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The effect of cluster size imbalance and
covariates on the estimation performance
of quadratic inference functions
Philip M. Westgatea*† and Thomas M. Braunb

Generalized estimating equations (GEE) are commonly used for the analysis of correlated data. However, use
of quadratic inference functions (QIFs) is becoming popular because it increases efficiency relative to GEE
when the working covariance structure is misspecified. Although shown to be advantageous in the literature,
the impacts of covariates and imbalanced cluster sizes on the estimation performance of the QIF method in finite
samples have not been studied. This cluster size variation causes QIF’s estimating equations and GEE to be in
separate classes when an exchangeable correlation structure is implemented, causing QIF and GEE to be incom-
parable in terms of efficiency. When utilizing this structure and the number of clusters is not large, we discuss
how covariates and cluster size imbalance can cause QIF, rather than GEE, to produce estimates with the larger
variability. This occurrence is mainly due to the empirical nature of weighting QIF employs, rather than differ-
ences in estimating equations classes. We demonstrate QIF’s lost estimation precision through simulation studies
covering a variety of general cluster randomized trial scenarios and compare QIF and GEE in the analysis of
data from a cluster randomized trial. Copyright © 2012 John Wiley & Sons, Ltd.
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1. Introduction

Correlated data with imbalanced cluster sizes arise often in practice. Cluster randomized trials (CRTs)
and longitudinal studies in which the number of repeated measures is not constant across subjects are
two popular examples where data are composed of independent clusters that typically are comprised of
varying sizes. With these types of data, individual-level responses within any given cluster are assumed
to be correlated.

We particularly focus on CRTs, which are unique from other randomized trials. They typically are
comprised of a small number of independent clusters that can be quite large and variable in size.
Because of these attributes, statistical power can be quite low, but the study itself can be very costly
to conduct. When the desired interpretations for regression parameters are in terms of the population
mean, generalized estimating equations (GEE) [1] are a popular tool of choice for the analysis of data
arising from these trials. They require working correlation and marginal variance structures to be given,
but only the mean structure needs correct specification to obtain consistent parameter estimates.

Because of potentially low power in these studies, the use of a more efficient method would be very
beneficial, which is why we focus on the estimation performance of quadratic inference functions (QIFs).
With the same limited requirements as GEE, Qu et al. [2] proposed QIF as an alternative method, which
is a combination of GEE and the generalized method of moments (GMMs) [3]. QIF asymptotically has
greater efficiency than GEE when employing the incorrect covariance structure and is as efficient when
using the correct structure [2, 4, 5]. This result depends on all cluster sizes being equal if a common
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exchangeable correlation is implemented, such that both procedures’ estimating equations are within
the same class. Many papers, such as Qu et al. [2], demonstrate the utility QIF has over GEE when
using a working exchangeable or AR-1 correlation matrix. No paper, however, has studied the finite
sample estimation precision, or reliability, of QIF as compared with GEE when cluster sizes vary and
the exchangeable structure is reasonably employed, such as in common CRT settings. Additionally, the
effect of covariates on QIF’s estimation performance has not been considered.

Our motivating dataset comes from Yudkin and Moher [6], who discuss issues with an ongoing CRT
dealing with coronary heart disease (CHD) and promoting secondary prevention via two interventions as
compared with a control that gives ordinary care to patients. Some concerns, for example, involve the fact
that there are a limited number of large clusters, restricted randomization and sample size calculations
are difficult, and the choice of an appropriate method for data analysis is not necessarily straightforward.
For instance, they utilized a stratified design but indicated that use of an analysis that takes stratification
into account may not be best. Furthermore, there is an issue in CRTs on whether subject or cluster-level
analyses should be used. Subject-level analyses include random effects or marginal models, whereas
cluster-level analyses use a weighted or unweighted t -test or linear regression with cluster-specific
summary measures as outcomes and weights that take into account cluster size and possibly the estimated
exchangeable correlation value [7,8]. A thorough discussion of these topics can be found in Donner and
Klar [9], and Campbell et al. [10] gave an extension of the CONSORT statement to CRTs.

Yudkin and Moher [6] give a table of baseline results on four variables and the size, ranging from 28 to
244 patients, of each of the 21 practices, or clusters, participating in the study. Using the presented data,
we found the number of patients in each practice who were recently adequately assessed for three CHD
risk factors. Particularly, Yudkin and Moher [6] defined adequate assessment as the recent recording and
assessment of blood pressure, smoking habit, and serum cholesterol. The other three variables, practice-
level proportions of patients having a record of treatment with aspirin, hypotensives, or lipid-lowering
drugs since their diagnosis with CHD, were secondary outcomes.

One specific issue Yudkin and Moher [6] discuss with the baseline data is how to utilize restricted
randomization of practices to trial arms such that balance, in terms of adequate assessment and the
three records of treatment, is achieved. We use this data, however, to quantify the association between
the marginal probability of a practice, which gives ordinary patient care, having recently adequately
assessed any given patient and the proportion of patients in that practice having a record of treatment
with any of the three drug types. This model was chosen such that we could utilize the available data
to demonstrate the differences between QIF and GEE in terms of weighting and estimation, although
a limitation is that this model may be slightly implausible. Use of the logistic link would be common
for this marginal model, in which the proportion of patients for any one of the three records of drug
treatment could simply be used as a continuous covariate. The true, but unobserved, probabilities of
adequately assessing any given patient can vary across practices about their marginal means because
of unknown factors, thus inducing correlation among patients within the same practice. Therefore, a
common exchangeable correlation would be a natural structure to implement with GEE and QIF. As
covariate values are the same for each patient in any given practice, a cluster-level weighted linear
regression would also be a possible alternative.

We later show that GEE and QIF can produce notably different probability estimates from the analysis
of this data, leading to the issue of which method gave more trustworthy estimates and, in general, which
of these two methods would be best to use for the analysis of data from any CRT. As QIF theoretically
is equally or more efficient than GEE, one may think that its estimates here would be more reliable. For
example, if the true exchangeable correlation value for any given practice depends on the proportion
of patients with a record of drug treatment in that same practice, QIF should take this into account via
its empirical weighting matrix, whereas GEE using a common exchangeable structure does not. The
purpose of this paper is to give details into how QIF and GEE can give notably different estimates in
this or any other CRT setting, with a direct focus on the impact of cluster-level covariates, and why GEE
may actually be better to employ in CRT scenarios.

Section 2 discusses GEE and QIF in more detail, including comparisons of their respective classes
of estimating equations when an exchangeable correlation structure is implemented. We discuss in
Section 3 how empirical weighting, which is influenced by cluster size imbalance and covariates, can
cause QIF and its modified version we present, utilizing estimating equations that are in the same class as
GEE, to lose estimation precision relative to GEE when the number of clusters is not large. In Section 4,
we present simulation results, with emphasis on our motivating dataset and general CRTs, demonstrating
the differences in the precisions of parameter estimates from GEE and both QIF versions. Furthermore,
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the distinct estimation performances of these methods are shown in application to the motivating dataset.
Concluding remarks are given in Section 5.

2. Marginal models

2.1. Generalized estimating equations

We have N independent clusters of data, and cluster i , i D 1; 2; : : : N , has ni observations, outcome
vector Y i D ŒYi1; : : : ; Yini �

T , and mean vector �i D E.Y i /. The marginal mean structure is specified
as h.�i / D �i D xiˇ, where the j th row of xi , j D 1; 2; : : : ni , is xij D Œxij0; xij1; : : : ; xij.p�1/�, the
vector of covariate values for the j th observation in cluster i , and ˇ D Œˇ0; ˇ1; : : : ; ˇp�1�T is a p � 1
vector of corresponding regression parameters. The estimates for ˇ are obtained by setting the GEE
equal to zero:

NX
iD1

DT
i V
�1
i .Y i ��i /D 0; (1)

where Di D @�i=@ˇ and V i is the working covariance structure for Y i . V i can be written as
A
1=2
i Ri .˛/A

1=2
i , where Ai is a diagonal matrix of the working marginal variances for the ni obser-

vations, and Ri .˛/ is their working correlation structure with parameter(s) ˛. When the covariance
structure is correctly specified and a consistent estimate for ˛ is employed, GEE as given in
Equation (1) are optimal estimating equations [11]. If V i is misspecified, the parameter estimates, Ǒ ,
are still consistent when the mean structure is correct.

When implementing an exchangeable correlation structure, Equation (1) can be rewritten as

NX
iD1

DT
i A
�1=2
i .�1iM1i C �2iM2i /A

�1=2
i .Y i ��i /D 0; (2)

where �1i D �Œ.ni � 2/�i C 1�=ki , �2i D �i=ki , ki D .ni � 1/�2i � .ni � 2/�i � 1, M1i is an ni � ni
identity matrix,M2i is an ni �ni matrix composed of zeros on the diagonal and ones elsewhere, and �i
is a function of ˛ and is the assumed common correlation within the i th cluster [2]. If cluster sizes are
all equal and a constant correlation is assumed across clusters, Equation (2) is easily seen as being in the
class of estimating equations given by

2X
rD1

Br

NX
iD1

DT
i A
�1=2
i M rA

�1=2
i .Y i ��i /D 0; (3)

where Br , r D 1; 2, are p � p arbitrary nonrandom matrices. M1i and M2i , i D 1; 2; : : : N , do not
change across clusters and therefore are denoted here as M1 and M2. They can be thought of as basis
matrices because all other quantities inside the two sums over the N clusters are the same [2]. With
respect to GEE, B1 and B2 are identity matrices multiplied by �1 and �2, respectively, where �r D �ri ,
r D 1; 2; i D 1; 2; : : : N . When clusters vary in size, or a common correlation is no longer used across
all clusters, GEE belongs to the class given by

2X
rD1

Or

NX
iD1

�riD
T
i A
�1=2
i M riA

�1=2
i .Y i ��i /D 0; (4)

which is distinct from Equation (3) in that the basis matrices depend on size and the two sums over the
N clusters now include the unique values for �ri , r D 1; 2; i D 1; 2; : : : N . Here,Or , r D 1; 2, are p�p
arbitrary nonrandom matrices equal to the identity matrix for GEE.

2.2. Quadratic inference functions

The QIF proposed by Qu et al. [2] combines the methods of GMMs and GEE. It assumes R�1i .˛/ DPm
rD1 �riM ri , where M ri , r D 1; 2; : : : m, are known basis matrices and �ri , r D 1; 2; : : : m, are func-

tions of ˛ that we will refer to as correlation weights. An exchangeable structure is a specific case where
the inverse of the correlation matrix can be written as the sum of weighted basis matrices, as shown in
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Equation (2). Unstructured, AR-1, and independence are the other correlation structures QIF currently
support via this assumption, each of which have inverses that can at least be approximated by using
two basis matrices [5]. We do not focus on these in this paper because QIF and GEE lead to identical
estimating equations when using independence [12], and in CRT settings unstructured is not plausible,
whereas exchangeable is more commonly employed than AR-1. However, although simulation settings
focus on the exchangeable structure, the discussion in Section 3 on the variable empirical weighting
utilized by QIF, and its impact on estimation precision, holds for unstructured and AR-1 as well.

Equation (2) can be viewed as the sum of two unbiased estimating equations, each of which are used
to build extended score equations defined as

NgN .ˇ/D
1

N
gN .ˇ/D

1

N

NX
iD1

gi .ˇ/D

"
1
N

PN
iD1 g1i .ˇ/

1
N

PN
iD1 g2i .ˇ/

#
: (5)

The number of extended score equations is twice the number of regression parameters and therefore
cannot be set equal to zero to obtain parameter estimates, as is carried out for GEE, because no
identifiable solution exists. The extended score equations are used in Hansen’s [3] GMMs to create
the QIF, defined as

QN .ˇ/DN Ng
T
N .ˇ/C

�1
N .ˇ/ NgN .ˇ/D

"
NX
iD1

gTi .ˇ/

#"
NX
iD1

gi .ˇ/g
T
i .ˇ/

#�1 "
NX
iD1

gi .ˇ/

#
:

The estimate for ˇ can now be found by Ǒ D arg minˇQN .ˇ/, which is asymptotically equivalent
to solving

Nr NgTN .ˇ/C
�1
N .ˇ/ NgN .ˇ/D

NX
iD1

r NgTN .ˇ/C
�1
N .ˇ/gi .ˇ/D 0 (6)

for ˇ, where r denotes the gradient with respect to ˇT . Here, CN .ˇ/ D .1=N /
PN
iD1 gi .ˇ/g

T
i .ˇ/ is

used to estimate the optimal weight matrix †N D .1=N /
PN
iD1 CovŒgi .ˇ/�. Results using CN .ˇ/ are

asymptotically equivalent to using †N because CN .ˇ/�†N
p
! 0 [2, 13].

In practice, gri .ˇ/ D DT
i A
�1=2
i M riA

�1=2
i .Y i � �i /, r D 1; 2; i D 1; 2; : : : N , are regularly

implemented in QIF’s extended score equations. These ignore the correlation weights, implying that
˛ does not need to be estimated. When using an exchangeable structure and cluster sizes do not vary,
Equation (6) is in the class of estimating equations given by Equation (3). When cluster sizes vary,
Equation (6) is in the class of estimating equations given by

2X
rD1

Or

NX
iD1

DT
i A
�1=2
i M riA

�1=2
i .Y i ��i /D 0:

This is not the class given by Equation (4) to which GEE belongs in this scenario, as the correla-
tion weights are not included. For Equation (6) and GEE to be in the same class when cluster sizes
vary, the extended score equations need to incorporate the correlation weights, that is, use gri .ˇ/ D
�riD

T
i A
�1=2
i M riA

�1=2
i .Y i ��i /, r D 1; 2; i D 1; 2; : : : N , inducing the need to estimate ˛.

From Lindsay [14], Hansen [3], and Small and McLeish [11], Qu et al. [2] show that because

CN .ˇ/�†N
p
! 0, the estimating equations given in Equation (6) are fully efficient when the covariance

structure is correctly specified and they are in the same class as GEE, and always optimal in the Löwner
ordering among estimating equations within their given class. When cluster sizes are constant and
assuming a common correlation with an exchangeable structure, Equation (6) and GEE are in the class
of estimating equations given by Equation (3); therefore, QIF has the theoretical advantage of asymp-
totically producing parameter estimates having equal or less variance than estimates from GEE. When
cluster sizes vary, QIF loses this theoretical advantage unless the correlation weights are used inside
the extended score equations. In this case, GEE and Equation (6) both belong to the class given by
Equation (4).

2212

Copyright © 2012 John Wiley & Sons, Ltd. Statist. Med. 2012, 31 2209–2222



P. M. WESTGATE AND T. M. BRAUN

3. Empirical weighting, quadratic inference function estimation precision, and the
impacts of imbalanced cluster sizes and covariates

The QIF method uses an estimated empirical weighting matrix, CN . Ǒ /, to estimate †N , which is
optimal. Asymptotically, using this matrix is the source of QIF’s efficiency advantage. Even when
clusters vary in size, causing QIF and GEE to not be directly comparable in terms of efficiency the-
ory when using a common exchangeable correlation, QIF still has an advantage in the sense that it is
composed of a weighting matrix that is consistent for the true covariance structure. However, we soon
explain that because of its variability, the use of CN . Ǒ / can lead to lost, rather than gained, estimation
precision as compared with GEE, in small to moderately sized samples, such as the CRT dataset
containing only 21 practices. Both covariates and imbalance in cluster sizes impact the empirical infor-
mation used from CN to obtain the working weights inside QIF’s estimating equations. The weight(s)
used by QIF for any given cluster’s outcomes can therefore be quite variable when N is not large.
Conversely, GEE uses a fixed correlation, and thus weighting, structure for each cluster’s outcome(s).
The only variability in this weighting strategy is due to estimating a common correlation parameter.

Equation (4) is helpful for distinguishing the different sources of weighting variability for both
methods. As stated for GEE,O1 andO2 are identity matrices, and the variability in each scalar, �r D �ri ,
r D 1; 2; i D 1; 2; : : : N , from estimating the correlation parameter will not have a large impact on
weighting. However, along with r NgTN , QIF use CN to estimate O1 and O2 and utilizes �r D �ri D 1,
r D 1; 2; i D 1; 2; : : : N . As N decreases, the variability in CN , and thus O1 and O2, increases. This
creates increasing variances in the weights given to Y i , i D 1; 2; : : : N , becauseO1 andO2 are random
matrices, rather than scalars, that influence the entire weighting structure. We present via simulation an
example of the difference in variances of weights utilized by QIF and GEE in Section 4.1.1. We note
that a modified QIF implementing the correlation weights, and therefore employing estimating equations
that are in the same class as GEE, incorporates both sources of weighting variability. Therefore, our
discussion on the variable empirical weighting nature utilized by QIF also pertains to this newly defined
QIF version.

Qu and Song [12] exhibited the sensitive, or variable, nature of weighting used by QIF via CN , as
they show that QIF is robust to outliers and contaminated data because of its use of empirical estimates
for O1 and O2. Specifically, they prove jjr NgTN .ˇ/C

�1
N .ˇ/gi .ˇ/jj

2 ! 0 as jjY i � �i jj ! 1, where
jjK jj D Œt r.KTK /�1=2 for some arbitrary matrix K . This result indicates that the amount of weight
given to outcomes from any given cluster depends on the empirical covariances of these same outcomes.
Alternatively, GEE uses the identity matrix for O1 and O2, implying that it does not have this sensi-
tive weighting nature as an attribute. However, CN . Ǒ / is asymptotically equivalent to †N , which does
not depend on empirical covariances. Therefore, CN . Ǒ / becomes less sensitive to individual estimated
empirical covariances as N increases, implying that QIF’s weighting strategy becomes less variable.

When QIF’s weights are quite variable because of small N , Var. Ǒ / can be large as well. Therefore,
the estimated empirical covariances (gi . Ǒ /gTi . Ǒ /, i D 1; 2; : : : N ) used in practice can be notably
different than the true empirical covariances (gi .ˇ/gTi .ˇ/, i D 1; 2; : : : N ) in some samples. This is
a drawback because EŒCN . Ǒ /j Ǒ � ¤ EŒCN .ˇ/� D †N for Ǒ ¤ ˇ and finite N . Particularly, because
of the variable weighting nature used by QIF, these differences between estimated and true empirical
covariances can lead to notable differences between the estimated and true weights given to outcomes
from any given cluster, which affect parameter estimation. As GEE does not have this small-sample
problem, it can produce parameter estimates having smaller variances. Additionally, Windmeijer [15]
notes in the Econometrics literature for GMM that for finite N , the variance of Ǒ can be larger than
expected because of the use of an estimate for ˇ inside the empirical weighting matrix.

To discuss the impacts of imbalanced cluster sizes and covariates, we note that QIF has a variable
weighting nature that uses averaged information from sensitivities [4] and empirical covariances via
r NgTNC

�1
N inside its estimating equations to determine how much individual weight should be given to

each gi .ˇ/, i D 1; 2; : : : N . Specifically, QIF uses r NgTNC
�1
N to obtain O1 and O2 to weight g1i .ˇ/

and g2i .ˇ/, i D 1; 2; : : : N , respectively. With the use of information from all N practices, QIF takes
into account how sensitivities and empirical covariances change on average with respect to size and
covariate values to determine the weights. Therefore, when clusters vary in size, the average sensitivity
and empirical covariance trends have to be determined with respect to the numerous combinations of
size and covariates. As covariates are added to the model, the dimension of CN increases, and there is
greater complexity, and thus variability, in weighting.

Copyright © 2012 John Wiley & Sons, Ltd. Statist. Med. 2012, 31 2209–2222
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For example, we have p cluster-level covariates, and h.:/ is the canonical link, allowing Equation (6)
to simplify to

NX
iD1

2
64

Pp�1
jD0 �j0xij C .ni � 1/

P2p�1
jDp �j0xi.j�p/

:::Pp�1
jD0 �j.p�1/xij C .ni � 1/

P2p�1
jDp �j.p�1/xi.j�p/

3
75 .Yi � ni�i /D 0; (7)

in which Yi D
Pni
jD1 Yij , E.Yij / D �i , and xij is the value of the j th covariate, j D 0; : : : p � 1,

for the i th cluster. All kappas are estimated using functions of estimated parameters, cluster size,
covariate values, and the N empirical covariances, which have the most influence. The number of
kappa parameters increases with the number of covariates, and the amount of weight given to any
cluster’s outcomes relies upon linear combinations of its size and covariate values. For fixed N , the
amount of empirical information from our sample remains unchanged. However, if the number of kappa
parameters increases, this fixed amount of information utilized from empirical covariances results in
greater weighting variability because of the complexity of the numerous combinations of size and
covariates. For example, when only using one drug treatment percentage as a covariate, QIF estimates
eight kappas, whereas this number increases to 32 when using all three treatments in the model.

To clearly demonstrate the variability in QIF’s estimating equations’ weights due to imbalanced cluster
sizes and covariates, we first use an intercept-only model example in which clusters are one of two
possible sizes. There are two kappas to estimate, and Equation (7) reduces to

PN
iD1Œ�00 C �10.ni � 1/�

.Yi � ni�/ D
PN
iD1wQIFi .Yi � ni�/, where � is the marginal mean shared by all outcomes. Here,

the weight given to the i th cluster will actually be estimated using only the empirical covariances of the
extended score equation components from clusters of that vary same size, rather than using the empirical
covariances from all N clusters. This nature of weighting is advantageous for QIF when N is arbitrarily
large and the true covariances do depend on cluster size in some misspecified manner, but for smallN , it
can lead to increased variability in the working weights that can more than offset this advantage in terms
of estimation performance.

If we keep N fixed and extend the model to resemble a general CRT in which there is only one
covariate, a cluster-level intervention indicator, then there are eight unknown kappas, each estimated
with a larger variability. In this situation, QIF carries out estimation in a manner equivalent to fit-
ting an intercept-only model for each trial arm. This implies that r NgTNC

�1
N accounts for combinations

corresponding to study arm and cluster size, and so the weight given to .Yi � ni�i /, i D 1; 2; : : : N , is
obtained using only the empirical covariances from equivalently sized clusters within the same trial arm.

In practice, as is the case with our motivating dataset, there typically is much larger imbalance in size
across clusters. When this occurs, r NgTNC

�1
N has to determine if the weight given to outcomes should

increase or decrease with size, which is carried out separately for each trial arm. For instance, suppose
outcomes from clusters larger in size have averaged empirical covariances smaller than their true covari-
ances. Although clusters cannot be combined into distinct groups as was the case when there were only
two possible sizes, QIF’s estimating equations will overweight larger clusters here, whereas the weight
given to smaller clusters may also be influenced as a result of the linear trend shown in the intercept-only
model’s estimating equation.

With respect to our motivating dataset, we first use an intercept-only model. Here, r NgTN . Ǒ /C
�1
N . Ǒ /

estimates how the weight, given to the number of adequately assessed patients in any given practice,
should change with respect to practice size. If we were to expand this model even further by using
aspirin treatment percentage, Equation (7) shows that there will be more unknown kappa parameters to
estimate. If we were to include the other two drug treatment percentages in the model as well, there
are even more combinations of size and covariates that QIF has to account for while using empirical
covariances from only 21 practices, potentially resulting in large weighting variances.

4. The impacts of cluster sizes and covariates

4.1. Shown via simulation study

4.1.1. Intercept-only simulations. Employing a common exchangeable correlation, we first demonstrate
the difference between both QIF versions and GEE in the context of an intercept-only model, repre-
senting the setting in which we are only interested in estimating the marginal probability of adequate
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assessment. Results from 10 random simulations, with outcomes generated from a beta-binomial distri-
bution, are presented in Table I, including the intercept estimates and ratios equaling the estimated weight
given to a cluster of size 50 divided by the estimated weight given to a cluster of size 150. We generated
data using the model logit.�/ D log.�/� log.1� �/ D ˇ0, in which � is the marginal probability for
any given outcome. Values for the marginal probability were 0.25 (0.05) for the first (last) five simula-
tions, implying ˇ0 D �1:10 .ˇ0 D �2:94/, whereas the common correlation was 0.05. Each simulated
dataset consisted of 21 practices, with corresponding sizes generated by a normal distribution with mean
100 and standard deviation 50, approximately representing the empirical distribution of sizes contained
in the motivating dataset. We rounded generated sizes to the nearest integer and forced them to take on
values between 25 and 250. In this setting, the optimal weight is given as wi D Œ1C .ni � 1/0:05�

�1

inside the estimating equation
PN
iD1wi .Yi � ni�/D 0. The optimal ratio is therefore 2.45.

In these 10 simulations, the weights used by GEE were much less variable than those used by either
QIF version. For GEE, clusters of size 50 were given anywhere from 2.19 to 2.66 times more weight
than clusters of size 150. QIF, however, once gave more weight to larger clusters, and clusters of size 50
were given anywhere from 38% less to 6.74 times more weight than clusters of size 150. The QIF with
corresponding estimating equations in the same class as GEE produced notably different weight ratios
but performed similarly to QIF with respect to the variability in its working weights. Because of this
variability in relative weighting, estimation precision is lost as compared with GEE here.

For each of the two examined settings, we also performed 1000 additional simulations generated in the
same manner. When the marginal probability was 0.25 (0.05), the empirical mean square error (MSE)
for GEE’s intercept estimate was only 82% (62%) and 86% (65%) as large as the MSEs produced by QIF
and the newly defined QIF, respectively, implying that GEE was more precise. The last five simulation
results in Table I show that the weights implemented by both QIF versions were more variable when the
marginal probability was 0.05, leading to the smaller MSE ratios in this setting. Additionally, the newly
defined QIF only slightly increased precision over the typical QIF.

4.1.2. Description of general simulation settings. Song et al. [5] discussed a SAS macro that imple-
ments QIF. We utilized its R counterpart, Sister R Package QIF, both of which can currently be found
at Dr. Peter X.K. Song’s website: http://www-personal.umich.edu/~pxsong/. As this QIF function does
not require the value for the QIF to decrease at each iteration of the estimation procedure, we modified it
accordingly as suggested by Loader and Pilla [16]. We also adjusted this function to implement our QIF
version that utilizes the correlation weights and thus estimating equations that are in the same class as
GEE. These functions, in addition to a GEE function that produces bias-corrected standard errors [17]
as mentioned in Section 4.2, are available upon request to the author at philip.westgate@uky.edu.

We now compare the MSE of both QIF versions and GEE, all implementing a common exchangeable
correlation structure, in a variety of simulations representing CRT scenarios. Table II presents empirical

Table I. Intercept estimates and weight ratios, equaling the estimated weight given to a cluster of size 50
divided by the estimated weight given to a cluster of size 150, from GEE and both QIF versions.

GEE QIF QIF in GEE class

Simulation Ǒ
0 Ratio Ǒ

0 Ratio Ǒ
0 Ratio

1 �1:18 2.49 �1:18 1.50 �1:18 2.01
2 �0:95 2.59 �0:99 0.62 �0:97 1.00
3 �1:12 2.47 �1:17 1.10 �1:15 1.52
4 �1:15 2.66 �1:13 1.87 �1:13 3.13
5 �0:99 2.64 �0:99 1.51 �0:98 4.03

6 �3:23 2.34 �3:32 2.19 �3:32 4.39
7 �3:09 2.25 �3:06 1.44 �3:09 2.20
8 �2:88 2.19 �3:02 6.74 �3:07 17.00
9 �3:26 2.50 �3:22 3.94 �3:31 5.33
10 �2:93 2.33 �2:92 1.22 �2:93 2.09

The first (last) five simulation results come from the analyses of randomly generated datasets in which outcomes had a
marginal probability of 0.25 (0.05) and exchangeable correlation of 0.05.
QIF, quadratic inference functions; GEE, generalized estimating equations.
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Table II. Empirical MSEs for both QIF versions and ratios comparing GEE’s empirical MSEs to these
respective quantities.

QIF QIF in GEE Class

Scenario N Range for ni �C , �T MSE MSE ratio MSE MSE ratio

1.1 20 5, 20 0.10, 0.10 0.293 0.660 0.297 0.650
1.2 20 5, 20 0.15, 0.05 0.268 0.710 0.264 0.720
1.3 20 25, 150 0.10, 0.10 0.183 0.745 0.175 0.782
1.4 20 25, 150 0.15, 0.05 0.177 0.722 0.174 0.735
1.5 100 5, 20 0.10, 0.10 0.043 0.889 0.043 0.891
1.6 100 5, 20 0.15, 0.05 0.043 0.906 0.043 0.909
1.7 100 25, 150 0.10, 0.10 0.029 0.927 0.029 0.926
1.8 100 25, 150 0.15, 0.05 0.027 0.881 0.026 0.925

2.1 20 5, 20 0.10, 0.10 1.306 0.537 1.290 0.544
2.2 20 5, 20 0.15, 0.05 1.212 0.562 1.214 0.561
2.3 20 25, 150 0.10, 0.10 0.666 0.595 0.639 0.621
2.4 20 25, 150 0.15, 0.05 0.641 0.630 0.631 0.640
2.5 100 5, 20 0.10, 0.10 0.136 0.866 0.136 0.869
2.6 100 5, 20 0.15, 0.05 0.126 0.897 0.125 0.901
2.7 100 25, 150 0.10, 0.10 0.082 0.852 0.081 0.868
2.8 100 25, 150 0.15, 0.05 0.083 0.879 0.082 0.894

3.1 20 25, 150 0.362 0.708 0.384 0.668
3.2 20 25, 150 0.093 1.123 0.091 1.144
3.3 100 25, 150 0.007 1.165 0.007 1.161
3.4 100 25, 150 0.030 1.032 0.030 1.029

4.1 21 25, 250 3:1� 10�4 0.670 2:6� 10�4 0.808
4.2 100 25, 250 5:7� 10�5 0.648 4:3� 10�5 0.858
4.3 21 25, 250 3:6� 10�4 0.658 3:0� 10�4 0.798
4.4 100 25, 250 6:4� 10�5 0.724 5:2� 10�5 0.891

5.1 21 25, 250 8:0� 10�4 0.696 8:3� 10�4 0.669
5.2 100 25, 250 1:2� 10�4 0.784 1:1� 10�4 0.876
5.3 21 25, 250 7:9� 10�4 0.682 7:8� 10�4 0.690
5.4 100 25, 250 1:2� 10�4 0.794 1:1� 10�4 0.894

We employed common exchangeable correlation structures with these methods. The scenarios presented are general
representations of CRTs and the CRT dataset of interest. We denote by �C and �T the correlation values for control
and intervention clusters, respectively, in Scenarios 1 and 2.
QIF, quadratic inference function; GEE, generalized estimating equations; MSE, mean square error; CRT, cluster
randomized trial.

MSEs for each QIF version, in addition to ratios comprised of the MSEs from GEE and the respective
QIF version in the numerator and denominator, respectively. The presented MSE quantity for any given
method is the sum of the empirical MSEs from all non-intercept regression parameter estimates in the
respective model. We examined five different scenarios comprised of four or eight settings each in
1000 simulations.

As with simulated data from the intercept-only models, a beta-binomial distribution was used to gen-
erate outcomes. For instance, see Ridout et al. [18]. Specifically, cluster i , i D 1; 2; : : : N , has true
probability, pi , such thatEŒpi �D �i and var.pi /D �i�i .1��i /. First, pi was randomly generated from
the corresponding beta distribution with these properties, and then Yi was drawn from Binomial.ni ; pi /.
As our functions require vector outcomes, we let Y i contain ni � Yi zeros and Yi ones.

In the first three scenarios, which represent general CRTs, the true model in each scenario is a logistic
regression with only cluster-level covariates. Scenarios one and three only use an intervention indicator,
with N=2 clusters in each trial arm. The second scenario uses an additional indicator and a continuous
covariate, with corresponding parameters ˇ2 D ˇ3 D 0. There were N=4 clusters for each of the four
possible combinations for the two indicators, and we independently drew the values for the continuous
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covariate from Uniform.�1; 1/. Settings for Scenarios 1 and 2 were exactly the same, although we adjust
for two covariates that have no impact on marginal probabilities in Scenario 2 to demonstrate their influ-
ence on QIF’s estimation performance relative to GEE. Cluster sizes varied uniformly and independently
from 5 to 20 or 25 to 150 in the first two scenarios, and 25 to 150 in Scenario 3. Marginal probabilities
were 0.3 and 0.2 for control and intervention clusters, respectively, in Scenarios 1 and 2. In Scenario 3,
marginal probabilities were constant across clusters, equaling 0.05 in 3.1 and 3.4 and 0.5 in 3.2 and 3.3.

The models in the last two scenarios are representative of the analyses we later carry out that use
the percentages of patients with records of drug treatment to predict adequate assessment. Scenario 4
represents the logistic regression in which the proportion of patients having a record of treatment with
aspirin is used as a predictor, whereas the fifth scenario is representative of using proportions from all
three drug treatment records as covariates. We generated cluster sizes in the same manner as for the
intercept-only model simulations. The percent with a record of aspirin treatment varied uniformly and
independently from 66 to 96 in both scenarios, whereas we generated the percents of patients having a
record of treatment with hypotensives or lipid-lowering drugs uniformly and independently on the set of
integers ranging from 37 to 75 and 14 to 50, respectively, in the last scenario. In the first two settings of
Scenarios 4 and 5, we set ˇ0 D �1 and all other parameter values were zero. In the last two settings,
ˇ D Œ�2; 0:015�T in Scenario 4 and ˇ D Œ�3; 0:01; 0:02; 0:04�T in Scenario 5. Table II indicates the
number of practices, N .

Although its structure was not misspecified, we allowed the exchangeable correlation value to vary
from cluster to cluster in some settings because this will be accounted for, at least asymptotically, by
CN . Ǒ /. In the first two scenarios, correlations were dependent on whether a cluster was in the control
or intervention arm and were 0.05, 0.10, or 0.15. exp.'1 C '2ni /=Œ1C exp.'1 C '2ni /� gave the corre-
lations in the third scenario, where we chose '1 and '2 such that �i , i D 1; 2; : : : N , were in the ranges
(0.024, 0.079), (0.022, 0.337), (0.011, 0.119), and (0.008, 0.067) for the first through fourth settings,
respectively. The correlation was fixed at 0.05 in the first two settings of Scenarios 4 and 5 but was equal
to logŒ�i=.1 � �i /� D �2:94C 0:075.xi � 81/ and logŒ�i=.1 � �i /� D �2:25 � 5j�i � 0:5j in the last
two settings of Scenarios 4 and 5, respectively. Here, xi represents the practice level proportion of CHD
patients having a record of aspirin treatment.

4.1.3. Description of results. Empirical variances dominated empirical MSEs, as squared bias was
negligible, and we discuss MSE results in terms of precision. In the majority of settings, both QIF
versions led to larger MSEs than GEE because of the impacts of imbalance in cluster sizes and the use
of covariates. Even when the number of clusters was 100, which is larger than typically seen for CRTs,
QIF were notably less precise than GEE in many settings.

In the first two scenarios, it is clear that QIF’s estimation performance relative to GEE can worsen as
N decreases because of a lack of empirical information. Similarly, forN D 20, the use of two additional
covariates in Scenario 2 yielded notably smaller MSE ratios than in Scenario 1. However, this result
was only slightly evident when N D 100, as there was much more empirical information to handle the
complexity of the numerous combinations of size and covariates. Additionally, when N D 20, there was
evidence that the distribution from which cluster sizes were generated had a slight impact on MSE ratios,
although there appeared to be negligible impact for N D 100. The importance of this result is that at
least in these settings with cluster-level covariates, the important factor is that any imbalance in the size
of clusters influences QIF’s estimation performance, whereas differences in how clusters vary in size
may only play a minor role. Finally, except for settings 3, 4, 7, and 8 in Scenario 1, QIF’s performance
relative to GEE improved slightly when correlations were not equivalent for both trial arms.

Although GEE assumes a common correlation here, allowing the true correlation value to vary across
clusters did not make QIF more reliable, except in three settings of the third scenario. This is an example
where QIF may be advantageous over GEE. It appears, however, that this was only the case when
marginal probabilities were not near zero or the number of clusters was large. The degree of dependency
correlation had on cluster size also was influential to the relative performances of QIF and GEE here.
Additionally, the differences in precisions of QIF and GEE shown in this scenario are small compared
with the overall results from the other scenarios, deeming GEE as a more reliable method in the majority
of scenarios we considered.

Both QIF versions performed approximately the same in the first three scenarios. However, in all four
settings of Scenario 4, along with the settings consisting of 100 clusters in the last scenario, the QIF with
estimating equations in the same class as GEE performed notably better than the regular QIF. This may
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imply that estimating equations class may influence estimation precision in some scenarios, whereas
the empirical weighting employed by both QIF versions still is the major influence on the differences
between these two methods and GEE. In all presented simulation results, we took the estimated cor-
relation used for the QIF with estimating equations in the same class as GEE as the estimate for the
common correlation from GEE. We also estimated correlation iteratively inside this QIF version in the
same manner as GEE, which led to almost identical results.

4.2. Shown via application to the motivating example

We now return to our motivating dataset. By multiplying the size and adequate assessment percentage for
a given practice and then rounding this quantity to the nearest integer, our dataset had a total of 629 ade-
quately assessed patients, whereas Yudkin and Moher [6] reported 627. However, this slight difference
is not notable in terms of the regression results, which are presented in Table III. We fit three models of
the form logit.�ij /D logit.�i /D ˇ0Cˇ1xi , in which xi represents the proportion of patients within the
i th practice who have a record of treatment with the corresponding drug type, and one model in which
logit.�ij /D logit.�i /D ˇ0 C ˇ1x1i C ˇ2x2i C ˇ3x3i . x1i , x2i , and x3i correspond to the percentages
having a record of treatment with aspirin, hypotensives, and lipid-lowering drugs, respectively. �i is the
marginal probability of any given CHD patient in Practice i being adequately assessed.

We presented the bias-corrected standard errors, using the method of Mancl and DeRouen [17], in
Table III for the GEE results. Another popular alternative that could also have been employed was the
bias-corrected standard errors of Kauermann and Carroll [19]. See these manuscripts and Lu et al. [20]
for more details. We also presented the typical empirical standard errors with QIF [4,5] and similarly the
QIF with estimating equations in the same class as GEE. In some preliminary simulations (not shown),
we observed that QIF’s standard errors were negatively biased; however, more assessment is needed. As
the presented standard errors were possibly produced from a negatively biased procedure, we caution
their use for obtaining confidence intervals and p-values in this particular example.

We first demonstrate the difference in weighting between GEE and both QIF versions by estimating
the overall marginal probability of adequate assessment, corresponding to an intercept-only model. The
estimated weights (marginal probabilities) used (produced) by GEE, QIF, and the newly defined QIF
were Œ1 C 0:058.ni � 1/��1 (0.276), 0.273-0.001(ni � 1) (0.276), and 2:510 O�1i C 2:697.ni � 1/ O�2i
(0.257), respectively, when using the logistic link. There is no difference between the probability esti-
mates from GEE and QIF, although the newly defined QIF does give a slightly smaller value. Obtaining
parameter estimates this close in value from these three methods appears to coincide with the simulation
results presented earlier when the true marginal probability was 0.25. However, when the true marginal
probability is closer to zero or the number of clusters is smaller, there is a greater chance in obtaining a
sample from which probability estimates can be notably different across these three methods because of
a larger variability in weighting used by both QIF versions.

The proportion of patients having a record of treatment with aspirin, hypotensives, or lipid-lowering
drugs ranged from 66 to 96, 37 to 75, and 14 to 50, respectively. In each model, all three methods
estimated the marginal probability of adequate assessment to be larger for practices having a greater
proportion of patients with a record of drug treatments. Table III shows the range of estimated marginal
probabilities over all practices used in the corresponding model. Results clearly show the difference
between GEE and both QIF versions. The range in marginal probability estimates was always smaller
for GEE than either QIF version, except when excluding Practice 21 from the analysis. Additionally, of
the two QIF versions, parameter estimates from the version with estimating equations in the same class
as GEE were notably closer to the estimates from GEE for the first two models. We especially saw this
type of result in Scenario 4 of our simulation results, in which the newly defined QIF performed better
than the regular QIF but not as precisely as GEE. This gives some indication that the GEE estimates here
may be most reliable. Furthermore, when we used the proportion of patients with a record of aspirin
or lipid-lowering drug treatments in the model, QIF estimated the strongest association between these
covariates and adequate assessment.

We now take a closer look into the strength of the estimated marginal association between lipid-
lowering drugs and adequate assessment. In one practice (Practice 1), only 14% of patients were
adequately assessed, which is much smaller than any of the corresponding marginal probability esti-
mates, given in the third model presented in Table III, from any of the three methods. This practice
had the maximum proportion of patients with a record of being treated with lipid-lowering drugs and
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Table III. Estimated logistic regression results when analyzing the cluster randomized trial dataset using the
given record of drug treatment proportions as covariates inside the model.

Covariate(s) Method Ǒ
0

Ǒ
1

Ǒ
2

Ǒ
3 Min Max

Aspirin GEE �2:050 0.014 0.246 0.332
(0.960) (0.013)

QIF �4:025 0.039 0.192 0.435
(1.331) (0.018)

QIF in GEE Class �2:365 0.016 0.217 0.311
(1.204) (0.016)

Hypotensives GEE �1:793 0.015 0.226 0.343
(0.812) (0.015)

QIF �2:431 0.025 0.183 0.370
(1.079) (0.020)

QIF in GEE Class �2:158 0.019 0.191 0.331
(0.967) (0.018)

Lipid-lowering drugs GEE �1:736 0.031 0.214 0.453
(0.717) (0.031)

QIF �2:459 0.063 0.172 0.670
(0.240) (0.009)

QIF in GEE Class �2:535 0.063 0.161 0.652
(0.209) (0.007)

All three GEE �2:845 0.006 0.014 0.028 0.193 0.401
(1.104) (0.012) (0.016) (0.031)

QIF �5:884 0.021 0.035 0.052 0.117 0.515
(1.688) (0.018) (0.015) (0.010)

QIF in GEE Class �3:746 0.004 0.019 0.057 0.139 0.555
(1.137) (0.012) (0.010) (0.007)

Results after removing Practice 1

Lipid-lowering drugs GEE �2:409 0.061 0.173 0.518
(0.241) (0.009)

QIF �2:462 0.062 0.170 0.525
(0.224) (0.008)

QIF in GEE Class �2:520 0.063 0.163 0.519
(0.198) (0.007)

Results after removing Practice 21

Aspirin GEE �2:247 0.016 0.235 0.334
(0.970) (0.013)

QIF �2:029 0.011 0.219 0.283
(1.121) (0.014)

QIF in GEE Class �1:920 0.010 0.222 0.278
(1.015) (0.013)

We give the minimum and maximum predicted marginal probabilities from each model and method. We give the stan-
dard error estimates in parentheses below their corresponding parameter estimates.
QIF, quadratic inference function; GEE, generalized estimating equations.

therefore had the largest marginal probability estimate. The first plot in Figure 1 clearly shows the dif-
ference in this practice’s observed and estimated probabilities. GEE does not directly take into account
how far the observed proportion of adequately assessed patients is from the marginal mean, and there-
fore, the estimated association between adequate assessment and lipid-lowering drugs is not as strong
as it would be without using data from this practice. QIF, however, does directly take into account the
large empirical variability and downweights this practice’s outcomes, allowing the estimated association
to be stronger. Explicitly, if we were to estimate these models without the first practice, QIF and GEE
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Figure 1. Estimated marginal probabilities in the left plot are from using GEE to estimate the model in which the
proportion of patients having a record of treatment with lipid-lowering drugs is the only covariate. The bold dot
corresponds to Practice 1. In the right plot, estimated marginal probabilities used to obtain differences are from
using GEE and the model in which the proportion having a record of treatment with aspirin is the only covariate.

The bold dot corresponds to Practice 21.

would produce Ǒ D Œ�2:462; 0:062� and Ǒ D Œ�2:409; 0:061�, respectively. These estimates are only
slightly different than the estimates given from QIF when including this practice, distinctly showing the
robustness property of QIF.

In the model in which the proportion of patients having a record of treatment with aspirin is the
only covariate, the difference in estimates from GEE and QIF were not due to an outlier. Rather, the
sensitivity, with respect to empirical covariances, of the estimated weights implemented inside QIF’s
estimating equations led to the notable differences. For instance, the largest practice (Practice 21) had
a notable influence on the estimates produced by QIF, but not GEE. Table III presents the differences
in parameter estimates before and after removing this practice. The second plot in Figure 1 shows that
the overall empirical variation increases with practice size, excluding the largest practice, in our sample.
This one practice actually brings down the averaged covariance trend with respect to size, estimated
via r NgTN . Ǒ /C

�1
N . Ǒ /, as it is notably bigger than the other large practices, but its empirical variation

is only moderate relative to these same practices. Therefore, when we remove Practice 21, larger
practices receive less weight, whereas the weight given to smaller clusters increases, because of a rise in
the averaged empirical covariances in larger practices.

Specifically, Equation (7) reduces to

21X
iD1

�
0:004C 0:109xi C 0:243.ni � 1/� 0:004.ni � 1/xi
0:245C 7:917xi C 15:030.ni � 1/� 0:233.ni � 1/xi

�
.Yi � ni�i /D 0

when using all practices and becomes

20X
iD1

�
0:005C 0:257xi C 0:183.ni � 1/� 0:004.ni � 1/xi
0:354C 21:030xi C 10:274.ni � 1/� 0:279.ni � 1/xi

�
.Yi � ni�i /D 0

when deleting Practice 21. By plugging in values for xi and size from the dataset, it can be seen that the
proportion of weight given to smaller (larger) clusters typically increased (decreased) after removing this
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practice. For instance, Practice 1 (20) consisted of 28 (160) CHD patients, and 79% (67%) of patients
had a record of aspirin treatment. The weight matrix given to the residual from the first practice increased
from Œ7:26; 534:51�T to Œ16:53; 1344:01�T after removing Practice 21, whereas the weight matrix
corresponding to Practice 20 decreased from Œ6:53; 438:31�T to Œ2:65; 70:74�T . In comparison, GEE
is given as

NX
iD1

�
1

xi

�
Yi � ni�i

1C .ni � 1/ O�
D 0

for this example, in which O� is estimated using the empirical variabilities from all practices, and the
influence via O� from the empirical variability of one cluster on the weights used by GEE is very minor.
Before (after) removing Practice 21, � was estimated to be 0.055 (0.057), giving weights that were only
negligibly affected.

The GEE estimates do not differ by a large amount when including or excluding Practice 21, and so
it appears that GEE produced more reliable estimates. The estimates produced by QIF were largely
influenced by the empirical variabilities in larger clusters, especially Practice 21, showing that this
method can be sensitive in settings consisting of a small number of clusters due to the variability
in CN . Ǒ /. We note that if more practices were included in this study, the average of the empirical
covariances would lessen the influence from a single cluster on weights used inside QIF’s estimating
equations, making them more reliable. Additionally, although we do not know the true covariances for
outcomes in this dataset, implying we cannot say for sure that GEE produced more appropriate estimates
than QIF, we do see here that QIF can be sensitive even to a single cluster’s empirical covariance, which
is the type of scenario in which QIF can be less reliable than GEE.

When using all three covariates in the same model, there were notable differences in parameter
estimates across the three methods. Both QIF versions were similar in terms of their predicted ranges of
marginal probabilities, which were approximately twice as wide as the range given from GEE. As with
the two previously discussed models, the influences from Practices 1 and 21 were the major factors in
the differences between GEE and both QIF versions. Taking into account how these practices influenced
QIF in these two models, in addition to the simulation results presented in Scenario 5, it is likely that
the GEE estimates are more reliable here. These estimates show a notable association between adequate
assessment and the three covariates but not nearly as strong of a relationship estimated by either QIF
version due to the influence of only two practices.

5. Concluding remarks

The QIF method has the theoretical advantage of producing regression estimates with equal or greater
efficiency than GEE [2]. We have given details and evidence that the class of estimating equations real-
istically has less to do with differences in estimation precision between QIF and GEE than the empirical
nature of CN . Ǒ / and how this matrix is used to weight outcomes inside QIF’s estimating equations.
In small to moderately sized samples, and for unequal cluster sizes, and models with only cluster-level
covariates, as is common with CRTs, QIF can produce estimates with lower precision than GEE, even
when the incorrect covariance structure is implemented. We also showed via our motivating dataset that
the weights QIF implements in its estimating equations can be sensitive to the empirical variability of
even a single cluster, as the number of practices was small.

Although we focused on CRTs scenarios with binary outcomes, we also performed simulations
(to appear in future work) in which outcomes were continuous or counts. We studied as well a vari-
ety of general repeated measures scenarios with time-dependent and cluster-level covariates. When the
number of independent clusters was not large, simulations showed that QIF did not necessarily perform
as well as GEE. We observed these results for a variety of true and working correlation structures.

This paper focused on an exchangeable structure, as unstructured typically is used with a balanced
design and QIF and GEE are equivalent estimation procedures under an independence assumption.
Although less common when clusters vary in size, especially in CRT scenarios, an AR-1 structure would
be appropriate, for example, in a setting resembling administrative censoring in which patients con-
tribute data at the same distinct time points that are equally spaced but with the allowance that they can
drop out of the study any time before their final scheduled visit. The inverse of an AR-1 structure is
the weighted sum of three basis matrices, the last of which is usually not implemented with QIF as it
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contains little information [2,5]. The corresponding estimating equations from QIF are in the same class
as GEE whether clusters vary in size or not, as �ri , r D 1; 2; 3; i D 1; 2; : : : N , are not functions of
size [2]. However, just as we showed in this paper that the variable empirical nature of CN . Ǒ / can lead
to a loss in estimation reliability for both QIF versions, relative to GEE, when using an exchangeable
structure, the same result can occur for the AR-1 structure as well.

Further research is required to improve the estimation performance of QIF in small to moderately
sized samples, as well as to address the possibility of negatively biased standard error estimates. How-
ever, if estimation precision and standard errors are not concerns when deciding between QIF and GEE
for data analysis, QIF has distinct advantages. For example, the QIF can itself be used as a statistic in
goodness-of-fit and likelihood ratio score tests [2, 5]. Although we do not suggest a numerical value, as
we have argued that the impact of empirical information used to estimate weights given to any cluster’s
outcomes depends on the setting, QIF may be a better method to employ whenN is arbitrarily large. This
is particularly true when the actual covariance structure is believed to possibly deviate largely from the
chosen working structure. In this situation, CN . Ǒ /may have greater accuracy in modeling the entire true
covariance structure on average, potentially leading to an improved estimation performance, in addition
to the ability to make use of QIF’s other advantages.
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