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SUMMARY 

One of the primary problems facing statisticians who work with survival data is the loss of in- 
formation that occurs with right-censored data. This research considers trying to recover some of 
this endpoint information through the use of a prognostic covariate which is measured on each 
individual. We begin by defining a survival estimate which uses time-dependent covariates to more 
precisely get at the underlying survival curves in the presence of censoring. This estimate has a 
smaller asymptotic variance than the usual Kaplan-Meier in the presence of censoring and reduces 
to the Kaplan-Meier (1958, Journal of the American Statistical Association 53, 457-481) in sit- 
uations where the covariate is not prognostic or no censoring occurs. In addition, this estimate 
remains consistent when the incorporated covariate contains information about the censoring pro- 
cess as well as survival information. Because the Kaplan-Meier estimate is known to be biased in 
this situation due to informative censoring, we recommend use of our estimate. 

1. Introduction 
The collection of survival type data is often accompanied by right censoring. Sometimes this cen- 
soring is the result of random dropout or loss to follow up. More often subjects are accrued and 
followed over specified periods of time, and at the scheduled end of a trial some failures have not 
occurred. Ideally we would like to be able to predict precisely when the failures would have occurred 
if they had been observable. Although predicting precise failure times of censored individuals is 
not possible, it may be possible to recover some of the lost failure information by studying the 
observable survival behavior of subjects in the study with similar characteristics. Prognostic co- 
variate information which is collected on all individuals may somehow be incorporated into survival 
estimates to improve the efficiency of estimation. Cox (1983) suggested this type of approach in es- 
timating parameters from parametric survival models. However, parametric assumptions are often 
too restrictive and may give unreliable estimates when assumptions are violated. Recently much 
research has focused on adjusting survival estimates for a predictive covariate or other information 
with fewer parametric assumptions. Malani (1995) suggests a modification of the redistribution 
to the right algorithm originally suggested by Efron (1967). Robins and Rotnitzky (1992) have 
also done similar work in this area. Several papers have focused on incorporating information from 
disease progression by modeling the relationships between progression and survival. Gray (1993) 
considers a three-state model in which the distribution of survival following progression might be 
influenced by the time of progression. Finkelstein and Schoenfeld (1994) use a similar three-state 
model suggesting various ways of estimating the conditional distribution of surviving given progres- 
sion at some point t. The estimate we shall propose is a nonparametric estimate which incorporates 
a predictive covariate without modeling assumptions as to how the covariate interrelates specifi- 
cally with survival. Our estimate is more efficient than the Kaplan-Meier (1958) estimate when the 
covariate incorporated is prognostic. This estimate also adjusts for the effects of informative censor- 
ing when the censoring information is captured by the prognostic covariate information. In Section 
2, we look at a simplified version of the problem where the covariate information incorporated is 
time-independent. Motivation for the estimate is demonstrated using conditional probability argu- 
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ments. The variance of the estimate is derived and compared to the variance of the Kaplan-Meier 
estimate in various scenarios. In Section 3, the estimate is extended to incorporate longitudinal 
covariate information. In Section 4, simulation and closed form results regarding the performance 
of the estimate are presented. An example using data from an AIDS trial is presented in Section 
5. A discussion follows in Section 6. 

2. Estimation with a Time-independent Covariate 
Let T denote the time an individual would fail if the failure were observable. Let U denote the time 
an individual would become censored if the censoring process were observable. In this section Z will 
denote a categorical covariate taking on values 0, 1, . .. , k. We assume that T and U are conditionally 
independent given Z. Let X = min(T, U) be the observable event time and let \ = I(T < U) be 
the failure indicator. Let S and H denote the survival distributions corresponding to T and U, 
respectively. 

We define the weighted Kaplan-Meier (WKM) statistic as follows. Using conditional probability, 
we can rewrite the survival function. 

k k 

S(t) = P(T > t) E P(T > t I Z = i)P(Z i) E OiSi(t), 
i=O i=O 

where Oi is the probability a subject has covariate value i, (i 0, 1, ... , k) and Si(t) is the proba- 
bility of survival conditional on having covariate value i. So we can estimate the survival from the 
right-hand side of the above equation. 

k 

WKM(t) ni Si (t)v 
i=O 

where Si (t) is the Kaplan-Meier (KM) estimate among those with covariate value i, ni is the 
number of subjects with covariate value i, and n = Er=o ni. 

The variance of the WKM survival can be derived with a simple application of the conditional 
variance formula conditioning on the number in each of the covariate strata. 

var(VTn_WKM(t)) = nvar ni 
( i (t) ) 

( i=o ) io) 
(k k k2 

= nE var2 ni] Hj(u)Sj(u)' + na E niS(t)- ( niSi(t)) k k k k 

= E OiS(t)] H (i(u) ) + E O(Si(t)- 2 
i=O i=O i=Oi= 

where 3(t) Ek t O iSi(t) and n is the vector of ni's. This variance can be easily estimated. Let 
Oj = zi,Si(t) = KM(t). Let N(t) be the observed number of deaths at time t and Y(t) be the 
observed number of individuals still at risk at time t. Estimate the variance with 

s'iJo Y((t)(Y)(j)- - S(t)) 
i=O ~~~~~()i=O 

The first term in the variance is simply a weighted function of Greenwood's formula for the variance 
of the KM estimate for subjects with covariate value i. 

In order to understand how our statistic behaves in comparison to the KM statistic we shall 
study the relationship between the estimates in the following situations: 

(2.1) Si(t) =S(t) and Hi(U) =H(u) for all i. This is a case in which either the KM or the WKM 
could be applied. Here the covariate that is conditioned upon has no prognostic value for survival 
so it should not provide additional information about a censored individual's survival status. Use 
of the WKM ini this situation would be equivalent to using the KM estimate in terms of precision. 
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(2.2) Si(t) are not all equal and Hi(u) = H(u) for all i. This is another case in which either 
estimate would be appropriate for use since informative censoring is not an issue. Here it becomes 
interesting to compare the performances of the estimates to one another. When the covariate being 
conditioned upon is predictive of survival it may be possible to recover information about a censored 
subject's survival status through the extraneous covariate information collected. In fact we shall 
show that in this case the variance of the WKM estimate is always smaller than or equal to the 
variance of the KM estimate. 

(2.3) Si(t) = S(t) and Hi(u) are not all equal. This is another case where both estimates are 
consistent. This is the only case in which the WKM estimate loses efficiency in comparison to the 
KM estimate and is a convincing argument against arbitrarily applying the WKM method with 
covariates that have no prognostic value. 

(2.4) Neither the Si(t)'s nor the Hi(u)'s are equal for all i. In this case the KM estimate is 
subject to bias from informative censoring. By conditioning on the covariate causing the informative 
censoring the WKM estimate remains consistent and therefore is the recommended estimate for 
this situation. 

2.1 Si(t) = S(t) and Hi(u) = H(u) for all i 
Here the failure time distribution, T, is completely independent of the covariate. In this case it 
is easy to show that the variances of the two estimates are equal. Although both estimates serve 
equally well in this situation, one might choose in favor of the KM because of the slight reduction 
in computational calculations. 

2.2 Si(t) are not all equal and Hi(u) = H(u) for all i 
Define G(u) = l/H(u). Notice that G(u) is an increasing function of u. A term that comes into 
play in various ways in both the variance of the KM and the WKM estimates is f G(u)f(u)/S2(u). 
Rewriting this term via partial integration we find that 

J G(u) f (u) G(u) t 
- 

t GI'(u)du d G(t) 1 ft G' (u)du 
S2 (u) Su) Jo S(u) S(t) J J S(u) 

Using this fact we can rewrite both the variance of the KM and the variance of the WKM accordingly 
as 

2 
t f (u) du 2 (t G (t) - t GI'(u) du} 

var(V/nKM) = S2(t) J G(u) S(u) = '2 S(t) Jo S(u) f 

= G(t)S(t) - S2(t) - 32(t) 1t '(u)du 

and 

k t fiu)d k 

var(v/TiWKM) oi S?(t)t G(u) f(u)du E S2 -2 s2 ( + ( S(t) -1 o S ( S (t) 
i=O = 

k G) t GI/u)du k 
- 

5ois?(t) _~~L 1 OS 
L Si (t) 1] Si(u) + 5jS(t) - S(t) 

-S2(t k 2 t C' (u)du 
G(t)S(t) _ 3 (t) - E ojSi (t) Si S(u) 

So 

k O ~t) kU/u)du 2 t) G(u)du 
var(Vn-KM) - var(V/?WKM) JO (u) 2 (t) () 

I 
2, 

O HSu rSt HSs(u) \ Ss(t) d 
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t k OiS U i() k IjS U) 
S 

t 

= S (u) Si(u) E (u) Si (u) j 
Notice that all terms in the right side of the above statement are positive. Therefore the difference, 
var(QniKM) - var(2?WKM), is also positive implying that the variance of the WKM estimate is 
less than or equal to the variance of the KM estimate. 

2.3 Si(t) = S(t) and Hi(u) are not all equal 
In this case 

var(V/?KM) - var(V/?WKM) =S2(t) J S(u) k k _Hi _u 
du. 

Z Oi Hi(u) -= 

j=O 

Note that the function 1/H(t) is a convex and increasing function of time. Hence by applying 
Jensen's inequality we can see that the above expression must be less than or equal to zero. In this 
case the WKM estimate is not the most efficient estimate available. From this and (2.1) we see 
that use of the WKM method with an arbitrary covariate would not be recommended. Substantial 
gains in efficiency come about only when censoring occurs and the covariate used in the WKM 
method is related to survival. 

2.4 Neither the Si(t) 's nor the Hi(u) 's are equal for all i 
The KM estimate is subject to bias in this case due to informative censoring. Bias of this nature can 
often lead to very misleading results and should be avoided. If the covariate is predictive of survival 
and captures the source of bias, the WKM estimate provides consistent results and should always 
be used in preference to the KM estimate. This sort of situation comes up in many situations where 
a clinical marker is available. Recently in many AIDS trials, CD4 levels have been suggested as 
markers for survival. These CD4 counts are also highly related to an individual's censoring status. 
Hence this situation would lend itself quite favorably to the WKM method of estimation. Consistent 
results would not depend on the performance of CD4 as a marker, but only on its predictive value. 

3. Estimation with a Stratified Time-dependent Covariate 
Now suppose that our covariate is longitudinal in nature. Then we might observe the value of the 
covariate at a finite number of prespecified times To*, T. . . . , T.*. The choice of these times will be 
discussed later. In this section let ZI represent the covariate value at time To*, Z2 represent the 
covariate value at time T1 ,.. ., and Z,+1 represent the covariate value at time T.*. To simplify 
notation we shall assume that k categories are observable each time a covariate is recorded. The 
theory put forward will still hold true in situations where the number of categories varies across 
covariate observation times. For instance, in the following sections one may define k1 categories at 
time To, k2 categories at time T1, and so on, substituting these numbers for k in the appropriate 
places. In fact, there is no theoretical restriction on the way categories are defined across time. 
Categories may be grouped together at later time points or may be defined in relation to several 
covariates. Variables can also be defined completely differently at each occasion. For instance Zi 
could be based on a subject's hemoglobin count and Z2 could be based on a person's CD4 count. 

Figure 1 indicates the possible covariate paths that may occur in our notationally simplified 
setting. At each point in time we would like to have an estimate of survival which takes advantage 
of all possible information. Note that seeing future covariate information for a subject is dependent 
on his survival. Similarly, survival depends on the past covariate path of a subject in the case 
a covariate is prognostic. To understand how best to incorporate all of this information we shall 
describe in detail how the estimate comes about for the situation where the covariate is observed 
twice (s =1). First note that when knowledge of the covariate measured at time To is the only 
covariate information available we have already described a statistic in the last section which takes 
all possible information into account. So the WKM statistic is defined the same way as it was in 
the last section until time T1 . For t > T1* we shall define the WKM statistic based on the following 
use of conditional probability. 
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Zl= 1= Z21 

Z= 
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T*I T* T2 * T* 

Figure 1. Possible paths of the longitudinal covariate, Z. Note that knowledge gained at each 
covariate look time To ... Ts causes the path to divide. 

k k 

P(T >t) =E E P(T >t,ZI =iI,Z2 =i2) 
il=O i2=0 

k k 

- E E P(T > t I T > T1, Z1 = il, Z2 = i2)P(Z2 T i2 T > T1, Z1 ii) 
il=0 i2=0 

x P(T > TI* I Zi = ii)P(Zi = ii) 
k k 

=E E Sili2 Mo)ili2 Al (TI*)Oil I 

il=O i2=0 

where Oili2 is the probability that a subject has covariate value i2 measured at time T1*, conditional 
on the subject surviving at least to time T1* and previously having covariate value i1 at time To*, and 
Sili2 (t) is the probability that a subject survives past time t, conditional on the subject surviving 
past time Tj* and having covariate values i1 at time To* and i2 at time T1. This same type of 
conditioning argument extends easily to situations where more covariate information is observed. 
Let ili2 im represent the probability that a subject has covariate value im measured at time 
T,_1, conditional on the subject surviving at least to time Tm1 and previously having covariate 
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values i1 at time To*, i2 at time T1,..., and im_1 at time Tm_2, and let Sili2 ..im(t) represent 
the probability that a subject survives past time t, conditional on the subject surviving past 
time T*_ 1 and having covariate values i1 at time To*, i2 at time T,,..., and im at time 
T,m_Drn = 2, 3, .. ., s + 1. Then we can rewrite P(T > t) as 

k 

E Si, (t)Oil 0 < t < T 
il=O 

k k 

S S ~T~tSili2(0T0ili2 Sil (Ti T< 
il=0 i2=0 

k k k 
5 (t) = -3~T < 5 S(t) = E E Sili2i3(0)Hili2i3Sili2(T2 )Hl2i T HlT2*<t<T 

il=0 i2=0 i3=0 

k k k 

E E ... E Sili2 ...is+l (0)ili2 ...is+l 
il=0 i2=0 i5+1=? 

XSili2 ... is(TS*)Hili2 ... is *Sili2 (T2*)Oili2Sil (T,*)il Ts* < t. 

Our Weighted Kaplan-Meier estimate then becomes 

k 

E S(t) i1 0 < t < T1* 
il=O 

k k 

S S1ili2(t) nl. S n(Tlf) 
n T1* < t < T2 

il=O i2=? 

k k k 

WKM(t) = E z1 =0t20 ili2i3 
()nili2S- 

2 T n il. (1 n T2* < t < T3 
il=0 i2=0 i3=0 l2l 

k k k 

E E *-*E Sl. i+(t) nil i2 ...is+l 

il=0 i2=? is+l=o 12es 

XSili...i(T 
nili .. is Sl(T)n i(Tl*) ni T* < t, 

where nili2....im is the number of people having covariate values i1 at time TO*, i2 at time T1*,..., 
and im at time T_Ifnili2 ...mi - 

0i nii2...im and Sij2.jm(t) is the conditional Kaplan- 
Meier survival estimate at time t given survival at Tm_1 among those with past covariate values 
corresponding to il, i2,... . im, m= 2, 3, .. ., s + 1. Note that we have used estimates of 0ili2 im 
and Sili2.im (t) which are conditional on X = min(T, U) > Tm_1 instead of T > Tm_1 since we 
can only observe the values of X. Therefore, we must assume that 

P(Zm = im |X > Tm-_,, Zl , * , Zm-1 ) = P(Zm = im I Zl , * , Zm-1 , T > Tmt-l1) = 0il i2 ... .im 

and 

P(T > t X > Tm-1,,Zl,..., Zm) = P(T > t I T > Tm1-1 Zll . I vZM) =Sili2 ..im (t) 

These two assumptions can be interpreted as uninformative censoring conditional on the covariate 
history along with past failure and censoring information. Note that these assumptions allow 
the censoring distribution to depend on the covariate history. In the literature of missing data 
this is often referred to as missing at random. This type of missingness occurs in many clinical 
trial situations. For instance censoring might occur more frequently among those with a steadily 
decreasing biological marker of one type or another. As patients become increasingly ill, they may 
be more likely to drop out of the study for personal reasons. In order to use the KM estimate, one 
must assume that the censoring mechanism, U, is completely independent of (T, Z). When censor- 
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ing is related to past measurements of some biological marker the KM estimate becomes biased. 
Hence here is another indication of how weaker assumptions allow the WKM estimate to remain 
consistent in the presence of informative censoring. 

The method for deriving the variance of the WKM estimate is inductive in nature. As is indicated 
by the following proof, one may describe the form for the variance of the estimate for T1 < t < T2* 
through the form of the variance in the previous time interval 0 < t < Tl . Similarly the variance of 
the estimate for T2* < t < T3 can be described using the form of the variance in the previous time 
interval T1* < t < T2*. This pattern continues, always relating the current interval's variance to the 
previous interval's variance. The key to the proof below hinges upon using the conditional variance 
formula efficiently. We condition upon all of the failure, censoring, and covariate information accrued 
up until and including T1 with the exception of the value of Z2. With this knowledge Sil (Tl ) 
and ni1 become deterministic functions. At this point the relationship between the methods for 
computing variances between intervals becomes clear. Let the notation F2* -z2 represent the 
survival, censoring, and covariate information up until and including T1j with the exception of 
the value of Z2. Consider the following derivation of the variance for a particular interval in time, 
T?_1 < t < Tm. 

var(VnWKM(t)) 
k k k\ 

var (vi j (T2l 1 S n E S2(T ) i2 k Si . (t) nil.im 
i( E n [0 nil.n im=0 

n / ) 

= var 5 S il i 2 il ... i (t) ni i z2) 

Let Si(m.)(t) =~-0 Ei=Sii( i . Si.m(t)jil im* The conditional expectation in 
(1) reduces to Si7) )(t). So we can rewrite (1) as 

k 2 T Ak (u k 

E ~ ~ ~~a (2 ,j ni, (T t) ni .... im) 

n~~~~i =? i.nl.. n-1 

looet S ind tha thi imr becomesmTecodtinlexettini 

il] () + 0Si i1(Si1 (T.lS i) Sil (t)-.. 

where Sd ) (t) - Zt1=oSi1(To )wi1 ca rewrZ Sie(t)Oas If we rewrite (2) as 

then the conditional variance in this term also becomes a deterministic function which only depends 
on i1. Since the variance is conditional on Zi and all failure time information up until time Tc, 
this conditional variance term is identical to the problem where baseline is set to time T1 and we 
have m-1 covariate looks. In other words, this term has the same form as the variance of the esti- 
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mate in the last time interval, T* 2 < t < Tm_1I Only the notation has been translated to include 
information specifying ZI. Hence term (2) becomes 

1E nil E S(T) 

E E=0 

x var1 2 E Sni (T22 . 2 I E Si1i (t) nilm . f i1 ) 

S 

,5,, 

(Tf S s} 

[ 2 n S 
...(t) nil 

2m 

] zF ] 

So for Tm-1 < t < T, 

vr WkMt )~() ? 1 

= i: O~S2l(Tr ) [S(l7(t)]2 0( H 1(u )S) (u) +I Oil(Sil (T )S(l)()Sm) (t) - 

i1 =0 i12 0 i =0 

+ S S O)01varil[z.,Sl2T)n i1.intn Fi-2 

21iT,) hi k h1 

clear on how to calculate the variance for T..1 < t < Tm we have included an algorithm in the 
appendix. 

This estimate which incorporates longitudinal covariate information has the same features that 
were proven previously when the covariate was time-independent. As before, when the longitudinal 
covariate is not prognostic with respect to either the survival or censoring distributions the variance 
reduces to the KM variance. When the longitudinal covariate is not predictive with respect to the 
censoring distribution but is predictive with respect to survival, the variance of the WKM estimate 
is smaller than the variance of the KM estimate. In fact, the variance decreases with each additional 
prognostic covariate look incorporated. Proofs of these relationships can be found in Murray's thesis 
(1994). Other special cases arise when the covariate is longitudinal. For instance, in some cases it 
would not be unreasonable to suppose that a longitudinal covariate is predictive only up to some 
point in time. Since the WKM estimate should predict equally well without defining the later 
unprognostic strata, we would expect the estimate's variance to reflect this behavior. In fact, the 
variance of our WKM estimate at the later time points reduces to the form of the variance at the 
last point in time the covariate was predictive. This proof may also be located in Murray's thesis. 

4. Simulation Studies and Other Results 
Because a closed form of the variance is available, it is possible to derive asymptotic relative 
efficiencies (AREs). A simple example using exponential data is displayed in Table 1. In this 
example we created three categories of covariate values measured at baseline and two categories 
of covariate values measured at time T1*. This leads to six possible covariate paths. We assume for 
the purpose of this example that the paths are made up of piecewise exponentials with a hazard 
change at time T1. Hence S(1(t) 2 eAiit and S+i2(t) eAOili2(tSTi)I(T > Tt for i1 = 0,1,2 
and i2 =0, 1. Specific values for the Ai1 's and the Ail i2 'S are displayed in Figure 2. We also assume 
an exponential censoring distribution with hazard Ah that is independent of the covariate across 
time. So H(t) - eAht. The subjects appeared roughly equally in each of the six categories. 



Nonparametric Survival Estimation 145 

Table 1 
AREs for data with prognostic values of Zi and Z2 at selected percentiles 

% Censoring t: F(t) ARE (WKM1:KM)1 ARE (WKM2:KM)2 ARE (WKM2:WKM1) 
42.09 .3 1.02 1.02 1 
42.09 .5 1.04 1.05 1 
42.09 .7 1.07 1.12 1.05 

54.79 .3 1.03 1.03 1 
54.79 .5 1.08 1.09 1.01 
54.79 .7 1.11 1.22 1.09 

62.41 .3 1.05 1.05 1 
62.41 .5 1.11 1.12 1.01 
62.41 .7 1.12 1.26 1.12 

71.56 .3 1.07 1.07 1 
71.56 .5 1.16 1.18 1.02 
71.56 .7 1.10 1.27 1.15 

1 WKM1 refers to the WKM estimate if using the time independent version of the statistic. 
2 WKM2 refers to the WKM estimate when covariate information ZI and Z2 are both used. 

Survival Curves For Six Possible Covariate Paths 
(main survival overlaid) 

1.0 

2 0. 

0.0 F().N.5 Ft=5 05 .5Ft=710 

0- 

CZ) 

N 0.06 . (). .2 .... . 

1 ~~~~Time 

Figure 2. The piecewise exponential survival curves corresponding to the six possible covariate 
paths which are used to get the results in Tables 1 and 2. Hazards are displayed above the curves. 
Covariates were assumed to be measured at baseline and* again at time .25. The overall survival 

probability is also displayed. 

Depending on the amount of covariate information incorporated in the survival estimate, the 
formula for the variance changes according to the derivations in Section 3. Table 1 uses the 
appropriate variance formulas to derive AREs relating the KM estimate, the WKM estimate 
that incorporates baseline information only, and the WKM estimate that incorporates covariate 
information both at baseline and time T1~. Various degrees of censoring are explored in the various 
rows for Ah - 1, 2, 3 and 5. Higher values of Ah yield higher censoring percentages. Corresponding 
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to each level of censoring we explore the AREs at three quantiles of the underlying failure time 
distribution. Notice that at the thirty-percent quantile the two WKM survival estimates are equi- 
valent since covariate information collected at time T1* is not yet available. In the third column of 
Table 1 are AREs comparing the WKM estimate, which uses only covariate information collected at 
baseline, to the KM estimate. In the fourth column are AREs comparing the WKM estimate, which 
uses all available covariate information, to the KM estimate. The fifth column displays the AREs 
comparing the WKM estimate which uses both measured covariate times to the WKM estimate 
which uses only baseline covariate information. Several important and instructive patterns emerge 
in this table. As expected, all AREs are greater than one, implying that a gain is to be made 
by using as much prognostic longitudinal covariate information as possible. Notice that for the 
fifty- and seventy-percent quantiles the WKM estimate using information collected at baseline and 
time T1 improves over both the KM and the WKM that utilizes baseline covariate information 
alone. Also notice that the AREs tend to increase in comparison to the KM for data that has more 
censored observations. This is due to the supplementation of failure information that is provided by 
the use of covariates when censoring occurs. Hence, higher degrees of censoring affect the variance 
of the KM estimate much more than they affect the variance of the WKM estimates. 

In addition to these closed form ARE results, simulations were run on data generated from the 
previously described piecewise exponential distributions. These simulations used a sample size of 
150 subjects, with 25 subjects per possible covariate path. For each censoring percentage considered 
in Table 2, 5,000 simulations were done. Results of these simulations confirmed the ARE results of 
Table 1. Table 2 contains the MSE results from these simulations. 

Table 2 
MSEs x 103 from simulation on data with prognostic values of Z1 and Z2 at selected percentiles 

% Censoring t F(t) MSE(KM) MSE(WKM1)1 MSE(WKM2)2 
42.09 .3 1.15 1.13 1.13 
42.09 .5 1.31 1.24 1.23 
42.09 .7 1.67 1.55 1.44 

54.79 .3 1.28 1.25 1.25 
54.79 .5 1.79 1.68 1.67 
54.79 .7 3.50 3.17 2.84 

62.41 .3 1.41 1.37 1.37 
62.41 .5 2.51 2.32 2.35 
62.41 .7 7.57 6.62 5.07 

71.56 .3 1.78 1.64 1.64 
71.56 .5 4.52 4.19 4.00 
71.56 .7 21.77 21.00 9.12 

1 WKM1 refers to the WKM estimate if using the time independent version of the statistic. 
2 WKM2 refers to the WKM estimate when covariate information Zl and Z2 are both used. 

Another important issue in applying this research is how best to incorporate a continuous 
time-dependent covariate. The proposed methodology requires the covariate to be incorporated 
in categorical form. Hence the investigator must decide how many categories to subdivide the 
continuous covariate into at each time Ti* and how many times Ti* to measure the time-dependent 
covariate. Although it is tempting to create many categories measured at many times, this is not 
advisable in moderate-sized data sets. The WKM estimate is consistent only for times t smaller 
than the minimum event time from any strata. Hence defining too many strata across time in 
moderate-sized data sets will restrict the range of times for which the WKM estimate exists. 
However, gains in efficiency will occur even when the number of times Ti and covariate levels 
are kept very small. In the following simulation we have studied the gains in efficiency associated 
with incorporating a continuous covariate in categorical form. Using the Cox proportional hazards 
model we simulated a failure time distribution which depends on a time-varying covariate. Hence 
for individual i, Zi(t) = ei~ ? ce22t. The random variables (?ci~, ce2i), i =1, . .. n, were taken to be 
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Table 3 
AREs1 for continuous covariate data by amount of defined strata 

No. of baseline covariate strata 

Percentile No. of covariate strata at year 1 1 2 3 4 5 

30th 1 1.000 1.077 1.092 1.101 1.103 
30th 2 1.068 1.121 1.133 1.132 1.140 
30th 3 1.084 1.141 1.151 1.157 1.167 
30th 4 1.088 1.147 1.160 1.158 1.170 
30th 5 1.091 1.152 1.168 1.170 1.181 

50th 1 1.000 1.078 1.094 1.103 1.105 
50th 2 1.091 1.143 1.154 1.157 1.160 
50th 3 1.105 1.160 1.169 1.180 1.191 
50th 4 1.110 1.169 1.182 1.183 1.194 
50th 5 1.113 1.174 1.189 1.197 1.205 

70th 1 1.000 1.074 1.091 1.101 1.102 
70th 2 1.101 1.150 1.160 1.166 1.165 
70th 3 1.121 1.171 1.182 1.192 1.201 
70th 4 1.126 1.185 1.200 1.203 1.206 
70th 5 1.131 1.197 1.206 1.231 1.228 
1 AREs based on 500 simulations with sample size 500. 

normally distributed and independent with means (180, -100) and standard deviations (40,20). 
The hazard function for the failure time was of the form 

A(t I Z(t)) = exp{-0.046Z(t)}, 

where the coefficient was chosen to be reasonably prognostic. The censoring distribution was chosen 
to be Uniform(0,4). To include the continuous time-varying covariate information we considered 
the baseline covariate information and also the covariate information available at 1 year. The 
continuous covariate information was then stratified evenly by its quantiles. For instance, to create 
five categories of Zi we divided Z(0) according to its 20th, 40th, 60th, and 80th quantiles. Similarly, 
to create five categories of Z2 we divided Z(1) according to these same quantiles. For each set of 
data simulated we created strata definitions with one to five baseline categories for Zl and one 
to five categories for Z2 at year 1. These simulations used a large sample size of 500. Asymptotic 
relative efficiencies comparing the WKM estimate to the KM estimate were calculated at three 
different time points corresponding roughly to the 30th, 50th, and 70th percentiles of the failure 
time distribution. These are displayed in Table 3 for all strata definitions considered. We see that 
more covariate information used corresponds to greater gains in efficiency. Earlier we proved that 
asymptotic variances decrease when more longitudinal covariate looks are incorporated into the 
estimates. This simulation reaffirms that result. However, we also find that finer stratifications of 
incorporated continuous covariates result in higher efficiency gains. In any particular analysis the 
degree to which a continuous covariate should be stratified will depend to a large degree on the 
sample size available. In this simulation it appears that most efficiency gains for each time Ti* occur 
with relatively few covariate strata, so even moderate-sized data sets could benefit from this method 
of estimation. This simulation also suggests that the gains in efficiency associated with additional 
covariate looks at times Ti* surpass the gains made by finer stratification of each covariate Zi. 

5. Example 
As an illustrative example in how to use this methodology we have looked at survival data in 524 
AIDS patients who had had a first episode of Pneumocystis carinii pneumonia. This data comes 
from a randomized clinical trial previously examined by Fischl et al. (1990) in which patients were 
assigned either low dose (n =262) or high dose (n =262) zidovudine regimens. This trial is coming 
to a close so the data is fairly complete. Hence, to illustrate our methods we decided to recreate 
the data that would have been available at an earlier time in the trial. We specifically chose the 
date January 31, 1988, as our analysis time since at this particular time all of the participants in 
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the study had been registered and substantial censoring existed in the data (87%). This is precisely 
the situation in which our methods for estimation become desirable since our estimate recovers 
some of the lost information caused by censoring. To use our methods it is also necessary to identify 
predictive categorical covariates from which the recovered information is gathered by our estimate. 
The usual precautions associated with identifying predictive covariates apply here. Excessive data 
snooping should not be employed. Covariates artificially constructed to appear predictive would 
falsely deflate the variance of the WKM estimate. In this trial CD4 count and hemoglobin level 
were known to be modestly predictive of survival, so a categorical combination of these variables 
would be of interest. Interestingly, treatment arm was not particularly predictive at this early stage 
in the study. Hemoglobin level and CD4 count were collected as continuous covariates so categorical 
versions of these covariates were constructed using the quantiles of these variables. The number of 
categories and covariate looks 'were kept minimal due to the sample size of this data. After minor 
exploratory analysis, categorical covariates were constructed at baseline and 200 days. At baseline 
two categories were formed from the baseline CD4 and hemoglobin measurements. For each of these 
two baseline categories, three categories were formed at 200 days based on CD4 and hemoglobin 
measurements taken at this time. That is, Z1 = 1, 2 and Z2 = 1, 2, 3 for a total of six possible 
covariate paths. The categorical covariate, Zl, has virtually no predictive value until day 225 or so 
in this study. Hence in this range the use of covariate Z1 would not improve the survival estimate. 
For the purpose of illustration we will present a few different analyses. 

(5.1) The first naive analysis will use Z1 alone to construct a survival estimate. As indicated 
before, we expect this estimate to have a larger variance during the period in which the two 
underlying survival curves are close. After day 225, the covariate Z1 becomes modestly predictive 
and we expect the variance of the WKM estimate to be smaller than the variance of the KM 
estimate. 

(5.2) Another naive analysis will use ZI and Z2 to construct a survival estimate. Since the 
estimate before time T1 will be the same as in (5.1), we expect the same problems with the WKM 
variance in this range. However, since more information is being incorporated at 200 days, we 
expect this estimate to improve upon the estimate calculated in (5.1) following day 200. 

(5.3) The preferred way to analyze this data involves utilizing the flexibility in defining covariates 
which our method allows. We would like to gain the efficiency that is possible to gain after day 
225 from prognostic covariate information without paying the penalty of defining unprognostic 
covariates early on. Define 

Z {1 

and 

(1, if (Zi = 1 and Z2 = 1) 

12, if (Zi = 1 and Z2 = 2) 
Z* J 3, if (Zi = 1 and Z2 = 3) 

2 
4, if (Zi = 2 and Z2 = 1) 

I1 if (Zi = 2 and Z2 = 2) 
L6, if (Zi =2 and Z2 =3). 

Notice that before 200 days the WKM estimate using Z* and Z* will be identical to the KM 
estimate. However since we've included all prognostic information at baseline and 200 days in 
Z* our estimate will perform similarly to the estimate in (5.2) from 200 days on. Hence we've 
maximized our efficiency as much as possible across time. 

Table 4 reveals in more detail the average efficiency gains for discretized time intervals. The 
asymptotic relative efficiencies of the various WKM estimates to the KM estimate were calculated 
at all event times and then averaged within several mutually exclusive time intervals. Notice how 
the AREs tend to increase at the later time intervals. Two factors are contributing to this effect. 
Most of the censoring in this data occurs at the later time intervals. Hence most of the failure time 
information that is recovered using covariate information improves survival estimation in these 
regions. Another factor that increases the efficiency of the WKM survival estimate in the later 
time regions is the increased prognostic value of the various covariates at these later time points. 

6. Discussion 
One can view this problem as a nonhomogeneous Markov chain with finitely many states. The sam- 
ple proportions estimating the 0)ili2..m 's and the conditional KM estimates for Sjiji2..m (t) have 



Nonparametric Survival Estimation 149 

Table 4 
Average AREs across discrete sections of time 

Days ARE(WKM1 (5.1) :KM) ARE(WKM2(5.2) :KM) ARE(WKM2(5.3) :KM) 

0-200 .9597 .9597 1.0000 

201-300 1.0026 1.0087 1.0094 

301-350 1.0483 1.0498 1.0424 

351-390 1.0690 1.0912 1.0806 

391-425 1.2550 1 1 

1 Survival estimates (5.2) and (5.3) were not available in the last time interval of this table. 

been shown to be maximum likelihood estimates by Aalen and Johansen (1978). Because our 
estimation of the overall survival probability is a linear combination of these terms, this implies 
that our estimator is maximum likelihood. It turns out that the WKM estimate reduces to Malani's 
redistribution to the right estimate for the categorical variable case. 

There are many useful applications of this method for survival estimation. For instance in many 
clinical trials, potentially prognostic laboratory measurements are being collected over time in 
ancillary companion protocols to the main therapeutic protocols. This additional information might 
be very useful in providing us with more precise estimates in studies where there are many censored 
observations. This estimate would also be useful in incorporating marker information in covariate 
form. No assumptions about the effectiveness of the marker would be necessary so long as the 
marker is in some way predictive. This has recently been the subject of much discussion in AIDS 
research. 

As has been previously mentioned, the variance of the WKM estimate is always at least as small 
as the variance of the KM estimate in settings where censoring in uninformative. Therefore use 
of the WKM estimate would be a welcome change in these situations. The WKM estimate is also 
recommended when censoring is informative between strata of a prognostic categorical covariate. In 
this situation the KM estimate is subject to bias and should not be used. We would not recommend 
this method with arbitrary covariates which are unrelated to future survival. Although in theory 
the estimate would reduce to the KM estimate when censoring in uninformative, there might be a 
price to pay in terms of efficiency if censoring is informative in some way. 

All of the results discussed ,here are asymptotic in nature. We have also run simulations 
to investigate properties of this estimate in small samples. The asymptotic results are closely 
approximated with occasional minor perturbations. One potential drawback to using the WKM 
estimate in very small samples is the range over which the estimate can be properly defined. For 
instance, if the last individual at risk in a particular covariate strata becomes censored, the KM for 
that strata cannot be consistently estimated past the censoring time. Because the WKM averages 
these KM estimates, the WKM estimate cannot be defined past that particular censoring time 
either. In large samples this problem does not tend to come up often since the KM usually is very 
close to zero at this point and can be comfortably labeled as such without affecting the consistency 
of the estimate. There are ways to get around this problem in practice since the data analyst has 
control over how to create covariate strata. For instance, if the range of the WKM estimate seems 
too small it is likely that there are too many strata and that some of them may be collapsed. There 
is no restriction in this theory to having different definitions of Zi over time. It may be advisable 
in certain situations to reduce the number of categories in Zi at later measurement times Ti* 1 to 
avoid a premature end to the WKM estimate. It may also be advisable to incorporate strategies 
of covariate definition similar to that of (5.3) to avoid defining unprognostic strata in finite time 
intervals. This tactic may also prove beneficial if most censoring occurs towards the tail area of the 
survival estimate. 
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RE'SUME 

L'un des principaux problemes que rencontrent les statisticiens qui travaillent sur des donnees de 
survie, est la perte d'information associee a la censure a droite. Ce travail s'interesse a une tentative 
de recuperation d'une partie de cette information a travers l'utilisation d'un facteur pronostique 
mesure sur chacun des sujets. Nous commencons par definir une estimation de la survie qui utilise 
des variables dependantes du temps pour obtenir plus precisement la distribution de survie sous 
jacente en presence de censure. Cette estimation a une variance asymptotique plus faible que celle 
de l'estimateur habituel de Kaplan-Meyer en presence de censure, elle revient a celle de Kaplan- 
Meyer dans le cas oiu la covariable n'est pas pronostique ou si aucune censure n'intervient. De plus, 
cette estimation est consistante si la covariable prise en compte contient de l'information tant sur 
le processus de censure que sur la survie. Du fait que l'estimateur de Kaplan-Meyer est connu pour 
son biais dans cette situation, nous recommandons d'utiliser notre procedure. 

REFERENCES 

Aalen, 0. and Johansen, S. (1978). An empirical transition matrix for non-homogeneous Markov 
chains based on censored observations. Scandinavian Journal of Statistics 5, 141-150. 

Cox, D. R. (1983). A remark on censoring and surrogate response variables. Journal of the Royal 
Statistical Society, Series B 45, 391-393. 

Efron, B. (1967). The two sample problem with censored data. Proceedings of the Fifth Berkeley 
Symposium on Mathematical Statistics and Probability, Vol. IV, 831-853. Berkeley, California: 
University of California Press. 

Finkelstein, D. M. and Schoenfeld, D. A. (1994). Analysing survival in the presence of an auxiliary 
variable. Statistics in Medicine 13, 1747-1754. 

Fischl, M. A., Parker, L. B., Pettinelli, C., et al. (1990). A randomized controlled trial of a reduced 
daily dose of zidovudine in patients with the Acquired Immunodeficiency Syndrome. The New 
England Journal of Medicine 323, 1009-1014. 

Gray, R. J. (1993). A kernel method for incorporating information on disease progression in the 
analysis of survival. Biometrika 81, 527-539. 

Kaplan, E. L. and Meier, P. (1958). Nonparametric estimation from incomplete observations. 
Journal of the American Statistical Association 53, 457-481. 

Malani, H. M. (1995). A modification of the re-distribution to the right algorithm using disease 
markers. Biometrika, 82, 515-526. 

Murray, S. (1994). Nonparametric estimation and testing for survival data in the two sample 
censored data problem incorporating longitudinal covariates. Sc.D. dissertation, Department 
of Biostatistics, Harvard University, Cambridge, Massachusetts. 

Robins, J. M. and Rotnitzky, A. (1992). Recovery of information and adjustment for dependent 
censoring using surrogate markers. In AIDS Epidemiology: Methodological Issues, N. Jewell, 
K. Dietz, and V. Farewell (eds), 297-331. Boston: Birkhaiuser-Boston. 

Received November 1993; received January 1995; accepted February 1995. 

APPENDIX 

Algorithm for Calculating the Variance of the WKM Estimate for T,1 < t < Tm. 

Step 1. Calculate 

Vjt _ _H.i 
i... (u) Sii i. (U) 

Zm =0 
k 

+ E oji.jm (Sji...im (t) - SiM)i (t))2 
im =? 

for all ...,i _-. This is simply the conditional variance from the outermost branches of the 
covariate path tree formed from Zl,..., Zm when all information up until time Tm_1 is known 
except for the value of Zm. In the outermost tail of the covariate path the problem reduces to the 
time independent covariate case. 
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Step 2. Calculate 

Vij1im2 (t) 

= E3 Oi iiilSii i l(Tmil)[Si( jml(t)1] IIji..jH i z(u)Sji.mi 1(U) k T*~~ 
im-1 =? 

for all i1, .m. ., im-2 
Step j, j =3, ... .,m m-1. Calculate 

k 

+i..i_ (t- Oil ... im_j+ (Szi.. i mm + (T m-jl)si(im. )m-1 1..im-2. () 

im-j+1=? 

for al >il im=23 
k 

+ S ~~~~(T* j,)SM ?t)]2 (t + ZMil Si11... im_j+l (i.im_+ (T.. m-j+)i.)i_+l (t 

Zm_jl =? 

- Mi iij. (t)A)Vil... imj+l (t) 

for all ii,..H ,im 

Step m. Calculate 

Ic k~~~~~~~~ 

V(t)=0 0 

Thelast step of1 thealgorithmt providle)s 1+ _l (the variance,V(t),forT <t <T 
SThlatsep Tn. Caclthealoihprvdstevrac,Vt,frT t<Tm 
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