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On the equivalence of posterior inference
based on retrospective and prospective
likelihoods: application to a case-control
study of colorectal cancer
M. Ghosh,a J. Song,b*† J. J. Forster,c R. Mitrac and
B. Mukherjeed

The paper develops a class of priors that leads to equivalent posterior inference for odds ratio parameters
based on prospective and retrospective models for categorical response data. The results are applicable to both
unmatched and matched case-control studies. The results hold for a general class of link functions for categorical
response. The proposed method can accommodate multiple and possibly ordered disease states. The results are
applied to the analysis of discrete subtypes in an ongoing case-control study of colorectal cancer. A simulation
study illustrates the need for carefully considering prior choices in Bayesian analysis of data collected under
retrospective design. Copyright © 2012 John Wiley & Sons, Ltd.
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1. Introduction

The main objective of case-control studies is to measure the degree of association between a certain
disease (e.g., cancer) and one or more exposure variables under consideration (e.g., smoking, family
history, obesity, etc.). Statistical analysis of case-control data is primarily based on the exposure-
disease, or equivalently the disease-exposure, odds ratio [1] that marks the degree of association between
the disease and the exposure. With advances in modern medicine and clinical diagnosis, more pre-
cise characterization of disease subtypes are often possible with the corresponding need for a more
generalized odds ratio function, or equivalently more general models for the probability of disease given
exposure than logistic regression models, to capture the risk heterogeneity across different subtypes.

Case-control studies are primarily retrospective in nature because one traces the exposure history of an
individual or a group of individuals conditional on their outcome categories. As such, the usual prospec-
tive analysis suitable for cohort data is not obviously applicable in the case-control context. Thus, it is
important to know whether a prospective analysis of the disease-exposure odds ratio parameters produces
equivalent answers to the corresponding retrospective analysis.

With binary outcomes and the prospective logistic regression model, Anderson [2] provided an equiva-
lence result for the inference of the odds ratio parameter, restricted only to discrete exposures. Continuing
with this model, the classic paper of Prentice and Pyke [3] provided a more general result, where the
exposure variables could be discrete, continuous, or a combination. In particular, Prentice and Pyke
proved that the maximum likelihood estimator (MLE) for the odds ratio parameter based on a prospec-
tive model is equivalent to that based on a retrospective model. Moreover, this MLE is consistent even
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under the retrospective model, and the observed Fisher information matrix for the odds ratio parameters
based on the prospective model provides valid standard error estimates under the retrospective model.
The work of Prentice and Pyke [3] spurred further research in this general area. We may refer to [4–12].

Seaman and Richardson [13] first studied this equivalence of posteriors for the odds ratio parameter
in a Bayesian context. They presented a class of priors for which the posterior for odds ratio parame-
ters based on the prospective likelihood is equivalent to that based on the retrospective likelihood for
unmatched case-control studies under the logistic regression model. Ghosh et al. [14] extended their
work to matched case-control studies using the same class of priors as that of Seaman and Richardson
[13]. Staicu [15] presented a general class of priors for the posterior equivalence of odds ratio parame-
ters that includes the class of priors of Seaman and Richardson [13]. She also showed that adopting the
priors of Seaman and Richardson [13] is necessary and sufficient for the odds ratio parameter’s poste-
rior equivalence when the nuisance parameter in the prospective likelihood, the nuisance parameter in
the retrospective likelihood, and the odds ratio parameter are mutually independent. However, all these
papers were restricted to the binary logistic model and discrete exposures.

The purpose of this paper is to extend the aforementioned results in two directions. First, we accom-
modate multiple, possibly ordered, disease states. Second, we relax the restriction to logistic regression
models, by including those involving the probit and skew-symmetric links. Another interesting case that
we can handle is the proportional odds model and, in particular, the cumulative logit model [16, p.322].
However, the results are still limited to models with discrete exposure variables.

A special and important case of the general model structure we consider is the multiplicative intercept
model considered in [17]. Anderson [18] first introduced a further special case stereotype model and
Greenland [19], Kuss [20], and Ahn et al. [21, 22], among others, subsequently studied it. A stereotype
model lies in-between the polytomous logistic model and the proportional odds model but can represent
the ordinal characteristics of a response variable under suitable order constraints on the parameters.

To establish equivalence of posteriors for the odds ratio parameters, starting from either the prospec-
tive or the retrospective likelihood, is important for Bayesian analysis of data collected under retrospec-
tive sampling. Direct use of the retrospective likelihood usually involves more nuisance parameters than
the corresponding prospective likelihood, especially as the dimension of the exposure/covariate vector
grows. For example, for binary disease states and categorical exposures, the number of nuisance parame-
ters corresponding to the retrospective likelihood is the number of possible exposure configurations less
one, whereas the number of nuisance parameters corresponding to the prospective likelihood is simply
one. Once the posterior equivalence of odds ratios from the prospective and retrospective likelihoods
is established, one can validly use prospective likelihood for faster computation and convergence of
the numerical integration scheme needed for a full Bayes analysis, with much fewer parameters than
using the retrospective likelihood. The prospective likelihood can easily be handled by standard soft-
ware like WinBugs, whereas directly using the retrospective likelihood will require writing independent
codes. Our characterization of priors illustrates that arbitrary priors on the nuisance parameters in the
retrospective likelihood do not yield posterior equivalence. We present simulation results that indicate
that with arbitrary prior choices on the nuisance parameters in the retrospective likelihood, one can end
up with estimates with poor frequentist properties compared with the estimates with a prior for which
the posterior equivalence holds (Table III). For a careful Bayesian analysis with categorical outcome
and exposure, our results provide useful information to guide prior choices and justify the prospective
likelihood for basis of Bayesian inference of retrospective data.

With improvements in clinical diagnosis and classification, different cancers are now often accom-
panied with detailed tumor subtype information. Moreover, sampling of cases is also being carried out
according to subtype groups, and the need for models that incorporate categorical and ordered link func-
tions under retrospective sampling is indeed important. The extension in this paper of the existing body
of results to a general link function that can handle multiple ordered outcome is timely. In our example
from the Molecular Epidemiology of Colorectal Cancer (MECC) study, multiple cancer stages consti-
tute the disease subtype variable, and Bayesian methods are employed under an uncommon class of
regression models called the stereotype regression models. Use of Bayesian methods appears to be most
natural for this class of models, but under case-control sampling, Bayesian inference needs justifica-
tion. The present paper exactly fills in that gap, provides justification to carry Bayesian analysis with a
prospective likelihood, and also guides prior choices for conducting that analysis.

The outline of the remaining sections is as follows. Section 2 presents the general Bayesian equiva-
lence result characterizing a class of priors. Conditions ensuring the propriety of the posteriors are also
given in this section. Section 3 gives an equivalent formulation for the special multiplicative intercept
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model. Section 4 extends the results of Sections 2 and 3 for stratified case-control studies. Section 5
presents an example of Bayesian analysis of a case-control study with multiple cancer stages under the
stereotype model. Section 6 presents a simulation study. Section 7 contains some final remarks.

2. The Bayesian equivalence result

Our objective is to find a class of priors for which the posterior inference for the odds ratios remains
the same under the prospective and retrospective likelihoods for any model. Consider the situation when
there are r C 1 disease categories d D 0; 1; : : : ; r and an exposure vector X that can take the values
x1; : : : ; xK . Let

Pdk D P.D D d jX D xk/; d D 0; 1; : : : ; r; k D 1; : : : ; K; (1)

where P.D D d jX D xk/ is any arbitrary model. Also, let

P.X D xkjD D 0/D �k; k D 1; : : : ; K; (2)

where �K D 1�
PK�1
kD1 �k .

Then by using a technique of Satten and Kupper [23], it is easy to show that

P.X D xkjD D d/D
�kPdkP

�1
0kPK

lD1 �lPdlP
�1
0l

; k D 1; : : : ; K: (3)

We denote byZdk the number of individuals withD D d andX D xk . Then from (1), the prospective
likelihood is given by

LP D

rY
dD0

KY
kD1

P.D D d jX D xk/
Zdk D

rY
dD0

KY
kD1

P
Zdk
dk

; (4)

whereas from (2) and (3), the retrospective likelihood is given by

LR D

KY
kD1

rY
dD0

P.X D xkjD D d/
Zdk D

KY
kD1

2
4�Z0k

k

rY
dD1

(
�kPdkP

�1
0kPK

lD1 �lPdlP
�1
0l

)Zdk35 : (5)

We write ˛d D
PK
lD1 Pdl=P0l ; d D 1; : : : ; r , and �dk D ˛�1

d
.Pdk=P0k/; d D 1; : : : ; r; k D

1; : : : ; K. Note that the �dk are normalized odds and
PK
lD1 �dl D 1; d D 1; : : : ; r . The odds

ratio .Pdk=P0k/=.Pdl=P0l/ is equivalently expressible as �dk=�dl . Hence, the �dk are parame-
ters of interest. As an example, for the multiplicative intercept model where Pdk D expf�d C
Q.xk; ıd /g=

Pr
jD0 expf�jCQ.xk; ıj /g, whereQ can be any arbitrary function of the exposure variable

and parameters, one obtains the odds ratios �dk=�dl D expŒQ.xk; ıd /�Q.xl ; ıd /� that do not depend
on the intercept parameters �d .

We now rewrite LP with ˛1; : : : ; ˛r and �11; : : : ; �rK as

LP D

(
rY

dD1

KY
kD1

.˛d�dk/
Zdk

)
KY
kD1

8<
:
 
1C

rX
dD1

˛d�dk

!�PrdD0Zdk9=
; ; (6)

and rewrite LR with �1; : : : ; �K and �11; : : : ; �rK as

LR D

KY
kD1

8<
:�Z0kk

rY
dD1

 
�k�dkPK
lD1 �l�dl

!Zdk9=
; (7)

because Pdk=P0k D ˛d�dk and
PK
lD1 �dl D 1. We also write ˛ D .˛1; : : : ; ˛r/; � D .�1; : : : ; �K�1/,

�D .�11; : : : ; �1K ; : : : ; �r1; : : : ; �rK/. Recall that �K D 1�
PK�1
kD1 �k . The main theorem of this section

is as follows.
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Theorem 1
Consider the prior �.˛; �/_

�Qr
dD1 ˛

�1
d

�
�0.�/ for LP and the prior �.�; �/_

�QK
kD1 �

�1
k

�
�0.�/ for

LR, where �0 is an arbitrary but proper prior. Then the posterior of � is the same under LP or LR. Also,
suppose Z0k > 1.k D 1; : : : ; K/, that is, every exposure category consists of at least one control. Then
the posterior of � is proper.

Proof
Proof is given in Appendix A. �

Consider the situation in which one obtained his or her data from a case-control study and believes

that the prior of � and � is �.�; �/ _
�QK

kD1 �
�1
k

�
�0.�/ where �0 is any distribution. The standard

retrospective Bayesian analysis corresponding to case-control studies will use the retrospective likeli-
hood LR and the aforementioned prior �.�; �/ to obtain the posterior of �. Theorem 1 tells that using a
prospective likelihood LP and a prior �.˛; �/ _

�Qr
dD1 ˛

�1
d

�
�0.�/ also provides an equivalent poste-

rior of � to that from the standard retrospective Bayesian analysis. Noting that an odds ratio is a function
of �, the posterior equivalence of odds ratios from the prospective and retrospective likelihoods holds.
Also, Theorem 1 generalizes Seaman and Richardson [13] who considered binary disease states, that is,
d D 0; 1, and the logit link describing Pdk .

Our characterization result for posterior equivalence yields Dirichlet.0; : : : ; 0/ as the prior for the ret-
rospective nuisance parameter vector � . If one chooses a Dirichlet.a1; : : : ; aK/ prior with .a1; : : : ; ak/
not equal to .0; : : : ; 0/ for � , the posterior equivalence will not hold. As will be evident in the appendix,
writing �k D �k=

PK
jD1 �j , the �k in (14) are a posteriori independent exponentials with shape param-

eters ak C
Pr
dD0Zdk and a common scale parameter. The exact LP cannot be obtained by integrating

out the �k .

3. Multiplicative intercept model

Multiplicative intercept models are quite widely used for the analysis of categorical data and, in
particular, for the analysis of case-control data. For such a model,

Pdk D P.D D d jX D xk/D
expf�d CQ.xk; ıd /gPr
mD0 expf�mCQ.xk; ım/g

: (8)

To avoid nonidentifiability, we assume without loss of generality �0 D 0 and Q.xk; ı0/ D 0 for
all k D 1; : : : ; K. For this special model, (�11; : : : ; �rK) is a function of .ı1; : : : ; ır/. Consider a
prior �.�1; : : : ; �r ; ı0; : : : ; ır/ _ �0.ı0; : : : ; ır/ for the prospective likelihood in (4) and a prior
�.ı0; : : : ; ır ; �/ _ .

QK
kD1 �

�1
k
/�0.ı0; : : : ; ır/ for the retrospective likelihood in (7) with any proper

prior �0. Then the posterior of .ı1; : : : ; ır/ based on the prospective likelihood is equivalent to that
based on the retrospective likelihood by Theorem 1. The proof is given in Appendix B.

A special case of (8) is the general multinomial logistic model where Q.xk; ıd /D xTk ıd . The stereo-
type model [18] is another special case with Q.xk; ıd / D �dxTk ˇ, where 0 D �0 < �1 < � � � < �r�1 <
�r D 1 or 1 D �0 > �1 > � � � > �r�1 > �r D 0. This is one of the simplest models to analyze ordinal
data including the adjacent category model [16, p.318] where �d D .r � d/=r .

4. Posterior equivalence for stratified case-control data

In this section, we extend the results of Section 2 for stratified case-control data. The need for stratifi-
cation often arises in case-control studies to eliminate any potential confounding effects. For instance,
often it is necessary to stratify case-control data based on gender, age, race, and ethnicity. An example
of such stratified data appears in the next section. For Bayesian analysis of matched case-control data,
see [24–27].

Ghosh et al. [15] established this posterior equivalence for binary case-control data assuming a logis-
tic regression model. Once again, we provide a two-fold extension of their results: first, by considering
multiple and possibly ordered disease states; second, by considering an arbitrary link not restricted to
the logit link.

Copyright © 2012 John Wiley & Sons, Ltd. Statist. Med. 2012, 31 2196–2208
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To this end, we consider T strata, 1; : : : ; T and denote the stratum indicator by S . As in Section 2, we
have .rC1/ disease categories d D 0; 1; : : : ; r , andK exposure categories x1; : : : ; xK . LetZsdk denote
the number of individuals with D D d and X D xk in stratum s. A prospective likelihood is given by

LP D

TY
sD1

rY
dD0

KY
kD1

P
Zsdk
sdk

; (9)

where Psdk D P.D D d jS D s; X D xk/; s D 1; : : : ; T; d D 0; 1; : : : ; r; k D 1; : : : ; K. A
retrospective likelihood is given by

LR D

(
TY
sD1

KY
kD1

�
Zs0k
sk

)24 TY
sD1

rY
dD1

KY
kD1

(
�skPsdkP

�1
sokPK

lD1 �slPsdlP
�1
sol

)Zsdk35 ; (10)

where P.X D xkjD D 0; S D s/D �sk; �sK D 1�
PK�1
kD1 �k; s D 1; : : : ; T; k D 1; : : : ; K.

Now consider, as in Section 2, the reparameterization ˛sd D
PK
lD1 Psdl=Ps0l and �sdk D ˛�1

sd
.Psdk=Ps0k/, s D 1; : : : ; T , d D 1; : : : ; r , and k D 1; : : : ; K. We denote �D .�111; : : : ; �T rK/. We can
note that LP and LR can be written with ˛11; : : : ; ˛T r ; � and �11; : : : ; �TK�1; � respectively. Consider
the prior

�.˛11; : : : ; ˛T r ; �/_
 
TY
sD1

rY
dD1

˛�1sd

!
�0.�/

for LP in (9) and the prior

�.�11; : : : ; �TK�1; �/_
 
TY
sD1

KY
kD1

��1sk

!
�0.�/

for LR in (10), where �0 is a proper prior. Then it turns out that the posterior of � is the same whether it
is generated from LP or LR, and the proof is similar to the one in Section 2.

For the multiplicative intercept model in Section 3, Psdk D expf�sd CQ.xk; ıd /g=
Pr
mD0 expf�sm

CQ.xk; ım/g. Assume without loss of generality, �s0 D 0 for all s D 1; : : : ; T and Q.xk; ı0/ D 0 for
all k D 1; : : : ; K. Consider the prior �.�11; : : : ; �T r ; ı0; : : : ; ır/_ �0.ı0; : : : ; ır/ with any proper prior

�0 for the prospective likelihood and the prior �.ı0; : : : ; ır ; �11; : : : ; �TK�1/ _
�QT

sD1

QK
kD1 �

�1
sk

�
�0.ı0; : : : ; ır/ for the retrospective likelihood. Then the posterior equivalence of .ı1; : : : ; ır/ holds as in
Section 3. We use this posterior equivalence of .ı1; : : : ; ır/ in Section 5 to do data analysis for certain
stereotype models.

5. Example: analysis of colorectal cancer data

The dataset we consider is a population-based case-control study of colorectal cancer in Israel from 1998
to 2004. The MECC Study is a rich resource of molecular, environmental, dietary, and behavioral risk
factors along with basic personal and demographic information [28]. We now apply the results of the
previous section to analyze a subset of the data with 1066 cases and 1337 controls with stage information
recorded for the cases. We carried out cancer staging on the basis of tumor nodes and metastasis criteria.
Among the cases, 665 are in stages 1 and 2 (d D 1) and 401 are in stages 3 and 4 (d D 2). Thus, the num-
ber of disease categories is 3, with d D 0 standing for all 1337 controls. The objective is to explore the
association between colorectal cancer stage with the frequency of grilled red-meat intake and physical
activity. Ethnicity may also affect risk of colorectal cancer, and we used it for stratification. We restricted
our analysis to two ethnic groups, Ashkenazi and Sephardi, that constitute stratum 1 (s D 1) with 1799
observations and stratum 2 (s D 2) with 604 observations, respectively. The exposure vector consists of
two variables. RM is coded as 1 if the subject eats grilled red meat at least once a week and 0 otherwise.
We also use a binary variable, PA, whose value is 1 if the subject is physically active and is 0 otherwise.
Thus, the four possible values of the exposure vector with these two dichotomous variables are (0,0),
(1,0), (0,1), (1,1), which we denote by x1; x2; x3; x4.

2200
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Stereotype models are useful here owing to the ordered nature of disease states. We use Psdk D
exp

�
�sd C �dx

T
k
ˇ
�
=
P2
mD0 exp

�
�smC �mx

T
k
ˇ
�

with ˇ D .ˇ1; ˇ2/T , �10 D �20 D 0, 0D �0 < �1 <
�2 D 1 for s D 1; 2, d D 0; 1; 2, k D 1; 2; 3; 4. Noting that

�dk=�dk0 D exp.�d .xk � xk0/
Tˇ/; (11)

odds ratios are functions only of the �d .d D 0; 1; 2/; xk.k D 1; : : : ; 4/ and ˇ. Now owing to the
equivalence of the posteriors of �dk derived from both the prospective and retrospective likelihoods as
mentioned in the previous section and (11), we work only with the prospective model for inference about
�1, ˇ, and odds ratios: exp.�1ˇ1/, exp.�1ˇ2/, exp.ˇ1/, exp.ˇ2/.

As discussed in Section 4, in the general context of multiplicative intercept models, we use indepen-
dent uniform priors for �11, �12, �21, and �22. We also use several normal priors: priors 1–5 for ˇ and a
uniform (0,1) prior for �1. For prior 1, 0 is used as a prior mean, and the prior covariance matrix is taken
as the inverse of observed per unit information matrix multiplied by the total number of observations. In
this prior covariance matrix, the variances for ˇ1 and ˇ2 are 59 and 26, respectively, and the correlation
between ˇ1 and ˇ2 is �0:31. For priors 2–4, the prior mean is set to be 0, and prior variances for ˇ1
and ˇ2 are set to be 50, whereas the prior correlation between ˇ1 and ˇ2 varies from �0:4 to 0, to 0.2.
For prior 5, the MLE is used as a prior mean, and the covariance matrix in prior 1 is used as a prior
covariance matrix. Detailed description for priors 1–5 is given in Table I footnote. With these priors, the
equivalence in Section 4 holds.

We need to mention that the MLE and covariance matrix estimate used in priors 1 and 5 are obtained
without the constraint 0 D �0 < �1 < �2 D 1 following the method proposed by Kuss [20]. This
is mainly because obtaining maximum likelihood (ML) estimates is computationally difficult with the
presence of the constraint in that if �1 is close to �0 or �2, numerical methods are less likely to find the
optimal solution (see Section 3 of [21]). However, the advantage of the Bayesian approach is that the
constraint imposed through a prior is reflected in the posterior.

Seaman and Richardson [13] recommended using caution while using uniform priors on the intercept
parameters when stratum sizes are small. They observe that such flat priors can lead to biased estimates
for the odds ratio parameters if a stratum size is less than 40 subjects. In our data, stratum sizes are
substantially larger .> 604/; hence, the posterior mean of our analysis is less likely to be biased because
of the use of uniform priors.

We implemented the Bayesian method with Gibbs sampling. The full conditionals are given in
Appendix C. Owing to the log-concavity of the conditionals, we used adaptive rejection sampling for all
parameters [29]. For each analysis, we performed a total of 50,000 iterations and discarded the initial
30,000 as burn in. Graphical analysis of the MCMC sample indicated satisfactory convergence, which
was also confirmed by the method proposed by Geweke [30]. A summary of MCMC samples including
posterior means and 95% HPD regions for ˇ1, ˇ2, �1, and odds ratios is given in Table I. Also, MLEs
and 95% asymptotic CIs are given in Table I for the purpose of comparison.

On the basis of our analysis, RM has positive association with colorectal cancer controlling for PA
and ethnicity regardless of priors for ˇ. PA is negatively associated with colorectal cancer with any prior
for ˇ when one controls for RM and ethnicity. These results are consistent with those from the ML
approach. In particular, when prior 1 is used, the posterior means for ˇ1 and ˇ2 are very close to the
MLEs. Also, the endpoints of 95% HPD regions for ˇ1 and ˇ2 are very close to those of 95% asymp-
totic CIs. However, for �1, the posterior mean is a little different from the MLE. The 95% HPD region
for �1 is included in the 95% asymptotic CI and much shorter than the latter. These results show that an
analysis without the constraint 0 D �0 < �1 < �2 D 1 may give a much wider interval estimate for �1
than the one with this constraint even though point estimators are somewhat close to each other.

Comparing results for priors 2–4, we can assess prior sensitivity. We find that the posterior mean for
ˇ1 changes substantially from 1.08 to 0.82, to 0.66 as the prior correlation between ˇ1 and ˇ2 varies
from �0:4 to 0, to 0.2. The 95% HPD region shifts left substantially as well. However, the posterior
means and the 95% HPD regions for ˇ2 and �1 do not change very much. Accordingly, posterior means
and 95% HPD regions for odds ratios involving ˇ1 change substantially whereas the ones not involving
ˇ1 do not.

Comparing results for priors 1 and 5, we find that when the prior covariance for ˇ is a covariance
matrix estimate obtained from the ML method multiplied by the total number of observations, the shift
of the prior mean for ˇ from 0 to the MLE has almost no impact on posterior means and 95% HPD
regions for all parameters of interest.

Copyright © 2012 John Wiley & Sons, Ltd. Statist. Med. 2012, 31 2196–2208
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Setting the prior for ˇ as prior 5, we also did data analysis with beta(2,5), beta(5,5), and beta(5,2)
priors for �1. Table II shows that the posterior means and 95% HPD intervals for ˇ1 and ˇ2 are similar
to those under a uniform prior for �1. However, the posteriors for the category specific scores, namely
�1, somewhat vary.

6. Simulation studies

Looking at the unstratified retrospective likelihood in (7), we can note that assigning a Dirichlet
.a1; : : : ; aK/ prior on � plays a role of adding ak � 1 controls to the kth exposure category in the
likelihood. In this sense, using a Dirichlet.0; : : : ; 0/ prior for � removes one control from each expo-
sure category. Also, using an arbitrary proper Dirichlet prior for � adds arbitrary numbers of controls to
each exposure category. This can possibly lead to poor performance of the Bayes estimator of odds ratio
parameters as a posterior mean causing a large bias and mean squared error (MSE), whereas the Bayes
estimator with Dirichlet.0; : : : ; 0/ prior for � does not. Considering that with a Dirichlet.0; : : : ; 0/ prior
for � , the equivalence of posteriors from the prospective and retrospective likelihoods holds for the odds
ratio parameters by Theorem 1, it follows that prospective Bayes estimates from the prospective likeli-
hood can perform better than the retrospective Bayes estimates from the retrospective likelihood when
the prior for � is an arbitrary proper Dirichlet prior. In a similar way, a retrospective Bayes estimator with
an arbitrary proper Dirichlet prior for the nuisance parameter vectors �s D .�s1; : : : ; �sK/, s D 1; : : : ; T
in the stratified retrospective likelihood in (10), can be seriously biased and inefficient whereas the
prospective Bayes estimator from the prospective likelihood is not. In this section, we illustrate this
point by simulation studies.

We simulated case-control studies based on the estimated stratified stereotype model in the Section 5.
We used the posterior means with prior 1 in Table I for the parameters in the prospective model. We
chose arbitrarily the marginal probability functions of the exposure X in each stratum. They were
Pr.X D xkjS D s/D 0:25 for k D 1; : : : ; 4 and s D 1; 2. We obtained a retrospective model using Bayes
rule. We generated 100 sets of data from the retrospective model. We used a number of observations in
each disease state and each stratum in the MECC data for the sample size.

We performed a prospective Bayesian analysis with each simulated data set. For the prior, we
used �1.ˇ; �1, �11; �12; �21; �22/ _ �01.ˇ; �1/ where �01 is a product of a bivariate normal with

mean vector 0 and covariance matrix

�
59 �12
�12 26

	
for ˇ and Uniform.0; 1/ for �1. This is prior

1 in Table I. Note that the posterior from this prospective Bayesian analysis with �1 is equiva-

lent to that from the retrospective likelihood with the prior �.ˇ; �1; �1; �2/ _
�Q2

sD1

Q4
kD1 �

�1
sk

�
�01.ˇ; �1/ by the equivalence result in Section 4. We performed two retrospective Bayesian analyses
with proper Dirichlet priors for �1 and �2 as well. For one retrospective Bayesian analysis, we used a

prior �2.ˇ; �1; �1; �2/ _
�Q2

sD1

Q4
kD1 �

ask�1

sk

�
�01.ˇ; �1/ with .as1; : : : ; as4/ D .20; 40; 20; 40/ for

s D 1; 2. The other retrospective Bayesian analysis used �3.ˇ; �1; �1; �2/ _
�Q2

sD1

Q4
kD1 �

ask�1

sk

�

Table II. Sensitivity analysis under prior choice
for �1: posterior means and HPD regions for
ˇ1; ˇ2; �1 with beta priors for �1 and prior 5 in
Table I for ˇ.

Prior for �1 Posterior mean 95% HPD region

ˇ1 beta(5,2) 1.10 (0.81, 1.40)
beta(5,5) 1.14 (0.84, 1.43)
beta(2,5) 1.15 (0.86, 1.45)

ˇ2 beta(5,2) �0.62 (�0.83, �0.41)
beta(5,5) �0.65 (�0.86, �0.44)
beta(2,5) �0.66 (�0.88, �0.44)

�1 beta(5,2) 0.83 (0.69, 0.98)
beta(5,5) 0.75 (0.60, 0.89)
beta(2,5) 0.72 (0.57, 0.87)

Copyright © 2012 John Wiley & Sons, Ltd. Statist. Med. 2012, 31 2196–2208
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Table III. Posterior mean, bias, and MSE from simulation studies for ˇ1; ˇ2; and �1 with the priors
�1, �2, and �3.

prospective Bayesian retrospective Bayesian retrospective Bayesian
true value analysis with �1 analysis with �2 analysis with �3

ˇ1 1.08 Posterior mean 1.10 0.92 1.02
Estimated bias 0.02 �0.16 �0.06
Estimated MSE 0.010 0.035 0.012

ˇ2 �0.61 Posterior mean �0.62 �0.57 �0.46
Estimated bias �0.01 0.04 0.15
Estimated MSE 0.011 0.012 0.032

�1 0.85 Posteruir mean 0.83 0.80 0.81
Estimated bias �0.02 �0.05 �0.04
Estimated MSE 0.006 0.009 0.008

�01.ˇ; �1/ with .as1; : : : ; as4/ D .40; 40; 20; 20/ for s D 1; 2 for the prior. We give the estimated bias
and MSE of Bayes estimators for ˇ and �1 with these three Bayesian analyses in Table III. The prospec-
tive Bayes estimator with �1 has very small estimated biases, that is, 0.02, �0:01, and �0:02 for ˇ1, ˇ2,
and �1, respectively, and has the smallest estimated bias and MSE among the three Bayes estimators for
all ˇ1, ˇ2, and �1.

The estimated biases of the retrospective Bayes estimator with �2 and �3 for ˇ1 are �0:16 and �0:06,
respectively. Considering that the prospective Bayes estimator with �1 is biased only by 0.02, one can
note that the retrospective Bayes estimator with �2 is biased substantially. This result can be explained
as follows. Under the prior �2, �1 and �2 have independent Dirichlet(20,40,20,40) priors. Because the
second and fourth exposure categories have value one for RM and other categories have value zero for
RM, one can note that the use of the Dirichlet(20,40,20,40) prior for �1 and �2 played a role of adding
38 non-red-meat eaters and 78 red-meat eaters to the control group in each stratum. Considering in
the simulation sampling scheme, the expected numbers of the non-red-meat eater and red-meat eater
in the control group were 599 and 352 in stratum 1, and 232 and 154 in stratum 2, respectively; using
the Dirichlet(20,40,20,40) prior for �1 and �2 resulted in the considerable increase of the ratio of red-
meat eaters over non-red-meat eaters in the control group. This led to weakening the association between
RM and colorectal cancer in the posterior and caused a large negative bias of the Bayes estimator for ˇ1.
This estimator is also most inefficient among three Bayes estimators for ˇ1 because it has the largest
estimated MSE.

The estimated bias of the retrospective Bayes estimator for ˇ2 with �3 is 0.15, whereas the retro-
spective Bayes estimator with �2 and the prospective Bayes estimator with �1 are 0.04 and �0:01,
respectively. Also, the retrospective Bayes estimator with �3 has the largest estimated MSE among three
Bayes estimators for ˇ2. Note that for �3, we used independent Dirichlet(40,40,20,20) priors for �1
and �2. Again, because the first and second exposure categories have value zero for PA and the other
categories have value one for PA, this choice of prior adds 78 physically inactive individuals and 38
physically active individuals to the control group in each stratum. Considering the expected numbers of
the physically inactive and active individuals in the control group were 409 and 542 in stratum 1, and
170 and 216 in stratum 2, respectively, under the simulation sampling scheme; using �3 for the prior
for the retrospective Bayesian analysis weakened the association between PA and colorectal cancer by
decreasing the ratio of physically active individuals over the physically inactive individuals in the control
group. This caused large bias and MSE for the retrospective Bayes estimator of ˇ2 with �3.

For �1, the estimated biases do not vary much depending on the choice of priors. Those are �0:02,
�0:05, and �0:04 for �1, �2, and �3, respectively. The estimated MSE is also small for all three Bayes
estimators ranging from 0.006 to 0.009.

7. Summary

The main objective of this paper is to show that the posterior equivalence of the odds ratio parameters
based on prospective and retrospective likelihoods holds both for unmatched and matched case-control
studies for a class of priors. We do not insist that one must use this class of priors. For example, with
a properly elicited prior, if available, one can do a subjective Bayesian analysis. We simply make the
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point that an analyst can do either prospective or retrospective inference once he or she uses this class
of priors. Also, giving a colorectal cancer study data analysis as an example, we show that our priors
can be used to analyze real data. The results generalize those of Seaman and Richardson [13] and of
Ghosh et al. [14]. We included the multiplicative intercept model as a special case. These results are
important for practitioners who are planning to conduct Bayesian analysis of case-control data. With
advancement in technology and diagnosis, histological and morphological characterization of case sub-
types are becoming increasingly common. Studies are being carried out where sampling is conditional on
subtypes. To have an equivalence result that accommodates general link functions and allows for using a
simpler prospective likelihood as the basis of Bayesian inference is indeed important in current analytic
context. Moreover, our simulation results in Table III show that an arbitrary selection of priors on the
retrospective nuisance parameters can affect posterior inference on the parameter of interest and lead to
undesirable frequentist properties of the resultant Bayes estimate. Arbitrary choice of priors does not lead
to posterior equivalence from the prospective and retrospective models. Thus, the paper provides many
foundational insights for a careful Bayesian analysis of data collected under general outcome-dependent
sampling designs using arbitrary link functions.

One major limitation of such equivalence results is that the exposure variables are assumed to be dis-
crete. A natural future direction is to consider the case of arbitrary exposures, discrete, continuous, or
mixed. However, this result does not follow as a limiting case of the discrete exposure result and thus
remains a challenging open problem.

Appendix A. Proof for Theorem 1

Following Seaman and Richardson [13] or Ghosh et al. [14], we begin with the augmented model

Zdkj	dk
ind
� Poisson.	dk/, where

log.	dk/D log˛d C log �k C log �dk; d D 1; : : : ; r; k D 1; : : : ; K;

in which �k D  �k.k D 1; : : : ; K/, �K D 1�
PK�1
kD1 �k ,  > 0,

PK
kD1 �dk D 1; d D 1; : : : ; r , and

log.	0k/D log �k; k D 1; : : : ; K: (12)

Then the augmented likelihood is given by

LA _ exp

(
�

KX
kD1

�k

 
1C

rX
dD1

˛d�dk

!)
KY
kD1

�
Pr
dD0Zdk

k

rY
dD1

˛
PK
kD1Zdk

d

rY
dD1

KY
kD1

�
Zdk
dk

: (13)

Suppose  is independent of � and has a prior �. / /  �1. Also, the prior for � is �.�/ /QK
kD1 �

�1
k

. Letting � D .�1; : : : ; �K/, the prior for � becomes �.�/ /
QK
kD1 �

�1
k

because the
Jacobian of transformation of �k D  �k .k D 1; : : : ; K/ is  �KC1. Now consider the joint prior

�.˛; �; �/ _
�Qr

dD1 ˛
�1
d

� �QK
kD1 �

�1
k

�
�0.�/. The posterior based on the likelihood given in (13) and

the prior �.˛; �; �/ are given by

�.˛; �; �j´/_ exp

(
�

KX
kD1

�k

 
1C

rX
dD1

˛d�dk

!)
KY
kD1

�
Pr
dD0Zdk�1

k

rY
dD1

˛
PK
kD1Zdk�1

d

�

 
rY

dD1

KY
kD1

�
Zdk
dk

!
�0.�/: (14)
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Now, integrating out � , from (14), one obtains

�.�; ˛j´/_
(

rY
dD1

KY
kD1

.˛d�dk/
Zdk

KY
kD1

.1C

rX
dD1

˛d�dk/
�
Pr
dD0Zdk

) 
rY

dD1

˛�1d

!
�0.�/

D LP

 
rY

dD1

˛�1d

!
�0.�/; (15)

by (6). Next, integrating out ˛, it follows from (14) that

�.�; �jZ/_ exp
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!
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�
Pr
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�
Zdk
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��1k

�
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KX
kD1

�k�dk

!�PKkD1Zdk
�0.�/: (16)

We now write  and � instead of � using �k D  �k .k D 1; : : : ; K/. Because the Jacobian of
transformation is  K�1, the joint posterior of . ; �; �/ is

�. ; �; �j´/_ exp.� / 
PK
kD1Z0k�1

 
rY

dD1

KY
kD1

�
Zdk
dk

!
KY
kD1

�
Z0k�1
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�

rY
dD1

8̂<
:̂
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�
Zdk
k
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KX
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�k�dk

!�PKkD1Zdk9>=
>;�0.�/: (17)

Next, integrating out  , the joint posterior of � and � is

�.�; �j´/_
 
KY
kD1

�
Z0k
k

!
rY

dD1

8<
:

KY
kD1

 
�k�dkPK
lD1 �l�dl

!Zdk9=
;

KY
kD1

��1k �0.�/

D LR

 
KY
kD1

��1k

!
�0.�/; (18)

by (7).
Because both posteriors given in (15) and (18) are derived from the augmented model given in (13),

one obtains the desired conclusion that the posterior of � is the same whether it is obtained from the
prospective likelihood LP given in (6) or the retrospective likelihood LR given in (7).

To verify posterior propriety, the right-hand side of the penultimate line in (18) is bounded above

by the function
QK
kD1

�
�
Z0k�1

k

�
�0.�/. Because �0.�/ is proper and Z0k > 1.k D 1; : : : ; K/,R

�.�; �j´/d�d� is finite.

Appendix B. Proof for posterior equivalence of .ı1; : : : ; ır/

Note that ˛d D
PK
lD1 Pdl=P0l D

PK
lD1 expf�d CQ.xl ; ıd /g so that

log˛d D �d C log

"
KX
lD1

expfQ.xl ; ıd /g

#
; (19)

and

�dk D ˛
�1
d .Pdk=P0k/D

expfQ.xk; ıd /gPK
lD1 expfQ.xl ; ıd /g

; (20)
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which does not depend on ˛. Independent uniform .�1;1/ priors on the �d .d D 1; : : : ; r/ and
proper priors on ıd .d D 0; : : : ; r/ result in independent uniform .�1;1/ priors for the log˛d
.d D 1; : : : ; r/ or the prior

Qr
dD1 ˛

�1
d

for ˛ and a proper prior for �. Now, the result follows immediately
from Theorem 1.

Appendix C. Full conditionals
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ˇi ; i D 1; 2I �ij W ij th component of inverse of the prior covariance matrix of ˇ; i D 1; 2; j D
1; 2I xkj is the j th component of vector xk; k D 1; : : : ; 4; j D 1; 2; � is the standard normal
PDF.

(2)

�.�sd j�/_
exp

�
�sd

P4
kD1Zsdk

�
Q2
dD0

Q4
kD1

nP2
mD0 exp

�
�smC �mx

T
k
ˇ
�oZsdk ; s D 1; 2; d D 1; 2:

(3)

�.�1j�/_
exp

�
�1
P2
sD1

P4
kD1 x

T
k
ˇZs1k

�
Q2
sD1

Q2
dD0

Q4
kD1

nP2
mD0 exp

�
�smC �mx

T
k
ˇ
�oZsdk I.06 �1 6 1/:

Acknowledgements

An NSF Grant DMS-1007494 partially supported the research of Ghosh, Song, and Mukherjee. The authors
would like to thank the investigators Stephen B. Gruber and Gad Rennert of the MECC study and the MECC
participants for sharing the data. CA84188 (NIH/NIC) supported the MECC study.

References
1. Cornfield J. A method of estimating comparative rates from clinical data: applications to the cancer of the lung, breast and

cervix. Journal of national Cancer Institute 1951; 11:1269–1275.
2. Anderson JA. Separate sample logistic discrimination. Biometrika 1972; 59:19–35.
3. Prentice RL, Pyke R. Logistic disease incidence models and case-control studies. Biometrika 1979; 66:403–411.
4. Carroll RJ, Gail MH, Lubin JH. Case-control studies with errors in covariates. Journal of the American Statistical

Association 1993; 88:185–199.
5. Roeder K, Carroll RJ, Lindsay BG. A semiparametric mixture approach to case-control studies with errors in covariables.

Journal of the American Statistical Association 1996; 91:722–732.
6. Scott AJ, Wild CJ. Fitting logistic models under case-control or choice based sampling. Journal of the Royal Statistical

Society, Series B 1986; 48:170–182.
7. Scott AJ, Wild CJ. Fitting logistic models in stratified case-control studies. Biometrics 1991; 47:497–510.
8. Scott AJ, Wild CJ. Fitting regression models to case-control data by maximum likelihood. Biometrika 1997; 84:57–71.
9. Wild CJ. Fitting prospective regression models to case-control data. Biometrika 1991; 78:705–717.

10. Breslow NE, Cain KC. Logistic regression for two-stage case-control data. Biometrika 1988; 75:11–20.
11. Breslow NE, Chatterjee N. Design and analysis of two-phase studies with binary outcome applied to Wilms tumour

prognosis. Applied Statistics 1999; 48:457–468.
12. Chatterjee N. A two-stage regression model for epidemiological studies with multivariate disease classification data.

Journal of the American Statistical Association 2004; 99:127–138.
13. Seaman SR, Richardson S. Equivalence of prospective and retrospective models in the Bayesian analysis of case-control

studies. Biometrika 2004; 91:15–25.
14. Ghosh M, Zhang L, Mukherjee B. Equivalence of posteriors in the Bayesian analysis of the multinomial-Poisson

transformation. Metron-International Journal of Statistics 2006; LXIV:19–28.
15. Staicu AM. On the equivalence of prospective and retrospective likelihood methods in case-control studies. Biometrika

2010; 97:990–996.

Copyright © 2012 John Wiley & Sons, Ltd. Statist. Med. 2012, 31 2196–2208

2207



M. GHOSH ET AL.

16. Agresti A. Categorical Data Analysis. John Willey & Sons: Hoboken, New Jersey, 2002.
17. Weinberg CR, Wacholder S. Prospective analysis of case-control data under general multiplicative-intercept risk models.

Biometrika 1993; 80:461–465.
18. Anderson JA. Regression and ordered categorical variable. Journal of the Royal Statistical Society, Series B 1984; 46:1–40.
19. Greenland S. Alternative models for ordinal logistic regression. Statistics in Medicine 1994; 13:1665–1677.
20. Kuss O. On the estimation of the stereotype regression model. Computational Statistics and Data Analysis 2006;

50:1877–1890.
21. Ahn J, Mukherjee B, Banerjee M, Cooney KA. Bayesian inference for the stereotype regression model: application to a

case-control study of prostate cancer. Statistics in Medicine 2009; 28:3139–3157.
22. Ahn J, Mukherjee B, Gruber SB, Sinha S. Missing exposure data in stereotype regression model: application to matched

case-control study with disease subclassification. Biometrics 2010. DOI: 10.1111/j.1541-0420.2010.01453.x. E-pub ahead
of print.

23. Satten GA, Kupper LL. Inferences about exposure-disease associations using probability-of-exposure information. Journal
of the American Statistical Association 1993; 88:200–208.

24. Rice KM. Equivalence between conditional and mixture approaches to the Rasch model and matched case-control studies,
with applications. Journal of the American Statistical Association 2004; 99:510–522.

25. Rice KM. Equivalence between conditional and random-effects likelihoods for pair-matched case-control studies. Journal
of the American Statistical Association 2008; 103:385–396.

26. Diggle PJ, Morris SE, Wakefield JC. Point-source modeling using matched case control data. Biostatistics 2000; 1:89–105.
27. Ghosh M, Chen M. Bayesian inference for matched case-control studies. Sankhya, B 2002; 64:107–127.
28. Poynter JN, Gruber SB, Higgins PD, et al. Statins and the risk of colorectal cancer. New England Journal of Medicine

2005; 352:2184–2192.
29. Gilks WR, Wild P. Adaptive rejection sampling for Gibbs sampling. Journal of the Royal Statistical Society, Series C

1992; 41:337–348.
30. Geweke J. Evaluting the accuracy of sampling-based approaches to calculating posterior moments. In Bayesian Statistics 4,

Bernardo JM, Smith AFM, Dawid AP, Berger JO (eds). Oxford University Press: Oxford, 1992; 169–193.

2208

Copyright © 2012 John Wiley & Sons, Ltd. Statist. Med. 2012, 31 2196–2208


