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A MONTE CARLO STUDY OF ALTERNATIVE ESTIMATES 
OF THE COBB-DOUGLAS PRODUCTION FUNCTION1 

BY J. KMENTA AND M. E. JOSEPH 

A Monte Carlo experiment is carried out to examine the small sample 
properties of ordinary least squares, indirect least squares, Hoch's, and 
Klein's estimates of the parameters of the Cobb-Douglas production function. 
A perfectly competitive model of firms irn a single industry is considered in 
nine situations which differ in the behavior of the disturbances, the variabili- 
ty of inputs, and the position of the average firm. In each case 200 samples 
of size 20 anld 200 samples of size 100 were obtained to approximate the 
sampling distribution of the various estimators. 

1. INTRODUCTION 

THE CONDITIONS of profit maximization and the specification of the production 
function fully determine the equilibrium position of a firm that operates under 
conditions of perfect competition in the product market, obtains its inputs at 
fixed prices, and experiences decreasing returns to scale. If all the relation- 
ships hold exactly, all firms in the industry will be producing identical 
quantities of output and will be employing identical quantities of inputs, 
providing the inputs are freely variable and substitutable.2 Variations from 
firm to firm will exist if one or more of the inputs are fixed; in this case, the 
profit maximizing quantities of output and of inputs will depend on the 
amount of the fixed input or inputs in each firm. If, however, the production 
function as well as the profit-maximizing decision equations contain stochas- 
tic disturbances, differences in actual outputs and inputs of firms will appear 
even in the absence of fixed factors of production. In this case a solution of 
the system of equations for the quantities of variable inputs and of output 
of any firm shows that each quantity is a function of all disturbances in the 
system. Consequently, the inputs are not independent of the disturbance 
in the production function, and single-equation least-squares estimates of 
the production function parameters based on cross-sectional data will be, in 
general, biased and inconsistent. This was first noted in a classical article by 
Marschak and Andrews [5] in 1944. Alternative methods of estimation have 
since been proposed; these include Klein's, Hoch's, and the indirect least- 
squares procedure. With the exception of the first, no small sample proper- 
ties of the suggested estimators have been derived. This paper represents 

EDITORS' NOTE: We regret to record that Mr. M. E. Joseph is now deceased and his 
authorship of the final version of this article is posthumous. 

I This project was supported by a University of Sydney Research Grant. 
2 A uniform technology throughout the industry is assumed. 
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an attempt at describing the behavior of these estimators in small samples 
in a number of specific cases by means of a Monte Carlo experiment. 

2. MODELS 

2.1. Common properties. The industry is envisaged as being perfectly 
competitive with all firms producing a homogeneous product and employing 
two homogeneous and substitutable inputs. The price received for the product 
on the market is 1 unit, and the prices paid for the first and second inputs 
are 5 and 2 units, respectively. The production function of the ith firm is 
given by 

(1) xo= 0.9796 + 0.5 xii + 0.4 X2i + Ui, 

where xoi is the logarithm3 of the quantity of output, x11 is the logarithm of 
the quantity of input 1, X2? is the logarithm of the quantity of input 2, and ui 
is the "technical" disturbance which is normally and independently distri- 
buted with zero mean and constant variance. In the rest of the paper we 
shall refer to the coefficient attached to xi as a,, and to that attached to 
x2 as a2. These are the input elasticities of output of Cobb-Douglas fame. 

2.2. Models A, B, C, D and E. 
In the first five models both inputs are variable, and the average firm4 is 

optimal. The first-order conditions for profit maximization lead to the 
following decision equations for the ith firm, after allowing for the presence 
of disturbances: 

(2) Xii 1.000 + xoi + vi , 

(3) X2? =-0.699 + XOi + V2i . 

Here vii and v2j are the "economic" disturbances expected to be present in 
the decision process ;5 they are normally and independently distributed with 
zero means and constant variances.6 The optimal firm uses 10 units of input 
1, 20 units of input 2, and produces 100 units of output. The models are 
different only with respect to the behavior of the disturbances Ui, vii, and V2i. 

The detailed specifications are given in Table I. 

3 All logarithms used in the text of this paper are common logarithms. 
4 "Average" refers to the population mean. 
5 The terms "technical" and "economic" disturbance were coined by Marschak and 

Andrews. 
6 The condition of independence refers to firms, i.e., E(vlivl) = 0 and E(v20v21) = 0 

for all i :A j. 
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TABLE I 
SPECIFICATION OF DISTURBANCES IN MODELS A, B, C, D, AND E* 

A B C D E 

E(U2) .00040 .00020 .00040 .00040 .00020 
E (v2) .00040 .00100 .00040 .00040 .00100 
E(v2) .00040 .00100 .00040 .00040 .00100 
E(uvi) 0 0 0 .00040(V/.8) .00040 
E(uv2) 0 0 0 .00040(V/.8) .00040 
E(vIv2) 0 0 .00032 .00032 .00080 

Correlation 
coefficient of: 
uandV1 0 0 0 +?V.8 +-V.8 
u and V2 0 0 0 + V.8 +V.8 
vi and V2 0 0 +.8 +.8 +.8 

* The relative values of E(U2), E(v2) and E(v2) conform to some of those selected by Hoch in [2, p. 574]. 

2.3. Models F and G. 
Models F and G represent a situation where both inputs are variable but 

the average firm is not in an optimal position. The decision equations of the 
ith firm are 

(4) Xli = -0.97178 + xoi + vi, 

(5) X2 - 0.74133 + Xoi + V2U. 

The disturbances vli and v2j again have zero means and constant variances 
and are normally and independently distributed. The average firm uses 
10 units of input 1, 17.1 units of input 2, and its level of output is 93.7 units. 
Such a situation could arise in the case where the average firm, after acquir- 
.ing the desired quantity of input 1, has been prevented from obtaining the 
optimum quantity of input 2. The distinguishing features of the two models 
are shown in Table II. 

TABLE II 
SPECIFICATION OF DISTURBANCES IN MODELS F AND G 

F G 

E(u2) 0.00040 0.00020 
E(v2) 0.00040 0.00100 
E(v2) 0.00040 0.00100 
E(uvi) 0.00000 0.00000 
E(uv2) 0.00000 0.00000 
E(vi v2) 0.00000 0.00000 
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TABLE III 

PREDETERMINED QUANTITIES OF INPUT 2 IN MODELS H AND I 

Number of firms 
Of Xt in samples of size 

input 2 20 100 

16.60 1.22 0 1 
18.20 1.26 1 6 
19.95 1.30 5 24 
21.87 1.34 8 38 
23.98 1.38 5 24 
26.30 1.42 1 6 
28.84 1.46 0 1 

2.4. Models H and I. 
In these two models we consider a case where one of the inputs, input 2, is 

predetermined. The predetermined quantities of input 2 are given in Table III. 
The decision equation for input 1 of the ith firm is given by equation (2). The 
predetermined quantities of input 2 are, of course, exact; and the second 
decision equation containing V2 disappears from the system. The quantity of 
input 1 used and of output produced by each firm will depend on the quantity 
of input 2 as well as on the disturbances X and vi. The average firm, which 
uses 21.87 units of input 2, will be employing 10.74 units of input 1 and 
producing 107.4 units of output.7 The differences between model H and 
model I are due to the size of the error variances as shown in Table IV. 

TABLE IV 

SPECIFICATION OF DISTURBANCES IN MODELS H AND I 

H I 

E(u2) 0.00040 0.00020 
E(v2) 0.00040 0.00100 
E(uvi) 0.00000 0.00000 

3. ALTERNATIVE METHODS OF ESTIMATION 

3.1. Hoch's estimates. 
The stimulus to the Monte Carlo study presented here came from Hoch's 

article [2] on the estimation of parameters of the Cobb-Douglas production 

7 Firms not included in the sample are envisaged as having the same distribution 
of input 2 as those which are included. A more realistic approach would be to allow 
the quantities of input 2 to vary from sample to sample. However, the conclusions 
would not be substantially affected if drawings had been made from the distributions 
corresponding exactly to the within-sample distributions or their continuous approxi- 
mations. 
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function from cross-sectional data. Hoch specified the extent of the single- 
equation least-squares bias in infinitely large samples and proposed an 
estimation procedure which removes the bias from the ordinary least 
squares estimates. In the case where the disturbances are not correlated, 
i.e., where E(uvi) = E(uv2) = E(viv2) - 0, and where both inputs are 
variable, Hoch's estimates of a, and a2 are given by 

~~=ari+ S00 Sooi SOO (6) ar = ar I + s-l + ] s (r = 1, 2), 

where a4r is the ordinary least squares estimate of ar, and Soo, Si,, and S22 are 
the estimates of the error variances E(u2), E(v2), and E(v2). The estimates of 
the error variances can be obtained from the sample moments as follows: 

Srr= Coo + Crr - 2COr, (r = 1, 2) 
Soo 

S 
- (SO/S11) - (5OO/S22) 

where Coo is the sample variance of xO, Crr is the sample variance of xr, Cor is 
the sample covariance of xo and xr, and Soo COO - d1Co1 - '2CO2. 

All variances and covariances are represented by their asymptotic values. 
Hoch suggests using moments of samples of finite size in place of the 
asymptotic values in empirical investigations. This estimation procedure is, 
in our case, applicable to models A, B, F, and G. 

When input 2 is taken as exogenously determined and the remaining 
disturbances are not correlated, i.e., E(uvl) = 0, Hoch's estimates become 

Ar Sool 5oo (7a) a, al[? +S11] - 

(7b) =2 a2[1 + . .. 

Soo is now given by Soo/[I - (Soo/Si,)]; other symbols remain unchanged. 
These estimators were used in our models H and I. 

Hoch points out, but does not elaborate, an estimation procedure for the 
situation where vi and V2 are correlated with each other but not with u, and 
both inputs are variable. The estimators in this case are 

A Soo(Snl + 522 - 2 5'2 
__ ______ 

-_S12_ 
(8) a, = ar [I + 51152252 ] Soo(Spp-512) 

11S22- 12 SS11522 - 512 
(r= 1,2;p= 1,2;p r). 
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Here S12 = Coo + C12 - Co0 - C02, where C12 is the sample covariance of 
xi and X2, and 

500 Soo (Sf2 11522) 
Soo 

S0O (Sll + 522 - 2S12) (S12 - 11S22) 

other symbols are defined as in equation (6). These estimators apply to our 
model C.8 

When interrelationships exist among the "technical" disturbance u and 
the "economic" disturbances vi and V2, Hoch's estimation method no longer 
applies, and cannot, therefore, be used in our models D and E. 

The estimators which are based on correct assumptions about the nature 
of the interrelationship among the disturbances will be referred to as 
"proper." However, in real life, the research worker is never certain about 
the nature of interrelationship among the disturbances in the population and 
usually relies on an intelligent guess. Now, it is quite conceivable that an 
incorrect guess is made, and an estimation procedure which was designed for 
a different state of the world is applied. If this happens, the question of the 
consequences of a wrong decision becomes interesting. When applying 
Hoch's estimation method, one could, for instance, assume no correlation 
among the disturbances, although, in fact, some correlation exists. The 
consequences of such an error of judgement have been traced by applying 
Hoch's estimation procedure designed for the case of uncorrelated disturb- 
ances (i.e., estimation formulas applicable to models A, B, F, and G) to the 
situation where the "economic" disturbances are correlated with each other 
but not with the "technical" disturbance (model C), and to the situation 
where all disturbances are correlated with each other (models D and E). The 
estimators based on this kind of incorrect assumption will be called "esti- 
mators for uncorrelated errors" and abbreviated by "EUE." Another error 
of judgement could be that of applying the estimation procedure designed to 
deal with a situation where the "economic" disturbances are correlated with 
each other but not with the "technical" disturbance (i.e., estimation formulas 
applicable to model C) to the case where all disturbances are correlated 
(models D and E). The use of such an incorrect assumption leads to estimators 
which we term "estimators for partly correlated errors" and abbreviate by 
"EPCE." 

8 A printing error in the text of Hoch's article resulted in an incorrect expression 
for Coo in his equation (4. 1) on page 575 of [2]. COO should equal 

D2[E Y apaqSpq + Soo + 2 E apSop] . 
p q p 
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3.2. Klein's estimates. 
The conditions of profit maximization require that, for each -input, the 

value of the marginal product should be equal to the price of input. If it is 
assumed that any departure from this equality on the part of individual 
firms is due only to the operation of the "economic" disturbances, the input 
elasticities of the Cobb-Douglas function can be estimated by 

(9) log a, -= log prr (r 1,2). n j=1 Poi Xoi 
Here Poi and Pri stand for prices,; and Xoi and Xri for quantities of output 
and of rth input of the ith firm. In perfect competition the prices are, of 
course, the same for each firm. This estimation procedure was suggested 
by Klein.9 In the price situation applicable to our models, Klein's estimates 
are given by 

(lOa) log di = 0.699 + xl x-, 

(lOb) log a2= 0.301 + -2 - 

where small letters represent logarithms of the quantity of output and of 
inputs as before.10 The procedure gives, under the stated assumptions, best 
linear unbiased and maximum likelihood estimates of log a, and log a2. 

The fundamental difference between Klein's and Hoch's estimation meth- 
ods lies in the assumption about the position of the average firm. Klein's 
estimates are based on the assumption that the average firm is optimal, 
whereas Hoch's estimates allow for the existence of a parametric restraint 
on the profit maximizing efforts of the average firm. In consequence, Klein's 
estimates become biased and inconsistent when the average firm is not op- 
timal, or when one of the inputs is predetermined.11 In the latter case the 
bias appears only with respect to the coefficient attached to the predeter- 
mined input. 

3.3. Indirect least squares estimates.12 
The logarithmic form of the Cobb-Douglas production function, extended 

by the inclusion of the "technical" disturbance, is 

xoi ao + a,xii + a2X2i + Ui 

9 Klein [3, pp. 193-196]. 
10 In our models we envisage that prices do not vary from firm to firm, and that 

they are ascertainable without errors of measurement. 
"- Unless, of course, the average firm possesses a profit maximizing optimum 

quantity of the fixed input. 
12 This method was suggested by H. Theil; see Hoch [2, p. 572, footnote 11]. Hoch's 

exposition of the method contains an error: the variable Zq should be defined as 
(Xq - Xo) and not as (xO - Xq); otherwise the conclusion reached does not follow. 
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By deducting xoi(al + a2) from both sides of (1 1) and dividing through by 
(1 - a- a2), we obtain 

(12) Xoi bo + b1zij + b2z2i + et, 

where 

Zri Xr- Xoi , 

br ar/(- a -a2) (r 1, 2), 

and 

e= u/(I - a, - a2) 

Since the profit maximizing decision equations lead to 

Xri -xoi = constant + Vri ,13 (r 1, 2), 

where Vr is the "economic" disturbance, least squares estimates of br based 
on equation (12) will be consistent as long as E(uVr) _ 0. From these we can 
obtain consistent estimates of ar 

If input 2 is fixed, we have only one decision equation, and the appropriate 
substitution leads to 

(13) Xo0 = bo + brzl + 
bOx2V 

+ et , 

where 

rb* arl(l a,) (r 1, 2), 
Zit = - Xoi, 

and 

e ui/(l - al) 

Here again, least squares estimates of br* based on equation (13) will lead to 
consistent estimates of ar providing E(uvi) = 0. 

The indirect least squares estimates, like Hoch's, are not restricted by the 
assumption that the average firm lies in an optimal position. If the profit 
maximizing efforts of the average firm are subjected to parametric re- 
straints (Xri - xOi), will still be a linear function of vr7, and the consistency 
of the estimates of ar will be preserved. 

4. ASYMPTOTIC VALUES OF THE ESTIMATORS 

Asymptotic values of each of the estimators in each of the models specified 
in Section 2 above are presented in Table V. The abbreviation O.L.S. refers 

13 The constant may include a parametric restraint on the profit maximizing efforts 
of the firm if applicable. 
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TABLE V* 

ASYMPTOTIC VALUES OF ESTIMATES OF a1 = 0.5 

Model O.L.S. Hoch's Klein's I.L.S. 

Proper"* EUE** EPCE** 

A .50000 .50000 .50000 .50000 
B .50000 .50000 .50000 .50000 
C .50000 .50000 .50000 .50000 .50000 
D .50000 .50000 .50000 .50000 .50000 
E .50000 - .50000 .50000 .50000 .50000 
F .50000 .50000 .500 .53362 .50000 
G .50000 .50000 .53362 .50000 
H .75000 .50000 .50000 .50000 
I .58333 .50000 -- .50000 .50000 

ASYMPTOTIC VALUES OF ESTIMATES OF a2 = 0.4 

A .46667 .40000 .40000 .40000 
B .42857 .40000 .40000 .40000 
C .45263 .40000 -.40000 .40000 .40000 
D .45135 .44855 .44967 .40000 .44984 
E .43158 .43011 .43077 .40000 .43077 
F .46667 .40000 - .36279 .40000 
G .42857 .40000 .36279 .40000 
H .20000 .40000 .40720 .40000 
I .33333 .40000 - .40720 .40000 

* Since the computations for this table have been carried out on a desk calculator, the accuracy of the figures is 
subject to errors due to rounding. 
** For explanation of the terms see the final paragraph of Section 3.1. 

to "ordinary least squares" and I.L.S. to "indirect least squares" estimates. 
It appears that the ordinary least squares estimates are generally incon- 

sistent. The apparent consistency of ordinary least squares estimates of al 
in models A through G is due to the fact that al = 0.5 and that the variance 
of Vi is equal to the variance of v2 in our models. The particularity of this 
case can readily be seen from equations (6) and (8) and, by contrast, from 
equation (7a). 14 By using a value of al which leads to consistent least 
squares estimates, we hoped to provide a "control" of the Monte Carlo 
process. The degree of inconsistency of the ordinary least squares estimates 
of a2 is higher in models where all the disturbances have equal variances than 
in models where the "technical" disturbance has a relatively smaller variance 
compared to the variances of the "economic" disturbances. 

Hoch's estimation procedure applied to models for which it was designed 
renders estimates which are always consistent. Inconsistency appears when 

14 By substituting the asymptotic values for Hoch's estimate of a, and for the 
error variances. 
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incorrect assumptions are made about the nature of interrelationship of the 
disturbances.15 Here again, the degree of inconsistency is lower when the 
variance of u is small relative to the variances of vi and v2. 

Klein's estimates are consistent except in models where the average firm 
is not optimal or when estimating coefficients attached to fixed inputs. In- 
consistency in Klein's estimates, when it appears, is unaffected by the 
relative sizes of the error variances. 

Indirect least squares estimates are consistent except in models in which 
the "technical" disturbance is correlated with the "economic' 'disturbances.16 
In the latter case the degree of inconsistency is somewhat lower if E(u2) is 
small relative to E(v2) and E(v2). 

5. DESIGN OF THE MONTE CARLO EXPERIMENT 

The Monte Carlo results for each of the models were obtained in two 
stages. The first stage consisted of generating the random disturbances and 
calculating the corresponding values of the variables xO, xi, and X2. Samples 
of size 20 and 100 were then obtained.17 The values of the various estimators 
of the parameters and of the error variances were then computed and print- 
ed.18 A signal was built into the program to indicate whenever Hoch's con- 
dition Coo < Crs (r = 0, 1, 2; s = 1, 2) was violated. The whole process was 
repeated 200 times for each model. In the second stage a summary of the 
empirical sampling distribution was produced. This gave, for each of the 
estimates of ai and a2, a frequency distribution, sum, sum of squares, and 
sum of cubes. The sums only of the estimates of the error variances and 
covariances were produced. All this information was also given for those 
samples where sample moments did not conform to Hoch's condition spe- 
cified above.19 

15 The inconsistency appears only in the estimates of a2 for reasons explained above. 
16 Again, the inconsistency appears in our models only with respect to estimates of 

a2. 
17 Samples of size 100 were built from a completely new set of disturbances so that 

there is no overlapping with samples of size 20. 
18 The estimates of the error variances and covariances were based on sample 

moments defined by 
I n 

Cr8 =- (Xri - Xr)(X8i - X8), (r, s = 0, 1, 2)- 
n =i_ 

That is, the sums were divided by the number of sample observations rather than by 
the number of degrees of freedom. Thus, our estimates of the error variances contain a 
downward bias. However, the effect on Hoch's estimates of the parameters of the 
production function is negligible. 

19 It appeared that the characteristics of the sampling distributions were not 
noticeably affected by leaving out those samples in which the condition was not 
fulfilled. 
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The entire operation was carried out on SILLIAC, the electronic computer 
at the University of Sydney. It took approximately 40 minutes of machine 
time to produce 200 samples of size 20 and 70 minutes for samples of size 100. 
For each 200 samples of whatever size, about 20 minutes were required for 
the output of the results for individual samples. This could have been 
avoided since the second stage of the work could have proceeded without it, 
but obtaining the individual results was considered worth the sacrifice of 
machine time. 

6. NUMERICAL RESULTS AND THEIR EVALUATION 

The results of the computations appear in Tables VI and VII. Table VI 
summarizes the main characteristics of the empirical sampling distributions 
of the various estimators of the production function parameters in each of 
the models. It gives, for each estimation method and for each sample size, 
the mean and the second and third moment about the mean, calculated from 
the 200 samples obtained. In addition, we show the estimated bias, which is 
simply the difference between the mean of the 200 sample estimates and the 
true value of the parameter, and we also give the second moment about the 
true value. The latter is sometimes called the "mean squared error" and has 
been calculated as a sum of the second moment about the mean and the 
squared bias. Table VII shows the means of the estimates of the variances 
and co-variances of u, vi, and V2 based on the 200 samples. These are com- 
pared with the asymptotic values which are denoted as estimates from 
"sample size oo." This table is of interest in connection with Hoch's estima- 
tion procedure in which the estimated error variances are used. 

The main question which we wish to answer from our results is concerned 
with the ranking of the individual estimators according to their performance 
in the experiment.20 It seems reasonable to prefer an estimator which has 
the smallest bias and, at the same time, the smallest variance. Such estima- 
tors will be given the highest rank. The difficulty arises when comparing 
estimators whose ranking according to the size of the bias differs from that 
according to the size of the variance. Some authors suggested the use of the 
mean squared error (i.e., the second moment about the true value) as an 
appropriate criterion in these cases.21 However, such a criterion implies fixed 
valuations of unbiasedness and efficiency which may not apply in all 
circumstances. At the same time, unfavourable extremes in either direction 

20 Generalizations from the particular situations examined in the study involve a 
critical assessment of the realism and likelihood of these situations. This, in turn, 
depends upon the field of application and the technical and economic characteristics 
of the micro-units. 

21 See, e.g., C. F. Christ in [1, p. 840]. 
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TABLE VI 
POINT ESTIMATES OF a, = 0.5 

Sample 2nd Moment About 3rd Moment 
Size Mean Bias About Mean 

Mean True 
Value 

Model O.L.S. 20 .50019 .00019 .01089 .01089 -.00011 
A 100 .50122 .00122 .00168 .00168 .00000 

Hoch's 20 .44101 -.05899 .54542 .54890 - 2.36826 
100 .50757 .00757 .01711 .01716 .01124 

Klein's 20 .50047 .00047 .00003 .00003 - .00001 
100 .50024 .00024 .00001 .00001 .00000 

I.L.S. 20 .50452 .00452 .05802 .05804 -.01153 
100 .49749 - .00251 .00559 .00560 - .00007 

Model O.L.S. 20 .49943 - .00057 .00446 .00446 .00004 
B 100 .50197 .00197 .00074 .00074 .00000 

Hoch's 20 .49583 - .00417 .00779 .00781 - .00001 
100 .50203 .00203 .00084 .00084 .00001 

Klein's 20 .50093 .00093 .00007 .00007 .00000 
100 .50021 .00021 .00002 .00002 .00000 

I.L.S. 20 .49664 - .00336 .00719 .00720 .00003 
100 .50186 .00186 .00084 .00084 - .00001 

Model O.L.S. 20 .47711 -.02289 .07139 .07191 -.00414 
C 100 .48941 -.01059 .01296 .01307 .00071 

Hoch's- 20 .48919 -.01081 .22922 .22934 -.06114 
proper* 100 .48756 - .01244 .02471 .02486 -.00012 

Hoch's- 20 .12467 -.37533 17.73167 17.87254 -248.39269 
EUE* 100 .83289 .33289 4.35147 4.46229 31.06847 

Klein's 20 .49972 - .00028 .00003 .00003 - .00001 
100 .49992 -.00008 .00001 .00001 - .00001 

I.L.S. 20 .48949 - .01051 .23050 .23061 - .05858 
100 .48763 - .01237 .02499 .02514 - .00015 

Model O.L.S. 20 .50367 .00367 .00449 .00450 .00014 
D 100 .49915 - .00085 .00071 .00071 .00000 

Hoch's- 20 .50386 .00386 .00497 .00498 .00015 
EUE* 100 .49908 - .00092 .00079 .00079 .00000 

Hoch's- 20 .50387 .00387 .00478 .00479 .00014 
EPCE* 100 .49940 - .00060 .00074 .00074 .00000 

Klein's 20 .49989 -.00011 .00002 .00002 .00000 
100 .50007 .00007 .00001 .00001 .00000 

I.L.S. 20 .50394 .00394 .00478 .00479 0.0015 
100 .49949 - .00051 .00073 .00073 0.0000 
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TABLE VI (cont.) 
POINT ESTIMATES OF a, = 0.5 

Sample 2nd Moment About 3rd Moment 
Size Mean Bias About Mean 

Mean True 
Value 

Model O.L.S. 20 .49647 -.00353 .00157 .00158 .00000 
E 100 .49892 -.00108 .00025 .00025 .00000 

Hoch's- 20 .49641 -.00359 .00163 .00164 .00000 
EUE* 100 .49843 -.00157 .00026 .00026 .00001 

Hoch's- 20 .49657 -.00343 .00158 .00159 .00001 
EPCE* 100 .49919 -.00081 .00026 .00026 .00000 

Klein's 20 .49994 -.00006 .00008 .00008 .00000 
100 .50022 .00022 .00002 .00002 .00000 

I.L.S. 20 .49658 -.00342 .00159 .00160 -.00001 
100 .49910 -.00090 .00026 .00026 .00000 

Model O.L.S. 20 .49406 -.00594 .00767 .00771 .00287 
F 100 .49970 -.00030 .00177 .00177 .00002 

Hoch's 20 .51466 .01466 .42812 .42833 2.66812 
100 .49351 -.00649 .00611 .00615 -.00025 

Klein's 20 .53478 .03478 .00003 .00125 .00000 
100 .53348 .03348 .00001 .00113 .00000 

I.L.S. 20 .50042 .00042 .10085 .10085 .09960 
100 .49604 .00396 .00516 .00518 .00001 

Model O.L.S. 20 .50190 .00190 .00489 .00489 .00019 
G 100 .49894 -.00106 .00077 .00077 .00001 

Hoch's 20 .49688 -.00312 .00840 .00841 .00029 
100 .49788 -.00212 .00111 .00111 -.00001 

Klein's 20 .53427 .03427 .00007 .00124 -.00001 
100 .53309 .03309 .00001 .00110 .00000 

I.L.S. 20 .49553 -.00447 .00830 .00832 .00007 
100 .49774 -.00226 .00109 .00109 -.00001 

Model O.L.S. 20 .74739 .24739 .00357 .06477 .00001 
H 100 .74937 .24937 .00067 .06285 -.00002 

Hoch's 20 .50230 .00230 .02268 .02268 -.01309 
100 .49127 -.00873 .00394 .00402 -.00022 

Klein's 20 .50024 .00024 .00003 .00003 .00000 
100 .49991 -.00009 .00001 .00001 .00000 

I.L.S. 20 .47084 -.02916 .03756 .03841 -.03744 
100 .48814 -.01186 .00398 .00412 -.00023 
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TABLE VI (cont.) 
POINT ESTIMATES OF ai = 0.5 

Sample 2nd Moment About 3rd Moment 
Size Mean Bias About Mean 

Mean True 
Value 

Model O.L.S. 20 .58272 .08272 .00292 .00976 .00006 
I 100 .58351 .08351 .00033 .00730 - .00001 

Hoch's 20 .49730 - .00270 .00394 .00395 - .00022 
100 .50076 .00076 .00050 .00050 .00000 

Klein's 20 .50185 .00185 .00007 .00007 - .00001 
100 .49977 - .00023 .00001 .00001 .00001 

I.L.S. 20 .48865 -.01135 .00547 .00560 -.00126 
100 .50031 .00031 .00050 .00050 .00001 

* For explanation of the terms see the final paragraph of Section 3.1. 

are likely to render a particular estimator useless regardless of its other 
desirable properties. Thus, an estimator which is unbiased but displays a 
very high degree of variability, or one which has a small variance but is 
heavily biased, is of a very limited use. The definition of "usefulness" and 
consequently the limits to the acceptable magnitude of the bias and of the 
variance will, of course, depend upon the particular function imposed on the 
estimator, and the answer could perhaps best be found with the help of 
decision theory. 

On the criterion of smallest bias and smallest variance, and considering 
estimates of both parameters simultaneously, our results indicate that 
Klein's estimates are best22 in models A, B, C, D, E, and H with respect to 
both sample sizes, and in model I with respect to samples of size 20. In 
models F, G (both sample sizes), and I (samples of size 100), Klein's estimates 
showed the smallest variance but not the smallest bias. These results are 
not surprising in view of the assumptions underlying the derivation of 
Klein's estimates and considering the construction of the models. In all the 
models in which Klein's estimates were best, with the exception of models H 
and I, the average firm was in the position of a profit maximizing equili- 
brium with respect to both inputs. In models H and I, one of the inputs was 
predetermined, but the average firm was only at a slight distance from the 
optimum position. In models F and G the average firm was not optimal by 
virtue of a restraint on input 2,23 and Klein's estimates became biased. 

The criterion of smallest bias and smallest variance does not lead to an 

22 Minor differences in the estimated bias in samples of size 20 have been disregarded. 
23 In models F and G the distances between the mean and the optimum (logarithmic) 

quantity of input 2 were 0.288 and 0.267 of the standard deviation of X2 respectively. 
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TABLE VI (cont.) 
POINT ESTIMATES OF a2 = 0.4 

Sample 2nd Moment About 3rd Moment 
Size Mean Bias About Mean 

Mean True 
Value 

Model O.L.S. 20 .46678 .06678 .01112 .01558 .00019 
A 100 .46588 .06588 .00172 .00606 .00000 

Hoch's 20 .45821 .05821 .61623 .61962 3.02213 
100 .38525 -.01475 .01194 .01216 -.00253 

Klein's 20 .40053 .00053 .00002 .00002 - .00001 
100 .40004 .00004 .00000 .00000 .00000 

I.L.S. 20 .36672 - .03328 .07091 .07202 -.01957 
100 .40003 .00003 .00569 .00569 - .00001 

Model O.L.S. 20 .42917 .02917 .00448 .00533 - .00003 
B 100 .42624 .02624 .00077 .00146 - .00001 

Hoch's 20 .40141 .00141 .00750 .00750 - .00032 
100 .39767 - .00233 .00091 .00091 .00000 

Klein's 20 .39986 - .00014 .00003 .00003 - .00001 
100 .40011 .00011 .00001 .00001 .00000 

I.L.S. 20 .39989 -.00011 .00700 .00700 -.00017 
100 .39760 - .00240 .00088 .00089 .00000 

M'odel O.L.S. 20 .47634 .07634 .07087 .07670 .00379 
C 100 .46326 .06326 .01299 .01699 - .00073 

Hoch's- 20 .39732 - .00268 .23640 .23641 - .00708 
proper* 100 .41257 .01257 .02491 .02507 - .00006 

Hoch's- 20 .74172 .34172 16.93982 17.05659 113.26060 
EUE* 100 -.04410 -.44410 4.20123 4.39845 -12.40962 

Klein's 20 .39992 - .00008 .00001 .00001 .00000 
100 .40002 .00002 .00000 .00000 .00000 

I.L.S. 20 .39688 - .00312 .23858 .23859 - .01375 
100 .41216 .01216 .02521 .02536 -.00003 

Model O.L.S. 20 .44764 .04764 .00450 .00677 - .00015 
D 100 .45224 .05224 .00069 .00342 .00000 

Hoch's- 20 .44473 .04473 .00497 .00697 - .00018 
EUE* 100 .44952 .04952 .00078 .00323 .00000 

Hoch's- 20 .44585 .04585 .00478 .00688 - .00017 
EPCE* 100 .45063 .05063 .00073 .00329 .00000 

Klein's 20 .39976 - .00024 .00002 .00002 .00000 
100 .39998 - .00002 .00000 .00000 .00000 

I.L.S. 20 .44579 .04579 .00478 .00688 - .00017 
100 .45038 .05038 .00074 .00332 .00000 
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TABLE VI (cont.) 
POINT ESTIMATES of a2 - 0.4 

Sample 2nd Moment About 3rd Moment 
Size Mean Bias About Mean 

Mean True 
Value 

Model O.L.S. 20 .43514 .03514 .00156 .00279 - .00001 
E 100 .43264 .03264 .00025 .00131 .00000 

Hoch's- 20 .43374 .03374 .00162 .00276 - .00002 
EUE* 100 .43033 .03033 .00027 .00119 .00000 

Hoch's- 20 .43418 .03418 .00158 .00275 - .00002 
EPCE* 100 .43158 .03158 .00026 .00126 .00000 

Klein's 20 .39973 - .00027 .00005 .00005 - .00001 
100 .39993 - .00007 .00001 .00001 .00000 

I.L.S. 20 .43417 .03417 .00158 .00275 - .00002 
100 .43164 .03164 .00027 .00127 .00000 

Model O.L.S. 20 .47536 .07536 .01137 .01707 -.00044 
F 100 .46702 .06702 .00180 .00629 - .00004 

Hoch's 20 .39479 - .00521 .22874 .22877 - .68406 
100 .40508 .00508 .00581 .00584 - .00015 

Klein's 20 .36308 - .03692 .00001 .00137 .00000 
100 .36283 - .03717 .00000 .00138 .00000 

I.L.S. 20 .38215 -.01785 .12710 .12742 - .19739 
100 .40128 .00128 .00545 .00545 - .00004 

Model O.L.S. 20 .42731 .02731 .00486 .00561 -.00017 
G 100 .42954 .02954 .00077 .00164 .00000 

Hoch's 20 .40075 .00075 .00887 .00887 - .00070 
100 .40149 .00149 .00121 .00121 .00000 

Klein's 20 .36300 - .03700 .00003 .00140 .00000 
100 .36292 - .03708 .00001 .00138 .00000 

I.L.S. 20 .40165 .00165 .00817 .00817 -.00040 
100 .40162 .00162 .00118 .00118 .00000 

Model O.L.S. 20 .19856 -.20144 .00898 .04956 .00026 
H 100 .20104 - .19896 .00166 .04124 .00000 

Hoch's 20 .38557 - .01443 .03639 .03660 .00474 
100 .41023 .01023 .00779 .00790 .00032 

Klein's 20 .40650 .00650 .00007 .00011 .00000 
100 .40694 .00694 .00001 .00006 .00000 

I.L.S. 20 .43110 .03110 .05131 .05228 .04993 
100 .40947 .00947 .00459 .00468 .00012 



THE COBB-DOUGLAS PRODUCTION FUNCTION 379 

TABLE VI (cont.) 
POINT ESTIMATES OF a2 = 0.4 

Sample 2nd Moment About 3rd Moment 
Size Mean Bias About Mean 

Mean True 
Value 

Model O.L.S. 20 .34582 -.05418 .00838 .01131 .00013 
I 100 .33200 - .06800 .00177 .00639 -.00001 

Hoch's 20 .41582 .01582 .01166 .01191 .00033 
100 .39899 - .00101 .00171 .00171 - .00001 

Klein's 20 .40571 .00571 .00007 .00010 .00000 
100 .40716 .00716 .00002 .00007 .00000 

I.L.S. 20 .42681 .02681 .01173 .01245 .00251 
100 .39639 - .00361 .00150 .00151 .00000 

For explanation of the terms see the final paragraph of Section 3.1. 

unambiguous ranking of the estimators in models F, G (both sample sizes), 
and I (samples of size 100). Ordinary least squares estimates have a smaller 
variance than Hoch's and indirect least squares estimates, but they are 
heavily biased in estimating a2 in models F and G, and in estimating both 
parameters in model I. In model F both Hoch's and indirect least squares 
estimates exhibit a small bias, but I.L.S. estimates have a smaller variance, 
particularly in samples of size 20. In models G (both sample sizes) and I 
(samples of size 100) only minor differences in the samnpling distributions of 
Hoch's and I.L.S. estimates can be observed. 

The obtained sampling distributions of individual estimators have 
displayed special characteristics which are worth noting. These will be 
discussed separately with respect to each of the estimators. 

The main characteristic of ordinary least squares estimates in all models 
where both inputs were variable (i.e., models A through G) was the pronounc- 
ed upward bias of estimates of a2 and the lack of any substantial bias of 
estimates of a,. In cases where one of the inputs was predetermined (i.e., 
models H and I), O.L.S. estimates of both a, and a2 were biased. The observed 
bias was always greater in models in which the variances of the disturbances 
were equal than in models where E(U2) was small relative to E(v2) and E(v2). 
The variance of O.L.S. estimates appeared to be always smaller or approxi- 
mately equal to that of Hoch's and indirect least squares estimates. In 
general, the main results of the O.L.S. estimation procedure conformed to 
the expectations which could be formed on the basis of asymptotic values of 
Table V. The lack of bias in estimates of a, in models A through G is to be 
explained by the particularity of the case when the true value of the para- 
meter is 0.5. It is to be noted that the asymptotic bias of O.L.S. estimates of 
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TABLE VII 
POINT ESTIMATES OF ERROR VARIANCES 

Model Error Sample Mean of Sample 
Variance* Size Estimates 

A E(V2) 20 .000383 
100 .000391 

OO .000400 

E(V2) 20 .000379 
100 .000394 

OO .000400 

E(U2)-proper 20 .000346 
100 .000447 

OO .000400 

SSE/n 20 .000117 
100 .000131 

O -.000133 

B E(V2) 20 .000938 
100 .000984 

OO .001000 

E(V2) 20 .000933 
100 .000996 

OO .001000 

E(U2)-proper 20 .000192 
100 .000195 

OO .000200 

SSE/n 20 .000126 
100 .000138 

OO .000143 

C E(V2) 20 .000374 
100 .000400 

OO .000400 

E(V2) 20 .000367 
100 .000398 

OO .000400 

E(U2)-proper 20 .000519 
100 .000396 

OO .000400 

E(U2)-EUE 20 .001277 
100 -.000294 

OO .003600 

E(V1V2)-proper 20 .000290 
100 .000319 

OO .000320 

SSE/n 20 .000160 
100 .000184 

00 ~~.000190 
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TABLE VII (cont.) 
POINT ESTIMATES OF ERROR VARIANCES 

Model Error Sample Mean of Sample 
Variance* Size Estimates 

D E(V2) 20 .000384 
100 .000398 

OO .000400 

E(V2) 20 .000385 
100 .000396 

OO .000400 

E(U2)-EUE 20 .000010 
100 .000011 

00 .000011 

E(U2) EPCE 20 .000009 
100 .000010 

OO .000012 

E(V1V2)-EPCE 20 .000306 
100 .000319 

OO .000320 

SSE/n 20 .000009 
100 .000009 

oo .000011 

E E(V2) 20 .000954 
100 .000989 

OO .001000 

E(V2) 20 .000939 
100 .000975 

oo .001000 

E(U2)-EUE 20 .000009 
100 .000011 

oo .000011 

E(U2)-EPCE 20 .000009 
100 .000010 

00 .000011 

E(VlV2) -EPCE 20 .000753 
100 .000784 

OO .000800 

SSE/n 20 .000009 
100 .000010 

OO .000010 

F E(V2) 20 .000377 
100 .000395 

OO .000400 

E(V2) 20 .000383 
100 .000397 

OO .000400 
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TABLE VII (cont.) 
POINT ESTIMATES OF ERROR VARIANCES 

Model Error Sample Mean of Sample 
Variance* Size Estimates 

F E(u2)--proper 20 .000601 
(cont.) 100 .000411 

x0 .000400 

SSE/n 20 .000112 
100 .000128 

00 .000133 

G E(v2) 20 .000913 
100 .000994 

oo .001000 

E(v 2) 20 .000955 
100 .000993 

a0 .001000 

E(u2)-proper 20 .000190 
100 .000200 

oo .000200 

SSE/n 20 .000123 
100 .000140 

or_-c .000143 

H E(v2) 20 .000379 
100 .000401 

X .000400 

E(u2)-proper 20 .000400 
100 .000414 

0c .000400 

SSE/n 20 .000165 
100 .000198 

oo .000200 

LE(v) 20 .000951 
100 .000993 

oo .001000 

E(u2)-proper 20 .000179 
100 .000195 

oci .000200 

SSE/n 20 .000143 
100 .000161 

oo .000167 

* For explanation of the term "proper," EUE, and EPCE see the final paragraph of Section 3.1. SSE/n represents 
the mean of the residual sum of squares of the least squares regression. 



THE COBB-DOUGLAS PRODUCTION FUNCTION 383 

a2 would have been even greater had the true value been smaller than 0.4 as 
chosen by us.24 

Hoch's estimates, applied to situations for which they were properly 
designed, exhibited a great degree of instability in samples of size 20 in 
models A and F. These models were specified by having variable inputs and 
uncorrelated disturbances with equal variances, and differ only with respect 
to the position of the average firm. The instability of Hoch's estimates was 

largely due to the high degree of variation of Soo, the estimate of E(u2). A 

particularly disturbing feature was the negative value of Soo which occurred 
in 4.0 per cent of all samples of size 20 in model A, and in 4.5 per cent of all 
samples of size 20 in model F. Since a negative value of an estimate of a 
variance is clearly unacceptable, Hoch's estimation procedure breaks down 
in these cases.25 Hoch's estimates improved noticeably when applied to 
samples of size 100 of models A and F, but their bias and variance were still 
larger than that of indirect least squares estimates. In the remaining models 
(i.e., B, C, G, H, and I) Hoch's estimates appeared to be more satisfactory; 
in models B, C, and G their sampling distributions were found to be quite 
similar to those of indirect least squares estimates. In general, Hoch's 
estimates tended to show a smaller bias and variance in larger samples and in 
models in which the variance of the "technical" disturbance was small 
compared to the variances of the "economic" disturbances. Thus it may be 
possible to use sample estimates of error variances as a rough indication of 
the degree of stability of Hoch's estimates. 

When Hoch's estimates designed for models with uncorrelated distur- 
bances are applied to model C where, in fact, the "economic" disturbances 
were positively correlated (i.e., estimates labelled EUE), it is found that the 
estimates contain a large bias and are extremely unstable. If the sample size 
is increased, the bias is still very large but the variance is somewhat reduced. 
This instability arises mostly from what at first appears to be an arithmetical 
accident but should be considered an integral hazard of the Hoch type of 
estimator. It may occur in all cases where this estimator is used, "properly" 
or "improperly." When the asymptotic values of both numerator and 

denominator in the various expressions for Soo are small, the sample values 

of Soo are extremely erratic. 
In models D and E all disturbances are positively correlated, therefore 

estimates of the Hoch type cannot be derived unless incorrect assumptions 
about the interrelationship of the disturbances are made. When this is done, 

24 See Hoch [2, Table I, p. 574]. 
25 Hoch pointed out that all asymptotic moments have to be greater than or equal 

to Coo but mentioned that this may not apply to moments of finite samples. However, 

Soo was found to be negative even in samples in which this condition held. 
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the results indicate that it makes very little difference whether it is assumed 
that there is no correlation at all (estimates EUE) or that correlation exists 
only between the two "economic" disturbances (estimates EPCE). In either 
case, the estimates of a2 have a large bias compared to estimates of ai. The 
variances of both types of estimators (i.e., EUE and EPCE) are approxima- 
tely the same, and they are larger in model D than in model E. It is also 
interesting to compare the performance of the EUE type estimators in 
models C and D since these models differ only by virtue of the fact that in C 
the "economic" disturbances are uncorrelated with the "technical" dis- 
turbance, whereas in D they are positively correlated. It was found that the 
estimators have a substantially smaller bias and variance in model D than 
in model C. Furthermore, if Hoch's estimation procedure designed for the 
situation of model C is applied to model D (i.e., estimators EPCE), the 
variance of the estimators is considerably smaller than that of the "proper" 
estimators in model C. Thus, we come to the interesting conclusion that a 
violation of the assumption of independence between the "technical" and 
the "economic" disturbances in fact reduces the variance of Hoch's esti- 
mates. 26 

The main characteristics of Klein's estimates were already discussed 
earlier in this section. Klein's estimates have by far the smallest variance, 
but they become biased when the average firm is not in an optimal position. 
The bias, when it appears, depends on the distance of the average from the 
optimum quantities of output and of inputs. 

The performance of indirect least squares estimates can be conveniently 
described by comparison with Hoch's estimates. I.L.S. estimates performed 
better in models A and F, particularly in samples of size 20, since Hoch's 
estimates tended to be unstable. On the other hand, Hoch's estimates ap- 
peared to have a smaller bias and variance in samples of size 20 in models H 
and I. The latter seems to suggest that I.L.S. estimates are not well suited 
for small sample estimation in models with a predetermined input. In all 
other cases, the differences between the estimated sampling distributions of 
the two types of estimates were found to be small or negligible. In models D 
and E, in which I.L.S. estimates are inconsistent and for which proper 
Hoch's estimates do not exist, I.L.S. estimates tended to behave very much 
like Hoch's EUE and EPCE estimates. 

In general, our results indicate that no single estimation procedure is 
satisfactory in all circumstances. Ordinary least squares estimates tend to 
have an upward bias; Klein's estimates, though highly efficient, are biased 
in the absence of effective profit maximization; and Hoch's, and to some 

26 This conclusion has to be confined to the case of positive correlation of the distur- 
bances since the case of negative correlation has not been examined. 
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extent indirect least squares estimates, can be highly unstable in small 
samples. A choice of an estimation method has to depend on the specific 
field of application and on the knowledge of the technical and economic 
characteristics of the industry. 

University of Sydney, and 
University of New South Wales 
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