The Annals of Human Genetics has an archive of material originally published in print format by the Annals of Eugenics (1925-1954). This material is available in specialised libraries and archives. We believe there is a clear academic interest in making this historical material more widely available to a scholarly audience online.
These articles have been made available online, by the Annals of Human Genetics, UCL and Blackwell Publishing Ltd strictly for historical and academic reasons. The work of eugenicists was often pervaded by prejudice against racial, ethnic and disabled groups. Publication of this material online is for scholarly research purposes is not an endorsement or promotion of the views expressed in any of these articles or eugenics in general. All articles are published in full, except where necessary to protect individual privacy.
We welcome your comments about this archive and its online publication.

GENETIC STUDIES ON ECTOPIA LENTIS*

II. ANTHROPOMETRIC AND LINKAGE DATA

By C. W. COTTERMAN and HAROLD F. FALLS \dagger
Department of Human Heredity, University of Michigan, Ann Arbor, Mich., U.S.A.

A kindred exhibiting dominant hereditary ectopia lentis has been reported by the authors in another publication (Falls \& Cotterman, 1943), which describes the ocular findings on $157 \mathrm{mem}-$ bers of the group. In the present paper, data are presented on several additional hereditary characters which were investigated in the same group of families. This series includes the $A B O$ blood group, the $M N$ blood type, the $R h$ agglutinogen of Landsteiner \& Wiener (1940), the 'secretor' factor of Schiff \& Sasaki (1932), taste reaction to phenyl-thiocarbamide, eye colour, and red-green colour-blindness. Ectopia of the lens has been frequently observed in association with arachnodactyly and other skeletal abnormalities (Marfan's syndrome). Although no striking evidence of this syndrome was observed in this kindred, a series of anthropometric measurements were secured with the view of studying a possible association of this kind. These records are also presented.

As is true of many other 'dominant' abnormalities, there is considerable variability in the degree of defect demonstrated by the affected individuals. Indeed, two women who must be regarded as carriers of the gene show no observable defect of the lenses at their present ages of 41 and 50 years. Owing to this occasional difficulty in diagnosis, the search for linkage with other more readily detectable genes is of practical importance. It is also hoped that the data will be of value to those interested in the mathematical analysis of human pedigrees. Since the kindred was selected for study because of the ocular defect alone, the records on other factors should provide unbiased estimates of the gene frequencies. However, as Fisher (1940) has shown, a sample of relatives supplies less information concerning gene ratios than a sample of unrelated individuals, and the problems of estimation are intricate. Thus, while 154 persons were tested for the agglutinogens M and N in the present kindred, an inspection of the pedigree will show that the number of independent genes sampled cannot exceed 88, or the equivalent of 44 unrelated individuals. On the other hand, the interrelationship of all families in the present data would be expected to enhance their value for the evaluation of linkage and other genetic ratios. A full utilization of the record, however, should require modification of the statistical methods now available for human data, since these have been primarily designed for collections of unrelated families.

It will be convenient first to describe the pedigree chart and the method used for designating individuals. This chart (Fig. 1) differs from the conventional diagram in having the children of each union arranged in vertical columns by order of birth. Each sibship is numbered, l-58, and a particular individual may be specified by his sibship number and position of birth. Thus, 22-6 is the sixth, and youngest, member of sibship 22 and the daughter of 9-4. Stillbirths and miscarriages, as well as unexamined individuals, are all counted in constructing the individual's number.

[^0]The propositi for our pedigree are the affected sister and brother, 32-3 and 32-4, who were both diagnosed as having 'congenital dislocation of the lenses' when examined in 1935 at the University of Michigan Hospital. A preliminary visit to their home established a dominant pattern of inheritance, with the abnormality tracing to the great-great-grandfather 1-1. This man resided in Germany and, according to his grandson (7-2), became blind during the fifth decade of life following a sudden attack of ocular pain. The authors interpret this as a probable instance of subluxation of the lenses into the anterior chamber, since this complication has been experienced by several of the descendants. Three of the children of 1-1 (2-1, 2-2, 2-5) emigrated to America and left descendants who, with few exceptions, are now living in Lucas County, Ohio. Most of these individuals, together with their spouses, were examined by us in their homes or at the University ophthalmic clinic during the summer of 1942.

Fig. 1 shows all of the known descendants of $1-1$, but the spouses are not indicated on the diagram except in three instances of double family marriage (sibships 2 and 3,7 and 8, 18 and 20) and in one case where the wife (19-1) possessed a child by previous marriage. These spouses, not shown on the chart, will be designated by suffixing the letter a to the number of the appropriate descendant. Thus, $16-2 a$ is the husband (not shown) of $16-2$ and the father of the propositi. In the case of double marriage the second spouse is indicated by the letter b and the marriage line is drawn below that for the first marriage. For example, 21-6b is the second husband of 21-6 and the father of sibship 48. Since genealogical information was not secured from the spouses, it is impossible to state whether consanguineous matings are represented in the pedigree. Further information regarding these families may be obtained from the University of Michigan Heredity Clinic where all records on the kindred (no. 256) are on file.

The following notes are concerned with the techniques used for determining the several characteristices studied.

Ectopia lentis. The ocular examinations were made as complete as was practicable in the home. Mydriatic drugs were employed in some cases, and several individuals of doubtful lenticular pathology were brought to the University ophthalmic clinic for slit-lamp examination and refraction. The two eyes of an affected individual usually presented quite similar abnormalities, but the degree of defect varied considerably between individuals. The direction of the dislocation was predominantly up and out. The extent of the displacement, however, varied from conditions in which the greater portion of the pupil was aphakic to minor degrees of dislocation or mere irregularity of the lens border and zonula. Complete subluxation into the anterior chamber had occurred in some of the younger, as well as in older, individuals, and was usually responsible for blindness in the absence of prompt surgical intervention. Iridodonesis, strabismus, lenticular myopia, cataract and glaucoma were common sequelae of the lenticular dislocation. Associated anomalies of the lids, lashes, cornea and pupil, such as have been noted in some pedigrees, were not observed. Further ophthalmological details are presented in a separate article (Falls \& Cotterman, 1943). Individuals indicated in Fig. 1 as heterozygous for the abnormal gene are of three kinds: cases which were diagnosed on examination, cases which are regarded as 'probably affected' on the basis of information furnished by relatives and physicians, and cases presenting no pathology of the lenses but possessing affected children and grandchildren. Two women, 9-6 and 18-1, who received very thorough study, are placed in the last category.
$A B O$ and $M N$ blood tests. Small quantities of blood were obtained by finger puncture and preserved as saline suspensions. A refrigerated thermos jug was used in transporting the samples
E EXAMINED, ECTOPIA LENTIS
O NORMAL, BUT DEFECTIVE GENOTYPE
O EXAMINED, NORMAL
Q NOT EXAMINED, PROBABLY AFFECTED
Q NOT EXAMINED, PROBABLY NORMAL
© DIEO YOUNG, EYE CONDITION UNKNOWN
O($)$ STILLBIRTH OR MISCARRIAGE (SEX.?)
\rightarrow PROPOSITUS
UNIK. MICH. HEREDITY CLINIC KINDRED NO. 256
Fig. 1. Pedigree of kindred exhibiting ectopia lentis.
to the laboratory where they were tested within 48 hr . after collection. The tests for the presence of agglutinogens A_{1}, A_{2}, B, M and N were made with 2% cell suspensions, using standard testing sera of high titres. Control bloods of the various $A B O, M N$ and $R h$ classifications were employed in each series of tests.
$R h$ agglutinogen. A single human anti- $R h$ serum was employed for all but a few of the $R h$ determinations. This serum was obtained from a $R h$-negative patient who had survived a transfusion reaction with $R h$-positive blood. Since the patient belonged to group A, the serum was first diluted with the saliva of a group B secretor in order to neutralize the isoagglutinin β. A single drop of the diluted serum was then mixed with a drop of 2% cell suspension and incubated for 2 hr . at $37^{\circ} \mathrm{C}$. Sedimentation and agglutination readings were made at 1 and at 2 hr ., following the techniques recommended by Wiener (1943). For the remainder of the $R h$ tests an anti-rhesus guinea-pig serum, absorbed with human cells of groups A and B, was employed.

The authors are indebted to Dr Alexander S . Wiener for his donation of these anti- $R h$ reagents. According to Dr Wiener, the human anti- $R h$ serum contains two distinct agglutinins, anti- $R h_{1}$ and anti- $R h_{2}$, which can be separated by elective absorption (cf. Wiener, 1943, p. 252). When used unabsorbed, the serum gave about 13% negative reactions in Dr Wiener's studies, as compared with $17.5 \%(27 / 154)$ in our kindred. The mode of inheritance of the $R h$-positive property appears to be dominant, as in the families studied by Wiener and others (cf. Wiener, 1943, p. 249).

Secretor test. It was first shown by Lehrs (1930) and Putkonen (1930) that the salivas of certain individuals of groups A, B and $A B$ contain the corresponding antigens in concentrations much higher than the red blood cells, while the salivas of other individuals of these same groups are nearly devoid of such substances. Schiff \& Sasaki (1932) designated the two types of individual as 'secretors' and 'non-secretors', respectively. These authors further showed that the difference extends to group O individuals and is determined by a single dominant gene for secretion. Approximately 5 ml . samples of saliva were collected for the tests on the present kindred. In the case of infants, smaller quantities were obtained by swabbing the mouth with pieces of absorbent cotton. After collection, the tubes were promptly placed in boiling water for 10 min . to destroy the antigen-splitting enzyme present in the fresh saliva. The tubes were refrigerated during transport and centrifuged before testing in order to remove the sediment.

Each sample was tested for the presence of the three antigens A, B and O by means of the 'inhibition method'. Table 1 illustrates the test on a single family containing secretors and nonsecretors of various blood groups. For each antigen present in the blood cells of the individual, quantitative tests were performed in six tubes, using single drops of saliva in serial four-fold dilution. For antigens not present in the blood, only two tubes (saliva $1: 1$ and 1:4) were used, these serving as controls. Omission of four tubes is indicated by ' 0 ' in Table 1. Single drops of serum, adjusted to a titre of approximately 8 , were then added to each series of tubes. After standing for 30 min . at room temperature, test cells of the appropriate group were added. The agglutination, which was observed after 2 hr ., is recorded in the table in four grades ($\pm,+,++$, $+++)$. In the presence of a group-specific substance in the saliva, the corresponding agglutinin of the serum is wholly or partially absorbed, thereby inhibiting the agglutination of the test cells.

The anti- O reagent which was used for the classification of group O salivas was prepared according to the method of Witebsky \& Klendshoj (1941). A selected beef serum, having an initial titre of 256 against cells of group O and a titre of 64 against cells of groups A_{1}, B and $A_{1} B$, was absorbed three times with $1 / 100$ portions of washed, packed cells of group $A_{1} B$. This preparation
was used in a dilution of $1: 16$, which strongly agglutinated group O but failed to agglutinate group A, B or $A_{1} B$ bloods. As is illustrated by Table 1, our tests have regularly confirmed the observation of Witebsky \& Klendshoj that secretors of groups A, B and $A B$ also secrete an O substance, although usually in concentrations smaller than those of group O secretors. The distribution of non-secretors in the pedigree appears to agree with the hypothesis of recessive inheritance, although the proportion of non-secretors ($28 / 156$ or 17.9%) is small in comparison with the average value ($27 \cdot 2 \%$) found by several other investigators (cf. Wiener, 1943, p. 278). In making such comparisons, however, it must be remembered that our sample is worth only about 44 unrelated cases.

Table 1. Tests for the salivary antigens A, B and O in several members of a family

Saliva of	Saliva dilution						Blood group	Saliva reaction
	4^{0}	4^{-1}	4^{-2}	4^{-8}	4^{-4}	4^{-5}		
	B serum + saliva $+A$ cells							
7-5	-	-	-	-	\pm	+	$A_{1} B$	Secretor
8-3	+ + +	$+++$	0	\bigcirc	0	0	0	Non-secretor
18 -1	+ +	+ +	0	\bigcirc	-	\bigcirc	B	Secretor
18-2	-	-	-	-	\pm	$+$	A_{1}	Secretor
18-3	$+++$	$++$	0	\bigcirc	-	-	B	Non-secretor
18-4	$+++$	+ + +	\bigcirc	\bigcirc	\bigcirc	-	B	Secretor
18-5	+ +	$+++$	+ + +	+ + +	+ + +	+ + +	A_{1}	Non-secretor
7-8	$++$	+ +	0		0	-		Secretor
	A serum + saliva $+B$ cells							
7-5	\pm	$+$	+ +	+ +	+ +	$+++$	$A_{1} B$	Secretor
8-3	$t++$	+ + +	-	\bigcirc	\bigcirc	\bigcirc	0	Non-secretor
18-1	-	-	-	\pm	+	+ +	B	Secretor
18-2	+ + +	+ + +	\bigcirc	\bigcirc	\bigcirc	\bigcirc	A_{1}	Secretor
18-3	+ + +	+ + +	+ + +	+ + +	$+++$	+ + +	B	Non-secretor
18-4	-	-	-	-	-	\pm	B	Secretor
18-5	+ + +	+ + +	\bigcirc	\bigcirc	0	\bigcirc	\boldsymbol{A}_{1}	Non-secretor
7-8	$t++$	+ + +	\bigcirc	\bigcirc	0	\bigcirc	0	Secretor
	Anti- O serum + saliva $+O$ cells							
7-5	-	\pm	$+$	+ +	+ +	. ++	$A_{1} B$	Secretor
8-3	+ +	+ + +	+ + +	+ + +	+ + +	+ + +	0	Non-secretor
18-r	-	\pm	$+$	+	$++$	+ +	B	Secretor
18-2	-	-	\pm	+	$++$	+ +	A_{1}	Secretor
18-3	$+++$	+ + +	+ + +	+ + +	+ + +	+ + +	B	Non-secretor
18-4	-	+	+ +	+ +	+ +	+ +	B	Secretor
18-5	+ + +	$+++$	$+++$	+ + +	+ + +	+ + +	A_{1}	Non-secretor
7-8	-	-	-	\pm	+	+ +	0	Secretor

Taste test. The separation of 'tasters' and 'non-tasters' of phenyl-thiocarbamide is probably best accomplished by means of threshold determinations with serial dilutions of a saturated solution. In the present study, however, small quantities of the powdered crystals were placed upon the tongue. Tasters were asked to describe the taste and non-tasters were tested a second time in order to check the result. Unfortunately, it was usually necessary to test a family under conditions which allowed the subject to learn the reactions of his relatives. Test substances other than phenyl-thiocarbamide were not employed as controls, and a number of tests are recorded for children who are perhaps too young for reliable diagnosis. Nevertheless, the results are
regarded as sufficiently accurate to make them of value for linkage detection. One apparent contradiction (48-2) to the recessive inheritance of taste deficiency is present in the record.

Eye colour. Although a detailed description of iris pigmentation was generally recorded, the eye colour is tabulated here merely as three grades of increasing pigmentation. Grade 1 includes eyes with little or no brown pigment; grade 2, with an intermediate amount of pigment; and grade 3, with heavy brown pigment. These records are included with the hope that they may be of interest in linkage analysis, even though the phenotypic classification is quite arbitrary.

Colour-blindness. All members of the kindred, with the exception of the younger children, were tested for colour-blindness by means of the pseudo-isochromatic charts of Ishihara and Stilling. Red-green blindness of the deuteranopia type was observed in eight males and in one female. Five of the affected males, 21-10, 22-1, 45-1, 45-2 and 48-1, are related through females and have most probably derived their gene from a common ancestor ($2-5$ or $2-5 a$). The other affected males, 20-8, 25-1 and 33-1, are apparently of independent origin. The colour-blind woman, $9-7 b$, has a colour-blind son ($25-1$) and also states that her father and a maternal uncle were known to have defective colour vision. This information, which is not included in the pedigree or table of data, confirms the expectation of sex-linked inheritance. It is of further interest that 9-7b, although unaware of her colour-blindness, actually showed a more pronounced defect than was demonstrated by her son or by other affected males of the kindred. Almost all of the Ishihara plates were read as blanks by this woman.

Counting both genes of the affected female, five genes for deuteranopia may be considered to have been sampled in this kindred. Individual 22-1 inherited both deuteranopia and ectopia lentis from his mother. However, all other persons having ectopia lentis, including those with seriously impaired vision, were definitely normal in colour vision, and the data suggest nothing other than independent transmission of the two anomalies. No cases of yellow-blindness (tritanopia) were detected by means of the Stilling charts.

Anthropometric measurements. The skeletal changes most commonly accompanying ectopia lentis are those producing an elongation of the hands and feet. For the present investigation, six measurements were adopted because of their easy determination. These include (1) total stature, (2) span, (3) biacromial diameter, (4) length of left hand, measured from the flexion crease at the base of the palm to the apex of the middle finger, (5) width of the left hand, taken as the maximum contact diameter at right angles to the axis of the palm, and (6) length of the left middle finger, measured from the base of the first phalanyx to the apex of the finger. The hand measurements were made with the hand and fingers extended and resting, palm upwards, on a flat surface. The difference between measurements (2) and (3) provides a measurement of arm length.

The data are presented in Table 2. The ages at the time of examination are included chiefly for their interest in connexion with the anthropometric measurements and eye colour. Taste tests, colour-vision tests and body measurements were omitted in the case of young children. Colour vision was also indeterminate in $7-5$ and $26-3$ because of blindness resulting from complications of ectopia lentis. Due to lack of co-operation, blood samples were not obtained from 22-6 and 43-1, but the blood groups were reconstructed in such cases from the saliva. The testing of 44-8 is incomplete owing to the death of this child occurring before the authors' second visit to the home. It should also be mentioned that the anomalous blood group (A_{2}) of 41-3 would make it seem advisable to omit this child's record for the purpose of calculation.

Table 2. Test factors and measurements on a kindred exhibiting ectopia lentis
The data are arranged by sibships, with the parental records preceding each list when one or both parents have been examined. Entries preceded by an asterisk (*) are previously listed in the table and may be omitted in the tallying of frequencies. The columns of data represent: (1) individual number, corresponding to the pedigree of Fig. 1; (2) sex; (3) $E=$ heterozygous for ectopia lentis; $e=$ normal; (4) $A B O$ blood group; (5) $S=$ secretor, $s=$ non-secretor; (6) $M N$ blood type; (7) $R h=$ presence, $r h=$ absence of agglutinogen $R h$; (8) $T=$ taster, $t=$ non-taster of phenyl-thiocarbamide; (9) $C=$ normal colour vision, $c=$ deuteranopia; (10) grade of eye colour; (11) stature; (12) span; (13) biacromial diameter; (14) hand length; (15) hand width; (16) length of middle finger; (17) age, in months. The measurements are all in millimetres.

1	2	3	4	5	6	7	8	9	10	II	12	13	14	15	16	17
5-6	σ	e	$A_{1} B$	S	N	$R h$	T	C	1	1714	1829	40r	195	89	r 16	648
5-9	아	e	B	S	$M N$	$R h$	T	C	1	1601	1643	347	173	75	104	603
5-10	\%	e	0	S	$M N$	$R h$	t	C	2	1778	1823	404	193	89	116	565
7-2	${ }^{\circ}$	E	A_{1}	S	$M N$	Rh	T	C	I	1758	1773	375	181	82	III	797
7-4	${ }^{\circ}$	e	A_{1}	S	N	$R h$	t	C	I	+ 597	1624	352	172	80	107	742
7-5	아	E	$A_{1} B$	S	$M N$	$R h$	T	-	3	1530	1603	354	165	74	99	718
7-8	6	E	0	S	$M N$	$R h$	T	C	2	1737	1763	353	183	83	110	641
7-9	${ }^{3}$	e	A_{1}	S	N	$R h$	T	C	2	1517	1558	341	162	77	97	615
8 -3	$\stackrel{\text { ¢ }}{ }$	e	O	s	M	$R h$	T	C	I	1669	18ro	400	180	82	110	651
8-4	9	e	0	s	M	$R h$	t	C	3	1537	1593	356	161	75	95	598
9-I	9	e	0	S	N	Rh	T	C	1	1641	1675	356	181	79	12	744
9-4	9	E	A_{1}	S	M	$R h$	T	C	3	1613	1678	361	184	82	107	651
9-5	9	E	A_{1}	S	$M N$	$R h$	T	C	3	1677	1662	337	179	75	III	623
9-6	9	E	0	S	$M N$	$R h$	T	C	\pm	1673	1763	362	181	82	109	604
9-7	${ }^{\circ}$	E	A_{1}	s	M	$R h$	T	C	1	1787	1877	356	203	92	125	564
9-8	아	E	0	s	$M N$	$R h$	t	C	3	1661	1672	362	175	82	107	530
9-9	아	\boldsymbol{e}	A_{1}	S	$M N$	$R h$	T	C	1	1632	1619	349	171	76	101	490
5-6	σ^{}	e	$A_{1} B$	S	N	$R h$	T	C	I	1714	1829	401	195	89	116	648
5-6a	아	e	A_{2}	S	$M N$	$R h$	t	C	1	1601	1643	347	173	75	104	579
13-3	${ }^{\circ}$	e	$A_{2} B$	S	$M N$	$R h$	t	C	r	1775	1879	414	206	90	124	330
13-5	아	e	$A_{2} B$	s	N	$R h$	t	C	I	1687	1727	370	177	76	106	266
$13-6$	아	e	A_{1}	S	N	$R h$	T	C	1	1628	1663	339	177	69	104	189
$13-7$	오	e	A_{1}	S	N	$R h$	T	C	1	1584	1601	344	163	72	98	146
5-9 a	${ }^{*}$	e	B	S	$M N$	$r h$	T	C	3	1722	18×5	409	188	87	115	632
*5-9	아	e	B	s	$M N$	$R h$	T	C	1	1601	1643	347	173	75	104	603
14-2	${ }^{\circ}$	e	B	S	$M N$	$R h$	T	C	I	1738	1822	386	177	79	103	232
${ }^{5}$-10	$\stackrel{\square}{0}$	e	0	S	$M N$	$R h$	t	C	2	1778	1823	404	193	89	116	565
5-roa	\%	e	A_{1}	S	M	$R h$	T	C	2	1577	1549	368	159	72	103	570
15-r	${ }^{\circ}$	e	0	S	$M N$	Rh	T	C	2	1711	1775	390	192	83	116	324
15-3	\bigcirc	e	0	S	M	$R h$	t	C	2	1750	1786	402	185	87	115	267
${ }^{*} 7-2$	O	E	A_{1}	S	$M N$	$R h$	T	C	1	1758	1773	375	181	82	111	797
*8-4	아	e	0	s	M	$R h$	t	σ	3	1537	1593	356	161	75	95	598
16-2	아	E	A_{1}	s	$M N$	$r h$	T	C	3	1627	1628	351	164	77	99	471
16-3	${ }^{\circ}$	e	A_{1}	S	M	$R h$	t	C	3	1674	1697	383	171	80	102	429
16-6	${ }^{*}$	e	\bigcirc	S	$M N$	$R h$	t	C	1	1781	1839	391	185	82	112	408
16-8	\%	e	0	s	M	$R h$	t	C	2	1595	1666	337	177	70	107	220
*7-4	δ°	e	A_{1}	S	N	$R h$	t	C	1	1597	1624	352	172	80	107	742
7-4 ${ }^{\text {a }}$	\bigcirc	e	A_{1}	S	M	$r h$	t	C	1	1590	1585	322	166	75	103	678
17-1	$\stackrel{3}{0}$	e	A_{1}	S	MN	Rh	t	C	I	1718	1770	389	188	86	III	437
17-4	\bigcirc	e	A_{1}	S	$M N$	$R h$	t	C	1	1543	1554	340	170	75	104	317
$17-5$	9	e	A_{1}	S	$M N$	$R h$	t	C	2	1559	1549	347	165	70	98	296
17-6	우	e	A_{1}	S	$M N$	$R h$	t	C	2	1540	1573	347	167	69	100	260

Table 2 (continued)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
*8-3	${ }^{\text {or }}$	e	0	${ }^{8}$	M	Rh	T	C	1	1669	1810	400	180	82	110	651
* 7 -5	9	E	$A_{1} B$	\boldsymbol{S}	$M N$	Rh	T	-	3	1530	1603	354	165	74	99	718
18-1	안	E	B	\boldsymbol{S}	\boldsymbol{M}	Rh	t	C	2	1499	1543	340	155	69	95	494
18-2	\bigcirc	e	A_{1}	S	M	$R h$	T	C	I	1725	r 848	404	185	85	114	467
18-3	9	E	B	\boldsymbol{s}	$M N$	rh	T	C	1	1594	1632	351	166	76	100	422
18-4	9	E	B	S	$M N$	$R h$	T	C	2	1660	1669	365	169	75	102	406
18-6	${ }^{\circ}$	e	A_{1}	s	M	Rh	T	C	1	1687	1838	412	177	85	107	362
*9-I	운	e	0	S	N	$R h$	T	C	1	1641	1675	356	181	79	112	744
21-1	\%	e	A_{1}	S	$M N$	$R h$	t	0	1	1577	1589	342	166	73	101	509
21-2	앙	\boldsymbol{e}	\boldsymbol{A}_{1}	S	$M N$	$\boldsymbol{R h}$	T	C	2	1616	1655	346	175	74	108	476
21-6	아	e	A_{1}	S	MN	$R h$	t	C	1	1677	1712	322	179	73	110	391
21-7	앙	e	A_{1}	S	MN	Rh	t	C	2	1687	1699	332	192	78	116	370
21-8	\bigcirc	e	A_{1}	S	MN	rh	t	C	2	1631	1603	345	177	79	109	347
21-9	${ }^{\circ}$	e	0	S	$M N$	Rh	t	C	2	1752	1734	363	196	85	118	312
21-10	${ }^{\circ}$	\boldsymbol{e}	A_{1}	S	$M N$	$\boldsymbol{R h}$	T	c	2	1717	1712	368	191	85	II5	294
21-11	${ }^{\circ}$	\boldsymbol{e}	0	S	MN	Rh	T	C	2	1626	1682	336	184	78	154	239
9-4a	${ }^{\circ}$	${ }^{\boldsymbol{e}}$	A_{1}	8	M	$\boldsymbol{R h}$	T	C	1	1616	1790	4×6	182	85	110	695
*9-4	앙	\boldsymbol{E}	A_{1}	S	M	$\boldsymbol{R h}$	T	C	3	1613	1678	361	184	82	107	651
22-1	${ }^{\circ}$	E	A_{1}	s	M	$\boldsymbol{R h}$	T	c	1	1747	1780	394	194	82	117	36r
22-2	${ }^{\circ}$	e	\boldsymbol{A}_{1}	S	M	$R h$	T	C	1	1755	1796	389	183	89	r16	337
22-4	${ }^{\circ}$	E	\boldsymbol{A}_{1}	8	M	$R h$	T	C	3	1813	192 I	424	199	87	123	293
22-5	9	e	\boldsymbol{A}_{1}	S	M	$\boldsymbol{R h}$	T	C	1	1558	1628	350	163	73	99	259
22-6	앙	e	A	S	-			-	-		-					224
9-6a	${ }^{\circ}$	e	$A_{2} B$	S	M	$R h$	T	C	2	1731	1845	391	188	85	117	629
*9-6	¢	E	0	S	$M N$	$R h$	T	C	1	1673	1763	362	181	82	109	604
23-1	${ }^{\circ}$	e	B	S	$M N$	$\boldsymbol{R h}$	T	\boldsymbol{C}	$\underline{1}$	${ }^{7} 766$	1820	376	170	88	116	350
23-2	9	E	\boldsymbol{A}_{2}	\boldsymbol{S}	\boldsymbol{M}	$\boldsymbol{R h}$	T	C	I	1724	1718	357	187	76	114	331
*9-7	δ	E	A_{1}	s	M	$R h$	T	C	1	1787	1877	356	203	92	125	564
24-1	\%	E	A_{1}	S	M	$R h$	t	C	3	1728	1730	350	191	73	110	288
*9-7	${ }^{\circ}$	E	A_{1}	s	M	Rh	T	C	1	1787	1877	356	203	92	125	564
9-7b	9	\boldsymbol{e}	0	s	N	$\boldsymbol{R h}$	T	c	1	1548	1550	339	172	74	102	511
25-1	δ^{*}	e	A_{1}	s	$M N$	$R h$	T	c	1	1712	1688	375	195	83	115	232
9-8a		e	0	8	N	rh	T	C	1	1721	1750	404	191	84	115	563
*9-8	9	E	0	8	$M N$	$R h$	t	C	3	1661	1672	362	175	82	107	530
26-1	9	e	0	s	N	$r h$	T	C	1	1664	1692	345	185	74	109	244
26-3	${ }^{\circ}$	E	0	8	N	rh	t	-	1	1767	1798	381	192	86	117	233
9-8b	${ }^{\text {® }}$	${ }^{e}$	0	S	$M N$	$R h$	T	C	3	1676	1738	384	181	84	114	606
*9-8	¢	E	0	s	$M N$	Rh	t	C	3	1661	1672	362	175	82	107	530
27-1	δ	e	0	S	$M N$	rh	T	C	2	1626	1672	353	181	80	112	193
27-2	¢	e	0	S	$M N$	$\boldsymbol{R h}$	T	C	1	1235	1238	252	132	60	83	92
9-9a	ठ	e	0	5	$\boldsymbol{M N}$	$R h$	T	C	1	1757	1738	401	174	82	110	527
*9-9	\%	e	A_{1}	S	$M N$	$R h$	T	C	1	1632	1619	349	171	76	101	490
28-1	8	e	A_{1}	S	N	$R h$	T	C	2	1138	1115	231	123	56	71	72
${ }^{*} 13-3$	\%	e	$A_{2} B$	S	MN	$R h$	t	C	I	1775	1879	414	206	90	124	330
13-3a	¢	e	0	S	$M N$	$R h$	T	C	I	1645	1721	375	175	80	109	304
29-I	σ	e	A_{2}	8	$M N$	$R h$	-	-	I	-	-	-		-	-	4

Table 2 (continued)

I	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
${ }^{*} 5^{-1}$	${ }^{\text {or }}$	e	0	S	$M N$	$R h$	T	C	2	1711	1775	390	192	83	116	324
15-1a	¢	e	A_{2}	S	M	$R h$	T	C	3	1558	1611	363	164	74	98	314
30-1	9	e	0	S	$M N$	$R h$	T	C	3	1211	1195	265	128	57	77	97
30-2	\%	e	0	S	$M N$	$R h$	\boldsymbol{T}	C	3	1091	1096	249	118	54	70	77
30-3	$\overbrace{}^{\circ}$	e	A_{2}	8	$M N$	$R h$	T	-	3	838	844	214	100	44	60	26
16-2 a	$\stackrel{1}{0}$	e	0	S	$M N$	$r h$	T	C	1	1806	1918	384	199	87	117	510
*16-2	안	E	A_{1}	\boldsymbol{s}	$M N$	$r h$	T	C	3	1627	1628	351	164	77	99	471
32-1	$\stackrel{*}{0}$	e	0	S	$M N$	$r \hbar$	T	C	3	1698	1791	385	169	77	104	253
32-2	${ }^{\circ}$	e	0	S	$M N$	$r h$	T	O	I	1815	1922	410	r98	88	118	238
32-3	\%	E	0	S	N	$r h$	T	C	I	1638	1672	321	166	74	102	221
32-4	${ }_{0}$	E	A_{1}	S	$M N$	$r h$	T	C	I	1635	1683	316	174	76	106	188
*16-3	${ }^{\circ}$	e	A_{1}	S	M	$R h$	t	C	3	1674	1697	383	171	80	102	429
16-3a	¢	e	0	s	$M N$	$R h$	T	O	1	1575	1609	351	166	74	100	466
33-1	${ }^{\circ}$	e	A_{1}	S	M	$R h$	T	c	1	1643	1717	394	I80	81	109	193
33-2	¢	e	A_{1}	s	M	$R h$	t	C	2	14.35	1448	315	147	66	87	162
*16-6	${ }^{\text {cos}}$	e	0	S	$M N$	$R h$	t	C	1	1781	1839	39 I	185	82	112	408
16-6a	\%	e	0	S	M	$R h$	T	O	3	1718	1751	352	184	77	112	341
34-I	안	e	0	S	M	$R h$	t	C	1	1266	1234	263	126	56	80	82
${ }^{1}{ }_{17}$-1	$\stackrel{\text { or }}{ }$	e	A_{1}	S	$M N$	$R h$	t	C	1	1718	1770	389	188	86	III	437
${ }_{17} 7$ - a	안	e	A_{2}	S	$M N$	$r h$	T	C	2	1640	1662	352	172	73	100	412
35-r	아	e	A_{2}	S	$M N$	$R h$	T	C	2	1491	1509	320	162	65	97	144
35-2	9	e	A_{1}	S	$M N$	$r h$	t	C	1	1423	1431	312	149	67	89	120
35-3	ठ	e	A_{1}	S	M	$r h$	-	-	2	-	-			-		16
${ }^{17-4}{ }^{\text {a }}$	\%	e	B	s	N	$r h$	T	C	2	1741	1836	390	188	84	116	335
*17-4	앙	e	A_{1}	S	$M N$	$R h$	t	C	1	1543	1554	340	170	75	104	317
36-r	9	e	A_{1}	S	$M N$	$R h$	T	C	1	1177	1197	251	130	57	78	87
36-2	\%	e	$A_{1} B$	S	N	$r h$	T	0	1	990	1006	231	113	48	68	51
17-5 a	${ }^{\circ}$	e	0	S	M	$r h$	T	C	1	1772	1860	389	191	83	1	353
* ${ }^{7}$-5	9	e	A_{1}	S	$M N$	$R h$	t	C	2	1559	1549	347	165	70	98	296
37-1	9	e	A_{1}	S	M	Rh	-	-	1	-	-	-	-	-	-	6
*18-1	9	E	B	S	M	Rh	t	C	2	1499	1543	340	155	69	95	494
38-1	χ^{*}	e	B	S	$M N$	$R h$	T	C	3	1721	1715	352	177	82	105	270
18-1 b	ठ	e	A_{1}	S	$M N$	$R h$	T	0	2	1785	1885	387	20	90	119	462
*18-1	¢	E	B	S	M	Rh	t	C	2	1499	1543	340	155	69	95	494
39-1	안	E	B	S	$M N$	$R h$	T	C	2	1622	1650	341	167	73	102	192
39-2	¢	\boldsymbol{E}	0	S	M	$R h$	T	C	2	1656	1670	320	176	74	106	171
*18-2	${ }_{0}$	e	A_{1}	S	M	Rh	\boldsymbol{T}	C	1	1725	1848	404	185	85	114	467
19-1	¢	e	0	S	$M N$	Rh	\boldsymbol{T}	C	2	1525	1607	362	169	74	93	438
41-1	9	e	A_{1}	S	$M N$	Rh	\boldsymbol{T}	C	2	1530	1609	329	158	72	100	175
41-2	δ°	e	0	S	$M N$	Rh	T	C	2	1205	1239	264	126	58	75	89
41-3	우	e	A_{2}	S	$M N$	$R h$	\boldsymbol{T}	-	3	942	950	213	104	46	61	36
41-4	¢	e	0	S	M	$R h$	-	-	2					-		1 I
*18-3	¢	E	B	s	$M N$	$r h$	T	0	I	1594	1632	351	166	76	100	422
42-1	¢	e	B	S	N	$R h$	T	C	1	1526	1544	329	157	67	96	184
42-2	¢	E	A_{1}	S	N	$R h$	\boldsymbol{T}	C	3	1506	1550	320	159	74	98	162
42-3	¢	E	B	S	N	$R h$	\boldsymbol{T}	C	3	1139	1147	254	121	54	72	84
42-4	${ }^{\circ}$	E	B	S	N	$r h$	-	-	1	957	949	211	105	48	67	45

Table 2 (continued)

I	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
20-8	\%	e	A_{1}	S	N	$R h$	T	c	1	1706	1797	385	191	79	114	466
*18-4	\%	E	B	S	$\boldsymbol{M N}$	$R h$	T	C	2	1660	1669	365	169	75	102	406
43-1	안	e.	$A B$	S	-	-	T	C	1	1375	1367	298	136	65	81	120
21-1 a	${ }^{\circ}$	e	$A_{1} B$	S	N	$r h$	T	C	3	1684	1719	382	188	86	114	562
*21-1	¢	e	A	S	MN	$R h$	t	C	1	1577	1589	342	166	73	101	509
44-1	¢	e	$A_{1} B$	S	N	$R h$	T	C	3	1526	1541	358	163	73	97	300
44-5	${ }^{\circ}$	e	A_{1}	S	N	$R h$	T	C	3	1566	1564	310	159	75	99	192
44-6	${ }^{*}$	e	B	S	$M N$	$R h$	T	0	3	1408	1387	276	147	68	92	132
44-7	${ }^{\text {a }}$	e	B	S	$M N$	$R h$	T	C	3	1307	1297	264	137	61	86	107
44-8	9	e	-	-	-	-	-	C	3	1090	1091	234	119	53	76	68
44-9	9	e	A_{1}	S	$M N$	$R h$	-	-	3	852	871	200	99	44	6 r	26
21-2a	σ	e	A_{1}	S	MN	$R h$	t	C	I	1754	1806	391	178	84	111	528
*21-2	9	e	A_{1}	S	$M N$	$R h$	T	σ	2	1616	1655	346	175	74	108	476
45-1	${ }^{\circ}$	e	A_{1}	S	MN	$R h$	t	c	1	1741	1829	365	189	79	114	270
45-2	${ }^{\text {a }}$	e	A_{1}	S	$M N$	$R h$	t	c	1	1790	1882	375	195	86	118	222
45-3	¢	e	A_{1}	S	$M N$	$R h$	t	C	1	1123	1144	241	121	57	73	62
*21-6	9	e	A_{1}	S	$M N$	Rh	t	C	1	1677	1712	322	179	73	110	391
47-1	앙	e	A_{1}	8	N	$R h$	T	C	2	1550	1564	309	166	76	102	176
47-2	\%	e	0	\boldsymbol{S}	N	$R h$	T	C	1	1472	1600	306	166	69	100	153
21-6b	\bigcirc	e	0	S	M	$R h$	t	C	1	1763	1823	353	183	86	107	497
*21-6	아	e	\boldsymbol{A}_{1}	S	$M N$	$R h$	t	C	1	1677	1712	322	179	73	110	391
48-1	${ }^{\circ}$	e	0	S	$M N$	$R h$	t	c	I	1369	1388	280	139	67	85	128
48-2	${ }^{\circ}$	e	\boldsymbol{A}_{1}	S	M	$R h$	T	C	1	1219	1211	242	133	55	80	85
48-3	안	e	A_{1}	S	$M N$	$R h$	-	-	1	-	-		-		-	48
21-7a	0°	e	A_{1}	S	MN	rh	t	C	3	1791	1896	441	209	98	125	447
*21-7	안	e	A_{1}	S	$M N$	Rh	t	C	2	1687	1699	332	192	78	116	370
49-1	앙	e	A_{1}	S	$M N$	$R h$	t	C	2	1546	1550	313	180	81	107	158
49-3	아	e	A_{1}	S	$M N$	Rh	t	0	3	1269	1280	251	143	64	88	89
49-4	$\overbrace{}^{*}$	e	A_{1}	S	N	$R h$	-	C	3	1083	1087	229	124	56	75	72
49-5	아	e	A_{1}	8	$M N$	$R h$	-	-	1	-	-		-		-	24
21-8a	\%	e	0	S	$M N$	$R h$	t	C	2	1738	1789	388	190	90	116	444
*2r-8	우	e	A_{1}	S	$M N$	$r h$	t	C	2	1631	1603	345	177	79	109	347
50-1	${ }^{\circ}$	e	0	S	$M N$	$R h$	t	C	2	1485	1447	299	165	70	96	134
50-2	0^{*}	e	A_{1}	S	N	Rh	t	C	I	1345	1275	272	145	62	83	100
*21-9	${ }^{\circ}$	e	0	S	$M N$	$R h$	t	C	2	1752	1734	363	196	85	118	312
21-9a	¢	e	A_{1}	S	$M N$	$r h$	T	C	2	1609	1658	335	176	71	108	296
$5 \mathrm{I}-\mathrm{I}$	$\overbrace{}^{\circ}$	e	A_{1}	S	$M N$	$R h$	T	-	2	II33	1095	239	118	56	78	61
51-2	${ }^{*}$	e	A_{1}	S	N	Rh	T	-	2	930	940	207	112	48	61	38
51-3	${ }^{\circ}$	e	0	S	MN	rh	-	-	I						-	6
*22-2	${ }^{\circ}$	e	A_{1}	S	M	Rh	T	C	1	1755	1796	389	183	89	116	337
22-2b	¢	e	A_{2}	S	$M N$	$r h$	T	C	3	1621	1667	368	167	74	103	285
53-1	${ }^{\circ}$	e	0	S	MN	Rh	-	-	3	-	-	-	-	-	-	36
53-2	${ }^{\circ}$	e	A_{2}	S	\boldsymbol{M}	$\boldsymbol{R h}$	-	-	3	-	-	-	-	-	-	20
53-3	${ }^{*}$	e	A_{1}	S	$M N$	Rh	-	-	3	-	-			-		8
*23-1	${ }^{\text {® }}$	e	B	S	MN	$R h$	T	C	I	1766	1820	376	170	88	116	350
23-1 a	¢	\boldsymbol{e}	B	S	M	$R h$	T	C	I	1596	1651	369	173	75	101	320
54-1	안	e	B	8	$M N$	$R h$	T	C	I	1242	1268	279	139	61	83	78
54-2	${ }^{\circ}$	\boldsymbol{e}	B	S	M	$\boldsymbol{R h}$	-	-	1	948	962	215	108	52	66	43
54-3	¢	\boldsymbol{e}	B	S	M	$R h$	-	-	1	-	-	-	-	-	-	18

Table 2 (continued)

1	2	3	4	5	6	7	8	9	10	1 I	12	13	14	15	16	17
23-2a	0°	e	A_{2}	S	$M N$	Rh	T	C	1	1709	1773	386	182	81	11	359
${ }^{2} 3$-2	앙	E	A_{2}	S	M	Rh	T	C	1	1724	1718	357	187	76	114	331
55-1	앙	E	0	S	$M N$	Rh	t	C	1	1221	1215	245	131	58	75	76
55-2	\%	e	0	S	$M N$	$r h$	T	C	1	1037	1036	230	112	50	67	46
55-3	?	e	A_{2}	s	M	$R h$		-	I							2
24-1 a	${ }^{*}$	e	A_{1}	s	M	$R h$	T	C	3	1718	1766	369	184	80	113	301
${ }_{24}{ }^{\text {- }}$ I	?	E	A_{1}	S	M	$R h$	t	C	3	1728	1730	350	191	73	110	288
56-1	안	e	A_{1}	S	M	$R h$	t	C	3	1075	1027	230	118	51	71	60
56-2	\%	E	A_{1}	s	M	$R h$	-	-	1	915	914	198	105	45	6r	35
38-1	${ }^{}$	e	B	S	$M N$	$R h$	T	C	3	1721	1715	352	177	82	105	270
38-1 a	아	e	0	S	$M N$	$R h$	T	C	3	1658	1680	335	172	73	102	235
57-1	\bigcirc	c	0	S	M	$R h$	-		3	-	-	-	-		-	19
$44-\mathrm{r} a$	$\stackrel{\text { ® }}{ }$	e	A_{1}	S	$M N$	$R h$	T	C	3	1728	18 r 2	403	195	85	116	397
* 44 - I	9	e	$A_{1} B$	S	N	$R h$	T	0	3	1526	1541	358	163	73	97	300
58-r	9	e	A_{1}	S	N	$R h$	-	-	3		-	-		-	-	12

REFERENCES

H. F. Falls \& C. W. Cotterman (1943). Genetic studies on ectopia lentis. I. A pedigree of simple ectopia of the lens. Arch. Ophthal., N.Y., 30, 610-20.
R. A. Fisher (1940). The estimation of the proportion of recessives from tests carried out on a sample not wholly unrelated. Ann. Eugen., Lond., 10, 160-70.
Karl Landsteiner \& A. S. Wiener (1940). Studies on an agglutinogen ($R h$) in human blood reacting with anti-rhesus sera and with human isoantibodies. J. Exp. Med. 74, 309-20.
Hugo Lehrs (1930). Über gruppenspezifische Eigenschaften des menschlichen Speichels. Z. ImmunForsch. 66, 175-6.
Tauno Putkonen (1930). Über die gruppenspezifischen Eigenschaften verschiedener Korperflüssigkeiten. Acta Soc. Med. 'Duodecim', A, 14, part 2.
Felix Schiff \& H. Sasaki (1932). Über die Vererbung des serologischen Ausscheidungstypus. Z. ImmunForsch. 77, 129-39.
A. S. Wiener (1943). Blood Groups and Transfusion, 3rd ed., pp. xix +438 . Springfield, Ill. : Chas. C. Thomas. Ernest Witebsky \& N. C. Klendshos (1941). The isolation of an O specific substance from gastric juice of secretors and carbohydrate-like substances from gastric juice of non-secretors. J. Exp. Med. 74, 309-20.

[^0]: * Support for this study was provided by the Horace H. Rackham School of Graduate Studies, University of Michigan.
 \dagger Walter R. Parker Scholar.

