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Analysis of protein interaction networks and protein complexes using affinity purification and
mass spectrometry (AP/MS) is among most commonly used and successful applications of
proteomics technologies. One of the foremost challenges of AP/MS data is a large number of
false-positive protein interactions present in unfiltered data sets. Here we review computational
and informatics strategies for detecting specific protein interaction partners in AP/MS experi-
ments, with a focus on incomplete (as opposite to genome wide) interactome mapping studies.
These strategies range from standard statistical approaches, to empirical scoring schemes op-
timized for a particular type of data, to advanced computational frameworks. The common
denominator among these methods is the use of label-free quantitative information such as
spectral counts or integrated peptide intensities that can be extracted from AP/MS data. We
also discuss related issues such as combining multiple biological or technical replicates, and
dealing with data generated using different tagging strategies. Computational approaches for
benchmarking of scoring methods are discussed, and the need for generation of reference
AP/MS data sets is highlighted. Finally, we discuss the possibility of more extended modeling
of experimental AP/MS data, including integration with external information such as protein
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interaction predictions based on functional genomics data.
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1 Introduction

The analysis of protein—protein interactions and protein com-
plexes is of great importance in biological research. A com-
bination of affinity purification (AP) and mass spectrome-
try (MS), AP/MS for short, has become a commonly used
method for the analysis of protein complexes and interaction
networks both on small and large scale [1-8]. Owing to recent
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technological advances in MS instrumentation and sample
preparation methods, there has been a steady increase in the
number of groups utilizing AP/MS approaches. At the same
time, the development of computational tools and algorithms
for processing of AP/MS data has lagged behind. In partic-
ular, one of the foremost computational challenges is the
need to deal with a large number of false-positive interac-
tions present in unfiltered AP/MS data sets.

In a typical AP/MS experiment, selected proteins of in-
terest (commonly referred to as “baits”) are purified along
with their interactors (“preys”) through one or more AP steps
(see Fig. 1 for an illustration of the entire AP/MS workflow
for mapping protein interactions). Several different tags (e.g.
FLAG-tag [9]) or tag combinations (as in tandem affinity pu-
rification, TAP [3,5]) can be used [10-12]. Proteins in the
affinity purified sample are digested with trypsin, and pep-
tides are separated using liquid chromatography (LC) coupled
online to a mass spectrometer [13, 14]. Eluting peptides are
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ionized, transferred into a gas phase, and selected peptide
ions are fragmented to generate tandem MS (MS/MS) spec-
tra. Database searching of MS/MS spectra is used to identify
the peptides and proteins [15,16]. The initial outcome of such
an AP/MS experiment is a protein list containing the bait
protein and its copurifying partners (preys), which in the
ideal case can be interpreted as the list of bait-prey protein
interaction pairs. In practice, however, such AP/MS data sets
contain a large number of false-positive interactions.

There are several sources of false-positive interactions in
AP/MS data. The first source is incorrect protein identifi-
cations resulting from incorrect assignment of peptide se-
quences to MS/MS spectra. The problem of false-positive
identifications is common to all MS-based proteomic meth-
ods and is discussed in details elsewhere [17]. The second
source of false-positive interactions is background or non-
specifically binding proteins. These include highly abundant
cellular protein (e.g. tubulins and ribosomal proteins), pro-
teins that bind to unfolded polypeptides (e.g. heat-shock
proteins), and proteins that interact with affinity matrices
[12,18,19]. In the case of single step AP experiments, the true
interaction partners of the bait often represent less than 10%
of all identified proteins [19].

Experimentally, strategies employing more stringent
washes or multiple purification steps have been able to reduce
the copurification of nonspecific binders. However, these ap-
proaches may also lead to the loss of true interaction part-
ners. Thus, strategies aiming at identifying true interactors
amongst the noise are essential. Conceptually, the simplest
approach — and the one used most frequently — is the sub-
traction of the AP/MS results from a negative control (e.g.
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Figure 1. Mapping protein interaction net-
works using AP/MS. Bait proteins and their
interaction partners are purified using AP.
Resulting protein samples are digested into
peptides and peptides are sequenced using
O tandem mass spectrometry (MS). Peptides are

1 identified from acquired MS/MS spectra via
| sequence database searching. Computational
S tools are used to assign confidence scores to
et e peptide identifications, map peptides to pro-
teins, and to summarize the results at the pro-
tein level. Label-free quantification (e.g. spec-
tral counting) is used to estimate the abun-
dance of proteins in each experiment. Data
from all AP/MS runs in the experiments are
summarized in the form of quantitative prey-
bait matrix. This matrix is computationally
analyzed to compute a confidence score for
each bait-prey pair. The interaction network as-
sembled using high confidence (HC) protein
interactions is computationally analyzed, e.g.
to reconstruct protein complexes or signaling
pathways.

cells expressing the epitope tag only, without the bait) from
those of the bait protein. However, this strategy has so far
been applied without underlying statistical modeling. Cou-
pling AP/MS with stable isotope labeling-based proteomic
strategy using ICAT, iTRAQ, or SILAC labeling is another
strategy for distinguishing specific from nonspecific interac-
tions [20-24]. The quantitative ratios observed in these ex-
periments are amenable to computational modeling to detect
nonspecific binders [21, 25]. An in-depth review of the label-
ing strategies with application to protein interaction data can
be found elsewhere [12]. At the same time, labeling based
methods are largely limited to small-scale studies due to in-
creased complexity of the experimental protocols and high
cost of reagents.

The need for computational filtering of AP/MS data was
identified in early genome-scale studies. In these studies,
promiscuity was used as a filter to remove proteins that ex-
hibited a lack of specificity for the bait from the data [3,26-29].
Such simple filters are clearly arbitrary and nonquantitative in
nature. Importantly, they have the potential to negatively im-
pact data sets through the elimination of proteins that serve
as network hubs, as well as true interaction partners for a
given protein that also appear frequently across the data set
[30]. On the opposite end, a number of sophisticated bioin-
formatics approaches utilizing external data sources such as
gene expression, sequence homology, and structural infor-
mation to assist with the calculation of a confidence score for
an interaction have been developed [31-36]. While additional
data sources are generally expected to improve the quality of
filtered data, these approaches rely on the selection of train-
ing data for building a predictive model. Finding appropriate
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training data sets is challenging in practice. Other computa-
tional methods attempt to calculate the confidence measure
of a protein interaction from the topology of the network, i.e.
using network properties such as connectivity. The scoring in
these methods involves such concepts as matrix/spoke mod-
els and their extensions that can be collectively called “affinity
scores” [2,37-40], likelihood-based tests [41], or direct appli-
cation of graph theory-based methods [42]. However, these
tools were optimized for a very specific type of interaction
data, namely global yeast TAP studies [2,3,5,9]. As such, they
rely on multiple purifications, ideally in situations where each
protein identified in the interaction network is used sequen-
tially as bait and the entire network is highly connected. Fur-
thermore, these methods were developed and applied to data
sets composed of binary calls (observed, not observed). A com-
mon weakness in most of these computational approaches is
that they do not fully utilize the quantitative protein abun-
dance information that can be extracted even from label-free
AP/MS data.

In human cells, no single group has developed method-
ologies and throughput to perform AP/MS on the scale of
the yeast studies of Gavin et al. [2] and Krogan et al. [5]. In-
stead, most recent publications focus on individual baits, on
small interconnected networks, e.g. [4,43-47], or on bigger
networks that are largely unconnected [1,46]. It is becoming
increasingly likely that an AP/MS map of the human interac-
tome will be a decentralized enterprise, with multiple groups
contributing a portion of the interactions. While the topology
methods may work to some extend for the intermediate size
networks, they are not appropriate for unconnected networks
regardless of the number of baits used to generate the data
set. Thus, there is a growing need in the research community
to design methods specifically for scoring interactions stem-
ming from label-free AP/MS data in other types of projects
than global (i.e. genome wide) studies.

2 Diversity of AP/MS data sets

To further elaborate on the important issue raised above,
there is a wide range of AP/MS data sets that are currently be-
ing generated and published in the scientific literature. First,
data sets range in size, from a single bait and up to hun-
dreds of baits in large-scale studies. Second, when AP/MS
data sets are generated in a more targeted way using selected
baits of interest, the underlying interaction networks display
a varying degree of interconnectivity among the participat-
ing proteins. Third, each bait protein in the study may be
profiled once or in multiple replicates. Fourth, all AP/MS
experiments in the data sets may or may not be performed
under identical conditions (e.g. different AP conditions may
be used for a challenging bait to increase the sensitivity of
detecting its interacting partners). Furthermore, all or a sub-
set of baits can be purified using multiple different epitope
tags, which is also done to increase the interactome cover-
age. Finally, in parallel with AP/MS experiments using bait

© 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1641

proteins, one may perform a number of negative-control ex-
periments using cells expressing the epitope tag only (i.e.
without the bait or other types of control). This diversity of
AP/MS data sets creates a computational challenge in that a
single computational model or a scoring scheme may not be
applicable to all data sets. Because global AP/MS data set are
rare and can be reasonably well processed using the existing
methods such as socio-affinity scores or their extensions, we
focus on the analysis of typical AP/MS data sets that are “in-
complete” in nature. Below we summarize several recently
developed approaches for these data. While all these meth-
ods utilize label-free quantitative information as the basis for
scoring the interactions, they differ significantly in what type
of AP/MS data sets they were developed and tested for, in the
label-free quantification strategy used, and in model assump-
tions and underlying statistical (or empirical) methods used.

3 Label-free protein quantitation as the
basis for scoring interaction data

As an alternative to using network topology as a primary
way to score protein interactions, nonspecific binding pro-
teins can be detected with the help of quantitative infor-
mation regarding the abundance of proteins in the affinity-
purified sample. Label-free MS-based protein quantification
methods can be divided into two categories depending on the
type of quantitative information they use: continuous (MS!-
based integrated peptide-ion intensities [48-51], MS/MS-
based summed fragment ion intensities [52, 53], or fragment
ion intensities in selected reaction monitoring, SRM, strate-
gies [54]), and count-based (MS/MS based spectral counting
[48,55-65)).

Spectral count is the number of times a peptide from a cer-
tain protein was successfully selected for sequencing by the
mass spectrometer (number of acquired MS/MS spectra on
that protein). With proper normalization, spectral counts can
be used as a quantitative measure of the protein abundance
in the sample [58,66,67]. This method is conceptually similar
to the approach of measuring gene expression using SAGE
[68], EST [69], or RNA-Seq [70] count data. Spectral counting
can be an accurate and informative approach for detecting
differential protein expression in comparative studies [55,71]
and in the analysis of AP/MS data [45,72]. As a practical ad-
vantage, spectral counting does not require modifications to
the experimental protocols—all the necessary information is
already present in AP/MS data. It is compatible with most
commonly used instrumentation, and does not require addi-
tional software for accessing raw MS files [73,74]. A number
of tools are available for extracting spectral counts from pro-
teomic data, e.g. Abacus [75] that is compatible with the widely
used trans-proteomic pipeline (TPP) [17,76].

The alternative approach is based on using continuous
data. Peptide ion intensity-based methods require additional
data processing steps and high mass accuracy instrumenta-
tion [63]. Peptide intensities can be extracted using one of the
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Figure 2. The protein inference problem and its implication for protein quantification in AP/MS data sets. (a) Peptides are identified and
quantified from MS data and mapped to proteins. Protein probabilities P and abundances N are estimated based on the probabilities and
abundances of their corresponding peptides. Proteins A, B, and C are identified from four peptides (summarized as protein groups 1).
Protein C does not have any unique (nonshared) peptides identified in the data set, and thus it receives zero probability (P, = 0; to be
interpreted as the absence of conclusive evidence for its presence in the sample). (b) Protein abundance can be estimated using all peptides
equally (N®°®!), using unique peptides only (NU"9U¢), or with apportioning the abundances of shared peptides among their corresponding
proteins using weighting factors determined based on unique peptide abundances (N2%). (c) Quantitative prey-bait matrix (one bait, one
negative control). A, B, C: a family of homologous proteins that are specific interactors of the bait, identified from four, as in (a), high
probability peptides with spectral counts ny = ny; =40 and n3 = ng = 10. X, Y, Z: a group of homologous nonspecific binders, also identified
by four peptides (spectral counts ns = ng = 20 and n7 = ng = 1). In the negative control, peptides 7 and 8 were not identified, resulting in
Py = Pz = 0. Only high probability proteins (high P,) are considered for subsequent analysis (A, B, X, and Y). Protein interaction confidence
is best determined using N'°®! (not to underestimate the abundance of inconsistently identified nonspecific binders such as protein Y). For
high scoring interactions, subsequent analysis (e.g. network modeling) is best performed using N2,
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several available tools, e.g. msInspect [77], SuperHirn [78],
and IDEAL-Q [79] that are compatible with TPP file formats,
using the integrated system MaxQuant [80], or commercial
tools such as Progenesis (Nonlinear Dynamics). The peak
intensities of all peptides in each MS run are often normal-
ized, e.g. to the total peak intensity based on all identified
peptides in the analysis. For computing protein intensities,
one common approach is to average the normalized peak in-
tensities of the three most intense peptides for each protein.
The intensity-based methods can quantify a protein identi-
fied by a single peptide (although multiple peptides are rec-
ommended) and are generally more accurate than spectral
counting provided the data is of sufficiently high quality and
expertly processed using advanced bioinformatics tools. In
particular, the accuracy of intensity-based methods can be
affected by such data problems as overlapping peptide inten-
sity signals due to the presence of coeluting peptides having
similar molecular weight.

It should also be noted that peptide level quantification is
not always an unambiguous measure of protein abundance.
In many organisms, including higher eukaryotes, a large frac-
tion of peptides sequences are shared across multiple proteins
or protein isoforms [81, 82] (see Fig. 2 for an illustration of
the protein inference issue and its implications for protein
quantification and analysis of AP/MS data). There are sev-
eral strategies for computing isoform-specific quantification.
A simple approach is to consider only unique (isoform spe-
cific) peptides. This is a reasonable strategy only when it is
possible to restrict the analysis to just a few selected pep-
tides per protein (e.g. when peptides are selected in advance
for SRM-based quantification). This is generally not the case
with spectral counting, which works most effectively as a
protein-level summary statistics because individual peptide
spectral counts are usually too low. Intensity-based methods
provide more accurate quantitative estimates for individual
peptides, however accurate absolute protein quantification
still requires multiple peptides (e.g. top three most intense
peptides per protein [83], or all peptides [84, 85]). A more ac-
curate approach to count-based quantification is to apportion
the peptide count among all its corresponding proteins using
weighting factors estimated based on unique peptide counts
[75,86] (see Fig. 2b for illustration using spectral counts; sim-
ilar adjustment procedure should be applicable to continuous
quantification measures as well). In some cases, however, itis
very difficult or even impossible to distinguish between pro-
teins having a high degree of sequence homology. Relying on
unique peptides only, and even using adjusted spectral counts
may underestimate the protein abundance in such cases.
Unfortunately, many of the common contaminants appear-
ing in AP/MS studies are members of large homologous
protein families (e.g. ribosomal proteins, tubulins, histones).
Thus, it is recommended to be extra cautious and take a
conservative approach of using all peptides for quantifica-
tion when determining abundance levels of these proteins
(especially in the negative control runs, when available; see
Fig. 2¢ for illustration). For example, when scoring protein
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interactions using spectral count data in SAINT (see below),
we routinely utilize total spectral counts in order to perform
more conservative analysis and elimination of false inter-
actions. After elimination of nonspecific binders, however,
adjusted spectral counts are more suitable for reconstruction
of protein complexes [87] and for comparison of abundances
of proteins that are part of the same complex [75, 88].

4 Data filtering using fold change and
p-value thresholds

Simple methods such as subtraction of all proteins identified
in the control runs, or applying various ad hoc thresholds
based on the ratio of spectral counts in the AP/MS experi-
ment with bait protein versus controls have long been used
for filtering the data (see, e.g. [89]). As a more rigorous ex-
tension, standard statistical methods such as t-test can be
applied to compute significance scores (p-values) for each in-
teraction (bait-prey pair) [90]. This p-value measures whether
the observed fold change in the abundance of the prey pro-
tein identified in the AP/MS experiments with a given bait,
compared to negative controls, is statistically significant given
the observed variance of abundance measurements across all
replicates. The application of t-test requires that each bait
protein is analyzed in at least three biological replicates and
a similar number of matching negative controls. In general,
the same controls can be used for t-test analysis for all baits
as long as all data were generated on the same experimen-
tal platform. T-test is more applicable to continuous data
such as intensity-based abundance estimates than to spec-
tral count data because of this test’s underlying assumption
of the normality of the distribution. Furthermore, regardless
of the quantitation method, t-test statistics are sensitive to
missing data, especially for proteins that are identified in
bait purifications at very low levels and not identified in the
controls. This problem (which also applies to other scoring
methods described below) can be addressed with the help of
missing data imputation procedures.

For improved separation between true and false inter-
actions, statistical scores such as p-value can be combined
with the fold change in the abundance values. This is com-
monly done by making a volcano plot, i.e. plotting fold
change against the negative log transformed p-values [91].
Proteins that have both a high magnitude of change (fold
change) and high significance (low p-value) are selected as
true interactors. The significance line corresponding to a de-
sired false discovery rate (FDR) for interactors can be es-
timated by a permutation-based method. The accuracy of
FDR estimations cannot be guaranteed, though. Thus, it is
recommended that the FDR threshold is selected in such
a way that none or only a few prey proteins are located
in the “downregulated” region (i.e. lower abundance com-
pared to that in the negative controls) of the volcano plot
which should not contain any preys that are true interactions
[92].

www.proteomics-journal.com
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5 Empirical scoring approaches for large
data sets

While it is of course ideal that all baits are analyzed in at
least triplicates, most published studies do not conform to
this guideline. Furthermore, AP/MS data sets are sometimes
even generated without performing parallel negative-control
experiments. In such cases, application of standard statistical
methods such as t-test is not possible. Thus, several empiri-
cal approaches were developed that measure the significance
of a particular prey i-bait j interaction by comparing the ob-
served spectral count of prey i in the AP/MS experiment
with bait j with respect to spectral counts observed for prey
i in purifications with other baits. In one example of this
strategy, CompPASS [46] calculates two different scores, Z
and D scores. Z score is computed from the original spec-
tral count by mean centering and scale normalization, us-
ing mean and standard deviation of spectral counts of prey
i across all AP/MS experiments. As noted by the authors of
the original paper, this score is less effective. This is so be-
cause the spectral count distribution is typically skewed in
AP/MS data sets due to a large fraction of observations hav-
ing zero counts (i.e. absence of protein identification). The
more effective D-score is based on the spectral count ad-
justed by a scaling factor that reflects the reproducibility over
replicate purifications of the same bait and the frequency
of appearance of this prey in the data set, and computed as

Dij — ((k/ﬁ)}”ij Xij)l/z

where X denotes the spectral count of prey i in purifi-
cation with bait j, k is the total number of baits pro-
filed in the experiment, f; is the number of experiments
in which prey i was detected, and p; is the number of
replicate experiments of bait j in which prey i was de-
tected. After computing the scores, a threshold DT is se-
lected using simulated data so that 95% of the simulated
data falls below the chosen threshold. Note that CompPASS
merges replicate data for bait j to produce a unique spec-
tral count Xj; for a given pair. In doing so, it considers only
nonzero counts and then averages counts over multiple repli-
cates.

Another empirical approach, termed E-filter, was used in
[93] for the analysis of a related type of data generated using
endogenous immunoprecipitation on a large scale. The distri-
bution of total spectral counts for each protein (including zero
counts for experiments where the protein was not identified)
was tested by a simple boxplot-type analysis. The extreme
upper outliers were considered as likely specific identifi-
cations. Based on a manual investigation of protein in-
teraction scores for members of several well-known com-
plexes, a prey i with spectral count X; was called spe-
cific to balt] if Xll > Xi‘)S +3’(Xi95_ Xis), where Xi‘)S and
X;® are the 95th and 5th percentile values, respectively,
in the spectral count distribution for prey i. It should be
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noted that this E-filter was applied only as a preprocess-
ing method in a rather complicated ad hoc filtering scheme
that included application of a “complex enrichment” (CE)
filter.

The method presented by Sardiu et al. [45, 94, 95] takes
a two-step approach to filtering nonspecific binders. The
method utilizes spectral counts normalized to protein length
and the total spectral count in each experiment (normal-
ized spectral abundance factors, NSAF). The first filtering
step involves removing most obvious nonspecific binders.
In this step, the NSAF values of proteins in each of the in-
dividual purifications are compared with the average NSAF
value observed for that protein in the negative controls. If
the ratio of NSAF values is less than a certain empirically
selected threshold, the protein is considered to be a non-
specific binder for that particular bait. The NSAF value in
this case is replaced by 0, otherwise it remains unchanged
(the original manuscript utilized a similar vector length ratio
approach [45] — a less practical method requiring an equal
number of bait purifications and negative controls). After
removing the proteins that are nonspecific in all purifica-
tions in the data set, the remaining bait-prey NSAF matrix
is subjected to further filtering via singular value decompo-
sition (SVD). SVD is used to find a group of proteins in
the data set that contributes most to the NSAF matrix by
using a ranking estimation method. The subsequent analy-
sis is restricted to the first left singular vector (LSV), which
represents a weighted average of the overall protein NSAF
values in the data set. Only those proteins are retained that
have the corresponding LSV coefficient large than a certain
cut-off value. This threshold is determined manually for each
data set by analyzing the LSV scores of proteins that are
known to be a part of the protein complexes under investiga-
tion. At the end, NSAF values for protein interactions pass-
ing the filter are converted to posterior probabilities. These
probabilities, however, are not measures of confidence in
the protein interaction and are not used for any additional
filtering. Instead, they are used as scores reflecting the pref-
erence between a prey and a particular bait relative to all
other baits. To summarize, this method is best-suited for pro-
cessing data sets centered on reasonably well characterized
protein complexes, and when the main goal is not as much
the identification of novel interactions but in-depth analysis
of the relationships between the components of these com-
plexes.

6 Probabilistic modeling

In parallel with empirical scoring methods described above,
an advanced probability approach, SAINT, for scoring AP/MS
data has been described [30,96,97] (see Fig. 3 for illustration).
The first version of this method (SAINT 1) and the corre-
sponding software was designed in the course of the analysis
of the yeast kinase and phosphatase interactome [98]. Similar
to CompPASS, SAINT 1 was designed to detect nonspecific

www.proteomics-journal.com
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Figure 3. Scoring protein interactions using SAINT. (a, b) AP/MS protein interaction data in the absence (a) or presence (b) of negative
control purifications. Schematic of the experimental AP/MS procedure and the resulting quantitative prey-bait matrix (illustrated using
spectral counts). Each bait protein is profiled in two biological replicates. (c) Modeling quantitative distributions for true and false interac-
tions. For the interaction between prey i and bait j, SAINT uses all relevant data for the two proteins shown in (a) and (b), i.e. abundance of
prey i across all N baits (the data in the row of the prey, highlighted in orange) and abundance of other preys identified in the purification
with bait j (the data in the column of the bait, highlighted in green). In the presence of negative control data, as in (b), prey abundance
across the negative controls is also incorporated in the modeling. (d) Probability is calculated for each replicate using Bayes rule. Prob-
abilities from the independent biological replicates, p!"' and p?, are averaged to compute a summary probability for the interaction
pair (i,j).

binders based on the analysis of spectral counts of prey pro- negative controls, when available). It also includes preys de-
teins across a large number of purifications with different tected with low spectral counts, some of which could be false
baits, and with only a minimal use of negative controls. The protein identifications. Preys that are true interactors appear
approach was then significantly extended in subsequent work with high spectral counts in a few baits but generally not
(SAINT 2) [97]. Furthermore, while SAINT was originally de- across many experiments. SAINT compares normalized spec-
veloped to work with spectral count data, it has been recently tral count distributions for each of the preys in the data set
extended to model continuous intensity-based data [99] (for and across all purifications, and models these distributions
reasons of clarity, SAINT will be reviewed and discussed be- to calculate the posterior probability of interaction between
low in the context of spectral count data). prey i and bait j using Bayes rule:
The underlying assumption in the mixture-model-based
approach of SAINT is that interactions identified in the ex- P(True | Xy) = r P(Xij | N}*)

periment can be categorized into one of the two categories,
true or false. The first category includes preys that are back-
ground contaminant proteins appearing with consistent spec- where X; is the spectral count of prey i in purification exper-
tral counts with a large fraction of baits (and also in the iment with bait j. P(x|\) denotes the Poisson distribution for

TrTP(Xij | )\gME) + (1 _ TrT)P(Xij | )\l_galse)

© 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.proteomics-journal.com



1646 A. I. Nesvizhskii

count data x with bait-prey specific mean parameters, A" and
Meke for true and false interactions, respectively. The mixing
proportion w1 denotes the proportion of true interactions in
the data. The distributional parameters (and the mixing pro-
portion) are estimated from the data for each data set. In the
absence of multiple replicates for each bait, these parameters
cannot be estimated only from the observed data for each
bait-prey pair. Instead, they are estimated using a hierarchi-
cal Bayes technique which is an example of a commonly used
statistical strategy called data pooling. In this strategy, the prey
i~bait j specific parameters N/ and \;/** are estimated by
considering the spectral count distributions for prey i across
all purifications and also considering spectral counts for other
prey proteins identified in purification with bait j. Once these
parameters are estimated and the posterior probabilities are
computed for all interaction pairs, interactions can be sorted
in a decreasing order of probabilities. The associated FDR
for the filtered interactions can then be approximated at any
threshold probability by averaging the complement of proba-
bility (1-P) for all selected interactions.

SAINT 1 was designed for the analysis of data sets contain-
ing a substantial number of different bait purifications (ide-
ally more than 30 baits) that were acquired on a set of baits not
significantly interconnected. In the case of highly intercon-
nected baits, many valid interactions may appear across all or
most purifications, thus looking like contaminant proteins.
This is also true for empirical scoring methods, e.g. it neces-
sitated the introduction of a weighted D score (WD-score) in
a more recent application of CompPASS [100]. Probabilistic
modeling of all false interactions (regardless of abundance
level) using a single-model specification represented another
challenge and required addition of an empirical frequency-
based filtering step. These challenges were addressed in
SAINT 2. The statistical model was strengthened by directly
incorporating the data from the negative controls (Fig. 3b).
This allowed a more uniform treatment of all false interactors
regardless of their level of abundance. It also allowed more ac-
curate estimation of the false distribution because the mean
Ml parameter can then be estimated solely from the negative
control data via semi-supervised mixture modeling. In addi-
tion, the model specifications were changed to use the gener-
alized Poisson distribution with a variance component. As a
result, SAINT 2 is able to more effectively process challenging
data sets, e.g. data sets containing a large number of true inter-
actions involving prey proteins that also frequently appear in
AP/MS data sets as contaminants or nonspecific binders [30].

In addition to SAINT, another probabilistic scoring ap-
proach, Decontaminator, was recently presented [101]. De-
contaminator builds a model (null model) of contaminants
using a small number of representative negative-control ex-
periments. As a proxy for protein abundance, the method uses
Mascot protein identification scores and not MS intensities
or spectral counts. The null model is then used to determine
whether the Mascot score of a prey is significantly larger than
what is observed for that prey in the negative controls and
computes a p-value. The p-value distribution is then used to
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estimate FDR. The author demonstrated that their model was
effective in reducing the number of nonspecifically binding
proteins in TAP experiments. As with SAINT, the advantage
of the model is that it does not rely on the topological data and
should not be significantly affected by the size of the data set
or the type of the network analyzed. At this time, it is difficult
to access the applicability of Decontaminator to single step AP
experiments in which the observed number of contaminant
proteins is significantly higher than in TAP experiments.

7 Combining data from multiple
biological replicates and experimental
platforms

Another important problem that requires careful considera-
tion is how to combine data from multiple replicates. Several
computational approaches have to be considered depending
on the nature of these replicates. Under the assumption of
independence, multiple biological replicates can be naturally
used (and are required) to compute p-values, and can be built
in the probabilistic model as well. In the case of SAINT, the
model by default reports the average of the probabilities of
interaction from all replicates of the same bait (Fig. 3d). Alter-
natively, the geometric mean can be used when a conservative
approach is desired effectively penalizing protein interactions
that were not identified consistently in all replicates. Select-
ing an appropriate way of combining the information from
multiple biological replicates is necessary for empirical scor-
ing schemes as well. In CompPASS, spectral counts from
biological replicates are averaged prior to computing the D
score. A relevant issue is how to treat technical replicates,
i.e. repeated LC-MS/MS analyses of the same affinity puri-
fied sample. Technical replicates capture only nonbiological,
post-AP sources of variability such as MS and LC that are eas-
ier to control and to minimize. Thus, it is best to combine data
from multiple technical replicates within the same biological
replicate. This can be done, e.g. by averaging the quantitative
information for all technical replicates prior to scoring.

In certain biological applications, however, the replicate
experiments for selected baits are performed under differ-
ent AP conditions. This is commonly done for “challenging”
baits (i.e. baits that, for various technical reasons and due to
the properties of the bait protein itself [102], are not easily pu-
rified using AP/MS) to maximize the likelihood of capturing
low stoichiometry or transient interactions that are sensitive
to the experimental conditions. In such cases, it may be ad-
vantageous to select the maximum probability score from
each replicate rather than the average. To eliminate spurious
interactions, it is still advisable to generate multiple biologi-
cal replicates for each AP condition, average the probabilities
across the replicates generated under the same condition, and
then select the maximum probability across all AP conditions
for each bait-prey pair.

Furthermore, an increasing number of studies are utiliz-
ing the strategy of using multiple AP tags (e.g. FLAG, HA,
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Figure 4. Toward transparent analysis of AP/MS protein interac-
tion data. Statistical models for computing confidence in protein
interactions should enable transparent analysis and comparison
of AP/MS data generated in different groups on different plat-
form (tag types, MS instruments, database search tools used to
identify proteins). Establishing the accuracy of scoring methods
requires generation of reference AP/MS data sets.

and TAP tags in [98]). Data generated using different epitope
tags is best analyzed separately at first, with appropriate con-
trols when available, and then merged only after combining
data from multiple biological replicates generated using the
same epitope tag. In doing so, the less conservative approach
of taking the union of interactions identified with different
affinity tags should be justifiable.

8 Assessment of scoring methods and
the need for reference data sets

The purpose of developing more advanced computational
methods to score protein interactions is two-fold. The first
task is to achieve improved separation between true and false
interactions, allowing more efficient filtering of AP/MS data.
The second goal is to provide an accurate estimation of proba-
bilities of individual interactions, as well as global error rates
(FDR) in filtered data sets (Fig. 4). Error rate estimation is
particularly important in the case of large data sets where
subsequent biological validation of identified protein interac-
tions is not feasible or not intended, or when submitting data
to public repositories. Of great importance here is the ability
to perform accurate estimation of the error rates.

In the absence of appropriate benchmark data sets, ob-
jective validation and comparison of the performance of a
computational method and the accuracy of its error rate es-
timation procedure is a challenging task. One approach is
to create a “gold standard” set of protein interactions using
well-characterized stable protein complexes such as those an-
notated in MIPS database [103]. The interactions between
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proteins in the same complex can be considered as true posi-
tives, and between proteins from different complexes as false
positives. This strategy, however, can only be applied in the
context of genome-wide AP/MS studies. In addition, inter-
actions involving members of stable protein complexes are
not representative of all true interactions, especially transient
interactions. Thus, one cannot extrapolate the performance
of a particular scoring scheme on a set of “gold standard”
interactions to the entire data set.

One can also consider the overlap of the entire set of de-
tected protein interactions with the literature. For a particular
data set, true positive interactions can be compiled with the
help of protein interaction databases such as BioGRID [104],
HPRD [105], IntAct [106], DIP [107], MINT [108], or using
iRefWeb [109] and PSICQUIC [110] that combine data from
multiple sources. One caveat is that these databases contain
false interactions, though this problem may be decreased
when considering only those interactions that are detected
multiple times, preferably by different approaches [111]. At
the same time, the existing databases are incomplete, es-
pecially with respect to weak or transient interactions and
less frequently studied proteins. A complementary approach
is to assess the coannotation rate of interaction partners to
common Gene Ontology (GO) terms. This approach is also
limited in utility because many proteins are annotated to mul-
tiple GO categories, and some do not have any annotation.
As a result, using known interactions or GO coannotation
is more useful for comparative analysis of the specificity of
different scoring methods rather than for evaluation of the
absolute performance of one particular tool.

The need for more objective assessment of various scoring
methods calls for generation of more appropriate reference
data sets. Such data sets can be experimentally generated us-
ing a set of selected baits that are comprehensively analyzed
using multiple AP/MS strategies and possibly using com-
plementary approaches as was done to benchmark binary
interaction approaches [112]. This would require a substan-
tial and organized effort, and the resulting reference data sets
would still be limited in their utility given a large number
of available experimental AP/MS platforms. Nevertheless, it
would represent an important step toward the development
of common data analysis standards and quality control proce-
dures. One can envision that such experimentally generated
reference data sets could be used to establish the guidelines
for the application of various empirical scoring strategies,
e.g. selection of score cut offs. In the case of more advanced
statistical methods, they can be helpful for establishing the
accuracy of computed protein interaction scores, or for cali-
brating computed probabilities so they would correspond to
the actual rate of true AP/MS interactions.

9 Limitations of scoring methods

The scoring methods for AP/MS data, including probabilistic
methods, continue to evolve. With the SAINT model being
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increasingly applied to a wider range of AP/MS experiments,
additional model specifications are being added to ensure ac-
curate modeling of different types of data sets. For example,
in SAINT, the probability of a particular bait-prey interac-
tion is affected by the abundance of the prey in purification
with other baits (the estimate of N is influenced by the
highest count values observed for that prey). As a result, if
the prey is observed in purifications with several baits with
high counts, and with several other baits with much lower
counts (a commonly observed feature in data sets with high
degree of interconnectivity), the probability of the interaction
in the lower count experiments may be reduced. In essence,
the model penalizes secondary interactions (some of which
can be indirect interactions mediated by interaction of the
prey and bait protein with a third protein), and may not be
a desired feature in all cases. A number of limitations in the
model assumptions in Decontaminator regarding the dis-
tribution of Mascot scores have been acknowledged as well
[101]. The results of scoring interactions, probabilistically or
empirically, are also dependent on the details of data prepro-
cessing, e.g. ways to count spectra when computing spectral
counts, and on details of missing data imputation (especially
for intensity-based abundance measures). It is unreasonable
to expect that a single statistical model or an empirical scor-
ing scheme could equally well analyze drastically different
data sets. Ultimately, the optimal analysis may involve multi-
step strategies that combine the elements of probabilistic and
empirical scoring, and also use contaminant repositories and
integration with external data, as discussed below.

10 Repositories of nonspecific proteins

AP/MS experiments should ideally include a sufficient num-
ber of matching negative controls, allowing statistical model-
ing as outlined above. However, in some experiments, an
insufficient number of high quality control runs may be
collected due to cost/time considerations or technical rea-
sons. The detection of nonspecific binders can be assisted by
referencing the experiment-specific protein lists against the
databases of known contaminants identified in control runs
from a wide variety of AP/MS experiments (Fig. 5).

Many laboratories have independently assembled their
own background contaminant lists based on the analyses of
in-house generated control data [1,44,45,113,114]. However,
at the moment there is no publicly available repository that
would allow easy access to these data sets. We are involved
in an ongoing collaborative effort to create such a reposi-
tory for AP/MS with intent to make it a growing resource
(D. Mellacheruvu et al., in preparation). The repository is
populated with negative control data obtained through the
scientific community. Experiments are annotated to keep key
information regarding the experimental conditions such as
experimental system (cell type, expression system), purifi-
cation (affinity matrix employed), and LC-MS/MS (e.g. gel
based or gel free). The database implements various search
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functions and allows selection of control data sets that most
closely match the experimental conditions of the experiment
under consideration.

Such a repository may serve multiple purposes. It can be
used to perform various statistical and data mining analy-
ses, e.g. to determine the propensity of various nonspecific
binding proteins to associate with different epitope tags or
affinity matrices under different conditions. It can be used to
gain a better understanding of the nature of nonspecific back-
ground, and what experimental parameters have an effect on
this background. Importantly, it can be used as a part of sta-
tistical or empirical scoring schemes such as those discussed
above. Alternatively, it can be used as an aid in manual data
validation and for quality control.

11 Integrative modeling of AP/MS data

AP/MS, or any method for that matter, has limited sensitivity
of detection depending on the selection of baits, experimental
conditions, and the technology used. Even when a true inter-
actor of the bait is identified by MS, the bait—prey interaction
may receive a low confidence score due to low abundance
(spectral count) of the prey. However, in many studies, the
list of protein interactions generated by AP/MS represents
an entry point for subsequent higher level analysis. This in-
cludes network visualization and clustering to identify pro-
tein complexes and signaling modules, detection of cross-talk
among different protein complexes and pathways, and addi-
tional experiments aiming to get a better understanding of
the functional significance of the results. Some of the low
scoring interactions can thus potentially be “rescued” if they
are corroborated by higher level or external evidence, e.g. in
agreement with the prior biological knowledge, the higher
level structure of the local network, or computational pre-
dictions based on functional genomics data (illustrated in
Fig. 6).

To illustrate the concept of using higher level data, con-
sider a low scoring interaction involving a prey protein iden-
tified with low spectral count. This prey protein, however,
may also be identified as a high probability interactor of sev-
eral other baits. If all these bait proteins are assigned to the
same cluster (protein complex) based on a subsequent clus-
tering analysis [87, 115], it increases the confidence in the
interaction in question. A related strategy based on defining
a complex enrichment score (CE filter) in addition to the spec-
tral count-based E-filter (described earlier in this manuscript)
was recently explored in [93].

An example of external data is prior biological knowledge.
This includes previously reported protein interactions, and
prior data regarding the composition of the protein com-
plexes of interest, their cellular localization, or function.
There are several examples of methods that attempted us-
ing such prior information [4, 5]. More generally, one can
utilize many sources of functional genomics data, com-
monly used to assign function or place observations in a
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complexes identified from protein interaction screens [116].
External functional genomics data can be used to predict
protein—protein interactions or gene functional associations,
e.g. using Bayesian integration of multiple sources of biolog-
ical information [117-122]. A number of computational sys-
tems are available that make such predictions, e.g. STRING
[123] and GeneMania [124]. The confidence in the experi-
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mentally detected interaction should generally be higher if
the interaction is predicted based on functional genomics
data (illustrated in Fig. 6).

One such strategy of combining experimental and pre-
dicted protein interaction data was recently used in [125].
For every bait-prey pair observed in the experimental TAP
AP/MS data, the probability score was calculated as P = 1-
(1'PEXP)(1'PSTRING): where Pexp and Pstring are probabﬂities
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of interaction based on the experimental evidence (computed
using a modified socio-affinity score taking into account spec-
tral count information) and predicted by STRING, respec-
tively. Thus, a low scoring TAP AP/MS interaction was ac-
cepted for subsequent analysis (clustering) if it had a suffi-
ciently high score in STRING. However, such an approach
assumes that both Pgxp and Pstring are accurate probability
measures. This may be the case for Pgxp, which was obtained
by scaling the modified socio-affinity scores to fit the expected
rates of true interactions based on a benchmark data set cre-
ated using known protein complexes [125]. The accuracy of
STRING computed probabilities, however, has yet to be as-
sessed. There is also a possibility of introducing a bias toward
certain types of protein interactions or functional categories
[126].

Thus, what represents the best way to combine the ex-
perimental evidence for a particular protein interaction with
external or higher level information remains an open ques-
tion. Computational validation of any rescoring method that
utilizes external information is very challenging since the
benchmark data set cannot be created based on the same in-
formation that is used in making the predictions. The safest
way is to restrict the use of external information to simple
visualization. For example, one can visualize the interaction
data filtered stringently based on the experimental AP/MS
evidence, and then add to the network additional weaker in-
teractions corroborated by external data. This way, the burden
of utilizing the additional information would be shifted to the
biologist interrogating such data and interested in a specific
protein or protein complex.

12 Computational tools and informatics
platforms

The development of computational methods for scoring label-
free AP/MS protein interaction data is an active area of re-
search. However, with respect to the availability of compu-
tational tools, the choices at the moment are limited (not
considering topology-based tools developed for genome-wide
AP/MS data). MaxQuant (and the downstream data analy-
sis system Perseus) is a powerful option for the analysis of
AP/MS data sets generated using high mass accuracy in-
strumentation and with at least three biological replicates
per bait (necessary for computing p-values in Perseus) [92].
To our knowledge, the CompPASS software is not available
as a download; however its well-designed scoring scheme
can be easily re-implemented in any in-house computational
pipeline. The SAINT software is available as an open source
tool (hittp://saint-apms.sourceforge.net), and is capable of pro-
cessing both spectral count and intensity-based quantitative
data.

Among the most dedicated efforts to develop a complete
informatics solution in support of AP/MS experiments is Pro-
Hits data management system (http://www.prohitsms.com)
[127]. The full version of ProHits provides secure storage of
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MS data, integration with search engines, and MS analytical
tools (including the open source X! Tandem search tool and
the TPP pipeline), and allows web-based queries of the results.
Alternatively, MS data can be processed outside of ProHits
and uploaded in the database in, e.g. pepXML, protXML file
formats (TPP analysis), or as unprocessed database search
results files (e.g. Mascot output files). The Analyst module of
ProHits allows easy visualization of data, comparison of mul-
tiple experiments, and permits export to third-party software,
including the network visualization system Cytoscape [128].
ProHits is also fully integrated with SAINT, and allows ex-
portof filtered protein interaction data in the common PSI-MI
file format [129] supported by most protein interaction data
repositories. A smaller version of ProHits is now available
as ProHits Lite virtual machine, providing an easy to install
yet powerful integrated interaction proteomics solution for
desktop computers.

13 Concluding remarks

Analysis of protein interactions and protein complexes using
AP/MS is one of the widely used and successful applications
of MS-based proteomics in biological research. However, the
development of practical computational tools for AP/MS data
has lagged behind. A number of approaches have been devel-
oped for topology-based analysis of genome-wide interaction
networks, but these methods are not applicable to AP/MS
data that are generated in most studies. The reliability of
results from ongoing proteomics studies is of general con-
cern, and there is a need for the development of methods for
statistical assessment of protein interaction data in particu-
lar.

The importance of accurate bioinformatics analysis of pro-
teomic data has been recognized by leading journals. How-
ever, so far most efforts in this area have focused on the
problem of peptide and protein identification [15, 130-133],
and in the context of the interactome work, on the reliabil-
ity assessment of Y2H screens [112, 134, 135]. Fortunately,
an increasing number of groups are now working to develop
new methods and tools for the analysis of AP/MS data. The
common denominator among these efforts is the use of label-
free quantitative protein information such as spectral counts
or integrated peptide intensities that can be extracted from
AP/MS data. The methods used for scoring range from stan-
dard statistical approaches, to empirical scoring schemes op-
timized for a particular type of data, to advanced computa-
tional frameworks. While only a few computational software
solutions are available at the moment, it is hoped that more
tools will emerge in the future. Importantly, an increasing
number of AP/MS experiments are now being deposited to
public repositories, including both processed data and raw
MS files. This should assist computational scientists in the
development of novel bioinformatics methods and tools for
AP/MS data.

www.proteomics-journal.com



Proteomics 2012, 12, 1639-1655

It is hoped that eventually a number of competitive pub-
licly available computational tools will emerge, and their per-
formance will be tested using experimental AP/MS reference
data sets. Generation of such reference data set thus should be
one of the priorities for the field of interaction proteomics. It
is unrealistic to expect that different research groups involved
in generation and analysis of their own data will all agree on
using the same statistical approaches or computational tools.
Still, it should be required by the scientific community that
researchers conform to certain data analysis guidelines and
also carefully document all data analysis steps. This could be
facilitated by extending journal data publication guidelines
[136,137] to the domain of AP/MS protein interaction data.

Finally, proteomics technology is still evolving. For exam-
ple, targeted proteomics approaches such as those based on
selected reaction monitoring have emerged as a powerful ad-
dition to conventional shotgun proteomics [54]. These new
strategies will be increasingly applied to the analysis of pro-
tein interactions and protein complexes, including monitor-
ing their dynamic behavior in a quantitative manner [138].
This will undoubtedly require new computational and soft-
ware developments in support of these new workflows. Thus,
the development of new methods and tools for AP/MS-based
analysis of protein interaction data should continue to be an
active area of research for a foreseeable future.
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