High-performance top-gate a-Si:H TFTs for AMLCDs
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Abstract insulator were deposited by the PECVD technique at

High-performance  top-gate  hydrogenated 250°C. A 4500A thick aluminum layer was used as the
amorphous silicon (a-Si:H) thin-film transistor  gate electrode. The amorphous silicon nitride thickness
(TFT) structures have been fabricated over a large was not the same for all the samples; we, therefore, used
area from plasma-enhanced chemical vapor the gate electrical field rather than the gate voltage:
deposition (PECVD) materials. The electrical F =V /te s -
performances of the top-gate a-Si:H TFT
(Mre=0.75cnf/Vsec, V1=3.5V, S=0.55V/dec) are
comparable to the electrical performances observed
for an inverted-staggered bottom-gate a-Si:H TFT.
We have shown that the TFT field-effect mobility
first increases with the a-Si:H thickness, and then
decreases for thicker a-Si:H films. This change of
the electrical performances can be associated either
with the variation of a-Si:H microstructure with
film thickness during the PECVD processes or a
large density of TFT back interface states; it also
involves the source/drain  parasitic  access
resistances, especially for thick a-Si:H layers.

The device parameters, such as the field-effect
mobility (urg) and the threshold voltage/+), were
extracted from a-Si:H TFTp-Vg characteristics by
least-square fitting to the MOSFET gradual channel
approximation equation: Ip=pgeCi(W/L)(Ve-V1) Vb,
whereC; is the gate-insulator capacitance per UMftis
the channel widthl,. is the channel length, an, is the
applied drain voltage. The field-effect channel
conductance activation energfaf at different gate
voltages was obtained from the slope of the Arrhenius
In(lp) versusT? plot: Ip = |poexXp(EA/KT), wherelpg is a
constant,k is the Boltzmann constant, arid is the
absolute temperature.

Introduction

Based on the order of thin-film deposition, there
are two types of a-Si:H TFT structures: inverted- v —o01v
staggered bottom-gate and normal-staggered top- 1083 DS
gate[1]. Today the top-gate TFT structure is not used by { W/L=S0HM/L00um
the majority of flat-panel display producers. It is 109F _a 120R
generally believed that the top-gate a-Si:H TFTs have a 1 —o_ 3504
much worse electrical performance (lower mobility and 10104 900A

Results and discussion

higher threshold voltage) than inverted-staggered —~ ] —v—1350A
bottom-gate a-Si:H TFTs [2]. 101 18507
In this paper, the experimental and simulated _© 1 —+—2350A

results of the influence of a-Si:H thickness on the TFT 10124
electrical performances clearly indicate that a high- ]
performance top-gate a-Si:H TFT can be fabricated 10134

over a large-area from PECVD layers. 0

1 1000A 2000
10144 I—‘ )

EXQeriment T T T |a_Sis L—
Glass substrates covered with amorphous silicon 04 02 00 02 04 06 08
oxide (a-SiQ:H) were used to fabricated the top-gate Electrical Field=V/t_ (MV/cm)

a-Si:H TFT structures. First a 400A-thick indium-tin- Figure 1: 15-Vg characteristics of the top-gate
oxide (ITO) layer was patterned as source and drain 5 gj-\ TETs with different a-Si:H thicknesses. The

electrodes, apd §elective ohmic source/drain contacts values of the subthreshold slope (normalized to the
were formed in-situ by P-treatment process of the ITO ,_giN:H thickness) are shown in the inset.

patterned electrodes in a PECVD system [3]. Following o
the P-treatment process, an intrinsic a-Si:H layer and An example of thep-V; transfer characteristics in
hydrogenated amorphous silicon nitride (a-SiNx:H) gaté¢he linear region\(ps=0.1V) is shown in Figure 1 for
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top-gate a-Si:H TFTs with different a-Si:H layer voltage, are about 0.2 and Qént for, respectively,
thicknesses and a channel length of 100um. 300 and 2330A-thick a-Si:H TFTs. The decrease of

When the a-Si:H thickness decreases, the following FT threshold voltage with increasing a-Si:H thickness
trends can be observed: (i) the ON-current decreasesuld be associated with the improvement of a-Si:H
and thelp-Vg transfer curve moves towards high&-  electronic quality and/or with a weaker influence of
values (reduction of the field-effect mobility and TFT back interface (between the glass coating layer and
increase of the threshold voltage); (ii) the normalizedhe amorphous silicon) states on TFT electrical
subthreshold ~ slope S(kn=1/tsn  (8loglp/dVe)™) performances.
increases; and (iii) the OFF-current decreases. Similar For a 1350A thick 100um-long a-Si:H TFT, the
observations have been made for TFTs with different Lvalues ofug: andV+ are about 0.75cf/sec and 3.5V,
values. We have also observed a non-linearityydfc ~ respectively. These values are comparable to the values
characteristics for thinner a-Si:H layers, which can beobtained for state-of-the-art inverted-staggered bottom-
associated with a higher value of a-Si:H band-tail statgate a-Si:H TFT having a similar a-Si:H layer
density [4]. thickness [5].

The a-Si:H film thickness dependence of the field-  Figure 3 shows the variation of the field-effect
effect mobility and threshold voltage is shown inchannel conductance activation energy as a function of
Figure 2. The values corresponding to a 100um-lony/ for top-gate a-Si:H TFTs. To reduce the effect of the
TFT and the intrinsic values, extracted by thesource/drain series resistance on the extractioE,of
Transmission Line Method (TLM) [5], are given. from the Arrhenius plot, long channel length (169 a-

Si:H TFTs were used [6]. A small series resistance

V0.1V, W50mm 0.5 effect (increase oF, with decreasind.) on Ex-values
osl % - o 0 - can be observed in Figure 3 for a-Si:H TFTs with
' 0 R o g channel lengths of 10 and 1@n. It should be noted
104 @ that, for a-Si:H films thicker than 1350A, the effect of
% the series resistances becomes significant even for
» 0.67 m 100pm-long TFTs.
2 103 @
T 3
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Figure 2: Field-effect mobility and threshold
electric field M; /t,_g,) as a function of a-Si:H 01k
thickness, for top-gate 100um-long TFT (solid).
TFT intrinsic values are also shown (open). . . . . . .

15 20
The increase of the intrinsic mobility, together with

the reduction of the subthreshold slope (insert in

Figure 1) clearly indicate an improvement of a-SiH Figyre 3: Channel conductance activation energy as
electronic quality in terms of the density-of-states. 4 fynction of gate voltage for top-gate 100pm-long
However, for very thick films, the TFT field-effect g gi:y TFTs with different a-Si:H layer
mobility decreases with increasing a-Si:H thickness: this thicknesses. Values for a 1350A-thick 10um-long
is due to a stronger influence of the parasitic source and 5_sj-H TFT are also shown.

drain access resistances. The rapid increase of the series

resistances for thick a-Si:H films has been confirmed by ~We can conclude from this figure that a top-gate
the TLM results: TFT total series resistivities (source@-Si:H TFT with a thin a-Si:H layer (~120A) has a high
and drain contacts and access regions to the conductiGa-value €0.15eV) in the ON-state VE>Vy) in
channel), for a gate voltage of 15V above threshol@omparison with typical bottom-gate a-Si:H TFTs

0
V. (V)
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(Ex=0.08eV). However, theEj-values decrease with It is clear from this figure that a-Si:H density-of-
increasing a-Si:H layer thickness. A thicker a-Si:H top-states decreases with increasing a-Si:H thickness. The
gate TFT has afEa-value Ex=0.08eV) similar to that optimum a-Si:H thickness for the best TFT electrical
obtained for a bottom-gate a-Si:H TFT. Assuming thaperformances is about 13504, for a 100pum-long TFT.
E. corresponds to the Fermi level position in theThis is consistent with the data shown in Figure 2.

conduction channel, a highd-value indicates that The thickness influence has also been observed in
higher densities of conduction-band-tail- and deep-gapthe high-frequency (100kHz) capacitance-voltage/j
states are present in thinner a-Si:H films. characteristics of the metal-insulator-semiconductor
1.5x105 (MIS) capacitors, where a higher degreeCe¥ curve
Vg Symbols: experimental stretch-out was observed for thinner a-Si:H films. These
LY, Solid: simulation results are in agreement with the photothermal
e 8V deflection spectroscopy (PDS) [7] and the electron spin
12v resonance (ESR)[8] measurements, which have
100G F v 16V indicated that a higher deep-gap state density is
< 20V expected for thinner a-Si:H films.
_8 Reflective display
High-performance top-gate a-Si:H TFTs described
5.0x108 [ . ) . L
in this paper can be used as a switching device in
transmissive and reflective flat panel displays. A cross-
section of 12.1" SVGA reflective (R)-TN mode TFT
Aoeeececccccceccccscesss LCD is shown in Figure 6.
% 5 10 15 20 A
vV (V) Inpldent Rleﬂected
DS Light Light Front Scattering
Figure 4: Example of simulated (solid curves) and Film
experimental (symbols)psVps characteristics of v Polarizer
1350A-thick 8pm-long a-Si:H TFTs for different A /Glausssum"ate Retardation Film
gate V0|tages_ 7 “\CO|OT Filter
. . - = Common
The experimental results discussed above are| — Electrode (ITO)
confirmed by the 2D simulation data. Figure 5 shows D TN Liguid Crystal

the evolution of the a-Si:H density-of-states parameters
(band tail slope and deep-gap states) required to fit the
experimental Ips-Vps characteristics of a-Si:H TFTs
with different a-Si:H thicknesses as shown in Figure 4.

‘ (LC) Layer

Pixel Electrode
(Al) with Reflector

Acrylic Resin

60 1 1018
a-Si:H TFT simulation results ] Figure 6: Cross-section of the full-color R-TN

AMLCD.

The color R-TN AMLCD (normally black mode)
consists of TFT active-matrix substrate, single
polarizer, front scattering film, retardation film, color
filter, and TN LC layer. In the configuration shown in
Figure 6, the pixel electrode of the top-gate TFT is used
as an internal reflector and is located just below the
liquid crystal homogeneous alignment layer to avoid a
parallax problem associated with the glass substrate.
The pixel electrode was expanded above bus line and

TFT to achieve a high aperture-ratio (88.5%). This

0 b0 1000 1500 2000 oeo’ pixel configuration is called Field Shielded Pixel (FSP)

. : structure. The upper substrate includes the front

a-Si:H thickness (A) L .

scattering film to enhance the output (reflected) light

Figure 5: Values of the conduction band-tail- and from the display. The retardation film between polarizer

deep-gap-states used to fit the experimegtal/bs and liquid crystal cell is added to display the achromatic
(Figure 4) curves as a function of a-Si:H thickness. colors.

conduction band tail slope (eV)
deep-gap density-of-states (€n
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The variations of the reflectance and the contrast-  Although usage of the color filters with a lower
ratio of the color R-TN AMLCD with viewing angle are transmittance can result in a better chromaticity, it can
shown in Figure 7; the angle of the incident light sourcecause a lower reflectance at the same time. Thus, for the
is fixed at -30. In this figure, the maximum reflectance present R-TN AMLCD, the RGB color filters with their
is larger than 100% and the reflectance withitb®  transmittance of about 60 to 70% were used to satisfy
from the detector angle at the maximum is 60% inboth the chromaticity and the reflectance display
comparison with the standard white (Ba®Gimilarly,  requirements; and the chromaticity of our R-TN
the maximum contrast-ratio is 6:1 and the contrast-ratidédMLCD is comparable to that of color pictures in a
within #15° from the detector angle at the maximum ishewspaper. Another factor that will affect the
5:1. These values are comparable to those of thehromaticity is the back scattering of light from the

newspaper (reflectance and contrast-ratio are about 60%nt scattering film [9]. Further improvement of the
and 5:1, respectively). front scattering film is needed to achieve a higher

contrast-ratio and a better chromaticity of R-TN
200 140 AMLCDs.

Conclusion

In this paper we have demonstrated that high-
performance top-gate a-Si:H TFTs can be fabricated by
the PECVD technique over a large-area. Hence, the
general belief that top-gate a-Si:H TFTs have a worse
electrical performance than bottom-gate a-Si:H TFTs is
a myth rather than reality. We have also demonstrated
that the top-gate TFT technology can be successfully
applied to full color reflective TN AMLCDs.
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