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Annals of Economic and Social Measurement, 1/3, 1972

CRITERIA FOR EVALUATION OF ECONOMETRIC MODEI.S*

BY PI-IOEBUS .1. DHRYMES, E. PHILIP HOWREY, SAUL H. HYMANS, JAN KMENTA,
EDWARD E. LEAMER, RICHARD E. QUANOT, JAMES B. RAMSEY, HAROLD T.

SHAPIRO AND VICTOR ZARNOWITZ

This multi-authored article develops a framework for systematically evaluating large scale econometric
models. Reasonably self-contained aspects of model evaluat ion include parametric evaluatwn prior to
the "release" of the mode! (model selection, parameter estimation, and pseudo-forecasts and structural
stability tests) and evaluation after release" of the model. Mmiv operational procedures for parametric
eraluation are noted: alternative, ad hoc procedures are necessary in some cases, given the present state
of the art. Non-parametric "validation" procedures are then outlined. These include sin gte-variable
measures, tracking measures, error decomposition, and cyclical and dynamic properties. A statist icill
appendix sketches some o[the theoretical results used in The paper.

I. INTRODUCTION

For purposes of this paper an econometric model is considered to be an analytical
representation of one or more statements about economic behavior, which repre-
sentation relies upon statistical implementation for the purposes of hypothesis
testing, parameter estimation, or use in prediction or simulation circumstances.
A model in this sense may be anything from a single linear equation to a compli-
cated set of simultaneous, non-linear equations. The term "model evaluation" is
here used to encompass a broad set of tests to which a model can and should be
subjected at many different stages during the process of construction and sub-
sequent use.

During the past decade econometric models have come in for increasingly
widespread use by government (for policy analysis and forecasting), by industry
(largely as a forecasting tool), and by universities (for instructional use and a wide
variety of research purposes). Despite the growing importance of such models in
various decision-making situations, the process of systematic model evaluation
haswith some noteworthy exceptionslagged seriously behind the process of
multi-model proliferation. Within the past few years, however, a handful of
significant attempts have been madewith respect to large scale econometric
models to conduct serious cross-model comparisons. Building on a series of
pioneering efforts by Carl Christ [10], Irma Adelman [1], Henri Theil [50], and
others, the studies of Zarnowitz, Boschan and Moore [57], and Evans, Haitovsky
and Trcyz [21] are examples of current research work in this area. Particular model
builders, of course, have also subjected their own models to careful "audits" both

on sample and post-sample data. At the level of subsector and single equation

* This paper is a joint effort of the authors listed and was undertaken as a project of the Seminar
on Criteria for the Evaluation of Econometric Models (S. H. Hymans and H. T. Shapiro, co-chairmen)
of the Conference on Econometrics and Mathematical Economics, sponsored by the National Bureau
of Economic Research and the National Science Foundation. An earlier version of this paper was
presented at the Brookings Model Conference, Washington, D.C. February 11-12, 1972. The authors

are grateful to Professors C. Christ, R. A. Gordon, L. R. Klein and 1. D. Taylor for their continuing
help during many stages of the writing of this paper.
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models recent work by Bisehoff [7], Hymans [37], [38], and Jorgenson. Hunter,and Nadiri [39] may he cited as examples ofcross-niodel evaluations. What standsout most clearly from all these cvaluatjoii exercises is that, aside from the simplestsingle-equation cases we suffer the lack of a clear and accepted analytical basisfor the selection of proper criteria for model evaluation. This is true with respectto the criteria by which a single model should be evaluated and holds a-fortioriin the case of cross-model evaluations This state of affairs has been the motivationfor several recent papers, [21] [36], and is the raison-d'etre for the NBER-NSF
sponsored seminar which has led to this paper.

In the next section of this paper, we shall outline a framework which de-
composes the evaluation set into fairly natural subsets, and thus permits theorderly discussion of reasonably self-contained aspects of model evaluation.These are discussed in turn in succeeding sections of the paper.It has been our aim to suggest operational procedures for evaluation when-ever possible, and to compare alternative procedures whenever our knowledgepermits. To this end, a number of statistical derivations and proofs have beenrelegated to an appendix in order that the flow of discussion in the body of thepaper may be more easily digested. While we have succeeded in arriving at someuseful "recipes" for particular evaluation circumstances, there are still gapingholes in our knowledge. For some evaluation problems we simply have nothingto suggest for a "best practice" procedure, and we have had to be content with abrief and general enumeration of the alternative, often ad hoc, procedures whichare in current use or under current study. Most of what we have to say is in directreference to time series econometric models, but much of what follows appliesto cross-section models with perhaps minor rephrasing.

11. ASPECTS OF MODEL EVALUATION

What we (as builders, users or judges of models) choose to do in the processof evaluating an econometric model is heavily dependent on what we have chosento axiomatize. At an early stage in the life of a model we may regard its functiotialform as "up for grabs," as something yet to be determined. At a later stage, afterthe model has already been "certified" with respect to functional form, we maychoose to test hypotheses about parameter values within the confines of thefunctional form already settled upon or axiomated,' Alternatively, we may takethe approach which one of the authors has called "Sherlock Holmes inference,"a process of data analysis in which Sherlock the econometrician weaves togetherall the bits of evidence into a plausible story. In this view, it is taken as axiomaticthat the process being modeled is far too complicated and the data available fartoo weak to he able to specify and implement a structurally and behaviorallysound representation. Such notions as parametric hypothesis testing, best linearunbiased estimators, and the like are then wholly irrelevant, if not dangerouslymisleading. Nearly all that remains is a series of evaluative measurements specifiedin the light of the particular uses to which it is desired to put the model. At best,
This is the basic set-lip in the ciassica statistical procedures based on the work of Fisher, Neymari,Pearson and others.
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the model can tentatively be certified as a reasonable tool for spccffic uses until

it errs seriously and is found to have a fatal uncorrectable flaw, or until it is replaced

by a better "untrue" model.2 Sherlock l-lolmes' inference leads naturally to
evaluation procedures heavily geared to the specific potential uses of the model,

that is, to the calculation of performance statistics with generally unknown prob-

ability characteristics (and a strong presumption of stochastic dependence which

even eliminates the possibility of conducting distribution-free statistical tests).

Procedures of this kind have also had to be employed in the evaluatton of models

originally constructed under a strong stochastic axiomatization. This has been

necessitated, for example, by the fact that we have not yet succeeded in identifying

a uniquely proper way to evaluate a matrix of dynamically generated time series

forecasts of all the endogenous variables in a macroeconometric model. Nor do we

fully understand the stochastic properties of such a matrix,3 a necessary first step

in the generation of any statistically valid inference procedure.
To break this formidable evaluation process down into a series of manage-

able problems, we propose first a binary split into categories which we shall

refer to as paranietric and non-parametric evaluation. An evaluation procedure is

said to be parametric if it relies on a formal statistical test based on the stochastic

specification assumed to apply to the econometric model. Non-parametric evalua-

tion is concerned with specialized and descriptive procedures such as those

mentioned in the previous paragraph. Such procedures are not derived from the

stochastic assumptions of the model, and they rarely depend on formal tests of

significance. It is our view that non-parametric evaluation can be important and

valid under many different axiomatizations, and we shall discuss this matter more

fully in section V below. Our discussion of parametric evaluation will proceed

according to the following outline:

Parametric Evaluation

1. Prior to "release" of the model
Model selection
Hypothesis tests and parameter estimation
Pseudo-forecasts and structural stability tests

2. Subsequent to "release" of the model

Availability of a small post-sample data set: predictive testing, pooling

of sample and post-sample data.
Availability of a large post-sample data set.

Ill. PARAMETRIC EVALUATION: PRIOR TO MODEL RELEASE

In this section we discuss a number of aspects of evaluation which are con-

sidered as taking place during the process of model construction and continuing

through to the first time the model builder actually "puts his money" on the

results generated by the model.

2 This is not the first time that economists have heard such arguments.

Except possibly for sonic very 5irnple cases.
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(a) Model Selection

The term "model selection" here refers to the problem of choosing between
aUernative functional representations of dli ec000nlic relation. Tue dasical
statistical procedures which most economics graduate students are required to
internalize depend very heavily on a specification axiom. These procedures yield
likelihood ratio tests, minimum variance estimators and predictors, and other
such munificent benefits all under the assumption that Y = X/i * t and its
familiar accompanying probability statements accurately reflect the true state of
affairs. As practicing economists we arc well aware that a logically prior problem
exists. Economic theory gives preciously few clues as to the functional forms
appropriate to the specification of economic relationships, and the presence of
random error terms in stochastically specified equations adds an additional
element of functional ambiguity. In certain cases, known in the literature as
situations of "nested hypotheses," classical statistical techniques provide sound
discriminating procedures limited in power "only" by the quantity and richness
of the sample evidence. Classical techniques are woefully silent in the case of non-
nested hypotheses, or disparate families of hypotheses, but research is being done
in this area and there is also the possibility of a useful Bayesian approach to such
problems.

Techniques for the handling of pairs of nested hypotheses in a linear econo-
metric model are by now second nature in the profession. They are well-docu-
mnented in our standard textbooks and there is little to be gained by any review
here. Let us turn directly to the less understood problem of selecting among
alternative model specifications which cannot be represented in the framework
of nested hypotheses.

Ramsey has made an interesting beginning in the analysis of non-nested
linear models 146]. Suppose we consider two alternative specifications of a linear-
in-the-parameters model to explain the dependent variable Y:

H0:E[YX] = XfJ

HA:E[YIZ] = Z',',

where Z = g(X), and the function g represents a non-stochastic, non-linear trans-
formation. H0 is the maintained hypothesis, while HA is the alternative hypothesis.
If HA is true, then the regression calculated under H0 has used an incorrect
functional form for the regressors. Letting ii denote the vector of residuals from
the least squares regression of Yon X, it is easily shown [46; pp. 353-354] that

E[uIX, H0] = 0,

and

E[uJX, 114] = MZy

where M [1 - X(X'X) 'X']. Using Z = g(X), the second relation caii be
written as

E[uIX, HA] = Mg(X)y = h(X)y,

where ii(X) = Mg(X).
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Ramsey reasons4 that
h(X) can be approximated as a multivariate power series in the X van-
a bles,
The predicted values of Y from the regression of Y on X, say 1, are
linear functions of X, and therefore,
It should be possible to approximate h(X) by a power series in ?. It is
therefore approximately true that

E[uIX, H1]
j=2

where

the number J represents a Jth degree power series approximation
to Ii(X),
the index j begins with j = 2 since the least squares residuals are un-
correlated with , and
Y' refers to the jth power of 1, element by element.

Under H0, all the should be zero; under HA at least some of the c should be
non-zero. Ramsey's idea, then, is to regress the residuals on powers of Land test
the hypothesis that the vector = (r2,3,.. . is null. Rejecting the null
hypothesis on is equivalent to rejecting 110 in favor of some hypothesis of the
form HA.5 In point of fact, Ramsey carries out the above test, not on the least
squares residuals, but on Theil's BLUS residuals [51 ; chapter 5]. The idea is the
same, but the BLUS residuals yield more convenient stochastic properties which
permit the test on the vector to be carried out by the usual multiple regression
F-test, provided one begins with the assumption of (conditional) normality of
the vector

An alternative approach to the problem, one not limited to the linear model
framework and not requiring any condition analogous to the Z = g(X) require-
ment in the Ramsey approach, may be formulated as follows. Let two alternative
specifications of an economic relation be represented by the hypotheses H1 and
Hg. According to H1 the random variable Y has probability density function
(p.d.f.) fry; a'.), with the parameter specified to be an element of the space
According to Hg, Y has p.d.f. g(%'; fi) with fJe and furthermore

n

In such a case the usual (variants of) likelihood ratio tests are not available and
the asymptotic chi-square test on 2 In i. (where). is the likelihood ratio) cannot

The reader is referred to the Ramsey paper [46] for a more rigorous discussion.
Note that the test depends only on the alternative hypothesis that the X variables should have

been transformed via some g(X) before running the regression. The function g is not used specifically
in carrying out the test. The test is therefore quite general, but probably sacrifices power relative to a
test which might have been constructed for a specific alternative such as Z1 = In X.

In [46] Ramsey reports the results ofseveral applications of his test procedure. An entirely similar
procedure can be used to obtain tests for heteroskedasticity, omitted variables, and simultaneity, as
Ramsey indicates, but such testS do not necessarily pinpoint the cause of rejection of the maintained
hypothesis.
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be performed. Problems of this type have been studied by ft R. Cox [14] [15]
who has suggested various procedures--within the framework of classical
statistics--for testing H, against Ii.

One possibility is to transform the problem into a more familiar framework
by introducing a new parameter y. The probability density function of the random
variable can then be written as

!t(y; , /3) = k[f(p; ct)]g(; j3)]I - 'I,

where the factor of proportionality required for h to be a p.dil is given by

=
[f(v, )](v, fl)]' dy.

'5

Employing h(y;ct,fl) one can, at least in principle, obtain maximum likelihood
estimators for , /3 andy. Because of the presence of the factor k, the maximization
of the likelihood function may pose considerable numerical problems. It appears
possible to use the asymptotic theory of likelihood ratio tests for testing hypo-
theses about y. Clearly, confirmation that ' is (close to) zero or unity supports
one hypothesis and tends to discredit the other; intermediate values of y are
ambiguous and awkward in economics since the two hypotheses may be in-
compatible. Perhaps such an outconie suggests the interpretation that both
hypotheses are suspect.7

Cox's main procedure is based on the (generalized) likelihood ratio

sup L7(z)
=

sup L(/3)

where L'() and L(fJ) are the sample likelihoods under H1 and H respectively.
Since it is not true in the present case that it is not true in general that
'fg 0; hence standard procedures cannot be applied. Let and fi be the maximum
likelihood estimators under H1 and H5 respectively. The natural logarithm of the
generalized likelihood ratio is

1i= JnL7().-. InL(/)
= L1() - Lg(/)

= {L1() - L5(fl + {L1() - L1()J -- {L5(ft) -
where

fl = plim ,

the probability limit taken on the assertion that H1 is true. That a large value for
iJg Constitutes evidence against H5 may be seen as follows. Under Hf and the
usual regularity conditions,

plim [L1(á) - L1()] = plim [L5() - L5(f32)] = 0,
Recent work by Atkinson [5]. elaborates the results giver by Cox. Moreover, it shows that ininstances where multiple hypotheses (exceeding two) are employed, or when the eponentjaI combina-tion of the distributions involves two parameters, y,, '/2 (instead oly. I - ) it may not be possible toidentify the "mixing" parameters.
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while

plim {L1frz) - L8(I3)] > 0,8

and therefore a "large" renders evidence against H8.

The test statistic considered by Cox is a variant of!, namely

S1 = - E8{L1(2) - L8(Th}

= {L1() - L8(/)} - - L8(fl)},

where E; denotes the expectation operator conditional on the hypothesis H1.
It is shown by Cox that S- is asymptotically normally distributed and its

variance is obtained. Clearly the test is not symmetric and the roles of H1 and
can be interchanged. The results of the test on S. may indicate consistency with
11k, departure from hf in the direction of H8 or departure away from H8. If the
test is performed on both S1 and S8 (obtained by interchanging the roles of Hf
and H8), there are nine possible outcomes and care must be taken to employ the
correct qualitative interpretation. In appendix section A.! we give an example of
an application of this procedure. Unfortunately, the test cannot be performed
routinely since, as we show in the appendix, the form of the test statistic depends
crucially on the nature of the hypotheses to be tested and can easily involve
nuisance parameters. Further, carrying out the test requires computations of
substantial analytical difficulty.

Finally, we turn to a Bayesian approach to the problem of model selection.
While the classical approach of Cox uses the generalized likelihood ratio

sup L7()
e'12

sup L'(/J)

as a measure of whether the data generally favor hypothesis f relative to hypo-
thesis g, the Bayesian approach considers, instead, a weighted likelihood ratio
of the form

R
= L(y; ) W(a, f) d/

5
L(v; fi) W(/J, g) df3,

where W(o,f) and W(fl,g) are "appropriately" defined weights relating to the
parameters (c,fl) and hypotheses (H1, H8) under consideration. It is perhaps
simplest to illustrate the meaning of such weights in the likelihood function in the
following way.

Let th1 and ( = I - &) represent the model builder's "prior probabilities"
attaching to (initial degrees of belief in) H1 and H8 respectively. Let p1(a) be the
prior density on , given that H1 is true; similarly let p8(fl) be the prior density
on J given that Hg is true. Let w1(ce) be the "cost" of rejecting H1 when true and
w8(fJ) the "cost" of rejecting H8 when it (H8) is true. The (expected) cost of rejecting
H1, on the basis of information y, when in fact H1 is true, is

th1J L(y; )p1()w1(c)de.

8 Recall that the probability limits are taken conditional on
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Similarly the (expected) cost of rejecting H when it is, in fact, true is

fL(j; //)p/t5(/) d/1.

In this context the weight W(,f) is given by dijpj()w1(), and similarly for
W(fl, g). The usual rule derived from minimizing expected loss is:

Accept II if t j L{v; )pt)w1(a) (1 f L(y; fl)P5(I1)w5(fl) i/fl,

otherwise reject.

Now if wj(a) = st'g(13) = c, a constant independent of and fi, then the rule
reduces to:

Accept H1 (on the basis of information y) if:

I.
(7) J L'(y; fl)Pg(fl) ti/i -

The lel't-hand quantity, of course, is the usual definition of posterior odds.
Current activity in thisarea of Bayesian research, e.g., Geisel [24], Zellner [58],

Learner [41], Dickey 119], is aimed at exploring the implications of alternative
weighting functions (prior densities). There arc several important substantiveimplications of the Bayesian literature on this topic, including (a) Minor differences
in R2's among the competing models allow considerable discriminatory powerdepending on the degrees-of-freedom (b) An appropriate criterion statistic for
choice among models is (roughly) an average of the sample R2 and an "a priori"R2 computed using a priori likely values of the parameters. (That is, it does not
matter ifan R2 is high if it implies absurd values of the parameters.)

Economic model builders rarely view themselves in the role of decisionmaker. Generally, the model builder concentrates on the estimation of many
parameters and the pure testing of relatively few hypotheses.9 But here, in thecrucial area of model selection, is a circumstance clearly defined as a decision
problem, whether to select H1 or H5 as the axiom on which to proceed in sub-sequent analysis.' ° And this clearly represents an area for which Bayesian analysis

In current practice, most of the pure statistical tests carried out by model builders involve eitherthe omitted variables specification analysis of Theil [50], or the test for structural change discussedby Chow [9], or various tests for the presence of autocorrelation These major exceptions aside, it seemsclear that far more time and attention is given to estimation than to the statistical testing of hypotheses.'° We recognize a logical problem here: having chosen on the basis of the data available,subsequent estimates of parameters, tests of hypotheses etc. are to be understood as conditional onthe "truth" of H1. Hut given that the choice of H1 is itself the outcome of a statistical test the prob-abilistic properties of the subsequent estimators, the levels of significance, are not the Stated (nominal)ones. The latter would hold only f ll, were in fact true, and would be valid in the present case condi-tionally on H1. Indeed, empirical research
ought to differentiate sharply between the test and "discovery"of hypotheses. Thus, if after a long "data mining" process one decides that a given model fits the datawell, this exercise ought not to be understood as a test of the hypothesis that the world is described bysuch a model: at least not at the stated level of significance. It may. however, and indeed ought to bethought ofas the discovery or the formulation of a hypothesis to be subsequently tested on an independ-ent body of data. An early reference to this problem is T k l3ancroft [6'j
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is tailor-made. After all, we do approach model selection with strong prior attach-
ments even now. Only we tend--as a group--to apply these attachments in rather
ad hoc, if not haphazard, and surely not reproducible ways. There may be a great
deal to be gained by formalizing these procedures along Bayesian lines.

(b) Estimation and Testing

At this point we assume that some model selection procedure has gotten the
researcher to the point at which it is appropriate to seek optimal parameter
estimates (or to test hypotheses) under the usual specification axiom regarding
appropriateness of the form of the model being analyzed. The existing econo-
metric literature is more explicit in this area and in recent years econometricians
have begun to pay increasing attention to the estimation of parameters which
are subject to constraints [33] [52] and to various problems involving non-linear
estimation [18] [26], There would seem to be little purpose in our reviewing this
literature which is quite familiar to most of those who engage in the construction
(and testing) of econometric models. Rather, we have chosen to call attention to
two strands of thought which exist in the literature of mathematical statistics,
which seem to us to be potentially useful in economic problems, and which are on
the whole not at all well-known to econometric model builders. We refer to two
different situations involving restrictions on parameter values. The first --to
which we now turn--is a case of intermediate hypotheses involving successively
more severe restrictions on the admissable parameter space.'' Here the problem
has not yet been satisfactorily solved and we mention it briefly to draw attention
to a research area which could yield a substantial payoff for econometric model
building.

Suppose it is desired to test

H0: Oro

against

H1: ()z( - w)

where 0 is a vector of parameters, is the admissable parameter space, and
It may be meaningful to conduct a sequence of tests on the intermediate

hypotheses a),, w, . . . , w, where

..................DW=W,
in order to be able to pinpoint the reason, say, for the failure of hypothesis H0
above. 12

Suppose, in other words, that we employ the following procedure: Test w1
against w0 . If w, is not rejected, text w2 against a)1 - w2. If '-2 is not

Economists are famif jar with a special case of this problem involving a single subset hypothesis.

and Chow [9] has provided a useful method for dealing with a two.sarnpie problem within the subset

hypothesis framework.
Thus, a Chow test [9] niay lead to the inference of structural change either because the coefficient

vector, JI, in the model Y = Xfl + e differs between the two sample periods under investigation, or

because the variance of r has changed (or both). k would therefore be desirable to be able to handle
an intermediate hypothesis regarding the stability of the variance of c.
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rejected, test w3 against 2 - 0)3 , and so on. If no rejections occur, then
H0(OEOJ = a,,), is accepted. If, however, some subhypothesis is rejected, say we
relect OWk and thus accept Oa(wk - (Ok), 0 < k < Pt, ve know that 0 'JI=k '
and Ot(w_ r ai), being the coniplernent of Wk (in ). Since the sequence of
intermediate hypotheses represents successively more severe restrictions upon
the parameter space, the test tells us at what point the severity of the restriction
becomes incompatible with the sample and, consequently, we know "why" J1 is
rejected.

Problems of this type have been discussed extensively by, among others,
Darroch and Silvey [16], Hogg [31], Larson and Bancroft [40], and Seber [47].
To this point no easy solutions have yet been identified, a principal stumbling
block involving the problem of statistical dependence of the successive hypothesis
tests.

A more satisfactory result can be.displayed in the case, to which we now turn,
involving a Lagrange multiplier approach to the testing of a set of restrictions on
the parameters being estimated. In general terms, the problem can be stated as
follows. Let Y be a random variable (or vector) with p.d.f. f(v; 0) depending on a
k-dimensional vector of parameters denoted by 0. It is asserted that certain
restrictions hold, say h(0) = 0, where Iz(0) is an r-dimensional vector valued
function with r < k. The parameters can, in general, be estimated by first imposing
the restrictions on the vector 0 or, alternatively, by maximizing the expression

A) = L(y; 0) + A'h(0)

with respect to 0 and A, where L(y; 0) is the log likelihood corresponding to a
sample on Yand A is an r-dimensional vector of Lagrange multipliers.

The latter approach can be shown to yield a test of the validity of the restric-
tions, while the former does not. One could, of course, estimate unrestricted
parameters and then derive statistics appropriate to testing the restrictions. If the
restrictions are thereby rejected, then the unrestricted parameter estimates are
the appropriate ones. On the other hand, if the hypothesis h(0) = 0 is accepted
one would want to have the estimates obtained from a procedure which observes
the restrictionspresuniably on grounds of efficiency. The Lagrangian procedure
yields both restricted parameters and the estimated Lagrange multipliers. In this
case the test on the validity of the restrictions may be carried out on the Lagrange
multipliers. If the restrictions are, in fact, valid the Lagrange multipliers should
be zero since the restrictions imposed on the procedure are not binding the
data already incorporate such restrictions. Thus, a test on the estimated multi-
pliers should lead to acceptance of the hypothesis that they are "insignificantly
different from zero."

On the other hand, if the restrictions are invalid then the restrictions imposed
by the procedure are, in fact, binding and a test based on the estimates of the
Lagrange multipliers should yield the conclusion that they are "significantly
different from zero." Thus, insignificance of Lagrange multipliers leads to accept-
ance of the restricted model, while significance leads to rejection of the restricted
model and thus acceptance of the unrestricted model. If the unrestricted model is
accepted, however, the restricted estimates are no longer appropriateon grounds
of possible inconsistency due to misspecification.
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Such problems have been investigated by Aitchison and Silvey [2], [3], [4],
who have shown that under the usual regularity conditions underlying maximum
likelihood estimation, the appropriate test statistic for thc hypothesis

H0:A = 0
is

where T is the sample size,

= (RVR')

R'
[i3h(0)

L 3°

and V is the so-called "information matrix,"

I [2L(r 0)
----E'T [ 00'

In the test statistic A all unknown parameters have been replaced by their resrricu'd

maximum likelihood estimates. If the statistic is "small" we accept the restricted
model; if "large" we reject. Notice that if the restricted model were, in fact, valid

then we would expect the restricted estimates to be "close" to the unrestricted ones.
But the unrestricted estimates imply tL,/0 = 0; thus, ii both are close then for

the restricted estimates we would have ÔL/8O 0. Such considerations make this
test intuitively quite attractive. Aitchison and Silvey have shown that the statistic A

is, asymptotically, distributed as Chi-square with r degrees-of-freedom under the

hypothesis A = 0.
It is instructive to specialize the AitchisonSilvey test to the linear model

framework and compare it with the more familiar F-test based on the unrestricted

estimates. Suppose

Y = XI? + &,

where Y is (T x 1); X is (T x K), nonstochastic, and of rank K; fi is (K x 1);
and t is a (T x 1) multivariate normal vector with mean zero and covariance

matrix a21. The log-likelihood function is

T T
L = ---ln(2it) -- --ln2 -

2 2 2a

and, for subsequent reference, we note that f32L/I3ôjT = (1/a2)(S), where

S = (X'X). The restrictions on fi are given by

RJ3 = r,

where r is a J x 1 vector of known constants; R is a (J x K) matrix of known
constants with the rank of R equal to J < K. We thenform the Lagrangean function,

= L + X(R$ - r).
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Maximizing with respect to ii, o-2, and A yields the estimators (sec [25, pp. 256
258]:

/3 = b ± S 'R'(RS 'R) '(r -- Rh)

= (RS - 'R') - 'fr - Rb)

and

where b is the unrestricted Least Squares estimator, h = S 'X'Y; and is the
(restricted estimator) residual vector, = (Y - Xfl).

The Aitchison--Silvey test-statistic, A, is

A = 'D'.
In this case D 'is given by - Ta2(RS 'R'), since R' is itself the derivative of the
constraint function with respect to the parameter vector /1, and the information
matrix is given by

i ra2Ll I I

V = = E ?S
=

Ta

S

To-2

since S is a non-stochastic matrix. Thus,

=

=

= -- Ta2 (RS 'R').

Substituting the tatter into A in equation (4) yields:

A = c2A'(RS'R').

This statistic is asymptotically distributed as (central) chi-square with J degrees-
of-freedom under the hypothesis A = 0, as shown in [48]. With a2 unknown,

can be substituted, yielding the observable test-statistic

A =

which converges in distribution to the asymptotic distribution of .4 (since a2 is
consistent for a2) and is therefore also asymptotically chi-square with J degrees-
of-freedom, if A = 0.
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The common test of the hypothesis Rh = r is based on an F-distributed
statistic the derivation of which may be motivated as follows. The specifIcation
of the model implies that the unrestricted Least Squares estimator, h, is distributcd
multivariate .i(/,a2S'), so that

R(b - /3) = (Rh - R/J) 1(O, c2RS 'W).

But if Rfl = r, it follows that

(Rb - r) 1'(0,a2RS'R),
and therefore the statistic

C = (Rb - r)'[aRS 'R'] '(Rb - r)

= L(Rb - r)'(RS 'R') '(Rh - r)

is distributed as (central) chi-squame with J degrees-of-freedom. The statistic C
contains the nuisance parameter a2, but

e'e (Y - Xb)'(Y - Xh) TC/2

is independent of the estimator b and is distributed as (central) chi-square with
(T - K) degrees-of-freedom. Thus,

C/J (Rb - r)(RS 'R') '(Rh - r) (T - K)
T.q'2/52(T - K) - 92 Ti

is distributed as (central) F with J and (7' - K) degrees-of-freedom, if Rfl = r.
To compare the latter with the Aitchison-Silvey test, substitute the ex-

pression for from (2) into the expression for A given in (5) to yield

a2 1

A = - (r - Rh)'(RS 'R') '(r - Rb).

Suppose now that a2 is known and does not have to be estimated, then A becomes

A = -(r - Rb)'(RSR')'(r - Rb)
a

= -(Rb - r)'(RS 'R') '(Rb - r),

which is precisely the statistic C given in (7). Thus, if a2 were known, the
Aitchison-Silvey test would coincide with the usual test on the unrestricted
estimators, for the latter would then be based on the statistic C, there being no
need to employ TS/'2ja2 to get rid of any nuisance parameter. From this we obtain
the conclusions that, within the linear model framework as specified
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the two tests arc (lnathematically) equivalent if a2 is known,

the Aitchison_Silvey test is a valid small sample lest under the normalityassumption on , provided a2 is known.
If a2 is unknown, we then have the choice between the small sample F-test andthe asymptotic chisquare test. Iwo additional results can be proven for the caseof unknown a2:

the two tests are asymptotically equivalent in the sense that J and 4have the same asymptotic distribution (see appendix section A.2),If z is normally distributed, then the usual F-test is the appropriate testbecause the other is only asymptotically valid, while the F-test is validfor any sample size, enjoys the properties of a "NeymaiStructure"test [42 chapter 43 and so on. Furthermore, although

is distributed as chi-square vith (T - K ± J) degreesoffree010 it isnot Independent of the estimator h, and thus cannot be used to convert AInto an F-statistic with more denominator degreesoffre0 (hencehigher power) than (see appendix section A.2).
Finally, and probably most importatit from an econometric model point ofview, it appetrs that in the absence ofa normality assumption on c the Aitchison_-Silvey test based on A is preferable to the test based on . for the following con-siderations. If is not normally distributed, the statistic C given in equation (7)will he distributed as chi-square with J degreesoffre0 asymptotically, sinceit is mathematically equivalent to Further the asymptotic distribution of Cwill be Unaffected if the a2 in (7) is replaced by any consistent estimator In effect,the standard statistic results from replacing a2 by a consistent estimatorderived from h, while the Aitchisonsilvey

statistic A results from replacing a2by a2 a consistent estimator derived froni fi which contains the restrictiotis Rfl r.If the restrictions are valid then ê2 should be preferable to .(i'2 (on grounds ofefficiency), in the same way that any full information estimator is to be preferredto its corresponding limited information estimator Although it does not matterasymptotically for any fInite sample size the estimator .Y'2 can be considered tobe based on a sample of size(T - K) while a2 can be considered to be based on asample of size (T - K + J) > (T K).'4
This could be proven directly without appealing to the equivalence of C and 4. If r is notnormal!) distributed e can consider a quasi-maxj0

likelihood estimation pioblem. as though e
scre normally distributed or simply minimize the residual sum of squares subject to Rfl = rand stillobtain the same results including asymptotic normality1411 the test is lobe based on asymptotic principles, there is no purpose to running the test on
in any case. One Should use either

and

e -
0i

A=
a-

each ofwhjch s asymptotically y jfRfi = r.fixed sample estimator ofa2 by virtueof its

r)'(RS 'R)(Rh r)

- ri(RSRy '(Rh -

We are arguing that A is preferable because js-a'better"using more information about the structu1 mode!.
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The reader will have noted that the discussion in this section has been predi-
cated on a single-equation approach with non-stochastic regressors. In the case of
stochastic regressors little difficulty is introduced if the regressors ale fully inde-
pendent of the error term i. The small-sample F-test based on equation (8) would
become a conditional F-test (conditional on the observed X's). In the Aitchison
Silvey test, the information matrix would be given by

Ta2 a2
This results in

A = â2[R{E(T 'S)}

which can be consistently estimated by

=

(10) = â2.'[RS 'R']A,

precisely as in equation (6). The AitchisonSilvey Test is thus completely un-
affected by the presence of random regressors if they are independent of5 If the
regressors include a lagged dependent variable (and we maintain the assumption
of independent error terms) it becomes necessary to rely on a central limit theorem
for dependent random variables to establish the asymptotic distribution of the
AitchisonSilvey statistic. Theil [51 p.487] refers to one such central limit theorem
which would apparently justify use of the AitchisonSilvey test in the case of a
lagged dependent variable.

Finally, suppose we are dealing with a simultaneous-equations model. If Ji is
a vector of reduced-form parameters, then all of the foregoing applies. We are more
apt, however, to be concerned about restrictions applying to behavioral (structural)
parameters of the model. In that case, suppose the regressors in the equation for
Ycontain predicted values of some endogenous variables obtained from a directly
estimated reduced form, so that b and fi become, respectively, unrestricted and
restricted 2SLS estimators of the structural parameters /3. If the structural error
terms are serially independent and the predetermined variables are either non-
stochastic or fully independent of the structural error terms, then the Aitchison-
Silvey test can be performed on the 2SLS estimators with unchanged asymptotic
justification, precisely as discussed in the immediately preceding paragraph.'6

15 /T(A/T) would still be asymptotically normally distributed, orequivalently---ñ(h - /3)
would be asymptotically normally distributed with zero mean and covariance matrix
a Plim (T - '.whicti would again result in the statistic C in (7) being asymptotically y ifR/3 = r.

6 TheAitchison-Silvey test-statistic would still be consistently estimated by the A of equation (10),
which would still yield the statistic

- r)'(RSR') '(Rh - r)

upon substitution for , though b is now the unrestricted 2SLS estimator. It is shown in [14; pp. 190-191]
that under the conditions stated above,

- /3) is asymptotically .t(O, o plim iii)
'),

where K contains "predicted" endogenous variables. This is all thai is needed to establish that the
above statistic is asymptotically y3 (if Rfl = r), with a2 being the variance estimator based upon
(the restricted 2SLS estimator of /3).

305



The presence of lagged endogenous variables would again lead to the need for a
central limit theorem for dependent variables.

(c) Pseudo-Forecasts and Structural Stability Tests

We assume now that an econometric model has been estimated and is ready
for a "forecasting" evaluation prior to actual use as an operating model. A nuin-
ber of evaluation methods are available and several will be discussed in section V
below. Here we should like to concentrate on the use of a data set which could
have been pooled with the sample used to estimate the model, hut was instead
"saved" for a post-construction test of the model. We are well aware that under
strong specification axioms it makes more sense to use all the available data in
estimation, than to save some of it for later testing. This view is argued per-
suasively by Christ [11; pp. 546-548]. But in a realistic situation in which model
selection procedures, hypothesis tests of various kinds, and a number of other
"experiments" all amount to considerable data-mining, it would seem wise tohave saved some data on which to evaluate the resulting model.'7

Suppose, then, that the model-builder has available a set of in observations
on each of the independent and dependent variables of the model. These data areassumed to lie outside the sample used to estimate the model, and it is further
assumed that the in observations are too few in number to permit re-estimation
of the model)8 The model is to be used along with the in observations on the
independent variables to generate in forecasts of the dependent variable(s) whichcan then be compared with the in known values of the dependent variable(s). For
the case of a single equation and m = I, a normality assumption on the error term
(plus serial independence of the error term) permits the familiar t-test which can be
considered equivalently either as a predictive test of the model or as a test of
structural stability. For the single equation case with in > I, it is possible tocalculate a root mean squared error of forecast (the square root of the average ofthe squared forecasting errors) and it is tempting to think that such a Statistic
should be approximately the same as the standard error of estimate of the Jiltedequation if the structure has not changed. That this is not so, is alluded to in a
recent paper by Jorgenson, Hunter and Nadiri [39].

Suppose the relation Y = Xf3 + c, with the same assumptions as previouslygiven (including normality), is estimated by Least-Squares. The residual vector,say e, is given by

e =
where

M = I XS 'X',
and e'e/(T - K) has expectation i2. The standard error of estimate is. of course,the square root of e'e/(T - K). Now suppose that X0 is the (in x K) matrix of

17 Obviously if the model builder "knows" the data set which has been saved, he may find itimpossible to prevent it from influencing his specification of the model. To that exent, a test on saveddata is biased in favor of the model being tested. Subsequent testing on data which could no havebeen known at the time of model construction is clearly more desirable.
En section IV we discuss the case in which there are enough new data to re-estimate the modelon the new data set.
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observations to he used in the predictive test of the model. If the structure of the

model is correct, then

= X0fl - o

and the vector of forecast errors, say e0, is gwen by

= X0h,

where b = S 1X'Y It is well known that under the stated assumptions e0 is

distributed as multivariate Normal with mean zero and covariance matrix

2(Im + X0S 1X), where I,, is an (in x in) identity matrix. Denoting the matrix

(I,,, + XØS 'X) by Q, it follows that

e'0(I,,, + XØS 1X'0) e0Q 'e0
-

is distributed as (central) chi-square with in degrees-of-freedom. Thus

E[e'0Q 'e0/m] o.
The mean squared error of forecast, however, is given by ee0/m, not e'0Q 'e0/m,

and the difference between these two measures is

e'0e0/rn (eQ 'e0/m = e'0(I,,, - Q ')e0/m.

It can be shown (see appendix section A.3) that (I,,, - Q ) is a positive definite
matrix. Thus e'(Im - Q - )e0/m is always positive which implies that

E(e'0e0/ni) > E(e'Q 'e0/rn)

The root mean squared errOr of forecast, which is the square root of e'e0/m,

should thus be expected to exceed the standard error of estimate of the fitted
equation. Intuitively, this result is due to the fact that the variance of the forecast

error arises not only from the residual variance, r2, but also from the discrepancy

between b and fi. The proper predictive test involves the ratio

e'0Q 'e0/?n e'o(Im + X0S 'X'0) te/m

e'e/(T - K) e'c/(T - K)

which "corrects" for the component of the prediction error due to imprecision in
the estimation of/3, and is distributed as (central) F with in and (T - K) degrees-
of-freedom, if the structure is unchanged [40].

It is interesting that this predictive testing procedure can be generalized to the

situation in which the reduced form of a linear simultaneous equations model is

used to forecast m new observations on each of G endogenous variables. We make

the following assumptions:
the predetermined variables are non-stochastic,
the reduced form error terms are Normally distributed, serially inde-
pendent, but contemporaneously dependent with contemporaneous co-
variance matrix denoted by Z.
the reduced form parameters are estimated by ordinary least squares.
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The covariance matrix Z is estimated by Z with typical element e'r,./(T - K)where e is the vector of residuals from the reduced form equation correspondingto the ith endogenous variable, e is the residual vector corresponding to the
reduced form equation of the jth endogenous variable, and K is the tiumber of
predetermined variables (the same, of course, in all G reduced form equations).Now define e as an (mG x I) vector of forecast errors, where the first in elements
correspond to the first endogenous variable, the second in elements correspond tothe second endogenous variable, and so on. We show in appendix section A.3 thatthe statistic

(eg)'[.Z-' ® (1ni + X0S 'Xy

where 0 represents the Kronecker product, is distributed as (central) F with mGand (T - K - G + I) degrees-of-frcedo if the structure is unchanged. It isobvious that for G = I the expression in (12) collapses to the single equation statis-tic given in (1 l).°'
The assumption of non-stochastic predetermined variables can be relaxed intwo ways. lithe predetermined variables are stochastic but fully independent ofthe reduced form error terms, then the test-statistic given in (12) is appropriatefor an F-test conditional on hot/i X and X0. More interesting is the case of pre-determined variables which include lagged endogenous variables. Suppose wemake a series of in one-period forecasts, that is, always using actual values for the

lagged endogenous variables. It is then possible to consider the forecasts to beconditional on the observed matrix X0. even though X0 contains lagged endo-
genous variables. In this case, 1j'Tis larse (the size ofn: does not matter)

(e)'[Z ' ® (I,,, + X0S- 'X)- '](e')
can be considered to have an approximate chi-square distribution with mGdegrccs-of-freeo if the structure is unchanged (see Appendix section A.3).2°Unfortunately, wedo not at this tinie know of any analogous statistical test forasequence of dynamic forecasts in which the model generates its own lagged
endogenous variables. We conclude this section by observing that if the modelpasses its predictive test evaluation, the us saved observations, .should then pre-sumably (but see footnote 10) be incorporated into the data set to reestimate themodel on all (T + in) observations, lithe model fails, then, of course, it's "back tothe drawing board."

'
Except for a recursive model, it makes little sense to assume that I is diagonal, for each reducedform ci ror term is. in general, a linear combinat ion of all the structural error terms On the other hand,if we consider the set of G equations to be 'seemingly unrelated regressions:' Z might be diagonalin which case (12) can be simplified to

(' j'ei,, + X0S 'X' - K - G + 1)
t't' ! -- K G(T - K)

where e0 is the set of in forecast errors corresponding to the ith dependent variable. In this case, thetest-statistic is proportional to the sum of the single-equation test-statistics as given in (II).20
The statistic in (12) yieldsa small sample test and would be proportional to a 2 if I were knownThe F distribution arises because I has been used as a Wishart-distribuled estimator of Z In equation(13), which is only approximately valid for large samples, no such correction is appropriate If .Zitself were in(13)thestatjstic would still be onlyanapproximatey. and since lisa consistent estimatorof Z. the same should hold for the statistic containing Z.
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IV. PARAMETRIC EVALUAI'ION: SUBSEQUFNTT o Moiu. RELEASE

In this section we present a brief set ofconiments re!ated to the evaluation of
econometric models which arc already at an operating stage. This section is quite
brief for two primary reasons. First, the procedures discussed in this section depend
on a sufficiently strong axiomatization to permit statistical testing in the familiar
classical sense; there is not a great deal of scope for discussion here because our
current knowledge is not terribly extensive. Secondly, much of what there is to say
can be said by referring the reader back to discussions already presented in the
previous section.

Availability oja Small Data Set

Here we have reference to the continual flow of new data which, in the case
of time series models, accrues a point at a time. Existing models can be checked
against small sets of new data very frequently. Indeed, most of the operating macro
forecasting models are subjected to a 'residual analysis" check at least once per
calendar quarter as new national income account data are issued by the govern-
ment. These and other models, however, could in principle be put through a
regularly scheduled predictive testing procedure along the lines discussed in
section III, part (c). The only differences lie in the fact that the test procedure would
be conducted on a data set which, obviously, could not have been incorporated
into the original sample. Such predictive testing is especially valuable because it
involves data successively further separated from the sample data used in the
initial specification of the model.

A clearly useful procedure would be to incorporate each new data set into the
model's estimation sample each time a predictive test is passe.2' Most model-
builders stop far short of such a procedure and re-estimate, indeed re-build, their
models on a much looser schedule. It is not quite so obvious whether failure to
pass a given predictive test, based on a small data set, should be grounds for
immediate rejection of a model, for a number of reasons. Newly released data are
frequently subject to substantial subsequent revision; it may be the new data
which have failed the test, not the model. Small data sets can be heavily dominated
by unique events which are outside the model's specified structure. Such circum-
stances have to he recognized as a limitation of the model, not as an indication that
those processes which are represented within the model have been proven to be
inadequately specified.

Availability oja Large Data Set

Some econometric models are constructed in order to test hypotheses, not to
be in continual use as forecasting or policy-analysis models. In such cases, they
may well lie dormant over periods of time long enough for substantial new bodies
of data to emerge. In the case of cross-section models, large sets of new data con-
tinually appear or can be obtained. In these circumstances it is possible to use the
new data set, by itself, to re-estimate the model. This, of course, puts the model-
builder (or someone else, for that matter) into the position of being able to conduct

21 Ray Fair, for example, is one of the few model operators who actually re-estimates his model
each quarter. See [22].
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a rather powerful test ofstructural change. Economists are quite familiar with theuse of the analysis of variance test discussed by Gregory ('how [9] for this situa-tion. Here, especially, it would be useful if the series-tests on successively morerestrictive nested hypotheses22 were to become operational.
The predictive tests as discussed above are not, of course, limited in applica-tion to small data sels and are therefore alternatives to the Chow test. The latter,however, is a more powerful test when the new data set is large enough to be usedby itself to re-estimate the model. Indeed, the Chow test is the classical likelihoodratio test for this situation.23

V. NON-PARAMETRIC EVALUATION
In view of the nature of the preceding discussion, it is useful to remind thereader once again that no pejorative intent is to be inferred from our use of theterm non-parametric evaluation, or its connection with the process of SherlockHolmes inference which we identified earlier. Indeed, we firmly believe that theneed for somewhat

descriptive kinds of evaluation procedures points as much tothe richness of the areas of application ofeconometric models as it does to anyinability of economists to put forth a strong axiomatization for their models. Thespirit of our discussion here may be stated as follows. In the current state of ourknowledge and analytical needs, to concentrate our attention solely on proving ordisproving the "truth" of an econometric model is to choose an activity virtuallyguaranteed to suppress the major benefits which can flow from the proper use ofeconometric models. 1-laying constructed the best models of whichwe arecapable,24we ought to concern ourselves directly with whether or not particular models canbe considered to be reliable tools for particular uses, regardless of the strictfaithfulness of their specification.
In this context, "validation" becomes a problem-dependent or decision-dependent process, differing from case to case as the proposed use of the modelunder consideration changes. Thus a particular model may be validated for onepurpose and not for another. In each case the process of validation is designed toanswer the question: Is this model fulfilling the stated purpose? We can then speakof the evaluation ol' these models as the process of attempting to validate them fora series of purposes.25

Thus the motivation of model-builders or users becomesdirectly relevant to the evaluation of the models
themselves. The "success" of amodel can then be measured by the extent to which it enables its user to decreasethe frequency and consequences ofwrong decisions. As Zarnowitz [55] has pointed

22
See section III. part U').23
The Chow test is a fixed sample F-test based on the same strict axiomatization as the predictive

test discussed in section III, part (c). We have not here concerned ourselves with generalizations in the
direction of lagged dependent variables. reduced-forms vs. structural models, and so on. Presumably
this could be done along the lines of our previous discussions,

with substantial benefits accruing to
the process ofeconometric model evaluation.And while continuing the search for ever closer approximations

to economic reality.Howrey et. at. [36] have pointed out that the method of estimation itself may also be partially
a function of the use to which the model is to he put. The

evaluation of any model should, of course,
include an evaluation of the estimating

procedures used. We do not comment on this aspect of the
evaluation process here. For an interesting

discussion of this issue, see Howry [36).
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out, however, the full application ofeven this more limited goalstil! poses very high
informational requirements, namely : (i) the errors niust he identifiable, (ii) the
preferences of the decision maker and the constraints tinder which he operates
must be available, (iii) the cost of providing the model must he ascertained. Large
macroeconometric models, for example, are frequently used for both forecasting
and policy analysis. En the role ola forecasting instrument, a model's usefulness is
directly related to the accuracy of its ex ante forecasts. In the case of the policy
analysis role, the main criterion is how well the model performs with respect to
conditional forecasts based on particular configurations of policy options. In
this case, especially, the user of the model typically possesses some--at least quali-
tative---knowledge about the policy maker's preferences concerning growth rates,
inflation, unemployment, and so on. Such knowledge provides a natural set of
criteria by which to judge the model's adequacy as a tool of policy analysis.26

But even here it is dangerous to polarize the evaluation too strongly onto
specific use-oriented criteria. Our tests or evaluation procedures should initially
at leastcenter on the ability of the model to generate "historical" simulations
which conform to the actual data. These simulations might be either deterministic
or stochastic, and either static (one period) or dynamic (multi-period) in nature.
A minimal requirement would involve a broad consistency of the data generated
by a deterministic single-period simulation with the data from the actual historical
record (both within and outside the sample period).27

However, even if a model "passed" a more demanding test of its ability to
"track" the historical record (e.g., a deterministic multi-period historical simula-
tion), economists would normally also want to investigate whether or not the
model responded to various types of stimuli in the fashion anticipated or suggested
by economic theory or independent empirical observation. Quite aside from the
individual hypotheses underlying particular equations in the system, economists
have certain (not entirely independent) "reduced Jorm" hypotheses to which they
would demand "acceptable" models to conform. That is, as a profession we seem
to have developed some more or less vague ideas about the magnitudes of various
impact. dynamic and steady-state multipliers as well as some prior notions about
other dynamic characteristics that the model "should" exhibit. Despite 1-Iaavelmo's
early warning [27], however, we have, at least until the recent work of Howrey [34],
failed to realize just how difficult such tests are to design and carry out. This set
of issues was finally confronted again at a recent N BER conference concerned with
whether or not an existing set of models adequately reproduced the cyclical swings
observed in our economic system.23 It is difficult to catalogue what seems to be a

26Thus, a model which accurately predicts the employment effects of alternative tax policies may
be considered "successful" even if its prediction of the composition of GNP is poor by the standards
for other uses of a model.

27 Especially, perhaps. in the simulation of historical episodes which involve policy changes or
initial conditions relevant to current interests and decisions It should he emphasized. however, that
consistency of the data generated by a deterministic multi-period simulation with historical data is
in general too strong a requirement. Howrey and Kalejian [35] have shown that under certain cir-
cumstances the dynamic deterministic simulation path of a correctly specified non-linear model may
differ substantially from the historical time path.

28Confercnce on Research in Income and Wealth, Harvard University. November 14IS, 1969
For a summary introduction to these issues as they arose at this conference see Hickman [30].
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minimal set of demands of this sort as needs and requirements vary according tothe preferences and prejudices of the researcher and the actual needs of the user.In any case, the constraints imposed by these demands are, given the current stateof knowledge, not overly stringent. Even if we consider the case of the governmentexpenditure multiplierwhere a relatively large amount ofevidence has accumu-lated, "acceptable'' estimates of its magnitude (both impact and steady state) varywidely among different "accepted" models of the U.S. economy.
We should also briefly consider whether in all types of experiments the simu-lated data should be generated by stochastic or non-stochastic simulation proce-dures. Certainly stochastic simulation, if we have the necessary extra information(in practice we often ignore the problem of obtaining good estimates of thevariance-covariance matrix of the disturbance process), vill yield a more informa-tive characterization of the model being used and thus increase the quality of theevaluation procedure. Further, if the model is non-linear, and most macro-econometric models are these days, then the reduced form of the model cannot beinfeired from the results of a non-stochastic

solution [35]. That is. the applicationof non-stochastic simulation procedures yields results that should be expected todiffer from those implied by the properties of the actual reduced form of the model.Although some preliminary experiments with the Wharton model suggested thatthe differences were not large, the results of the more extensive multi-model studyby Haitovsky and Wallace [29] suggest a strong contrary conclusion regardingthe ability of non-stochastic simulations to represent the reduced form propertiesof existing non-linear models.
The evaluation of the predictive ability of a model is essentially a goodness-of-fit problem. Because the statistical techniques available for this purposenormally require a strong axiomatization of the structure, econometric modelbuilders have often found themselves restricted to simplegraphical techniques (thefit "looks good") or simple summary measures (root mean square error, Theil'sU-Statistic..., etc.),29 of the performance of certain key variables. In a recentpaper, Haitovsky and Treyz [28] have proposed an interesting descriptivedecomposition of the forecast error for an endogenous variable in a large econo-metric model. The decomposition identifies error components involving: (a) thestructural equation explaining the variable in question, (b) the rest of the esti-mated structural system, (c) incorrect values of lagged endogenous variables(in the case of dynamic simulations), (d) incorrect guesses about exogenousvariables (in the case of an ex ante forecast), and (e) failure to make serial correla-tion "adjustments" for observed errors. Some attention has also been given to thedevelopment of a statistic analogous to the single-equation

R2. to be used to testthe hypothesis that fi = 0, where fi is the coefficient vector of the system of equa-tions under consideration. An interesting and complete discussion of this issue canbe found in Dhrymes [17; Ch. 5]. Dhrymes defines such a statistic, but finds thatit is dependent on the unknown covariance parameters of the joint distribution ofthe error terms of the system. Dhrymes [17] also derives an alternate test procedure
29 Howrey et. at. [36] have recently suggested some difficulty with the root mean square error

statistic (where small sample properties are unknown). particularly
when used to compare structuralversus autoregressive models, or sample versus post sample petformance of a given model. See also

our section III, part (h), and the discussion of Theil's U-Statistic in Jorgenson et. at. [39].
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regarding the goodness-of-fit of the reduced form model (the fraction of the
generalized variance of the jointly dependent variables explained by the reduced
form), but this procedure involves the restriction that the number of variables in
the model (endogenous plus predetermined) be less than the total number of
observationsa restriction not generally fulfilled by large econometric models.
The trace correlation statistic suggested by Flooper (based on the estimates of the
canonical correlations) is closely related to the statistic discussed by Dhrymes,
but its distribution seems quite intractablealthough Hooper has given an
approximate expression for the asymptotic variance of the statistic [32]. Perhaps
this is an area of research that holds some promise.

Many interesting applications with large econometric models involve what is
known as a "multiple response problem." That is we arc interested in more than
one characterization of the outcome of the experiment. This raises the question of
whether to treat the outcome as one of many experiments each with a single
response, or to combine all the responses (endogenous variables of interest) into a
single response. This latter procedure, of course, involves the explicit formulation
of the utility function of the user--a difficult situation.30

Other techniques which are in common use in the evaluation of a model's
predictive performance are regression analysis and spectral analysis. In the former
case we simply regress actual values on the predicted values of a series and test
whether the resulting equations have zero intercepts and slopes not significantly
different from unity (see Cohen and Cyert [12] and 1-lymans [37]). This general
technique has also been used extensively by Theil [50], but as usual he has extended
it and forced it to yield additional information. By regressing predicted values on
actual values and actual values lagged one period, Theil is also able to investigate
whether or not predicted changes tend to be biased toward recent actual changes.
Theil's inequality coefficient and its decomposition into elements of bias, variance
and covariance is very closely related to this type of analysis (although it refers to
a regression of actual changes on predicted changes) and offers a great deal more
information including some information on the tendency of the model to make
turning point errors. Mincer and Zarnowitz [43] have povided some further
development of Theil's procedure and have also suggested an additional measure
of forecast error: the relative mean squared error. The latter is particularly
interesting by virtue of its attempt to compare the costs and benefits of forecasts
derived from alternative models of the economic process.

Spectral (cross-spectral) analysis is a statistical technique that can be used to
obtain a frequency decomposition of the variance (covariance) of a univariate
(bivariate) stochastic process. There are several ways in which spectrum analytic
techniques might be used in the evaluation of econometric models. Naylor et al.
[44] suggest that the spectra estimated from simulation data be compared with
the spectra estimated directly from actual data. Howrey [34] has pointed out that
for linear models the implied spectrum can be derived directly from the model and
the stochastic simulation of the model is therefore not needed to make this com-
parison. Another application of spectral techniques is to test estimates of the

For an interesting attempt to solve the multiple response problem see Fromm and Taubman
[23] and Theil [491, [50].
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structural or reduced-form disturbances for seria' correlation, an important step
in the Box-Jenkins modeling procedure [8].'

Cross-spectral analysis can also be used to investigate the relationship
between predicted and actual values. That is, the Theil procedures can be extended
to the frequency domain using cross-spectral analysis. This permits statistical
testing of some more general hypotheses about the relationship of actual and
predicted values.

An important advantage of spectral analysis is that it is a nonpara,netrjc
approach to data analysis. Thus it is a particularly useful device in situations
involving a weak axiomatization of the relationships under investigation. In addi-
tion, spectral methods do not depend on the statistical independence of the
generated data points; they require only that the process generating the data be
stationary to the second order. The significance tests that are available, however,
depend on the assumption of Normality of the underlying process or on a sample
size that is large enough that a form of the central limit theorem can he invoked.
What little empirical experience has been accumulated in connection with the
use of spectral analysis to investigate econometric models suggests that the tech-
nique can he used quite effectively to investigate certain dynamic properties of
econometric models.

Byway oftieing up the strands of this necessarily broad discussion, we should
like to sketch, in outline form, the range of descriptive measures which have been
found to yield useful insights into the performance and realiability characteristics
of large scale econometric models. While some of these measures can be subjected
to classical statistical tests, many areat this stage of our knowledgemereiy
descriptive and geared to specialized model uses. A large number of these proce-dures can be traced to the writings of Zarnowit;' and his co-workers [53], [54],
[56], [57], Evans, Haitovsky and Treyz [21], Box and Jenkins [8], and Theil [50].
An Outline of Non_Pw'a,nt'trj. Measures

A. Single- Variable Measures
Mean forecast error (changes and !vels)
Mean absolute forecast error (changes and levels)
Mean squared error (changes and levels)
Any of the above relative to

the level or variability of the variable being predicted
a measure of "acceptable" forecast error for alternative forecasting
needs and horizons

B. Tracking Measures
1. Number of turning points missed
2 Number of turning points falsely predicted

If one is primarily interested in forecasting (as opposed to explaining the behavior of theeconomic system) the conceptual simplicity of the Box-Jenkins procedure (essentially a battery ofsophisticated smoothing echniques) has some appeal. This is particularly so if there is only onevariable of interest as these procedures do not treat the output variables as being "iied" together ina system of interdependent relationships
Thus, forecasts of output. employment and prices, for example,need have no particular relatIonship to each other. Further, since the procedures are void of economictheory, they cannot, of course, be used to test hypotheses. Currently

research is being done on develop-ing procedures for building more information and constraints (exogenous and policy variables) intothese models [8] [20] L45]. These investigations, if successful. may prove fruitful io ec000rnetricians.
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Number of under- or overpredictions
Rank corelation of predicted and actual chances (within a subset of

"important'' actual movements)
Various tests of randomness

of directional predictions
of predicted turning points

C. Error Decompositions
Bias and variance of forecast error
Errors in start-up position vs. errors in the predicted changes
Identification of model subsectors transmitting errors to other sectors

D. Comparative Errors
Comparison with various "naive" forecasts32
Comparison with "judgmental," "consensus," or other non-econometric
forecasts
Comparison with other econometric forecasts

E. C cheat and Dvuwnic Properties
I. Impact and dynamic multipliers
2. Frequency response characteristics

The measures just outlined have been found to be suitable for a wide variety
of purposes, and ---surely---a user's confidence in any particular model would
grow in proportion to the number of positive results yielded by such of these
measures as seem relevant to the use in question. Several recent studies, [29], [39],
and especially the Cooper--Jorgenson study [13], have made a valuable contribu-
tion by standardizing both the period of fit and the technique of estimation across
alternative models prior to conducting inter-model comparisons. While model
builders have in some measure tended to resent such activity on the part of "out-
siders,"33 the controversy certainly shows signs ofproducing improved procedures
on all sides.

Models will be used for decision making, and their evaluation, therefore,
ought to be tied to optimization of these decisions. The question we have to ask
ourselves, then, is what series of tests and/or procedures will be sufficient to achieve
a particular level of confidence in the use of a model for a certain specified pur-
pose? What model builders have done, to date, is to catalogue the properties of
their models, concentrating on those aspects of the system which seemed useful
to them. There are two difficulties. First, model users may or may not find these
properties to be relevant to their decision making. Second, we have not yet
standardized the "list" of properties studied. A remedy for the latter situation
would be most helpful to all users, is certainly feasible, and ought to receive high
priority. The former issue is much more formidable and requires a greater degree
of cooperation and candid communication than has to date taken place between

model builders and the growing population of model users.

The procedures of Box and Jenkins [8] may be particularly powerful in helping to identify the
autoregressive procedures which would best serve as "Naive" alternatives to a structural model.

See Howrey, Klein and McCarthy [36] who present arguments regarding the controls needed

in such standardization attempts.
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APPiNi)Ix

This appendix serves to sketch some of the less familiar theoueucal results
which are the basis for statements made in the body of the paper.

A./ An Illustration of the Cux Procedure fr Non-Nested Hypotheses
Hypothesis H1:

= - in(2m) - ln 2 - - X)'(j' -
where

where

Define

= y'[I Njy, N =

N* X*(X*'X*)_ lX*'.

T
-. -[lnâ lnô]

/32 = plim ()(*'X*)- lX*'[X + U] plini 12.1* - 1 X'X
T T

on the assumption that H1 is true and that accordingly

y X + u,
u = (u1, 117, . ,T)', z,,:r = 1,2 . .} being a sequence of identically and inde-pendently distributed random variables with mean zero and variance 52, In thepreceding it is assumed that the x's are either a sequence of fixed constants or ifthey are random variables they are distributed independently of u.
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3' = (Yi '32 '-'''Yr), A' = (c, x), x = (x1 ...,X T),
zrr(1,2) e=(1,l,.,,, 1)'.

Hypothesis Hg:

Lg(v: /3) - In (2) - ln 52 - X*fl)y X*fl)

= (e, .v*), .'& '* *= ...... fl, /3 = (/30, Pu-

N*]y

Then



We observe that, under H1,

= [ln(2ir) + I] - lnô

ln(2H lna2_.
Because is a consistent estimator of c and so is u'u/T, we conclude that

plim[Lj(2) - L1()] = 0.

Further, since plim [Lg([i)1H1] = Lg(fl),

plim [Lg(i) - Lg(tc)] = 0.

Moreover,

L8(fl1) = - In (2ir) In 72
(Y - X*f1)(y - X*1Jj

2a2 T

But we see that

plim (y - - X*f) = a2 + plim 1X'(I - N*)X].
L

plim-{L1() - Lg(fl)] = -plim [X'(I - N*)X]

In general we would expect strict inequality except for special x-sequences.
Turning now to the test statistic (l/T)S- (as defined in the text, supra), we

obtain

-s lii 2 i 2i Ii -2 1 .2
f - - 2L' 7f - ifl a 2 LIIfl IT1 -- ifl

Under H1. (Tô/a2) is (central) chi-square with (T - 2) degrees of freedom, and

(Tâ/a2) is non-central chi-square with (T - 2) degrees of freedom. Thus, in

principle, this expectation may be carried out. in general, it will involve the un-

known parameter and for purposes of the test we would have to insert the

maximum likelihood estimate (MLE) , in its stead. Further, such tests require

specification of the distribution of the data under consideration and the deriva-

tion of the MLE under the two alternatives.

A.2 The Ajtchison-Silrey Test

I. J. and A have the sonic asymptotic distr,butwn

(Rb - ry(RSR'Y'(Rh - r)(T K)
T



while

[a2 1
will have a zero probabilty limit if

[a2
pJim

Hence

But

A = (Rb - rY(RS 'R) '(Rb - r).

[2
=AI-- 1[(f 2

Since A has an asymptotic distribution,

K

T
I] = (J. - A)

ía2 K 1 H11tfl

= (1 - I) 0,

since a2 and ,92
are both consistent estimators of a2. Hence, plim (J.3 - A) = 0,and since A has an asymptotic distribution this condition implies that J3 has thesame asymptotic distribution as A.

Q.E.D.

1. To2 is not independent ofh

Ta =
= Y - X/

where
= (M + N)c.

M = I - XS'X', idempotent of rank (T K),
N XS 'R'(RS 'R') 'RS 'X', idempotent of rank J, and thereforeM + N is idempotent of rank (T - K + J).

It follows that

T2 e'(M + Nj

b = S 1X'Y = /3 -- S 'X'E,

hence, b - fi = s 'x's.
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Thus (b fi) is a linear form in the Normally distributed vector , and Ta2 is an
idempotent quadratic form in . Independence of the linear and quadratic forms
requires S XM + N) = 0. But

S 1X'(M + N) = S 1(X'M 4- X'N)

= S '[X'(l - XS 'S) + X(XS 'R(RS 'R') RS 'X')]
S i[O + R'(RS 1R') 'RS 'X']

=SR'(RS'R''RS'X' 0.

Flence b and TO2 are not independent. QED

A.3 Predictive Testing

l. (1m Q - ') is a positive definite matrix

Q 1m + X0S 'X.
Clearly, 1,,, is positive definite. Q is positive definite if X0S 'X'Ø is positive

definite. Let z be any nonzero rn-dimensional vector, then z'X05 'X'0z =
(z'X0)S t(z'X0) .> 0, by virtue of S ' being positive definite.

Since Q is positive definite,so is its inverse,thuslm and are positive definite
and we can apply the theorem given in [17; pp. 58 1-583] which implies that
(1m - Q - ) will be positive definite if and only if the roots of Q - are smaller than
unity.

But the roots of Q' are the inverses of the roots of Q. Denote a root of Q by
(1 ± c, so that

o = EQ - (1 + m]Z

[tm 4 X0S 1X'0 - (1

= [X0S'X'0 - cilm]z.

Thus c is a root of X0S 'X and must be positive since X0S 'X is positive
definite. But x > 0 implies (1 + ) > 1, which implies (I + )' < I.

Q.E.D.
2. The Distribution of

(T - K - G -f- 1)
(e)'[2 ' ® (I + X0S 'X) '](e)

InG(T - K)

The vector of forecast errors, say CO,g, corresponding to the gth endogenous
variable is given by

CO,g = Xo(bg flg)

where

/ is the vector of reduced form coefficients corresponding to the gth
endogenous variable.
bg is the Least Squares estimator of fig.
c is the gth reduced form disturbance vector in the forecast period.
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Then

/x0 0 0
-

[1 /
p02) 0 X0 0 h2 - fl2

coG 0 \ h fiG
/or

(eg) Z0(b - fi) + ().
Conditional on X and X0, e is clearly normally distributed with mean zero andthe following covariance matrix.

E[(eg)(eg)]X, X0] = Z0[cov (b -- fl)]Z + coy
where

(I) cov(h This the covariance matrix of (b fl)condjtjonalon Xand X0;
cov(b-flj. Z®S',

cov() is the covarjance matrix of(e);

cov(e)= Z®I,
and

Z is the contemporaneous covariance matrix oUr.
Combining terms above yields

coy (e) E{(e)(e)'JX X0]

=Z0(Z®S-')Z'+ Z®!rn
= I® x0s 'X) + I® 1rn

1 0 Urn + X0S'X)
l'hus, (e) - 1 [0, Z ® ('rn + X0S 'X)J,

which implies that

(e[ 1 ® (I, + X0S 'X 1](e)
is distributed as

Now Z, as defined in the body of the paper, is based only on the residualsin the period of fit which, it can be shown, are independent ofe.It follows [4,pp. 105-107, 181-183] that
(T - K)Z is a Wishart distributed matrix, independent of (e), with(T - K) degreesoffree0 and

(eg)'[2 '
0 Urn + X0S 'X 1](eG)(T_K_G+l)

niG(T- K)
is distributed as FrnG(T 1)
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Then

/xo 0 o \ ii - /?\
/ I

e02 0 X0 0 b2_fl2
+

0 Xo! hGi/G,, LOG
or

(e) = Z0(b - /1) + ().
Conditional on X and X0, e is clearly normally distributed with mean zero andthe following covariance matrix.

E[fr)(e)'jX, X0] = Z0[cov (b - ]Z + coy
where

coy (b fi) is the covariance matrix of(b - I?) conditional on X and X0;
cov(h-fl,) Z®s-',

cov(e) is the covariance matrix of frg);

cov(e) = Z ® 'rn,
and

Z is the contemporaneous coval-jance matrix of&
Combining terms above yields

coy (eg) = E[(eg)(e)'x, X0]

=Z0(Z®S-')z Z'®J
= Z ® XçjS 'X + Z ®

'm

= Z ® (',n + X0S 'X).
Thus, (e;) [0, Z ® (I,,, + X0S 'X)],

which implies that

is distributed as y.
® Urn + X0S 'xy 'j()

in the period of fit which, it can be shown, are independent ofeg.It follows [4;pp. 105-107, 181-183] that

Now Z, as defined in the body of the paper, is based only on the residuals

(T K)2' is a Wishart distributed matrix, independent of (e), with(T - K) degrees.offre0 and

(eg)'[2 ' ® (1m + XQS 'X '](eI_:_.tj
'nG(T K)

is distrIbuted as F,,,G.(TK_Gf
I.
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3. The Approximate Distribution of (e)'[2' ® (I,, + X0S 'X '](eg)for
Large 1for Static Forecasting with Lagged Endogenous Varkthles,

Again (eu) = Z0(b - fi) -i- (), but Z0 contains lagged endogenous variables.
Since b can be written as b = fi + (Z'Z) 1Z,eG, where a° and Z are the fit

period analogues of (ag) and Z0 respectively, it follows that

(e - c) = ZO(Z'Z) 'Z'c

= Z0(T 'Z'Zy 'T 'Z'a.
assuming that the observed moment matrix of the predetermined variables in the
fit period converges in probability to their population moments, i.e., plim (T 'Z'Z)
exists and is non-zero, then

I r fGpiim i ' e0 --

= Z0pliin(TZ'Zy' plim,.J(T'Z'r).
But plim ,fi(T- 'Z'E) is asymptotically distributed as Normal with mean zero
and covariance matrix .Z ® M, where M is the matrix of population moments
of the predetermined variables. (See [51; p. 487].) Further, by the definition of Z,

plim (T 'Z'Z) - 'GK ® (M 1

where 'GK is a (GK x GK) identity matrix. Thus, JT(e - ag), conditional on
Z0. is asymptotically distributed as .i(O, H), where

I-I = Z0[I ® (M t](Z ® Mt)[IGK ® (M ]Z0

= Z®X0(My'X.
For large T, it should therefore be approximately true that

(e - a) is approxtmately ..4'(O, T 'H).'

Since eg and c are independent (e depending only on 's prior to the fit period),

e is approximately .A [0, (T 'H) + (Z ® Im)],

for large T. But

(T'H) + (Z 0 I,,,) = (T'Z ® Xo(Mj'Xh) + (Z 0 'm)
= Z ® EL + T 'X0(M

= .Z 0 E1m + X0(TM 'XJ.

[-lence, for large T.

(eg)'[Z 1 ® j,, + X(TM) 'X'0) '](e)

is approximately LrnG

Since

plim.Z' =

- r) has of course a degenerate limiting distribution. We are arguing here that as Tincreases
(e - r) "degenerates" through the normal limiting distribution of 1i(e -
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and plim (T 'S) = plini (T 'X'X) = M, the above statistic can be consistently
estimated by

(e)'[ 0 (1,,, + X0S 'X tJfr)

which, for large T, is also approximately y0.
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