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Abstract  

This research assesses the comparative environmental profiles of the bioenergy systems - biofuel 

(ethanol) and biomass electricity - derived from switchgrass. Switchgrass cultivation as a dedicated 

energy crop is an emerging practice. It has high yield with relatively low nutrient requirements and 

has a great potential to meet future energy needs.  

The contribution of this research is twofold. First, the life cycle energy and GHG emissions of 

individual bioenergy pathways - producing cellulosic ethanol and biomass electricity - are analyzed in 

greater detail. In contrast with previous studies, we have not just used a single value of input 

parameters for different life cycle stages, but instead, have assessed the impact based on a 

probability distribution by incorporating a Monte Carlo analysis. This has helped to address the 

variability in the lifecycle impacts of bioenergy systems and establishing a range of energy and 

greenhouse gas (GHG) impacts, rather than previous single-valued estimates. Second, a framework 

to compare cellulosic ethanol and biomass electricity lifecycle energy and GHG emissions is 

provided. We propose the criterion for comparison should not be dictated by absolute emissions 

along a certain bioenergy pathway, such as producing biofuels or biomass electricity. Instead, we 

consider the savings in emissions from the displacement of fossil fuel by biomass along each 

pathway. Based on this criterion, we quantify the lifecycle GHG emissions impacts of each pathway, 

compare them to the reference fossil energy system and compare their land use efficiency.    

The average lifecycle GHG emissions of ethanol are assessed as 35 g CO2-eq/MJ of energy, with a 

minimum-maximum range of GHG emissions varying from 25 to 50 g CO2-eq/MJ. Switchgrass yield, 

fertilizer application rates and conversion efficiency are important determinants in the overall 

variation in the GHG balance. For example, the GHG contribution from the agricultural stage of 

switchgrass varies over a large range from 500 to 1200 kg CO2-eq/ha/year. A comparison between 

cellulosic ethanol and a gasoline system shows that on average 55 g CO2-eq/MJ of energy are saved 

if gasoline use is replaced by cellulosic ethanol derived from switchgrass. The average life cycle GHG 

emissions from biomass electricity are 100 g CO2-eq/kWh, with a minimum-maximum range of GHG 

emissions varying from 90 to 110 g CO2 eq/kWh. In comparison to the U.S. grid electricity, 513 g CO2-

eq/kWh of energy are saved if biomass electricity from switchgrass displaces the grid electricity. 

Avoided emissions per unit of energy, however, are also dependent on regional factors, such as 

regional electricity grid mix. 

When comparing these bioenergy systems in terms of land use efficiency, biomass electricity has a 

better environmental profile in terms of energy sue and GHG emissions than ethanol. 4.5 ton CO2-

eq/ha/year emissions are saved if we use all the switchgrass cultivated on a hectare of land to 
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produce ethanol. For biomass electricity, the annual GHG emissions saved are 10 ton CO2-

eq/ha/year. The GHG emissions offset from the best case of cellulosic ethanol is comparable to 

emissions offset from the worst case of biomass electricity.  

We have also analyzed another case of the comparative environmental profile of these two 

bioenergy systems, formulated assuming a special case of biomass electricity use. In this case, all the 

biomass electricity produced is used to charge electric vehicles and ethanol is used to power Flex 

Fuel Vehicles (FFVs). 145 g CO2-eq/km will be saved if we use ethanol is used instead of gasoline in 

FFVs. In the case of electric vehicles, 110 g CO2-eq/km is saved if we use biomass electricity instead 

of the U.S. average grid power. Thus, biomass electricity is not a very effective alternative if the end 

goal of bioenergy policies is to use biomass only in the transportation sector. These findings are 

different from the previous bioenergy comparison studies, which have only estimated the offset of a 

biomass powered electric vehicle by comparing it to a gasoline-powered car.  These studies 

concluded that biomass electricity has a better environmental profile than cellulosic ethanol.   
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1. Introduction 

Bioenergy systems have gained attention as an important source of alternative energy. The key 

drivers for development of alternative energy sources are diversification and security of fuel supply, 

as well as rising climate change concerns from greenhouse gas (GHG) emissions of conventional 

fuels. Bioenergy, especially that derived from cellulosic feedstocks such as agriculture waste and low 

maintenance energy crops, promises to reduce GHG emissions significantly [1]. Switchgrass, a 

perennial grass in North America, is one such promising cellulosic feedstocks which has been 

investigated under the DOE Bioenergy Feedstock Development Program (BFDP) since 1991 [2]. It has 

been proposed as an ideal herbaceous crop for energy because of its high yield, coupled with 

relatively low nutrient requirements. Although, switchgrass is currently only grown in buffer strips, 

not cultivated as a commodity crop, in the long run, switchgrass may be grown as a dedicated 

energy crop as envisioned by DOE Billion Ton Supply study [3] and in existing bioenergy plans such as  

Energy Independence and Security Act 2007 and state Renewable Portfolio Standards [10].  

There are two main pathways to convert biomass into more usable forms of energy. It can be 

liquefied (e.g., ethanol) for use as a transportation fuel or it can be used for power generation. These 

two pathways have different environmental profiles as well as different economic and policy drivers. 

Currently, in the U.S., strong policy incentives exist to support biofuels’ development. The 

Renewable Fuel Standards (RFS) policy of U.S. Environment Protection Agency (EPA) requires 

production of 36 billion gallons per year of renewable transportation fuels by 2022 [4]. Currently, 

ethanol, mostly derived from corn, powers approximately 3% of the nation’s transportation sector 

(EIA, 2010) but consumes 25% of the nation’s corn production [5]. The mass production of biofuels 

using food crops as feedstock has been criticized for a variety of reasons, including rising food prices 

[6], competing arable land, water resources stress, with food and fiber crops [7,8], and increasing 

GHG emissions [9]. Therefore, it is important to focus on biofuels derived from cellulosic sources 

such as agriculture waste and energy crops. The EPA mandates that the annual production of 

advanced fuels (i.e., biofuels other than ethanol derived from corn starch) should gradually increase 

to 21 billion gallons per year by 2022 [4]. The EPA also has specific thresholds for the lifecycle GHG 

emissions of the renewable fuels used to meet the 21 billion gallons per year mandate. In particular, 

cellulosic biofuels are required to achieve a 60% reduction in lifecycle emissions compared to the 

2005 gasoline baseline [4]. This policy will help in reducing the GHG emissions from the 

transportation sector, which currently accounts for 28% of the total 6.5 billion metric tons of GHG 

emissions in the U.S. (Figure 1).   
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Figure 1: US Greenhouse Gas (GHG) Emissions by Sector  
Source: Inventory of U.S. Greenhouse Gas Emissions and Sinks 1990-2009 (EPA 2011) 

On the other hand, GHG emissions for electricity are not being regulated at the national level.  State 

governments are indirectly regulating these emissions through Renewable Portfolio Standards (RPS).  

As of 2009, a total of 33 states in the U.S. have a RPS in place [10]. There exists some diversity 

among different states with respect to the minimum requirements of renewable energy, 

implementation timing, and eligible technologies and resources. California has the most aggressive 

RPS targets, by requiring up to 33% of the total state electricity to be generated from alternative less 

carbon intensive sources by 2020 [10]. Biomass electricity along with solar and wind power can help 

to achieve these targets. Currently, electricity derived from biomass-based materials, mostly from 

wood waste and residue, contributes only about 1.5% of the U.S. electricity consumption (EIA, 2010) 

and has not reached large scale commercial production. Nationally, economic issues and market 

development for biomass supply are rated as the most significant barriers to biomass use for the 

electricity sector [11]. However, in the future, the market development of biomass supply for 

biofuels and economic incentives for clean electricity from carbon tax programs (such as in 

California) can promote the use of biomass for electricity generation.  Pike Research predicts that its 

potential market value could reach $53 billion by 2020 [12] and could play a key role in America’s 

renewable energy profile. 

Some of the existing studies suggest that using biomass to produce electric power is better than 

using it to produce biofuels in terms of land use efficiency and lifecycle GHG emissions. Campbell et 

al. (2009) compared biofuel and biomass electricity for the transportation sector and found that 

biomass electricity can power approximately 81% more transportation mileage than cellulosic 

ethanol [13]. However, the scope of their study was limited, since they  had restricted the use of 

biomass electricity exclusively for the transportation sector. Biomass electricity is generally used as a 

base load power [14] and hence logically will displace the fossil base load in the electricity sector. 
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The future development of biomass electricity will help in reducing the emissions from the electric 

power sector, which contributes, to about 33% of the total 6.5 billion metric tons of GHG emissions 

in the U.S. (Figure 1). 

1.1. Motivation  

This research has been undertaken to understand the comparative environmental profiles in terms 

of energy use and GHG emissions of the bioenergy systems - biofuel (cellulosic ethanol) and biomass 

electricity - derived from switchgrass. Switchgrass cultivation as a dedicated energy crop is an 

emerging practice. It has a high yield with relatively low nutrient requirements and is a promising 

feedstock to meet the future biofuels production and biomass electricity generation demands [2]. 

Moreover, the framework built in this research, for comparison of bioenergy systems is also 

applicable to other cellulosic sources, such as willow plant, corn stover.  

Biofuel and biomass electricity production systems both require biomass, but the land area available 

for cultivation is limited. Therefore, given that the total supply is limited, it becomes important to 

decide on the amount of biomass that is allocated to each of these two pathways. To understand 

this optimal allocation, it is necessary to evaluate what the relative environmental impacts/benefits 

of these two bioenergy systems are. At a regional level there are additional factors, such as the 

existing energy mix and the logistics of supply, that play an important role in this appropriate 

allocation. This study compares the environment profile of these bioenergy systems to guide future 

bioenergy deployment policies at national and regional levels.  

1.2. Contributions  

The contribution of this research is twofold. First, the lifecycle energy and GHG emissions of 

individual bioenergy pathways - producing cellulosic ethanol and biomass electricity - are analyzed in 

detail. Any bioenergy system consists of a series of stages: biomass feedstock production, feedstock 

transportation and logistics, feedstock conversion to useful energy form, distribution and use of 

energy. In contrast with previous studies, this analysis does not use a single value of input 

parameters for different stages, but instead, assess impacts based on a probability distribution for 

them. This has helped in analyzing the importance of uncertain parameters and its impacts on 

overall life cycle analysis (LCA) results.  

Second, we have provided a framework to compare cellulosic ethanol and biomass electricity given 

their lifecycle energy and GHG emissions. We propose that the criterion for comparison should not 

be dictated by absolute emissions associated with a specific energy conversion pathway since the 

unit energy from ethanol has altogether a different utility than unit energy from electricity. Ethanol 
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will help in meeting alternative fuel demand in the transportation sector whereas biomass electricity 

is an alternative generation technology in the electric power sector. Instead, we consider the savings 

in GHG emissions from the displacement of fossil fuel by biomass along that specific pathway. Based 

on this criterion, we quantify the lifecycle GHG emissions impacts of each pathway as compared to 

the reference fossil energy system.  A reference energy system is chosen that is both realistic and 

likely to be displaced by the bioenergy system. Cellulosic ethanol in the U.S. is most likely to replace 

gasoline use in internal combustion engine vehicles. Hence the reference system chosen for 

comparison of ethanol is gasoline. For biomass electricity choosing a reference system is somewhat 

challenging. Biomass electricity is most likely to replace electricity from base and intermediate load 

power plants [45]. However, these power plants GHG emissions are different in different regions. 

For the national level analysis, biomass electricity is compared with the U.S. grid average emissions. 

The regional variability in the grid electricity emissions and its effects on the comparison results are 

discussed in Section 4.6.  

1.3. Thesis structure  

This thesis explores the issue of comparison of lifecycle energy and GHG emissions for bioenergy 

systems derived from cellulosic biomass. Section 2 describes the existing literature in this area as 

well as literature in the field of uncertainty analysis in LCA of bioenergy systems. In Section 3, the 

methodology for life cycle analysis (LCA) of individual pathways and the aforementioned comparison 

framework is discussed. The use of a Monte Carlo approach for uncertainty analysis in LCA of 

bioenergy systems is also described. Section 4 presents the LCA results of individual pathways as 

well as a comparative performance of bioenergy systems. Finally conclusions, key findings, 

limitations of the current research and scope of future work, are discussed in Section 5.  
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2. Literature Review 

The potential environmental impacts of bioenergy systems are typically quantified using a life cycle 

analysis (LCA) approach. LCA is  an analytical  tool  that  captures  the  environmental  impacts  of  a  

product  or  service  through  various stages  of  its  life  cycle  including  raw  material  acquisition,  

manufacturing,  transport,  use,  reuse  (where applicable), recycling and final disposal [15]. A 

number of studies have been published which investigate the lifecycle impacts of biofuels derived 

from cellulosic feedstock such as switchgrass [16-20]. The potential use of the cellulosic feedstock to 

produce ethanol has been actively researched in the last decade, and has seen considerable 

advances in cellulosic biofuels production technologies.  Thus, there is a focus among LCA 

researchers to understand the lifecycle impacts of rapidly evolving cellulosic biofuels processing 

technology [21-23]. The biomass agricultural phase and the logistics of biomass transportation are 

also important components of bioenergy lifecycle analysis, and there have been continuous efforts 

to model this supply chain [24, 25].  

Compared to the number of LCA studies for cellulosic ethanol, there are relatively few studies 

involving biomass electricity. The life cycle assessment entitled Biomass Gasification Combined-Cycle 

System, a technical report published by NREL in 1997, is the first and most extensive study of 

biomass electricity derived from energy crops [26]. Thereafter, researchers have published a few 

other biomass electricity LCA studies [27-28].  This trend can be attributed to several factors. First, 

the technology for converting biomass to electricity is already established and not evolving at as fast 

a pace as the production technology for cellulosic biofuels. Therefore, there is little interest in 

further investigation of biomass electricity LCA. However, this alone does not offer the complete 

picture. There have been no recent studies exploring issues such as impacts of direct and in-direct 

land use change on LCA results of biomass electricity. These issues are being actively researched and 

debated in the case of biofuels production [9]. The lack of interest for research in the biomass 

electricity sector can also be attributed to other economic and policy factors. There is no direct 

policy stimulus to promote biomass electricity generation. Nationally, economic issues and market 

development for biomass supply have been identified as the most significant barriers to biomass use 

for the electricity sector [11]. However, with economic incentives such as carbon taxes and the 

development of a biomass supply chain with biofuel industry development, biomass electricity can 

be a viable low carbon option for the future.  

Given the limited land area for biomass cultivation and the various policy incentives promoting 

bioenergy use, it is important to compare the relative environmental impacts of different bioenergy 

pathways such as producing biofuel and biomass electricity. The next subsection discusses some of 
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the existing literature on comparison of bioenergy systems. The succeeding subsection discusses the 

uncertainty and variability analysis in the LCA of bioenergy systems.  

2.1. Comparing LCA of different bioenergy systems  

 There are a few published studies comparing the environmental impacts of different bioenergy 

pathways such as producing biofuels and biomass electricity. Campbell et al.’s (2009) publication is 

an early study in this field. It compares the energy and GHG offset from bioelectricity and ethanol for 

the transportation sector.  In 2011, Rowe et al. published a systematic review and comparison of 

current LCA studies for bioenergy systems. In the same year 2011, International Energy Agency (IEA) 

also published their guidelines for the comparison of bioenergy systems. In the following section, we 

have discussed these studies in detail.  

Campbell et al. (2009) studied the use of biofuel (ethanol) and biomass electricity for the 

transportation sector [13]. Their study suggests that using biomass to produce electricity and using it 

in electric vehicles is a better option than using biomass to produce biofuels in terms of efficiency 

and life cycle GHG offset. According to their analysis, biomass electricity used in electric vehicle can 

power approximately 81% more transportation mileage than cellulosic ethanol. The lifecycle GHG 

emissions offsets of biomass electricity are approximately 108% more than those of cellulosic 

ethanol, on a per unit area of cropland basis. However, there are limitations of using these results to 

support national and regional policies for deploying bioenergy in the U.S. In their analysis, the 

authors have restricted the use of biomass electricity for electric vehicles only. However, that might 

not be the case in real world since biomass electricity generally displaces the grid electricity in a 

region. Thus, using 100% of biomass electricity to charge electrical vehicles is an arbitrary restriction. 

In addition, electric vehicles technology is still evolving.  While the federal government has an 

ambitious vision of putting one million electric vehicles on the road by 2015, electrifying the 

transportation sector can be challenging. Therefore comparing these two bioenergy pathways as per 

the Campbell et al. methodology does not provide the relevant information to policy makers at the 

regional and national level.  We have addressed this gap in our analysis by choosing a more realistic 

reference framework for the comparison of different bioenergy pathways.  

Rowe et al.’s (2011) study provides a systematic review of the current life cycle assessments studies 

for heat and power and liquid biofuels from a variety of cellulosic and non-cellulosic feedstocks [29]. 

They have reviewed a wide range of studies from European and North American regions. The energy 

use and GHG emissions has been compared for a MJ of bioenergy from different biomass pathways 

(heat -power and liquid biofuels). Across all literature, on average, a MJ of energy from cellulosic 

biofuels has higher GHG emissions and fossil energy requirements than a MJ of bioenergy from the 
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heat and power pathway. They have also compared bioenergy systems with their respective fossil 

fuel equivalents. GHG emissions for the biofuel production chains are found to be at least 64% lower 

than fossil fuel equivalents (petrol/diesel). In the case of heat and power generation, GHG emissions 

for heat and power from biomass are found to be at least 91% lower than from coal power 

generation.  

Rowe et al.’s publication is a good systematic review study, compiling all the recent bioenergy LCA 

literature. However, this study provides only partial information with respect to the policy support 

information for bioenergy deployment in the United States since the land use efficiency of different 

bioenergy pathways is not discussed. They have expressed the results of comparison of bioenergy 

pathways only in terms of percentage reduction from fossil fuel system. Since the land area available 

to grow biomass is limited, it is important to perform the comparison in terms of land use efficiency. 

In our analysis, we have proposed a two-step comparison framework to address this limitation. In 

addition, Rowe et al. have results of comparison of bioenergy systems averaged over a very large 

geographical region ( European- North American). Thus, the variation in comparison results due to 

regional factors are not reflected. In our analysis, we have focused on the energy derived from 

switchgrass and have performed a comparison of these bioenergy systems at national as well as at a 

regional scale, taking into account the regional variables such as energy mix, switchgrass yield. 

Hence, the results of our analysis are more relevant to the decision makers of bioenergy deployment 

policies in the United States.  

The IEA technical report (2011) provides guidelines for comparing different bioenergy systems using 

a life cycle approach [47].  It is suggested that in order to determine the comparative environmental 

impact of bioenergy systems, the bioenergy should be compared with a reference case- fossil energy 

system. A reference energy system should be chosen which is realistically likely to be displaced by 

the bioenergy system. The system boundary should be defined such that the bioenergy and 

reference fossil systems provide equivalent products and services. In our analysis, we have followed 

these guidelines while performing the comparison of different bioenergy systems  

2.2.Uncertainties in LCA of bio-energy systems 

There are some inherent uncertainties and variability in the LCA results of bioenergy systems. Over 

the last few years, the environment sustainability and the variability analysis of bioenergy systems 

has received wide spread attention. Thus, in our analysis we have performed a detailed analysis of 

individual bioenergy pathways, incorporating sources of variation, highlighting areas of uncertainty. 

Whitaker et al. (2011) published a systematic review of sources of variation in bioenergy systems 

LCA and have identifies three broad categories of variation [32]: 
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1. The first category can be called ‘real’ variation. This category illustrates the relative 

importance of cultivation, transport and conversion processes in biofuel production; where 

each component can have a significant impact on the complete lifecycle of GHG emissions 

and energy requirements.  

2. The second category of variation can be called ‘methodological’. It reflects how the 

mechanics of calculating lifecycle GHG emissions and energy requirements can change the 

interpretation, introducing variability in LCA estimates and comparisons; this category 

includes the setting of LCA system boundaries, the methods of coproduct allocation and the 

format used to present data.  

3. The third category can be described as variation caused by ‘uncertainty’. This category of 

variation comprises variables which are often omitted from LCAs because they are poorly 

understood or difficult to quantify 

In this analysis we have focused on the first – ‘real variability’ and the third - ‘uncertainty’ category. 

Within the category of ‘real’ variation, agronomy is both the major source and contributor to 

variation. Variations in crop yields and fertilizer application rates are important ‘real’ determinants 

of both the GHG and energy balance. In addition, the fuel source and technology used for the fuel 

conversion also causes a significant source of variation in the GHG and energy balance. Though we 

recognize that the second category of variation, caused by ‘methdological’ factors, has significant 

contribution to the overall lifecycle impacts and uncertainty of bioenergy systems, quantifying this 

category of variation is very challenging. The divergence is generally attributable to different 

assumptions and methodological choices made by LCA analysts. Hence, the nature of uncertainty 

involves subjective choices to define the problem analyzed or how the model results are interpreted 

[48]. LCA researchers are working to address the areas of unresolved LCA methodology such as 

disagreements over how to estimate market mediated effects such as indirect land use change and 

how to handle co-products [31]. 

We have reviewed three studies in detail for uncertainty analysis in bioenergy LCA results. They 

were chosen for their availability, publication date, and whether they have information regarding 

the uncertainty analysis results for bioenergy derived from switchgrass.  All of the studies discussed 

here have performed uncertainty analysis with respect to biofuels only. In our analysis, we have 

further extended uncertainty analysis to the biomass electricity sector and later use it to compare 

different bioenergy pathways.  

In 2001, Argonne National Laboratory (ANL) collaborated with General Motors (GM) to apply the 

Greenhouse Gases, Regulated Emissions and energy Use in Transportation model (GREET) to a range 
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of fuels produced and consumed in the U.S. [33]. During this project, the ability was added to run 

the GREET LCA model under the Crystal Ball software, to perform a Monte Carlo analysis, and 

distributions were defined for 700 model parameters. For GHG emissions, ANL established 

probability distributions. They developed subjective distribution functions based on the range of 

values for the parameter from published results (GREET report Vol3 pg.37). All input parameter were 

assumed to follow the normal distribution curve except in a few cases. The development of 

parameter probability distribution functions using subjective estimations might seem a rudimentary 

approach, however, this is the best approximate approach, given the lack of significant amount of 

GHG datasets to computationally generate probability distribution functions.  While ANL study 

provides an extensive analysis of variety of fossil and non-fossil energy sources, it provides limited 

information with respect to bioenergy derived from energy crops such as switchgrass. Probability 

distributions of a few bioenergy input parameters are defined. Also, in the last decade the 

technology of processing of cellulosic ethanol and logistics of switchgrass supply have improved 

considerably. Thus in our study, using the contemporary literature we undertook the task of revising 

and adding more input probability distributions for life cycle analysis of switchgrass bioenergy 

systems.  

Groode’s (2008) dissertation work, available at DOE bioenergy KDF library [30] assessed GHG 

impacts of ethanol produced from three feedstocks; corn grain, corn stover, and switchgrass. Life-

cycle assessment with an integrated Monte Carlo uncertainty analysis is applied to each of these 

three bioethanol pathways. Their report, however, lacks detailed information regarding the 

derivation of probability distribution functions for input parameters. In addition, the assumptions 

regarding the lifecycle stages such as ethanol process technology and logistics are the same as the 

2001 GREET uncertainty study [33]. Hence the LCA results for switchgrass ethanol are similar to the 

2001 GREET uncertainty study, which is quite old.  

Plevin (2010) has extensively studied the uncertainty and variability issue of biofuel from a policy 

perspective [31].  He has examined uncertainties in estimates of the GHGs directly emitted across 

the biofuel supply chain as well as the uncertainty in estimates of emissions from indirect land use 

changes induced by the expanded production of biofuels. In the case of direct emissions, the N2O 

emission rate of fertilizer and the N fertilizer application rate are identified to be the top 

contributors to biofuels uncertainty (part V pg 78). They contribute to about 62% of biofuels system 

uncertainty. In our analysis, we have focused on uncertainties from the direct emissions from 

biofuels and have given special consideration to model the above-mentioned variables.  
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3. Methodology  

This section describes the methodology for analyzing the fossil energy consumption and GHG 

emissions of switchgrass bioenergy systems, i.e. cellulosic ethanol and biomass electricity, as well as 

an approach to compare these two pathways. A few common terms used in the analysis are as 

follows:  

System Boundary: It is the theoretical boundary to a life cycle analysis beyond which impacts are not 

recorded. In this study, we define the system boundary as shown in Figure 2. The boundary includes 

agricultural input production and transport, farm equipment energy use, feedstock production, 

feedstock collection and transport, biorefinery chemical use, feedstock conversi on, ethanol 

distribution and end use.  Fossil energy use and GHG emissions are accounted for within the system 

boundary. We have accounted only for the direct GHG emissions, while GHG fluxes associated with 

indirect land use change (ILUC) impacts are not considered. While recognizing that ILUC has 

contributions to the overall lifecycle and its uncertainty for bioenergy systems, quantifying this 

impact is quite challenging. LCA researchers are working to quantify the ILUC impact using various 

economic allocation and market models [31]. In our analysis, we restrict the system boundary to 

capture only direct effects. The GHG fluxes from ILUC are in addition to the direct GHG emissions 

and ILUC results do not affect the relative/comparative environmental profile for bioenergy systems, 

which is an essential part of our analysis.  

Functional Unit: The lifecycle GHG emissions from the ethanol pathway are expressed in units of 

grams CO2-equivalents per megajoule of energy (g CO2-eq/MJ). The lower heating value (LHV) of 

ethanol is used to convert it from volumetric to energy units (MJ of energy). Using MJ instead of 

volumetric units makes it easy to compare ethanol with gasoline system. In the case of biomass 

electricity, the LCA results are expressed on a per kWh basis. It is a convenient unit to compare 

biomass electricity with other reference electricity systems such as the U.S. grid electricity or coal 

power plants. Appropriate conversion factors used in this analysis are given in Appendix 1.  

Reference case: It refers to a fossil fuel alternative to which a biomass production chain is compared. 

For example, the reference case for ethanol is gasoline. In the case of biomass electricity, choosing a 

reference case is more complex. Biomass electricity is most likely to replace average grid electricity 

in a region. However, the environmental profile of grid electricity varies from region to region. For 

the national level analysis, comparison is made between biomass electricity and the U.S. grid 

average emissions. In the later sections, we discuss the regional variability in the average grid 

electricity emissions and its effect on the comparison results.  
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Monte-Carlo method for LCA: Instead of using a single average value for different input parameters 

of life cycle analysis, we define a domain of possible inputs using probability distributions. Then we 

use a Monte Carlo simulation approach to perform the lifecycle analysis. This approach generates 

inputs randomly from a probability distribution over the domain, performs deterministic 

computation on the inputs and aggregates the results. MATLAB is used to perform these 

simulations. A sample MATLAB program for the LCA of the agricultural subsystem is given in 

Appendix 2. The total life cycle GHG emissions are the sum of the emissions at each stage.  

The Net Energy Ratio (NER) is estimated using following equation: 

 

 

 

 

Figure 2: System boundary of bioenergy systems life cycle analysis 
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3.1. Life Cycle Analysis (LCA) of individual pathways 

The main stages for LCA of individual pathways are as follows:  

Cellulosic Ethanol  

a. Switchgrass Agriculture  

b. Biomass collection and transportation  

c. Bio-refinery process 

d. Ethanol distribution  

e. Ethanol End Use in flex-fuel  vehicles 

Biomass Electricity  

a. Switchgrass Agriculture  

b. Biomass collection and transportation  

c. Biomass electricity generation  

The following section discusses our approach to derive the mean value and the probability 

distribution of various input parameters.   

3.1.1. Switchgrass Agriculture  

Switchgrass, is a native to North America and survives in a wide variety of climatic conditions. It is 

found in regions ranging from Mexico to Quebec [2]. It has been studied under the DOE Bioenergy 

Feedstock Development Program (BFDP) since 1991 and is proposed as an ideal herbaceous crop for 

energy because it has high yield, coupled with relatively low nutrient requirements. Although 

switchgrass currently only grown in buffer strips and not cultivated as a commodity crop, in the long-

run, switchgrass may be grown as a dedicated energy crop as envisioned by DOE Billion Ton Supply 

study [3] and in existing bioenergy plans such as Energy Independence and Security Act 2007 and 

State Renewable Portfolio Standards [10]. Switchgrass has a ten year plantation cycle, meaning it is 

planted once at the beginning of year one but harvested annually over a ten-year period [36]. 

Eliminating an annual planting cycle has the advantage of reducing the annual energy use to 

cultivate this feedstock as well as reduces soil loss and soil degradation. We gathered the 

switchgrass agricultural process data from a variety of published papers and reports [2, 30, 36, 37]. 

The agricultural system boundary for switchgrass production includes:  

a. Yearly switchgrass yield  
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b. Nitrogen fertilizer application rates  

c. Herbicides application rates  

d. Farm machinery fossil fuel consumption  

Switchgrass Yield:  

The switchgrass yield is an important parameter in the agricultural subsystem LCA. However, 

reported empirical data of the switchgrass yield is quite variable as switchgrass cultivation is still an 

emerging practice. Switchgrass yield is also dependent on other variable factors such as soil quality, 

climatic conditions and switchgrass ecotype.  In our analysis, we have derived switchgrass yield data 

from the most recent ORNL’s publication for the switchgrass yield and potential in the U.S.[37]. This 

study has collected and analyzed a large number of field observations for the switchgrass yield (1400 

observations across 200 sites in the U.S. - Appendix 3). Switchgrass yield estimates vary 

considerably, from less than 1 ton/ha to 40 ton/ha (yield data are expressed on a dry mass basis).  

The most frequently observed yield class across all cultivars, soils, and management practices is 

between 10 and 12 ton/ha. In our analysis, we represent the yield of switchgrass by a normal 

distribution graph with a mean value of 12 ton/ha. The standard deviation (σ) of yield is found to be 

5 ton/ha such that ± 2σ covers approximately 95% of the yield values. The input yield graph used for 

our analysis is as shown in Figure 3.  

 

Figure 3: Switchgrass Yield distribution (mean – 12 ton/ha; σ – 5 ton/ha) 
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Nitrogen Fertilizer Application Rate:  

Application rate of nitrogen (N) fertilizer is one of the major contributors to the overall uncertainty 

in the LCA results of the switchgrass agricultural subsystem. There is a very high variability in N 

application rate for switchgrass agriculture. In addition, there is not a strong correlation between the 

switchgrass yield and the use of nitrogen fertilizer [37] (Appendix 3). The ORNL’s empirical study 

suggests that optimum N fertilizer application rate is 90 kg/ha/year. Nevertheless, there are several 

cases where zero fertilizer planting did as well as fertilized stands. Very high levels of fertilizers use 

also do not result in increased switchgrass production. Thus, in absence of clear consensus around 

the N fertilizer use topic, we have assumed the switchgrass yield is an independent parameter from 

the N fertilizer application rate. In our study we found the mean N application rate to be 90 

kg/ha/year. The standard deviation (σ) for the N application rate is found to be 40 kg/ha/year such 

that ± 2σ covers approximately 95% of the N application values.  

N2O Emissions: N fertilizer is also responsible for direct N2O emissions [35]. According to Pelvin’s 

study [31], N2O emissions are the major contributor to the overall uncertainty of biofuels’ LCA. The 

global warming potential (GWP) of N2O is approximately 300 times that of CO2. In our analysis, we 

have referred IPCC 4th
 Assessment Report [50] and have applied the GWP value of N2O as 296 times 

that of CO2 (Appendix2).  Given the uncertainty regarding the percentage of N fertilizer converted to 

N2O, we have modeled this parameter with as a triangular distribution. The lower and upper limits of 

triangular distribution are 0.8% to 1.8% N to N2O conversion respectively (same as modeled in 

GREET uncertainty study [33]).  

Herbicide application rate:  

The herbicide application rate is only applicable to the first two years of switchgrass cultivation. We 

have averaged this value for the 10 year switchgrass production cycle. The average herbicide 

application rate for this study is found to be 1.6 kg/ha/year. The standard deviation (σ) for herbicide 

application rate is found to be 0.6 kg/ha/year [30].  

Farm machinery fossil fuel consumption: 

Farm machinery is used for soil preparation, planting seeds, irrigation and other farm jobs. The fuel 

consumption for on farm activities is higher in the first two years of switchgrass cultivation as 

compare to the rest of the switchgrass cultivation years. Once the switchgrass crop reaches 

maturity, two years after the plantation, the energy required for farm operation reduces. The mean 

fuel use rate in farm machinery is found to be 16.4 (liters) l/ha/year. The standard deviation (σ) for 

the fuel use rate in farm machinery is found to be 3.3 l/ha/year [30].  
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Table 1 summaries the mean and standard deviation value of the major LCA input parameters in the 

switchgrass agricultural phase.  

Table 1: Mean and standard deviation of the major LCA input parameters in the switchgrass agricultural phase. 
These are average values per year for a 10 year plantation cycle.   
 Mean Standard Deviation 

Switchgrass Yield 12 ton/ha 5 ton/ha 

N Application Rate 90 kg/ha 40kg/ha 

Herbicide Rate 1.6 kg/ha 0.6 kg/ha 

Farm Machinery Fuel Use Rate 16.4 l/ha 3.3 l/ha 

 

Assumptions in LCA of Agriculture Subsystem:  

a. Carbon neutrality of bioenergy systems is assumed. This is when combustion of the biomass 

releases the same amount of CO2 as captured by the plant during its growth [34]. Thus in our 

analysis we have not accounted for the CO2 sequestered during the switchgrass cultivation 

phase as well as CO2 emissions during biomass/biofuels combustion phase. We have only 

accounted for the external fossil fuel energy inputs and associated GHG emissions during 

various lifecycle stages. However, the land use change may lead to a change in carbon stored 

above and below ground called soil organic carbon. This may disturb the carbon neutrality of 

the bioenergy system. In our analysis, we have assumed that equal portions of Conservation 

Reserve Program (CRP) land and land growing conventional crops are converted to the 

switchgrass cultivation. Converting conventional crop land to switchgrass cultivation is 

associated with net positive sequestration of carbon in the soil [35]. However, converting 

fallow CRP land to switchgrass cultivation is associated with release of soil organic carbon 

[35]. Thus, the resulting net carbon flux to the atmosphere from the land use change is 

balanced. 

b. Energy use in manufacturing of the farm machineries is not taken into account. Their 

contribution to overall energy use is less than 5% of the total energy use in agricultural stage 

[51]. Moreover, switchgrass can be cultivated, managed and harvested using conventional 

farming equipment. Therefore, it does not require purchasing of new equipment for farming 

of switchgrass only.  

c. Appropriate energy use and GHG emissions factors for inputs such as production and 

transportation of fertilizer, herbicides, fossil fuel energy use are taken from the GREET 1.8 

model. Appendix 1 summaries all the GREET factors used in this study.  
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d. Energy use and GHG emissions associated with some of the input parameters such as seeds, 

and chemicals, used only in the first year of the switchgrass plantation, are not taken into 

account. Their contribution to overall energy use and GHG impact is less than 5% of overall 

contributions [30].  

3.1.2. Biomass collection and transportation  

Switchgrass collection and transportation- encompassing  harvest, storage,  and  delivery  –  is  an  

integral  part  of  the  overall life cycle analysis of bioenergy systems. However, accounting for this 

stage is quite challenging, as switchgrass cultivation is an emerging practice and it is not grown 

anywhere for this purpose. Thus, a modeling approach is used to predict LCA impacts of this stage. 

Majority of existing LCA studies account for the energy and GHG emissions of this stage using a 

simplified model. The fuel consumption for the roundtrip of a truck used for the transportation of 

biomass, from the agricultural farm to the processing plant, is accounted. The modeled distance for 

the cost effective transportation of biomass ranges between 50 to 100 miles [30]. However, the 

actual energy use and GHG emissions associated with the switchgrass handling and transport can be 

quite large. Being a low-density material more energy is needed to transport switchgrass than other 

feedstocks such as corn grains for the same mass.  Also, the energy associated with loading, 

unloading, grinding is significant [24].  

Integrated Biomass Supply Analysis and Logistics (IBSAL) model developed at Oak Ridge National 

Laboratory (ORNL) provides an extensive analysis of the switchgrass logistics [24]. Using advanced 

computational tools, they have estimated the cost, energy use, and GHG emissions for different   

collection   and   transportation options for switchgrass.   The details of this model relevant to our 

study are discussed in Appendix 4. In our analysis, we have used the results of the ISBAL model for 

switchgrass to assess energy and GHG emissions in the collection and transportation stage. The 

switchgrass logistics energy use and GHG emissions are dependent on the volume of biomass 

required per day or the size of biorefinery - electricity plant. The size of biorefinery – electricity plant 

is in fact dependent on other factors such as demand for the biofuel/ biomass electricity, availability 

of the biomass in the region and upfront capital investment available. In absence of clear 

information regarding the future viable economic size of biomass plants and daily requirement of 

biomass, we have used an average value of 2500 dry ton/day for our analysis.  

According to the ISBAL model, the fossil energy use and the GHG emissions in the collection and 

transportation for a ton of switchgrass is 1100 MJ/ton and 85 kg CO2-eq/ton respectively. These 

reported energy and GHG emissions are much higher as compared to a simple accounting model for 

a 100 mile round trip with a 40 short ton truck capacity (94 MJ/ton and 8.3 kg CO2-eq/ton 
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respectively [30]). The energy and GHG emissions in the processes such as baling, loading, unloading 

and grinding are significant and should be carefully accounted in the logistics phase of switchgrass.  

3.1.3. Bio-refinery process  

Lignocellulosic feedstocks such as switchgrass are mainly composed of cellulose, hemicellulose, 

lignin and other inorganic minerals. Production of cellulosic ethanol via biological conversion 

consists of three critical steps: pretreatment of biomass, hydrolysis of sugar polymers (cellulose, 

hemicellulose etc.) to sugar monomers and fermentation of sugar monomers to ethanol [22]. A 

generic cellulosic ethanol production process is shown in Figure 4.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Biological Cellulosic ethanol production process (source: D.Kumar et. al. 2012 [22]) 

The ethanol yield and energy and chemical used in the bio-refinery phase are the important 

parameters contributing to the LCA of cellulosic ethanol. The following section discusses the 

methodology to estimate these parameters for the cellulosic ethanol LCA study.  

Ethanol yield  

The cellulosic ethanol yield is expressed in units - liters of ethanol produced / dry ton of biomass 

(l/ton). It is determined by the following factors [30]:  

a) Mass fraction of cellulose and hemicelluloses in biomass feedstock 

b) Efficiency of the pretreatment process  

Solids (Cellulose and lignin)  
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Biomass Pretreatment Conditioning 

Simultaneous Saccharification 
and Co-Fermentation (SSCoF) 
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c) Efficiency of the enzymatic breakdown of cellulose and hemicelluloses 

d) Efficiency of the fermentation process 

Mass Fraction of cellulose / hemicellulose- Switchgrass 

The physical properties of switchgrass such as cellulose, hemicellulose, and lignin mass fractions are 

estimated by feedstock properties databases from the U.S. DOE [38]. Table 2 shows these 

parameters mean and variation values.  

Table2: Mass fraction of Cellulose/Hemicellulose in Switchgrass  

Switchgrass Mass Fraction  Mean Std deviation 

Cellulose 33.6 % 1.3 % 

Hemicellulose 26.2 % 0.1 % 

Lignin 18.7 % 1.6 % 

 

Efficiency of pre-treatment, enzymatic breakdown and fermentation process  

The ethanol conversion process is being researched widely and scientists are working to improve 

conversion efficiencies.  The 2011 techno-economic report by NREL [39], provides the most recent 

and comprehensive information regarding the conversion efficiencies for lignocellulosic biomass. 

The analysis by NREL is for a bioethanol plant using dilute acid pretreatment process with 

simultaneous saccharification and cofermentation hydrolysis and fermentation (DA-SSCF) process. 

The efficiencies of different conversion steps is shown in table 3. These conversion efficiencies have 

significantly improved over last ten years. The 2002 report by NREL estimated the Xylan to Xylose 

and Cellulose to Glucose process efficiencies as 67.5% and 63.5 % respectively [40].  

Table 3: Cellulosic Ethanol Conversion Efficiencies  

Process 2012 Yield 

Xylan (hemicellulose) to Xylose  90% 

Cellulose to Glucose 90% 

Xylose to Ethanol  90% 

Glucose to Ethanol 95% 

Ethanol stoichiometric yield  50% 

Source: Aden et all, NREL study 2011 [39]  

Taking into account the composition of switchgrass feedstock and the process yield of switchgrass 

ethanol, we estimate the yield for ethanol production. Figure 5 shows the probability distribution of 

ethanol yield for the above discussed process efficiencies.  
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Figure 5:  Probability distribution of ethanol yield (l/ton) 

Energy Use in Producing Cellulosic Ethanol 

Another important factor contributing to the LCA of cellulosic ethanol process is energy and 

chemical use in the ethanol processing stage.  

Bio-refinery Utilities 

 Bioethanol facilities require a large amount of process steam at various temperatures and pressures 

(For example, low pressure steam at 152°C and 502 kPa and high pressure steam at 242°C and 3464 

kPa [22]). Lignin stream is a co-product generated in cellulosic ethanol process. It is estimated that 

the waste lignin (co-product) can provide the entire processes steam requirement for production 

processes of cellulosic ethanol [22]. Moreover, steam generated from waste lignin stream is more 

than the steam required for the cellulosic ethanol production process. Thus, excess steam can be 

used to generate on-site electricity [39].  

Assumptions: In our analysis of the biorefinery process, we have assumed that all process steam and 

electricity is obtained through the burning the lignin onsite. Hence, there are no extra energy or GHG 

emissions burdens from the energy use/utilities in the bio-refinery process. The excess electricity 

generated from waste lignin stream can be fed into the grid and can add a positive credit for biofuel 

process. According to the NREL techno-economic feasibility report (2011) [39], 30% of the total 
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onsite generated electricity from lignin is in excess than what is required for ethanol production and 

can be fed into the grid [39]. However, the amount of excess electricity available is variable and 

depends on the process design. Thus, to keep the lifecycle accounting for the cellulosic ethanol on a 

conservative side we have not accounted for this co-product.  

Bio-refinery Chemical/Enzyme Use   

Ethanol production is through a biochemical processes utilizes chemicals for pretreatment, 

hydrolysis, and fermentation. Enzymes (proteins that catalyze biochemical reactions) assist with 

liquefaction, saccharification, and fermentation and are associated with other process benefits in 

ethanol production [23]. 

Most of the existing cellulosic ethanol LCA studies do not account for process chemicals and 

enzymes. However, with the present cellulosic process technology, these chemicals and enzymes 

can have a significant contribution to overall LCA results. Spatari and Maclean (2007) 

comprehensively analyzed this part of life cycle analysis [23]. The chemicals and enzymes contribute 

about 9 g CO2-eq/MJ of ethanol energy derived from the switchgrass feedstock using DA-SSCF and 

AFEX-SSCF conversion technologies. Table 4 shows the contribution of chemicals and enzymes to the 

overall lifecycle of cellulosic ethanol for these two conversion processes.  

Table 4: Contribution of individual chemical and enzyme inputs used in ethanol conversion to GHG emissions 
(gCO2-eq /MJ of ethanol)  
Feedstock Process Switchgrass -  DA SSCF Switcgrass -  AFEX CBP 

Enzymes 3.3 3.6 

Sulfuric acid 0.13 0.59 

Lime 0 4.7 

Ammonia 5.4 0 

Nutrients 0.21 0.21 

Total GHG emissions 9.3 9.8 

Source: Spatari and Maclean study (2007) 

3.1.4. Ethanol Transport and Distribution  

The distance between the bioethanol plant and ethanol retail station location plays an important 

role in determining the energy and GHG emissions in this stage. Since these plants are currently not 

in existence, but will be built in future, a modeling approach is used to determine the optimal 

locations of these plants across the U.S. According to the GREET model the emissions in the 

distribution stage are approximately 40 g CO2-eq/l (liter) of ethanol. Another study by Morrow et al., 

optimizes the bio-refinery location across the U.S. such that cost of ethanol distribution is minimum 
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and estimates the emissions from the distribution stage to be 20 g CO2-eq/lt [41]. In our analysis, we 

have taken that the average emissions from the distribution stage are 30 g CO2-eq/l of ethanol.  

3.1.5. Ethanol Use in Flex Fuel Vehicle (FFVs) 

In this stage of the life cycle analysis of biofuels, combustion of the fuel in the vehicle and associated 

GHG emissions are accounted for. Ethanol fuel has a lower energy density compared to gasoline.  

Thus Flex-Fuel Vehicle (FFVs) typically suffer a loss in apparent fuel economy (miles per gallon of 

fuel, mpg) when running on E85 (nominally 85% ethanol, 15% gasoline). In our analysis, we use the 

fuel economy for ethanol a typical mid-sized FFV vehicle to be 20 mpg (using ORNL Federal Test 

Procedure [42]). The fuel economy for gasoline for this category of vehicle is 25 mpg [42]. These fuel 

economy values are used to estimate life cycle GHG emissions per kilometer (km) of vehicle drive. 

Assuming the carbon neutrality of the bioenergy we have not accounted for any additional GHG 

emissions from this stage. Thus for cellulosic ethanol, all the life cycle GHG emissions are from 

upstream stages only. However in the case of gasoline emissions from combustion phase are 

approximately 80% of total fuel cycle GHG emissions [46].  

3.1.6. Biomass Electricity Conversion Process 

Biomass feedstocks are used to generate electricity using conversion technologies such as direct 

firing, integrated gasification and co‐firing with coal. The potential environmental impact of the 

biomass electricity generation system is dependent on the chosen technology option for conversion. 

The common types of biomass electricity generation systems are: 

a. Direct‐fired biomass power plant using biomass residue (woody residue, primarily) 

b. Biomass‐fired integrated gasification combined cycle (IGCC) system using a biomass 

energy crop (willow, switchgrass)  

c.  Co‐firing biomass residue with coal (10-15% biomass by heat input) 

Direct-fired is at present the most common method of converting biomass resources into power in 

the United States. A direct-fired system burns the biomass to generate hot flue gas, which is fed into 

a boiler to generate steam. Direct-fired biomass facilities have a conversion efficiency of 15% to 35%, 

depending upon the manufacturer [43]. Gasification systems- instead of directly burning the fuel to 

generate heat -convert biomass into a combustible gas, which is a mixture of carbon monoxide, 

hydrogen and other gases. The integrated gasification combined cycle (IGCC) technology can use 

energy crops such as willow tree and switchgrass as feedstock. However, this is not widely deployed 

biomass electricity generation method at present [43]. Gasification technology to generate 

electricity is still considered to be in the development and demonstration phase. The conversion 
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efficiency of IGCC is higher than direct-fired. Conversion efficiencies for gasification technology have 

been reported as 37.2% by NREL and 36% by EPRI [27]. Recent constructed biomass gasification 

plants in Europe have conversion efficiencies varying from 25% to 43% [52].    

In this report, we analyze both the direct-fired and the biomass‐fired IGCC system to convert 

switchgrass to electricity. Based on the current state of technology in the U.S. [45] and assuming 

that the new dedicated biomass power developed will deploy the most efficient conversion 

technology option; we have found the mean value conversion efficiency to be 35%. The average 

standard deviation is found to be 5% such that ±2σ covers the majority of the conversion efficiency 

range for the direct fired and the IGCC technology. This conversion efficiency distribution range also 

helps accounting for the variance in the conversion efficiencies due to other external factors such as 

moisture content in biomass.  

Assumptions: In this analysis we have assumed carbon neutrality of the biomass energy. It is 

considered a closed-loop process, in which power is generated using a feedstock (switchgrass) which 

is grown specifically for the purpose of energy production. The carbon sequestered in the growing of 

switchgrass offsets the emissions from the biomass combustion phase during the electricity 

generation stage. The energy and emissions associated with commissioning and decommissioning of 

the biomass electricity plant are not taken into account. These GHG emissions may contribution 

upto 10% of overall GHG emissions of the biomass electricity LCA [26]. However, this assumption is 

same for commissioning or decommissioning of the bio-refinery and thus there is no impact on the 

comparison results of the two-bioenergy use pathways.  

3.2. Framework for Bioenergy Systems Comparison  

One of the main aims of this study is to assess the relative land use efficiency and climate change 

mitigation potential of biomass use for the transport sector versus biomass use for electric power. 

We propose the criteria for comparison should not be dictated by absolute emissions along a certain 

bioenergy use pathway, as considered by some previous studies [13]. Energy from ethanol has 

altogether a different utility than energy from electricity. Ethanol helps with meeting the demand of 

alternative fuel for the transportation sector, whereas biomass electricity helps in reducing the fossil 

fuels (coal/natural gas) consumption in the electric power sector. We consider the savings in 

emissions of bioenergy systems from the displacement of fossil fuel along that pathway.  Based on 

this criterion, it becomes important to quantify the lifecycle GHG emissions impacts of each pathway 

as compared to the reference case - fossil energy system.  A reference case energy system is chosen 

that is realistically likely to be displaced by the bioenergy system. 
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In the case of cellulosic ethanol in the U.S., it is most likely to replace gasoline use in internal 

combustion engine vehicles. Hence, the reference case system chosen for comparison of cellulosic 

ethanol is gasoline. Lifecycle impacts of gasoline fuel from upstream processing and fuel combustion 

stages are well quantified with detailed LCA reports (such as GREET 1.8 model).   The average total 

fuel cycle  emissions from gasoline are 90 g CO2-eq/MJ of fuel energy (Appendix1). In the case of 

biomass electricity, choosing a reference case system is more complex. Biomass electricity is most 

likely to replace average grid electricity in a region. However, the environmental profile of grid 

electricity varies from region to region. For the base case analysis, we have compared biomass 

electricity with the U.S. grid average emissions. In the later section, we have discussed the regional 

variability in the average grid electricity emissions and its effect on the comparison results.  

3.2.1. Comparison - Emissions offset per hectare (ha) of land  

We follow a two-step approach to compare the environmental profile of bioenergy pathways. In the 

first step, the life cycle GHG emissions impacts of each pathway are compared with the reference 

case - fossil energy system (Figure 7). The functional unit for comparison of ethanol to gasoline is MJ 

of energy and for electric power is kWh .  

 

 

Figure 7: Step 1 – Comparing bioenergy systems with reference case fossil energy 

In the second step, the environmental performance of bioenergy pathways is evaluated in terms of 

land use efficiency. We assume that 100% of switchgrass produced in a year from a hectare of land is 

either used to produce ethanol or biomass electricity, and estimate the emissions saved from a 

hectare of land using either of pathways. The following equations describe the calculation of land 

use efficiency for each bioenergy systems.  
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We have mean values and probability distributions for these parameters from section 3.1.1, 3.1.3 

and 3.1.6  

 

2𝑒𝑞/𝑘𝑊ℎ   

Values of e1 and e2 values can be estimated from the step 1 of this comparison 

Then we can estimate GHG offset from bioenergy systems per hectare of land as follows: 

 

 

3.2.2. Comparison - Emissions offset per kilometer (km) driven 

Another method used to compare the environmental profile of bioenergy systems is formulated 

assuming a special case of biomass electricity use where all the biomass electricity produced is used 

to charge electric vehicles. Ethanol is used to power Flex Fuel Vehicles (FFVs). Figure 8 shows the 

schematic used for comparison. We have only accounted for the fuel cycle GHG emissions in this 

comparison. The fuel economy of Flex fuel Vehicles is discussed in section 3.1.6.  The lifecycle 

impacts associated with vehicle manufacturing are not taken into account.  

 

 

 

 

 

Figure 8: Schematic for bioenergy systems comparison (on basis of a km driven) 
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4. Results  

Box and Whisker representation: Energy use and GHG emissions are represented by a white box 

symbol with whiskers.  The red line in the white box represents the mean, with the top line as 75th 

percentile and the bottom line as 25th percentile of a certain output parameter (energy use/GHG 

emissions). The end of whiskers represents the minimum and maximum value of an output 

parameter excluding outliers.  

4.1.Switchgrass Agriculture - Energy Use & GHG Emissions  

Figure 9 and Figure 10 display the fossil energy use and GHG emissions from the agricultural inputs 

for switchgrass agriculture per hectare of land per year.  The fossil energy use for switchgrass 

agriculture is further broken down as energy use in different agricultural inputs. All of the 

agricultural stage inputs cumulatively consume on average 5630 MJ/ha/year of fossil energy, with a 

minimum value of energy use is 4000 MJ/ha/year and maximum is 8000 MJ/ha/year. Nitrogen 

fertilizer use is responsible for the greatest fossil energy use per hectare.   TheERG biofuel analysis 

meta model estimates the total energy consumption in switchgrass agriculture as 7411 MJ/ha/year 

[44]. Another biofuel LCA study estimates switchgrass farm energy input as 4800 MJ/ha/year[30].  

Thus, the range of variability in this analysis captures the previous single-valued estimates.  

The GHG emissions are also broken down by source for agricultural production. Appropriate 

emissions factors were taken from the GREET 1.8 model for each agriculture input (Appendix1). The 

cumulative average GHG emissions from the agriculture stage are 830 kg CO2-eq/ha/year. The 

minimum system emissions are 450 kg CO2-eq/ha/year and maximum 1200 kg CO2-eq/ha/year. The 

energy use in production and transportation of nitrogen fertilizer as well as N2O direct emissions 

have largest impact on the total GHG emissions from switchgrass agriculture stage.   The ERG biofuel 

analysis meta model estimates the GHG emissions from switchgrass cultivation as 971 kg CO2-

eq/ha/year [44].  

This analysis captures the first category of variation that is due to ‘real’ parameter variability 

(discussed in section 2.2.). Variation in the nitrogen fertilizer application rate is an important 

determinant of both the GHG and energy balance. However, this analysis doesn’t capture the second 

category of variation that is due to ‘methodological’ factors. In our analysis, the system boundary for 

the agriculture subsystem considers a limited number of inputs. For example, the fossil energy use in 

farm machinery production and repair, labor energy are not considered. Thus defining system 

boundaries, as well accounting for co-products causes methodological variation. Since the source of 

‘methodological’ variation is very subjective, we have not considered it in this analysis.  
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Figure 9: Switchgrass Agriculture- Fossil Energy Input (MJ/ha/year) 

 

Figure 10: Switchgrass Agriculture- GHG Emissions (kg CO2-eq/ha/year) 



 33 
 

4.3. Ethanol –Net Energy Ratio & GHG Emissions 

Figure 11 shows the life cycle GHG emissions for cellulosic ethanol production. The average value of 

LCA emissions are 35 g CO2-eq/MJ of energy, with a minimum-maximum range varying from 25 to 50 

g CO2-eq/MJ. The ERG biofuel analysis meta model estimates the GHG Emissions from cellulosic 

ethanol as 11 g CO2-eq/MJ [44]. Other studies estimate GHG emissions from cellulosic ethanol from 

energy grasses to vary from 5 to 50 g CO2-eq/MJ [29]. Thus the range of variability in this analysis 

captures the previous single-valued estimates to some degree.  

This analysis captures two categories of variation, first that which is caused due to ‘real’ parameter 

variability and the second due to ‘uncertain’ parameters (discussed in section 2.2.). Variations in 

switchgrass yield, fertilizer application rates and conversion efficiency are important ‘real’ 

determinants of both the GHG and energy balance. For example, the contribution from the 

agricultural stage of ethanol production varies over a large range of 3 to 25 g CO2-eq/MJ. The other 

category of variation caused by ‘uncertainty’ is captured in the collection and transportation and 

bio-refinery chemical use stage. In existing LCA studies, the contribution from these stages is poorly 

quantified. We have accounted for these stages by reviewing the most contemporary literature in 

the field. However, there exists a scope of research to improve the understanding and quantification 

of these parameters by advanced modeling approaches.  

The Net Energy Ratio (NER) of cellulosic ethanol has an average value of 3.84 MJoutput / MJinput and 

minimum – maximum range as 3.03 to 5.00 MJoutput / MJinput . Cellulosic ethanol has a high NER as it is 

assumed that the unprocessed lignin will provide the cellulosic ethanol facilities energy for steam 

and electricity.   
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Figure 11: Lifecycle GHG emissions (g CO2-eq/MJ) of cellulosic ethanol derived from switchgrass  

4.3. Biomass Electricity: Net Energy Ratio and GHG Emissions  

Figure 12 shows the life cycle GHG emissions for biomass electricity derived from switchgrass. The 

mean value of LCA emissions is about 100 g CO2-eq/ kWh of energy, with a minimum-maximum 

range varying from 50 to 180 g CO2-eq/ kWh. The NREL study estimates the GHG Emissions from 

biomass electricity as 45 g CO2-eq/kWh [26]. Another dedicated biomass electricity LCA study 

estimates GHG emissions as 38 to 52 g CO2-eq/kWh [27]. Thus, the average GHG emissions found in 

our analysis are higher than the previous estimated values. This discrepancy is due to the estimates 

from the logistics phase.  

This analysis captures two categories of variation, first that which is caused due to ‘real’ parameter 

variability and the second due to ‘uncertain’ parameters (discussed in section 2.2.). Variations in 

switchgrass yield, fertilizer application rates and conversion efficiency are ‘real’ determinants for 

variation in GHG emissions. The contribution from agricultural stage of biomass electricity varies 

over a range from 10 to 100 g CO2-eq/kWh. The other category of variation caused by ‘uncertainty’ is 

captured in the collection and transportation stage. In existing biomass electricity LCA studies, the 

contribution from these stages is poorly quantified. We have accounted for this stage by reviewing 

the most contemporary literature in the field (ISBAL model Appendix 4).  
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The NER of biomass electricity has an average value of 3.33 MJoutput / MJinput and minimum – 

maximum range as 2.38 – 4.54 MJoutput / MJinput.  

 

Figure 12: Lifecycle GHG emissions (g CO2-eq /kWh) of biomass electricity derived from switchgrass 

4.4. Comparison - Emissions offset per hectare of land  

Thus far this study has modeled and assessed the fossil energy and GHG emissions of individual 

bioenergy pathways, i.e. ethanol production and electricity generation from switchgrass.  Each of 

these pathways has a different energy and environmental profile. The goal of this section is to 

compare the different bioenergy pathways and highlight differences in GHG offset potential from a 

land use efficiency perspective. This is needed as the scale of bioenergy production depends on the 

optimal use of land.  

As discussed in section 3.2.1, we have followed a two-step approach for evaluating land use 

efficiency. First, the lifecycle GHG emission impacts of each pathway are compared with the 

reference fossil energy system.  Then we determine the GHG offset potential from a land use 

efficiency perspective. Figure 13 represents a comparison of cellulosic ethanol with gasoline system. 

Gasoline life cycle GHG impacts are estimated from GREET 1.8 model (Appendix 1). On average 55 g 

CO2-eq/MJ of energy are saved if gasoline use is replaced by cellulosic ethanol derived from 

switchgrass. Figure 14 represents the comparison of biomass electricity with U.S. grid average and 
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coal plant emissions. On average 558 g CO2-eq/kWh of energy are saved if the U.S. average grid 

electricity use is replaced by biomass electricity from switchgrass.  

 

Figure 13: GHG emissions of cellulosic ethanol compared to gasoline (on basis of MJ of energy) 

90 

Emissions savings 
~ 55g CO2 e/ MJ 
~ 60% reduction 
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Figure 14: GHG emissions of biomass electricity compared to the U.S. grid average and coal plant emissions (on 
basis of a kWh of energy) 

In step 2, the comparative environmental performances of bioenergy pathways is evaluated from a 

land use efficiency perspective. We assume that 100% of the switchgrass produced in a year from a 

hectare of land is either used to produce ethanol or biomass electricity (discussed in section 3.2.1). 

Figure 15 represents the comparison results for different bio-energy pathways. On average about 

4.5 ton CO2-eq/ha/year are saved if we use cellulosic ethanol instead of gasoline. In the case of 

biomass electricity the average GHG emissions saved are 9.5 ton CO2-eq/ha/year if biomass 

electricity displaces U.S. average grid electricity. On average 18.3 ton CO2-eq/ ha/year are saved if 

biomass electricity displaces coal electricity.  

Thus, biomass electricity has a higher GHG offset potential than cellulosic biofuels in terms of land 

use efficiency. However, the results are sensitive to the regional electricity grid mix that biomass 

electricity displaces.  In section 4.6, the GHG offset potential of bioenergy systems is assessed taking 

into account regionally variable parameters.  

 

Emissions savings 
~ 558 g CO2eq/ kWH 
~ 85% reduction 
 

650 
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Figure 15. GHG emissions offset from different bioenergy systems in terms of land use efficiency (metric 
tonCO2-eq/ ha/year)  

4.5. Comparison - Emissions offset per kilometer (km) driven  

This is another method used to compare energy and GHG aspects of the environmental profile of 

bioenergy systems. It is formulated assuming a special case of biomass electricity use where all the 

biomass electricity generated is used to drive electric vehicles. Ethanol is used to power Flex Fuel 

Vehicles (FFVs) (as discussed in section 3.2.2). The results of this comparison are shown in Figure 16.  

Using the average LCA emissions for ethanol (35 g CO2-eq/MJ) and the fuel economy of ethanol 

driven FFVs (20 mpg), we estimate the GHG emissions per km driven for ethanol-powered vehicles. 

It is 85 g CO2-eq/km. Similarly, using the average GHG emissions of gasoline from the GREET 1.8 

model (Appendix 1) and the fuel economy of gasoline powered FFVs (25 mpg - section 3.1.5) we 

estimate the emissions per km driven for a gasoline powered vehicle. It is 230 g CO2-eq/km. Thus 

comparing the two systems results, on average 145 g CO2-eq/km of GHG emissions are saved if we 

use cellulosic ethanol to drive FFVs instead of gasoline. 

For an electric vehicle, assuming the average grid emissions (Appendix 1) and fuel economy of pure 

electric vehicle as 5.06 km/kWh [49], we have estimated the emissions per km driven. The electric 

vehicle average emissions are about 130 gCO2-eq/km driven. If we use biomass electricity to power 

an electric vehicle, the emissions are about 20 g CO2-eq/km driven. Therefore, 110 g CO2eq/km 
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emissions are saved per kilometer of an electrical vehicle driven. Similarly, if the electricity form coal 

power plants is used to charge an electric vehicle, the GHG emissions per kilometer of vehicle driven 

are 214 g CO2-eq/km.  Thus, comparing this scenario to the option where electric vehicle is charged 

exclusively by biomass electricity, on average 194 g CO2-eq/km GHG emissions are saved per 

kilometer of an electrical vehicle driven. 

Thus, biomass electricity may not be a very effective alternative in terms of GHG offset potential if 

the end goal of bioenergy policies is to use biomass for the transportation sector only. In the case 

where we consider an electric vehicle charged using biomass electricity and displacing average grid 

electricity, the GHG emissions offset per kilometer of vehicle driven are less than the alternative 

scenario of using biomass for producing cellulosic ethanol.  However if the biomass electricity used 

to charge electric vehicle displaces the electricity from carbon intensive fossil sources such as coal, 

the GHG emissions offset per kilometer of vehicle driven are more than the scenario of using 

biomass for cellulosic ethanol. These findings are different from previous bioenergy comparison 

studies, which have estimated the offset of biomass powered electric vehicle by comparing it to a 

gasoline powered car only and concluded that biomass electricity has a better environment profile 

than cellulosic ethanol in all cases [13].  

 

Figure 16: GHG emissions offset from different bioenergy systems (gCO2-eq/ km of vehicle driven) 

230 g CO2-eq /km (gasoline powered FFVs) 

130 g CO2-eq /km (U.S. grid average - EVs) 

GHG Emissions offset 
~ 110 gCO2-eq/km 

GHG Emissions offset  
~ 145 gCO2-eq /km 

85 

20 

214 g CO2-eq /km (Coal Power - EVs) 

GHG Emissions offset 
~ 194 gCO2-eq /km 
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4.6.  Regional Variability  

Thus so far we have analyzed the comparative performances of bioenergy systems based on national 

average values. However, at a regional level there are some factors such as current energy mix, 

switchgrass yield and logistics which affect the overall environmental performance of bioenergy 

systems. In this section, we have analyzed three main geographic regions across the U.S., to 

understand the effect of regional variable parameters (Figure 17). The regions that have  variation in 

the electric generation mix and have high potential for switchgrass cultivation are chosen for this 

analysis.   

Electrical Grid Mix: The U.S. EPA, Emissions & Generation Resource Integrated Database (eGRID) is a 

comprehensive inventory that determines environmental attributes of electric power system across 

the nation [45]. It divides the U.S. into ten regions, according to their grid electricity mix. In our 

analysis, we have focused on Midwest Reliability Organization (MRO) – Region 1, Southwest Power 

Pool (SPP) – Region 2, and SERC Reliability Corporation (SERC) – Region3 (Figure 17). These regions 

also have high potential of switchgrass cultivation in the future. Table 5 shows the average electrical 

generation emissions for different regions.  

 
Figure 17: Different geographic regions considered for bioenergy systems analysis 

Table 5: Electrical Grid Emissions (gCO2-eq/ kWh)) across different geographic regions  

 Grid Average Emissions ( g CO2 eq/ kWh)  

Region 1 (MRO) 773 

Region 2 (SPP) 756 

Region 3 (SERC) 613 

US Average 648 

Region 1 
(MRO) 

Region 2 
(SPP) Region 3 

(SERC) 
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Source: eGRID 2007 [45]  

Switchgrass Yield: The potential yield of switchgrass across all states in the U.S. is shown in Appendix 

5 (U.S. DOE Billion Ton Study). The mean yield and variation across three regions chosen for our 

analysis are as shown in table 6.  

Table6: Switchgrass yield (ton/ha) across different geographic regions  

 Yield Average ( ton/ha/year)  Std Deviation ( ton/ha/year)  

Region 1 (MRO) 9  2 

Region 2 (SPP) 12 3 

Region 3 (SERC) 15 5 

US Average 12 5 

Source: ORNL (2008) Exploring potential U.S. switchgrass production for lignocellulosic ethanol [37]  

For the regional analysis, it is assumed that other parameters of LCA such as collection and 

transportation, biomass conversion efficiency and yield remain the same across all regions. A two-

step approach is followed to determine the GHG offset potential from a land use efficiency 

perspective. (GHG emissions offset per hectare of land - section 3.2.1).  Figure 18, 19 and 20 shows 

these results for region 1, 2 and 3 respectively. Table 7 summarizes the average value of these 

potential GHG offset results.  

 

 

Figure 18: Region 1 (MRO) - GHG emissions offset from bioenergy systems (ton CO2-eq/ha/year) 
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Figure 19: Region 2 (SPP) - GHG emissions offset from bioenergy systems (ton CO2-eq/ha/year) 

 

Figure 20: Region 3 (SERC) - GHG emissions offset from bioenergy systems (ton CO2eq/ha/year) 

Table 7: Average GHG emissions of offset from bioenergy systems across different regions (tonCO2 -
eq/ha/year)  
 GHG offset (ton CO2-eq/ha/year) 

Ethanol (gasoline) Biomass Elec (regional grid) Biomass Elec (Coal Plant) 

Region 1 (MRO) 3 9 13 

Region 2 (SPP) 4.4 12 18 

Region 3 (SERC) 5.6 12 22.5 

US Average 4.5 10 18.3 

Thus in the region 1 where the switchgrass yield is lower the GHG offset are lowest among all 

bioenergy systems. In region 3 where the switchgrass yield is highest and average grid emissions are 

lowest, the difference between ethanol and biomass electricity system environmental profile is the 

smallest.  
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Figure 21, 22 and 23 shows the comparison results for GHG offset potential for a kilometer of vehicle 

driven for region 1, 2 and 3 respectively regions. Table 8 summarizes the average value of these 

potential GHG offset results. The absolute emissions of biomass pathways are least in the region 3. 

This is because the switchgrass yield is highest in this region.  However, relative GHG offset potential 

of both pathways is comparable for a kilometer of vehicle driven.  

 

Figure 21: Region 1 (MRO) - GHG emissions offset for bioenergy pathways (gCO2-eq/ km of vehicle driven) 

 

Figure 22: Region 2 (SPP) - GHG emissions offset for bioenergy pathways (gCO2-eq/ km of vehicle driven) 

230 g CO2-eq /km (gasoline powered FFVs) 

152 g CO2-eq /km (Region 1 grid – EVs) 

GHG Emissions offset  
~ 135 g CO2-eq /km 

GHG Emissions offset  
~ 130 g CO2-eq /km 

230 g CO2-eq /km (gasoline powered FFVs) 

GHG Emissions offset  
~ 144 g CO2-eq /km 

149 g CO2-eq /km (Region 2 grid – EVs) 

GHG Emissions offset  
~ 129 g CO2-eq /km 
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Figure 23: Region 3 (SERC) - GHG emissions offset for bioenergy pathways (gCO2-eq/ km of vehicle driven) 

Table 8: Average GHG emissions of offset from bioenergy systems across different regions (g CO2-eq/ km of 
vehicle driven)  
 
 GHG offset (g CO2-eq/ km of vehicle driven) 

 Ethanol (FFVs) Biomass Elec (regional grid) 

Region 1 (MRO) 135 130 

Region 2 (SPP) 144 129 

Region 3 (SERC) 121 103 

US Average 145 110 

 

 

 

 

 

 

 

 

 

 

230 g CO2-eq /km (gasoline powered FFVs) 

GHG Emissions offset  
~ 149 g CO2-eq /km 

GHG Emissions offset  
~ 103 g CO2-eq /km 

121 g CO2-eq /km (Region 3 grid – EVs) 
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5. Conclusions 

5.1. Key Findings 

In this report the lifecycle energy and GHG emissions of individual bioenergy pathway, i.e. producing 

cellulosic ethanol and biomass electricity from switchgrass, are assessed. The results from this 

analysis provide a mean value for each life cycle metric as well as a range of possible outcomes.  

Cellulosic ethanol average life cycle GHG emissions are 35 g CO2-eq/MJ of energy, with a minimum-

maximum range varying from 25 to 50 g CO2-eq/MJ. Variations in switchgrass yield, fertilizer 

application rates and conversion efficiency are important determinants in overall variation in energy 

and GHG balance. For example, the contribution from the agriculture stage of switchgrass varies 

over a large range of 500 to 1200 kg CO2eq/ha/year.  The range of variability in this analysis captures 

the previous single-valued estimates for life cycle GHG emissions for ethanol derived from 

switchgrass [16-20]. While comparing cellulosic ethanol with gasoline system, on average 55 g CO2-

eq/MJ of energy are saved if gasoline use is replaced by cellulosic ethanol derived from switchgrass.  

Biomass electricity average life cycle GHG emissions are 100 g CO2-eq/kWh, with a minimum-

maximum range varying from 90 to 110 g CO2eq/kWh. The average life cycle GHG emissions 

accounted for in this analysis are higher than the previous estimated values for dedicated biomass 

electricity. This is because the energy use and GHG emissions values from the logistics and supply 

chain phase of biomass used in this study are much higher than previously used values in other LCA 

studies. In comparison to the U.S. grid electricity, on average 513 g CO2-eq/kWh of energy are saved 

if biomass electricity from switchgrass displaces the average grid electricity. However, avoided 

emissions per unit of energy are dependent on the regional factors also, such as the regional 

electricity grid mix.  

When comparing these bioenergy systems from land a use efficiency perspective, biomass electricity 

has better energy and GHG aspects of the environmental profile than ethanol. 4.5 ton CO2-

eq/ha/year are saved if we use all the switchgrass cultivated on a hectare of land to produce 

ethanol. In the case of biomass electricity, the annual GHG emissions offset are 10 ton CO2-

eq/ha/year. However, the emissions offset from the best case of cellulosic ethanol are comparable 

to emissions offset from the worst case of biomass electricity.  

We have also analyzed another case of comparison of bioenergy systems - GHG emissions offset per 

km of vehicle driven. This case is formulated assuming a special case of biomass electricity use 

where all of the biomass electricity produced is used to drive electric vehicles and ethanol is used to 

power Flex Fuel Vehicles (FFVs). As discussed in section 4.5, 145 g CO2eq/km will be offset if we use 

ethanol instead of gasoline in Flex Fuel Vehicles (FFVs). In the case of electric vehicles, 110 g CO2eq/ 
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km is saved if we use biomass electricity instead of the average grid power. Thus, biomass electricity 

is not a very effective alternative if the end goal of bioenergy policies is to use biomass in 

transportation sector only. These findings are different from the previous bioenergy comparison 

studies, which they have estimated the offset of a biomass powered electric vehicle by comparing it 

to a gasoline powered car only and recommended that biomass electricity has a better environment 

profile and greater GHG offset potential than cellulosic ethanol in all cases [13].   

5.2.  Limitation and Future Work  

This study addresses some of the main challenges in bioenergy systems LCA. An in-depth study has 

been conducted to understand uncertainty and variability in the emerging bioenergy agriculture 

practices, supply chains and conversion technologies. However, some other limitations of a standard 

average based LCA approach have not been addressed. For example, it is very difficult to understand 

land use change patterns from national and regional level average estimates. In addition, predicting 

bioenergy systems supply chain and logistics dynamics is a challenging task. Thus, it is recommended 

to develop spatially explicit LCA models for such analysis. Using analytical frameworks such as Agent 

Based Modeling, it is possible to capture farmer’s behavior, including what feedstocks will be grown 

and the types of land expected to be converted to dedicated bioenergy feedstocks.  
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CO2 1
CH4 23
N2O 296
Source: IPCC Third Assessment Report

Global Warming Potentials

Density (kg/L) HHV (MJ/kg) LHV (MJ/kg)
Gasoline 0.74 46.7 42.5
Ethanol 0.78 30 27

Energy Content

948.452 Btu/MJ
1.055  kJ/Btu

746 W/hp
3,412 Btu/kWh

4 MJ/kWh
239.01 Kcal / MJ
2.471 ac/ha

1.6093 km/mile
0.4536 kg/lb
2,000 lb/short ton

907 kg/short ton
8,766 hr/yr

3.8 L/gal

907.2 kg/ton
5800000 btu/bbl oil eq

3.7 CO2 eq / C 

Conversion factors

Nitrogen production (kg CO2e/kg N) 3.0
Herbicide (average mix for biomass) (kg CO2e/kg) 21.0
Gasoline (g CO2e/MJ) 89.16
Diesel (g/MJ) 96.42
Coal (g CO2e)/MJ) 112.30
NG (g CO2e/MJ) 69.43
g CO2e per kWH of grid electricity 649

GREET 1.8 GHG factors

Appendix 1 – Conversion /GHG Factors 
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Appendix 2 – Sample MATLAB program for LCA+ Monte Carlo 

MATLAB program for simulating life cycle analysis of agriculture subsystem, using Monte Carlo 

simulation 

% GHG emissions in Agriculture Production stage of switchgrass 
% Switchgrass yeild mean 12 tons/ha , sigma = 5  
S_Y = randn(10000,1); 
S_Y = ((S_Y*5)+12); 
S_Y = min(S_Y,30); 
S_Y = max (S_Y,0); 
 
%/Fertilizers 
% Nitrogen Application Rate = N_A (kg of N /ha)(mean= 90 ; sigma = 
% 15) 
N_A = randn(10000,1); 
N_A = ((N_A*15)+90); 
N_A = min(N_A,180); 
N_A = max(N_A,0); 
N_A1 = N_A./S_Y;  
N_A1 = N_A1*1000; 
N_A1 = min(N_A1,22000); 
N_A1 = max(N_A1,0); 
%N_A1 gm N / ton of switchgrass 
GHGEmissionsN = N_A*2.959; 
% GHG emissions N (kg CO2e/ha) -> GREET  
%GHGEmissionsN = GHGEmissionsN./S_Y; 
% GHG emissions N (kg CO2e/ton of switchgrass) 
% Fossil Energy N = 50 MJ/ Kg N -> GREET  
E_N = N_A*50; 
% MJ/ha 
%/Herbicides 
% Herbicide Application Rate = H_R (kg/ha)mean= 
% 1.6 ; sigma = 0.6) 
H_R = randn(10000,1); 
H_R = ((H_R*0.6)+1.6); 
H_R = min(H_R,65); 
H_R = max(H_R,0); 
GHGEmissionsH = H_R*21.035; 
% GHG emissions Herb (kg CO2e/ha) 
%GHGEmissionsH = GHGEmissionsH./S_Y; 
% GHG emissions Herb (kg CO2e/ton of switchgrass) 
% Fossil Energy H = 322 MJ/ Kg H -> GREET  
E_H = H_R*322; 
% MJ/ha 
% Fuel Use in Farming Machines  
% F_U mean = 16.4 sigma = 3.3 (l/ha) --> B-KDF / MIT report 
F_U = randn(10000,1); 
F_U = ((F_U*3.3)+16.4); 
GHGEmissionsF = F_U*0.88*43*0.08; 
% GHG emissions Diesel(kg CO2e/ha) = F_U (l/ha)*density 
(kg/l)*LHV(MJ/kg)*GHGfactor(KgCo2e/MJ)  
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%GHGEmissionsF = GHGEmissionsF./S_Y; 
% GHG emissions Fuel (kg CO2e/ton of switchgrass) 
% Fossil Energy F = 322 MJ/ lt -> GREET  
E_F = F_U*0.88*43; 
% MJ/ha 
% N20 emissions from N fertilizers; triangular plot by GREET 
N20_N = trirnd(0.008,0.0115,0.015,10000); 
GHGEmissionsN20_N = N20_N*(44/28)*298; 
% GHG Emissions N20_N (KgCO2e / Kg of N) 
%land use change impacts N2O dynamics - DAYCENT model 
  
GHGEmissionsN20_N1 = GHGEmissionsN20_N.*N_A; 
GHGEmissionsN20_N1 = min(GHGEmissionsN20_N1,1000); 
% GHG Emissions N20_N (KgCO2e / ha) 
%GHGEmissionsN20_N = GHGEmissionsN20_N./S_Y; 
% GHG Emissions N20_N (KgCO2e /ton of switchgrass) 
GHG_TAg = (GHGEmissionsN + GHGEmissionsH + 
GHGEmissionsF+GHGEmissionsN20_N1); 
%GHG_TAg (Kg CO2e/ha) 
a1= [GHGEmissionsF, GHGEmissionsH, GHGEmissionsN, GHGEmissionsN20_N1, 
GHG_TAg]; 
% (Kg CO2e/ha) 
GHG_TAg1= GHG_TAg./S_Y; 
%GHG_TAg (Kg CO2e/ton  
E_TAg = E_F+E_H+E_N; 
% MJ/ha 
a2 = [E_F, E_H, E_N, E_TAg]; 
% MJ/ha 
E_TAg1 = E_TAg./S_Y; 
% MJ/ ton 
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Appendix 3 – Switchgrass Yield  

 

 

Switcgrass yield for all ecotypes along different latitudes from 200 field studies (1995-2008) 

Source Exploring potential US switchgrass production for lignocellulosic ethanol ORNL/TM-2007/183 

 

Switcgrass yield variation with N fertilizer use from 200 field studies (1995-2008) 

Source Exploring potential US switchgrass production for lignocellulosic ethanol ORNL/TM-2007/183 
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Appendix 4 – Biomass Supply Analysis Model 

Integrated Biomass Supply Analysis and Logistics (ISBAL) model for Switchgrass delivery to a 

biorefinery 

IBSAL model simulates the time dependent flow of biomass from field to a bio refinery. It consists of 

different sub-modules for harvesting, processing (such as, grinding), storage and transportation. 

Model  input  data  include:  local  weather  data (average  daily  temperature,  humidity  and 

precipitations); average  yield  of  biomass;  proportion  of  land  that  is  cultivated with the crop of 

interest; crop harvest progress data (including  start  and  end  dates  of  harvest);  capacity  of  the 

biorefinery; dry matter loss with time in storage; plant moisture content at the time of harvest; 

operating parameters on different agricultural machinery; and capital and operating costs of 

different agricultural machinery. The model is built on the EXTEND platform, available from 

Imaginethat Inc. (Extend Simulation Model, 2005). Main outputs of the model include: delivered cost 

of biomass to a biorefi nery ($/dry tonne of biomass delivered); GHG emission (kg of CO2/dry  tonne  

of  biomass  delivered)  and  energy  consumption(MJ/dry tonne of biomass delivered). Cost, energy 

and emission parameters can be obtained for individual processingsteps. Details of the model can be 

found in Sokhansanj and Turhollow (2005) and Sokhansanj et al. (2006). 

 

 

Delivered cost of switchgrass to a biorefinery for different collection, preprocessing, storage and 

transportation options 
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Energy consumption and carbon emissions in the different cases 
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Appendix 5 – Switchgrass Potential  

 

 

2027 Switch-grass yield @ 80 / ton 

Source: Billion Ton study resource map at Bioenergy KDF site (https://www.bioenergykdf.net/biokdf/map)  
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