Managing Peri-Implant Bone Loss: Current Understanding

Manar Aljateeli, DDS,* Jia-Hui Fu, BDS,* Hom-Lay Wang, PhD, MS, DDS†

ABSTRACT

Purpose: With the improved macro- and micro-designs, dental implants enjoy a high survival rate. However, peri-implant bone loss has recently emerged to be the focus of implant therapy. As such, researchers and clinicians are in need of finding predictable techniques to treat peri-implant bone loss and stop its progression.

Materials and Methods: Literature search on the currently available treatment modalities was performed and a brief description of each modality was provided.

Results: Numerous techniques have been proposed and none has been shown to be superior and effective in managing peri-implant bone loss. This may be because of the complex of etiological factors acting on the implant-supported prosthesis hence the treatment approach has to be individually tailored.

Conclusion: Due to the lack of high-level clinical evidence on the management of peri-implant bone loss, the authors, through a literature review, attempt to suggest a decision tree or guideline, based on sound periodontal surgical principles, to aid clinicians in managing peri-implantitis associated bone loss.

KEY WORDS: alveolar bone loss, bone regeneration, dental implant, peri-implantitis

INTRODUCTION

Retention of a tooth is often an ideal clinical scenario; however, when its long-term prognosis is hopeless, both the patient and clinician are faced with the challenges associated to have it replaced. In these instances, several options are available, such as fabricating a removable partial denture, a fixed partial denture, or an implant-supported prosthesis (ISP). Considering the high success or survival rates of dental implants, it is often the preferred choice of treatment.¹⁴ Unfortunately, dental implants are not miracle tooth replacements and with the increased rate of implant placement, having knowledge in the management of implant complications is very crucial.

According to the International Congress of Oral Implantologists Pisa Consensus Conference report, implant failure refers to implants that were lost or removed.⁵ The authors of this report suggested that the term “failure” can be applied to an implant, which has pain on function, mobility, radiographic bone loss greater than half of the implant length, uncontrolled exudates, or if it is no longer in the mouth.⁵ The term “implant complication”, on the other hand, is applied when there is an unexpected deviation from the standard treatment outcome,⁶ and further treatment is required after delivery of the prosthesis.⁷

One of the most challenging implant complications to deal with is peri-implantitis, which is defined as a localized lesion involving bone loss around an osseointegrated implant.⁵ Various studies published in the last 8 years (2003–2011) looked at the success and survival rates of dental implants after at least 10 years of functional loading and found that the mean survival rate ranged from 89% to 95%.⁸–¹³ Despite the high-long term
survival rates, dental implants are plagued with biological and mechanical complications. A systematic review of 51 prospective longitudinal studies reported an incidence of peri-implantitis ranging from 0% to 14.4% around functional implants with a minimum of 5 years follow-up. Other longitudinal studies, on the contrary, found substantial variation in the prevalence of peri-implantitis, ranging from 11.3% to 47.1% and a cumulative complication rate of 48.03% after a follow-up period of 10–16 years was observed.

Peri-implantitis can be caused by mechanical or biological factors. Occlusal overloading is a common mechanical complication that results from an interplay of several factors including poor prosthetic design, inadequate number, dimensions and distribution of implant fixtures, non-ideal implant positions, and parafunctional habits of patients. The clinical consequences of which are fractures of implant fixture, abutment screws, prostheses and their attachments and acrylic resin or ceramic veneers, prosthesis or abutment screw loosening, early or late implant failure, and peri-implant marginal bone loss.

Similar to periodontitis, microbial pathogens in dental plaque is the main biological cause of peri-implantitis. It was found that supra- and sub-gingival biofilms in sites with peri-implantitis had higher counts of red complex periopathogens such as Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia. In addition, the number of beneficial microbial complexes was reduced. Thus, creating an environment favorable for progressive bacterial-induced peri-implant marginal bone loss. Other environmental and patient-related factors may contribute to peri-implant bone loss. For example, smoking was found to be a potent risk factor that adversely affects implant success and survival rates. Patient-related factors such as systemic diseases like uncontrolled diabetes, age, gender, and history of periodontitis have been shown to contribute to peri-implant bone loss. Other biological factors include compression necrosis, infection, and overheating of the bone during implant site preparation.

With the loss of supporting bone around a dental implant, patients may have to face the eventual consequence of implant loss. This translates to the loss of quality of life, function, esthetics, time, and money, which can also cause psychosocial stress on the patients. As such, managing peri-implant bone loss has become the focus of many researchers, and several studies have been conducted to find the optimum treatment with a goal of achieving reosseointegration along the previously contaminated implant surface. This article is aimed at discussing the effect of guided bone regeneration (GBR) in the management of peri-implant bone loss. A decision tree based on current evidence was proposed by authors to serve as a guide for clinicians to follow when managing peri-implant bone loss.

PERIODONTAL DEFECTS VERSUS PERI-IMPLANT DEFECTS

Periodontal defects can be categorized into suprabony, intrabony, or inter-radicular defects. They have been commonly described by the number of osseous walls, which is 4-walls or circumferential, 3-walls, 2-walls, 1-wall, or combination defects. The number of osseous walls surrounding the defect serves as an indication of the regenerative potential of the site. In natural dentition, intrabony defects frequently develop in posterior interproximal surfaces. Peri-implant defects, on the other hand, are mainly combined defects that have supracrestal and intrabony components, with 55% of them being circumferential defects. A review on surgical treatment of peri-implant defects concurred that peri-implant defects were well-demarcated craters.

Different research groups have adopted the concept from periodontal defects and attempted to classify peri-implant defects based on the number of remaining osseous walls. In a retrospective study of 75 patients with peri-implantitis, no or 1-wall defects corresponded to having less than 33% of surrounding bone, 2-wall defects had 33–67% of surrounding bone, and 3-wall defects had more than 67% of surrounding bone. Using human and animal peri-implantitis models, Schwarz and colleagues classified peri-implant osseous defects into two main categories: Class I being intrabony defects with five subcategories of class 1a to 1e, and class II being suprabony defects. Class 1a is dehiscence type defect, class 1b has buccal and interproximal bone loss, and class 1c is an extension of class 1b defects with bone loss on the lingual side of the implant. Class 1d has buccal and lingual dehiscences and interproximal bone loss and, lastly, class 1e is a well-defined circumferential defect. Similar to 4-wall periodontal osseous defects, it was found that class 1e defects had the greatest regenerative potential.
AVAILABLE TREATMENT MODALITIES

Given the similarities between periodontitis and peri-implantitis, treatment modalities proposed for the management of peri-implantitis emulate techniques used to treat periodontitis. These techniques can be broadly classified into nonsurgical (e.g., antimicrobial therapy and mechanical debridement), surgical (e.g., surgical debridement, implantoplasty, and dental lasers), and regenerative therapies (e.g., GBR) with common goals of eliminating infection and restoring lost structures and function.

Nonsurgical Therapy

Human clinical trials demonstrated that locally delivered tetracycline combined with nonsurgical debridement in peri-implantitis sites improved clinical and microbiological parameters. However, the radiographic bone fill reported as 6%55 and 0.2–0.3 mm56 was clinically insignificant. Mechanical nonsurgical treatment was also found to be ineffective in the management of peri-implantitis lesions in various reviews and clinical trials.57–60 Therefore, surgical and regenerative treatment modalities were generally preferred.

Surface Decontamination

The goals of surface decontamination are to remove etiological factors, for example, pathogenic bacteria and create a pristine surface for reosseointegration. Several agents including saline,61 abrasive pumice,62 citric acid,63 chlorhexidine,64 air-power abrasive,65 hydrogen peroxide,66 and antimicrobials66 have been used for surface decontamination in the surgical management of peri-implantitis lesions but no agent was found to be superior. Animal studies evaluating the efficacy of delmopinol,67 abrasive pumice, and saline62 showed that despite resolution of peri-implantitis, reosseointegration was not achieved. It was only when the coronal component of the implant was replaced that new bone formation was observed to be in contact with the newly placed implant part.61 A recent randomized controlled clinical trial failed to show a significant impact of surface decontamination in the treatment of peri-implantitis.68 However, surface decontamination with surgical debridement was found to have a favorable influence on reosseointegration in a systematic review.45

Dental lasers and photodynamic therapy have been used in the decontamination of implant surfaces during surgical and regenerative treatment of peri-implantitis lesions. Carbon dioxide laser was found to be effective in eliminating bacterial pathogens, specifically Streptococcus sanguis and Porphyromonas gingivalis, from titanium implant surfaces without causing surface alterations, rising the temperature or even inhibiting cell adhesion to the irradiated area.69 Similar results were found by other researchers utilizing Nd:YAG,70 Er:YAG71 and diode72 lasers. Laser therapy in combination with bone graft and collagen membrane achieved “almost complete” bone fill in the peri-implant defect.73,74 However, the long-term benefits of laser assisted treatment of peri-implant defects was not significant.68,75

Implantoplasty is also a form of surface decontamination as it involves eliminating the implant threads to achieve a smooth polished surface to decontaminate and reduce the ability of plaque to adhere to the implant surface.76,77 There are several clinical difficulties associated with implantoplasty, namely an increase in temperature generated when drilling, which might injure the surrounding tissues and affect the strength of the implant,78 scattering of the metallic debris that might get embedded in the tissue and reduced esthetic outcome. It was found that if premium diamond burs were used with adequate coolants, there was only a 1.5°C increase in temperature, which was not damaging for the surrounding tissues.79 The use of a rubber dam to isolate the implant from the surrounding tissues and a high vacuum suction would minimize scattering of the metallic debris.

Surgical Debridement

Results of a recent systematic review from 25 animal studies showed that open debridement combined with surface decontamination of implants might result in reosseointegration, which was also found to be more pronounced on rougher surfaces compared with smooth surfaces.45 However, it was concluded that none of the different techniques used in managing contaminating implant surfaces was able to achieve a complete reosseointegration along the treated implant surface.

Regenerative Procedures

Human studies80,81 have been carried out to evaluate the effects of regenerative procedures in the treatment of peri-implantitis. Surgical reentry examinations showed that GBR resulted in the highest new bone fill, followed by bone grafts alone, and flap debridement only.
However, no significant difference was found between GBR and GBR combined with bone graft. The results were confirmed by a subsequent study revealing similar and more detailed histological findings.

A recent systematic review revealed that GBR could be used in the management of peri-implant bone loss, but complete fill of the bony defect was not predictable. Several limitations such as heterogeneity of the study protocols, missing data, and lack of high-quality studies were highlighted in the review. Previous reviews too found that regenerative procedures involving bone grafts with or without barrier membranes demonstrated varying degrees of defect resolution and could possibly be one of the more predictable treatment modality in selected cases of peri-implantitis. Therefore, in the proposed guideline, GBR was chosen as the main treatment modality in the management of peri-implant bone loss.

DECISION TREE

Current literature discussed numerous techniques used in the management of peri-implantitis defects. However, because of limitations in the available systematic reviews, there is no consensus on the most effective way to treat peri-implant bone loss. The authors thus propose a decision tree to assist clinicians in deciding the treatment modality to use when faced with a peri-implant bone defect (Figure 1). Similar to periodontal defects, the first step in managing peri-implant defects is to identify and remove the etiological factors, which can be classified into biological factors, biomechanical factors, and a combination of both factors. Unfortunately in some circumstances, elimination of etiological factors involves removal of the dental implant. For example, when the implant is placed out of the buccal bony housing, regeneration of the buccal bone and

Figure 1 Decision tree on etiology and management of peri-implant bone loss. APR = apically positioned flap; GBR = guided bone regeneration.
maintenance of its stability under functional loading is highly unpredictable. Therefore, removal of the implant and performing both hard and soft tissue augmentations would help in rebuilding the edentulous ridge for the placement of another implant. If mechanical overload is the cause of peri-implant bone loss, adjustment of occlusion or changing the prosthesis might alleviate the occlusal trauma on the surrounding bone, hence removing the biomechanical causative factor (Figure 1).

Nonsurgical therapy is commonly part of initial phase therapy with the primary goal of eliminating or reducing peri-implant inflammation and bone loss. A double-blind randomized longitudinal clinical study showed that mechanical nonsurgical treatment of peri-implantitis, either with titanium hand instruments or with ultrasonic device, although improved plaque and bleeding scores, both approaches had no effect on probing implant pocket depths and total bacterial count.58 The inability of nonsurgical approach to eliminate bacteria was further supported by another single-blinded randomized longitudinal study.89 From these results, one can conclude that mechanical nonsurgical therapy alone is not effective in managing the peri-implantitis, and surgical treatment remains the preferred approach.

Similar to the treatment of periodontal defects, peri-implant defects can be categorized into horizontal, vertical, and circumferential defects. The management of these defects is based on the principles set out by Ochsenbein 25 years ago.89 The lack of clinical evidence suggested that achieving bone regeneration and reossseointegration in horizontal bone defects is unpredictable. Therefore, the authors proposed performing an apically positioned flap to reduce peri-implant probing pocket depths and facilitate the formation of a more aerobic and less pathogenic biofilm.90 However, many systems have moved to a roughened implant surface possibly because of a more predictable and stable bone to implant relationship.91,92 Therefore, once these roughened surfaces are exposed to the oral environment, there is a significant increase in surface area available for plaque retention that may influence the health of peri-implant tissues. As such, the authors proposed performing implantoplasty to create a smooth surface that is less plaque retentive, thus slowing down the progression of peri-implant bone loss.96

The regenerative potential of vertical defects is dependent on several factors, namely patient-related factors such as oral hygiene93 and smoking,94 systemic conditions such as uncontrolled diabetes,95 and defect related factors such as extent of bone loss, number of defect walls, width and depth of defect.96 Patients with good oral hygiene have a reduced quantity of bacterial insults, which implies a lowered progression of the breakdown of peri-implant tissues. In addition, good oral hygiene is beneficial in achieving and maintaining disease resolution.93 Smoking has been associated with reduced bone regeneration because of a decrease in angiogenesis and blood flow to the regenerative site.97 In addition, there is a negative effect on epithelial proliferation and healing resulting in an increased in flap dehiscence and incision line opening.88 Uncontrolled diabetes mellitus results in hyperglycemia, which adversely affects osteoblast proliferation and collagen turnover. Combined with increased osteoclastic action and release of pro-inflammatory cytokines, there is more bone resorption than bone formation resulting in bone loss.95 Therefore, prior to performing GBR in peri-implantitis lesions, it is beneficial to have all patient-related factors under control.

The authors chose the number of defect walls as the primary determining factor in the management of vertical peri-implant bone defects after considering surgical principles proposed by Ochsenbein and Cortellini and Tonetti.96 An apically positioned flap with implantoplasty for 1-wall peri-implant bone defects is suggested because of its reduced potential to regenerate. Two- and 3-wall peri-implant bone defects have higher regenerative potential; therefore, GBR is recommended.99,100 In 2-wall defects, the bone graft will be placed in a non-contained site, therefore a non-resorbable membrane, for example, ePTFE or PTFE, will be a more suited choice as it can hold and maintain space for extended periods of time. In 3-wall defects, the bone graft will be contained within the bony walls, hence an absorbable membrane will be sufficient.

Circumferential defects are commonly seen around dental implants and believed to be caused primarily by occlusal overloading as found around the natural dentition that are subjected to trauma from occlusion. In these cases, it is important to relieve heavy occlusal contacts when the ISP is under axial and non-axial loading. The implant position within the arch is also of paramount importance as it determines the feasibility of bone regeneration around the implant.101 If the implant position is not ideal, it is recommended to have the
Implant removed and the site regrafted with bone grafts and soft tissue grafts. The implant will be placed after the grafts have healed. When the implant is determined to be in an ideal three-dimensional position, the circumferential peri-implant bone defect can be regenerated with GBR. The use of a non-resorbable or absorbable membrane will suffice.

Following the “PASS” principle, where primary wound closure is paramount in ensuring a stable protected environment for optimal bone regeneration, it would be ideal that the suprastructures, for example, the abutment and prosthesis were removed and the regenerative site was left to heal under a closed environment. Removal of the suprastructures might prove to be a challenge for cemented prosthesis, and alternatives available are fabrication of a new prosthesis or conversion of the cemented prosthesis to a screw retained one. The inability to achieve primary wound closure around a restoration provided a pathway for bacteria or foreign bodies to reach the regenerative site resulting in compromised bone regeneration.

Although the treatment and resolution of peri-implantitis remains highly unpredictable with the current available treatment options, some studies had demonstrated promising results. In the light of the studies reviewed, open debridement and regeneration procedures have, by far, shown to demonstrate superior and more consistent results compared with the other currently available treatment modalities. Antimicrobial therapy and surface decontamination were shown to resolve peri-implantitis but they failed to achieve significant reosseointegration, which was the main goal of the treatment. In addition, most of the studies available used antimicrobial followed by mechanical debridement and local or systemic antibiotics administration, making it difficult to conclude the true individual effectiveness of antimicrobial therapy or surface decontamination. More randomized controlled studies should be conducted to assess the efficacy and the exact benefit of the available treatment options. Future research should be directed at determining a standard optimum treatment for more predictable reosseointegration. The inconsistency of the results in different studies could be due to the great variability in methodologies, measured parameters, implant design, surface characteristics of implants, ligatures placement and removal time period, defect morphology, and defect size. Until more evidence is available, the use of antimicrobial therapy, or using one decontamination agent over the other is not really strongly supported. With the current lack of sufficient and consistent documentation, especially lack of human studies, a single best treatment cannot be pointed out. Therefore, it is very important to highlight the necessity of regular maintenance visits to monitor the progression of disease and the effectiveness of therapy. If peri-implant bone loss takes place, the decision of treatment should be based on a patient-by-patient situation. Hence, the authors suggested a straightforward decision tree to provide clinicians a reference when dealing with peri-implant bone loss.

CONCLUSION

Over the past 20 years, dentistry saw a paradigm shift in the management of patients with missing teeth with the introduction of dental implants. Today, seeking a predictable method to treat peri-implant bone loss and achieve reosseointegration is the latest advancement in implant dentistry. Although it is known that peri-implant bone loss is caused by biological, biomechanical, or a combination of factors similar to periodontal disease around teeth, the predictability of treatment modalities to manage these defects remains uncertain. Numerous methodologies have been proposed over time to treat peri-implant bone loss and retard its progression; however, there is no consensus on which technique is the most effective. Therefore, the authors, through a literature review, suggest a straightforward decision tree to help clinicians manage peri-implant bone loss.

REFERENCES

61. Persson LG, Ericsson I, Berglundh T, Lindhe J. Osseointegration following treatment of peri-implantitis and...

