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Abstract  

With more biologically reactive nitrogen (N) becoming available in terrestrial ecosystems 

due to atmospheric N deposition, it is important to understand its impact on forest 

biogeochemistry. Long-term experimental N deposition in a northern hardwood ecosystem 

increased the assimilation of N by plants (Zak et al., 2004) as well as dramatically increased 

the export of NO3
- via leaching (Pregitzer et al., 2004). This study aimed to quantify changes 

in denitrification, another possible fate of N, and changes in the bacterial denitrifier 

community after more than 16 years of experimental N deposition. We hypothesized that the 

increased NO3
- availability would increase denitrification rates and N2O production due to an 

increase in gene abundance and changes in composition of bacterial denitrifiers. Using 

laboratory assays, we found that denitrification rates and N2O production were significantly 

higher under experimental N deposition. However, contrary to our hypothesis, five 

denitrification genes (norB, narG, nirK, nirS, and nosZ) decreased under experimental N 

deposition. Additionally, no relationship occurred between the abundance of nosZ and N2O 

production. This apparent uncoupling of functional gene abundance and function may be due 

to differences in denitrifier community membership. These results indicate that the observed 

increases in denitrification rates and N2O production, shift in denitrifier composition, and 

decrease in functional gene abundance demonstrate that chronic atmospheric N deposition 

has altered denitrification on both a molecular and ecosystem-level scale, albeit these 

responses are small at an ecosystem level. 

Keywords: atmospheric N deposition, denitrification, bacterial denitrifiers, functional gene 

abundance, N saturation 
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Introduction 

The global nitrogen (N) cycle has been modified by human food and energy 

production, specifically the production of N fertilizers, planting of leguminous crops, and 

burning fossil fuels. These anthropogenic processes have doubled the quantities of 

biologically reactive N in terrestrial and aquatic ecosystems (Vitousek et al., 1997). Nitrogen 

deposition is projected to increase substantially due to the growing demand for energy and 

food, as human populations increase into the future (Galloway et al., 2004). Terrestrial 

deposition of NOy alone has increased from 6.6 Tg N yr-1 in 1860, to 24.8 Tg N yr-1 in the 

1990’s and is projected to reach 42.2 Tg N yr-1 by 2050 (Galloway et al., 2004). The 

deposition of NHx has even higher projections reaching 83 Tg N yr-1 by 2050 in terrestrial 

environments (Galloway et al., 2004). Moreover, atmospheric N deposition is predicted to be 

more highly concentrated in certain geographic locations, such as southeastern Asia, Europe, 

and the eastern US (Galloway et al., 2004; Galloway et al., 2008). Consequently, it is 

imperative to understand this modification of the global N cycle because it has implications 

for many organisms and contributes to eutrophication, smog, climate change, acid deposition, 

and stratospheric ozone depletion (Galloway et al., 2004).  

Nitrogen deposition is the input of biologically reactive N into the biosphere from the 

atmosphere, which can occur as cloud, dry, or wet deposition (Fowler, 1980; Lovett and 

Kinsman, 1990; Lovett, 1994). Cloud deposition is the input of small, condensed water 

droplets on plant surfaces and is mainly restricted to coastal or mountainous regions that are 

often immersed in fog (Lovett, 1994). Dry deposition is the direct deposition of particles and 

gases on surfaces such as soil, vegetation, and water (Lovett, 1994). Wet deposition occurs 
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when N gases, such as NOx, dissolve in precipitation, causing it to become more acidic 

(Lovett, 1994). Both dry and wet deposition are ubiquitous, but vary in importance 

geographically (Lovett, 1994).  For example, anthropogenic emissions of N in the Midwest, 

Southeast, and Northeast US result in elevated deposition of NO3
- over the Eastern US, 

whereas there is greater deposition of NH4
+ in the Midwest and eastern Great Plaints due to 

intensive agriculture (Lovett, 1994). Ammonia is deposited locally because its residence time 

in the atmosphere is only 1-2 hours; however, NO2 can be transported and deposited much 

further from its source because its residence time in the atmosphere is ~ 1-2 days (Langan, 

1999).  

The consequences of atmospheric N deposition are global and widespread within 

terrestrial and aquatic systems. The anthropogenic increase of available N can increase 

ecosystem productivity, and it can also decrease biodiversity due to acidification and 

eutrophication (Matson et al., 2002; Rabalais, 2002). Nitrogen deposition in forests can alter 

plant community composition and plant-soil interactions, in addition to creating an “open” N 

cycle, rather than the naturally occurring “closed loop” retaining N in terrestrial ecosystems 

(Nadelhoffer, 2008). There are human health concerns as well, because NO3
- is soluble and 

can leach to ground and surface waters. Evidence suggests that elevated levels of NO3
- in 

drinking water can increase the risk of certain cancers, adverse reproductive outcomes, and 

other chronic health effects (Ward et al., 2005).   

Excess N tends to “cascade” through the environment, meaning that one single 

molecule of reactive N can participate in many biogeochemical processes. This complicates 

the notion of an ultimate fate for the excess reactive anthropogenic N. In the 1990’s, the fate 

of only 35% of reactive N inputs to terrestrial ecosystems were known and included 
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denitrification in marine and terrestrial ecosystems and deposition in the ocean (Galloway et 

al., 2008). Therefore, the fate of 65% of reactive N remains unknown, and it is assumed to 

have accumulated in soils, vegetation, or is lost to groundwater or denitrification (Galloway 

et al., 2008). In an 8-year study, chronic NO3
- deposition significantly increased the 

production and leaching of NO3
- and organic N compounds, which has implications in 

regulating food webs of aquatic ecosystems (Pregitzer et al., 2004). Aside from plant uptake 

and chelation with soil organic matter, an ideal fate for excess reactive N in the biosphere is 

to be returned to the atmosphere as N2 via the process of denitrification. 

Denitrification is a microbially mediated N transformation of nitrate (NO3
-) to either 

N2 or nitrous oxide (N2O). The ability to denitrify is widespread among bacteria, 

encompassing more than 60 genera, and to a lesser extent among Archaea and fungi 

(Philippot et al., 2007). Denitrifiers use NO3
- and nitrite (NO2

-) as electron acceptors during 

the stepwise reduction to N2 under anaerobic conditions.  

There are several main factors that control denitrification. Because denitrifying 

bacteria are heterotrophs, the availability of organic substrates directly influences their 

physiological activity. Anaerobic conditions are also necessary, because NO3
- is respired via 

denitrification when O2 partial pressures are very low (Tiedje, 1982). In soil, anaerobic 

conditions are often induced by soil texture and drainage, which could account for 86% of 

observed denitrification variability (Groffman and Tiedje, 1989). Additionally, denitrification 

has been found to significantly increase with NO3
- availability (Merrill and Zak, 1992). 

Generally, most denitrifying bacteria are found in the upper 5 cm of soil and their abundance 

decreases with depth (Mergel et al., 2001), indicating this biogeochemical process is 

restricted to surface soil horizons. 



Amanda Garzio-Hadzick   
Thesis 
 

4 
 

The transformations reducing NO3
- to N2 are enzymatically mediated steps; therefore, 

there is a specialized enzyme responsible for each reduction.  Consequently, the genes that 

code these enzymes are often targets in molecular approaches to characterize the denitrifying 

community (Wallenstein et al., 2006). Comparisons of culturable denitrifying bacteria to 

those revealed by molecular analyses indicate that DNA-based techniques are adequate in 

assessing seasonal changes in denitrifying populations (Mergel et al., 2001). However, 

molecular methods involving 16S rRNA do not appropriately detect this physiological group 

in the environment, because denitrifiers do not have a close phylogenetic relationship (Braker 

et al., 1998). Nitrite reductase (nir) genes were the first to be used in denitrifier diversity 

studies and have continued to be the most common molecular marker for denitrifier 

communities (Wallenstein et al., 2006). There are two types of nitrite reductase enzymes: 

copper (Cu) nirK genes and a cytochrome cd1-nitrite reductase encoded by nirS genes.  nirS 

in more widespread but less conserved among bacteria than is nirK (Bothe, 2000; Coyne, 

1989);  nirK is present in a wider range of phylogenetically disparate bacteria (Coyne, 1989). 

This concept is exemplified in Priemé et al (2002), wherein they could amplify nirK genes 

from both marsh and upland Michigan soil, but nirS could only be amplified from the marsh 

soil. Real-time PCR has revealed nirK densities of 9.7 x 104 to 3.9 x 106 copies per gram of 

soil (Henry et al., 2004). These quantitative measures of gene copy number can be used to 

infer cell numbers, because there is only one copy of the nirK gene in denitrifying bacteria 

(Philippot, 2002). 

Other genes used during the denitrification pathway have also been studied. The 

dissimilatory reduction of nitrate has two homologous enzymes (Nar and Nap), but since 

these nitrate reductases can be found in bacteria that do not denitrify, the genes narG and 
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napA are not widely used for denitrification studies (reviewed in Wallenstein et al., 2006).  

Also, the nitric oxide reductase gene (norB) has been studied for its unique ability to form a 

N-N bond (Braker and Tiedje, 2003). 

Nitric oxide reductase (nos) genes have also been studied, because N2O is the final 

product for organisms lacking nosZ and N2O is a potent greenhouse gas.  Approximately 

30% of denitrifying bacteria lack the nosZ gene and therefore contribute to global N2O 

emissions, especially from soils under agricultural management (Philippot et al., 2011). The 

abundance of nosZ genes have been reported to be 108 to 109 per gram of dry soil (Henry et 

al., 2006). To date, denitrifying bacteria are believed to have one copy of nosZ, making it 

possible to also estimate the size of their population in soil (Philippot, 2002). Because soils 

are the largest source of N2O in the atmosphere (IPCC, 2001), it is imperative to understand 

the effects of atmospheric N deposition on N2O and N2 emission from soil.  For example, 

higher NO3
- concentrations in cultivated soil have led to higher fluxes of N2O from soil when 

compared to native soil, a response driven by the use of N-based fertilizers in cultivated soil 

(Stres et al. 2004). Therefore, it is important to further understand how unmanaged forests 

will respond as atmospheric N deposition continues to increase over the next century.  It is 

also important to note that soils can function as N2O “sinks” through the consumption of N2O 

by organisms that have nosZ (reviewed by Chapuis-Lardy et al., 2007). Denitrifying bacteria 

community composition also has an effect on N2O emissions due to differences in Nos 

activity (Cavigelli and Robertson, 2000). 

The objectives of this study are to determine if greater soil NO3
- availability, caused 

by over a decade of experimental atmospheric N deposition, has increased denitrification 

rates and if greater soil NO3
- availability has increased the abundance of denitrifying bacteria 
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or changed community composition.  In other words, has greater substrate availability (i.e., 

NO3
-), due to N deposition, altered the abundance or composition of denitrifying bacteria 

thereby subsequently increasing rates of denitrification? 

Materials and Methods 

Study site and field sampling 

Denitrifying bacteria community composition, abundance, and denitrification rates 

were quantified at four locations spanning a 500-km climatic and atmospheric N deposition 

gradient in Michigan (Fig. 1; Table 1).  The locations are sugar maple (Acer saccharum 

Marsh.) dominated hardwood forest stands that have been receiving experimental N 

deposition since 1994. The soils are well-drained, sandy, isotic, frigid Typic Haplorthods in 

the Kalkaska series.  

Each location has six 30-m by 30-m plots of which three receive ambient plus 30 kg 

NO3
- N ha-1 yr-1 and three receive ambient N deposition alone; each plot is surrounded by a 

10-m buffer that also receives the experimental treatments. Plots receiving experimental N 

deposition are treated with solid NaNO3 granules (5 kg N ha-1) six times per growing season 

(April – September); the dry granules are broadcast over the forest floor. The experimental N 

deposition treatment was designed to simulate rates of atmospheric N deposition that are 

projected to occur in eastern North America and Europe by 2050 (Galloway et al., 2008).  

In October 2009, forest floor samples composed of the Oe and Oa horizons were 

collected. Ten random samples, measuring 10-cm by 10-cm, were collected in each plot, 

homogenized, and then composited within each plot. Subsamples were placed in sterile 50 
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mL polypropylene tubes and flash frozen using liquid N2 for transport to the University of 

Michigan for storage at -80°C. Genomic DNA was then extracted from 2.5 g of forest floor 

using PowerMax TM Soil Extraction Kits (Mo Bio Laboratories, Solana Beach, CA). Sample 

preparation and GeoChip analysis was conducted at the Zhou lab (University of Oklahoma). 

In May 2011, soil samples were collected using stratified random sampling methods 

to quantify nosZ abundance and denitrification rates. Ten soil cores were extracted from each 

plot by driving a 5-cm-diameter steel core to a depth of 5 cm, beginning at the surface of the 

Oe and A horizons. The 10 samples in each plot were homogenized into one composite 

sample. Because the soil texture is single-grained sand and there is no visible aggregation, 

sample homogenization produced a representative sample from each plot, while not 

destroying sample integrity because no soil structure exists.  Samples were stored on dry-ice 

during transit to the laboratory to prevent degradation of DNA. Water content of field moist 

samples was measured by weight loss upon drying at 105 oC for 48 hours. Soil organic C and 

total N content was determined by a Carlo Erba CN analyzer.  

Soil temperature and gravimetric water content data for each plot were used as 

covariates in the biogeochemical and molecular statistical analysis of denitrification. Data is 

publically available at: http://forest.mtu.edu/research/michigangradient/data.htm. 

Denitrification rates and N2O production 

Denitrification and N2O production for the soil samples (May 2011 samples) were 

estimated using assays with and without C2H2. Total denitrification was estimated as the 

amount of N2O produced in presence of C2H2, whereas N2O production was assessed in the 

absence of C2H2.  
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Denitrification potential was measured by using the denitrification enzyme activity 

(DEA) assay (Groffman et al., 1999). In a 20-mL glass vial, 5 g of field moist soil, 40 mg kg-

1 dextrose, 100 mg N kg-1as KNO3, and 10 mg kg-1 chloramphenicol were added and the vial 

was sealed air tight with butyl rubber septa (Groffman et al., 1999). Anaerobic conditions in 

the flask were created by flushing the media and headspace with N2 for 3 min each. Purified 

acetylene was then added to the flask to achieve a final concentration of 10% (10kPa) in the 

gas phase (Tiedje, 1994). Soil was incubated for 90 min at 22 °C before the headspace was 

sampled. 

A modified version of the static core method was used to measure relative 

denitrification rates; C2H2 was injected into the headspace of soil cores and then N2O 

accumulated over an incubation period (Groffman et al., 1999). This procedure was also 

repeated on a separate set of soil subsamples without C2H2 to quantify N2O production. A 5-g 

soil sample was placed in a 20-mL glass vial and sealed air tight with butyl rubber septa. 

Anaerobic conditions in the flask were created by flushing the headspace with N2 for 3 min. 

Soil was incubated at 22 °C for 24 hrs before the headspace was sampled and N2O was 

quantified.    

Gas samples were analyzed using a HP 5890 series gas chromatograph equipped with 

a PoraPLOT-Q column (0.53 mm I.D. x 25 m) and electron capture detector (Agilent 

Technologies, Santa Clara, CA). The oven, inlet, and detector temperatures were -10 °C, 125 

°C, and 275 °C, respectively, and a gas flow rate of 56 ml min-1 (protocol Lee et al., 2009; Im 

et al., 2011). N2 was used as both the carrier and makeup gas.  
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For the static core method, headspace volume and mass of dry soil were used to 

calculate µg N2O-N g-1. The DEA assay required that Bunsen’s coefficient also be applied in 

order to account for the amount of N2O dissolved in the media.  

Denitrification functional gene abundance and composition using GeoChip 

 The functional gene composition and abundance of the bacterial denitrifier 

community (October 2009 samples) was characterized with the GeoChip 4.0 microarray 

using the following genes: norB, narG, nirK, nirS, and nosZ. Oligonucleotide design, 

synthesis, and fabrication, sample labeling, GeoChip processing, and data normalization were 

completed via the specifications in He et al. (2007). The sum of the normalized signal 

intensity for each gene was then standardized for the number of probes per gene. The number 

of probes per gene was: 59 for norB, 660 for narG, 263 for nirK, 276 for nirS, and 167 for 

nosZ.  

Abundance of nosZ using qPCR 

Using the composite samples from each plot that were also used in the denitrification 

assays, genomic DNA was extracted from 5-g soil samples using MoBio PowerMax Soil 

DNA isolation kits (MoBio Laboratories, Carlsbad, CA) and then further purified using 

Power Clean DNA Clean-Up kit (MoBio Laboratories, Carlsbad, CA). The quantity and 

quality of DNA after extraction and after clean-up was measured at spectrophotometrically at 

260 nm using a Nano Drop 8000 (Thermo Scientific, Wilmington, DE). The concentration of 

DNA upon initial extraction and after the clean-up procedure was compared in order to 

correct for the change in concentration of DNA. 
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A 259-bp DNA fragment was amplified using the nosZ1F (5’-WCS-YTG-TTC-

MTC-GAC-AGC-CAG -3’) and nosZR1 (5’-ATG-TCG-ATC-ARC-TGV-KCR-TTY-TC-3’) 

(Henry et al., 2006). Amplification of qPCR products were carried out with a Strategene 

Mx3000P using Brilliant SYBR Green as a detection system in a 25µl volume containing: 

12.5 µl SYBR Green PCR Master Mix, 1µM of each primer for nosZ, 2µl of template DNA 

ranging from 13 to 60 ng µl-1 of DNA, 0.03µM ROX reference dye, and Rnase-free water to 

complete the 25µl volume. Thermal cycling conditions for the nosZ1 primers were as 

follows: 95°C for 15 min; 6 cycles of 94°C for 30s, 65°C for 45s with a touchdown of -1°C 

per cycle, and 72°C for 30s; 35 cycles of 94°C for 30s, 60°C for 45s, 72°C for 30s, and 80°C 

for 15s (data acquisition step); and 1 cycle 95°C for 45s and 60°C for 45s to 95°C for 30s. 

Each sample was run twice in duplicate and two no-template controls (NTCs) were run with 

each assay.  

Genomic DNA from Pseudomonas stutzeri (B-775 USDA culture collection) was 

used to generate a standard curve containing dilutions between 50-500,000 copies of the gene 

of interest.  

Statistical Analyses 

Statistical differences between denitrification rates and denitrification potential in 

experimental N deposition and ambient treatments were assessed with a two-way ANCOVA 

using site and treatment as factors and soil temperature and soil matric potential as 

covariates. Statistical differences between nosZ copy number in experimental N deposition 

and ambient treatments were assessed with an ANOVA using site and treatment as factors (α 

= 0.05). The concentration of genomic DNA after extraction and after the clean-up step was 
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quantified in order to calculate the change in concentration. The nosZ copy number was 

normalized for the change in concentration. The concentration of DNA between sites and 

treatments was tested using a two-way ANOVA. A linear regression was used to examine the 

correlation between denitrification rates and potentials with the copy number of nosZ. 

Differences in functional gene abundance and composition between treatments were tested 

using a two-way ANOVA. Similarities and differences of denitrification functional genes 

were visualized using the nonmetric multidimensional scaling (nMDS) of a Bray-Curtis 

distance matrix.   

All statistical analyses were conducted using the GLM procedure of SAS version 9.2 

(SAS Institute, Cary, NC) except the nMDS was produced using the computer software 

Primer 6 (Primer-E, Ivybridge, Devon, UK). 

Results 

Denitrification rates and N2O production 

Denitrification Enzyme Assay 

 Experimental N deposition had no significant effect on total denitrification rates, as 

measured by the DEA assay in the presence of C2H2 (P = 0.5481). The average denitrification 

rate increased from 13.1 µg N g-1 under ambient N deposition to 15.6 µg N g-1 in the 

experimental N deposition treatment, representing an 18% increase. However, denitrification 

rates were significantly different among sites (Fig. 2A). The denitrification potential was 

significantly higher in site B than in sites C and D (P = 0.007). Moreover, denitrification 

rates responded differently among replicate sites, wherein all sites except site C experienced 
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an increase in denitrification rates under experimental N deposition treatment. No significant 

interaction between site and treatment was found (P = 0.064).  

Experimental N deposition had no significant effect on DEA in the absence of C2H2, 

which provided insight into N2O production potential (P = 0.161). The average N2O 

production increased from 4.9 µg N g-1 under ambient N deposition to 8.5 µg N g-1 in the 

experimental N deposition treatment, resulting in a 75% increase in N2O production. There 

also was significant variation in DEA among replicate sites (Fig. 2A). N2O production was 

significantly higher in site B compared to all other sites (P < 0.001), wherein site B was the 

only site to increase N2O production potential with experimental N deposition. There was no 

significant interaction between site and treatment (P = 0.1186).  

Static Core Assay 

Denitrification rates were significantly higher under experimental N deposition when 

measured using the static core method in the presence of C2H2 (P = 0.021; Fig. 2B). The 

mean denitrification rate was 79.9 µg N g-1 under ambient N deposition and increased to 

129.0 µg N g-1 in the experimental N deposition; this represents a 68% increase in 

denitrification. Denitrification rates were also significantly different among sites. For 

example, site B had a significantly greater rate of denitrification than site D (P = 0.006; Fig. 

2B). No significant interaction between site and treatment was found (P = 0.065). The 

covariates of soil temperature and soil matric potential were also not significant (P = 0.287 

and 0.262, respectively). 

N2O production was significantly higher under experimental N deposition as 

measured by the static core assay in the absence of C2H2 (P < 0.001; Fig. 2B). The mean N2O 
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production increased from 50.5 µg N g-1 to 114.3 µg N g-1 under experiment N deposition 

resulting in a 127% increase, relative to rates under the ambient treatment. N2O production 

was also significantly higher in site B compared to sites C and D (P < 0.001; Fig. 2B). No 

significant interaction between site and treatment was found (P = 0.065). The covariates of 

soil temperature and soil matric potential were also not significant (P = 0.287 and 0.262, 

respectively).  

 In summary, the significant increases in total denitrification and N2O production 

under experiment N deposition as measured by the static core method supports the 

hypothesis that an increase in available soil NO3
- will increase rates of denitrification. 

However, no significant increase in denitrification or N2O production was found using the 

DEA method and the replicate sites had inconsistent responses. Therefore, the DEA assay did 

not support the hypothesis that increased soil NO3
- availability will increase potential 

denitrification rates and N2O production.  

Molecular Assays 

Functional gene abundance and composition 

 The Geochip analysis indicated that there was a lower abundance of genes found 

mediating denitrification under experimental N deposition (P = 0.039 to 0.012); moreover, 

the abundance of denitrification genes was significantly different among sites (P = 0.0004 to 

<0.0001). However, there were significant interactions between site and treatment (P = 0.057 

to 0.022) for all 5 of the functional genes (norB, narG, nirK, nirS, and nosZ; Fig. 3A). The 

decreases in gene abundance under experimental N deposition treatment were driven by the 

~30% decrease occurring in the northern sites (A and B), whereas the southern sites (C and 
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D) were not affected by the N deposition treatment (Fig. 3A). The collective abundance of 

genes involved with denitrification decreased by 12% under experimental N deposition. 

Individually, the five genes experienced a 10-14% decrease in the experiment N deposition 

treatment. Therefore, the total functional gene abundance decreased under experimental N 

deposition, while the relative proportion of each denitrification gene was unchanged (Fig. 

3B). 

 The nMDS visualization revealed that the denitrification functional gene composition 

within the southern sites (C and D) is very similar despite the N deposition treatment (Fig. 4). 

However, the northern sites (A and B) have a functional gene composition, which clearly 

separates ambient and experimental N deposition treatments (Fig. 4). Therefore, the trends 

visualized in the nMDS confirms the ANOVA results that the northern sites experienced a 

treatment effect on the abundance of functional genes while the southern sites had similar 

functional gene abundance despite the experimental N deposition treatment. 

nosZ abundance 

The nosZ copy number had a significant site by treatment interaction (P = 0.0434); 

however, the main factors of site and experimental N deposition treatment did not exert a 

significant influence on nosZ abundance (P = 0.1690 and 0.2033, respectively; Fig. 5A). The 

significant interaction can be explained by the differing responses under experimental N 

deposition among sites; sites A, B, and D, which experienced a decrease in nosZ abundance, 

whereas, site C had a substantial increase. Overall, the abundance of nosZ decreased by 6% 

under experimental N deposition; average copy number decreased from 11,371 copies g-1 

under ambient N deposition to 10,740 copies g-1 under experimental N deposition. The 
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efficiencies of all qPCR assays ranged between 92-116% and the r2 value ranged from 0.906-

0.996.  

DNA concentration extracted from soil did not differ between N deposition 

treatments (P = 0.3354), but concentrations did significantly differ between sites A and C and 

sites C and D (P = 0.0032 and 0.0215, respectively). In order to assess the proportional 

change in nosZ genes, the ratio of nosZ to DNA was calculated. The ratio of nosZ to total 

DNA decreased under experimental N deposition in all sites except site C, where the ratio of 

nosZ to DNA more than doubled (Fig. 5B).  

If the abundance of nosZ directly affects the amount of N2O produced, then we 

expected to observe an inverse relationship between nosZ copy number and N2O production. 

However, a weak positive relationship occurred between nosZ abundance and N2O 

production in the ambient treatment using the static core method (r2 = 0.51; P = 0.009). No 

relationship was found for N2O production under ambient conditions when measured using 

the DEA method (r2 = 0.04; P = 0.493) and no relationship was found for N2O production 

under experimental N deposition using either method (r2 = 0.005 and 0.044; P = 0.814 and 

0.512). Overall, we found that the copy number of nosZ was not a good indicator for N2O 

production.  

 In combination, the analysis of the GeoChip and qPCR revealed inconsistent 

responses in functional gene abundance under experimental N deposition. The GeoChip 

functional gene analysis indicated decreases in all five denitrification functional genes (norB, 

narG, nirK, nirS, and nosZ) in the northern sites (A and B), but revealed no change in the 

southern sites (C and D). The nosZ abundance measured using qPCR demonstrated that sites 
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A, B, and D experienced a decrease in nosZ copy number under experimental N deposition, 

whereas it increased in site C. GeoChip analysis indicated that while there may have been 

changes in functional gene abundance, the relative abundance of functional genes did not 

change under experimental N deposition. Additionally, Geochip analysis revealed a shift in 

composition in the northern sites (A and B) under experimental N deposition. These results 

provide some evidence to support the hypothesis that denitrification bacterial functional gene 

abundance and composition change under experimental N deposition, albeit the relative 

proportion of genes was unchanged. 

Discussion 

 Atmospheric N deposition is a global phenomenon that is increasing the amount of 

biologically reactive N entering terrestrial ecosystems (Galloway et al., 2004). The excess N 

can be assimilated by plants, leached to ground or surface waters, or denitrified to the 

atmosphere as N2 or N2O. In our long-term study, we observed that experimental N 

deposition, at a rate expected in the near future, increased denitrification rates and N2O 

production, as measured under laboratory conditions, while decreasing the abundance of 

bacterial genes encoding key enzymes in the denitrification pathway. Despite the decrease in 

gene abundance, the relative proportion of denitrification genes was unchanged under 

experimental N deposition. Although experimental N deposition did increase denitrification 

rates and N2O production, this response was small relative to the large amounts of NO3
- that 

are leaching or assimilated by plants (Pregitzer et al., 2004; Zak et al., 2004). Even though 

denitrification is a minor fate of biologically reactive N in these northern hardwood forests, 

the observed increases in denitrification rates and N2O production, shift in denitrifier 
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composition, and decrease in functional gene abundance demonstrate that chronic 

atmospheric N deposition has altered denitrification on both a molecular and ecosystem-level 

scale, albeit these responses are small at an ecosystem level. 

Our hypothesis that a decade of experimental N deposition would increase 

denitrification was supported by our observations; however, despite this increase, actual 

denitrification losses are likely to be minor, relative to the large amount of N assimilated by 

plants and exported by leaching. An ecosystem inventory of N conducted in 2004 revealed 

30 g N m2, applied over a decade in our experimental treatment, could be accounted for by 

increases in overstory N (3.1 g N m2) and mineral soil/forest floor N (49.6 ± 22.6 g N m2; 

Zak et al., 2008).  Additionally, export of DON and NO3
- has greatly increased under 

experimental N deposition, wherein ~10 g N m2 was lost to leaching over same 10 year 

period (Pregitzer et al., 2004). If the average ambient field denitrification rate of 24 µg N2O-

N m2 (Merrill and Zak, 1992) has increased by 68%, as estimated in the present study, then 

denitrification losses are ~ 0.17 g N m2 for the same decade of experiment N deposition. The 

large leaching losses of N is evidence that N saturation has occurred, which is the result of 

the finite ability for an ecosystem to assimilate and retain N, leading to NO3
- leaching, 

increased N2O emissions, and changes in ecosystem structure and chemistry (Aber et al., 

1989; Aber et al., 1998). In combination, these studies indicate that increased atmospheric N 

deposition has resulted in N saturation for these northern hardwood ecosystems causing 

increased leaching and denitrification, albeit the increase in denitrification is not substantial 

relative to the magnitude of losses attributed to plant assimilation and leaching.  

The increase in N2O production under experimental N deposition provides evidence 

that the release of N2O from soils may be greater as atmospheric N deposition continues into 
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the future. We found that N2O composed 10-98% of denitrification, which is similar to the 

25-90% range observed in similar forests in northern Michigan (Merrill and Zak, 1992). We 

observed that the average proportion of denitrification composed of N2O increased from 78% 

to 89% under experimental N deposition. Previous studies have found that the proportion of 

denitrification that is N2O increases with increasing organic C, NO3
-, NO2

-, O2, and pH (e.g. 

Firestone et al., 1980, Weier et al., 1993; Szukics et al., 2009). Our experimental N 

deposition treatment has not affected pH or O2 concentrations (Patterson et al., 2012); 

however, both organic C and N content have increased under experimental N deposition (Zak 

et al., 2004; Zak et al., 2008). Soil solution concentrations of NO3
--N were 20 times higher 

under experimental N deposition than under ambient N deposition (Pregitzer et al. 2004). In 

the forest floor (Oe/a) and mineral soil, organic matter has increased by 12% and N has 

increased by 9% (Zak et al., 2008). In combination, our results indicate that an increase in 

organic C and NO3
- could be one of the factors that increase N2O production under 

experimental N deposition.  

Our prediction that an increase in denitrification could be accompanied by a shift in 

the relative proportion of denitrification genes was not supported by our analyses. For 

example, the relative proportion of denitrification genes did not differ between treatments, 

even though some replicate sites experienced a decrease in gene abundance (i.e. norB, narG, 

nirK, nirS, and nosZ). This similarity in relative proportion between N deposition treatments 

is interesting when considering the nitrite reductase genes (nirK and nirS).  For example, nir 

genes are mutually exclusive and not associated with specific taxonomic groups, but are 

dispersed across 60 genera mainly in the proteobacteria (α, β, γ, ε) but also found in other 

genera such as Firmicutes and Aquificaceae (Braker and Conrad, 2011; Philippot et al., 
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2007). Because both nirK and nirS decreased by a similar magnitude, we infer that chronic N 

deposition did not favor or inhibit the abundance of organisms whose genomes contain one 

of these genes. Furthermore, organisms containing nirK or nirS genes in their genome have 

different tolerances to pH, dissolved organic matter, and nutrients (Bárta et al., 2010; Priemé 

et al., 2002). Nonetheless, we found no difference in the relative proportion of these 

denitrification genes under experimental N deposition, further indicating that organisms 

containing nirK or nirS in their genome responded similarly to chronic N deposition.  

Differences in denitrifier bacterial community composition may account for some of 

the variability of denitrification rates and N2O production between replicate sites, as well as 

account for the inconsistent responses of nosZ abundance among sites (Enwall et al., 2005). 

We assumed that since we observed a decrease in functional genes and an increase in 

denitrification rates that the physiological functioning of denitrifiers increased and/or 

denitrifier community membership changed in order to explain this seemingly uncoupled 

response. Cultured isolates have been found to respond differently to environmental 

regulators, such as O2, influencing the activity of enzymes in the denitrification pathway; 

therefore, taxonomic diversity could plausibly influence ecosystem-level function (Cavigelli, 

1998). Our study measured the abundance and relative proportion of denitrification 

functional genes; however, understanding the identity of denitrifiers present and active would 

have provided greater insight into community composition and function. The GeoChip 

analysis provides some insight into the lineage of denitrifiers, indicating that the denitrifier 

communities under experimental N deposition in sites A and B are different from the ambient 

treatment. Additional information on community membership is needed to understand how 

community composition, membership, or diversity affects denitrification rates, N2O 
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production, or nosZ abundance.  Despite this limitation, we did not see an ecologically 

significant shift in denitrification genes or function after 16 years of N additions. 

Our hypothesis that over a decade of experimental N deposition would increase the 

abundance of denitrification functional genes was not supported by our observations; instead 

we found a decreasing trend in gene abundance and a significant site by treatment 

interaction, which hinders our ability to make confident predictions about the effect of N 

deposition on northern hardwood ecosystems. For example, the abundance of nosZ 

responded differently in replicate sites, but had an overall 6% decrease under experimental N 

deposition. A reduction in nosZ abundance could have implications for the proportion of 

denitrification that is N2O because nosZ encodes for the enzyme that reduces N2O to N2. 

Copy numbers of nosZ ranged from 5 x 103 to 2 x 104 copies g-1, which is low compared to 

studies that found between 2 x 105 and 1. 5x 108 copies g-1 (Henry et al., 2006; Dandie et al., 

2011). When taking into account the well-drained and well-aerated soil of our study sites, 

these lower copy numbers are not unexpected. The abundance of five denitrification genes 

(norB, narG, nirK, nirS, and nosZ) quantified using GeoChip displayed similar trends as 

nosZ with variable responses to experimental N deposition among sites, but an overall 12% 

decrease under experimental N deposition. Contrary to our hypothesis, greater NO3
- 

availability, the result of experimental N deposition, did not positively influence the 

abundance of genes performing key biochemical steps during the denitrification process. 

It appears that gene abundance and function are uncoupled, because we observed no 

relationship between the abundance of nosZ and N2O production. Similarly, other studies 

have also found no correlation between denitrifier community structure, abundance, or 

denitrification gene expression and N2O fluxes, denitrification rates, or denitrification 
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potential (Dandie et al, 2008, 2011; Wallenstein, 2004). Additionally, environmental 

conditions such as soil organic C, water-filled pore space, and NO3
- were found to explain 

more variance in potential denitrification than denitrifier abundance (Attard et al., 2010). 

However, some studies found significant correlations between the abundance of nosZ and nir 

genes and the potential denitrification rate or N2O emissions (Petersen et al., 2012; Morales 

et al., 2010). Again, denitrifier community composition may be the underlying factor that can 

account for the differences in physiological functioning under different environmental 

conditions that would allow us to predict function. Because chronic N deposition did not 

yield an ecologically-significant response in gene abundance or denitrification rates, it is not 

unexpected that no relationship was found between the abundance and function. 

Our hypothesis that increased NO3
- availability would increase the abundance of 

denitrification genes and thereby increase denitrification rates was not supported by our 

analysis. Rather, we observed that denitrification rates increased despite the apparent 

negative impact that N deposition had on functional gene abundance. This uncoupling 

between functional gene abundance and function may be due to a shift in community 

membership as indicated by our analyses or an increase in physiological functioning of 

denitrifiers under experimental N deposition. Our study indicates that increased NO3
- 

availability may influence denitrifier communities over the long-term, which is contrary 

other studies indicating that NO3
- primarily affects instantaneous denitrification rates and has 

only indirect effects on denitrifier communities (reviewed in Wallenstein et al., 2006). 

Additional research is needed to characterize the membership of these denitrifier 

communities in order to support or refute this hypothesis. Collectively, this study 

demonstrates that chronic atmospheric N deposition may suppress functional denitrification 
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genes, while concomitantly increasing denitrification rates and N2O production; albeit 

denitrification is still only a minor fate of N when compared to the large losses due to 

leaching in these northern hardwood ecosystems and therefore the increase in denitrification 

is not ecologically-significant.  
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Table 1. Location and soil characteristics of Michigan Gradient study sites. 
Characteristic Site A Site B Site C Site D 

Location     
Latitude (N) 46°52’ 45°33 44°23 43°40 
Longitude (W) 88°53’ 84°52’ 85°50’ 86°09’ 

Soil Characteristics     
Temperature (°C)* 8.3 9.6 10.5 11.2 
Moisture (MPa)* -0.07 -0.09 -0.09 -0.08 
pH† 4.63 4.92 4.40 4.60 
Carbon (%) 2.16 5.18 2.29 3.20 
Nitrogen (%) 0.17 0.34 0.17 0.21 

*May 2011 data; soil matric and soil temperature measured at 15cm depth  
†D.R. Zak unpublished data; pH measured at 10cm depth  
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Figure 1.  The Michigan Gradient study sites, spanning a climatic and ambient N deposition 
gradient, are represented by letters A-D. At each site there are three ambient and three 
experimental N deposition plots. 
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Figure 2. Amount of nitrogen gas produced per gram of soil for DEA assay (A) and static 
core method (B). Entire bar represents total denitrification while the proportions of N2 and 
N2O gas is represented as white and grey bars, respectively. Site was statistically significant 
for the DEA assay (A), while both treatment and site were significant for the static core 
method (B). [CV range for DEA = 11 – 173%; static core = 12 – 147%] 
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Figure 3. The corrected signal intensity (A) and relative proportion (B) of the denitrification 
functional genes using normalized signal intensity from the GeoChip. The signal intensity was 
corrected by dividing the sum of the normalized signal intensity for each gene by the number of 
probes per gene, which represents the abundance of each gene. The abundance of denitrification 
functional genes was significantly different between site (P < 0.0004), treatment (P < 0.0387), and 
the interaction (P < 0.0574) for all 5 of the functional genes. [CV range = 1.6 – 37.8%] 
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Figure 4. Nonmetric multidimensional scaling (nMDS) of the denitrification functional genes 
in the ambient and experimental N deposition treatment groups from sites A, B, C, and D 
using the GeoChip microarray. The experimental N deposition treatment is shown as black 
squares and the ambient treatment is shown as open circles.  
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Figure 5. Copy number of nosZ g-1 dry soil (A) and ratio of nosZ copy number to ng DNA 
extracted from soil (B) under ambient and experimental N depsotion. Values are treatment 
means within sites A-D and error bars represent standard error (n = 3).  The main factors 
were not found to be significant, however there was a significant site by treatment interaction 
(P = 0.0434). 
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