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On Using Summary Statistics From an External Calibration
Sample to Correct for Covariate Measurement Error

Ying Guo,* Roderick J. Little,® and Daniel S. McConnell®

Background: Covariate measurement error is common in epidemi-
ologic studies. Current methods for correcting measurement error
with information from external calibration samples are insufficient
to provide valid adjusted inferences. We consider the problem of
estimating the regression of an outcome Y on covariates X and Z,
where Y and Z are observed, X is unobserved, but a variable ¥ that
measures X with error is observed. Information about measurement
error is provided in an external calibration sample where data on X'
and W (but not Y and Z) are recorded.

Methods: We describe a method that uses summary statistics from
the calibration sample to create multiple imputations of the missing
values of X in the regression sample, so that the regression coeffi-
cients of ¥ on X and Z and associated standard errors can be
estimated using simple multiple imputation combining rules, yield-
ing valid statistical inferences under the assumption of a multivariate
normal distribution.

Results: The proposed method is shown by simulation to provide
better inferences than existing methods, namely the naive method,
classical calibration, and regression calibration, particularly for
correction for bias and achieving nominal confidence levels. We also
illustrate our method with an example using linear regression to
examine the relation between serum reproductive hormone concen-
trations and bone mineral density loss in midlife women in the
Michigan Bone Health and Metabolism Study.

Conclusions: Existing methods fail to adjust appropriately for bias
due to measurement error in the regression setting, particularly when
measurement error is substantial. The proposed method corrects this
deficiency.
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Many studies in epidemiology involve biomarkers re-
corded with measurement error, which distorts infer-
ences. Specifically, in regression analysis, regression coeffi-
cients of wvariables subject to measurement error are
attenuated, and treatment effects are potentially estimated
with bias when variables subject to measurement error are
included as covariates.' However, adjustments to correct
these biases are rarely applied in epidemiologic studies.®

Information about measurement error is often contained
in a calibration experiment such as a bioassay, where samples
with known values of the variable are analyzed by a measur-
ing instrument, and the regression of the measured values on
the true values is estimated, yielding a calibration curve.’
Low values with high measurement error are often reported
as below the limit of detection, and other values are estimated
from this calibration curve and treated as the true values in
the main analysis. Browne and Whitcomb® provide a review
of methods for determining the limit of detection and related
quantities. Simulations have shown that this approach, which
we call classical calibration, yields biased regression esti-
mates when the measurement error is substantial.” This usual
way of providing information from calibration experiments to
users does not allow valid statistical inferences unless the
measurement error is small. Better methods would allow
useful information from calibrations with relatively high
measurement error to be included in analysis.

We consider data from a main study and a calibration
sample in the form of Figure 1. The main analysis concerns the
regression of ¥ on X and Z, where Y is the outcome of interest,
X is the true value of the biomarker of interest, and Z denotes
other covariates, assumed to be measured without error. The
main study data are a random sample on Y, Z, and W, where W
is the measured version of the biomarker, the true value X
measured with error. Information relating 7 and X is gained
from a calibration sample that includes measurements on # and
X. The shaded cells in Figure 1 represent unobserved values.

Figure 1 contrasts 2 calibration sample designs, which
we call “internal calibration” and “external calibration.” In
internal calibration (Fig. 1A), values of X and W are available
for a subsample of the main study participants, and ¥ and Z
are also recorded for this subsample. External calibration is
carried out independently of the main study, for example by
an assay manufacturer, so values of ¥ and Z are not recorded
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A Internal calibration

B External calibration

X w zZ2Y X W Z2Y
Calibration Calibration
FIGURE 1. A, an internal calibration/main study Main study Main study
design, and B, an external calibration/main study
design. Shading indicates cells with missing data.

for the calibration sample, yielding the sparser data pattern of
Figure 1B.

The literature on measurement error adjustments has
largely concerned the internal calibration design. In that
setting, regression calibration substitutes the estimated
conditional expectation of the true biomarker given the
observed surrogate and the other covariates into the pri-
mary regression model.'® This method yields consistent
estimates of the main regression parameters, under the
nondifferential measurement error assumption that Y is
independent of W given Z and X, which we denote as
NDME(Y, W | Z, X). If the calibration data are available,
standard errors of the estimates can be calculated using
either bootstrap or sandwich estimation methods. When
direct estimates of the regression of Y on (X, Z) are
available from the calibration sample, they can be com-
bined with the regression calibration estimates, yielding
the method known as efficient regression calibration.'!

An alternative to regression calibration and efficient
regression calibration is multiple imputation for internal
calibration,'? where values of the biomarker X are imputed
as draws from the conditional distribution of X given W, Z,
and Y, estimated from the calibration subsample. This
imputation step is repeated to create multiple completed
data sets. Each completed data set is then analyzed using
standard complete-data procedures, and estimates and
standard errors from these analysis are combined using
multiple-imputation combining rules given by Rubin."
One attraction of multiple imputation is that it is increas-
ingly available in statistical software (SAS PROC MI,
IVEware, MICE). Cole et al'* propose this approach with
a survival outcome model when one covariate is measured
with error. Raghunathan'® applies multiple imputation to
data from the National Health and Nutrition Examination
Survey to handle measurement error in self-reports of
health conditions. He and Zaslavsky'® address underre-
porting of cancer therapies in registry systems by using
multiple imputation to impute correct treatment status,
using information from medical records in a calibration
sample. Freedman et al'” compare regression calibration,
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efficient regression calibration, and multiple imputation
under the multivariate normal model, for the internal
calibration design. They show in simulations that regres-
sion calibration, efficient regression calibration, and mul-
tiple imputation for internal calibration have minimal bias
and that efficient regression calibration is more efficient
than the other 2 approaches. Guo and Little” show that
more efficient versions of multiple imputation for internal
calibration are available that exploit the nondifferential
measurement error assumption, and these are as efficient or
more efficient than efficient regression calibration. They
also extend multiple imputation for internal calibration to
handle measurement error with nonconstant variance, a
situation that regression calibration and efficient regres-
sion calibration are ill-equipped to handle.

Our focus here is on the external calibration design in
Figure 1B. Because biomarkers are commonly calibrated by
assay producers independently of the main study, this situa-
tion is much more common than that of the internal calibra-
tion design, but methods for this case have received limited
attention. The classical calibration method uses only the
information of X and /¥ and hence can be applied to external
calibration data. However, it is known from previous studies
that classical calibration is biased when the measurement
error is substantial.” The regression calibration, efficient re-
gression calibration, and multiple imputation for internal
calibration methods all require information in the calibration
sample that is not available with the external calibration
design: for regression calibration, the values of Z; and for
efficient regression calibration and multiple imputation for
internal calibration, the values of both Y and Z. Our simula-
tion study shows that versions of multiple imputation for
internal calibration or regression calibration based only on the
distribution of X given W, which can be applied to external
calibration data, both yield biased inferences for the regres-
sion of Y on X and Z

We propose multiple imputation for external calibra-
tion, a new method that addresses these problems. It requires
only summary statistics from the calibration sample, an
important consideration because the microdata (ie, subject-
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level or unit-level external calibration data) are generally not
made available from an external calibration sample. The
method yields valid multiple imputation inferences for the
regression of ¥ on X and Z, although values of Y and Z are
missing in the calibration sample. Like multiple imputation for
internal calibration, it is based on a multivariate normal model,
but it is not the standard version of multiple imputation, as
implemented in programs like PROC MI in SAS; that method is
actually not feasible for external calibration data, because there
is insufficient information to estimate all the imputation model
parameters. The multiple imputation for external calibration
method solves this problem by exploiting parameter restrictions
based on the nondifferential measurement error assumption. The
method is remarkably simple, because it is a direct simulation
method that does not require iterative computations. More sta-
tistical details on multiple imputation for external calibration,
and R code to implement it, are provided in the Appendix and
the eAppendix (http://links.lww.com/EDE/A525), respectively.

Our proposed method is illustrated using data to assess
the association between X = concentration of sex hormone-
binding globulin (SHBG) and Y = bone mineral density loss,
adjusting for Z = age and body mass index (BMI), for midlife
women from the 2008 Michigan Bone Health and Metabo-
lism Study.'® The true SHBG concentration X for each
participant is unobserved, but an assay measure W is col-
lected, which can be viewed as an error-contaminated version
of the true concentration X. Calibration data on the joint
distribution of X and W are also available.

We describe the model that underlies multiple imputa-
tion for external calibration, and outline the algorithm for
creating multiple imputations. We provide a simulation study
comparing multiple imputation for external calibration with
competing methods and present sensitivity analysis to exam-
ine the robustness of multiple imputation for external cali-
bration. We also show an application to real data from the
Michigan Bone Health and Metabolism Study.

PROPOSED METHOD

We write U = (Y, Z), a vector of p variables, for the set
of ¢ outcomes Y and r covariates Z other than X, where p =
g + r. As g and r may be greater than 1, the formulation
covers multivariate regression with one or more dependent
variables and one or more covariates. We assume here that X
and its surrogate W are scalar, although our method can be
extended to handle more than 1 variable subject to measure-
ment error.

We assume that in the main sample and the calibration
sample, the conditional distribution of U and X given W has
ajoint (p + 1)-variate normal distribution with a mean that is
linear in /¥ and a constant covariance matrix. This conditional
distribution is assumed to be the same in the main study
sample and the calibration sample, although the distribution
of W can differ in the 2 samples. This indispensable assump-
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tion is related to the transportability across studies assump-
tion.'” Further, we make the following nondifferential mea-
surement error assumption:

NDME(U, W | X): the distribution of U given W and X
does not depend on W.

That is, the measurement error in W is assumed to be
unrelated to values of U = (Y, Z), conditional on the true
value X. This assumption is stronger than the nondifferen-
tial measurement error assumption for internal calibration,
which assumes the measurement error is unrelated to YV
conditional on X and the covariates Z. The stronger as-
sumption is needed given the more limited information
available in external calibration data. However, we believe
the assumption is plausible in many bioassays. The
NDME(U, W | X) assumption will hereafter be referred to
simply as the NDME assumption.

Our method generates imputations of X from the con-
ditional distribution of X given the observed variables in the
main study sample, namely Y, Z, W; let ¢ = (A, &) where A
denotes the vector of regression coefficients of regression X
on (Y, Z, W) and & denotes the residual standard deviation for
that regression. For data set d, a draw ¢© = (A9, §9) is
taken from the posterior distribution of ¢ given the data. This
draw can be computed rather simply from the main sample
data and summary statistics from the external calibration
sample, namely the sample size, sample mean, and sum of
squares and cross products matrix of X and . The missing
value x; of X for the ith observation in the study sample is
then imputed by

%Ed):E(xi |J’i, Zip Wi )\(d)) +Zi(d)8(d) N

where E(x; | v, z;, u;, A) is the conditional mean of x; given
(v z;, w;), the values of (Y, Z, W) for case i, and z, is a draw
from the standard normal distribution. This method is proper
in the sense defined by Rubin,'* as it takes into account
uncertainty in estimating ¢. An alternative approach is to
replace ¢ by the maximum likelihood estimate ¢ in the
given formula, but this method is improper—it does not
propagate uncertainty in estimating ¢—and hence is inferior
to the proper method.

The key aspect of the method is deriving p estimates of
the partial covariances between X and the components of U,
given W. These p parameters cannot be estimated directly
from the data in Figure 1B because X and U are never
observed together. However, the nondifferential measurement
error assumption implies that the p coefficients of W in the
regression of U on W and X are zero. These p parameter
restrictions allow the missing covariances to be expressed in
terms of parameters that can be estimated from the available
data, and then multiple imputations of the missing values to be
created. More statistical details on how ¢ and ¢ are computed,
and software (R source code) to implement the proper version of
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multiple imputation for external calibration, are provided in the
eAppendix (http://links.lww.com/EDE/AS525).

In this article, we consider the situation in which the
external calibration data are not available for inclusion in the
postimputation analysis. Reiter’® shows that in this situation,
the standard variance estimator obtained from the multiple-
imputation combining rules'? is positively biased and confi-
dence interval coverage exceeds 95%. Here, we follow Re-
iter’s two-stage imputation procedure to generate imputations
that enable consistent estimation of variances. Specifically,
we first draw d values of model parameters ¢; then, for
each d)@, d =1, ..., m, we construct n imputed data sets by
generating n sets of draws of X. Finally, this procedure yields
a collection of M = m X n imputed data sets, which can be
analyzed by standard complete data inference. The results
from all imputed data sets are combined to obtain valid
inferences using the following combining rules suggested by
Reiter.® Ford = 1, ..., mand [ = 1, ..., n, let % and
var(7*?) be the estimate of parameters of interest and the
corresponding estimated variance computed with the (d, /)
data set, respectively. The multiple imputation estimate of vy,
Y and associated variance 7,,, are calculated as

Yur = 2 E (dl)/(mn) E V(d)/m

d=11=1 d=1
—U—-W+ 1+ 1mB— Wi
with

W= 220G -

d=11=1

Y/ (m(n = 1))

B = E (V(d) - 5’/\4/)2/(”1 -1)

U= E 2 var(§'%")/mn

=1=1
The 95% confidence intervals for the multiple imputation

estimate are calculated as 7y, = togm\@, with degrees of
((1 + Um)B)? A+ Vmywy ]!

(m = )Ty (m(n — 1)Tyy
Ty, < 0, the variance estimator is recalculated as (1 + 1/m)B,

and inferences are based on a #-distribution with (m — 1) degrees
of freedom. In this study, we choose m = 12 and n = 3.

. When

freedom v =

SIMULATION STUDY
We now describe simulation studies to compare the
proposed multiple imputation for external calibration method
with existing methods.
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Simulation Design and Parameter Settings

We assume a linear regression model for outcome Y on
covariate X measured with error and covariate Z measured
without error,

SY| X, Z, ) ~ Nlyy + yeX + y,Z, 7) )

where ¥ = (Yo, Vv Yz T) denotes the vector of regression
coefficients and residual variance. Our objective is inference for
¥ = (vYy Yz)- The covariates X and Z have mean 0, variance 1,
and correlation p = 0.3 (low correlation) and p = 0.6 (high
correlation). In the regression model, y, = 0, y, = 0.4, 7 =

and v, = 04 and 1.2, corresponding to a small and large
covariate effect, respectively. In the main study data, n,;, =
400 observations are generated on Y, Z, and W, a surrogate
measure for X related to X by the measurement error model

where 3, = 0 and 3, = 1.1, so that /¥ is a linear biased
surrogate for X, and o” is set to 0.25, 0.5, and 0.75 to
represent small, moderate, and large measurement errors,
respectively. For the calibration data, n_,;, = 100 observa-
tions on (X, W) are sampled from the measurement error
model. We generate 1000 main and calibration data sets for
each combination of parameter values.

Methods Compared

Multiple Imputation for External Calibration

We apply the proper version of the proposed method
described earlier in the text and compare it with the following
existing methods.

Naive Regression: The coefficients of the regression of ¥ on
X and Z are computed by least squares on the main sample
substituting X = W, that is, ignoring the measurement error in W.

Classical Calibration: We fit a linear regression curve of
W on X based on the calibration data and then estimate the
unknown value of X by X = (W — f3,)/B,, where B, and £,
are the estimates of the intercept and slope obtained from the
regression of W on X. The classic calibration estimate of y
and associated standard error are obtained by least squares
regression of ¥ on X, and Z, computed on the main study
data.

Regression Prediction: We compute least squares esti-
mates &, and @, of the coefficients « and «, of the linear
regression of X on W using the calibration sample and then
replace unknown values of X in the main sample by predic-
tions Xzp = @, + &, W. The coefficients vy are then estimated
by least squares method from the regression of ¥ on X, and
Z, based on the main sample. Standard errors for the estimate
of vy can be found by bootstrap methods, if the calibration
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data are available. The regression prediction method corre-
sponds to the usual regression calibration method when there
is no covariate Z.

Results

The results of the simulation studies are shown in Table 1.
Inferences about y, and v, the regression coefficients of X and
Z from the regression of Y on X and Z, are assessed for each
method. Performance for a parameter vy is summarized using (@) the

empirical bias, bias(y) = —>r_ (% v); (b) the root mean
n

|

1

S (3~ s and (€ the empirical
noncoverage rate of the 95% confidence interval, that is the number
of simulated data sets for which the 95% confidence intervals (CIs)
do not contain the true parameter values. Given 1000 simulated data
sets, the nominal value of noncoverage is equal to 50. We compare
various methods with respect to the absolute bias, root mean square
error, and empirical noncoverage of 95% confidence intervals. A
good method is anticipated to have small absolute bias, low root
mean square error, and a nominal level noncoverage.

square error, RMSE(Y) =

TABLE 1. Empirical Bias, RMSE, and Noncoverage Rate (Noncov.) for the Estimates of vy, and vy, Based on 1000 Simulations
Simulation Parameters X 4
Ve Y, B, o? p Naive CcC RP MI-EC Naive CcC RP MI-EC
0.4 0.4 1.1 0.25 0.3 Bias 105 75 7 1 23 23 23 0
RMSE 113 90 60 61 57 57 57 54
Noncov. 664 347 44 28 66 66 61 32
0.4 0.4 1.1 0.5 0.3 Bias 151 126 10 3 38 38 38 1
RMSE 156 134 68 71 65 65 65 56
Noncov. 961 784 48 42 111 111 117 41
0.4 0.4 1.1 0.75 0.3 Bias 185 163 13 5 49 49 49 3
RMSE 189 169 75 80 72 72 72 59
Noncov. 998 952 53 45 153 153 151 36
0.4 0.4 1.1 0.25 0.6 Bias 27 99 36 2 60 60 60 1
RMSE 135 113 76 76 85 85 85 69
Noncov. 710 416 83 36 159 159 165 50
0.4 0.4 1.1 0.5 0.6 Bias 181 158 56 9 95 95 95 6
RMSE 186 166 92 95 112 112 112 79
Noncov. 981 868 124 47 350 350 354 48
0.4 0.4 1.1 0.75 0.6 Bias 217 198 70 18 119 119 119 15
RMSE 221 204 105 122 133 133 133 100
Noncov. 1000 975 145 49 499 499 506 34
1.2 0.4 1.1 0.25 0.3 Bias 312 223 18 5 67 67 67 10
RMSE 316 233 85 88 88 88 88 61
Noncov. 1000 949 63 37 210 210 217 59
1.2 0.4 1.1 0.5 0.3 Bias 451 375 29 12 113 113 113 5
RMSE 453 383 111 119 128 128 128 73
Noncov. 1000 999 72 38 418 418 428 53
1.2 0.4 1.1 0.75 0.3 Bias 552 487 36 17 147 147 147 9
RMSE 554 493 132 144 159 159 159 86
Noncov. 1000 1000 77 34 621 621 621 53
1.2 0.4 1.1 0.25 0.6 Bias 377 294 104 9 177 177 177 6
RMSE 381 303 137 111 188 188 188 85
Noncov. 1000 988 248 37 766 766 760 47
1.2 0.4 1.1 0.5 0.6 Bias 539 472 166 25 284 284 284 20
RMSE 541 478 197 166 291 291 291 124
Noncov. 1000 1000 392 34 987 987 987 45
1.2 0.4 1.1 0.75 0.6 Bias 647 591 206 44 355 355 355 37
RMSE 649 596 239 213 362 362 362 166
Noncov. 1000 1000 466 37 999 999 1000 47

The true value of vy, is 0.4 or 1.2; the true value of vy, is 0.4.
All values are multiplied by 1000.

Naive indicates naive linear regression of ¥ on W and Z; CC, classical calibration; RP, regression prediction; MI-EC, multiple imputation for external calibration; RMSE, root

mean square error.
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We first consider inferences for vy,. As expected, the naive
regression estimate is attenuated towards 0, and empirical non-
coverage rate of 95% confidence intervals seriously exceeds the
nominal level in all simulation scenarios. The classical calibra-
tion method also performs very poorly, with substantial bias and
high noncoverage rate, particularly when the measurement error
is large. Regression prediction has small empirical bias when the
correlation between X and Z is low, but it is biased with poor
confidence coverage when the correlation is high, with the bias
and noncoverage increasing with the size of covariate effect and
the measurement error. Under all simulation scenarios consid-
ered here, the multiple imputation for external calibration
method has small empirical bias, and confidence interval cov-
erage close to the nominal level. The root mean square error of
multiple imputation for external calibration is generally lower
than that of regression prediction, but it is a little larger than that
of regression prediction in some situations. We conjecture that
the loss of precision of multiple imputation for external calibra-
tion relative to regression prediction arises because the former
takes into account the correlation between X and Z, as is
necessary to get consistent estimates. This conjecture was con-
firmed by assessing the performance of a modified version of
multiple imputation for external calibration that assumes (like
regression prediction) that X and Z are uncorrelated. This
method had smaller root mean square error than regression
prediction when the bias from assuming X and Z are uncorre-
lated is small.

The performance of inferences for the regression coef-
ficient vy, of the covariate Z is also shown in Table 1. The
estimates obtained by the naive method are biased, with bias
increasing with the measurement error, the size of covariate
effect, and the correlation between X and Z The classical
calibration and regression prediction methods also exhibit
substantial bias, high root mean square error, and high non-
coverage rates. In contrast, our multiple imputation for ex-
ternal calibration method performs well in all simulation
scenarios.

The results presented in Table 1 are based upon the
two-stage imputation parameter setting (m, n) = (12, 3). We
also examined the performance of our method under other
combinations of m and n settings, namely (20, 3) and (12, 5).
The results from the simulation study under those settings are
close to those in Table 1, although the combination of (20, 3)
results in a slightly higher than nominal coverage rate.

We also assessed through simulation the performance
of the usual multiple imputation variance estimator when the
calibration data are used for imputation but not for the
postimputation analysis. We constructed 36 completed data
sets (the same number as those generated using the two-stage
imputation procedure) by using the standard multiple impu-
tation method (ie, creating one imputed dataset per draw of
model parameters). We then applied Rubin’s standard multi-
ple imputation combining rules,'* without including the cal-
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ibration data. We found that the Rubin’s estimator was
positively biased by 5%—30% over the settings we examined.

SENSITIVITY TO DEVIATIONS FROM
MULTIVARIATE NORMALITY

Our proposed method is based on assumptions of non-
different measurement error and multivariate normality. The
nondifferential measurement error assumption is common
and often reasonable for assay data,'""!”! and it is required
to identify the parameters.'? Therefore, we focus on a sensi-
tivity analysis to evaluate the robustness of our method to
violation of the normality assumption. We consider 2 forms
of misspecification: the case where a binary covariate Z is
misspecified as normal and the case where the covariate X is
specified as normal when in fact it is log normal. As in the
previous section, we examine the performance of our method
and others under various choices of the measurement error
variance (0”), correlation between X and Z (p), and the
covariate effect of X (7yy).

Simulation results for a binary covariate are presented
in Table 2. We first generate (X, Z*) from a bivariate normal
distribution with mean 0, variance 1, and correlation p. The
binary variable Z is then set to 1 if Z* = 0.8, and to 0
otherwise; this setting results in the marginal probability
Pr.(Z = 1) = 0.2, a moderately low value. We also examined
several cut points other than 0.8, namely 0.5, 0.6, and 0.7,
with results similar to those presented below. The surrogate
W is generated from a simple unbiased measurement error
model given as W | X, Y, Z ~ N(X, o). The outcome Y is
related to X and Z by a linear regression model, as in (2). To
be consistent with previous setup, the sample size of the main
study is chosen to be 400, and the sample size of the
calibration study is chosen as 100. Under each simulation
setting, we generate 1000 simulated data sets.

Table 2 summarizes the empirical bias, root mean
square error of the estimates for the regression parameters
(Yx> Y2), and the noncoverage rate of 95% confidence inter-
val. In all simulation settings, the multiple imputation for
external calibration method yields estimates with small em-
pirical bias, and noncoverage rates close to the 50 nominal
level. The method appears quite robust to this form of model
misspecification.

Table 3 presents results for misspecification of a log-
normal covariate. The true covariate X is generated from a
log-normal distribution given as X ~ LN(0, w?), and Z is
generated from a standard normal distribution with zero
correlation between X and Z. We consider various degrees of
skewness and heavy tails of the distribution of X by varying
the parameter w. We set w equal to 0.25, 0.5, and 1 to
represent low, moderate, and high skewness, respectively.
Except for the scenario where the distribution of X is highly
skewed and has a very heavy tail (and hence deviates seri-
ously from normality), multiple imputation for external cal-
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TABLE 2. Sensitivity to Multivariate Normality Assumption in the Binary Case
Simulation Parameters X 4
Ve v, B, o’ p Naive CcC RP MI-EC Naive CcC RP MI-EC
0.4 0.4 1 0.25 0.3 Bias 84 84 4 1 45 45 45 0
RMSE 95 97 61 62 136 136 136 131
Noncov. 439 452 49 31 64 64 65 30
0.4 0.4 1 0.5 0.3 Bias 139 138 5 3 74 74 74 2
RMSE 145 146 70 73 149 149 149 137
Noncov. 903 857 45 42 80 80 87 36
0.4 0.4 1 0.25 0.6 Bias 95 95 17 2 100 100 100 1
RMSE 106 108 67 69 169 169 169 147
Noncov. 487 504 59 43 109 109 111 38
0.4 0.4 1 0.5 0.6 Bias 153 153 27 5 161 161 161 7
RMSE 159 160 77 81 210 210 211 160
Noncov. 930 886 69 52 212 212 212 40
1.2 0.4 1 0.25 0.3 Bias 250 250 9 5 133 133 134 1
RMSE 255 260 89 93 195 195 196 153
Noncov. 996 976 60 39 145 145 148 71
1.2 0.4 1 0.5 0.3 Bias 414 413 13 12 220 220 220 7
RMSE 417 420 120 125 267 267 267 182
Noncov. 1000 1000 61 39 309 309 308 73
1.2 0.4 1 0.25 0.6 Bias 282 282 49 7 298 298 298 7
RMSE 287 291 103 103 332 332 332 176
Noncov. 998 986 100 37 499 499 509 52
1.2 0.4 1 0.5 0.6 Bias 457 456 77 18 480 480 480 25
RMSE 460 462 139 141 504 504 504 234
Noncov. 1000 1000 143 28 860 860 856 44

The table shows empirical bias, root mean square error, and noncoverage rate (Noncov.) for estimates of regression parameters (‘yy, v).

All values are multiplied by 1000.

Naive, naive linear regression of Y on W and Z; CC, classical calibration; RP, regression prediction; MI-EC, multiple imputation for external calibration.

ibration generally outperforms the other methods with respect
to bias and confidence coverage. This finding further suggests
robustness of our method, except when the distribution of X
is highly skewed.

APPLICATION TO THE MICHIGAN BONE
HEALTH AND METABOLISM STUDY

We illustrate the proposed method in this section with
data from the Michigan Bone Health and Metabolism Study.
One of the goals of this study is to assess the association
between serum reproductive hormone concentrations and
bone mineral density loss in midlife women. We consider
here the relationship between sex hormone binding globulin
concentration (X), which is the primary plasma transport
protein for sex hormones, and bone mineral density loss (Y),
adjusting for covariates Z = age and BMI. For a variety of
reasons, including assay imprecision, sex hormone binding
globulin concentration has substantial measurement error;
what is measured is a noisy version of X, namely W in the
notation defined earlier in the text. The main study included
measures of W, Z, and Y in 81 white women, aged 44—64
years, from the Michigan Bone Health and Metabolism Study
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cohort in 2008. The calibration data consisted of duplicate
assay measures W at 4 true concentrations X of SHBG, from
a competitive immunoassay run on the Bayer Diagnostic
ACS: 180 automated analyzer (Bayer Diagnostics Corp, Tar-
rytown, NY) using chemiluminescent technology. The scatter
plot of the calibration data in Figure 2 shows clear evidence
of measurement error.

We estimated parameters in the linear regression of
bone mineral density loss on the logarithm of sex hormone
binding globulin concentration, age, and BMI by 5 different
methods: the “naive” analysis (where SHBG concentrations
are represented by assay measures), classical calibration, 2
versions of regression calibration (namely RP1, with standard
errors based on the bootstrap, and RP2, with naive standard
errors that ignore the measurement error in the predictions of X),
and multiple imputation for external calibration. Table 4 pres-
ents the estimates and associated standard errors for the regres-
sion coefficients of log sex hormone binding globulin concen-
tration, age, and BMI. The naive analysis yields a positive effect
of sex hormone binding globulin concentration on bone mineral
density loss, 0.0516 (0.0269). Classical calibration, RP1, RP2,
and multiple imputation for external calibration result in stronger
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TABLE 3. Sensitivity to Multivariate Normality Assumption in the Skew Case
Simulation
Parameters X VA
¢ Ratio Naive CcC RP MI-EC Naive CC RP MI-EC
0.25 0.25 Bias 82 82 0 0 0 0 0 0
RMSE 188 190 218 214 49 49 50 49
Noncov. 70 72 56 49 55 55 52 18
0.5 Bias 135 135 3 2 0 0 0 0
RMSE 204 207 239 238 49 49 50 49
Noncov. 131 143 49 60 54 54 51 18
0.5 0.25 Bias 81 81 8 3 0 0 0 0
RMSE 110 111 100 98 49 49 50 49
Noncov. 187 200 51 48 52 52 58 19
0.5 Bias 134 134 15 9 0 0 0 0
RMSE 116 115 49 49 50 50
Noncov. 509 527 58 52 57 22
1 0.25 Bias 86 86 35 25 1 1 1 1
RMSE 92 93 81 78 52 52 52 53
Noncov. 937 877 56 200 49 49 51 42
0.5 Bias 141 140 69 45 1 1 1 1
RMSE 145 146 131 126 54 54 54 59
Noncov. 998 986 45 256 44 50 50 49

The table shows empirical bias, root mean square error, and noncoverage Rate (Noncov.) for estimates of regression parameters (yy, vy).

All values are multiplied by 1000.

Naive indicates naive linear regression of ¥ on W and Z; CC, classical calibration; RP, regression prediction; MI-EC, multiple imputation for external calibration.

10

Assay measurement (W)

T T T T T T 1
0.5 1.0 1.5 2.0 25 3.0 3.5

True concentration of SHBG (nM) after log—transformation (X)

FIGURE 2. Calibration data for sex hormone-binding globulin
(SHBG) from a competitive immunoassay. The graph shows
duplicate assay measurements (W) versus log-transformed
known (true) concentrations of sex hormone binding globulin
(X). The assay measurement can be viewed as error-contami-
nated version of true concentration of sex hormone binding
globulin. The calibration data provided an external source of
information on the magnitude of measurement error when mea-
suring true concentrations using immunoassay techniques.
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TABLE 4. Application to the MBHMS: Parameter Estimates
in Linear Regression of BMD on the Logarithm of SHBG
Concentration, With and Without Adjustment for Covariates
Age and BMI

log SHBG Age BMI

Methods Estimates SE Estimates SE Estimates SE
With covariate adjustment

Naive 0.0516  0.0269 —0.0092 0.0048  0.0021 0.0030
cc —0.0995 0.0518 —0.0092 0.0048  0.0021 0.0030
RP1 —0.1085 0.0610 —0.0086 0.0055  0.0026  0.0027
RP2 —0.1054 0.0549 —0.0092 0.0048  0.0021 0.0030
MI-EC —0.1072 0.0587 —0.0095 0.0048  0.0012  0.0031
Without covariate adjustment

Naive 0.0538  0.0258

cc —0.1035  0.0498

RP1 —0.1224  0.0565

RP2 —0.1096  0.0528

MI-EC —0.1160 0.0563

Naive indicates naive linear regression; CC, classical calibration; RP, regression
prediction; MI-EC, multiple imputation for external calibration; MBHMS, the Michigan
Bone Health and Metabolism Study; BMD, bone mineral density; SHBG, sex hormone—
binding globulin.

negative estimates of the regression coefficient of log sex
hormone binding globulin concentration: —0.0995(0.0518),
—0.1085(0.0610), —0.1054(0.0549), and —0.1072(0.0587), re-
spectively. In contrast, the multiple imputation for external
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calibration estimate is approximately 8% larger than the
classical calibration estimate, with a standard error that is
almost 1.3 times larger than that of the classical calibration
estimate. Here, we do not see much difference between RP1
and multiple imputation for external calibration, although we
note that RP1 method requires the full calibration data set, not
just summary statistics. The RP2 estimate has smaller stan-
dard error than the RP1 estimate, as expected because unlike
RP1, it fails to account the uncertainty due to measurement
error. Use of RP2 will tend to yield confidence intervals that are
too narrow. The naive, classical calibration, and RP1 estimates
of the coefficient for BMI are approximately twice as large as
the multiple imputation for external calibration estimate, show-
ing that measurement-error adjustment affects the estimated
coefficients of other covariates measured without error.

Table 4 also presents estimates of the coefficient for log
sex hormone binding globulin concentration from a simple
regression of bone mineral density loss on log sex hormone
binding globulin concentration without including age and
BMI as covariates. These estimates are slightly larger than
those obtained from the multivariate regression with age and
BMI as covariates.

CONCLUSIONS AND DISCUSSION

Our simulations are consistent with previous findings
that the classical calibration method for incorporating infor-
mation from an external calibration sample yields biased
estimates in the regression setting when measurement error is
substantial. The higher settings of measurement error in our
simulations may exceed that found in many real settings. We
suspect that assays with high measurement error are less
likely to be implemented in practice, as the widespread use of
the classical calibration method inhibits the ability to make
use of them, although they may still provide useful informa-
tion. A method that works only when the problem it is trying
to solve is very minor is not a good method.

We propose a simple multiple imputation method
that corrects for covariate measurement error in regression
analysis, when the calibration data provide information
only about X and . Our simulation studies suggest that
our method is markedly superior to existing methods for
adjusting for covariate measurement error, eliminating
bias, and providing confidence interval coverage close to
nominal levels. Its superiority is most pronounced when
the covariates X and Z are highly correlated, the covariate
effect is large, or the measurement error is large. By
general theoretical properties of multiple imputation, in-
ferences for other parameters of the joint distribution of
the variables are also valid, under the stated assumptions
(ie, the assumptions of multivariate normality and nondif-
ferential measurement error).

The proposed procedure is simple and fast to compute,
and requires only simple summary statistics for the joint
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distribution of (X, W) in the calibration sample. Hence, it is a
viable method for external calibration data, where the micro-
data from the calibration sample are typically not available to
the analyst. Of course, the method requires that summary
statistics from the calibration sample be made available,
which is not yet common in practice. Without these statistics,
we know of no valid method of correcting for measurement
error in the regression setting, and we do not believe such a
method exists.

When the calibration data are not included in the postim-
putation analysis, we use the two-stage imputation procedure
and apply Reiter’s multiple-imputation combining rules for valid
statistical inference. Reiter’s variance estimator 7,,, could be
negative, particularly when measurement error is substantial. In
general, we found that negative values of 7, can be avoided by
making the m and n large. For fixed M, where
M = m X n, making m large is more likely to reduce the chance
of negative values than making » large.

Our method rests primarily on the assumptions of
nondifferential measurement error, equivalence of the distri-
bution of (U, X | W) in the calibration and study samples, and
normality of this distribution. The first 2 assumptions are
crucial and necessary to identify the parameters, and our
simulations suggest some degree of robustness to the normal-
ity assumption. This assumption could be relaxed, but at the
expense of requiring more information from the calibration
sample. This is a topic for future research. We also assume
here that X and W are scalar; in the future, we plan to extend
the proposed method to handle more than one covariate
subject to measurement error.

APPENDIX

Multiple Imputation for External Calibration
Algorithm

We first describe the improper method with parameters
estimated by maximum likelihood. We then discuss the
adopted method where parameters are drawn from their
posterior distribution.

The maximum likelihood estimate 6 is computed as
follows:

Step (1): Let 6 = (6,, 0,, 0 ,.,,), Where 6, represents
parameters of the normal distribution of X given W, 0,
represents parameters of the normal distribution of U given
W, and o,., represents the set of p partial covariances
between U and X given W. Estimate 6, by ,, the maximum
likelihood estimates based on the calibration sample on (X,
W), and 6, by 8,, the maximum likelihood estimates based on
the main study sample on (U, ). These are the normal linear
regression maximum likelihood estimates for complete data
and involve standard least squares calculations. Also note
that 52 can be computed from summary statistics on the
calibration sample, namely the sample size, sample mean,
and sum of squares and cross products matrix of X and W.
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Step (2): Estimate

—~ _’\ —~ /A
Oux-w™ Buw~ wOxx wa~ wr

where ’B,,W.w is the (p X 1) vector of regression coefficients of
U on W, estimated from the main sample, and ’wa wand 0.,

are the regression coefficient of /7 and residual variance from
regression of X on W, estimated from the calibration sample.
This expression follows because, from properties of the
multivariate normal distribution, B,,,,.,, = Ty wBsw - 1w/ T - o
equals the set of regression coefficients of ¥ in the regression
of U on W and X, which are zero because of the nondiffer-
ential measurement error assumption.

Step (3): The maximum likelihood estimates of the
parameters of the distribution of (U, X) = (¥, Z, X) given W
are fully specified by the estimates in Steps (1) and (2). In
fact, the method is maximum likelihood because the number
of parameter restrictions from the nondifferential measure-
ment error assumption, namely p, is the same as the number
of parameters in o,,.,, that are not estimable from the main
and calibration samples—the model is technically “just iden-
tified.”'? The parameter ¢ of the regression of X on Y and Z
is a vector function ¢(6,, 0,, o, .,,) of the parameters (6, 0,,
O,x-w)- The maximum likelihood estimate of ¢ is then
é = &, 0, 0..,), obtained by substituting maximum
likelihood estimates of (6,, 6,, o,,.,,) in this function. The
details of this transformation are discussed by Little and
Rubin.'? Computation is straightforward using the SWEEP
operator,'? which facilitates switching between parameters of
different regressions derived from the multivariate normal
distribution.

This completes the description of the maximum likelihood
algorithm, except for one minor caveat. The estimate of the
residual variance of X given (Y, Z, U) could be negative, given
the fact that estimates are being combined from 2 samples. If this
happens, the residual variance should be set to zero. This is
unlikely to happen unless X and W are weakly correlated, in
which case, the calibration data have limited utility.

As noted earlier in the text, the imputations based on
this procedure have the limitation that they do not reflect
uncertainty in the maximum likelihood estimates of ¢. For-
tunately, it is relatively easy to overcome this limitation by
replacing maximum likelihood estimates ¢ of the parameters
¢ for the d™ imputed data set by a draw ¢ from the
posterior distribution of ¢. A noninformative Jeffreys prior is
assumed for the parameter (6,, 6,). Then the maximum
likelihood estimates (8,, 6,) in Step (1) are replaced by draws
(60,9, 6, from their complete-data posterior distributions
based on the calibration and main study samples, respec-
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tively. Draws from these posterior distributions are easily
computed using x> and normal deviates, as described in Little
and Rubin.'? Steps (2) and (3) are then as given earlier in the
text, except that draws of o'?. , ¢ for o and ¢ are

ux - w

created using the draws (6,”, 6,) rather than (§1, 52).
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