Supporting Information

for Small, DOI: 10.1002/smll.201200110

Self-Assembled Magnetic Bead Biosensor for Measuring Bacterial Growth and Antimicrobial Susceptibility Testing

Paivo Kinnunen, Brandon H. McNaughton, Theodore Albertson, Irene Sinn, Sima Mofakham, Remy Elbez, Duane W. Newton, Alan Hunt, and Raoul Kopelman
Supporting Information for “Self-Assembled Magnetic Bead Biosensor for Measuring Bacterial Growth and Antimicrobial Susceptibility Testing”

To control for false positives we used magnetic beads that were coated with anti-\textit{E. coli} O157 antibodies, and tested the self-assembled AMBR biosensor against a mixed culture of two non-target challenge organisms: \textit{S. aureus} (ATCC 29213) and a non-O157 \textit{E. coli} (ATCC 25922) at a high inoculum, see Figure S1. The growth of the target bacteria was detected without false positive results.

![Figure S1](image)

Figure S1. False positive control experiments performed with self-assembled AMBR biosensor functionalized with anti-\textit{E. coli} O157. The growth of the target bacteria was successfully detected (red points) while the non-target bacteria didn’t result in false positive events (gray points).

Materials and methods

The results were acquired using the following protocol: 1-2 colonies of an overnight culture of desired organism were suspended in CA-MHB (BBL/297963) (1.0 mL) and vortexed. The suspension was diluted (1:10) and grown up to OD$_{625}$ of 0.08 – 0.1, corresponding to roughly 10^8 CFU mL$^{-1}$. The solution was diluted appropriately (0.98 mL), magnetic particles were added (20 µL of Invitrogen/710.04), and the mix was incubated (at 37° C for 10 minutes). Magnetic separation was performed twice with PBS + 0.05% Tween, once with CA-MHB, and finally the beads were resuspended in EEB (1.0 mL of Oxoid CM0989 supplemented with Fluka 80704-5vL). This final solution was pipetted into a hanging drop plate (23 µL per well in 3D Biomatrix plate, pre-soaked in 1% Pluronic F-127 for 1h). The plate was then subjected to a magnetic field gradient that pulled down the magnetic particles (15 min), forming self-assembled AMBR biosensors in each droplet, which were subsequently monitored in a prototype device.