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Abstract

The methods of data exploration have become the centerpiece of phylogenetic inference, but without the scientific importance of

those methods having been identified. We examine in some detail the procedures and justifications of Wheeler�s sensitivity analysis

and relative rate comparison (saturation analysis). In addition, we review methods designed to explore evidential decisiveness, clade

stability, transformation series additivity, methodological concordance, sensitivity to prior probabilities (Bayesian analysis),

skewness, computer-intensive tests, long-branch attraction, model assumptions (likelihood ratio test), sensitivity to amount of data,

polymorphism, clade concordance index, character compatibility, partitioned analysis, spectral analysis, relative apparent syna-

pomorphy analysis, and congruence with a ‘‘known’’ phylogeny. In our review, we consider a method to be scientific if it performs

empirical tests, i.e., if it applies empirical data that could potentially refute the hypothesis of interest. Methods that do not perform

tests, and therefore are not scientific, may nonetheless be heuristic in the scientific enterprise if they point to more weakly or am-

biguously corroborated hypotheses, such propositions being more easily refuted than those that have been more severely tested and

are more strongly corroborated. Based on common usage, data exploration in phylogenetics is accomplished by any method that

performs sensitivity or quality analysis. Sensitivity analysis evaluates the responsiveness of results to variation or errors in parameter

values and assumptions. Sensitivity analysis is generally interpreted as providing a measure of support, where conclusions that are

insensitive (robust, stable) to perturbations are judged to be accurate, probable, or reliable. As an alternative to that verificationist

concept, we define support objectively as the degree to which critical evidence refutes competing hypotheses. As such, degree of

support is secondary to the scientific optimality criterion of maximizing explanatory power. Quality analyses purport to distinguish

good, reliable, accurate data from bad, misleading, erroneous data, thereby assessing the ability of data to indicate the true phy-

logeny. Only the quality analysis of character compatibility can be judged scientific—and a weak test at that compared to character

congruence. Methods judged to be heuristic include Bremer support, long-branch extraction, and safe taxonomic reduction, and we

underscore the great heuristic potential of a posteriori analysis of patterns of transformations on the total-evidence cladogram.

However, of the more than 20 kinds of data exploration methods evaluated, the vast majority is neither scientific nor heuristic.

Given so little demonstrated cognitive worth, we conclude that undue emphasis has been placed on data exploration in phylogenetic

inference, and we urge phylogeneticists to consider more carefully the relevance of the methods that they employ.
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[T]he cult of impressive technicalities or the cult of precision may get the better of us, and interfere with our search for clarity, sim-

plicity, and truth [Popper, 1983, p. 60].

Empirical papers chosen for publication are judged to be of interest to a broad systematics audience because they represent exemplary

case studies involving some important contemporary issue or issues. These may be unusually thorough explorations of data, applica-

tions of new methodology, illustrations of fundamental principles, and/or investigations of interesting evolutionary questions. [System-

atic Biology: Instructions for authors, 2002; italics added]
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As phylogenetic inference has become increasingly
important to comparative biology, methods of data ex-

ploration have achieved greater prominence—so much

so that empirical phylogenetic studies are judged less

than ‘‘cutting edge’’ when data exploration is absent or

insufficient and are even denied publication unless they

meet the criterion of being unusually thorough explo-

rations of the data. Likewise, data exploration is often

considered paramount when evaluating the merits of
research proposals, with funding agencies denying sup-

port if data exploration is judged deficient. As a result,

most empirical phylogenetic investigations now devote

considerable resources to the methods and results of

data exploration. However, despite its perceived im-

portance, the scientific relevance of data exploration to

phylogenetic inference has yet to be identified, and we

are concerned that it has achieved the status of a cult of
impressive technicalities (see epigraph). The lack of an

explicit definition of data exploration suggests that it

may serve more as a popular slogan than a scientifically

relevant set of procedures.

What is data exploration and what role does it play in

the science of phylogenetic inference? Our reason for

seeking answers to these questions is that for phylo-

genetic inference to be scientific it must be logically
consistent—methodologically, theoretically, and philo-

sophically. Without that consistency, there can be no

logical basis for phylogenetic inference.

Our goal in this paper is to outline a consistent po-

sition from which to evaluate the relevance of data ex-

ploration methods. The many methods currently in use

have vastly different applications and justifications,

making it impossible to pick out one or two exemplars
to represent the entire field. On the other hand, an ex-

haustive logical analysis of all available data exploration

methods lies beyond the scope of this paper. We have

therefore attempted to strike a balance between breadth

and depth by dividing this paper into three parts, each

standing more or less on its own.

Part I provides theoretical background and summa-

rizes the logical basis for our views on data exploration.
Part II applies those views in detailed evaluations of

Wheeler�s (1995) sensitivity analysis and Mindell and

Thacker�s (1996) relative rate comparisons. We focus

initially on these two methods because (1) they are

currently among the most detailed and widely cited

methods of data exploration and (2) they employ several

of the same general assumptions and procedures as

other methods of data exploration. Part III surveys
briefly a broad representation of data exploration

methods and their justifications as of 2002. The treat-

ment of each method covered in this section is not ex-

haustive, and we are aware that this may draw criticism;

rather, we aim only to apply our views as generally as

possible to illustrate their consistency and to provide a

starting point for further, more detailed debate.
To facilitate reference to particular methods of interest,
the different kinds of data exploration methods that we

examine are listed in Table 1, along with the relevant

page numbers.
Part I: Theoretical background

Preview of data exploration

An explicit definition of data exploration has yet to

be offered in systematics, which has led to the prolifer-

ation of a bewildering number and variety of methods

that purport to explore phylogenetic data. The lack of

an explicit definition also hinders attempts to delimit

what is, and what is not, data exploration. Nevertheless,

common usage indicates that data exploration is ac-
complished by any method that performs either sensi-

tivity analysis, defined broadly as the investigation of

‘‘the responsiveness of conclusions to changes or errors

in parameter values and assumptions’’ (Baird, 1989,

p. 358), or quality analysis, which purports to distinguish

good, reliable data from bad, unreliable data, thereby

assessing the ability of data to indicate the true phy-

logeny. Common usage also implies that methods of
discovery such as maximum likelihood, parsimony, and

neighbor-joining are not in themselves considered to be

methods of data exploration (although application of

multiple discovery operations is) nor are reports on the

optimality criteria employed by those operations, such

as the ensemble consistency (CI; Kluge and Farris, 1969)

and retention (RI; Farris, 1989b) indices. Simulation is

not included either, because data are generated from an
abstract model, not from observation.

Sensitivity analysis (also known as scenario model-

ing, stability analysis, tolerance analysis, and determin-

istic modeling) is important in statistics and decision

theory and is a useful tool in applied sciences such as

economics, meteorology, engineering, and medicine.

Likewise, its value has been demonstrated in the nom-

othetic sciences of physics and chemistry. However, in
our paper we evaluate its use in phylogenetics, which is a

strictly ideographic science (Carpenter, 1992; Frost and

Kluge, 1994; Wenzel and Carpenter, 1994; Farris, 1995;

Kluge, 1997, 2002; Siddall and Kluge, 1997; Wenzel,

1997; Grant, 2002). Sensitivity analysis began in sys-

tematics shortly after the advent of numerical methods

(e.g., Fisher and Rohlf, 1969; Adams, 1972; Sneath and

Sokal, 1973). A partial list of general uses of sensitivity
analysis (following the outline provided by Pannell,

1997, p. 246) and corresponding phylogenetic examples

are provided in Table 2.

Several different approaches to evaluate sensitivity to

assumptions have been employed. For example,

Wheeler (1995) examined sensitivity to assumptions

of transversion–transition and indel–substitution cost



Table 1

List of data exploration methods assessed in this paper. Approaches that involve especially diverse methods are divided accordingly. See text for

details.

Kind of method Data exploration method(s) Page(s)

Sensitivity analysis Wheeler�s sensitivity analysis 384, 388

Decisiveness/ambiguity 388

Bremer support

Double decay

Total support

Clade stability index 389

Transformation series additivity 390

Methodological concordance 391

Sensitivity to prior probabilities (Bayesian phylogenetic inference) 393

Skewness test 394

Computer-intensive sampling 395

Bootstrap

Jackknife

PTP

T-PTP

RT-PTP

HER

Long-branch attraction 398

Likelihood ratio test for model selection 398

Amount of evidence (missing data) 400

Safe taxonomic reduction

Phylogenetic trunk

RILD test

Multiple regression analysis

Polymorphism 402

Clade concordance index 403

Quality analysis Relative rate comparison (saturation analysis) 386, 388

Character compatibility 403

Spectral analysis 404

Relative apparent synapomorphy analysis (RASA) 405

Data partition methods (taxonomic congruence) 406

Topological incongruence test

Global congruence

v2 test

Mickevich–Farris incongruence index

Miyamoto incongruence index

ILD test

Partitioned Bremer support

Congruence with an empirically ‘‘known’’ phylogeny 410
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ratios with regard to taxonomic congruence (see also

Ballard et al., 1998; Barker and Lanyon, 2000; Flores-

Villela et al., 2000; McGuire and Bong Heang, 2001).

An equivalent implementation of sensitivity analysis is
methodological concordance, which assesses robustness

to choice of method of phylogenetic analysis by com-

paring the optimal hypotheses obtained from different

phylogenetic discovery operations, such as parsimony,

maximum likelihood, and neighbor-joining (e.g., Kim,

1993; Flores-Villela et al., 2000; McGuire and Bong

Heang, 2001). Donoghue and Ackerly (1996, p. 1241)

proposed ‘‘a variety of sensitivity tests to explore the
robustness of comparative conclusions to changes in

underlying assumptions.’’

Sensitivity to data has been considered a measure of

how decisively a hypothesis is corroborated. By focusing

on data, not assumptions, these methods aim to assess
the objective support of data for a hypothesis. The most

commonly employed sensitivity analyses performing this

function are the bootstrap (Felsenstein, 1985b) and

jackknife (e.g., Mueller and Ayala, 1982; Lanyon, 1985;
Penny and Hendy, 1986; Siddall, 1995; Farris et al.,

1996; Farris, 2002b), Monte Carlo routines that assess

sensitivity by resampling the data (characters or taxa) at

random, thereby creating multiple pseudoreplicates

from the same underlying distribution. Another com-

mon indicator of the decisiveness of evidence is Bremer

support (Bremer, 1988, 1994), which evaluates sensitiv-

ity by exploring suboptimal solutions and determining
how much worse a solution must be for a hypothesized

clade not to be recovered.

Examples of quality analysis include simple explora-

tion of codon position and base composition to inform a

priori character weighting (e.g., Chippindale and Wiens,



Table 2

General uses of sensitivity analysis and examples of corresponding procedures in phylogenetic systematics (see text for references)

General use Phylogenetic example

Testing robustness of an optimal solution Wheeler�s sensitivity analysis

Bootstrap

Jackknife

Bremer support

Methodological concordance

Identifying critical values or thresholds where optimal solution changes Wheeler�s sensitivity analysis

Bremer support

Bootstrap

Jackknife

Clade stability index

Safe taxonomic reduction

Identifying sensitive or important variables Wheeler�s sensitivity analysis

Jackknife

Clade stability index

Long-branch extraction

Partitioned Bremer support

Investigating suboptimal solutions Wheeler�s sensitivity analysis

Bremer support

Estimating and understanding relationships between input and output variables Wheeler�s sensitivity analysis

Long-branch extraction

Partitioned Bremer support

Developing hypotheses for testing All heuristic methods

Testing the model for validity or accuracy Wheeler�s sensitivity analysis

Likelihood ratio test

Simplifying and/or calibrating the model Likelihood ratio test

Coping with poor or missing data Safe taxonomic reduction

Prioritizing acquisition of information All heuristic methods

1 Although our arguments are made throughout in terms of tests

and refutations, verificationism can also be consistent with our

position with regard to evidential significance and data exploration.

For example, to avoid the paradoxes of confirmation, an observation

may be considered relevant or evidentially significant to the extent that

it has the potential to objectively alter a probability, and a hypothesis

is statistically meaningful only insofar as it is empirically verifiable in

this sense (Salmon, 1966, p. 91; von Wright, 1984; Bunge, 1998).
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1994). A more technical procedure makes pairwise

comparisons between taxa to assess substitution satu-

ration, which, in turn, provides a basis for excluding or

down-weighting certain classes of positions or trans-

formations (e.g., Mindell and Thacker, 1996). A number

of methods assess congruence among the results of

separate analyses of partitioned data sets under the as-

sumption that data sets of high quality will be mutually
congruent (e.g., Miyamoto and Fitch, 1995; Huelsen-

beck et al., 1996a). In a similar approach, data quality is

evaluated on the basis of congruence with a ‘‘known’’

phylogeny (e.g., Naylor and Brown, 1997, 1998; Ballard

et al., 1998; Miya and Nishida, 2000). In all these ex-

amples of quality analysis, the results of data explora-

tion provide a basis for combining, excluding,

differentially weighting, or otherwise manipulating data
sets.

Epistemology: test and heurism in science

We adhere to an explicitly objective, realist view of

science whereby cognitive progress is achieved by testing

competing explanatory hypotheses with empirical evi-

dence. Some biologists have defined a test as simply
‘‘a procedure that leads to a choice between hypotheses’’
by being ‘‘coupled with a decision rule’’ (Sanderson and

Wojciechowski, 2000, p. 675), but such vague definitions

fail to provide a rational justification for that choice,

thus permitting arbitrary and subjective preferences.

Although the details of the formalisms involved in ef-

fecting tests in principle and practice remain a subject of

philosophical debate, it is consensually understood by

both philosophers1 and scientists that a scientific test
involves applying empirical data that could potentially

refute the hypothesis of interest. In this system, an ob-

servation is relevant or evidentially significant only if it

has the potential to objectively disconfirm a specified

hypothesis, i.e., if it is able to test a hypothesis; the

greater that potential, the more critical the evidence and,

accordingly, the severer the test. The hypothesis that is

best able to explain the most objectively critical evidence
is preferred rationally as both the most strongly
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supported knowledge claim and the best proposition for
additional testing. That is, ‘‘science aims at ever better

explanations, and. . .choices between competing explan-

atory theories are controlled by corroborations,’’ where

‘‘better explanations’’ are both ‘‘deeper and wider’’ than

competitors (Watkins, 1997, p. 5, 9, italics in original).

Contrary to hypothesis choice, which may be expli-

cated solely on the basis of the logic of scientific dis-

covery, the invention or selection of which hypotheses to
test or, more generally, which problems to investigate is

nonscientific, often relying on idiosyncratic preferences

and noncognitive concerns such as availability of fund-

ing or other social pressures (e.g., Kuhn, 1962, 1977;

Fuller, 1993; Braun, 1998; Resnik, 2001). Nevertheless,

problem selection may also be guided by cognitive con-

siderations (Lakatos, 1978). Kluge (1997) suggested that

long-held, highly corroborated hypotheses may be of
special interest because their empirical content may be

more simply and clearly described, making them more

easily tested. Alternatively, problem selection can be

based on degree of corroboration by focusing on bold,

highly improbable hypotheses that have never been tes-

ted or are only weakly or ambiguously corroborated.

Such hypotheses may be more easily disconfirmed than

those that have been severely tested and are more
strongly corroborated, and any procedure that identifies

such hypotheses provides a heuristic shortcut to refuta-

tion and increased knowledge. This approach to problem

selection is analogous to the heuristic strategies com-

monly employed in tree searching (e.g., Goloboff, 1999),

where all possible hypotheses of phylogeny are worthy of

testing, but algorithmic shortcuts direct attention toward

the subset of hypotheses that are most likely to be fruitful
(for a general discussion see Nickles, 2000).

Pursuit of problems on the basis of degree of cor-

roboration is defensible only insofar as the emphasis is

placed on weakly corroborated hypotheses being more

easily refuted and not on strongly corroborated hy-

potheses being more accurate or certain or less worthy

of testing, as such a verificationist perspective would be

contrary to the necessarily critical nature of science.
Moreover, even though the approach to problem selec-

tion may be so rationalized, this does not mean that

testing has actually been achieved or that the approach

is scientific.

Sensitivity and support

In systematics, sensitivity analysis is generally inter-
preted as providing a measure of support, where results

that are insensitive (robust, stable) are considered well

supported. Support, in turn, is almost universally taken

to mean certainty, confidence, probability, or reliability

(e.g., Farris, 1969, 1998, 2002b; Felsenstein, 1985b,

1988; Carpenter, 1988, 1994; Hillis and Huelsenbeck,

1992; Steel et al., 1993b; Brown, 1994; Sanderson, 1995;
Wheeler, 1995; Donoghue and Ackerly, 1996; Efron
et al., 1996; Buckley and Cunningham, 2002; Siddall,

2002a, p. 96; contra Siddall, 2002a, p. 96). Given such a

verificationist interpretation, it would seem that the

concept of support could play no role whatsoever in the

science of phylogenetic inference. Even within the veri-

ficationist framework, the statistical reliability of an

inductive generalization can be inferred only under the

assumption that available data are representative of the
universe of data, such as when data are drawn from a

population at random, but this assumption is counter-

factual in phylogenetic analysis (see Computer-intensive

sampling, below).

Farris et al. (1996, 109; see also K€aallersj€oo and Farris,

1998) rejected the verificationist interpretation of support

and offered an alternative interpretation, considering

parsimony jackknifing ‘‘simply as a way of discovering
ambiguities in data.’’ We agree, and we submit that the

concept of support can be salvaged generally as an indi-

cator of evidential ambiguity and a report on the deci-

siveness of tests, where support is defined objectively as

the degree to which critical evidence refutes competing

hypotheses. A hypothesis is unsupported if it is either (1)

decisively refuted by the critical evidence or (2)

contradicted by other, equally optimal hypotheses (i.e.,
evidence is ambiguous, such as when multiple most-par-

simonious cladograms obtain); otherwise it is supported.

That is, rational hypothesis preference is based on the

relativedegree of corroborationof competing hypotheses,

where the hypothesis that is least refuted by critical evi-

dence is preferred (Popper, 1959). A hypothesis is there-

fore supported if the critical evidence confers a greater

degree of corroboration on it than on any competing
hypothesis, even if the absolute degree of corroboration of

the optimal hypothesis is disturbingly low (Lakatos,

1978), such as when the most-parsimonious cladogram

has a low CI (Farris, 1983).

Under this concept of support, there can be no basis

for preferring a less parsimonious hypothesis of species

relationships (Farris, 1983), nor is there any basis for

attributing more confidence or reliability to more
strongly supported clades. Most corroborated hypoth-

eses are preferred, ‘‘if only from a theoretical point of

view which makes them theoretically most interesting

objects for further tests’’ (Popper, 1979, p. 13, italics in

original). What matters scientifically is that the evidence

supports a hypothesis, not the degree of support, which

is why the strict consensus of most-parsimonious clad-

ograms is especially beneficial as a summary of univer-
sally corroborated groups. Weakly supported groups are

still supported by the evidence, and we see no episte-

mological reason to exclude them (but see Farris, 1998;

see also below).

Our concept of support is heuristic in that it identifies

cases in which refutation of competing hypotheses is

weak, because weakly corroborated hypotheses may be
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more easily refuted than those that are more strongly
corroborated. Rather than underscoring strongly sup-

ported clades by indicating them with asterisks and ar-

rows, providing detailed discussions, and formalizing

them with special taxonomic ranks, we believe that sci-

ence would be better served by focusing on weakly

supported clades and the potential means of more se-

verely testing them (Kluge, 1997). Furthermore, episte-

mologically, all clades in the least refuted cladogram(s)
provide an equally valid basis for testing evolutionary

scenarios (e.g., biogeographic hypotheses) and designing

future phylogenetic studies (e.g., selecting outgroups),

and although it may be tempting to base such studies

exclusively on the more strongly supported parts of a

given cladogram, that procedure is a slippery slope to a

verificationist interpretation of better-supported clades

as more reliable or certain or closer to truth.

Interpretation and justification of methods

We judge a method to be scientific if and only if it in-

volves an empirical test. For example, the unweighted

parsimony method employed in phylogenetic systematics

is scientific because propositions of relative recency of

common ancestry are tested according to the congruence/
incongruence of the available character evidence. More-

over, in a progressive research program such as phylo-

genetic systematics, the results of tests always point to new

problems and other testable hypotheses (Lakatos, 1978;

Kluge, 1997, 1998, 1999). In this regard, phylogenetic

systematics can be considered ampliative.

Those methods that do not provide a valid test and

therefore are not scientific may nonetheless be heuristic,
but if and only if they are guided by the cognitive con-

siderations of evidential ambiguity and decisiveness of

tests, as outlined above.Obviously relevant to the concept

of heurism, themethodmust point to strategies for further

testing or to testable hypotheses. In other words, scientific

objectivity must be evident for a method to be heuristic.

From this it follows that a heuristic method cannot pro-

tect a hypothesis from being refuted. For example, the
auxiliary assumptions—the major premise(s) in causal

explanation, such as background knowledge—must not

diminish testability. Indeed, those kinds of included as-

sumptions are admissible only if they increase testability.

Likewise, methods that are not protected from ad hoc

hypotheses cannot be relevant, nor can those leading to

tautology (e.g., Faith and Trueman, 2001).
Part II: Detailed evaluations

Data exploration as a test

Many of the methods of data exploration have been

applied as a kind of optimality criterion in choosing
among competing auxiliary assumptions and hypothe-
ses. For this to be valid, a clear relationship between

results of data exploration and hypothesis testing must

exist. Wheeler�s (1995) sensitivity analysis and Mindell

and Thacker�s (1996) relative rate comparisons are

evaluated for this relationship between exploration and

testing.

Wheeler’s sensitivity analysis as a test. Numerous

authors have employed Wheeler�s sensitivity analysis as
a test of relationships or auxiliary assumptions

(Wheeler, 1995, 1999; Allard and Carpenter, 1996;

Wheeler and Hayashi, 1998; Giribet and Wheeler, 1999;

O�Leary, 1999; Phillips et al., 2000; Frost et al., 2001a;

Janies, 2001; McGuire and Bong Heang, 2001; Wheeler

et al., 2001; Giribet et al., 2000, 2001, 2002).

As a test of relationships, insensitivity of groups to

variation in the relative weights assigned to transitions,
transversions, and insertion–deletion events (indels) is

treated as an optimality criterion to decide whether to

reject or accept a hypothesis of monophyly (Wheeler,

1995). Groups that are more sensitive to variation in

cost ratios are rejected, whereas those that are more

robust to different ratios are accepted. Group robustness

may be represented graphically as a sensitivity plot

(binary Cartesian graph) or a consensus of clades re-
covered under an arbitrary number of parameter sets

(e.g., Wheeler, 1995; Giribet and Wheeler, 1999;

Wheeler et al., 2001).

To justify this procedure, Wheeler (1995, p. 328;

italics added) argued:

If a high fraction of the total analysis space supports a group,

the group is generally supported by the data because most com-

binations of analytical parameters will yield that clade. . .

However, leaving aside for the moment (see below) the

unjustifiable practice of specifying a priori classes of

phylogenetic evidence (Kluge and Wolf, 1993, p. 190; see

also Allard et al., 1999), robustness to variation in

weights of classes of data does not quantify evidential
support. For example, an uncontradicted clade corrob-

orated by a large number of transitions is certainly

strongly supported by the data, given that any other

hypothesis of relationships would entail extensive in-

congruence, yet that group would disappear in trans-

version parsimony (sensu Swofford et al., 1996, p. 422),

giving the impression that it lacks support. Likewise, a

group corroborated by many transversions and con-
tradicted by only a few indels and transitions is also

strongly supported by the data, but that group would

disappear in any weighting scheme that were to up-

weight transitions and/or indels. Stability under a range

of cost ratios indicates only that evidence for a clade

does not derive from a single synapomorphy class; it

provides no indication of the actual amount of evidence

that supports a group. Consequently, an uncontradicted
group corroborated by 15 transitions, 15 indels, and



2 Since its inception, taxonomic congruence has referred to congru-

ence among partitions (sets) of characters (e.g., Sokal and Sneath,

1963, pp. 85–86; Farris, 1971; Sneath and Sokal, 1973, p. 97; Rohlf,

1974; Mickevich and Johnson, 1976; Mickevich, 1978; Rohlf and

Sokal, 1980; Mickevich and Farris, 1981), and may be evaluated by

topology-based measures (e.g., Farris, 1967, 1969, 1973a; Mickevich,

1978; Nelson, 1979; Colless, 1980; Mickevich and Farris, 1981; Rohlf,

1982; Wheeler, 1995, 1999; Levasseur and Lapointe, 2001) and

character-based measures (e.g., Rohlf, 1963; Throckmorton, 1968;

Farris et al., 1970; Sneath and Sokal, 1973; Mickevich and Farris,

1981; Miyamoto et al., 1994). Terminology obscures this fact and has

led some authors to view taxonomic congruence and topological

congruence as coextensive (e.g., Chavarr�ııa and Carpenter, 1994, p.

243; Allard and Carpenter, 1996; Dolphin et al., 2000; see also Barker

and Lutzoni, 2002).
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15 transversions would seem no more supported than
one corroborated by 1 transition, 1 indel, and 1 trans-

version. Clearly, this kind of sensitivity analysis does not

evaluate support by the data, so that justification fails to

provide a basis for using this approach to decide whe-

ther to accept or reject a hypothesis of monophyly.

Alternatively, using this approach to sensitivity

analysis as a test of relationships has been justified as

measuring support by assumptions. Wheeler et al. (2001,
p. 139) argued that ‘‘[s]upport for all groups is depen-

dent on the analytical assumptions we make,’’ and they

went on to interpret stability to auxiliary assumptions as

a measure of clade support distinct from evidential

(character) support (which they measured with Bremer

support). Giribet et al. (2000, p. 547; see also Giribet et

al., 2002, p. 16) similarly explained that they ‘‘consid-

ered this an effective way to explore the data and discern
between well-supported relationships (those supported

through a wide range of parameters) and poorly sup-

ported relationships (those that appear only with very

particular parameter sets),’’ and Giribet and Wheeler

(2002, p. 288) explicitly considered groups stable to

different assumptions to be ‘‘well corroborated.’’ How-

ever, this argument misplaces the formal role of auxil-

iary assumptions in hypothesis testing: a hypothesis is
corroborated by empirical evidence in light of auxiliary

assumptions, the critical issue being the validity of

auxiliary assumptions, not their differential effects on the

outcome of an analysis. That is, auxiliary assumptions

provide the background knowledge necessary to per-

form a valid test and in turn assess degree of corrobo-

ration, but they do not themselves corroborate or refute

a hypothesis.
The futility of this approach is further underscored

by the fact that it views all weighting schemes that do

not violate the triangle inequality as equally plausible a

priori (Wheeler, 1995; W.C. Wheeler, pers. comm.) and

provides no justification for weighting only the character

classes of transitions, transversions, and indels or for

choosing the few cost ratios evaluated. This argument is

relevant because for all but the simplest data sets every
possible cladogram may be supported under some set of

relative weights (Kluge, 1998), so unless some nonarbi-

trary boundary is placed on permissible character classes

and cost ratios, a rigorous application of this approach

would find that all cladograms are unsupported; finding

that a clade is supported would simply mean that

the sampling of weighting schemes was not sufficiently

exhaustive.
Instead of inferring support for relationships,

Wheeler (1995) also argued that sensitivity analysis

provides a test of auxiliary assumptions. Still believing

transversion–transition and indel–substitution cost ra-

tios to be otherwise arbitrary, he treated congruence

among data partitions or sets (as judged by Mickevich

and Farris�s (1981) original measure of taxonomic
incongruence, the iMF of Kluge (1989, Table 3), or its
rescaled form (Wheeler and Hayashi, 1998)) as an op-

timality criterion, where ‘‘the set of values for the

transversion–transition ratio and gap–change ratio that

maximize congruence would be chosen’’ (Wheeler, 1995,

p. 323).

Wheeler (1995, p. 321; see also Phillips et al., 2000,

p. 327) defended this position on the grounds that it

increases precision, claiming that

Without any way of objectively measuring the accuracy of re-

construction, only precision (the agreement among data) can

be used to arbitrate among competing hypotheses.

The logical basis of this assertion is indisputable. Pre-

cision, thus defined, is clearly related to explanatory

power and testability, and it logically translates into the

test of congruence/incongruence in phylogenetic infer-

ence. Accordingly, Giribet et al. (2002, p. 17; see also

Giribet et al., 2000, p. 548) stated that

Character congruence is thus used as the criterion to choose the

best (most corroborated) tree, the tree that minimizes overall

character conflict among the data.

However, the belief that these arguments justify mini-

mization of incongruence among partitions is incorrect
and stems from employing the iMF—a character-based

measure of taxonomic congruence2—as a measure of

character congruence (e.g., Wheeler, 1995, p. 321, 323;

Giribet et al., 2002, p. 17). Even though all data are

included, this approach employs a kind of taxonomic

congruence, not total evidence (Kluge, 1997), because

(1) it weights data differentially with regard to partitions

(transitions, transversions, and indels) and (2) it evalu-
ates fit with regard to congruence among partitions (e.g.,

morphology and DNA sequences). Precision is actually

maximized by minimizing incongruence among inde-

pendent data (characters), not sets of data (partitions).

Consequently, precision provides an argument for equal

weighting of all data because any weighting scheme that

favors a different topology necessarily increases the

number of events required to explain the data (or
the number of bits required to describe them), making



3 That history is predetermined with respect to the present should

not be confused with historical determinism (historicism), the inevi-

tability of a certain general sequence of events or the existence of laws

of history. To the contrary, it is the frequentist/probabilistic approach

to historical inference that we oppose that entails historical determin-

ism (Siddall, 2002b; Kluge, 2002).
4 Note that this does not preclude the incorporation of character

state additivity into cladistic analysis. Although additivity is opera-

tionalized as differential transformation costs (e.g., given the transfor-

mation series 0$ 1$ 2, a ‘‘transformation’’ from 0 to 2 implies a cost

of 2 steps), the extra cost is defensible on the grounds that it

corresponds to inferred transformations, each of cost 1.
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the preferred hypothesis less precise, less parsimonious,
and less corroborated (Kluge, 1998, p. 356; Allard et al.,

1999). That is, equally weighted parsimony maximizes

congruence over all data by minimizing the total number

of hypothesized transformations, whereas differential

weighting preferentially maximizes congruence among

higher-weighted characters at the expense of congruence

among lower-weighted characters. Although the effect is

obscured by the fact that differently weighted cladogram
costs are not directly comparable, differential weighting

leads ultimately to a less efficient overall distribution of

states and a greater number of hypothesized transfor-

mations (i.e., increased incongruence). Therefore, even

though differential weighting may improve the iMF score,

the apparent increase in character congruence is falla-

cious, and in fact character congruence has decreased.

Given that ‘‘no degree of abundance of homoplasy is by
itself sufficient to defend choice of a less parsimonious

genealogy over a more parsimonious one’’ (Farris, 1983,

p. 14), there can be no justification for differential

weighting.

Giribet et al. (2000, p. 548; see also Giribet et al.,

2002, p. 17) also argued that minimizing incongruence

among partitions is

. . .understood as an extension of parsimony (or any other min-

imizing criteria); in the same sense that parsimony tries to min-

imize the number of overall steps in a tree, the ‘‘character

[sic,¼ taxonomic] congruence analysis’’ tries to find the model

that minimizes incongruence for all the data sources.

However, the epistemological justification for parsi-

mony as minimizing hypotheses of transformation and

maximizing explanatory power (Farris, 1983) does not

extend logically to congruence among data partitions

(sources) because minimization of incongruence among

partitions through differential weighting may actually
increase character incongruence, thereby increasing the

number transformations required to explain the obser-

vations and reducing explanatory power.

The arguments for Wheeler�s (1995) sensitivity anal-

ysis are predicated entirely on the belief that choice of

transversion–transition and indel–substitution cost ra-

tios is externally arbitrary and that even ‘‘[s]imple ho-

mogeneous weighting does not avoid the issue of
arbitrary, yet crucial assumptions’’ (Wheeler, 1995, p.

321; see also Mindell and Thacker, 1996). That senti-

ment was echoed more recently by Geiger (2002, p. 192),

who asserted that ‘‘all DNA sequence alignment is in-

herently subjective.’’ In addition to the problem that

differential weighting entails nonindependence of tests

(Siddall and Kluge, 1997; Kluge, 1998; Siddall, 2002b),

claims of arbitrariness or subjectivity overlook the fact
that phylogenetic inference is historical and that histo-

ricity places a nonarbitrary, objective constraint on

phylogenetic discovery operations (Siddall and Kluge,

1997; Kluge, 1998, 2002; Grant, 2002). Differential
weighting of classes of transformations—including indel
transformations (e.g., Wheeler, 1996)—relies ultimately

on frequentist probability arguments (Kluge, 1998,

2002). Yet, these arguments are relevant only in nomo-

thetic sciences, where discovery operations must con-

tend with the objective indeterminism of the future.

Because phylogenetic inference is strictly historical, and

history is objectively determinate3 (i.e., it has already

happened, making it fixed), there can be no objective,
frequency-based probability relating to the necessarily

unique phylogenetic events of the past (Popper, 1990;

Siddall and Kluge, 1997; Grant, 2002; Kluge, 2002).

That is, even if the overall cost ratios were known for the

different classes of molecular transformations, they

would be uninformative of whether a particular trans-

formation occurred. Moreover, the fact that history has

already happened means that historical scientists can
search for evidence of past events. Observed evidence

may be false for a number of reasons, including observer

error, multiple events having left the same kind of marks

interpreted as evidence, or some sort of information-

destroying process (Sober, 1988), but, unlike nomothetic

scientists, ideographic scientists may base inferences on

tests of each piece of evidence against all other evidence

simultaneously, thereby maximizing severity of test and
detection of errors. As noted above, equal weighting of

all evidence in a total-evidence analysis maximizes pre-

cision and provides the severest test (see also Kluge,

1997, 1998; Allard et al., 1999; Frost et al., 2001a,b).

Transformation cost ratios in phylogenetic inference are

therefore nonarbitrary, equal weighting of all transfor-

mations being the only objectively defensible parameter

set.4

Relative rate comparison (saturation analysis) as a

test. Separately evolved, homoplasious character states

do not, by definition, identify the same historical entity

(e.g., Hennig, 1966, p. 89). Further, there is the potential

for saturation of gene sequence data with such changes

because of the small number of possible character states

and the potential for multiple substitutions at any nu-

cleotide site in the sequence. More specifically, given the
four possible nucleotide states and only a modest rate of

change occurring at random among sites, identical in-

dependently evolved states are expected at any site.
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Saturation is assumed to have occurred for a given part
of the genome when differences among taxa are less than

expected. Molecular biologists (e.g., Brown et al., 1982)

have long claimed saturation in those observations that

show transitions to occur more frequently than trans-

versions, a bias that arguably must be corrected to

provide ‘‘reliable estimation of sequence distance and

phylogeny reconstruction’’ (Yang and Yoder, 1999, p.

274; italics added).
In general practice, some form of pairwise taxon

comparison is used to assess the level of saturation. The

differences between pairs of taxa are plotted according

to the relative age of origin of the pairs, often measured

with regard to taxonomic rank. The comparisons are

usually referred to as a ‘‘test’’ when the saturation

curves obtained for different kinds of nucleotide sub-

stitutions are compared—thus, the term ‘‘relative rate
test.’’ It is assumed that the comparisons in the satu-

rated, tapering-off portion of a given curve provide

inaccurate phylogenetic estimates due to multiple sub-

stitutions and randomization of observed states,

whereas those compared from the positively increasing

portion of the curve do not. The saturated, randomized

portion is assumed to reflect excessive homoplasy, which

is taken to be evidence for down-weighting such a class
of data to improve the reliability of the phylogenetic

estimate.

Relative rate tests are employed commonly in as-

sessing codon and transversion–transition bias (e.g.,

Mindell and Thacker, 1996; Wakeley, 1996), not with-

standing the unjustifiable practice of specifying a priori

classes of evidence (Kluge and Wolf, 1993, p. 190; see

also Allard et al., 1999). Generalizing, the method
consists of the following steps: the amount of evolu-

tionary change (discrete or continuous character

change) that terminal taxa (A,B) exhibit relative to that

of their most recent common ancestor (Y) or to that of

an outgroup lineage (C) is determined (Mindell and

Thacker, 1996, p. 281). Thus, character change in A:Y

can be contrasted to that in B:Y, assuming additivity of

character state change, or character change in A:C can
be contrasted to that in B:C. In either case, an equal rate

of evolution is assumed when those two sets of numbers

are the same. Such relative rate comparisons have also

been used to test the evolutionary clock hypothesis

(Mindell and Thacker, 1996).

The advantage of the relative rate comparisons de-

scribed above is supposed to be due to the equal

amounts of time that have passed (by definition) be-
tween sister species and their common ancestor. How-

ever, in that advantage is the very undoing of such

comparisons and the very concept of relative rate ‘‘test.’’

Relative rate comparisons involving patristic or path-

length distances, such as A:C, B:C, cannot avoid the

criticism of nonindependence, i.e., the amount of evo-

lution exhibited by the nonterminal intervals, between C
and the common ancestor of A and B, is redundant. For
example, to use traditional statistics, such as the bino-

mial distribution (Mindell and Honeycutt, 1990; Min-

dell and Thacker, 1996), to test the null hypothesis (i.e.,

departure from an expected 50% of all distance change

between any two sister species) is invalid due to failure

to meet the assumption of independence. Relative rate

comparisons involving steps, such as A:Y, B:Y, can

avoid the issue of nonindependence by recording only
those pairs of sister species that are exclusive of one

another. However, with such exclusivity comes both a

loss of statistical power and the need for a prior phy-

logenetic hypothesis, a pattern that can then be used to

justify what is, and what is not, an exclusive compari-

son.

Additionally, recent maximum likelihood studies

(e.g., Yang and Yoder, 1999) indicated that relative rate
comparisons are biased by taxonomic sampling and, by

extension, the density of the taxonomic samples relative

to parts of phylogeny. They also indicated, as have most

other studies of relative rate, that transversion–transi-

tion rate ratios vary among different parts of phylogeny.

Thus, relative rate comparisons, as tests of codon bias or

the molecular clock, are unjustified as tests and cannot

be rationally claimed as bases for a priori character
weighting.

Data exploration as a heuristic

In a progressive research program, the results of past

tests inform future problem choice and test design by

indicating heuristically which areas of knowledge are

especially worthy of further inquiry (Lakatos, 1978).
That is, although all empirical problems remain open to

further investigation, prior experience can indicate

which problems are most likely to be scientifically

fruitful. An example of this progressiveness in phylo-

genetic testing is Hennig�s (1966) reciprocal illumination

or clarification, whereby finding that some synapomor-

phies are incongruent with the most-parsimonious hy-

pothesis heuristically suggests that the initial hypothesis
of their homology was incorrect. This, in turn, indicates

the need for additional, independent testing (e.g., char-

acter reanalysis) and, ultimately, the possibility of

eliminating error in the identification of synapomorphy

(Kluge, 1998; contra Mindell, 1991). All synapomor-

phies are worthy of further investigation, but incon-

gruent ones are especially interesting scientifically

because the balance of the evidence refutes them, and
they are critical in phylogenetic systematics because the

optimal, most-parsimonious hypothesis relies on the

independence of instances of incongruence (Farris, 1983,

1995; Carpenter, 1992; Kluge, 1997). As this example

illustrates, genuine empirical tests may be both scientific

and heuristic (for elaboration on this point, see Gattei,

2002).
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Likewise, operations that do not perform empirical
tests themselves may still be useful tools if they point to

highly testable hypotheses, and we suggest that data

exploration methods that cannot be defended as tests

may still serve this function. The sensitivity analysis of

Wheeler (1995) and the relative rate comparisons of

Mindell and Thacker (1996) are technically impressive

but do not constitute valid scientific tests. Still, there

remains the possibility that their applications may be
heuristic, and we now turn to judging them in that sense.

Wheeler’s sensitivity analysis as a heuristic. For

Wheeler�s (1995) sensitivity analysis to be heuristically

useful, it would have to point out ambiguously corrob-

orated hypotheses, and sensitivity to parameter varia-

tion has been interpreted as an indicator of evidential

ambiguity. For example, Giribet et al. (2000, p. 557)

summarized their sensitivity analyses as ‘‘discerning
among well-corroborated versus unstable hypotheses of

relationships,’’ concluding that for highly parameter-

sensitive clades ‘‘inferences based on the currently

available data are, at least, poorly supported.’’ Likewise,

Janies (2001, p. 1247) interpreted sensitivity analysis as

having ‘‘pinpointed areas of weakness in our under-

standing of echinoderm relationships’’ by identifying

groups for which ‘‘the available character evidence is
equivocal.’’ That is, rather than rejecting a hypothesis of

monophyly based on parameter sensitivity, this inter-

pretation points to relatively unstable groups as more

ambiguously corroborated and poorly supported than

groups that are more robust to parameter variation.

However, as discussed above, this approach to sensi-

tivity analysis does not evaluate the amount of eviden-

tial support and is therefore unable to identify those
hypotheses that are weakly or ambiguously corrobo-

rated. As such, it is not heuristic.

Relative rate comparison as a heuristic. That relative

rate comparisons may be heuristic is also without

foundation because that methodology assumes that

homoplasy, as measured by incongruence, necessarily

misinforms the inference of phylogeny. If nucleotide

evolution were to occur at random then it might be
misinformative, uninformative, or even informative. As

Wenzel and Siddall (1999) showed in simulations, half

the characters in an analysis must be random for there

to be a greater than even chance of overwhelming even a

single unique and unreversed synapomorphy. This

should come as no surprise, considering that, given even

a moderate number of randomized sites, there are so

many ways to arrange the four possible nucleotide states
among taxa that the chance of forming a pattern such

that historically relevant data are contravened is ex-

tremely low (Wenzel and Siddall, 1999).

Empirical findings also argue against relative rate

comparisons being heuristic. That third codon positions

confound phylogenetic inference because they are rela-

tively more homoplasious than first or second codon
positions has become conventional wisdom, in large part
due to examining saturation curves, and accordingly

those transformations are often down-weighted a priori.

However, K€aallersj€oo et al. (1999) showed, for a 1428-base

plastome gene recorded on more than 2500 green plant

species, that third codon positions, while relatively more

homoplasious than first or second position states, were

nonetheless phylogenetically more informative (they had

a higher mean character retention index, ri) than first or
second position states. Such a finding demonstrates that

frequency weighting cannot be presumed generally, the

problems of nonindependence in relative rate compari-

sons and saturation plots being beside the point (contra

Mindell and Thacker, 1996). Additionally, the variable

constraints on mutation and fixation rates summarized

by Mindell and Thacker (1996, Table 1) would appear to

have had no effect on the results reported by K€aallersj€oo
et al. (1999; see, however, Farris, 2002b, Table 3).

The relevance of these simulation and empirical

studies lies in their ability to illustrate the extent to

which relative rate comparison tests can misinform

phylogenetic inference. Evidence is the primary concern.

Any independently evolved synapomorphy is eviden-

tially significant, and it is only by including all available

evidence in a simultaneous test that severity of test is
maximized (Kluge, 1997, 1998). If a priori weights are

based on distributional values (e.g., base compositions,

transversion–transition ratios) across all characters or

across a character class (e.g., third positions) then the

independence of these potential homologues is in fact

lost (Kluge, 1998, p. 357; Siddall and Kluge, 1997). The

end result of such data purification procedures is a

violation of independence and a negative impact on
severity of test. There can be no heurism in this.
Part III: Broad survey of methods

Our evaluations above of one kind of sensitivity

analysis and one kind of quality analysis exemplify the

critical arguments that we believe can be used to eval-
uate any method of data exploration for its scientific and

heuristic merits. We now turn our attention to some-

what briefer assessments of additional data exploration

methods. Each of these assessments includes a short

description and answers to the following questions:

Does the method entail an empirical test? If not, is it

heuristic?

Other kinds of sensitivity analysis

Decisiveness/ambiguity. One of the aims of sensitivity

analysis is to assess evidential decisiveness (or its con-

verse, ambiguity), defined as the degree to which an

optimal solution is preferred over alternatives. As noted

by K€aallersj€oo et al. (1992, p. 283), ‘‘[a]mbiguity is usually
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detected by finding multiple most parsimonious trees,
the unambiguous part of the structure (that common to

the several trees) being recovered as a consensus tree.’’

Although that is a direct and objective assessment of

evidential ambiguity, as Farris et al. (2001) recently

discussed in the context of branch lengths, it is not un-

common for a great deal of evidence to favor a partic-

ular hypothesis, but for that preference to be extremely

weak. Therefore, additional approaches have been
sought to assess relative evidential decisiveness/ambi-

guity in more detail. A low degree of decisiveness cannot

alter preference for the most-parsimonious hypothesis

(Farris, 1983), but it does give reason to suspect that the

preferred hypothesis may be easily disconfirmed with

additional testing.

Bremer support (branch support; Bremer, 1988, 1994)

assesses the decisiveness of corroboration of a given
clade by comparing the length of the most-parsimonious

cladogram(s) with those of suboptimal solutions to de-

termine how much worse (i.e., longer) a topology must

be for that clade to be absent. Gatesy et al. (1999) at-

tributed the basic index of character support to Tem-

pleton (1983; see also Prager and Wilson, 1988). For a

particular data set, a particular clade, and a particular

character, character support is just the minimum num-
ber of steps for that character on the shortest clado-

gram(s) that does not contain that clade, minus the

minimum number of steps for that character on the

shortest cladogram(s) that does contain that clade.

K€aallersj€oo et al. (1992) calculated ‘‘total support’’ as the

decisiveness of a data matrix for a cladogram by sum-

ming the Bremer support values for all nodes. Bremer

(1994) rescaled total support by dividing by the greatest
possible sum of Bremer supports, the sum of branch

lengths.

Wilkinson et al. (2000, p. 757) argued that, because

Bremer support focuses only on the clades common to

all most-parsimonious cladogram(s), it

. . .is unable to distinguish cases in which instability in trees is

associated with a few terminals and most relationships are

otherwise well supported, from cases in which instability and

lack of support for relationships are more ubiquitous.

The solution that they proposed, called double decay, is

to evaluate the Bremer support for all groups (n-taxon
statements of Wilkinson, 1994) present in any of the
most-parsimonious cladograms, not just those groups

present in the strict consensus. As a result, all groups

with a positive Bremer value are reported, including

mutually incompatible groups, allowing highly ambig-

uously placed terminals to be identified.

None of these methods of data exploration tests

phylogenetic hypotheses, but they are explicit indicators

of ambiguity of evidential support, making them heu-
ristically useful in deciding which problems to pursue

next. Bremer support indicates directly the nodes for
which evidence is ambiguous and therefore which hy-
potheses could be most easily refuted. Double decay

analysis takes this a step further by identifying the ter-

minals that are most responsible for ambiguity, which

allows them to be targeted specifically for further study

in future rounds of testing. By focusing on ambiguously

corroborated groups and the synapomorphies that de-

limit and contradict them, character reanalysis is facili-

tated, as is the discovery of new synapomorphies
relevant to testing their placement. Because total sup-

port does not identify the more weakly corroborated

portions of the overall hypothesis, it does not point to

particular tests and is therefore not heuristic.

Clade stability index. Given a small data set with little

incongruence, determining how many and which syna-

pomorphies are crucial to clade delimitation is trivial.

However, as matrix size and character conflict increase,
it becomes more difficult to assess the relationship be-

tween characters and clades. The complexity of char-

acter interactions is underscored by considering that

clade resolution may be crucially dependent on both

synapomorphies of that clade and synapomorphies of

other clades (Davis et al., 1993). To identify the char-

acters and character combinations crucial for the re-

covery of a clade, Davis (1993; see also Davis et al.,
1993) proposed to sequentially remove characters and

sets of characters and record the presence or absence of

each clade. Davis (1993, p. 201) defined the clade sta-

bility index (CSI) as ‘‘the minimum number of charac-

ters that, when removed, cause resolution of the clade to

be lost,’’ where a clade is considered lost if it is absent

from the strict consensus. CSI is measured as the ratio

of the minimum number of informative characters re-
moved to the total number of informative characters,

giving it a range from 0 (when a clade is absent prior to

character removal) to 1 (when a clade is lost only when

all characters are removed). Gatesy et al. (1999) referred

to the unscaled version of CSI as the character removal

index, CRI.

Implementation of CSI is hindered by the computa-

tional difficulty of the problem. The number of character
combinations to be tested in an exhaustive analysis is

given by c ¼ n!=r!ðn� rÞ! for n informative characters

and r characters to be removed in a given round of

analysis. Given that a full parsimony search must be

performed for each combination, evaluation of all

character combinations is impractical for even moder-

ate-sized matrices (e.g., for a matrix of only 20 infor-

mative characters, evaluation of exhaustive character
combinations would require 1,048,575 cladistic analy-

ses). Consequently, for removal of more than 2 char-

acters, Davis (1993) estimated CSI by examining 500

random character combinations. Like other methods of

data exploration that rely on heuristic search strategies

(e.g., Bremer support), the reported (observed) CSI is

equal to or greater than the true CSI.
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CSI does not test phylogenetic hypotheses, and the
stability that it identifies is not justifiable epistemologi-

cally. However, by revealing the proportion of charac-

ters that is crucial to clade resolution, CSI is heuristic.

Additional testing may more easily refute clades that are

dependent on fewer characters than clades that are

supported by more characters. The heurism of this ap-

proach is augmented by determining precisely which

character or character combination(s) is critical (see
Davis et al., 1993), as this allows those characters to be

targeted specifically in future rounds of character anal-

ysis/reanalysis. A significant drawback is that CSI does

not distinguish between congruent and incongruent

synapomorphies. In this regard simple examination of

incongruent characters on the most-parsimonious clad-

ogram is heuristically more effective. The union of the

two procedures would increase heurism by pointing to
the incongruent synapomorphies that are most crucial to

clade resolution.

Transformation series additivity. Transformation se-

ries additivity refers to the hypothesized path of evolu-

tion of a multistate character. During rounds of separate

testing (character analysis/reanalysis), independent evi-

dence is brought to bear in an attempt to choose among

the competing hypotheses of character evolution. Suc-
cessful refutation may result in a defensible preference

for one or several (i.e., evidence may be partially am-

biguous) of the possible hypotheses of additivity. In

either case, the least refuted hypothesis(es) of transfor-

mation series additivity is then employed as an auxiliary

assumption in the simultaneous test of character con-

gruence. As with binary characters, incongruence with

the weight of the evidence disconfirms the original hy-
pothesis of transformation, and each independent in-

stance of incongruence requires an additional

hypothesis. If the initial (separate) attempted refutation

is not successful, none of the competing hypotheses of

transformation series additivity is supported (i.e.,

available evidence is completely ambiguous), and all of

the competitors must be considered in the simultaneous

test of congruence. Referring to characters as ‘‘nonad-
ditive’’ or ‘‘unordered’’ in cladistic analysis means that

all possible hypotheses of transformation series addi-

tivity are submitted in that test.

Incorporation of auxiliary assumptions is unavoidable

in science, but their inclusion is justified only to the extent

that they increase testability (Popper, 1959, pp. 82–83).

Consequently, it is preferable to propose a single auxiliary

assumption of transformation additivity because this in-
creases testability by (1) minimizing the number of aux-

iliary assumptions (where each possible character state

tree is an auxiliary assumption in cladistic analysis) and

(2) maximizing the empirical content (i.e., by prohibiting

more). If, however, the preference for a hypothesis of

additivity is not the result of an objective test, then that

preference is ad hoc and decreases the severity of test and
explanatory power of the resulting cladistic hypothesis.
As such, it is essential that the evidential basis for the

choice of additivity be explicated clearly.

Many studies have evaluated the sensitivity of results

to auxiliary assumptions of additivity by rerunning

analyses with all transformations nonadditive (e.g.,

Kluge, 1991; Wilkinson, 1992; O�Leary and Geisler,

1999; Asher, 1999; Prendini, 2000). Clades that disap-

pear when transformation series are considered nonad-
ditive are often considered less supported than those

that do not, but this interpretation is unfounded, given

that this procedure does not evaluate the objective

support of data for the hypothesis or the validity of the

assumed additivity.

A more technical extension of this procedure is trans-

formation series analysis (TSA), an iterative method of

character analysis/reanalysis intended to remove incon-
gruence in multistate characters and thereby make them

consistent with the historical pattern implied by the rest of

the data (Mickevich, 1982; Lipscomb, 1990, 1992;

Mickevich and Weller, 1990; Mickevich and Lipscomb,

1991; Pogue and Mickevich, 1990). The method begins

with a postulated additive transformation series. A tree is

constructed from the data matrix in which that initial

additive transformation series hypothesis is included.
That character�s topology is optimized on the most-par-

simonious cladogram, a nearest neighbor matrix is con-

structed, and a new character state tree is formed by

joining those states that have the greatest frequency of

being nearest neighbor on the preferred cladogram. That

character state tree then becomes the new additive

transformation series for another round of tree searching

and so on, until the transformation series does not change
between iterations.

Analysis of nonadditive characters can only result in

equal or fewer steps than analysis of additive characters,

so discovery that nonadditive analysis returns a shorter

topology alone does not disconfirm the hypothesized

transformation series. That is, this outcome is a logical

necessity, so if the shortest length is demanded, irre-

spective of independent evidence of additivity, then
nonadditive analysis should be preferred a priori. Al-

though it may be considered a minimal methodological

requirement of TSA, any iterative procedure that ‘‘as-

sured maximum congruence of all the data and always

converged to the same solution(s)’’ (Buckup and Dyer,

1991, p. 502) would simply converge on the results (or a

subset of the results) of unordered analysis and would

therefore be redundant and less efficient. Furthermore,
for preference of a particular auxiliary assumption of

additivity to be valid, its determination must be external

to the results of cladistic analysis. By recoding additivity

based only on cladistic results, TSA leads to noninde-

pendence of evidence, i.e., circularity instead of re-

ciprocal illumination. Just as ‘‘[i]nitial hypotheses of

character-state transformations should not be allowed
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to bias the construction of the very cladogram that is
used to generate the final cladogram characters unless

there is strong justification by a transmodal theory for

those particular hypotheses’’ (Buckup and Dyer, 1991,

p. 502), TSA alone should not be allowed to freely

overturn independent evidence of additivity. That is, if

the initial hypothesis of additivity was based on evi-

dence, then overturning that evidence must be counted

as an additional ad hoc-ism (which TSA does not do). If
there was no basis for preferring one hypothesis of ad-

ditivity over another, then the analysis should not have

been constrained in the first place. TSA also fails in the

case of partially ambiguous evidence, given that it could

prefer (1) an a priori excluded transformation series

because it is shorter than any of the a priori permissible

transformation series or (2) a suboptimal transforma-

tion series (due to initial input sensitivity; Buckup and
Dyer, 1991). A superior approach in this case is to test

competing hypotheses of additivity directly and explic-

itly by running analyses with each of the alternatives and

preferring the least refuted one(s).

Rerunning analyses with unordered characters indi-

cates how dependent the optimal solution is on hy-

potheses of additivity and points to those hypotheses of

additivity that are contradicted by external data (other
characters). It therefore draws attention to potentially

problematic transformation series and indicates a need

for further study (Wilkinson, 1992), which can lead to

detection of error. Although the iterative aspect of TSA

is problematic, the construction of nearest neighbor

matrices can facilitate reciprocal illumination. For ex-

ample, multiple occurrences of a state as the nearest

neighbor ‘‘suggest errors or failures to define character
states properly’’ (Pogue and Mickevich, 1990, p. 330).

Methodological concordance. Methodological con-

cordance applies multiple methods of phylogenetic

analysis—such as maximum likelihood, neighbor-join-

ing, parsimony, and UPGMA—to the same data set,

accepts groups that are insensitive to choice of operation

as well-supported and reliable, and rejects sensitive

groups as weakly supported and unreliable. Although
methodological concordance is, without doubt, one of

the most popular methods of data exploration, few au-

thors have given explicit justifications for its use. For

example, W€aagele and Misof (2001, p. 167, italics added)

claimed that ‘‘[f]or independent support different genes

and—if possible—different methods of data analysis are

needed,’’ yet they did not explicate the epistemological

relevance or evidential significance of their assertion.
Similarly, Barkman et al. (2000, pp. 13170–13171; see

also Carranza et al., 2002, p. 247) concluded that con-

gruence among methods is necessary to attain confi-

dence, but neither they nor the papers that they cited

(Miyamoto and Cracraft, 1991; Miyamoto and Fitch,

1995) provided arguments in defense of that position. As

a consequence of the lack of explicit justification, there is
little consistency in the way that methodological con-
cordance is performed or interpreted. Here we address

the most explicit justifications of which we are aware.

Flores-Villela et al. (2000, p. 714) defended method-

ological concordance on the grounds that

Presumably, analysis and comparison of empirical data sets will

influence opinions on methods. . .

As a prediction of social change, this may be true, but it

does not provide a cognitive justification for this influ-

ence. Indeed, although they considered concordance

among methods to be ‘‘an important conclusion,’’ Flo-

res-Villela et al. (2000, p. 732) immediately clarified:

We do not claim that congruence among these alternative meth-

ods is necessarily evidence for strongly supported nodes but

only that the stability of these clades is not sensitive to very dif-

ferent assumptions of character evolution.

Aside from proving the tautology that stable clades are

not sensitive, if methodological concordance does not

measure evidential support, then what good is it? In fact,

despite the considerable importance that these authors

ascribe to methodological concordance, their only rea-

son for using it is that ‘‘no general consensus has been

reached about the �best� approach to phylogeny recon-
struction’’ (Flores-Villela et al., 2000, p. 713). The same

reason was given by Nei and Kumar (2000, p. 292), who

advised

Of course, if there is controversy over the method to be used, it

is advisable to try several other methods and derive the most

reasonable conclusion.

However, in the absence of an explicit definition or

criterion of reasonableness (which is precisely what

phylogenetic discovery operations aim to provide),

methodological concordance is arbitrary and unscien-

tific. Such unqualified pluralism defeats the purpose of

performing quantitative analysis in the first place, and it
returns phylogenetic inference to the days of subjective

story telling.

Kim (1993) provided the most explicit justification

of methodological congruence in his consideration of

neighbor-joining, UPGMA, and parsimony. He used

simulated data to assess the correlation between the av-

erage of Rohlf�s (1982) strict consensus index (CIc) from

pairwise comparisons of methods (method concordance
index,MCI) and the average accuracy of themethods. He

went on to propose differential weighting of empirical

data sets to increase the value of MCI and, he argued,

accuracy.

As has been pointed out repeatedly (Siddall and

Kluge, 1997; Siddall, 1998; Pol and Siddall, 2001; Grant,

2002), simulation studies of this sort may provide im-

portant insight into the behavior of different methods,
but they offer no indication of the accuracy or reliability

of methods in empirical studies. Even under ideal,

simulated conditions Kim�s (1993) findings were not
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universal, and Kim (1993) reported that increasing MCI
through reweighting actually decreased accuracy in

some cases. This suggests that the correlation between

accuracy and MCI may be highly dependent on partic-

ular simulation conditions. As has been demonstrated in

related contexts (e.g., Tuffley and Steel, 1997; Steel and

Penny, 2000), under certain conditions different methods

will prefer the same phylogenetic hypothesis regardless

of its veracity, and it is trivial to imagine cases in which
any method or set of methods may give the same

erroneous results (Farris, 1986, 1999). Kim (1993,

p. 339) was aware of the potential limitations of his

simulation-based findings, and for empirical data he

suggested that:

The weighted data set [chosen to maximize MCI] may be exam-

ined against available corroborative evidence to see whether the

excluded characters were truly unreliable.

Exactly what this corroborative evidence could be and
why it should not be included in the quantitative phy-

logenetic analysis in the first place was not stated, which,

once again, renders methodological concordance arbi-

trary and unscientific.

For methodological concordance to be employed

defensibly in empirical phylogenetic inference, a more

general justification than mere correlation in simulations

is required. To that end, Kim (1993, p. 333; see also
Wheeler, 2000, p. 111) argued

A high correlation is expected when the methods are accurate

because all three trees must approach the same true tree.

However, although it is logically true that accurate

methods necessarily converge, this does not entail that

convergent methods are necessarily accurate. Such an

invalid inference is an example of affirming the conse-

quent (if p, then q; q, therefore p) and is an elementary

error of logic.
Nevertheless, Kim (1993, p. 333) also found that

. . .when the trees estimated by each method differ from the true

tree, they also differ from each other. . .

which would imply that, even though agreement alone

cannot be taken to imply accuracy, lack of accuracy

could be inferred from disagreement among methods—a

logically valid synthetic inference, provided that it is

linked to a causal explanation. The explanation that

Kim (1993, pp. 337–338) offered was that

Presumably, the homoplastic characters cause the different

methods to estimate erroneously the true tree. The results indi-

cate that different methods are affected in different ways by the

same set of homoplastic characters (i.e., in their estimations of

different erroneous trees).

The implication is that disagreement among methods
must be due to different erroneous interpretations of

homoplastic characters, while agreement must be due to

a lack of influence of homoplastic characters (leaving
only the true signal). However, different methods are
also affected in different ways by the same set of

nonhomoplastic characters, this being a function of un-

derlying assumptions applied to all data (not just ho-

moplasies), and, even in this case of simulated data,

which class of characters is responsible for absence of

methodological concordance is unknown. Conse-

quently, neither accuracy nor falsity can be inferred

from methodological concordance.
That methodological concordance has been difficult

to defend rationally should come as no surprise. Rohlf

and Sokal (1965, p. 25; see also Sokal and Sneath, 1963)

were unable to decide whether it was better to use a

distance or a correlation coefficient for clustering when

data include a mix of size-dependent and size-indepen-

dent characters, and they suggested ‘‘that both coeffi-

cients should be computed and comparisons made, since
both are valid measures of similarity.’’ This pluralism set

the tone for the development of numerical taxonomy

and led to the proliferation of equally good phenetic

clustering statistics, which ultimately resulted in the

demise of phenetics. Later, Rohlf and Sokal (1980)

proposed methodological concordance as a measure of

stability, but it was summarily dismissed (Mickevich,

1980; Schuh and Farris, 1981; Farris, 1982). Although
they did not retract it explicitly, Rohlf and Sokal (1981)

no longer included methodological concordance as a

measure of stability, and no attempt to justify it was

made until their student resurrected it formally over a

decade later (Kim, 1993). More recently, Kim (2000)

incorporated methodological concordance into his

common geometric framework, but this is simply an

arbitrary mathematical construct designed to help in-
tuition, not to make phylogenetic inferences. Advocates

of methodological concordance have yet to offer reasons

for excluding the many methods that they ignore, and

the only reasons that they have given for performing

methodological concordance at all are (1) lack of con-

sensus of the best method of phylogenetic inference and

(2) increased accuracy. Neither of these concerns is sci-

entific. Furthermore, as discussed above, variation in
assumptions is unable to assess the objective support of

data for a hypothesis. Given that this procedure is un-

able to judge the validity of those competing assump-

tions, it has no relevance in hypothesis testing and is

nonscientific.

As a heuristic method of data exploration, method-

ological concordance is an inefficient, if not indeci-

pherable, approach. The various optimality criteria
differ in their underlying assumptions to such an extent

that only the simplest of disagreements can point to

potential sources of error. The heuristic futility of this

approach is further underscored by the fact that ‘‘[t]here

are an infinite number of possible methods that could

collectively yield any possible topology’’ (Brower, 2000,

p. 148).
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Sensitivity to prior probabilities (Bayesian phyloge-

netic inference). Two main approaches to Bayesian

phylogenetic inference have been proposed in about the

last decade. The first, by Wheeler (1991), is a more

traditional Bayesian application that provides an ex-

plicit basis for assigning prior probabilities, calculates

posterior probabilities analytically, and proposes an

explicit method of assessing and interpreting sensitivity

of results to the priors. The more recent trend in
Bayesian phylogenetic inference (reviewed by Huelsen-

beck et al., 2002) has only just begun to address the

fundamental issue of selection of prior probabilities,

approximates the posterior probability by sampling tree

space using the Markov Chain Monte Carlo (MCMC)

procedure (similar to Goloboff�s (1999) familiar tree

searching method of tree drifting), and has yet to pro-

pose a means of assessing and interpreting sensitivity to
priors, suggesting merely that ‘‘the influence of the

priors on the posterior distribution can be examined by

rerunning the analysis with different priors’’ (Huelsen-

beck et al., 2002, p. 681). Wheeler�s method is therefore

a more completely developed Bayesian application, and

we focus on it primarily. However, the incompleteness

of the currently popular approach is by no means a

virtue, and our general criticisms of Wheeler�s method
are equally applicable to it.

Wheeler�s (1991) Bayesian approach relies heavily on

arguments for taxonomic congruence, assuming that

confidence increases in proportion to agreement among

cladograms derived from independently determined data

sets. Thus, the approach is intended to capture both the

strengths of the data and the confidence that obtains from

taxonomic congruence. Wheeler (1991) developed the
method in response to the fact that many consensus

methods used to measure agreement among cladograms

do not take account of weight of evidence for groups. A

further strength of the Bayesian approach to taxonomic

congruence is that it relies not on problematic arguments

relating to the objective independence of classes of data

(see Data partition methods, below) but merely on the

temporal independence of analyses.
In all Bayesian approaches, the conclusion, i.e., pos-

terior (Bayesian) probability, pðh; eÞ is simply the

product of the likelihood, pðe; hÞ, and the prior proba-

bility of the hypothesis alone, pðhÞ, normalized by the

sum of those products for all hn. In the present cir-

cumstance, e is a set of molecular data, and hn is a set of

cladograms. This approach is inductive because the

premises of the prior probabilities and the model em-
ployed in calculating the likelihood establish the con-

clusion as more or less probably true.5
5 Wheeler�s (1991, p. 336) ‘‘logical’’ probability is actually a

conditional probabilistic measure of uncertainty, one based on

sampling a sequence of events. These kinds of probabilities are typical

of inductive inference (sensu Popper, 1959; Kluge, 2001, 2002).
Interpreting a Bayesian decision as minimizing risk
and assuming a simple loss function for all possible

values of h,6 coupled with prior probability, pðhÞ, and
data probability (likelihood), pðe; hÞ, values, Wheeler

calculated the risk (cost) of any decision as the sum of

the cost of all the decisions, where decision risk is the

compliment of the final probability. Risk is interpreted

as a measure of cladogram support, where minimizing

risk is a function of maximizing the probability. ‘‘A
single cladogram, or several, may be accepted until risk

is sufficiently minimized’’ (Wheeler, 1991, p. 341).

Implementing Wheeler�s (1991, pp. 339–440) ap-

proach requires calculating prior probabilities and

likelihoods. In general, the prior probability of a clad-

ogram analyzed with one kind of data (e.g., molecular)

is its ability to explain another kind of data (e.g., mor-

phological), a probability that is calculated for all pos-
sible cladograms. The prior probability of each

cladogram is calculated by using parsimony to optimize

a previously studied morphological data set onto each

topology. The resulting lengths (numbers of evolution-

ary steps) are converted into probabilities by considering

each step to be equivalent to a decrease in probability of

a factor of e (the base of natural logarithms). The like-

lihoods are calculated for each topology by determining
either the minimum length (unweighted or weighted,

converted to a probability) or the maximum likelihood

(where the rate of evolution is a modeled assumption, as

in standard maximum likelihood applications) of a

newly obtained molecular data set. In either the un-

weighted or the weighted parsimony approach, ‘‘[t]he

most probable (least risk) cladogram will be the most-

parsimonious.’’ In any case, having calculated the prior
probabilities and likelihoods, the posterior probability

of each cladogram is simply the product of those

probabilities divided by the sum of likelihoods of all

cladograms. As noted above, the criterion for choosing

among those cladograms is one of minimizing risk.

Wheeler (1991, pp. 337–338) appealed to an explicit

form of sensitivity analysis based on simplex space and

decision theory as a way of measuring the effect of prior
probabilities, and in doing so he attempted to blunt the

likelihoodists� claim that prior probabilities cannot be

determined except in the most trivial cases. The pos-

terior probabilities for a range of priors are plotted in

simplex space, and their proximity to the decision lines is

observed. ‘‘If this point is very close to one or several of

these lines, small variations in the priors can affect the

estimate of [the parameter], undermining our faith in the
results’’ (Wheeler, 1991, p. 337).
6 Simple in the sense that all incorrect hypotheses are assumed to be

equally undesirable, and all correct hypotheses are assumed to be

equally desirable, which allows a cost matrix to be constructed in the

simplest of terms, 0 and 1, respectively.
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Problems with this approach to data exploration in-
clude the following: (1) Sensitivity of posterior proba-

bilities to choice of prior probabilities has no bearing on

the objective validity of the priors and is therefore un-

related to hypothesis optimality and has no logical

bearing on hypothesis preference. (2) As is the case for

inference from taxonomic congruence generally, this

Bayesian method is inferior to the simultaneous analysis

of all critical evidence. The strength of Bayesian statis-
tics is its ability to count prior statistical data indirectly

by incorporating the results of prior tests, where it is

assumed that prior and new data cannot be combined

directly. However, this does not apply to phylogenetic

analysis, where direct combination of all relevant evi-

dence—including morphological (prior) and molecular

(new) data—is nonproblematic. Likewise, we agree with

Huelsenbeck et al. (2002, p. 680) that ‘‘[i]t is not only
sensible to base conclusions on all the available infor-

mation (total evidence); in some cases it is critical,’’ but

logic demands that all such ‘‘information’’ be objectively

relevant to the inference of phylogeny, and, given that

all relevant information can be analyzed simultaneously,

there is no reason to isolate one set of observations as

informing the prior probability and another as inform-

ing the likelihood. There is no epistemological justifi-
cation for deriving confidence from taxonomic

congruence and disregarding the increased explanatory

power derived from a simultaneous analysis of the total

evidence. (3) More generally, degree of belief (or risk) is

unrelated to scientific discovery and evidential support

(Hacking, 1965; Lakatos, 1998). This is illustrated by

Huelsenbeck et al.�s (2002) approach, which employed

the arbitrary opinions of ‘‘both systematists and ama-
teurs’’ as prior probabilities relevant to the inference of

phylogeny. Why should such undefended beliefs be at-

tributed evidential significance in evaluating empirical

knowledge claims? Should the beliefs of Creationists

also be factored into phylogenetic inference? Or those of

small children? Or the mentally ill? Should dreams and

visions provide a basis for priors? If not, then some

criterion of relevance must be formulated to objectively
validate their exclusion. Most scientists would of course

dismiss these questions as ridiculous, but they are cen-

tral to the rational implementation of Bayesian statistics

generally, and their absence from the recent systematics

literature suggests that the current trend may be driven

primarily by a fascination with the MCMC, which is

exalted as ‘‘elegant and computationally efficient’’

(Huelsenbeck et al., 2002, p. 674), rather than a concern
for cognitive advance. Although we disagree with his

arguments, one of the reasons that we consider Wheel-

er�s implementation to be more complete is that he at

least attempted to address directly the fundamental and

enormously problematic issue of assigning priors. (4)

Induction provides no legitimate inference of truth (or

probable truth). (5) Bayesian methods generally lack
heurism because the effect of the prior probability in the
calculus of the posterior probability is to reduce the

effect of the likelihood, i.e., it reduces the ability of new

observations to lead to new conclusions that contradict

prior beliefs; yet, it is only by discovering inconsistencies

with prior beliefs that new problems are pointed out. On

the other hand, the objective interpretation ‘‘gives the

more detailed account of the inferences within its do-

main, and hence has the virtue of being more readily
open to refutation and subsequent improvement’’

(Hacking, 1965, p. ix).

Skewness test. The skewness of the distribution of

cladogram lengths has long been advocated as a mea-

sure of phylogenetic structure or decisiveness in a data

matrix (Fitch, 1979, p. 376; see also Le Quesne, 1989),

most recently by Hillis and Huelsenbeck (Hillis, 1991;

Huelsenbeck, 1991; Hillis and Huelsenbeck, 1992). The
test consists of calculating the length of each bifurcating

cladogram, or a ‘‘random’’ sample of those cladograms,

for a given data matrix, and the g1 statistic of Sokal and

Rohlf (1981) is then used to quantify the skewness of the

resulting distribution of lengths. Typically, it is negative

when the distribution is left-skewed, i.e., when the me-

dian exceeds the mean. The test has been applied to two

or more sets of data, such as molecular and morpho-
logical partitions (Larson and Dimmick, 1993). Ac-

cording to Hillis (1991), the g1 statistic measures the

strength of the phylogenetic signal.

The skewness test has several deficiencies. As

K€aallersj€oo et al. (1992) demonstrated, the test can give

indefensible conclusions, particularly when the fre-

quency of the state within characters outweighs the

congruence among characters. Also, K€aallersj€oo et al.
demonstrated that the criterion is insensitive to the

number of characters. Thus, skewness in the distribution

of tree lengths does not accurately measure the degree to

which a cladogram is supported. Especially condemning

is the fact that the skewness test does not assess phylo-

genetic signal in proportion to being strongly left-

skewed, as Hillis and Huelsenbeck contended. That test

is determined mostly by the central mass of the distri-
bution in tree lengths, whether the left tail of the dis-

tribution is strongly attenuate or not. Finally, when

confronted with multifurcating cladograms, arbitrary

resolutions may be counted as distinct, but that results

in ‘‘exactly the wrong assessment of ambiguity in these

matrices’’ (K€aallersj€oo et al., 1992, p. 286).

Hillis�s (1991) skewness-based significance test con-

cludes significant structure when g1 for the distribution
of tree lengths for a data matrix is below (for example)

the fifth percentile of distribution of tree lengths for data

matrices produced under his null model, those being

generated randomly and independently, with all states

having the same expected frequency. Because skewness

is influenced by both congruence and state frequency,

Hillis�s skewness-based significance test confounds the
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two effects. Huelsenbeck�s (1991) advocacy of skewness
is based on results from simulations, in which he as-

sumed the same probability of character change on all

branches of the cladogram. His correlation between

most-parsimonious cladogram for simulated data and

accuracy, as matches the simulated cladogram, when the

distribution of tree length is strongly left-skewed, is then

simply a function of his assumption that all branches

have the same change probability (K€aallersj€oo et al., 1992,
p. 279).

Skewness does not test phylogenetic hypotheses, and

in light of these several criticisms there is no basis for

recommending skewness as a heuristic. Nonetheless, the

Hillis–Huelsenbeck skewness approach, and g1 signifi-

cance test, continues to be used in phylogenetic studies

(e.g., Crandall and Fitzpatrick, 1996; Jackman et al.,

1999; Burbrink et al., 2000; Wiens, 2001; Reeder and
Montanucci, 2001; Floyd, 2002; Gahn and Kammer,

2002; Lamb and Bauer, 2002; Salducci et al., 2002). It

would appear that some investigators are compelled

more by the appearances of statistical elegance than by

scientific evaluation criteria (Grant, 2002). Perhaps the

uncritical use of g1 is even better explained by the ready

access given to it by popular computer software pack-

ages (e.g., PAUP*).
Computer-intensive sampling. We recognize two kinds

of computer-intensive data exploration: Monte Carlo

sampling and approximate randomization tests. Simu-

lation lies outside our concept of computer-intensive

data exploration because to simulate something is to

subject a model to imaginary changes. The design of the

model is modeling, and the modeling–simulation pair is

a thought experiment. For example, we do not include
the parametric bootstrap method (Goldman, 1993;

Huelsenbeck et al., 1996c) in our analysis of data ex-

ploration methods because it uses a stochastic model of

change for simulated data. We also exclude MoJo

(Wenzel and Siddall, 1999) from our review because that

method focuses on simulating the effect of noise (ran-

domly generated character states), according to an

equally probable model, while manipulating data from
the original matrix.

Noreen (1989, p. 6) clarified the application of

Monte Carlo sampling and approximate randomization

methods:

Monte Carlo sampling can be used when the hypothesis con-

cerns a parameter of the population from which a random sam-

ple has been drawn. A randomization test can be used when the

null hypothesis is that one variable is unrelated to another—

whether or not the observations constitute a random sample.

The Monte Carlo approach applies to problems with

and without inherent probabilistic structure. The boot-
strap and jackknife applications that have become

so popular in phylogenetic inference are examples of

the former. In phylogenetic inference, approximate
randomization tests are widely known as permutation
methods, the most familiar being the permutation tail

probability method (PTP).

Felsenstein (1985b; see also Felsenstein, 1988) pro-

posed the bootstrap to estimate the reliability of phylo-

genetic inferences by estimating the uncertainty in the

original matrix of data and placing confidence intervals

on monophyletic groups. This application is model de-

pendent, but it does not require that themodel be specified
explicitly because the model is inferred from the data by

resampling characters at random from that matrix. As-

suming that the number of replicates is large enough and

that the original character matrix is representative of the

population of all characters, then the resampling is ex-

pected to correspond to that which would be obtained by

sampling repeatedly from the ‘‘real’’ population of all

characters. As such, and as emphasized below, this ap-
plication is conditional on the statistical sampling as-

sumptions of independence and identical distribution

(Felsenstein, 1985b). The level of confidence in a group is

equated to the proportion of the times that the group is

found among the bootstrap replicates, with the expected

frequency depending on both the number of uncontra-

dicted characters and the total number of characters in the

matrix, which must be very large.
The jackknife, the other class of resampling methods

commonly used to assess reliability in phylogenetic in-

ference, involves the deletion of elements in the original

data matrix, either taxa (Lanyon, 1985; Siddall, 1995) or

characters (e.g., Farris et al., 1996). The original data set

is sampled, usually without replacement, in forming the

pseudoreplicate matrix, which is then analyzed for tax-

onomic relationships. Lanyon (1985) suggested a single
taxon deletion approach as a way of assessing the sta-

bility of phylogenetic hypotheses, where a majority rule

consensus of the results of the analyses of the jackknifed

pseudoreplicates was advocated, each replicate lacking

one taxon. The jackknife monophyly index of Siddall

(1995) is also a measure of clade stability, but it excludes

alternative suboptimal clades from the consensus.

Jackknifing on characters attempts to find or elimi-
nate clades that are weakly supported by the data, which

can be a function of either character incongruence or

zero-length branches. The parsimony jackknife method

(character jackknife) of Farris et al. (1996) was origi-

nally proposed as an efficient means of analyzing large

data sets. It involves deleting sets of characters ran-

domly and independently from the original matrix, each

character having the same chance e�1 (approximately
0.3679) of being omitted from a given pseudoreplicate

matrix (Farris, 1998). A new terminal taxon order is

generated randomly in the formation of each pseu-

doreplicate, thereby diminishing the order sensitivity

of terminal taxa. A most-parsimonious cladogram is

calculated from each pseudoreplicate. A large

number of pseudoreplicate matrices/most-parsimonious
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cladograms are calculated (e.g., 1000), and it is on the
basis of that set of results that a resampling frequency

for each clade is determined.

Unlike the bootstrap, the parsimony jackknife does

not require very large matrices to validate the expected

frequency of a group G set off by k uncontroverted

synapomorphies as 1� e�k (Farris et al., 1996; Farris,

1998). There is also an important, if subtle, conceptual

distinction between the bootstrap and the jackknife
when applied to phylogenetic character data. While both

methods manipulate the data at hand, the results of a

bootstrap analysis are affected by the differential re-

weighting of the characters, whereas the results of a

jackknife analysis are affected by changing sample size.

While still widely used, numerous authors have in-

directly or directly criticized the bootstrap as a measure

of uncertainty in phylogenetic inference (e.g., Micke-
vich, 1980; Farris, 1983; Felsenstein, 1985b, p. 785;

Penny et al., 1990, p. 26; West and Faith, 1990, p. 18;

Faith and Cranston, 1991, p. 121; Carpenter, 1992, p.

150, 1996; Felsenstein and Kishino, 1993; Jones et al.,

1993, p. 97; Kluge and Wolf, 1993; Harshman, 1994;

Sanderson, 1995; Siddall and Kluge, 1997; Farris, 1998;

Sanderson and Wojciechowski, 2000; Siddall, 2002a),

with many of those criticisms also applying to the
jackknife. For example, a criticism that can be leveled at

both approaches is that there is no universe of character-

state transformations from which a probabilistic sam-

pling distribution can be specified, because each such

evolutionary event is necessarily unique. Additional

criticisms include the following: (1) Even if there were

such a universe, the characters and character-state en-

tries in the original data matrix do not represent a
random sample. Furthermore, (2) the relevant unknown

parameter of phylogenetic inference, the tree, does not

have frequentist probabilities associated with its nodes

because each is necessarily unique. (3) Characters are

not necessarily independent (the individual probabilities

cannot then be multiplied) nor are they identically dis-

tributed (each character is not representative of a single

common stochastic process). (4) The absence (and du-
plication in bootstrapping) of some synapomorphies in

pseudoreplicates represents an unjustified form of dif-

ferential character weighting, with the accompanying

biases being unpredictable. (5) The bootstrap for a large

clade is known to decline with increased taxon sampling,

which has been interpreted as a statistical bias in boot-

strap proportion. (6) In bootstrapping, the claim that

monophyletic groups should be rejected when they ap-
pear in less than 95% of the pseudoreplicates has yet to

be justified with regard to sampling theory—thus, any

claim that the bootstrap has a bearing on accuracy,

exclusive of precision, is without foundation (see also

Siddall, 2002a, pp. 82–83).

A number of criticisms are also specific to the jack-

knife. Generally, the elimination of data, which comes
with either taxon or character deletion, cannot be con-
sidered a virtue in science. Certainly, a problem with in-

terpreting the jackknife statistically is that diminished

power always obtains because those estimates are based

on fewer observations than provided by the original data

set. Lanyon�s appeal to majority rule consensus as an

optimality criterion for phylogenetic hypothesis choice is

an obvious example of enumerative induction without a

rational justification. In addition, Felsenstein (1988) se-
verely criticized Lanyon�s approach for technical reasons.
Unfortunately, Lanyon�s taxon deletion approach, like

the bootstrap, continues to be used without justification

(e.g., Hutchinson and Donnellan, 1992; Cicero and

Johnson, 2001, 2002; Duffels and Turner, 2002).

The efficiency of parsimony jackknifing cannot be

denied when applied to large matrices, such as the rbcL

data set of Chase et al. (1993; Farris, 1998). However,
Rice et al. (1997, p. 559) claimed epistemological defi-

ciencies in the method. The major issues in question are

whether parsimony jackknifing abandons the phyloge-

netic parsimony criterion and whether it is consistent

with a refutationist philosophy. Farris (1998, p. 304)

responded to these concerns by pointing out that the

most-parsimonious cladogram(s) is determined for each

replicate and further argued that the ‘‘purpose of re-
sampling is not to discard the optimality criterion [of

parsimony], but simply to allow ambiguous conclusions

(poorly supported groups) to be identified efficiently.’’

However, the accompanying ‘‘support’’ values cannot

be interpreted as assessing the relative objective support

provided by those data because (1) a simultaneous test

including all critical evidence is never performed and (2)

resampling frequencies are logically unrelated to degree
of corroboration, although degree of corroboration can

be increased by accumulating statistical evidence (i.e.,

increasing sample size; Popper, 1959, p. 411). Likewise,

Siddall�s (2002a, p. 88) defense of parsimony jackknifing

as ‘‘only resolv[ing] clades that would also appear in all

of the most parsimonious trees if one could actually find

those trees. . .[and] not resolv[ing] clades that are not in

those trees’’ is simply unfounded and was never claimed
by Farris et al. (1996).

The approximate randomization class of computer-

intensive tests involves permuting any of the different

linear arrangements that can be made of a given set of

objects. For example, in phylogenetic inference a data

matrix serves as the basis for the randomizations of in-

cluded characters. This involves permuting at random

the entries (character states) within each column (char-
acter) of that matrix. A separate permutation can also

be chosen at random for each character, so that, for

example, congruence among characters in a randomi-

zation is just that produced by chance associations

(K€aallersj€oo et al., 1992).

The permutation tail probability method (PTP) is

supposed to assess the degree of phylogenetic structure
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in a data matrix. The method involves (1) reassigning
characters to the original data matrix, under an equally

probable random model with the number and frequency

of states maintained, (2) finding the most-parsimonious

cladogram for the data matrix that results from step 1,

(3) repeating steps 1 and 2 many times, and (4) inferring

phylogenetic structure from the frequency of the clad-

ograms having a length at least as short as that for the

original data—when the lengths of the cladograms from
the original and permuted data matrices do not differ

significantly it is assumed that the original matrix does

not support the most-parsimonious cladogram calcu-

lated from it.

Rohlf�s (1965) randomization test of the nonspeci-

ficity hypothesis (Sokal and Sneath, 1963; Farris, 1971)

anticipated the PTP method. The PTP method was

originally proposed as a measure of the statistical sig-
nificance of phylogenetic conclusions (Le Quesne, 1969;

Archie, 1989a) and subsequently interpreted erroneously

by Faith (1992) and Salisbury (1999) as a measure of

Popperian degree of corroboration. In actuality, PTP

reflects only departure from a model of randomness, not

corroboration (Carpenter, 1992), and PTP seems to

have no phylogenetic interpretation at all (K€aallersj€oo
et al., 1992; Carpenter et al., 1998). As Farris et al.
(1995, p. 571; see also Swofford et al., 1996, p. 507)

pointed out:

. . .the procedure models complete independence of characters

[and] [a]ny kind of structure in the data—not just incongruence

between matrices in particular—might cause significant depar-

ture from that model. If that method were used, interpreting

significance as indicative of incongruence could thus easily be

misleading.

Therefore, PTP does not necessarily measure phylo-

genetic structure in a matrix.

Topology-dependent cladistic permutation tail prob-

ability (conditional PTP, or T-PTP) is a modification of

the PTP test that is supposed to measure the significance

of the support by constraining a monophyletic group

(Faith, 1991). A T-PTP test can be performed a poste-

riori (on monophyletic groups, as determined on a most-
parsimonious hypothesis; e.g., Ballard et al., 1992) or a

priori (on the data before they are analyzed for a most-

parsimonious hypothesis; e.g., Faith, 1991). However,

the method is flawed because it assigns ‘‘significant’’

support to both of two contradictory conclusions and

when support is zero or even negative (Farris et al.,

1994a; Swofford et al., 1996; Carpenter et al., 1998;

Farris, 1998). Ancestor replacement is a serious problem
with the a posteriori test, while randomized data are not

the correct basis for an a priori statistical test because it

cannot be ruled out that randomized data will have

structure.

The reciprocal topology-dependent permutation tail

probability (RT-PTP) test has been used in the analysis

of data heterogeneity, where each minimum length
cladogram or consensus cladogram is used as a con-
straint for the other data set (e.g., a morphological

cladogram is constrained in the analysis of the molecular

data set and vice versa; Thiele, 1993). When the differ-

ence in cladogram length, with and without the con-

straint, is equal to or greater than the differences

obtained in some proportion of the randomized matrices

(say, 50/1000) then the null hypothesis is rejected at the

5% level of significance, and the data sets are claimed to
be uncombinable (see also the homoplasy excess ratio,

HER, below). In not being able to reject the null hy-

pothesis, the data sets are argued to be combinable,

assuming that they mark the same underlying phylog-

eny. However, RT-PTP cannot be recommended be-

cause the distribution of randomized lengths is for a

constraint (fixed) tree, and, like the a priori T-PTP test,

it cannot be ruled out that randomized data will have
structure.

The HER is a congruence index that permutes char-

acters in a data matrix, assigning characters randomly to

terminal taxa, thereby rendering characters independent

of each other and of phylogeny (Archie, 1989a,b). In this

method, congruence is assessed simply from the length

of the most-parsimonious tree(s) for a data matrix.

Most-parsimonious trees are calculated for the observed
data and for each of a sample comprising a number W

of randomizations. The lengths of the most-parsimoni-

ous trees for some number E of those randomizations

exceed those for the observed data. If the lower tail

probability (error rate, a0), a0 ¼ 1� E=ðWþ 1Þ, is small

enough (no greater than, say, 5%), the data differ sig-

nificantly from random (K€aallersj€oo et al., 1992, p. 277).

Unlike the distribution of tree length skewness (see
above), a0 is sensitive to the number of characters in-

volved; however, a0 is not sensitive to character state

frequencies, as is the skewness index, because permuta-

tion does not change those frequencies. The single

greatest weakness of the homoplasy excess ratio is that

even though a data matrix can exhibit shorter-length

trees than most of the randomizations from that matrix,

that does not necessarily mean that the original data
exhibited unambiguous hierarchic structure, i.e.,

strength of support is not measured.

Given the aforementioned criticisms of computer-in-

tensive sampling, it is clear that they do not represent

scientific tests. Likewise, these methods fail to measure

objective support and therefore lack heurism. For ex-

ample, the parsimony jackknife relies on sampling fre-

quencies derived from partitioned analyses and never
evaluates the congruence of all critical evidence in a si-

multaneous test; therefore it cannot be said to measure

objective support. Nevertheless, the parsimony jackknife

remains a useful part of an efficient strategy to analyze

large data sets, as Farris et al. (1996) originally intended,

without compromising severity of test. For example,

Nixon�s (1999) extremely efficient parsimony ratchet
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includes a jackknife procedure to escape local optima,
and the command -jackstart in POY (Wheeler et al.,

1996–2002) uses the parsimony jackknife to generate

starting trees that can be fused (Goloboff, 1999) and

submitted to swapping.

Long-branch attraction. Two methods of data explo-

ration to test for long-branch attraction are currently

available (see Siddall and Whiting (1999) for refutation

of others). The simplest and most common approach is
to apply parsimony and maximum likelihood to the

same data set to examine the sensitivity of long branches

to choice of method (e.g., Huelsenbeck, 1997). The va-

lidity of this procedure relies on the assumption that

maximum likelihood is immune to long-branch attrac-

tion, but this was recently shown to be incorrect in

simulation studies of 10 taxa (Pol and Siddall, 2001).

Further, finding that maximum likelihood separates
long branches does nothing to rule out the possibility of

long-branch repulsion (Siddall, 1998), and maximum

likelihood�s reliance on counterfactual model assump-

tions and frequentist probability to address ideographic

(historical) problems renders its results generally suspect

(Siddall and Kluge, 1997). This procedure is therefore

neither scientific nor heuristic.

Noting that long branches cannot attract each other
when they are not simultaneously part of the same

analysis, Siddall and Whiting (1999) proposed a parsi-

mony-based method of pruning one and then the other

long branch (‘‘long-branch extraction’’) to determine

whether the remaining branch is placed elsewhere in the

tree. Insensitivity to long-branch extraction demon-

strates that the placement of the long branches is not

due to interactions of the two long branches, but this
method falls short of an empirical test of the relation-

ships of the long branch taxa (and therefore of

long-branch attraction) because neither sensitivity nor

robustness brings empirical evidence to bear on whether

placement of long branches is real or artifactual. That is,

this operation does not test the competing hypotheses,

and preference for the most-parsimonious tree is justi-

fied rationally on the basis of increased explanatory
power and testability, regardless of the placement of

long branches relative to each other. Nonetheless, this

method is strongly heuristic in that it may guide re-

searchers in taxon sampling (e.g., by targeting taxa that

may subdivide long branches) and character sampling

(e.g., by targeting morphological characters that are less

susceptible to long-branch attraction).

Likelihood ratio test (LR, K) for model selection. It is
generally recognized that no single common mechanism

(model) of molecular evolution is valid for all taxa and

that the probabilistic model employed in a maximum

likelihood analysis of phylogenetic relationships is de-

terministic of the results (Siddall and Kluge, 1997; Sul-

livan and Swofford, 1997; Cunningham et al., 1998;

Kelsey et al., 1999; Wilgenbusch and de Queiroz, 2000;
Posada and Crandall, 2001b). In an attempt to over-
come this set of problems, the likelihood ratio is used as

a test to choose from among a set of a priori plausible

candidate models the most appropriate model for a

particular group of taxa.

The statistical legitimacy of maximum likelihood is

usually discussed with regard to the likelihood ratio test

because the sum of those likelihoods has no particular

meaning, each being a point, not a cumulative, proba-
bility (Hacking, 1965). The test is simply K ¼ Lðhn; eÞ=
Lðha; eÞ,7 where the numerator is the maximum likeli-

hood of the null hypothesis, and the denominator is the

maximum likelihood of the alternate hypothesis. Ac-

cording to Felsenstein (1983, p. 317; see also Huelsen-

beck and Crandall, 1997; Huelsenbeck and Rannala,

1997; Pagel, 1999; Posada and Crandall, 2001a, b), the

ratios of maximum likelihoods in phylogenetic inference
‘‘test whether a less general hypothesis can be rejected as

compared to a more general one that includes it.’’

In model testing, the test becomes K ¼ L0ðh; eÞ½¼
pðejMn; hÞ�=L1ðh; eÞ½¼ pðejMa; hÞ�, where the numerator

L0ðh; eÞ is the maximum likelihood of the function in-

cluding the null model (Mn), and the denominator

L1ðh; eÞ is the maximum likelihood of the function in-

cluding an alternate model (Ma). The ratio is the degree
to which one model maximizes the likelihood relative to

that of another model. Assuming parameter compara-

bility, more complex (parameter-rich) models always

produce a higher maximum likelihood, but preference

for simpler (less parameter-rich) models has been de-

fended on the basis that (1) complex models require that

a large number of parameters be estimated, which makes

analyses computationally difficult and slow, and (2)
greater complexity increases the error with which each

parameter is estimated (e.g., Huelsenbeck and Rannala,

1997; Posada and Crandall, 2001a,b). It may also be

argued that the likelihood ratio test refutes particular

assumptions by comparing the maximum likelihoods of

models that differ in a single parameter (Posada and

Crandall, 2001b).

If the two models are special cases of one another
(i.e., they involve nested sets of parameters), then the

likelihood ratio is assumed to approximate a v2 statistic,
with degrees of freedom equal to the difference in the

number of free parameters estimated under the two

models (e.g., Pagel, 1999). Goldman (1993) pointed out

a number of problems with that assumption (see below)

and suggested using simulations to generate the null

distribution of the likelihood ratio test statistic. How-
ever, this is rarely done, either because of computation/

time constraints or because models are not included in

available simulation software (e.g., Buckley et al., 2001),

and the v2 distribution is almost always assumed.
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Otherwise, by convention, K > 4:0 is taken to be evi-
dence that one of the two hypotheses explains the evi-

dence significantly better than the other (Edwards,

1972).

As currently applied in phylogenetic analysis, the

likelihood ratio test must be dismissed as entirely ad

hoc. Different phylogenies (topologies) may entail dif-

ferent best-fit models (e.g., Sullivan and Swofford, 1997;

Kelsey et al., 1999; Buckley et al., 2001; Sanderson and
Kim, 2000). For the test to be statistically valid in the

proposed methods of model selection, the phylogeny (h)

must be known a priori, i.e., it must be derived inde-

pendently of the subsequent analysis (Goldman, 1993).

However, the purpose of phylogenetic analysis is to infer

relationships among taxa, meaning that the assumptions

of the model are contingencies that require independent

testing outside the model itself (Edwards, 1972;
Thompson, 1975, p. 11; Farris, 1986; Sober, 1988;

Goldman, 1990; see also Popper, 1979, pp. 191–193).

Instead, in phylogenetics, the phylogeny (the unknown

variable of interest) is first treated as known to estimate

the model, and then that estimated model is treated as

known to estimate the phylogeny (i.e., the probability of

the model is conditional on the tree, and the probability

of the tree is conditional on the model). This violation of
empirical independence renders the approach statisti-

cally invalid.

Several authors have attempted to dismiss or mitigate

this problem. Yang et al. (1995, p. 391) admitted that tree

topology is a theoretical difficulty, but they dismissed its

practical relevance because ‘‘the likelihoods of several

reasonable trees, including the ML tree and (presum-

ably) the true tree, are very similar,’’ meaning that
competing models affect the maximum likelihood score

more than do those competing tree topologies. However,

this begs the question as to what a ‘‘reasonable’’ tree is

and why only such trees should be considered (see also

Sanderson and Kim, 2000). In simulations, Posada and

Crandall (2001b) found that initial neighbor-joining

trees led to selection of the true model, but that random

trees did not. This finding cannot be generalized to em-
pirical data because the counterfactual premises that it

relies on render it evidentially inert (Grant, 2002). Sul-

livan and Swofford (1997) proposed an iterative ap-

proach—beginning with a tree, selecting the best-fit

model, searching under that model, selecting a new best-

fit model, searching, etc., until stability is reached—but

this does not mitigate the ad hoc-ness of the approach,

nor does it necessarily avoid an infinite loop (e.g., where
the best-fit model of tree A gives tree B, and the best-fit

model of tree B gives tree A). Minimally, for phyloge-

netic model selection using the likelihood ratio test to be

defensible, it must be established that selection among

candidate models is completely insensitive to choice of

initial topology (which is theoretically possible—albeit ‘‘a

computationally chilling prospect’’ (Sanderson and Kim,
2000, p. 821)—given that the competing hypotheses form
a closed set).

Additional criticisms of the likelihood ratio test of

models as usually applied in phylogenetic inference in-

clude the following: (1) A difficulty in using the com-

monly assumed v2 distribution is that the number of

parameters (and, therefore, the degrees of freedom)

represented by a phylogenetic hypothesis is unclear.

Goldman (1993) discussed problems with tree parame-
terization, but parameterization of nucleotide sequence

evolution may also present difficulties. For example,

transversion–transition ratio and base composition bias

(base frequencies) relate to different model parameters,

but transversion–transition ratios are not independent

of base composition biases. A constraint to be A-T-rich

seems certain to result in more transversions than

transitions. (2) Likewise, parameter nonindependence
(e.g., rate heterogeneity, C, and differential transver-

sion–transition rates are clearly nonindependent) con-

flates the effects of parameter addition and invalidates

inferences of evidential support for particular model

assumptions. (3) Also, the asymptotic validity of the v2

distribution may not hold (Goldman, 1993), particularly

when one or more parameters is fixed on the boundary

of the set of permissible values (Whelan and Goldman,
1999; Ota et al., 2000; Goldman and Whelan, 2000). (4)

Of special concern in phylogenetic applications of the

likelihood ratio test is the inclusion of counterfactual

models among the set of candidate models, and the ex-

clusion of other, more realistic models. As Burnham and

Anderson (1998, p. 8, italics in original; see also Gold-

man, 1993) cautioned: ‘‘If a particular model (parame-

terization) does not make biological sense, it should not be

included in the set of candidate models.’’ ‘‘Biological

sense’’ was foremost among the considerations that led

Farris (1973b) to develop his model, but was dismissed

by Felsenstein (1973, 1978) and many subsequent

workers (e.g., Swofford et al., 1996) in favor of simpler

calculations and statistical consistency. However, as-

surances of statistical consistency are irrelevant if the

model is contradicted by reality because the resulting
inferences are conditional on counterfactual premises

(such as a common mechanism of evolution for non-

homologous transformations). There is no statistical

justification for preferring consistency over other con-

siderations, such as robustness or efficiency, and there is

no epistemological justification for purposefully disre-

garding biological knowledge merely to simplify calcu-

lations (Farris, 1999). Of even more fundamental
concern is the validity of the statistical (probabilistic)

approach to phylogenetic inference (Siddall and Kluge,

1997; Grant, 2002; Kluge, 2002). Use of the likelihood

ratio test presupposes the objective indeterminism of the

system under study. However, as discussed above, that

assumption is not valid in phylogenetic inference. The

inferred phylogenetic events are historical, and history is
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objectively determinate, a fact that denies the objective
validity of phylogenetic inferences derived from model-

based methods such as maximum likelihood (and

therefore the likelihood ratio test). (5) There is the pre-

sumption that a model ‘‘can be made indefinitely more

complicated and realistic by adding parameters’’ (Fel-

senstein, 1983, p. 319; see also Thompson, 1975; Burn-

ham and Anderson, 1998). Leaving aside whether

counterfactual assumptions are useful in discriminating
between alternative hypotheses (an instrumentalist in-

terpretation), there is no stopping rule for adding pa-

rameters, which would seem to be a failure to find a

scientifically relevant likelihood ratio test. That is,

finding that the most parameter-rich (and therefore

most realistic) model overfits the data (i.e., the model is

overparameterized or overspecified) only suggests that

the next-simpler model was not sufficiently realistic. (6)
A related problem is that, as a test of competing can-

didate models, the likelihood ratio test does not actually

test for goodness-of-fit; rather, it is a test for the sig-

nificance of how much better the fit is among alternative

models (i.e., relative goodness of fit, relative adequacy).

Therefore, it is possible for one model to provide a

significantly better fit than another and yet for that

better-fitting hypothesis to not provide a significantly
good fit. A procedure for evaluating model goodness-of-

fit (adequacy) is given by Goldman (1993), but it has yet

to be applied generally. Along those lines, and especially

in consideration of (5), above, there would appear to be

no statistical reason to exclude the highly parameter-rich

(and presumably more realistic) ‘‘no common mecha-

nism’’ model of Tuffley and Steel (1997) in tests of model

adequacy and relative fit. That inclusion is crucial, given
that it has been shown that maximum likelihood using

the ‘‘no common mechanism’’ model selects the same

tree(s) as parsimony under Fitch optimization (Tuffley

and Steel, 1997; Steel and Penny, 2000). (7) The likeli-

hood function, even for simple models, is not necessarily

optimized at a unique point for a tree (Steel, 1994; Tu-

ffley and Steel, 1997). Thus, it must be demonstrated

that multiple optima do not exist when employing the
likelihood ratio test.

In light of these several problems, it seems ironic that

the likelihood ratio test continues to be cited as the basis

for the credibility of maximum likelihood. In phyloge-

netics, at least, maximum likelihood would appear to

have nothing to say about causal hypotheses that is not

confounded by assuming what is at issue in the argu-

ment (petitio principii), the appearance of pursuing
causality with the likelihood ratio test simply being more

apparent than real. One still might make the argument

for this test on the basis of its heuristic value, but that

too would require justification of the counterfactual

conditionals of the assumed models.

Amount of evidence. Numerous methods explore the

sensitivity of results to variation in amounts of evidence.
Although they are usually cast in terms of evaluating the
effects of ‘‘missing’’ evidence, those procedures do not

actually assess the effects of including unknown states

(‘‘?’’ entries), but rather they assess the effects of in-

cluding known states. The effects of missing character-

state entries are known a priori—they have no effect on

cladogram length and may only decrease the ability to

choose among competing hypotheses. What is at issue in

these procedures is the decisiveness of available evi-
dence, i.e., the decisiveness of the limited known char-

acter states in choosing among competing hypotheses.

Likewise, many methods are claimed to explore the

effects of adding or removing taxa or characters, but

instead explore the effects of adding or removing evi-

dence. To better understand these methods, it is useful

to divide the matrix into its components and to consider

each independently. A matrix is composed of taxa,
characters, and character-state entries/evidence. The ef-

fects of varying number of taxa and characters are de-

termined logically, without recourse to data exploration.

The sole effect of decreasing taxa is to reduce the em-

pirical content of the competing hypotheses. The em-

pirical content of a hypothesis is defined by its logical

improbability (Popper, 1959; Kluge, 2001). In the spe-

cial case of phylogenetic systematics, all possible hy-
potheses comprise a closed set, where the number of

competing hypotheses is defined solely by the number of

taxa; the number of competing hypotheses and, corre-

spondingly, the logical improbability of any one hy-

pothesis increases exponentially as a function of the

number of taxa. Similarly, the sole effect of removing

characters is to decrease the severity of the simulta-

neous, total-evidence test. For the verificationist em-
ploying frequentist probability, missing taxa and

characters are relevant in that they necessarily alter

observed frequencies (Siddall and Kluge, 1997; Siddall,

2001).

The most common procedure to explore the effects of

adding evidence is to run analyses with and without

classes of character-state entries for which some portion

of entries is missing. Character-state entries may be
classified according to either the kind of taxa from

which they were coded, such as fossil and extant taxa, or

the characters of which they are part, such as molecular

and morphological characters. This procedure was used

in studies of amniote phylogeny to demonstrate the

importance of including evidence from fossils in phylo-

genetic analysis. Gardiner (1982; see also Patterson,

1981) stated that fossil evidence could not overturn his
hypothesis of amniote phylogeny based on evidence

from extant taxa alone. Gauthier et al. (1988) refuted

that conjecture with a set of empirical ‘‘experiments,’’

where evidence from amniote fossils was excluded and

included in the reanalysis of relationships. Gauthier

et al. also discussed the basis for their finding with re-

gard to the patterns of evidence potential in fossils, and
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Donoghue et al. (1989) extended those arguments of
evidence to taxa in general. More recently, Eernisse and

Kluge (1993) were unable, with the addition of gene

sequence data, to refute Gauthier et al.�s finding that the

pattern of the evidence attributed to fossils is important

in the analysis of amniote relationships. Minimally,

fossils must be included when they are available because

(1) in principle they increase the testability of phyloge-

netic hypotheses and (2) in practice it cannot be known a
priori when they will not make a difference to the results

of any particular study.

Although there is now widespread recognition of the

importance of taxa with missing evidence, such as fos-

sils, there is also much concern that such taxa may ob-

scure otherwise well-corroborated relationships by being

placed almost anywhere in a cladogram without in-

creasing length, which leads to a proliferation of most-
parsimonious solutions that collapse into a polytomy

in consensus (Nixon and Wheeler, 1992; Novacek,

1992a,b; Wilkinson, 1995; Gao and Norell, 1998;

Kearney, 1998, 2002; Anderson, 2001). Mere a priori

exclusion of taxa on the basis of degree of evidential

completeness is an inadequate procedure because degree

of completeness is not necessarily correlated with this

wildcard behavior (Novacek, 1992a,b; Kearney, 1998,
2002; see also Gauthier et al., 1988; Gao and Norell,

1998). To discover and eliminate wildcard taxa, Wil-

kinson (1995) provided rules of ‘‘safe taxonomic re-

duction’’ that allow taxa with missing character-state

entries to be removed if and only if their removal does

not affect the placement of other taxa. Alternatively,

Anderson (2001) proposed the ‘‘phylogenetic trunk’’

method to eliminate the most ambiguously placed taxa.
In Anderson�s (2001) method, a total-evidence analysis

is run and the most problematic taxa are identified by

either Adams consensus (Adams, 1972) or systematic

deletion of taxa. The most variably placed taxon is then

excluded from the analysis, and ‘‘[f]urther iterations are

performed by using this procedure until the desired level

of resolution is achieved’’ (Anderson, 2001, p. 174).

Arnedo et al. (2002) also removed taxa with missing
character-state entries, but they evaluated the effect of

taxon removal by measuring incongruence among data

partitions with the RILD (Wheeler and Hayashi, 1998).

An improved RILD score was used as the basis for

permanent taxon removal.

These methods of data exploration are not tests.

Minimization of the number of most-parsimonious

cladograms and maximization of resolution and taxo-
nomic congruence are not scientifically defensible opti-

mality criteria (Grant, 2002); any attempt to decrease

ambiguity or incongruence through elimination of evi-

dence results in a lack of independence and renders

conclusions nonempirical. We agree with Kearney�s
(2002, p. 380) conclusion that ‘‘[a]mbiguity of results

calls for reexamination of data and addition of new
data, rather than use of methods that may imply more
resolution than the data support,’’ which we take as an

endorsement of the strict consensus, given that it col-

lapses clades that are not unambiguously supported by

the data. The methods of Anderson and Arnedo et al.

must be rejected because they fail to distinguish between

ambiguity due to lack of evidence and ambiguity due to

conflict of evidence. Indeed, Anderson�s own finding

that a taxon with 76.9% missing evidence is stable, while
another with 67.6% missing evidence is not, suggests

that character conflict may be more important. Wil-

kinson�s approach is clearly superior in that any ambi-

guity attributable exclusively to taxonomic equivalents

cannot be due to coded character states.

Identification of the taxa for which available evidence

is indecisive is heuristic in that it allows investigators to

give priority to those taxa and characters when gather-
ing additional evidence (cf. Kearney, 2002; quoted

above). For example, the discovery that a single taxon

with many missing character-state entries is primarily

responsible for ambiguity would allow researchers to

expend a disproportionate amount of their limited re-

sources on obtaining the missing data (e.g., special field

work to collect more specimens or special protocols for

DNA extraction). A clear advantage of Wilkinson�s
(1995) method is that it ensures that taxon elimination

during heuristic data exploration does not alter the

fundamental topology of the remaining taxa (although

other considerations may be affected, such as character

state optimizations or measures of nodal support). Cu-

riously, Anderson (2001, p. 174, italics added) claimed

that one of the strengths of his method is that ‘‘by re-

analyzing the matrix after each pruning cycle, the phy-
logenetic trunk method permits the discovery of a

topology different from those within the component

trees.’’ Similarly, Arnedo et al. (2002, p. 317) reasoned

that

If the presence of a certain taxon without any information for

some of the data partitions was responsible for obtaining spuri-

ous results, then the congruence between data partitions should

increase with the removal of the incomplete taxon. The ratio-

nale is that character transformations of the combined [¼ com-

plete] analysis selected only because of the presence of missing

data are very likely to be in strong disagreement with character

transformations supported in the partial analyses, which do not

have missing data.

However, missing character-state entries cannot affect
the placement of other taxa or increase cladogram

length, so the differences in topology and partition in-

congruence must be due entirely to the elimination of

the coded character-state entries, not the missing entries!

Wilkinson (1995) had already recognized this, and his

method was explicitly designed to avoid the problem.

Poe (1998, p. 18) proposed a method of measuring

the effect of including evidence from different numbers
of taxa ‘‘by mapping characters from a matrix of culled
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taxa onto optimal trees for that reduced matrix and onto
the pruned optimal tree for the entire matrix, then

comparing the length of the reduced tree to the length of

the pruned complete tree.’’ In other words, a difference

in tree length is considered the degree to which adding

or removing taxa changes the evidentiary estimate of

phylogeny. In refining this estimator, Poe analyzed 29

different data sets, from which he calculated a second-

order regression equation describing the relationship of
the fraction of taxa sampled to the sensitivity to sam-

pling. This equation was then transformed to a linear

relationship that described the total number of taxa

sampled. Two significant problems are evident in just

these preliminaries: (1) Foremost, the application of

frequentist statistics in estimating optimal taxonomic

sampling cannot be rationally justified because the hi-

story of species is necessarily unique. Logic denies the
application of a statistical test in this context. (2) There

is no compelling justification for tree length as the pre-

ferred measure of sensitivity to taxon sampling, as op-

posed to the distortion index, which is a relative measure

of number of extra steps (Farris, 1989a,b). One must not

lose sight of the fact that what is predicted by the in-

dependent variables in a multiple regression analysis

depends on the dependent variable, i.e., on one�s notion
of sensitivity to taxonomic sampling and how it is

defined.

The limitations of the chosen statistical model, mul-

tiple regression analysis, must also be considered: (1)

Correlation may be indicated, but the set of causal

mechanisms is not. (2) Including as many predictors as

possible increases one�s chance of finding a significant

correlation; however, the number of observations per
independent variable must be large enough to ensure

that the estimate of the regression line is stable. That

scientific knowledge springs from correlation is denied,

and while only few variables are analyzed and the

sample sizes seem reasonable, as Poe admitted (p. 25),

‘‘experiments with the data from this paper suggest that

both retention index and number of characters may

eventually turn out to be significant.’’
Finally, consider the assumptions of regression

analysis and whether they are violated in the case of the

particular independent (predictor) variables that Poe

chose, i.e., number of taxa, number of informative

characters, degree of homoplasy (retention index), total

(Bremer) support, and index (I) of symmetry. The

standard assumptions of regression analysis are (1) in-

terval or near-interval data, (2) data whose range is not
truncated, (3) linear relationships among variables, (4)

homoscedasticity (same range of relationship) through-

out the range of the independent variable, (5) normal

distribution of residuals (predicted minus observed val-

ues), and (6) absence of multicollinearity (redundancy of

statistical indicators) and matrix ill-conditioning. As

Poe acknowledged, the range of the data is severely
truncated in the case of the number of taxa and number
of informative characters and cannot be judged predic-

tive of actual phylogenetic research, where both num-

bers are much larger. Also, as acknowledged by Poe,

at least some of the independent variables exhibited

multicollinearity, and this casts further doubt on the

meaningfulness of the author�s interpretation that

number of taxa is the most, and only, significant pre-

dictor of sensitivity of taxon sampling. Such flawed
statistical approaches cannot be judged heuristic.

Polymorphism. Several methods for dealing with the

ambiguity of variable terminal taxa have been proposed:

(1) ambiguity coding, (2) excluding variable characters,

(3) frequency coding, such as majority or modal coding,

(4) splitting taxa into monotypic terminals, and (5) in-

ferring ancestral states (for another classification of

methods see Kornet and Turner, 1999). Various argu-
ments have been advanced for and against each of these

methods in phylogenetic inference, and sensitivity

analysis has been used to evaluate the alternatives. For

example, Wiens (1995; see also Wiens, 2000a, pp.

133–138) and Smith and Gutberlet (2001) performed

sensitivity analyses using criteria such as number of

most-parsimonious trees, number of informative char-

acters, skewness (g1 statistic), and bootstrap support to
determine which method of treating polymorphic char-

acters is optimal. However, as Grant (2002, p. 105)

pointed out, ‘‘these evaluation criteria are not sufficient

to defensibly select one discovery operation over an-

other because they are unrelated to the scientific prin-

ciples of explanatory power and severity of test.’’ Thus,

the Wiens and the Smith and Gutberlet studies represent

misapplications of sensitivity analysis in science.
Even more general conclusions follow from the fact

that the polymorphism ascribed to terminal taxa, in-

cluding higher taxa (Nixon and Davis, 1991; Donoghue,

1994; Simmons, 2001), is only investigator error: (1) To

employ a polymorphic terminal taxon that is not the

smallest historical individual is a potential failure be-

cause the common ancestral species of a group ‘‘is

identical with all the species that have arisen from it’’
(Hennig, 1966, p. 71; italics added). (2) Also, to use two

or more different semaphoronts in the description and

codification of a character can give the appearance of

polymorphism where none actually exists among com-

parable individuals. (3) Although some polymorphism

may be irreducible, as may occur within an organism

(e.g., heterozygosity) or semaphoront of a smallest his-

torical individual (species), that kind of polymorphism is
due only to the inability of the investigator to discrim-

inate between character history and organism or taxon

history. That is, taxon phylogeny is inferred from hy-

pothesized transformations from one character state to

another (Hennig, 1966). Polymorphism is observed

when those transformations do not unambiguously de-

marcate the cladistic events that gave rise to the taxa in
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question. As such, the problem of polymorphism in
phylogenetic inference is due not to characterizing taxa

with regard to observations made on organisms

(Campbell and Frost, 1993, p. 62) but to not matching

the individuality of taxon and character histories.

This distinction affects the epistemological validity of

the analytical solutions that have been proposed to

eliminate the ambiguity of polymorphism. For example,

conversion of polymorphism into a separate, ‘‘poly-
morphic’’ state or frequency eliminates ambiguity, but

that is a case of overreductionism (Frost and Kluge,

1994, p. 266) because it mistakenly equates character-

state transformations, such as A!B, with changes in

the distribution of those states among organisms,

A!AB!B. The ‘‘state’’ AB logically could not occur

in the evolution of the character and is therefore evi-

dentially irrelevant. Approaches that convert polymor-
phism into frequency are further dismissed because

frequency is an abstraction; it is neither heritable nor a

thing (Murphy, 1993; Wiens, 2000a, p. 130; contra de

Queiroz, 1987), rendering it evidentially irrelevant in

phylogenetics. Frequencies are defensibly interpreted as

objective probabilities in nomothetic, predictive sci-

ences, such as population genetics (e.g., Kimura, 1955),

but such justifications are irrelevant to the ideographic
science of phylogenetics, which derives evidence from

concrete, spatiotemporally restricted events (character-

state transformations), not abstractions (contra Wiens,

1998, 1999, 2000a, 2001; see also Swofford and Berl-

ocher, 1987; Berlocher and Swofford, 1997). In light of

these considerations, we must disagree with Smith and

Gutberlet�s (2001, p. 166) conclusion that ‘‘frequency

coding is philosophically sound and consistent with the
tenets of phylogenetic systematics,’’ a conclusion that

they reached merely on the basis that intraspecific var-

iation may be observed empirically.

Consequently, beyond simply coding polymorphism

as ambiguous information, the only course of action for

the phylogeneticist is to discover the basis for the error

and eliminate it from the data matrix. Any attempt to

model the error of polymorphism in phylogenetic in-
ference, or to apply a methodology that attempts to deal

with the error by codification (e.g., Wiens, 1998, 2000a),

cannot be heuristic because that kind of error has no

ontological standing in science. Indeed, the exclusion of

frequency data is not ‘‘contrary to the maxim of total

evidence,’’ as asserted by Wiens (1999, p. 343; see also

Wiens, 2000a, p. 130), because that rule of scientific

conduct covers only data that are relevant to the infer-
ence, which, in the case of species and the natural groups

of which they are a part, are necessarily unique char-

acter-state transformations. That Wiens�s (2000a, p.

138) simulation studies indicate that the majority

method for coding variable higher taxa is to be pre-

ferred, and from which he claimed ‘‘the common-equals-

primitive assumption may have some predictive value. . .
because it uses some information on the distribution of
states within the variable higher taxon,’’ only under-

scores additional erroneous reasoning. As Hennig (1966,

Fig. 21) clearly demonstrated, only the apomorphic state

can be informative of species relationships.

Clade concordance index (CC). Nixon and Carpenter

(1996a, p. 314) defined a measure of ambiguity, or ‘‘in-

ter-cladogram character conflict for all characters

among a set of cladograms,’’ as clade concordance,
CC ¼ 1� ððð

P
GLnÞ � PLÞ=ðCL� PLÞÞ, where GL is the

greatest length of each character n observed among the

cladograms, PL is the length of the most-parsimonious

cladogram(s), and CL is the length of the strict consen-

sus of the set of most-parsimonious cladograms. This

index measures the conflict over all characters that oc-

curs between equally most-parsimonious cladograms by

making use of the length of the strict consensus topol-
ogy. As such, the index may be an efficient way to detect

an overall wildcard effect; however, to actually remove

putatively wildcard taxa has the effect of reducing the

empirical content of the competing hypotheses. Fur-

thermore, the resulting increase in resolution creates the

impression of increased empirical knowledge, where in

fact empirical knowledge has been decreased through

the exclusion of evidence. While the clade concordance
index may be useful in computer programming (Nixon

and Carpenter, 1996a), it does not provide a ‘‘test’’ of

ambiguity, neither of kind nor precisely where it occurs,

and it is therefore not heuristic.

A more efficient assessment of ambiguity may be

achieved through simple inspection of the most-parsi-

monious hypothesis(es) of a total-evidence analysis. In

that context, an unambiguously defined group is one
that appears in all members of the set of equally most-

parsimonious cladograms, and an unambiguously opti-

mized synapomorphy is one that diagnoses just that

group; otherwise, the group is ambiguously defined and

objectively unsupported. An ambiguous character varies

in the number of steps that it exhibits in the neighbor-

hood of the taxa that defines the ambiguous group. To

remove ambiguity scientifically, one performs more de-
cisive tests, either through character reanalysis or in-

clusion of additional critical evidence in a simultaneous,

multiple test, not by eliminating evidence (Kearney,

2002, p. 380).

Other kinds of quality analysis

Character compatibility. This test was first proposed
by Wilson (1965) and formalized by Le Quesne (1969).

Two characters are said to be compatible when their

state transformations can be mapped on the same

branching pattern as unique and unreversed; otherwise,

those characters are incompatible. Compatible charac-

ters are both congruent with the same hypothesis of

relationships and consistent with the same explanation



8 Although it is often claimed in this paradigm that the data falsify

(reject) the model, ‘‘model’’ in this case refers to a given tree with

specified branch lengths (e.g., Penny et al., 1993; Steel et al., 1993a).

The probabilistic model (or mechanism) of change is not tested in this

procedure.
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of inheritance, that of synapomorphies interpreted as
homologues. Generalizing, the character compatibility

test is the following: (1) Given any pair of characters, i
and j, each with two states, x and y, (e.g., 0,1), find the

counts Nð0; 0Þ, Nð0; 1Þ, Nð1; 0Þ, and Nð1; 1Þ, where

Nðx; yÞ is the number of terminal taxa in the data matrix

exhibiting state x in the ith character and state y in the

jth character. The counts of these possible combinations

can be efficiently summarized in the form of a 2� 2 table
(ix;y , jx;y). (2) Making no assumptions about which state

is plesiomorphic, if one or more of these four Ns is zero

then i and j are said to be compatible; otherwise, they

are incompatible. Assuming that one state is plesio-

morphic (e.g., 0! 1) and finding N to be zero for one or

more of the three derived combinations, Nð0; 1Þ, Nð1; 0Þ,
and Nð1; 1Þ, is evidence that characters i and j are

compatible; otherwise, they are incompatible. It can be
easily proven by explicit enumeration that if all four Ns

are nonzero, then any phylogenetic hypothesis that re-

quires no independent evolution in character i must re-

quire at least one case of independent evolution in

character j and conversely. However, all that can be

deduced from a compatibility analysis is that two in-

compatible characters cannot both be explained as ho-

mologous, indicating that at least one of the homology
statements is false. Such pairwise comparisons are tests

and may therefore play a valid part in the cycle of cla-

distics research (Kluge, 1997, p. 90; see, however, Kluge,

1998, p. 351), although they are not as severe as the si-

multaneous test of character congruence provided by

parsimony when it is applied to a matrix of three or

more characters (Kluge, 1997), and they say nothing

about character reliability (contra Penny and Hendy,
1985a, 1986). Compatibility tests are certainly heuristic

in that they indicate the need for additional, indepen-

dent testing (i.e., character reanalysis) because incom-

patible characters cannot both be homologous (i.e., one

must be erroneous; Farris, 1983, p. 9).

Spectral analysis. Spectral analysis (Hendy and Pen-

ny, 1993; Hendy and Charleston, 1993; Penny et al.,

1993; Steel et al., 1993a; Hendy et al., 1994) may be
viewed as related to character compatibility in that it

also evaluates pairwise conflict among hypotheses of

synapomorphy without assessing conflict at all levels.

However, the stated goal of spectral analysis is to pro-

vide accurate and reliable estimates of phylogeny, where

statistical consistency is given primacy, and it aims to

achieve this by improving the quality of the data prior to

evaluation of competing phylogenetic hypotheses.
Swofford et al. (1996, p. 472) highlighted spectral anal-

ysis as a method of data exploration, suggesting that,

‘‘[a]part from their use in estimating trees, spectral

analysis methods are useful as aids in understanding the

peculiarities of particular data sets.’’

Spectral analysis begins by calculating the relative

frequency of bipartitions (splits) implied by each
character in isolation (observed sequence spectrum, s).
Next, under a chosen probabilistic model (mechanism)

of sequence evolution (e.g., 3ST of Kimura, 1981), the

Hadamard transform is applied (giving the conjugate

spectrum, c) to provide a global ‘‘correction’’ for all

unobserved substitutions prior to selection of the pre-

ferred hypothesis of relationships—an essential aspect of

phylogenetic analysis in this paradigm (e.g., Penny et al.,

1993, 1996; Steel et al., 1993a; Lento et al., 1995). An
optimality criterion (e.g., parsimony) can then be ap-

plied to the transformed data to select an optimal

cladogram. However, a full spectral analysis uses the

Hadamard conjugation to interconvert between a given

tree (including branch lengths) and the expected se-

quence spectrum (or tree spectrum, q), which enables the

closest tree criterion (Hendy, 1989; Hendy and

Charleston, 1993; Hendy and Penny, 1993) to employ
a least squares procedure to select the tree (with branch

lengths) for which the distance between q and c is

minimal.

Of primary concern in spectral analysis is the validity

of the global corrections applied to observed sequences.

The authors see data correction as an essential step in

phylogenetic analysis because statistical consistency is

model specific (Farris, 1983, p. 17), meaning that, irre-
spective of the method of analysis, statistical consistency

can only be guaranteed if data do not deviate from the

assumed model (Penny et al., 1993, 1996; Steel et al.,

1993a). The Hadamard conjugation provides a means of

transforming data to conform to the assumed model,

thereby ‘‘correcting’’ the data for the multiple, unob-

served changes that must have occurred, given the truth

of the model. However, no empirical evidence is actually
brought forth to allow the unobserved changes to be

inferred, and the claim remains entirely untested.8 We

see no increase in knowledge to be claimed from the

antiempirical practice of forcing data to conform to a

preconceived model, especially considering that the

models in question are demonstrably counterfactual and

are deterministic to the outcome of analysis (Siddall and

Kluge, 1997). Furthermore, statistical consistency can
never be guaranteed in practice because the truth of the

model can never be guaranteed (Farris, 1999), so we see

no reason to prefer spectral analysis over a method that

guarantees to maximize explanatory power and test-

ability (viz., phylogenetic parsimony; Kluge, 1997,

1999). More simply, we consider logical consistency to

take precedence over statistical consistency.

As a method of data exploration, a full spectral
analysis involving the Hadamard conjugation and data
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‘‘correction’’ can serve no heuristic purpose. Nonethe-
less, plotting the observed sequence spectrum is mini-

mally heuristic in that it provides some indication of the

extent of conflict in the data and may point to alterna-

tive (suboptimal) hypotheses worthy of special consid-

eration. However, because it considers only bipartitions

implied by characters in isolation and does not evaluate

the results of the interactions among all the characters,

the observed sequence spectrum provides a weaker test
of congruence than that given by a parsimony analysis

(Kluge, 1997) and a weaker indication of strength of

preference or signal than other methods of data explo-

ration. Furthermore, it does not identify the individual

characters responsible for conflict, nor does it identify

instances of conflict at all levels, all of which denies its

heurism.

Relative apparent synapomorphy analysis (RASA).
RASA has been described as ‘‘a tree-independent con-

ceptual framework of phylogenetic data exploration’’

(Lyons-Weiler and Hoelzer, 1997, p. 375). The method

begins by counting, for each pair of taxa, i and j, the
number of times that a three-taxon statement in which

grouping i and j is supported by that character (or, more

simply, for each character in which i and j share the

same character state, the number of taxa that have a
different state), summed over all characters. This sum is

referred to as the relative apparent synapomorphy, RAS
(although this is a misnomer; see below). Next, the

number of characters for which i and j share the same

state and at least one other taxon has a different state is

counted. This value is referred to as phenetic similarity,

E. A least squares linear regression of RAS on E is per-

formed, and the resulting slope, b, is compared to a null
slope, b, originally (Lyons-Weiler et al., 1996) obtained

from (
P

ij RASijÞ=ð
P

ij Eij) and later (Lyons-Weiler and

Hoelzer, 1999) obtained from a permutation approach

in which a large number of randomized matrices are

generated by permuting entries within each character

and the slope of RAS against E for each randomized

matrix, averaged over the number of randomizations

(Archie, 1989b). Student�s t test is carried out by cal-
culating the test statistic, tRASA ¼ ðb� bÞ=sb (where sb is

the standard error of b), and degrees of freedom,

c ¼ m� N � 3, for m taxon pairs and N taxa (see Farris

(2002a) for a detailed statistical discussion).

RAS analysis (RASA) was proposed as a means of

assessing the quality of data with regard to phylogenetic

signal (Lyons-Weiler et al., 1996). In the interest of de-

tecting and eliminating ‘‘problematic’’ evidence, an in-
creased tRASA score has been invoked as the basis for

discarding data to avoid long-branch attraction (Lyons-

Weiler and Hoelzer, 1997), use optimal outgroups

(Lyons-Weiler et al., 1998), detect lineage sorting

(Lyons-Weiler and Milinkovitch, 1997), and eliminate

‘‘noise’’ (Barkman et al., 2000). The method has been

employed by numerous authors working with diverse
taxa (e.g., Hall et al., 1998; Milinkovitch and Lyons-
Weiler, 1998; Teeling et al., 2000; Chek et al., 2001;

Austin et al., 2002).

However, Simmons et al. (2002), Faivovich (2002),

and Farris (2002a) have pointed out a large number of

flaws in so-called ‘‘RASA theory.’’ Summarizing those

authors� findings, those flaws include the following: (1)

As a count of three-taxon statements, RAS is a measure

of phenetic similarity, not synapomorphy (Kluge and
Farris, 1999). As such, regressing RAS (a phenetic

measure) on E (another phenetic measure) has no rela-

tion to phylogenetic signal, and RASA would better be

considered ‘‘relative apparent similarity analysis’’ (Far-

ris, 2002a, p. 336). (2) RASA attributes significant hi-

erarchic structure when there is none. (3) Remarkably,

RASA also fails to detect hierarchic structure in highly

structured data sets! (4) More generally, the RASA re-
gression does not meet the minimum requirements of a

statistically valid regression analysis, making it only a

regression analogy. Not the least of these requirements

is that the dependent variable, Y , be sampled randomly

and independently and that Y be a linear function of the

independent variable, X . In RASA, both RAS and E are

calculated deterministically from the data matrix,

meaning that, if anything, RASA measures ‘‘the inac-
curacy of the premise that [RAS] is a linear function of E
for the particular character matrix in question’’ (Farris,

2002a, p. 343). (5) The Student�s t distribution is inap-

propriate in this case, meaning that the t test statistic is

also invalid in this case. (6) Using the RASA slope as a

test for hierarchic structure is counterproductive be-

cause ‘‘the rejection region is cluttered with matrices

that have high RASA slope but are poorly structured,
while matrices that are in fact highly structured but have

lower slopes are forced out of the rejection region’’

(Farris, 2002a, p. 347). (7) tRASA is highly sensitive to

character state frequency. (8) RASA�s ability to detect

hierarchic structure is highly sensitive to departure from

a clock. (9) RASA fails as a detector of long-branch

attraction. RASA may indicate long-branch attraction

when none is present and may also fail to detect long-
branch attraction when it is present. Moreover, the

specific long-branch attraction avoidance strategy of

Lyons-Weiler and Hoelzer (1997) may actually cause

long-branch attraction to occur. Simmons et al. (2002)

found that RASA identified a zero-length branch as a

problematic long branch in a matrix that did not involve

long-branch attraction and that removal of that prob-

lematic terminal actually caused convergent terminals to
attract. (10) The recommended procedure of discarding

evidence to increase tRASA scores is contrary to the basic

principles of science. It is true that ‘‘[t]ests of normality

are widely used before parameter estimation and hy-

pothesis testing’’ (Barkman et al., 2000, p. 13166), but

the purpose of those tests is to evaluate the appropri-

ateness of the chosen test statistic, not the accuracy of
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the data. Finding that a sample does not fit a normal
distribution disallows standard parametric tests that

assume normality; it does not justify forcing obser-

vations into conformity through data purification. In

standard statistics, outliers may be excluded only if the

source of observer error can be determined or if ap-

propriate tests demonstrate that the outliers were drawn

from a different population. Likewise, under certain,

well-defined conditions a suitable transformation, such
as a logarithmic transformation when the factor effects

are multiplicative, not additive, may be applied to the

data. However, such transformations do not discard

data. Rather than improve phylogenetic inference,

RASA�s data removal protocols violate independence,

decrease severity of test and explanatory power, and

actually obscure the hierarchic structure present in the

data. There can be no heurism in such a procedure.
Data partition methods (taxonomic congruence). The

approaches and justifications for analyzing data parti-

tions separately have changed considerably since the

idea first grew out of the pheneticists� nonspecificity

hypothesis some 40 years ago (e.g., Sneath and Sokal,

1962; Rohlf, 1963; Sokal and Sneath, 1963; Rohlf, 1965;

see Kluge (1989) for a brief history up to that time). In

recent years, the focus has shifted yet again. Contrary to
workers who advocate deriving phylogenetic inferences

from either total evidence (e.g., Kluge, 1997, 1998) or

taxonomic congruence (e.g., Cracraft and Helm-By-

chowski, 1991; Miyamoto and Cracraft, 1991; Swofford,

1991; Miyamoto and Fitch, 1995), the majority of con-

temporary workers advocate combined analysis but also

explore the effects of separate analyses of data parti-

tions. Indeed, that kind of data exploration seems to
surpass methodological concordance in its current

popularity. Underlying this data exploration approach

is a concern for the quality of data and the strength and

validity of the phylogenetic inferences based on them.

Two lines of argument in defense of partition meth-

ods of data exploration, which we refer to as the strong

and weak interpretations, have emerged. The justifica-

tion of the strong interpretation, where the concern is
for the homogeneity of the data with respect to a chosen

evolutionary model, is explicitly statistical, because, for

example, ‘‘[i]n a phylogenetic context, data homogeneity

can be defined as the sharing of a single history. . .and
uniform probabilities of change among character states’’

(Barker and Lutzoni, 2002, p. 625). Accordingly, Bull

et al. (1993, p. 385; italics added) argued that the si-

multaneous analysis of many different characters ‘‘in-
creases the chance that support for true phylogenetic

groupings coming from reliable characters may be di-

luted by random or systematic errors from unreliable

characters.’’ As such, they suggested ‘‘that a combined

analysis of potentially diverse data is inappropriate

unless it is shown that the different data sets are not

significantly heterogeneous with respect to the recon-
struction model.’’ de Queiroz et al. (1995, p. 659) were
somewhat more ambivalent, but they also advocated the

use of separate analyses ‘‘as a means of exploring pos-

sible disagreements among data sets,’’ with the ultimate

goal of identifying the source of the statistically signifi-

cant conflict and correcting model assumptions prior to

deriving phylogenetic inferences. We refer to this as the

strong interpretation because incongruence among par-

titions is used to alter phylogenetic inferences directly.
The statistical combinability of classes of evidence is

usually ‘‘tested’’ with partition methods (e.g., Bull et al.,

1993; Huelsenbeck et al., 1996a; Yoder et al., 2001;

Barker and Lutzoni, 2002).

Numerous authors have endorsed the second argu-

ment for data exploration using partition methods,

many of whom have also argued strongly for the supe-

riority of simultaneous, total-evidence analysis. For ex-
ample, although Nixon and Carpenter (1996b, p. 221)

concluded unequivocally that simultaneous, total-evi-

dence analysis is superior to the partition methods of

taxonomic congruence, they nonetheless asserted that

‘‘[s]eparate analyses are useful and of interest to un-

derstanding the differences among data sets.’’ Similarly,

Remsen and DeSalle (1998, p. 233; see also DeSalle and

Brower, 1997; Baker and DeSalle, 1997) contended that
‘‘a test for congruence between and among data parti-

tions should always be performed, even if one intends to

combine the data partitions from the start,’’ because

‘‘without knowledge of the signal emanating from the

various partitions, it will not be possible to diagnose

particularly striking interactions among them.’’ That is,

although total evidence provides the severest test of

competing phylogenetic hypotheses and maximizes ex-
planatory power, analysis of congruence among parti-

tions or between the partitions and the total evidence is

supposed to lead to increased empirical knowledge. We

refer to this as the weak interpretation because the re-

sults of partitioned analyses are not used to alter phy-

logenetic inferences directly.

One of the most common ways to explore data par-

titions is simply to inspect the results of separate and
variously combined analyses. However, a wide variety of

explicit methods are also used to assess precisely the

degree of incongruence of data partitions; here, we re-

view briefly several of the more popular methods. As

indicated in footnote 2, above, partition incongruence

has been judged with both topology-based measures,

which assess differences in the branching patterns of

trees obtained from separate analyses, and character-
based measures, which quantify differences in the fit of

data in combined and/or separate analyses. The topo-

logical incongruence test (Rodrigo et al., 1993) and the

global congruence approach (Levasseur and Lapointe,

2001) are examples of topology-based methods, while all

other partition methods that we deal with in any detail

are examples of character-based methods.
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The topological incongruence index of Rodrigo et al.
(1993) is intended to assess the significance of the dif-

ference among data partitions. This index begins by

calculating the symmetric distance (SD) between most-

parsimonious trees from each data partition (see also

Penny and Hendy, 1985b). The distribution of SD is

then determined for a partition by calculating the mean

SD between most-parsimonious trees obtained from

bootstrap pseudoreplicates derived from that partition.
There will be a wide distribution of SDs when there is a

large degree of variation between the trees supported by

each bootstrap. Like Templeton�s test (see below), the

topological incongruence index requires additional

conventions when equally most-parsimonious trees ex-

ist.

The global congruence approach of Levasseur and

Lapointe (2001) uses a method of calculating consensus
branch lengths (the average consensus procedure of

Lapointe and Cucumel, 1997) of character and taxo-

nomic congruence results. Character sets are converted

to distance matrices and phylogenetic trees are com-

puted by the least squares method based on those dis-

tances.

The familiar contingency v2 test has been used as a

goodness-of-fit statistical test for relative amounts of
congruence among different classes of characters (e.g.,

Larson and Dimmick, 1993). Typically, a contingency

table constitutes the basis for evaluating the congruence

and incongruence among molecular and morphological

characters, given a particular tree. As in a typical v2 test,
marginal totals are determined from the observed values

on the tree, from which expected frequencies are esti-

mated.
Templeton�s test assesses whether a most-parsimo-

nious tree obtained from one data matrix of discrete

characters is significantly less parsimonious than an-

other (suboptimal) hypothesis of relationships (Tem-

pleton, 1983; see also Kishino and Hasegawa, 1989;

Larson, 1994). This test has also been used to test

whether trees obtained from discrete character data can

significantly discriminate distance hypotheses (see also
Rzhetsky and Nei, 1992). Templeton�s test is a modi-

fication of the nonparametric Wilcoxon paired-sample

(signed rank) test. The phylogenetic hypotheses in

question are compared character-by-character to de-

termine whether the number of steps required of each

character differ on the competing historical proposi-

tions. The differences in the numbers of steps between

the competing hypotheses are ranked, and the signifi-
cance of these rankings, from random error, is

evaluated with regard to the binomial distribution. A

one-tailed test would seem to be appropriate, given

that the relative optimality of the competing hypothe-

ses is usually known a priori; however, the more con-

servative two-tailed test has been recommended

(Felsenstein, 1985a).
The Mickevich–Farris incongruence index (iMF)
9

measures the scaled proportion of the total number of

transformations in a data matrix, xT, that are due to the

incongruence between partitions of that data matrix, xB
(Mickevich and Farris, 1981). Thus, iMF ¼ xB=xT, where
xB ¼ xT � xW, and xW is defined as the sum of the

transformations calculated separately for each of the

partitions. The number of transformations is determined

only on most-parsimonious trees. Wheeler and Hayashi
(1998; see also Wheeler et al., 2001, p. 128) provided a

rescaled incongruence length difference index (RILD)

that ‘‘does not exhibit the trivial minimum (0) as data set

weights become increasingly disproportionate.’’

The Miyamoto incongruence index (iM) is the pro-

portion of the total transformations in a data matrix,

xT, that is due to the incongruence that occurs between

partitions of that data matrix, xB (M.M. Miyamoto,
pers. comm., as reported in Kluge, 1989). This incon-

gruence index is calculated in the same way as the

Mickevich–Farris index (see above), except that xT is

the sum of the transformations required to explain the

characters of one partition on the tree derived from the

other partition and vice versa. As with the Mickevich–

Farris index, the number of steps is determined only on

most-parsimonious trees. The Miyamoto index does not
always yield a proportion that seems reasonable, and it

is quite sensitive to the distribution of congruent char-

acters among the partitions (Swofford, 1991, p. 317).

Moreover, an additional problem arises when two or

more equally most-parsimonious trees result from the

analysis of one, or both, of the partitions: more or fewer

transformations may be attributed to a partition de-

pending on which of the equally most-parsimonious
trees is chosen. A further deficiency compared to the iMF

is that the iM evaluates incongruence in reference to

partitioned hypotheses and not to the total-evidence

hypothesis (Kluge, 1989).

The incongruence length difference test (ILD, dis-

cordance test, Farris incongruence test, partition ho-

mogeneity test, Swofford�s test) is currently the most

widely used partition measure. The incongruence length
difference is just the numerator of the iMF (xB in the

above equation), which measures the number of trans-

formations in a data matrix that are attributable to in-

congruence among partitions of that matrix, or the

difference (D) between the length of the total-evidence

hypothesis and the sum of lengths for each partitioned

hypothesis (Farris et al., 1994b). The statistical test of

that measure is accomplished by resampling (Farris
et al., 1995). For example, two data matrices (X and Y)

are incongruent when the sum of their most-parsimo-

nious tree lengths (L) is shorter than that obtained from
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equivalent matrices, P and Q, obtained by randomly
resampling the pooled original data sets. Thus,

ðLX þ LYÞ < ðLP þ LQÞ. The null distribution for the

ILD test is obtained by regarding the observed matrices

of X and Y characters as having been sampled at ran-

dom from a single statistical population. On that as-

sumption, any partition of the total Xþ Y characters

into two matrices of the same two sizes should be

equally likely. The null distribution would then be de-
termined by averaging over all possible partitions of the

Xþ Y characters into sets of sizes X and Y. In practice,

to obtain a significance test it is necessary to compute D

for only a small number of partitions, these being cho-

sen at random from among those possible. Thus, the

value of D is found for the partitions of the observed

data matrix and for a number W of randomly selected

partitions of the same sizes as the original partitions. If a
number S of the D values from randomly selected par-

titions is smaller than the observed D, then the type I

error rate (tail probability) of rejecting the null hy-

pothesis is 1� S=ðWþ 1Þ. A 5% level of significance is

indicated, for example, when W ¼ 99 and S ¼ 95.

According to Cunningham (1997), the ILD test can

be recommended over the other tests of incongruence

because of its (1) ease of calculation, (2) application to
multiple data partitions simultaneously, (3) successive

reapplications (e.g., to a data set that was unweighted

and then weighted; but see Allard et al., 1999), and (4)

effectiveness at discriminating significant data partition

incongruence. However, recent studies involving simu-

lation (Dolphin et al., 2000; Dowton and Austin, 2002;

Barker and Lutzoni, 2002) and comparison to a

‘‘known’’ phylogeny (Yoder et al., 2001; but see Grant,
2002) have cast doubt on its effectiveness.

Partitioned Bremer support (partitioned branch

support) aims to evaluate the distribution of evidential

support for a particular clade (node) from different

classes of data on the total-evidence hypothesis. Parti-

tioned Bremer support is defined as the length (or mean

length, if multiple most-parsimonious trees obtain) of a

given data partition on the most-parsimonious tree(s)
not containing a given clade minus the length (or mean

length) of that partition on the total-evidence tree(s)

(Baker and DeSalle, 1997). Gatesy et al. (1999; see also

O�Grady et al., 2002, Table 1) defined several other re-

lated indexes, including hidden branch support, parti-

tioned hidden branch support, hidden character

support, hidden synapomorphy support, data set re-

moval index, nodal data set influence, hidden nodal data
set influence, and data set influence. All of these mea-

sures involve assessing clade stability in reference to data

partitions. Reed and Sperling (1999) defined branch

support as a function of partition weight ratios.

The presumed relevance of all of the above methods

of data exploration is that significant incongruence

suggests that some phenomenon caused the partitions to
evolve differently. Under the strong interpretation (e.g.,
Bull et al., 1993; de Queiroz et al., 1995; Huelsenbeck

et al., 1996a), significant incongruence provides clear

evidence either of a violation of model assumptions or

of different histories for the different partitions; in either

case, equivalent treatment of all data in a simultaneous

analysis is prohibited. Explicit in this interpretation (see

quote above from Bull et al., 1993) is that incongruent

partitions contain unreliable characters. Conversely,
Nixon and Carpenter (1996b, p. 233) were careful to

clarify that they ‘‘would advocate combination and si-

multaneous analysis even if the amount of incongruence

is deemed �significant�’’; instead, they interpreted a large

amount of incongruence heuristically as pointing to

particular hypotheses that the investigator may wish to

investigate. In a similar vein, a lack of significant in-

congruence among partitions has been taken to indicate
increased support and increased confidence in the total-

evidence hypothesis (e.g., Hillis, 1995). However, several

problems compromise both interpretations.

The most obvious problem faced by both interpre-

tations is the arbitrariness of the chosen partitions

(Kluge and Wolf, 1993). As illustrated by Siddall (1997),

patterns of congruence/incongruence depend crucially

on the choice of partitions, yet there is a multitude of
ways in which a data set can be partitioned, leading to

contradictory conclusions and requiring arbitrary reso-

lutions. Some have argued (e.g., Miyamoto and Fitch,

1995) that functional classes of data exist in nature (i.e.,

have discoverable boundaries) and that the different

subsets of evidence, e1je2je3j � � � jen, should not be ana-

lyzed simultaneously because they do not represent the

same kind of evolutionary process. However, Siddall�s
examples included conflicting functional class partitions,

demonstrating that some arbitrary decision as to which

functional class should have precedence is required.

Moreover, it has yet to be made clear why being of the

same functional class or process partition is relevant to

the inference of phylogeny, when the nature of the evi-

dence in phylogenetic inference is the evolutionary event

or transformation, for which there is the common cur-
rency of a unit of change from one state to another

(Hennig, 1966, Fig. 21; Kluge and Wolf, 1993). As such,

the decision not to combine or to introduce novel model

assumptions or weighting schemes is also arbitrary, as is

any inference(s) derived from that decision. Other au-

thors (e.g., Nixon and Carpenter, 1996b, p. 225) have

merely taken an unscientific, pragmatic position as to

the reality of classes of data, arguing that the boundary
between data sets exists as long as ‘‘we choose to rec-

ognize it’’!

A further problem with the strong interpretation is

that the inference of different histories (e.g., paralogy,

lineage sorting, introgression, horizontal gene trans-

fer, ancestral polymorphism, ‘‘gene trees versus spe-

cies trees’’), different evolutionary processes (e.g.,
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evolutionary rates, selective constraints), or character
unreliability (i.e., that they are misleading) is entirely ad

hoc. No independent evidence of confounding processes

is presented (DeSalle and Brower, 1997). Instead, this

approach eliminates or down-weights contradictory ev-

idence solely on the basis that it is contradictory.

Moreover, those contradictory data are dealt with en

masse and are not permitted to count fully against the

resulting phylogenetic hypothesis. This interpretation
relies on the assumption that data within a partition

unanimously support the same phylogeny (i.e., share the

same, contradictory signal), with discrepancy attribut-

able to sampling error or random homoplasy. However,

discovery that one partition is incongruent with another

(or with the total-evidence tree) or that a partition has a

negative partitioned Bremer support value at a given

node does not deny that some of the characters in that
partition (i.e., a subpartition) may strongly support that

node nor does it indicate which characters in the parti-

tion are responsible for the conflict. As observed by

DeSalle and Brower (1997, p. 759), tests of incongruence

‘‘cannot serve as criteria for determining if (and which)

evidence should be deleted or downweighted.’’

Many workers hold the belief that hypotheses recov-

ered in separate analysis of data partitions are better
supported. For example, one of the foremost require-

ments for a phylogeny to be designated as ‘‘known’’ is

that it be supported by multiple partitions (Miyamoto et

al., 1994; Miyamoto and Fitch, 1995; Wiens, 1998,

2000a,b; Smith and Gutberlet, 2001; Buckley and

Cunningham, 2002; see below). Likewise, Hillis (1995, p.

3; italics added) underscored the independence of data

assigned to separate partitions, claiming that ‘‘congru-
ence studies of multiple data sets can be used to assess the

degree to which independent results agree and thus the

minimum proportion of the findings that can be attrib-

uted to an underlying phylogeny’’ and further (p. 11)

that

Although a combined analysis of several data sets (assuming

that they are appropriate for combining) may give the best es-

timate of phylogeny. . .the conclusion would be greatly strength-

ened if it were compatible with that of each of the individual

data sets as well. . .

However, that argument for partitioning evidence loses

sight of the fact that the important assumption of in-

dependence still obtains within each recognized partition

(Kluge and Wolf, 1993). That is, as long as the as-
sumption of independence applies to the characters

within each partition, there is nothing more to be gained

by also claiming independence among partitions.

Superficially, it would seem that the weak interpreta-

tion may have extensive heurism, a consideration that

could establish the utility of partition methods of data

exploration. Although partition incongruence is insuffi-

cient to claim discovery of different histories or evolu-
tionary processes (see above), it is consistent with those
phenomena and may therefore suggest interesting hy-
potheses worthy of independent testing. Indeed, Huel-

senbeck et al. (1996b) suggested that discovery of different

evolutionary processes and histories can be achieved only

through the use of partitioned analyses. However, the

heurism of partitioned analysis is illusory because the

indication of particular hypotheses judged especially

worthy of investigation derives from interaction of inde-

pendent characters in a simultaneous analysis and not
from a procedure that explicitly prohibits such interac-

tions. It is epistemologically inconsistent to claim (e.g.,

Remsen and DeSalle, 1998; Gatesy et al., 1999; O�Grady

et al., 2002) that the total-evidence analysis maximizes

explanatory power—in part because characters interact

synergistically to produce novel results—while also

claiming that the less explanatory hypotheses of separate

analyses are essential to detect interactions among the
characters of different partitions. As discussed above,

epistemology indicates that the least refuted, most highly

corroborated hypothesis has the greatest heurism.

We do not mean to suggest that consideration of

character partitions cannot be heuristic. Rather, our

contention is that for such considerations to be truly

heuristic, they must be based on the results of the total-

evidence analysis. Indeed, we believe that there is great
potential for the development of heuristic methods of a

posteriori analysis of sets of characters. For example,

the heurism of the character ci (Kluge and Farris, 1969)

and ri (Farris, 1989a) on the total-evidence cladogram

can be extended to partitions by averaging those values

over each partition, as done by K€aallersj€oo et al. (1999). In

addition to the epistemological strength of such a pos-

teriori analysis of the total-evidence hypothesis, the
practical advantage of this approach over separate

analyses is that within-partition patterns can also be

detected. For example, a large range of ci or ri values

may indicate that the chosen partition did not contain a

single, strong signal and that alternative partitions may

have more heuristic value. Such a posteriori analysis

could be refined further by plotting the distribution of

those values against any variable of interest (e.g.,
alignment position, codon position, secondary structure,

functional regions of translated proteins) and comparing

within and among possible partitions. Moreover, pro-

vided that the necessary assumptions of the chosen test

can be met, the statistical precision sought by many

workers could be attained by performing multivariate

analyses of variance or by simply employing such sta-

tistical tests as the v2 test of homogeneity. Similarly, past
studies can indicate heuristically the expected ‘‘utility’’

of different character classes for resolving different

phylogenetic questions (a concern when designing any

phylogenetic study) by examining the transformations

associated with different levels of divergence, and such

expectations could even provide the basis for prior

probabilities in a Bayesian framework.
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The simultaneous parsimony analysis of the total,
equally weighted evidence provides the severest possible

test of competing phylogenetic hypotheses and identifies

the hypothesis(es) of greatest explanatory power (Kluge,

1997, 1998). As such, we see no scientific or heuristic

reason to favor separate analysis of arbitrary partitions

over procedures that derive independently testable hy-

potheses from the patterns of character state transfor-

mations implied by the phylogenetic hypothesis of
greatest explanatory power.

Congruence with an empirically ‘‘known’’ phylogeny. In

this method of data exploration, a phylogeny that is

‘‘well-supported’’ (defined as a phylogenetic hypothesis

supported by two or more data partitions; Miyamoto

et al., 1994; Miyamoto and Fitch, 1995; Wiens, 1998,

2000a,b; Smith andGutberlet, 2001), ‘‘well-corroborated’’

or ‘‘strong’’ (supported by quantitative analysis; Allard
and Miyamoto, 1992; Marshall, 1992; Friedlander et al.,

1996; Mindell and Thacker, 1996; Zardoya and Meyer,

1996; Cunningham, 1997; Hillis, 1999; Buckley and

Cunningham, 2002), or ‘‘firmly established,’’ ‘‘noncon-

troversial,’’ ‘‘widely accepted,’’ or ‘‘conservative’’ (no

explicit operation or criteria employed to select the initial

hypothesis; Friedlander et al., 1994; Graybeal, 1994;

Russo et al., 1996; Zardoya and Meyer, 1996; Cunning-
ham, 1997; Naylor and Brown, 1997, 1998; Ballard et al.,

1998; Miya and Nishida, 2000; Posada and Crandall,

2001c) is designated as ‘‘known,’’ ‘‘correct,’’ or ‘‘expect-

ed.’’ Data (or methods) that are congruent with that

phylogeny are deemed to be of high quality and greater

reliability, whereas those that are incongruent are of

lower quality and are accordingly down-weighted or ex-

cluded.
Grant (2002) rejected this procedure as an empirical

test of discovery operations, and it fails as a test of data

quality for largely the same reasons. Most importantly,

none of the proposed criteria is sufficient to justify

conclusive acceptance of a hypothesis of relationships as

‘‘known,’’ ‘‘correct,’’ or ‘‘expected,’’ so there is no rea-

son to demand that new observations conform to pre-

viously supported hypotheses. Moreover, those new
data are in fact potential falsifiers of the previous hy-

potheses, so judging data quality by how well they

conform to those hypotheses results in a complete loss

of independence. Likewise, this operation is not heuris-

tic because it serves only to protect a preferred phylo-

genetic hypothesis from refutation by forcing new data

into conformity.
Summary and conclusions

The current paradigm in phylogenetic systematics is

clearly dominated by data exploration. In the above

review, we identified over 20 approaches commonly used

to explore data. However, it is equally clear that much
more attention has been paid to the development and
application of data exploration methods than to the

critical evaluation of the scientific merits of those

methods. As a result, many authors carry out elaborate,

superficially impressive data exploration for no apparent

reason. For example, McGuire and Bong Heang (2001)

provided detailed descriptions of the procedures and

results of extensive, technically sophisticated data ex-

ploration, but they made no attempt to explicate the
significance of their procedures. Moreover, McGuire

and Bong Heang actually dismissed the results of those

analyses altogether on the grounds that previous studies

compelled them to choose the GTR+C+ I maximum

likelihood result as optimal for their data set, leaving the

reader to wonder why such extensive data exploration

was important enough to merit publication, but was also

irrelevant to the inference of phylogeny.
In this paper we reviewed a wide variety of methods

of data exploration in an attempt to understand their

relevance to the science of phylogenetic systematics. We

recognize three kinds of methods or operations:

• Methods that perform empirical tests (i.e., discovery

operations).

Such methods are scientific, and, insofar as the results

of scientific tests point to new or highly testable prob-
lems and hypotheses, they are also heuristic. Of the

methods of data exploration that we examined, only

character compatibility can be construed as an empirical

test, although character congruence of phylogenetic

parsimony is superior because it maximizes severity of

test and explanatory power through simultaneous

analysis of all critical evidence and the minimization of

transformations.
• Methods that are nonscientific but point to new or

highly testable problems and hypotheses.

Such methods are heuristic; i.e., they do not perform

tests themselves, but they point to the weaker areas in

our system of knowledge, thereby providing an indicator

of the relative strength of evidential support and the

expected fruitfulness of additional inquiry. Clear ex-

amples of heuristic approaches to data exploration in-
clude Bremer support (Bremer, 1988), long-branch

extraction (Siddall and Whiting, 1999), and safe taxo-

nomic reduction (Wilkinson, 1995), and we see consid-

erable potential for the development of methods of a

posteriori analysis of patterns of character transforma-

tions on the total-evidence phylogeny. Misunderstand-

ing the data exploration method may hinder

interpretation of heuristic results. For example, al-
though most workers have employed safe taxonomic

reduction and similar approaches to evaluate the effects

of ‘‘missing data’’ and have provided empirical justifi-

cation for excluding taxa, these methods actually eval-

uate the effects of including additional evidence

and provide a heuristic justification for targeting certain

taxa and characters in future rounds of testing.
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• Methods that are neither scientific nor heuristic.

Such methods amount to mere sophistry and are ir-

relevant to phylogenetic inference. A disappointing

number of the data exploration methods examined ex-

emplify this category. For example, most methods of

quality analysis function as data purification routines,

whereby evidence is discarded or manipulated to make it

conform with some notion of goodness. Such methods

serve no purpose in the scientific enterprise, and their
continued use seems to bemore a function of systematists�
fascination with the cult of impressive technicalities than

any genuinely scientific concern (see epigraph, above).

The concept of support is central to data exploration.

We propose an explicit concept of support, defined as

the degree to which critical evidence refutes competing

hypotheses. Our concept contrasts sharply with the

verificationist interpretation of support as a measure of
confidence, probability, or reliability. Instead, our con-

cept of support is concerned with the relative degree of

corroboration of competing hypotheses, and as Popper

(1979, p. 18, italics in original) clarified,

Being a report on past performance only, [degree of corrobora-

tion] has to do with a situation which may lead us to prefer

some theories to others. But it says nothing whatever about

future performance, or about the ‘reliability’ of a theory.

Furthermore, our concept of support is objective in

that it focuses on the support of data for a hypothesis

and therefore opposes the subjective concept of support

commonly applied in sensitivity analysis (e.g., Wheeler,

1991, 1995; Flores-Villela et al., 2000; Nei and Kumar,

2000; Wheeler et al., 2001), whereby support is inferred

from the effects of different assumptions about or inter-
pretations of the data. Given that auxiliary assumptions

are logically incapable of providing empirical support for

hypotheses, the claimed support cannot be justified, ex-

cept as a measure of subjective (and therefore relativistic)

belief. However, justification by subjective belief is ir-

relevant to science. As Lakatos (1998, p. 21) observed,

The cognitive value of a theory has nothing to do with its

psychological influence on people�s minds. Belief, commit-

ment, understanding are states of the human mind. But the

objective, scientific value of a theory is independent of the

human mind which creates it or understands it. Its scientific

value depends only on what objective support these conjec-

tures have in facts.

According to our analysis, the most common inter-

pretations of the results of data exploration in phyloge-

netic systematics are mistaken. Results of data
exploration are primarily used to highlight strongly

supported hypotheses as more accurate, reliable, or

probably true and in effect protect those hypotheses from

refutation by indicating that they are beyond additional

testing. This misapplication of support is exemplified by

common taxonomic practice, wherein strongly sup-

ported groups are recognized formally, while weakly
supported groups remain nameless and are thus hidden,
often allowing paraphyletic groups to be retained. Such

formal recognition effectively protects those so-called

reliable groups from future refutation by fiat, i.e., by

imposing legally the principle of stability, while the

groups that are especially interesting scientifically are

simply ignored. This practice is generally defended in the

interest of ‘‘conservatism,’’ but we fail to see how this

justifies overturning empirical evidence. Moreover, sci-
entifically, the most conservative taxonomy is the one

that strays least from available evidence (D.R. Frost,

pers. comm.). Instead of drawing attention to strongly

supported clades, we suggest that methods of data ex-

ploration be used to further the goals of science by

highlighting weakly supported hypotheses by indicating

cases in which choice among competing hypotheses is

ambiguous or hypotheses have been less severely tested
(tests have been less decisive), and, therefore, scientific

inquiry aimed at them is likely to be more fruitful.

Also of concern is the emphasis placed on data ex-

ploration in empirical phylogenetic studies. Given that

the only legitimate role of most methods of data ex-

ploration is heuristic, not scientific, the current emphasis

on these methods is unwarranted. Empirical tests are the

only source of scientific knowledge, and the science of
phylogenetic systematics would be better served by

emphasizing that fact in publications and when consid-

ering proposals for funding. Of course, pointing out the

weaker areas in our system of knowledge is important

and should not be abandoned altogether; but, in our

judgment, the resources and interest currently devoted

to data exploration are grossly disproportionate to their

cognitive worth. Consequently, despite the current
popularity of data exploration techniques and the ac-

companying social pressures to include them in pub-

lished studies, we urge phylogeneticists not to accept

these methods uncritically, but to consider their cogni-

tive merits with regard to the logic of scientific discovery

and to use them accordingly.
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