the axes to a cube based on extrema of the tusk

axisend = 1.3*max([abs(min(datatusk(: 1))) abs(max(datatusk(:,1))) abs(min(datatusk(:,2)))
abs(max(datatusk(:,2))) abs(min(datatusk(:,3))) abs(max(datatusk(:3)))]);

axis([-axisend axisend -axisend axisend -axisend axisend]);

datums.modeltoget = 'ackerleyfun’; %Set model type
setappdata(handles.figurel,'datums’,datums); %Make all the data acessible

datums %print initial values

plotit(hObject,handles); %plot the model

%Callbacks----------------

function slider_Callback(hObject, eventdata, handles, valtoget)

%Do something when the sliders are moved

%get/set data based on the slider

datas = getappdata(handles.figurel,'datums’);
eval(horzcat('datas.',valtoget,’ = get(hObject,''Value")'));
setappdata(handles.figurel,'datums’,datas); %Make all the data accessible
delete(datas.modelplot);

plotit(hObject,handles); %plot the stuff

function datachooser_Callback(hObject, eventdata, handles)
%Choose source data for comparison
clearvars -except hObject eventdata handles datums datas
datas = getappdata(handles.figurel,'datums’);
%read in the appropriate data
stringthing = get(hObject, 'String’);
datatoget = char(stringthing(get(hObject,'Value')));
if length(datatoget)==5&datatoget(1:4)=="tusk’
eval(horzcat('tusk',datatoget(5), ‘axispoints;’));
eval(horzcat('datatusk = tusk',datatoget(5),";'));
eval(horzcat('clear tusk',datatoget(5)));
axisend = 2;
elseif length(datatoget)==4&datatoget(1:4)=="none’
datatusk = [0,0,0];
axisend = 2;
else
eval(horzcat(datatoget,'maker;'));
eval(horzcat('datatusk = ', datatoget,'(1:7:length(',datatoget,'(:,1)),:);');
eval(horzcat('clear ', datatoget));
axisend = 1.3*max([abs(min(datatusk(: 1))) abs(max(datatusk(:,1))) abs(min(datatusk(:,2)))
abs(max(datatusk(:,2))) abs(min(datatusk(:,3))) abs(max(datatusk(:,3)))]);
end
%reset everything, including the figure
cla(datas.checkplot)
clear datas.datatusk



% datas.checkplot =

axes('Parent' hObject,'ActivePositionProperty’,'outerposition’,'OuterPosition',[.27 .12 .5 .8],'Box’,'on’);
% hold on %so that camera position is preserved

%save and process the data

datas.datatusk = datatusk;

scatter3(datatusk(:, 1), datatusk(:,2),datatusk(:,3),".");

%fix the axes to a cube based on extrema of the tusk

axis([-axisend axisend -axisend axisend -axisend axisend]);

setappdata(handles.figurel,'datums’ datas); %Make all the data acessible

plotit(hObject,handles);

function modelchooser_Callback(hObject,eventdata,handles)

%Select model for comparison to data

datas = getappdata(handles.figurel,'datums’);

clearvars stringthing

stringthing = get(hObject,'String’');

datas.modeltoget = char(stringthing(get(hObject,'Value')));
setappdata(handles.figurel,'datums’,datas); %Make all the data acessible
delete(datas.modelplot);

plotit(hObject,handles);

function plotit(hObject,handles)

%Plotting function

datas = getappdata(handles.figurel,'datums’);

%plot stuff

eval(horzcat('[tuskx,tusky,tuskz] =

' char(datas.modeltoget),'(datas.A,datas.B,datas.C,datas.D,datas.E,datas.F,datas.length,datas.startspot,
datas. THETA,datas.PHl,datas.PSl,datas.X,datas.Y,datas.Z);'));

datas.modelplot = scatter3(tuskx,tusky,tuskz,'.’);

setappdata(handles.figurel,'datums’,datas); %Make all the data acessible

Y End of Program
optimtuskfun

This is the objective function used during computer optimization. Starting parameters were
entered in to optimtool as [a(1) a(2) a(3) ... a(i)]. They could also be fixed by changing the appropriate
line of code, which allowed the parameter relationship studies. Changing the name of a tusk in its three
occurrences in lines 25&26 is how different tusks were evaluated.
function totaldist = optimtuskfun(a)

%Evaluates the distance from each point on the surface to the model, which
%by minimization stretches the model to fit down the center of the surface.
%**Make sure that the two places marked CHANGE with **** gre set, otherwise

%the wrong data will be optimized to the wrong model
A=a(1);
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B=a(2);
C=a(3);
D=a(4);
E=a(5);
F=a(6);

leng =a(7);
startspot = a(8);
THETA = a(9);

PHI = a(10);

PSI=a(11);

R = 1; %obsolete, but still needs to be left in
X=a(12);

Y=a(13);

Z=a(14);

totaldist = 0; %initialize the summation variable

%upload the data

%CHANGE 3 variables in the next 2 lines ****%**kk*xkx
HydeParkRightmaker;

testtusk = HydeParkRight(1:10:length(HydeParkRight),1:3);

%generate model
[x,y,z] = ackerleyfun(A,B,C,D,E,F,leng,startspot, THETA,PHI,PSI,X,Y,Z);
%find the minimum distances of model points from data points - minimizing
%this pulls the model (tusk axis) toward all parts of the surface data
for j=1:length(testtusk)

for i=1:length(x)

alldist(i) = (x(i)-testtusk(j,1))"2+(y(i)-testtusk(j,2))A2+(z(i)-testtusk(j,3))2;

end

totaldist = totaldist+min(alldist);
end
Yg=----=-=-mmmmmm- End of Program
ackerlyslowfun

A recharacterization of ackerlyfun to plot the tusk in 3D with traces of different colors to make it

easy to distinguish them. This program was considerably slower than ackerlyfun because that was
designed to go quickly for optimization while this was designed to make a figure that looked good. Itis
called with the same inputs as ackerlyfun but its only output is a figure.

function [x,y,z] = akerleyfun(alpha,delta,gamma,sigma,r_0,~,leng,startspot, THETA,PHI,PS/,X,Y,Z)

%program parameters
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NOP = 6; %Number Of Points in each generating curve
epsilon = 0.5; %growth step parameter

steps = 100*leng;

centroid = [0,0,0];

%initialization
r=r_0;

psi =0;
surfleng = 0;

%get index of place where data tusk to start on grown tusk
startspot = floor(startspot);
if startspot<2
startspot = 2;
elseif startspot>steps
startspot = floor(steps);
end

figure
hold on

for i=2:steps
%should follow order of translation then rotation, but this starts on
%second step, so the rotation that occurs first is actually for the
%previous growth step

%update orientations

psi(i) = psi(i-1)+epsilon*tan(delta)*tan(alpha); %Appendix eq. B6

%expand radius

r(i) = r(i-1)*(1+epsilon*tan(delta));, %Appendix eqs. B4 & B5

%move centroid

centroid(i,:) = centroid(i-1,:)+epsilon*r(i)*[cos(gamma)*cos(psi(i)-sigma+pi/2),cos(gamma) *sin(psi(i)-
sigma+pi/2),sin(gamma)]; %Appendix eq. B3

%plot generating curve

[tusksurface(surfleng+1:surfleng+NOP, 1), tusksurface(surfleng+1:surfleng+NOP,2),tusksurface(surfleng+1
:surfleng+NOP,3)] = circlepoints(centroid(i,:),r(i), NOP,gamma-pi/2,0,psi(i)-sigma);

surfleng = length(tusksurface(:,1));

%plot in multiple colors

[aperture(:,1),aperture(:2),aperture(:3)] = circlepoints(centroid(i,:),r(i), NOP,gamma-pi/2,0,psi(i)-

sigma);
plotsurf = rotor(THETA,PHI,PSl)*transpose(aperture);
forj=1:NOP

colors(j,:) = [floor(j/4) mod(floor(j/2),2) mod(j,2)]; %breaks if NOP reaches 8
scatter3(plotsurf(1,j),plotsurf(2,j),plotsurf(3,j),'marker',".’, 'CData’,colors(j,:));
end
end

%scale the axes so they are square
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axisend = 1.2*max([abs(min(plotsurf(:,1))) abs(max(plotsurf(:,1))) abs(min(plotsurf(:,2)))
abs(max(plotsurf(:,2))) abs(min(plotsurf(:,3))) abs(max(plotsurf(:,3)))]);

axis([-axisend axisend -axisend axisend -axisend axisend]);

% End of Program

rotor

A simple program that allowed a full rotation matrix to be generated from the yaw, pitch, and

roll in a single line of code without taking up too much space. It multiplies together three individual
right-handed rotation matrices.

function answer = rotor(theta,phi,psi)

%Rotates the point (x,y,z) 'theta' around the x axis, 'phi' around the y axis,
%and 'psi' around the z axis. Returns a new (x,y,z).

answer = [cos(psi),-sin(psi),0;sin(psi),cos(psi),0,0,0,1]*[cos(phi),0,sin(phi),;0,1,0;-
sin(phi),0,cos(phi)]*[1,0,0,0,cos(theta),-sin(theta);0,sin(theta),cos(theta)];
96----===mmmmmmmmmm End of Program

circlepoints

A program to generate a circle of points, representing a tusk aperture, given its information.

The program is a version of one called circle downloaded from the MATLAB help forum, modified to
allow rotation of the aperture in the function call. The documentation on the original is left in for
reference.

function [X,Y,Z]=circlepoints(center,radius,NOP,A,B,C)
%
% H=CIRCLE(CENTER,RADIUS,NOP,STYLE)

% This routine draws a circle with center defined as

% a vector CENTER, radius as a scaler RADIS. NOP is
% the number of points on the circle. As to STYLE,

% use it the same way as you use the rountine PLOT.
% Since the handle of the object is returned, you

% use routine SET to get the best result.

Usage Examples,

circle([1,3],3,1000,"');
circle([2,4],2,1000,"--');

Zhenhai Wang <zhenhai@ieee.org>
Version 1.00
December, 2002

XXX
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%

%if (nargin <3),

% error('Please see help for INPUT DATA.');
%elseif (nargin==3)

% style='b-';

%end;
THETA=linspace(0,2*pi,NOP);
RHO=o0nes(1,NOP)*radius;
[X,Y] = pol2cart(THETA,RHO);
Z(1:NOP)=0;
PTS=rotor(A,B,C)*[X;Y;Z];
X=PTS(1,:)+center(1);
Y=PTS(2,:)+center(2);
Z=PTS(3,:)+center(3);
%-----======-- End of Program
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