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Identifying representative trees from
ensembles
Mousumi Banerjee,a*† Ying Dinga and Anne-Michelle Nooneb

Tree-based methods have become popular for analyzing complex data structures where the primary goal is risk
stratification of patients. Ensemble techniques improve the accuracy in prediction and address the instability in
a single tree by growing an ensemble of trees and aggregating. However, in the process, individual trees get lost.
In this paper, we propose a methodology for identifying the most representative trees in an ensemble on the basis
of several tree distance metrics. Although our focus is on binary outcomes, the methods are applicable to cen-
sored data as well. For any two trees, the distance metrics are chosen to (1) measure similarity of the covariates
used to split the trees; (2) reflect similar clustering of patients in the terminal nodes of the trees; and (3) measure
similarity in predictions from the two trees. Whereas the latter focuses on prediction, the first two metrics focus
on the architectural similarity between two trees. The most representative trees in the ensemble are chosen on
the basis of the average distance between a tree and all other trees in the ensemble. Out-of-bag estimate of error
rate is obtained using neighborhoods of representative trees. Simulations and data examples show gains in pre-
dictive accuracy when averaging over such neighborhoods. We illustrate our methods using a dataset of kidney
cancer treatment receipt (binary outcome) and a second dataset of breast cancer survival (censored outcome).
Copyright © 2012 John Wiley & Sons, Ltd.
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1. Introduction

Tree-based methods have become one of the most flexible, intuitive, and powerful data analytic tools for
exploring complex data structures [1–4]. The applications of these methods are far reaching. The best
documented and arguably most popular uses of tree-based methods are in biomedical research where
classification is a central issue. Researchers [5–8] have also studied extensions to the censored data
setting. Applications of tree-based analyses for classification and prognostication are abundant in the
clinical literature [9–14].

One exciting development in recent years is the expansion of trees into ensembles of trees [15–19].
The mechanism of selecting a best split and the recursive partitioning of data leads to smaller and smaller
datasets. This can lead to instability in the tree structure [15], whereby small changes in the data and/or
algorithm inputs can have dramatic effects on the nature of the solution (variables and splits selected).
Another major shortcoming of tree-based methods is their modest prediction performance, attributable
to algorithm greediness and constraints that, while enhancing interpretability, reduce flexibility of the
fitted functional forms. Growing an ensemble of trees and aggregating is a way to fix these problems.
The advantage in growing many trees and using an aggregated estimate is that it is a way to reduce
variance [16]. It also leads to classifiers and predictors that are drawn from a richer class of models [3].
Ensemble methods such as bagging [15, 19], boosting [19, 20], and random forest [16] yield substantial
performance improvement over a single tree and address the inherent instability of a single tree.

Bagging [15,19] involves bootstrapping the training data. A large number of pseudo datasets are gen-
erated by resampling the original observations with replacement and a tree grown on each pseudo dataset.
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This results in an ensemble of trees. The simple mechanism, whereby bagging reduces prediction error,
is well understood in terms of variance reduction resulting from averaging [3].

Random forest [16] is an ensemble of unpruned classification or regression trees, induced from
bootstrap samples of the training data, using random feature selection in the tree induction process.
Correlation reduction is achieved by the random feature selection. Instead of determining the optimal
split of a given node of a tree by evaluating all allowable splits on all covariates, as is performed with
growing a single tree, a subset of the covariates drawn at random is employed. Once again, prediction
is made by aggregating (majority vote for classification or averaging for regression) the predictions of
the ensemble.

Compared with a single tree, ensemble methods typically offer substantial gains in predictive accu-
racy and are known to be stable. However, individual trees are lost in the ensemble. This is a significant
loss, given that a tree is often used for decision making in the clinical setting. In this paper, we provide a
methodology for identifying the most representative trees in an ensemble. Quite often, the problem may
not be as bad as it seems; although hundreds of distinct trees are identified, many will differ only at a few
nodes. Other trees may have different architectures but produce similar partitions of the covariate space.
By defining several distance metrics on trees, we summarize an ensemble by several representative trees.
Earlier work by other authors [21, 22] considered a similar approach in the context of exploring a set of
plausible models, when either selection or averaging is the goal.

We organize this paper as follows. Section 2 describes our approach for growing an ensemble of
trees. In Section 3, we introduce several distance metrics that capture similarity between two trees in
an ensemble, focusing on architectural similarity as well as similarity in predictions. We choose the
most representative trees on the basis of the average distance between a tree and all other trees in the
ensemble. In Section 4, we present a method for estimating out-of-bag (OOB) error rate on the basis of a
neighborhood of representative trees. To illustrate our methods, in Section 5, we present analyses of data
on treatment patterns for kidney cancer where the outcome of interest is binary. As a second illustration,
we present in Section 6 analyses of data from a breast cancer cohort study where the outcome of inter-
est is recurrence-free survival (censored). Section 7 describes results from simulation studies. Finally,
Section 8 contains concluding remarks.

2. Growing trees in the ensemble

First, we introduce some terminology. A tree T has a root, which is the top node, and observations are
passed down the tree, with decisions being made at each node (also called daughters) until a terminal
node or leaf is reached. Each nonterminal node (also called internal node) contains a question on which
a split is based. The terminal nodes of a tree T are collectively denoted by QT , and the number of terminal
nodes is denoted by j QT j. The branch Th that stems from node h includes h itself and all its daughters.

In growing a tree, the natural question that arises is how and why a parent node is split into daugh-
ter nodes. Trees use binary splits, phrased in terms of the covariates, that partition the covariate space
recursively. Each split depends upon the value of a single covariate. The partitioning is intended to
increase within-node homogeneity. Goodness of a split must therefore weigh the homogeneities in the
two daughter nodes. We measure quantitatively extent of node homogeneity using an ‘impurity’ func-
tion. We evaluate potential splits for each of the covariates and choose the covariate and split value
resulting in the greatest reduction in impurity.

Corresponding to a split s at node h into left and right daughter nodes hL and hR, the reduction in
impurity is given by

�I.s; h/D i.h/�P.hL/i.hL/�P.hR/i.hR/;

where i.h/ is the impurity in node h, and P.hL/ and P.hR/ are the probabilities that a subject falls
in nodes hL and hR, respectively. For binary outcomes, i.h/ is measured in terms of entropy or Gini
impurity [1, 2]. For continuous outcomes, i.h/ is typically the mean residual sum of squares [1, 2]. For
censored outcomes, LeBlanc and Crowley [5] proposed using the deviance under the assumption that the
hazard functions in two daughter nodes are proportional but unknown. The splitting rule that maximizes
�I.s; h/ over the set S of all possible splits is chosen as the best splitter for node h.

We grow an ensemble of trees using repeated bootstrap samples to inject randomness into the process.
In general, each tree is grown to its full size without pruning: the only restriction being that a node con-
tain no fewer than m observations; where m is typically some small number fixed a priori. This avoids
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two important problems with trees, namely, when to stop growing a tree and how to optimally prune
a tree. In contrast to using a random selection of covariates as is performed in the implementation of
random forest, we use all covariates at each step of the splitting process. From that respect, our approach
in growing the ensemble is akin to bagging.

3. Tree metrics

We think of each tree as a point in a high-dimensional space and cluster the trees according to some mea-
sure of proximity. Note that this space is much more complex than the Euclidean space, and distances
between trees can be quantified in a number of ways. Any tree in the above space can be identified by a
finite set of parameters, and these parameters can be broadly divided into two groups: the tree itself and
the terminal node parameters. For example, the tree parameters could include the splitting rules and the
architecture of the tree. The terminal node parameters could include the partition of the covariate space
(defined by the terminal nodes) and the predictions from each terminal node. Metrics may be defined on
either the tree or the terminal node parameters, or both. In the following discussion, we propose three
different metrics, which capture different aspects of the tree.

Let T1 and T2 be two trees with b1 and b2 terminal nodes. Assume they have been trained using
the same n observations .yi ; xi /; i D 1; : : : ; n, where yi denote the response for subject i and
xi D .xi1; : : : ; xik/ is the vector of k covariates for the i th subject. We argue that two trees are sim-
ilar if they use the same covariates for splitting. Towards that end, we define a metric that measures
covariate mismatch between the two trees. In information theory, the Hamming distance between two
strings of equal length is the number of positions for which the corresponding symbols are different.
We define the Hamming distance between trees T1 and T2 as follows: suppose tree T1 uses covariates
x1; x5; x6; and x8 for splitting and tree T2 uses covariates x1; x3; x7; x8; and x9 for splitting. The
k-dimensional binary strings corresponding to T1 and T2 are 1000110100 . . . 0 and 1010001110 . . . 0,
respectively, and the Hamming distance between T1 and T2 is 5. We define the standardized Hamming
distance as

d0.T1; T2/D
# of covariate mismatches betweenT1andT2

# of covariates in the study
(3.1)

In the aforementioned example, d0 D 5=k:
The second metric emphasizes ‘similarity’ in the terminal nodes. Trees that are similar will place the

same subjects together in a terminal node and separate the same subjects in different terminal nodes
(i.e., if subjects i and j are placed in two different terminal nodes by T1, then these two subjects should
also be placed in two different terminal nodes by tree T2 for it to be similar to T1). Towards that end,
we define a metric that captures how subjects are clustered in the terminal nodes. For all

�
n
2

�
pairs of

subjects, if subjects i and j are in the same terminal node by tree T1, then IT1.i; j / D 1, otherwise
IT1.i; j /D 0. We define the metric

d1.T1; T2/D

P
i>j

P
j jIT1.i; j /� IT2.i; j /j�

n
2

� : (3.2)

The factor
�
n
2

�
scales the metric to the range .0; 1/ such that 0 indicates perfect agreement. A pair of

subjects contributes a positive amount to d1 if and only if one tree places the subjects together and the
other tree places them apart. Thus, d1 is 0 if the two trees partition the covariate space in exactly the
same way.

Instead of using the partition induced by the terminal nodes, one could define a metric that captures
the similarity in predictions. Two trees are similar if the predictions from the two trees are the same for
all subjects. For each subject i , we have a predicted value Oyj i from tree Tj . For binary outcomes, Oyj i
represents the predicted probability of the event of interest in the terminal node that subject i is assigned
to by tree Tj . For censored outcomes, Oyj i could represent any summary statistic of the survival distribu-
tion (e.g., estimated 1-, 3-, and 5-year survival probabilities, median survival) in the terminal node that
subject i is assigned to by tree Tj . We define the metric

d2.T1; T2/D
1

n

nX

iD1

. Oy1i � Oy2i /
2: (3.3)

Thus, d2 is 0 if the predictions from T1 and T2 are the same for all subjects.

Copyright © 2012 John Wiley & Sons, Ltd. Statist. Med. 2012, 31 1601–1616
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Whereas d2 captures prediction similarity, the metrics d0 and d1 capture similarity in tree architecture
in terms of their focus on the splitting covariates and the partition induced by the terminal nodes. One
could think of additionally rewarding two trees that not only cluster subjects similarly but use the same
covariates in doing so. Towards that end, we define the metric

d�1 .T1; T2/D
d0.T1; T2/

P
i>j

P
j jIT1.i; j /� IT2.i; j /j�
n
2

� ; (3.4)

which is a weighted version of d1 using Hamming distance between the two trees as the weight. Note
that if two trees cluster the subjects exactly the same (can happen only with a small chance in practice),
then the numerator of d�1 will be 0 no matter what d0.T1; T2/ is. Thus, d�1 really focuses on the pairs of
trees that do not match exactly in terms of patient clustering.

3.1. Choosing the most representative trees

We compute the similarity scoreD.T / for a tree T by averaging the individual distance metrics between
tree T and all other trees in the ensemble. This is the average distance between tree T and all other
trees in the ensemble. So, a low score for a tree indicates its similarity to all other trees in the ensemble.
We compute the score D.T / for each of the distance metrics (i.e., d0; d1; d2; and d�1 ) and choose the
representative trees in the ensemble on the basis of the smallest D.T / values.

4. Out-of-bag error

Error rate performance is calculated on the basis of the ensemble estimate. For binary outcomes, our key
deliverable is the predicted probability of the event of interest. We derive the ensemble estimate as fol-
lows. First, from each tree grown in the ensemble, we estimate the probability of event for each subject i
by grouping subjects by terminal nodes. To estimate the probability of event for patient i with predictor
xi , simply drop their covariate xi down the tree. If xi lands in terminal node h, then define

Op.xi /D Oph; if xi 2 h:

Note that we compute this value for all individuals i in the data.
We base the aforementioned estimate on one tree. To obtain the ensemble estimate, we average over

all trees in the ensemble. Let Opb.xi / be the predicted probability of event for subject i from tree b. Then,
the ensemble estimate is

Opens.xi /D
1

B

BX

bD1

Opb.xi /;

where B is the total number of trees in the ensemble.
Now, define Ii;b D 1 if i is OOB for b (i.e., i is not included in the bootstrap sample used to grow tree

b), otherwise Ii;b D 0. The OOB ensemble estimator for patient i is

Opoob.xi / D

PB
bD1 Ii;b Opb.xi /PB

bD1 Ii;b
: (4.1)

Note that we obtain Opoob.xi / by averaging over only those trees for which the bootstrap samples did
not include i , that is, those bootstrap samples for which subject i was OOB. This is in contrast to the
ensemble estimator Opens.xi / that uses all the trees.

Because we ultimately want to assign OOB error rates to the representative trees, we compute Opoob.xi /
using neighborhoods of trees that are deemed similar based on D.T /. In essence, the averaging in
Equation (4.1) is carried out over neighborhoods of representative trees. For example, using the top
l% of the most representative trees to define a neighborhood Rl , we compute

Op
.l/
oob.xi / D

P
b2Rl

Ii;b Opb.xi /P
b2Rl

Ii;b
; (4.2)

where Op.l/oob.xi / is the OOB ensemble estimator of the probability of event for patient i based on a
neighborhood Rl of similar trees.
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Given the OOB estimator Op.l/oob.xi /, we finally obtain the error rate using Harrell’s concordance index
[23]. The latter is calculated using all possible pairs of subjects, for whom one experienced the event
(y D 1) and the other did not (y D 0). Denote the total number of such subject pairs by a. We judge
prediction performance by the ability of the model to allocate to patients who experience the event a
higher predicted probability of experiencing the event (i.e., worse predicted outcome) than that allocated
to those who did not experience the event. Denote by e the number of subject pairs for whom the subject
who experienced the event had a higher predicted probability of event. Finally, denote by t the number
of subject pairs for whom the predicted probabilities for the subjects are tied. We then derive Harrell’s
concordance (c) index as c D .e C 0:5t/=a and calculate the OOB estimate of error rate as 1 � c. A
value of 0.5 for the error rate corresponds to a procedure doing no better than random guessing, whereas
0 indicates perfect accuracy. Given that enough trees have been grown, the OOB estimate of error rate is
an accurate estimate of test set prediction error rate [16].

In the censored data setting, we use the OOB ensemble estimate of the cumulative hazard function
to compute error rates. Consider a specific node h. Let

˚
yl;h

�
be the distinct death times for patients in

node h, and let dl;h and rl;h be the number of deaths and individuals at risk at time yl;h. The cumulative
hazard function estimate for node h is defined as

OHh.y/D
X

yl;h6y

dl;h

rl;h
:

Each tree provides a sequence of such estimates OHh.y/. If there are M terminal nodes in the tree, then
there are M such estimates. Once again, to estimate the cumulative hazard function for patient i with
predictor xi , we simply drop their covariate xi down the tree. As before, let OHb.y j xi / be the cumula-
tive hazard estimate for subject i from tree b. Then, the OOB ensemble cumulative hazard estimator for
patient i based on the neighborhood Rl of similar trees is given by

OH
.l/
oob.y j xi / D

P
b2Rl

Ii;b OHb.y j xi /P
b2Rl

Ii;b
: (4.3)

To compute Harrell’s concordance index in the censored data setting, one must define what constitutes
a worse predicted outcome. We take the following approach. Let y�1 ; y

�
2 ; : : : ; y

�
N denote all unique event

times in the data. Subject i is said to have worse predicted outcome than subject j if

NX

kD1

OH
.l/
oob.y

�
k j xi / >

NX

kD1

OH
.l/
oob.y

�
k j xj /:

Harrell’s c index is then defined as the proportion of all allowable subject pairs in which the predicted
and observed outcomes are concordant [24]. Unlike other measures of survival performance, Harrell’s c
index does not depend on choosing a fixed time for evaluation of the model and specifically takes into
account censoring of individuals.

5. Treatment patterns for kidney cancer

As an illustrative example, we present analyses of data from a population-based study of kidney cancer
where the outcome of interest is (binary) receipt of treatment. Radical nephrectomy is the traditional
gold standard for treating patients with organ-confined kidney cancer. During the last two decades, how-
ever, the introduction of a nephron-sparing alternative (i.e., partial nephrectomy) to radical excision has
appreciably modified the therapeutic options for patients with kidney cancer. Partial nephrectomy yields
oncologic outcomes that are indistinguishable from those achieved by radical excision and also preserves
long-term renal function while reducing overtreatment of patients with benign tumors. Despite these
potential benefits to patients, population-based data suggest that the adoption of partial nephrectomy
has been slow. Consequently, radical nephrectomy remains the predominant surgical therapy for patients
with kidney cancer. The goal of the current study was to identify and characterize patient subgroups who
are likely to receive partial nephrectomy based on clinical and sociodemographic factors.

The analysis cohort comprised 1507 Medicare beneficiaries treated surgically for kidney cancer
diagnosed between 1997 and 2002. The outcome of interest is receipt of partial versus radical nephrec-
tomy (i.e., binary outcome). A total of 10 covariates were considered for the analysis. These included

Copyright © 2012 John Wiley & Sons, Ltd. Statist. Med. 2012, 31 1601–1616
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sociodemographic variables (age, race, gender, marital status, and socioeconomic status), tumor size, and
preexisting comorbidity (using a modification of the Charlson index). In addition, we included prior his-
tory of hypertension, urolithiasis, and/or renovascular disease, given their relevance to surgical decision
making among patients with kidney cancer. On the basis of standard clinical guidelines, we categorized
tumor size as 64 cm and >4 cm. We used median census-tract income and census-tract percentage of
non-high school graduates as patient-level measures of income and education, respectively, to obtain
socioeconomic status.

We implemented the analysis using the RPART algorithm in R [25, 26]. We grew an ensemble of 500
classification trees using the Gini index as the measure of within-node impurity for the goodness-of-split
criterion. The size of the individual trees constituting the ensemble is controlled by a tuning parameter,
which specifies the minimum number of observations in a node for which the tree will try to split. This
was set to the value of 10, which generally gives good results (as corroborated by our simulations that
follow). For computing the metric d2, we used the predicted probability of partial nephrectomy. We based
prediction performance on the ensemble estimate of the probability of receiving partial nephrectomy.

Figures 1–4 present a subset of the most representative trees chosen on the basis of
Dd0 ; Dd1 ; Dd�1

; and Dd2 , respectively. At each level of the tree, we show the best splitter (covari-
ate with cutpoint). The letters in each terminal node denote the predicted class for patients in that node
(RAD for radical and PAR for partial nephrectomy). Note that both trees in Figure 1 (representative trees
based on Dd0) use the same covariates to split (namely, tumor size, age, prior history of hypertension,
and comorbidity index), although their complexities are different (e.g., tree 28 has eight terminal nodes,
whereas tree 67 has five terminal nodes). Furthermore, the aforementioned four covariates turned out to
be the most prominent (ranked topmost) in terms of variable importance for the forest. In general, the
metric Dd0 was fairly discrete and may therefore be less adept at picking up architectural differences
between trees thanDd1 . Figure 2 presents two most representative trees chosen on the basis ofDd1 (i.e.,
in terms of how they cluster patients in the terminal nodes). Some of the terminal node characterizations
in these two trees are exactly the same. Yet, tree 34 uses two additional covariates (marital status and
gender) for splitting. The Dd0 value for tree 92 is 0.253 (of the 500 trees in the ensemble, 12% had a
value forDd0 that is smaller than 0.253). Thus, tree 92 is also representative of other trees in the ensem-
ble in terms of the covariates used for splitting. Figure 3 presents trees that are most similar to other
trees in the ensemble from both aspects (Dd�

1
rewards architectural similarity, i.e., trees that not only

cluster subjects similarly but also use the same covariates in doing so). It is therefore not surprising that
tree 92 emerges as the most representative tree in terms of architectural similarity with other trees in the
ensemble. Figure 4 presents trees that are most similar to other trees in the ensemble in terms of predic-
tions. Note that the complexities of these trees are different (tree 158 has six terminal nodes, and tree 451
has four terminal nodes). Both trees use tumor size and age; however, tree 158 splits on hypertension
as well, whereas tree 451 splits on comorbidity index. Although similar clustering of patients will yield
similar predictions, and there is some overlap in how patients are being clustered by these trees, it is not
necessary for trees to cluster patients the same way to achieve small values of Dd2 :

Table I presents OOB error rates using representative tree neighborhoods. We use the top 5%, 10%,
and 25% of the most representative trees (on the basis of the smallest value of each metric d0; d1; d2;
and d�1 ), as well as all 500 trees in the forest to define various neighborhoods. For a fixed neighborhood

Size < 4cmSize  4cm 

Age  83 

Tree 28 Tree 67 

RAD

RAD
No Prior HTN Prior HTN

Comor
 2

Comor
 1

Age < 83

RAD

Comor
 2

Comor
 1

PAR
Age  67 Age > 67

RAD PAR

Age  67 Age > 67

RAD PAR

Size < 4cmSize  4cm 

Age  88 
RAD

Age < 88

RAD

Prior
HTN

No Prior 
HTN

RAD

Comor
 2

Comor
 1

RAD PAR

Figure 1. Kidney cancer data: representative trees chosen by d0.
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Figure 2. Kidney cancer data: representative trees chosen by d1.
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Figure 3. Kidney cancer data: representative trees chosen by d�
1
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Figure 4. Kidney cancer data: representative trees chosen by d2.

size, the error rates obtained using the different metrics are very similar. There is modest gain in predic-
tive accuracy when averaging over neighborhoods of representative trees compared with averaging over
the entire ensemble. For example, the OOB error rate based on averaging over the top 10% most repre-
sentative trees chosen by Dd2 was 30.4%, which is roughly a 12% relative reduction from the error rate

Copyright © 2012 John Wiley & Sons, Ltd. Statist. Med. 2012, 31 1601–1616
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Table I. Kidney cancer data: out-of-bag error rates based on Harrell’s
concordance index and with the use of neighborhoods of representative
trees.

Neighborhood (%) Dd0 (%) Dd1 (%) Dd2 (%) Dd�
1

(%)

5 � 30.0 29.2 30.2
10 30.7 30.4 30.4 30.5
25 31.7 31.7 31.6 31.8
All trees in the ensemble 34.5
�There are 59 trees in the ensemble with the smallest value of Dd0.0:248/.
Thus, the smallest unique neighborhood is the top 11% neighborhood of
representative trees.

obtained on the basis of averaging over all 500 trees in the ensemble. Overall, this pattern is consistent
across all the metrics, with relative reductions in OOB error rates ranging from 8% to 15% roughly.

6. Breast cancer prognostic study

To illustrate the application of our methodology in the censored data setting, we present a second data
analyses of a cohort study of breast cancer patients. Women eligible for this study were newly diag-
nosed patients with stage I, II, or III breast cancer, diagnosed between January 1990 and December 1996
at Harper Hospital in Detroit, Michigan. Detailed demographic, clinical, pathological, treatment, and
follow-up information were obtained from the Surveillance, Epidemiology, and End Results database,
hospital and clinic records. Recurrence-free survival (RFS) was the primary endpoint of the study,
defined as the interval between diagnosis and documented regional/local or distant recurrence. The goals
of the study were to analyze the relative contributions of patient-related and tumor-related prognostic fac-
tors on RFS and to identify patient subgroups with homogeneous RFS within a group but different RFS
between groups.

The analysis cohort comprised 764 patients. A total of 10 covariates were considered for the analysis.
These included sociodemographic variables (age, race, marital status, and socioeconomic status), fac-
tors characterizing tumor (tumor size, number of positive lymph nodes, tumor differentiation, estrogen
receptor status, and progesterone receptor status), and body mass index as a comorbid factor. Patients
were classified as obese if their body mass index was >30, per the standard guideline recommended by
the World Health Organization. On the basis of standard clinical guidelines, tumor size was categorized
as 62 cm and >2 cm. Number of positive lymph nodes was categorized as 0, 1–3, 4–9, and >10 posi-
tive nodes. Tumor differentiation was also categorized as moderate and poor. Estrogen and progesterone
receptors were binary categorical variables (positive/negative).

We implemented our analysis using the RPART algorithm in R devised by Therneau and Atkinson
[25, 26]; but this can be implemented in any recursive partitioning software that fits Poisson trees, by
capitalizing on the equivalence noted by LeBlanc and Crowley between their relative risk tree and Pois-
son tree likelihoods [5]. We grew 500 trees in the ensemble. We set the minimum number of observations
in a node for which the tree will try to split to the value of 10, as in the kidney cancer study.

Figure 5 presents a subset of the most representative trees chosen on the basis of Dd2 . At each level
of a tree, we show the best splitter (covariate with cutpoint). Numbers in the terminal nodes of each tree
denote the Kaplan–Meier estimates of the 5-year survival probabilities. Note that the complexities of
these trees are different (tree 83 has seven terminal nodes, and tree 375 has five terminal nodes). Table II
presents five randomly selected patients and their corresponding 5-year survival predictions based on
the trees in Figure 5. Although Dd2 is not based on comparing these four trees to each other (but rather
each tree to all other trees in the ensemble), note the similarity in predictions, most evident for trees 83
and 375 that had the smallest values of Dd2 . The sets of representative trees picked by Dd0 andDd1 are
largely different from the ones picked up byDd2 . This is not surprising, given that d0; d1; and d2 focus
on different aspects of tree similarity. The metric d0 once again turned out to be fairly coarse.

Table III presents OOB error rates using neighborhoods of similar trees. Once again, we use the top
5%, 10%, and 25% of the most representative trees (on the basis of the smallest value of each metric
d0; d1; d2; and d�1 ), as well as all 500 trees in the ensemble to define various neighborhoods. In addi-
tion to the OOB error rates using Harrell’s concordance index, we also computed OOB error rates using
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Figure 5. Breast cancer data: representative trees chosen by d2.

Table II. Breast cancer data: 5-year survival pre-
dictions from representative trees selected by d2.

Subject Tree 83 Tree 375 Tree 216 Tree 140

18 0.30 0.30 0.30 0.23
123 0.90 0.92 0.85 0.92
368 0.63 0.63 0.63 0.63
506 0.72 0.72 0.78 0.78
654 0.97 0.92 0.97 0.92

the Brier score [24, 27], another measure commonly used in the survival data setting. In an ordinary
least squares regression model, the standard approach to evaluating accuracy of the model is to look at
the residual mean square error, which is a measure of discrepancy between the observed and predicted
values. The Brier score is based on the aforementioned idea. For a fixed time point y�, the Brier score is
interpreted as a mean square error of prediction when the estimated event free probabilities O�.y� j xi /,
which takes values in the interval Œ0; 1�, are viewed formally as predictions of the event status at y�,
I.yi > y

�/ 2 f0; 1g. Graf et al. recommended using an integrated version of the Brier score that incor-
porates quadratic loss averaged over time [27]. Table III presents results on the basis of both approaches.
Note that with the use of either approach, the error rates obtained by averaging over neighborhoods of
representative trees are only marginally smaller compared with the error rate based on averaging over
all trees in the ensemble. Within each neighborhood, the error rates corresponding to using the different
metrics are very similar.

We also computed the OOB error rate from Ishwaran and Kogalur’s random survival forest [18] using
log-rank splitting rule. In an earlier paper [8], we reported strong concordance between the log-rank
splitting rule and the splitting rule based on proportional hazards model that we used to grow our ensem-
ble. In contrast to our approach, Ishwaran and Kogalur [18] used a random selection of ptry covariates at
each step of the splitting process. The OOB error rate (based on Harrell’s concordance index) obtained
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Table III. Breast cancer data: out-of-bag error rates based on Harrell’s
concordance index and integrated Brier score using neighborhoods of
representative trees.

Neighborhood (%) Error rate Dd0 Dd1 Dd2 Dd�
1

5 HC � 30.0% 28.9% 29.4%
IBS � 0.176 0.170 0.174

10 HC 29.5% 29.2% 28.8% 28.9%
IBS 0.175 0.176 0.170 0.172

25 HC 29.6% 29.3% 29.6% 29.5%
IBS 0.174 0.175 0.172 0.174

All trees in the ensemble HC 30.0%
IBS 0.177

�There are 50 trees in the ensemble with the smallest value of Dd0.0:239/.
Thus, the smallest unique neighborhood is the top 10% neighborhood of repre-
sentative trees.
HC, Harrell’s concordance index; IBS, integrated Brier score.

using their method was 29.5% (achieved by the optimal value of ptry D 2), compared with 30.0%
(based on all 500 trees) that we obtained using our method.

7. Simulation study

Because in a real dataset we can only illustrate the methods and the truth about the parameters is
unknown, we conducted a simulation study to evaluate our proposed methods, mimicking the real data
analysis in certain aspects. Firstly, we undertook simulations to study the effect of the different tuning
parameters (i.e., number of trees grown in the ensemble, minimum number of observations in a node
for which the tree will try to split, etc.) on the set of representative trees picked by the various distance
measures. We considered three different covariates: X1 generated from a Bernoulli(0.3) distribution, X2
generated from a discrete distribution taking three values 1; 2; and 3 with probabilities 0.45, 0.28, and
0.27, respectively, andX3 generated from a Normal(50,16) distribution. We generated data from Weibull
distribution, with the following choices of the shape parameter: ˛ D 0:5; 1, and 2. We considered three
different models for the scale parameter �: (i) � D 1; (ii) � D 1 if X1 D 1, and D exp.1/ (=2.72) if
X1 D 0; (iii) � D 1 if X2 D 1, and D exp.1/ if X2 > 1; (iv) � D 1 if X2 D 1; or 3, and D exp.1/ if
X2 D 2; and (v) � D exp.1/ if 46 6 X3 6 54 (within mean ˙ SD), and D 1 otherwise. We assumed
independent censoring with censoring proportions of 0%, 25%, and 50%. For each simulation design
scenario, we generated samples of size n (number of observations) D 500. We varied the tuning param-
eters as follows: number of trees grown in the ensemble (ntree) was set at 250, 500, and 1000; and
minimum number of observations in a node for which the tree will try to split (minspli t ) was set at 10,
15, and 20. We also varied the selected neighborhood of similar trees using top 5%, 10%, and 25% of the
most representative trees chosen on the basis of each distance measure. Note that we are not interested
in how the tuning parameters alter the absolute values of the distance measures per say. Rather, we are
interested in how the tuning parameters affect the sets of representative trees selected, which are ulti-
mately determined by the relative ranking of the trees based on the distance measures. Tables IV and V
present results from selected simulation scenarios in the 25% censored situation. Although not presented
here, the results obtained in the other scenarios are consistent with the general patterns mentioned in the
following text.

In Table IV, we fix minspli t D 10 and vary ntree and neighborhood size. For each distance mea-
sure, corresponding to a fixed choice of l (for defining the top l% neighborhood), of the trees that are
picked by using the specified ntree, we present in Table IV the percent of trees that were also included
in the set of trees picked by using reference ntree D 1000. Overall, the results are fairly similar across
the different models. The metric Dd2 is most consistent in terms of picking the same set of representa-
tive trees across varying number of trees in the ensemble and neighborhood size. In most instances, the
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Table IV. Simulation results showing the effect of varying ntree and neighborhood size,
for fixed value of minspli t (10).

Scenario ntree Top % trees Dd1 Dd�
1

Dd2 Dd0

Model D for �, ˛ D 0:5 250 5 0.69 0.69 0.69
10 0.92 0.84 0.96
25 0.98 1.00 1.00

1.0
500 5 0.84 0.42 0.88

10 0.94 0.84 0.94
25 1.00 1.00 0.98

1.0
Model E for �, ˛ D 1 250 5 0.54 0.78 1.00

10 0.76 0.88 1.00
25 0.87 0.92 0.98

1.0
500 5 0.88 1.00 1.00

10 0.90 1.00 1.00
25 0.98 1.00 1.00

1.0
Model E for �, ˛ D 2 250 5 1.00 0.92 0.92

10 1.00 0.80 1.00
25 0.98 0.97 1.00

1.0
500 5 0.96 0.92 0.92

10 0.88 0.94 0.88
25 0.98 0.94 0.98

1.0

For each distance measure, corresponding to a fixed top l% neighborhood, of the trees that are
picked by using the specified ntree, the percent of trees that were also included in the set of trees
picked by using reference ntree D 1000 are presented in the table. For Dd0 , the table entries
are based on comparing the trees in the unique smallest neighborhoods obtained from using the
specified ntree and reference ntree D 1000. Because of the coarseness of Dd0 , the unique small-
est neighborhoods range from top 53% to top 79% of the most representative trees in the various
scenarios.

metrics Dd1 and Dd�
1

are able to capture at least 80% of the overlapping trees across varying values of
ntree and neighborhood size. The metric Dd0 , on the other hand, is quite coarse (as was also observed
in our data analysis), and only yields unique smallest neighborhoods in the range of top 53% to top 79%
of the most representative trees. Therefore, although results forDd0 (based on comparing the trees in the
unique smallest neighborhoods obtained from using the specified ntree and reference ntree D 1000)
yield 100% overlap in all scenarios, the use of Dd0 may be limited in the practical setting.

In general, for a fixed neighborhood size, the set of representative trees picked from an ensemble that
was grown using 1000 trees correspond very well to that picked from an ensemble grown using 500
trees, with at least 85% overlap in most scenarios. Representative trees grown from an ensemble using
250 trees had variable overlap (ranging from 54% to 100%) with those grown from an ensemble using
1000 trees. Results were fairly stable across various neighborhood sizes when comparing representative
trees grown from an ensemble using 500 trees versus that grown from an ensemble using 1000 trees.
Choosing a small neighborhood (top 5%) yielded variable overlap in the sets of representative trees
selected, when the ensemble was grown using fewer trees (250).

Table V presents simulation results based on varying the minspli t and neighborhood size, for fixed
value of ntree D 500. For each distance measure, corresponding to a fixed choice of l (for defining the
top l% neighborhood), the entries in Table V represent the percent overlap in the sets of trees picked
using the specified minspli t and reference minspli t D 10. Overall, the patterns related to the specific
distance measures are similar to that demonstrated in Table IV. For the top 5% neighborhood, the percent
overlap in the sets of representative trees ranged from 60% to 96% across varying values of minspli t .
However, for the top 10% and top 25% neighborhoods, the percent overlap across varying values of
minspli t was at least 75% in most scenarios.

Copyright © 2012 John Wiley & Sons, Ltd. Statist. Med. 2012, 31 1601–1616
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Table V. Simulation results showing the effect of varying minspli t and neighborhood
size, for fixed value of ntree (500).

Scenario minsplit Top % trees Dd1 Dd�
1

Dd2 Dd0

Model D for �, ˛ D 0:5 15 5 0.96 0.76 0.92
10 0.94 0.78 0.92
25 0.95 0.94 0.90

0.98
20 5 0.76 0.72 0.76

10 0.80 0.76 0.74
25 0.90 0.87 0.76

0.96
Model E for �, ˛ D 1 15 5 0.72 0.76 0.72

10 0.80 0.84 0.82
25 0.94 0.93 0.88

0.98
20 5 0.60 0.60 0.64

10 0.68 0.72 0.66
25 0.86 0.82 0.74

0.98
Model E for �, ˛ D 2 15 5 0.80 0.64 0.92

10 0.82 0.88 0.86
25 0.89 0.90 0.90

0.97
20 5 0.68 0.68 0.72

10 0.70 0.86 0.78
25 0.84 0.88 0.80

0.93

For each distance measure, corresponding to a fixed top l% neighborhood, the table entries rep-
resent the percent overlap in the sets of trees picked using the specified minspli t and reference
minspli t D 10. For Dd0 , the table entries are based on comparing the trees in the unique smallest
neighborhoods obtained from using the specifiedminspli t and referenceminspli t D 10. Because
of the coarseness ofDd0 , the unique smallest neighborhoods range from top 53% to top 79% of the
most representative trees in the various scenarios.

We performed a second set of simulations to assess the effect of averaging over neighborhoods of
representative trees on predictive accuracy. Specifically, we fixed ntree D 500 and minspli t D 10

and computed OOB error rates using various neighborhoods. We used the top 5%, 10%, and 25%
of the most representative trees, as well as all 500 trees in the ensemble to define various neigh-
borhoods. For these simulations, we started with the same three covariates X1; X2; and X3 as in
our first set of simulations and added two additional covariates: X4 generated from an Exponen-
tial(3) distribution, and X5 generated from a Normal.70; 25/ distribution. We considered four different
scenarios; the first two corresponding to binary data models, and the third and the fourth correspond-
ing to censored data models. For the first and second (binary outcome) scenarios, we generated data
based on the following models: (I) p (probability of success) D 0:8 if X1 D 1; X2 D 1;D 0:6 if
X1 D 1; X2 > 1; D 0:35 if X1 D 0; X2 D 1; and D 0:15 if X1 D 0; X2 > 1; and (II) p D 0:05 if
X2 D 2; X5 < 67;D 0:1 if X2 D 2; X5 > 67; X1 D 0; D 0:3 if X2 D 2; X5 > 67; X1 D 1; D 0:4

if X2 D f1; 3g; X4 < 1;D 0:6 if X2 D f1; 3g; 16X4 < 2:5;D 0:8 if X2 D f1; 3g; X4 > 2:5; X5 < 71;
D 0:9 if X2 D f1; 3g; X4 > 2:5; X5 > 71. For the third and fourth (censored outcome) scenar-
ios, survival distributions were assumed Weibull: S.t I�; ˛/ D exp .��t˛/, with three values chosen
for the shape parameter: ˛ D 0:5; 1, and 2. We considered the following two models for �: (III)
�D 1 ifX1 D 1;X2 D 1I D 3 if X1 D 1;X2 > 1; =5 ifX1 D 0;X2 D 1; =10 X1 D 0;X2 > 1; and (IV)
�D 1 if X1 D 0;X2 D 1;X3 6 53ID 1:4 if X1 D 0;X2 D 1;X3 > 53ID 1:8 if X1 D 0; X2 D 2; X3 6
53ID 1:9 if X1 D 0;X2 D 2;X3 > 53ID 2:6 if X1 D 0;X2 D 3;X3 6 53ID 2:7 if X1 D 0;X2 D
3;X3 > 53ID 3:3 if X1 D 1;X2 D 1;X3 6 53ID 3:4 if X1 D 1;X2 D 1;X3 > 53ID 4:1 if X1 D
1;X2 D 2;X3 6 53ID 4:5 if X1 D 1;X2 D 2;X3 > 53ID 4:8 if X1 D 1;X2 D 3;X3 6 53ID
5:0 if X1 D 1;X2 D 3;X3 > 53. We assumed independent censoring with censoring proportions of 0%,
25%, and 50%. For each simulation design scenario, once again we generated samples of size n (number
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of observations) D 500. Table VI presents results from these simulations: models I and II correspond to
the aforementioned binary data models, and models III and IV correspond to the aforementioned cen-
sored data models with ˛ D 1 and 25% censoring. Although not presented here, the results obtained in
the other scenarios are consistent with the general patterns mentioned in the following text. The metric
Dd0 once again only yielded unique smallest neighborhoods of top 53% to top 88% across the various
scenarios. Therefore, we do not report the error rates based on Dd0 in Table VI.

For binary data, there appears to be gains in predictive accuracy by averaging over neighborhoods of
representative trees instead of averaging over all trees in the ensemble. The relative gains in predictive
accuracy in model I range from 9.3% to 36.9%, whereas that in model II range from 2.8% to 12.8%.
In general, averaging over representative tree neighborhoods chosen on the basis of Dd2 yielded the
smallest error rates. For model I, the smallest OOB error rate was achieved by averaging over the top
5% neighborhood, whereas that for model II was achieved by averaging over the top 10% neighborhood.
For censored data, the relative gains in predictive accuracy are small ranging from 3.3% to 9.8% for
model III and < 1% to 7.9% for model IV. In general, averaging over representative tree neighborhoods
chosen on the basis ofDd2 yielded the smallest error rates; although in this case, the error rates for other
distance metrics were only slightly different, given a fixed neighborhood size.

To the best of our knowledge, no reported studies in the literature comparing various classification
tools have performed formal significance testing of error rates [4]. However, in light of a reviewer’s
comment regarding whether the error rates obtained using representative tree neighborhoods are ‘signif-
icantly’ different from the overall error rate, we extended our simulations as follows. Of the 500 trees
grown in the ensemble, we randomly selected sets of 25, 50, and 125 trees (i.e. 5%, 10%, and 25% of
the trees) and calculated OOB error rates on the basis of these. For each set of 25, 50, and 125 trees,
we repeated the aforementioned step 100 times to obtain a ‘null’ empirical distribution of the error rate.
We then compared the top 5%, 10%, and 25% representative tree neighborhood-based error rates and
the overall error rate to this empirical distribution. Although not intended to mimic significance testing,
the results are nonetheless interesting. For example, for model II, the error rates based on randomly
selected sets of 125 trees ranged from 38.4% to 42.2%, and the median of the distribution was 40.1%.
The error rates based on the corresponding (i.e., top 25%) representative tree neighborhoods chosen
using Dd1 ; Dd�1 , and Dd2 were 38.9%, 37.2%, and 36.5%, respectively. Compared with the empirical
distribution, the proportion of times one could obtain an error rate smaller than that obtained using the

Table VI. Simulation results showing the effect of averaging over neighborhoods of repre-
sentative trees on predictive accuracy, for fixed values of ntree (500) and minspli t (10).

Scenario Neighborhood (%) Dd1 (%) Dd�
1

(%) Dd2 (%)

Model I Top 5 41.7 41.7 34.6
Top 10 44.5 44.5 37.9
Top 25 49.8 49.8 42.6

All trees in the ensemble 54.9

Model II Top 5 37.6 37.9 35.5
Top 10 37.4 37.7 34.9
Top 25 38.9 37.2 36.5

All trees in the ensemble 40.0

Model III Top 5 36.0 36.2 36.0
Top 10 37.1 37.2 37.1
Top 25 38.5 38.5 38.6

All trees in the ensemble 39.9

Model IV Top 5 41.2 39.7 40.3
Top 10 39.2 38.1 38.0
Top 25 39.3 38.9 38.3

All trees in the ensemble 41.3

Entries in the table represent the out-of-bag error rates based on Harrell’s concordance index using
specified neighborhoods defined by each distance measure, as well as all trees in the ensemble.
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representative tree neighborhoods was 0.03, < 0:01, and < 0:01, respectively. In contrast, the overall
error rate of 40.0% for this model (based on all 500 trees in the ensemble) was right around the median
of the empirical distribution. Coupled together, these observations seem to suggest that it is possible
to improve the overall error rate by averaging over the ‘right’ subset of trees, and representative tree
neighborhoods offer such a solution. Once again, this result was most consistent for representative tree
neighborhoods chosen on the basis of Dd2 across varying neighborhood sizes and scenarios.

8. Conclusions

It is well recognized that the mechanism of selecting a best split and the recursive partitioning of data
leading to smaller and smaller datasets can lead to instability in a tree structure. Ensemble methods such
as bagging and random forests can be useful in understanding the stability of tree structures and improv-
ing predictive performance. However, individual trees are lost in the process. In this paper, we provided
a methodology for identifying the most representative trees in an ensemble. Our ideas are applicable to
classification as well as regression trees.

Because our focus is on measuring similarity between trees in the ensemble, we wanted the compari-
son between any two trees to be unaffected by perturbations such as random covariate selection at each
step of the splitting process. Using all covariates at each step of the splitting process puts the comparison
on equal grounds. By defining several distance metrics that capture architectural as well as prediction
similarity between trees, we summarize an ensemble by several representative trees. The most represen-
tative tree among all trees in the ensemble is the one with the smallest value ofD.T /, that is, the average
distance between tree T and all other trees in the ensemble.

Earlier work by other authors have considered related approaches. Shannon and Banks [22] proposed
a tree metric, which accounts for the manner in which the tree is constructed. This metric compares rules
at nodes in the same position in two trees. That is, if two plots are constructed on transparent paper so
that nodes in the same position overlap and the plots are held up to the light, the metric counts the num-
ber of nodes at which the splitting rules are discrepant. The distance between trees is then a weighted
sum of the discrepancies at each location. This metric can capture tree structure, but two isomorphic
trees with the same splits in a different order will be identified as dissimilar by this metric. Furthermore,
Shannon and Banks’ approach assumes a unimodal probability distribution on the ensemble of classi-
fication trees, parameterized by a central tree structure representing the true model and a precision or
concentration coefficient representing the variability around the central tree. The authors propose the
maximum likelihood estimate of the central tree as the best tree to represent the set. Therefore, in con-
trast to our approach, Shannon and Banks’ final tree may not necessarily be one of the observed trees in
the ensemble.

Our approach is closer to that of Chipman et al. [21] in that trees are clustered on the basis of dis-
tance metrics. In fact, our d1 and d2 metrics are equivalent to their partition and fit metrics, respectively.
Chipman et al. [21] used these to explore the set of plausible models on the basis of a multidimensional
scaling (MDS) plot of the distance matrix. Using the MDS plot, they identify groups of similar tree
models. In contrast, we focus on selecting representative trees for the entire ensemble on the basis of
ranking the trees according to a distance metric. This allows us to pick the single ‘most representative’
tree, as well as other trees in the neighborhood. We argue that understanding the most representative tree
as well as the neighborhood are useful. If a single model is to be selected, then one would choose the
tree with the smallest value of the distance metric. On the other hand, by selecting a set of representative
trees (i.e., neighborhood), and averaging over them, rather than averaging over all trees in the ensemble,
yields a compromise between selection and averaging.

We computed error rates on the basis of the OOB ensemble estimate. Because ultimately our goal was
to assign error rates to the representative trees, we computed the OOB estimate using neighborhoods of
trees that are deemed similar based on D.T /. The error rates obtained from averaging over representa-
tive tree neighborhoods were smaller in comparison with the error rates obtained from averaging over
all trees in the ensemble. With our simulations and data examples, averaging over neighborhoods of rep-
resentative trees yielded gains in predictive accuracy for binary data scenarios. However, the difference
in error rates obtained using all trees versus representative trees in the ensemble was relatively small in
the censored data scenarios.

Our proposed approach can be applied only on ensembles in which the trees are independent samples
from some distribution. The trees we generate by bootstrapping are ‘independent’ in that the structure
in one member of the ensemble is not influenced by the structure of another member. Sampling from
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a posterior on the space of trees would be another example of an ensemble with independent elements.
However, an ensemble arising from boosting is quite different; data are iteratively reweighted, with
more weight given at successive iterations to observations that are predicted poorly. This introduces a
stochastic element to the search and successive trees attempt to improve upon trees identified at earlier
iterations. One may not necessarily want to select a ‘representative’ tree from such an ensemble because
individually, each boosted tree contributes a small amount to the prediction and the output of a boosted
ensemble would require all trees.

A natural question that arises is how many representative trees do we ultimately present to the clini-
cian who is interested in a clinical decision making tool. It would seem most logical to present the single
most representative tree that has the smallest value of D.T / based on a specific metric. Although our
simulations would favor choosing Dd2 in terms of stability of the sets of representative trees selected,
as well as predictive accuracy, we argue that the choice of ‘which metric to use’ is somewhat contextual
and depends on the goal of the study. Thus, barring Dd0 (which appears to be rather coarse), any of the
other three metrics could be appropriate choices depending on the context. Yet another option would be
to combine different aspects of tree similarity by taking the average of Dd�

1
and Dd2 to yield an overall

score. The tree with the smallest value of the overall score could be chosen as the single most repre-
sentative tree. Depending on the size of the ensemble, we recommend using a neighborhood of the top
5%–10% most representative trees for obtaining error rate and predictions for this tree. This approach
allows us to extract the most representative tree from the plethora of tree models while still borrowing
the strength from its ‘likes’ for prediction purposes. Lastly, there may be situations where alternative
competing models are of interest, and in such scenarios, examining the top 10 or 20 most representative
trees may be useful towards elucidation of such models.
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