
 
 

Appendix A. Numeric example of Dimick Staiger Estimator and comparison between Dimick-Staiger 
Estimator and Hierarchical Poisson Estimator 
 
As described in the manuscript, the Dimick-Staiger (DS) estimator has two components: volume-predicted 
mortality (hospitals’ expected mortality rate based on their volume) and hospital-specific mortality. These two 
inputs are calculated for each hospital and are weighted based on the reliability of hospital-specific hospital 
mortality. For hospital j, the DS is calculated as: 

 
ܦ ఫܵ෢ ൌ ௝ܱ · ௝ܹ ൅ ൫ߚ଴

෢ ൅ ݉ݑ݈݋መଵln ሺܸߚ ௝݁ሻ൯ · ሺ1 െ ௝ܹሻ 
 
Where O is hospital-specific mortality, β0 and β1 are estimated from a regression of mortality on hospital 
volume, and W is the weight assigned to hospital-specific mortality. In this equation, ߚ଴

෢ ൅ ݉ݑ݈݋መଵln ሺܸߚ ௝݁ሻ is 
volume predicted mortality. 

The following is a numeric example showing the calculation of the DS Estimator in the context of the 
simulation. 

A simulated admission-level dataset is created containing 3,000 hospitals and 315,601 admissions for one year 
of simulated admissions. First, hospital-specific mortality (Oj) is calculated for each hospital, which is simply 
the mean observed mortality rate given that patient risk is held constant across hospitals in the simulation. To 
obtain volume-predicted mortality, we estimate the following equation for hospital j: 

Oj = b0 + b1 ln(volume)j + ej 

This is done using the following command in Stata: 

reg mortmean ln_volume 
 
      Source |       SS       df       MS              Number of obs =  315601 
-------------+------------------------------           F(  1,315599) =28415.39 
       Model |  274.001933     1  274.001933           Prob > F      =  0.0000 
    Residual |  3043.23572315599  .009642729           R-squared     =  0.0826 
-------------+------------------------------           Adj R-squared =  0.0826 
       Total |  3317.23765315600  .010510892           Root MSE      =   .0982 
 
------------------------------------------------------------------------------ 
   mortmean5 |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
   ln_sample |  -.0343134   .0002036  -168.57   0.000    -.0347124   -.0339144 
       _cons |   .3312228    .001059   312.78   0.000     .3291473    .3332984 
------------------------------------------------------------------------------ 
 

We then generate hospital-level predictions of mortality given each hospital’s volume. Next, we require 
estimates of the weight (Wj) to apply to the hospital-specific and volume-predicted components of the DS. As 
shown in Appendix 1 of Dimick et al. 2009: 
 

௝ܹ ൌ
ොଶߪ

ොଶߪ ൅ ௝ܸ
 

 
Here, Wj is interpreted as the “ratio of signal variance to total variance…in the residual mortality rate” for 
hospital j. 
 



 
 

To calculate ߪොଶ, we run the previously described regression model (reg mortmean ln_volume) and save the 
residuals (݁̂௜ሻ. We then calculate the variance of ݁̂, weighting by the number of observations in each hospital, 
and call this scalar tot_var. In this example tot_var = .00879239. 
 
Next, we need to calculate the amount of variance attributable to noise. To do this we estimate the following 
model for admission i at hospital j: 
 

Mortalityij = bjuj + eij 

Where uj is a vector of hospital fixed effects. This is implemented in Stata using: 
 
Linear regression, absorbing indicators                Number of obs =  315601 
                                                       F( 0, 312601) =       . 
                                                       Prob > F      = 
                                                       R-squared     =  0.0802 
                                                       Adj R-squared =  0.0714 
                                                       Root MSE      =   .3489 
 
------------------------------------------------------------------------------ 
       death |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
       _cons |   .1551643   .0006211   249.84   0.000      .153947    .1563815 
-------------+---------------------------------------------------------------- 
          id |   F(2999, 312601) =      9.086   0.000        (3000 categories) 

 
ereturn list 
 
e(rmse) =  .34890 

 
We calculate the mean-squared error (MSE) from the equation: MSE = .12173463. We then calculate a hospital-
specific estimate of noise (Vj in the above equation) by dividing the MSE value by the number of observations 
in the hospital: 
 

௝ܸ ൌ
ܧܵܯ
௝ݏܾܱ

 

 
Finally we calculate the mean of Vj for all hospitals ( തܸ=.0005278), weighting by the number of observations in 
each hospital. Then, 
 
 ොଶ= tot_var - തܸ=.00879239- .0005278 = .00826463ߪ
 

We have now defined, ߪොଶ and Vj, allowing us to calculate ௝ܹ and implement the DS estimator. 

In this example there is a hospital that has 10 observations, where Vj=.0121735, RA mortality=.30, and volume 
predicted mortality=.2522134. For this hospital, Wj = .404373, and the DS estimator is calculated as: 

ܦ ఫܵ෢ ൌ .30 · .404373 ൅ .2522134 · ሺ1 െ .404373ሻ ൌ .27153701 

In this example, there is another hospital that has 893 observations, where Vj= .0001363, RA mortality = 
.0515118, and volume predicted mortality = .0980776. For this hospital, Wj = .9837732, and the DS estimator is 
calculated as: 

ܦ ఫܵ෢ ൌ .0515118 · .9837732 ൅ .0980776 · ሺ1 െ .9837732ሻ ൌ .0522674 



B.1: Hierarchical Poisson (HP) Model Assumptions

Consider the following hierarchical model: for m independent units (e.g., hospitals), let

• Yi|θi ∼ Poisson(eiθi), where ei > 0 is a known quantity.

• θi ∼ Gamma(δ, βi), parameterized such that E(θi) = δ
βi

, V ar(θi) = δ
β2

i

, where δ > 0

and βi > 0, i = 1 . . . m.

• µi = δ
βi

; that is, E(θi) = µi. Observe that βi = δ
µi

.

Under this hierarchical model, easy computations (e.g., see Lawless, 1987 Canadian Journal
of Statistics) immediately establish the following two facts:

1. The marginal probability distribution of Yi (i.e., integrating out θi) is given by

P (Yi = yi) =
Γ(yi + a−1)

y!Γ(a−1)

(

aµi

1 + aeiµi

)yi
(

1

1 + aeiµi

)a−1

(1)

where a = δ−1. This fact will be important later and, in particular, allows us to make
direct use of Stata for computation.

2. The conditional density of θi, given Yi = yi, is Gamma(yi + δ, ei + βi). Hence,

E(θi|Yi = yi) =
yi + δ

ei + βi

.

Recalling that βi = δ
µi

, this last result can also be written as follows:

E(θi|Yi = yi) =
yi

ei

(1 − Bi) + Biµi, (2)

where

Bi =

δ
µi

ei + δ
µi

=
δ

µiei + δ
.

Letting θ̂i = yi

ei

, we have

E(θi|Yi = yi) = θ̂i(1 − Bi) + Biµi, (3)

providing the basis for computing a Stein-like shrinkage estimator for θi: a weighted
linear combination of the empirical estimate θ̂i and µi = E(θi).



B.2: Estimation via Negative Binomial Regression

Suppose that µi = µi(b), where log µi(b) = x′

ib, where xi includes a ’1’ for the intercept;
that is, consider a “log” link function. Using this parameterization ensures that µi > 0 and,
usefully, we can estimate the regression parameter b without any constraints.

As indicated earlier in (1), the marginal probability distribution of Yi under this HP model
is given by

P (Yi = yi) =
Γ(yi + a−1)

y!Γ(a−1)

(

aµi

1 + aeiµi

)yi
(

1

1 + aeiµi

)a−1

where a = δ−1. Taking the natural logarithm and using the fact that log µi(b) = x′

ib, one
obtains the following loglikelihood for a and b (see, eg, Lawless 1987, bottom of page 210)

ℓ(b, a) = c(y1 . . . yn) +
m

∑

i=1

[

yi−1
∑

j=0

log(1 + aj)

]

+ yi log(eiµi(b)) − (yi + a−1) log(1 + aeiµi(b)),

where c(y1 . . . yn) is a constant term that doesn’t depend on a or b and the summation term
in [·] is zero if yi ≤ 1.

One can show that this loglikelihood is exactly the same as that for a negative binomial
regression model: Yi ∼ NegBin(eiµi(b), a), i = 1 . . . n, in which E(Yi) = eiµi(b) and
V ar(Yi) = eiµi(b)(1 + aeiµi(b)). If a = 0 (no overdispersion), this reduces to a Poisson
regression model. It is now possible to estimate a and b as described in Lawless (1987).

Under the log-link parameterization log µi(b) = x′

ib, the mean count can also be rewritten
as E(Yi) = exp(vi + x′

ib), where vi = log ei is an offset. If we take ei = 1, i = 1 . . . m, there is
no offset (vi = 0, i = 1 . . . m). This regression model is the default model fit in Stata using
the nbreg command. (Note: if there is an offset, the offset option can be used to include
one; see the discussion at the end of Appendix B).

Consider a hospital-level dataset with 3000 hospitals, each with a designated volume of
patients and number of deaths occurring within 30 days of admission (deathcount). We
first re-parameterize volume, taking its natural logarithm; call this w (i.e., w = log vol). To
implement the HP model in Stata (i.e., without an offset, or ei = 1 for each i), we use the
following command:

nbreg deathcount w



Output:

nbreg deathcount w

Negative binomial regression Number of obs = 3000

LR chi2(1) = 8133.01

Dispersion = mean Prob > chi2 = 0.0000

Log likelihood = -8183.0165 Pseudo R2 = 0.3320

------------------------------------------------------------------------------

deathcount | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

w | 1.009213 .006639 152.01 0.000 .9962004 1.022225

_cons | -1.650409 .0324994 -50.78 0.000 -1.714107 -1.586711

-------------+----------------------------------------------------------------

/lnalpha | -3.481276 .0597869 -3.598456 -3.364096

-------------+----------------------------------------------------------------

alpha | .0307681 .0018395 .0273659 .0345933

------------------------------------------------------------------------------

Likelihood-ratio test of alpha=0: chibar2(01) = 905.28 Prob>=chibar2 = 0.000

Here, b = (b0, b1)
′; under the Coef. column, _cons is the estimated value of b0 and w is the

estimated value of b1. Importantly, alpha equals the estimated value of a (i.e. δ−1) in the
Negative Binomial model parameterization given earlier.

The output above further implies that our estimate of µi is given by

µ̂i = µi(b̂) = exp(−1.650409 − 1.009213 wi).

Using (3), the corresponding Hierarchical Poisson estimator for the mean 30-day mortality
count in hospital i (i.e., with ei = 1) is given by

θ̂i = yi(1 − B̂i) + B̂i µ̂i,

where

B̂i =
δ̂

µ̂i + δ̂

Using the output above, δ̂ = 1/alpha = 1/.0307681 = 32.50; therefore,

B̂i = =
32.50

µ̂i + 32.50
.

Rescaling θ̂i by hospital volume (voli), one obtains

ϕ̂i =
θ̂i

voli
,

an estimate of the hospital-specific 30-day mortality rate. This can also be estimated directly
with nbreg as above, using the offset ei = voli.



B.3 Extensions to Modeling Rate-Adjusted Mortality

In this paper, Yi represents the death count in hospital i in a fixed time period and µi depends
on a fixed set of covariates xi (e.g., hospital volume in this same period). In the absence
of an offset (i.e., ei = 1, i = 1 . . . m), the conditional Poisson mean θi thus represents the
hospital-specific mean death count for the ith hospital; similarly, µi is the expected death
count for a hospital with characteristics xi. For this reason,

More generally, and as can be seen directly in (2) and (3), it is possible use alternative
forms of standardization to change interpretation of θi from a count to a standardized rate.
In particular, we may set ei to be equal to a “known” measure of the expected number of
deaths in hospital i (e.g., obtained using some form of internal or external standardization).
Then, θi can be interpreted as a hospital-specific standardized mortality ratio (i.e., dependent
on a hospital-specific random effect and dependent on the standardization used to calculate
ei); similarly, µi is the expected SMR for a hospital with characteristics xi.

This second approach is comparable to what is done for the unadjusted DS estimator, where
the adjustment for hospital volume (xi) can be viewed as an indirect form of standardization
and one takes ei = ni, the number of patients served by hospital i. We refer to this as
the unadjusted HP model estimator. In this case, the estimated value of θi is shrinkage
estimator of the probability of an event (e.g., 30 day mortality). More generally, a measure
of rate-adjusted mortality (or adjusted HP model-based estimator) can easily be obtained
analogously to the DS estimator upon estimating the regression relationship between the
average hospital death count and hospital volume and then substituting this estimated value
in for ei.

It is important to note in closing that, as presently described, the HP model only makes
use of information aggregated at the hospital level and, in particular, uses the parametric
relationship between the mean and variance that is induced under this model in order to
estimate the variance components necessary for computing (3).



Comparing the unadjusted HP and DS estimators

As will be shown below, the main difference between the unadjusted HP model-based esti-
mator and the unadjusted DS estimator stems from the methodology used to estimate the
shrinkage factor Bi (i.e., assuming the same parameterization is used for µi). It is noted here
that the DS estimator, as originally proposed, also parameterizes the mean of the “structural
quality” distribution as µi = β0 + β1 log(volume); in contrast, the HP estimator assumes
log µi = β0 + β1 log(volume). However, other parameterizations can be used for either esti-
mator; using the same parameterization for µi in both leads one back to comparing shrinkage
factors alone.

The HP model is arguably most appropriate when the number of events in each hospital is
small in comparison to the overall volume of patients; otherwise, a mixed effects logistic or
binomial model might be a better choice. We have

Bi =

δ
µi

ei + δ
µi

=
δ

µiei + δ
.

Estimation of Bi is possible using maximum likelihood (ie, via the negative binomial marginal
distribution for Yi). We now show that Bi depends on two components of variance. Since
µi = δi/βi, algebra shows

Bi =
µiei

µiei + e2
i

µi

βi

.

Since Yi|θi ∼ Poisson(eiθi), it follows that V ar(Yi|θi) = eiθi; since E(θi) = δ
βi

= µi, we may

now write µiei = E(V ar(Yi|θi)). Similarly, we may write

e2
i

µi

βi

= e2
i

δ

β2
i

= e2
i V ar(θi).

Since e2
i V ar(θi) = V ar(eiθi) = V ar(E(Yi|θi)), we have now shown

Bi =
E(V ar(Yi|θi))

E(V ar(Yi|θi)) + V ar(E(Yi|θi))
=

E(V ar(Yi|θi))

V ar(Yi)
.

The unadjusted DS estimator is similar to that in Morris (1983 JASA), who uses a hierarhi-
cally specified normal model to motivate the form of the shrinkage estimator. Appendix 1
of Dimick et al. (2009) shows that the original estimator of Morris (Section 5) is not used;
instead a non-iterative procedure is employed, where Vi has been replaced by an estimator
that assumes that all subjects within a hospital have the same (conditional) mean and vari-
ance. The latter estimator requires the existence of replications and, in addition, asserts
that no subject-level heterogeneity in mean or variance exists within a hospital.

We now demonstrate that the main difference between the Hierarchical Poisson and DS
estimators relates to the method by which the variance components are estimated. The



unadjusted DS model assumes Yi|θi ∼ Normal(θi, Vi) and θi ∼ Normal(µi, Ai). In this case,
the relevant shrinkage factor is given by

B
(DS)
i =

Vi

Ai + Vi

=
V ar(Yi|θi)

V ar(Yi|θi) + V ar(θi)
.

However, in this normal model, V ar(Yi|θi) doesn’t depend on θi. As a result, V ar(Yi|θi) =
E(V ar(Yi|θi)) and it follows that

B
(DS)
i =

E(V ar(Yi|θi))

E(V ar(Yi|θi)) + V ar(E(Yi|θi))
=

E(V ar(Yi|θi))

V ar(Yi)
.

Written in this way, B
(DS)
i is observed to be identical to Bi above, in that it involves exactly

the same two variance components.

Consequently, the HP and DS estimators differ primarily in the assumptions and methods
used to estimate the two variance components appearing in the shrinkage factor. In partic-
ular, and as described earlier, the HP model only makes use of information aggregated at
the hospital level and uses the parametric relationship between the mean and variance that
is induced under this model in order to estimate these two variance components. In con-
trast, the DS estimator uses a moment-based approach for estimation and does not assume
the existence a parametric relationship between mean and variance. Instead, as described
above, the DS estimator introduces the alternative assumption that all subjects within a
hospital share a common conditional mean and an unrelated common conditional variance,
and utilizes individual-level information in order estimate both variance components.



 
 

Appendix C. Volume and Mortality Relationship  
 
Figure C1. Volume and Mortality Relationship Estimated from CMS Data and Implemented in Simulation 

 
 

Figure C1, shows the volume and 30-day mortality relationship using Medicare inpatient data from 2002-2006 
for 16,065 hospital-year observations and the average relationship in the simulated data. The red line shows the 
predicted relationship between volume and 30-day mortality, estimated from a generalized linear model with a 
binomial family and logit link function. We specified a 5th degree polynomial function (volume, volume2, 
volume3, volume4, volume5), which fits the observed data relatively well. This estimated relationship was then 
specified in the simulation model, as shown in the dashed green line, which is very similar to the relationship 
estimated with the CMS data. The relationship in the simulated data was derived by calculating the average 
coefficient for each volume term in the generalized linear model (estimated for each simulation iteration), 
averaging the coefficients across the 1,000 iterations, and then plotting this function over hospital volume. 
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Appendix D. Data generating functions for simulation 
 
Table D1. Data generating functions for simulation 

Data Element Data Generation Process Parameter values 

Sample size in first year Sample size i1 ~ Gamma(k, θ) * Z   if   1450 >= X >=1 

1                        if     X =0 

1450                  if     X > 1450 

k=1.01  

θ =4.65 

Z =22.12 

Sample size change Sample it = Sample it-1 * C   

C ~ N(μ, σ)  

μ = 1.001 

σ = .06 

Raw true mortality score in year 1 Mortality raw i1 ~ N(μ , σ)  if   1 >= X >=0.005 

0.005           if     X < 0.005 

1                  if     X > 1 

μ =.23813 

σ =.032 

 

Volume adjusted true mortality 
score in year 1† 

Mortality adjusted i1 = Mortality raw i1 + volume adjustmenti1    if   1 >= X >=0.005 

 

0.005           if     X < 0.005 

1                  if     X > 1 

 

݁݉ݑ݈݋ݒ ௜௧ݐ݊݁݉ݐݏݑ݆݀ܽ ൌ ൬
exp ሺܾ ௜ܺ௧ሻ

1 ൅ exp ሺܾ ௜ܺ௧ሻ
൰ െ ቆ

exp ሺܾ పܺ௧ሻ
1 ൅ exp ሺܾ పܺ௧ሻ

തതതതതതതതതതതതതതതതതതത
ቇ 

 
bXit =  – 0.913 – (7.76 E-3 * volumeit )+  (2.49 E-5 * volume2

it )  
           –  (3.86 E-8 * volume3

it ) + (2.78 E-11 * volume4
it )  

           – (7.36 E-15 * volume5
it) 

 

Volume adjusted true mortality 
score in years 2-4 

Mortality adjusted it = (Mortality raw it-1 + volume adjustmentit)* Ki 
t   if   1 >= X >=0.005

 
Ki ~ N(μ , σ)   
 

0.005           if     X < 0.005 

1                  if     X > 1 

μ =.956 

σ =.057 

Note: i indexes to hospital and t indexes to year of simulation.  
†The coefficients in b vector for volume adjustment were estimated using a generalized linear model from the binomial family with a logit link. Note that, 
as a result of subtracting the mean volume adjustment, volume adjustmentit has a mean of 0.



 
 

Appendix E. Visual depiction of estimators 
Figure E1. Hypothetical estimates of mortality quality for four providers using alternative estimators 
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In Figure E1, the X-axis is time and the Y-axis is hospital mortality.  The solid green line is true mortality 
for a given hospital, the dashed blue line is observed mortality for that hospital, and the dashed red line is 
the mean observed mortality for all hospitals.  Figure E1 shows that the alternative estimators can arrive at 
substantially different estimates of true mortality performance, estimates that can vary substantially from 
true performance. 

 

 




