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INTRODUCTION

The emphasis in this series of four lectures is upon plasma

physics rather than on thermonuclear reactors. The first lecture

does treat thermonuclear reactors but only from a basic point of

view, i.e. the discussion is limited to the factors that are

basic requirements for a successful controlled fusion reactor

and little time is devoted to the question of economics, effi-

ciency, size, etc. The era of optimism about producing an

economic thermonuclear reactor in the immediate future has

passed. The luxury of those kinds of engineering fantasies has

vanished in the light of the harsh realities which we have

encountered in trying simply to create a small, but hot, dense

plasma which exists for reasonable lifetimes. Thus, most of

the discussion is concerned with basic experiments and theories

that are aimed at clarification of the nature of the difficulties

that now limit us, particularly the instabilities which cause

the plasma to escape containment in very short times.

I. Basic Requirements for a Controlled Fusion Reactor

The fusion reactions that can be considered in a controlled

fusion reactor are the deuteron-deuteron (D-D) reaction and the

deuteron-triton (D-T) reaction. Figure 1 shows the cross

section as a function of energy for those two reactions.

One can see in Figure 1 that the cross section is much

higher for the D-T reaction than it is for the D-D reaction.

The D-T reaction has a disadvantage in that tritium must be
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bred whereas deuterium occurs quite abundantly in nature.

There is no real difficulty here, however, since tritium can

be bred in a blanket surrounding the reactor at the expense

of lithium-6. Breeding ratios greater than unity can easily

be obtained.

Figure 1 shows the typical behavior of charged particle

reactions having a potential barrier. The cross section rises

rapidly above the barrier to a maximum of 0.2 barn for the D-D

reaction and 5 barns for the D-T reaction. In both cases the

cross sections are very small below 10 key. How then might

one build a thermonuclear reactor with deuterium and tritium?

An obvious suggestion is to accelerate tritium or deuterium

ions to 20 key and then fire them at a deuterium target. It

is easy to show that this will not be profitable since most

of the ions would be slowed down below the barrier by collision

with cold electrons before a reaction could occur. The cross

section for collision with electrons (large angle coulomb

scattering) is

The average energy transferred to the electron is roughly the

energy available in the center of mass which is
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where m and M are the electron and ion masses respectively

and Eion is the energy of the ion in the laboratory. The

resulting rate of energy loss which is proportional to the

product of the coulomb cross section and the average loss per

collision is

elcoalsonfE

Another way of putting this is in terms of an energy loss

cross section

which is proportional to the ion-ion cross section and larger

than it by the ratio of the ion mass to the electron mass. At

50 key this is

( B) ().) 10
4en5l(~~ oS~1 * 4 x (36 3o 7.5 x

This is to be compared with about 10 m~vb for the cross section

for a D-D reaction at that energy. The ratio is

R = ' 2o
75/ -l
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That is, only about one ion in a million will .succeed in.

producing a nuclear reaction. This is even too great by about

a factor of 100. The above analysis considered only those

collisions which were nearly head-on, i.e. where the energy

transfer was near a maximum. It turns out that most of the

energy loss comes from repeated small angle scattering and the

net result is that only one in 100 million ions will produce

a nuclear reaction. It is easy to show that this is not

sufficient to give a net production of energy, since 50 kev

was expended in accelerating the ion.

The energy production in the D-D reaction is as follows:

about half the time a triton is produced,

D + D - ~ (1Mer) -- p (3.00 Meir) .

and half the time a He3 is produced,

DeD - He- (0. Mey) -- n(2.45Mr.

The triton would ultimately react with another deuteron,

D-'- T -- He4 (3.sMer) -- n (1+-/Hev)

If the containment time were long enough the He 3 could also

react with another deuteron,

He3 +~- D - He e'(3.4 Mev )+i p (14A7 Hevr).

-9-



The net result would then be the conversion

6 D -- ' He* (7.1Hevy) -+2 p (t?- Mev)+z2n (16.6 1Mev ) +1.1Mev.

If we optimistically count all the energy, the net production

is seen to be 7.1 Mev. per deuteron reaction. The deuterons

were accelerated to 50 key, so that the ratio of energy from

the nuclear reaction to energy required to accelerate the

deuteron is

E0u. 71 40.
Ei,,-O

Obviously this is not sufficient to off-set the ratio of

10~8 in the cross section for a reaction compared to the

cross section for energy loss. This scheme is hopeless as a

source of power.

The trouble came from the energy lost to the cold electrons.

How about heating the target so the electrons do not dissipate

the energy of all the ions? For this to be successful, we must

raise the electron temperature at least to the order of 1 key

(/O%) . At these temperatures the target

is no longer a solid or a liquid or a gas. It becomes a

plasma, and the problem becomes one of containing a hot plasma.

If one can't use solid targets then how about using two

colliding beams of ions? In order to have a reasonably high

density beam of ions it is necessary that the beam be neutralized
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by electrons, and again there is the problem of energy loss

to the electrons. Suppose, however, that the electrons are

either absent or hot. In this case we find that ion-ion

scattering out of the beam dominates the nuclear reaction.

Let us calculate this scattering cross section.

Suppose an ion is passing a fixed scattering center at

an impact parameter b
ion)

b

The momentum change imparted to the ion will be the integral

with respect to time of the coulomb force. This can be

approximated by the product of the maximum force, i.e. the

force at the point of closest approach, times the time during

which the ion is in the vicinity of the electron.

A (Mir) .-b' 1 bv '

where Z is the charge on the ion ( Z = 1 for a deuteron).

For small deflections the angular deflection in radians

is just equal to the fractional change in momentum

A (M1V~) - 2____ .

Mv M TL b -

As an ion moves along, the deflections it suffers will be

random with respect to the beam direction so that

AOe -Q
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However, is not zero and there is a random walk, in

angle, away from the original direction. The mean square

deflection is found by integrating over all scattering centers.

When the particle has traveled a distance A

It is of course necessary to choose some maximum and minimum

cutoff values for b since the integral is otherwise divergent.

The physically significant maximum cutoff is determined by

coulomb screening and is usually taken to be the Debye radius,

kTb = kr-e

The lower limit is the classical distance of closest approach

banM=r*

or the DeBroglie wave length

whichever is larger. In most cases of interest it is found that

bmx is somewhere between 10 and 20 . Because of the
bmin,

logarithmic dependence the result will not be strongly sensitive

to the choice of bmA~X and bmin, . One can now de fine

crudely a "cross section" for deflection through an angle
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of -

whc s set ily 8Z/a_

which is essentially 8 / times the coulomb cross section.

This is the basis for the earlier statement that the energy

loss by the soft small angle deflections is about 100 times as

great as that from close collisions. (This is not quite an

ordinary cross section since we were calculating the mean

squared deflection, which means that the path length needed to

give, on the average, two successive ninety degree deflections

is about 4 times as great as that for the first ninety degrees.)

This effective "cross section" for deflection through

ninety degrees evaluated at 50 key is about 520 barns compared

to the 10 Mb nuclear reaction cross section. Because the

ratio of cross sections is 52,000, the particles are deflected

through 900 hundreds of times before a reaction occurs. Since

the energy gain per reaction is a factor of 142, the idea of

colliding beams begins to look like a possibility. However,

in practice it still won't work for quite a different reason,

the low densities that can be attained in ion beams. Typical

beams can have 108 or 109 ions per cm3 and at most 1010. Then

the mean free path for scattering out of the beam is of the

order of

A - .n =/ a
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Thus the particles would have to be contained and passed by one

another again and again. This essentially brings us back to

the problem of containing a plasma.

Let us now concentrate our attention on the problem of

containing a plasma at high temperatures. Just what do we

mean by high temperature? A minimum condition is that the

temperature be high enough so that the rate of energy production

from the nuclear reactions exceeds the rate of energy loss by

bremsstrahlung. Let us calculate the bremsstrahlung loss.

Suppose that an electron of mass m is passing an ion

with charge Z1  and that the impact parameter is b

The power radiated is classically

p= 2 i (Al),
where the acceleration &L2 is given by

The total energy radiated in the collision is this power times

the time during which the two particles are near one another,

Then,
2e ye zb

This must be integrated over all impact parameters and multiplied

by the flux of electrons 1'1V' and density of targets to obtain

the net power radiated per unit volume. Since the plasma is

electrically neutral,
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where N and Z are the ion density and charge respectively.

p-a N * z--z (iZey 2rrfd ' b )

so

Ptotl 3 m' CW bmin

For fast electrons, the appropriate bmin is the de Broglie

wave length

and the total power radiated is

-w 3 e N 'kY/
Pj ..-- 3 _____i.

which shows that the energy radiated is a slowly increasing

function of the temperature, being proportional to the square

root of T . Also notice that for a given ion density the

power radiated by collisions with impurity ions would be

proportional to the density of impurity ions and to the square

of their charge. Therefore, the concentration of high

impurities must be kept very small or the energy losses will be

drastically increased.

For the reaction to proceed in steady state the energy

production from nuclear reactions must balance the energy losses.

Figure 2 shows the reaction rate as a function of temperature

for the D-T and D-D reactions.
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FIGURE 2

Thermonuclear Reaction Rates

II I . n sem sec

eT ( kev) -%-r- Ce- a D/e

0.05 7 x 10-35 2 x 10-35

0.5 6 x 10- 2 3  2 x 10-24

2.0 3 x 10~19 5 x 10-21

10.0 1.1 x 10-16 8.6 x 10-19

100.0 8.1 x 10-16 3 x 10-17

The nuclear reaction rate is proportional to 0~9/

pc< NA<rv- .t

Figure 3 is a plot of the bremsstrahlung losses and nuclear

reaction yield as a function of temperature. The point at which

the curves cross is the ignition temperature. It can be seen

that the temperature must be at least 10 key before ignition

takes place.

The calculation of the bremsstrahlung loss assumed that

the radiation escaped from the plasma freely. This will surely

be the case in any system which we can realize in the laboratory.

If the radiation were strongly self-absorbed the plasma would
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be equivalent to a black body. The radiation pressure at a

temperature of 10 key is 1011 atmospheres.

We have now seen that ignition can be achieved if a plasma

can be held at temperatures greater than 10 key. The next

question is how one could contain such a plasma for a sufficient

period of time to produce some useful amount of energy. It

obviously can't be done by material walls. Even if one just

decided to make the walls thick enough to accomplish contain-

ment for a short time, the poisoning effect of high Z

materials discussed above would extinguish the reaction. One's

thoughts turn immediately to fields, and of these the only

two which seem to be reasonable are electric and magnetic

fields. Electric fields are not very promising since a field

which contains particles of one charge will tend to pull out

those of the opposite sign. The most promising solution seems

to be containment by magnetic fields. Let us now calculate

how much plasma can be contained by a reasonable size field.

The equation of motion in the hydrodynamic approximation

is

f g +VP =x ,dA7

where JO is the density, /\F the velocity, /9 the pressure,

the current density and S6 the magnetic field. One

of Maxwell's equations states that
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This can be used to eliminate , so that in the steady

state, neglecting displacement currents and quadratic terms

in the velocity, the equation reduces to

If, in addition, the field is uncurved, B'? vanishes and

P+ . Sfis a constant. If P vanishes on some surface,

which is equivalent to stating that the plasma is contained,

then we -can write

The maximum possible value of Pint occurs when B goes

to zero. Then

icext"

This magnetic pressure is about 15 atm for a field 5 = 20

kilogauss. Thus a field of this magnitude can contain a

pressure of about 15 atm, which determines the maximum possible

ion density since the minimum temperature has been fixed at

about 10 key.
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N/5r6 (o S/ck T

It can be seen that in order to obtain a high plasma density we

want the ratio

P
($ '- B-1

to be as near to unity as possible.

For the D-D reaction higher temperatures near 100 kev are

needed. Then the 20 kilogauss field could contain 1014 ions/cm 3 .

Of course, one can increase the magnetic field strength and thus

increase the maximum density. However, material stress problems

become very severe for fields above approximately 50 kilogauss.

Having determined the plasma density and temperature, we

require one last basic parameter. This is the minimum contain-

ment time. How long must the plasma be held together at these

conditions for a reasonable fraction of the ions to undergo a

nuclear reaction? The nuclear reaction rate is

and hence the effective life time for a nuclear reaction is
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N o-,ir

For the D-T reaction at a density of 1015 and a temperature of

10 key,

tT N crT. O 10-(/*4 /0 sec.

For D-D the result is more like 1000 sec.

It is not necessary economically to react all of the ions,

and in fact it turns out that a containment time 1/100 as

great as this would do. The times we are aiming for are about

t = 1/10 sec D-T
t = 10 sec D-D.

To summarize, the following basic requirements must be met

to achieve an economical thermonuclear reactor. For the D-T

reaction temperatures of the order of 10 key and densities of

the order of 1015 must be maintained for roughly 0.1 sec.

Containment is by a magnetic field of 20 kilogauss. For the

same magnetic field and the D-D reaction a density of 1014 must

be contained at a temperature of 100 key for about 10 sec. If

higher fields can be attained then the densities can be higher

and the requirement on containment time is. correspondingly

reduced.
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II. PlasmaStabi lity

At the present time the major problem facing those who are

trying to achieve controlled fusion is plasma stability. There

are a great variety of possible instabilities. One of the most

familiar is that which occurs in the pinch. In the simplest

variation of the pinch a high electric current is passed down

a column of plasma. The current heats the plasma, and the self

field squeezes it down. The self field is mostly outside the

plasma and confines it.

Suppose the column of plasma begins to kink.

Simply from the geometrical effect, B/g7T is increased on the

inside of the bend and decreased on the outside. The magnetic

pressure tends to cause the kink to grow and the plasma to be

unstable. The growth time of the instability is of the order

of the thermal transit time, so the plasma disassembles in a

microsecond or less.

There is a more general type of instability called the

flute instability. We will start out by analyzing a simple

problem which will demonstrate most of the basic principles that
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are involved in the more pertinent situation to be discussed

later. Consider the problem of a heavy fluid supported by a

light fluid. It will be assumed that there is initially a

plane horizontal boundary separating two semi-infinite fluids

of different density, the higher density being on top. Such a

configuration is unstable but it is well known that it can

persist for an appreciable length of time if it is prepared

carefully. We ask what the behavior of this system will be if

a perturbation is applied to the boundary. Will the pertur-

bation grow or not?

We choose the following coordinate system,

The gravitational force per unit mass is in the negative

direction and has strength ,

F -

We will deal with this problem in the hydrodynamic approximation

which will later be applied to a plasma.

The continuity eguation states

(1)
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Assuming that the pressure is a scalar, the force equation is

-4 ~r-4 2

An equation of state is also needed, and for this we take the

simplest one, that which applies to incompressible fluids.

This insures that

Ott at(3

and the continuity equation combined with this gives

v 'O. (4)

An initial state is chosen in which there is no mass velocity,

and no x or y dependence.

Then the force balance equation gives for the initial state

(5)

where is either M or . The boundary conditions

at the interface are that pressure and velocity are continuous.

The gradient of the pressure will be discontinuous because of

the change in density.
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Now, as usual in a problem of this type, we will linearize

for a small disturbance about equilibrium. The linearized

force equation becomes

dLi _ ai, mo

and the continuity equation is

a p + ( 1 -v ) , = ,
wt 

/V
(7)

and

.r, . 0.O (8)

In these equations the subscript 1 refers to the change in the

quantity whose initial value is designated by subscript 0.

Next we Fourier transform in the variables time, x

y, i.e. we seek solutions of the form

When this is done, the x, y and z components of the force

are

and

equation

Lwfo1y _ )

(9)

(10)

(11)
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and from the continuity equation and incompressibility we get

lw-?',l0 (12)

(13)

We can substitute (9) and (10) into (13) to obtain

(14)

where

(15)

Now put (12) and (14) into (11) to obtain a single equation in

a a')<kj f 4 0-(16)

This is now a homogeneous second order differential equation.

We need boundary conditions at infinity. These are provided

by the fact that the perturbation in all quantities will vanish

at infinity. In addition there are two boundary condition at

the interface. One is that -- /I must be continuous as follows

immediately from Fig. (8) . Using the symbol [3to
designate the jump in a quantity across the interface, we have

(17)
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Then integration of equation (16) over a little pillbox enclosing

the surface gives

--,(18)

Now if it is assumed that Jo is a constant in each region,

equation (16) reduces to

Since must vanish at i o the solution is

A e

r~~le + k
where U and L. refer to the upper and lower regions respect-

ively. But from (17) A must equal B, and (18) gives

This can be solved for WA) and gives

Thus there are two modes, one decaying in time and the other

growing. This is the well-known Rayleigh-Taylor instability,

with

This linear result says that the shortest wave lengths grow

most rapidly. It is of course valid only for small displacements

and fails when the amplitude becomes large.
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Indeed it is observed experimentally that when the

displacements become large, the longest wave lengths grow most

rapidly and the velocity approaches a constant,

Now we return to plasma physics and consider a problem that

is similar in most respects to the simple problem treated above.

The problem to be solved is that of a plasma supported against

gravity by a magnetic field, and we again investigate the

stability of such a situation.

The coordinate system is chosen as for the previous problem,

and the magnetic field is taken to be in the x - y plane,

and is independent of x and y. Thus

BO 7; 0.
Again we assume that the fluid is incompressible,

-V. V =G.(19)
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The force equation is

c~i 7  
-,(21)

The Maxwell equations for the electric and magnetic fields

are

curl 
(22)

curl4~~-.t(23)

Now the assumption of infinite conductivity is introduced

in the form of the equation.

E \f" X 8 - O(24)
G

Equations (23) and (24) are combined to give

=8 curl (rxB)
.. 19 - , -V-. ., -+ -- - O -'=-' ( 25)

Next (22) is substituted in (21) to eliminate . Then

after applying some vector identities we get

The equations in this problem can be seen to be similar to

those governing the Taylor instability, except that there is one
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more variable, 8 , and one more equation, (25). Once again

we linearize about the equilibrium steady state. The linea-

rized equations are

(27)

+ y ( ,-1)B.--1,30
(28)

at°

V- o (29)

(9 ) - ; )(30)

The subscript 0 denotes the steady state value and 1 denotes the

departure from the steady state. Once again we take the Fourier

transforms in time, x, and y. Define the quantity

.. -,

8 0 '-B-, 4 * (31)

Just to show what the transformed equations look like we exhibit

the x component,

iW ,X X tX(32)

There is a similar one for the direction, and in the z

direction we get

_ 0p-3 (33)
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By combining the various equations to eliminate A , the

components of 6, ,and 'f and we get a second order

equation in ,

(34)

4 rwh 

e r e 
-

.
, i .e .

~ * (35)

Now remember that we must consider arbitrary perturbations which,

in this normal mode analysis, means that we have to look at all

possible directions of with respect to the direction of

Ba .Suppose that the direction of is independent of

z and that we look at the case where -=, =Q , i.e. modes

which have A perpendicular to the direction of 8 . Suppose

also that is independent of z. Then the equation reduces to

that which we had in the Taylor instability, and the plasma is

completely unstable, i.e. it cannot be supported against gravity

in a magnetic field whose direction is independent of z.

The way to remedy the situation is to introduce shear in

the magnetic field. We will analyze the simple case where the

magnetic field is constant in the upper and lower half spaces

but is discontinuous in direction across the boundary. Take



Ba=0Bo; B = 8.

Under these conditions we still get the exponential

solutions found in the Taylor instability, but the expression

for A 2 is

~~~ ~ ~ -(ocpk~4 k c
firflO

Now a stabilizing effect has been added because the second

quantity on the right hand side is positive definite. Only if

o =0 is it possible to find a direction of for which

this term vanishes. Of course the plasma will still be unstable

unless the second term on the right exceeds the first. For

given values of the other parameters, it is always possible to

find a small enough value of 1 (long enough wave length) to

make (AJ negative. It would appear that the plasma will always

be unstable to sufficiently long wave lengths. However, in

practice the plasma has a finite extent in the x and y

directions and it is improper to consider wave lengths larger

than the plasma dimensions. When this effect is included, the

plasma can be made stable.

So far we have been considering the stability of a plasma

supported against gravity by a magnetic field. Of course,

the gravitational force itself is not the real problem. Instead
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it is accelerative forces produced by particle motion along

curved magnetic lines or by acceleration of the plasma as a

whole. The effect is entirely equivalent to that of a gravi-

tation, of course.

An example of the latter is provided by the linear pinch

with an included 8 field. During the initial phase the plasma

shell is accelerated inward by the pressure of the field

produced by the pinch current ( Be ) . In the frame of the

plasma the "gravitational" force points out of the central core

which is filled with the 3 . field and into the plasma. Hence

one expects stability. Continued compression of the trapped

/ field in the center finally stops this process and then

produces a deceleration. During this part of the cycle, one

expects "gravitational" instability to occur.

Figure 4 is a photograph of an experimental pinch during

the deceleration phase, showing the characteristic flute

instability. The discussion above indicated that the addition

of sufficient shear should stabilize the flute instability.

This can be done by running a wire down the center of the tube

and creating a 6 field in the central region. Figure 5

illustrates the stabilizing effect of doing this.

But it is neither the force of gravity nor the accelerations

of implosion that we are most worried about, but rather the

accelerations experienced by the particles as they move along

curved magnetic lines. For example, if we have an electron
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moving along a curved magnetic line, in its rotating frame of

reference it is subject to a centrifugal force that plays the

same role as gravity does. The effect is such that a plasma

confined by a magnetic field with a center of curvature in the

plasma (such as in the center of a mirror machine) is unstable,

whereas if the curvature of the lines is reversed (as in a

cusp) the effect is stabilizing.

Plasma Unstable Plasma Stable
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III. The Motion of Single Particles

In the previous section, plasma stability was investigated

from the hydromagnetic point of view, which regards the plasma

as a continuous fluid rather than as a collection of particles.

Of course, the plasma actually consists of discrete particles

and it should be possible, in principle, to investigate stability

by studying the motion of single particles.

In this section the motion of single particles will be

calculated and then in section IV they will be put together to

determine the collective motion of the plasma. The procedure

is a self-consistent one in which the fields in which the

individual particles move are determined by the externally

applied fields plus the fields produced by the collective motion

of all the particles. It is interesting and encouraging that

the two vastly different approaches to the problem that we shall

consider both give the same answer for the growth rate of the

flute instabilities.

Consider the motion of a single particle in a magnetic

field. Suppose that the particle is moving in a nearly uniform

field such that the amount of field variation in one Larmor

gyration is small compared to the field itself:

'3over a distance /

It is assumed that the magnetic field is not time dependent

and that other fields such as the gravitational field are of
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A8
the same order of smallness as .Then the motion

to zeroth order, in the magnetic field gradient, is given by

G e

is a spatially constant vector.

(36)

where go.

There is no acceleration parallel to the field. The co-ordinate

system is chosen with the z axis in the direction of the

magnetic field. Then

Uo- = constant,

and

xo b

/J.vw AwctBcowt (37)

ry =Aca- w t -BAw ct
(38)

where is given by

e 0
w C (39)

The corresponding coordinates of the particle as a function of

time are

-dtf-e (40)
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x =.- _ o ,c tw

wcov

WC,

C

(41)

(42)

where e, f and g are constants. The energy in the plane perpen-

dicular to the z axis is a constant of the motion, since

The time averages of 1 and are

(43)

^ ..
'LT

- (1f- At8
2 (44)

All other quadratic products of the velocities vanish.

The time averaged products of the velocity and coordinates

are

x 2.

is w wo r

I

(Qf~

)"x

0

(45)

Il- X
V +UL D a

(46)

(47)

In the above the time averaging has been chosen so that the
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uniform motion along the z-axis leads to the particle being

at ==-0 at the midpoint in time. We are always free to

do this.

To solve the problem with slightly curved fields, the usual

procedure is to transform to a coordinate system which moves

with the center of gyration but. maintains a constant orientation.

We find it more convenient to introduce a curving coordinate

system that rotates in such a way that the z direction is

always parallel to the actual magnetic field.

If is the position co-ordinate of the particle then

the velocity is

(48)

where we have explicitly noted that in our curved coordinate

system the unit vectors L)c (- and are functions

of the position of the particle. Since we have assumed that the

field is only slightly curved, the unit vectors can be expanded

in a Taylor series about the zeroth order position, and we will

keep only two terms,

K L< ± etcetera.

Then to first order, the velocity can be written
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(49)

The first curly bracket represents the perturbed motion to first

order in the uncurved geometry. The quantity in this bracket

will be called -(t)

The second curly bracket gives to first order the effect of the

curving geometry.

Now we will write the equations governing the motion of a

particle in terms of this coordinate system. The equation of

motion is

(50)

where F is any other constant force exerted on the particle.

The procedure after expressing quantities in the curving

coordinate system will be to average the first order terms over

a time that is long compared to the Larmor gyration time.

First note that

(51)
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is to first order

dt dt

since 14 is space independent. Further

(52)

Dtr a

-

*1r, __t

dt

__

ix 10 (53)

70
0

From the zeroth order calculation above we have

air 0

at

(A)c tLrly 0
rXo

at *.>)

(V°
0) (54)

so

d -.Ot

(55)

Now we take our time average, and with the help of equations

(45), (46), and (47) we get

d v',

at

a r, ct)

2 ax J, 2 a . o

(56)

(we do not distinguish '(t) from its orbit average, throughout)
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Similarly from equations (43) and (44) the time average of

V IT, is

-- - 2 __ avC; ;;ai

* 2 3 o o,(57)

When (56) and (57) are combined in (52) the result is

aYo *(58)

Now note that -+ ---

where R is the radius of curvature of magnetic field (pointing

away from the center of curvature), and (58) becomes

R(60)

Thus the left-hand side of the equation of motion (50), when

written in the curving coordinate system, has one additional

term which is due to the centrifugal effect.
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Next consider the 2/- X term on the right hand side

of equation (50). Again to first order,

(61)

The first term on the right can be written

e-

+ /- x (t)(O y + vrt)(!t p + U tXP) JxB~
(62)

When the bracket is replaced by its time average and equations

(45) , (46) , and (47) are used the result is

SV X0B+ IXL - '-X

C-)/4. (63)

where we have used also the fact that

-0(64)

The remaining Lorentz term is

(X .1 (65)

(since 3: bby definition of our coordinate system)

The last term on the right averages to zero since
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The other terms do not vanish and if equations (45), (46),

and (47) are applied again here the result is

into eqatox(0)tootinth esl

m . =. r, x --,-+x , ,

CIJLax' 0  I Lo0

Now if we introduce the operator

V~~E (67)

The equations (66), (63), (61), (60) can be substituted back

into equation (50) to obtain the result

0C

dOct j(68)

-p

where G is defined by

MV

Since all second order terms are neglected, G represents a

force wh icrh i s constant in both space and ti me. The solu>tion of

from the zeroth order calculation. The sum of these two is

then (). Therefore, the complete solution of the problem
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to first order and in the approximation of replacing the

correction terms by their time averages reduces to solving

equation (68) for 1

We will not restrict the discussion to situations which in

the external force F is either zero or has no z component.

Then the z component of equation (68) is

(70)
mc -8r =rv.(x .o )

now a-

or rX a a e a Br =

or l ~~+-t L- B
+ X t- + _..' -MOWN .l

This can be written as

a .DX
or

Hence, - xb/aTB

)ax a . 8 a-' (71)

and equation (70) can be written

(72)
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Now taking the orbit time average of the z-component of

equation (49) , we have

But

413)y~L44-;? 4

a, - 9--

a 3

-9 - - ,

Now if there are no appreciable currents flowing in the particles

vicinity, then V X5B= o and we find that

Hence, to first order

Equation (73) is the basis

netic mirror geometry. If

2.8 ?'. (73)

of containment of particles in a mag-

we multiply this equation by 'U'

we have

d(v)

8

1 3

d 8
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neglecting second order effects. Now, the total energy of a

particle is a constant for motion in a time-independent magnetic

field. Hence

± -L constant (74)

oUtJ(75)

which has the solution

= constant (76)

The constant above is an adiabatic invariant (since it

depends on second order effects being small) . If a particle

now spirals into a region of increasing magnetic field, we see

that V'. must increase. Since total energy must be conserved

this can only occur at the expense of ' . If the increase

in B is sufficient, we will reduce /V to zero. In that

case the forward motion of the particle ceases and it is

reflected.

Returning now to equation (68) we consider the components

of 'Vin the X and directions. Denoting the corresponding

components of (7 by G, and G6 , we find at once that

( (77)
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(78)

where t( and are constants.

Taking the orbit time averages of the x and y components

of equation (49) we find:

Hence, by equations (77) and (78)

and substituting from equation (69), we have:

G m 3

Hence the entire perpendicular motion of the particle can

be described as a uniform rotation about the magnetic field

direction, plus an added drift velocity /1/-j, given by
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-,C -' x BGXB, (80)

Thus there will be -drifts, due to external forces, centri-

fugal effects from the curved field and the so-called grad B

drift. The grad B drift can be understood easily by the

following picture in which there is an abrupt change in B

across a plane boundary with B constant on either side. Assume

B is directed into the paper. Then in the strong field the

particles move in circles of small radii, and in the weak field

the radius is larger,- resulting in the drift.

-p

B

Stron_ Field

Weak Field 4VVVV

The same drift occurs if the field varies continuously, except

that the curvature of the path varies continuously rather than

abruptly.

The effect of an external or centrifugal force is similar.

Again assume the magnetic field is directed into the paper. In

the absence of any external force the particle would move in a

circle. But in the presence of the force shown the particle

will attain a maximum velocity at the bottom of its trajectory
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and a minimum velocity at the top of its trajectory resulting

in a drift to the right.

path with no force

Ft particle moves at
constant speed.

minimum speed

maximum speed

The drift is seen to be in the direction F X B. A gravita-

tional force will produce such a drift as will a centrifugal

or inertial force. The expression (80) for the drift velocity

contains the electric charge; so for forces which are independent

of charge, electrons and ions drift in opposite directions. But

if the force is due to an electric field then F = e E and

is in the opposite direction for electrons and ions. Then e

drops out of the expression for la . In such a field the

electrons and ions drift in the same direction with a velocity

or= cE/gp.
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IV. The Single Particle Approach to Plasma Stabiliy

Having derived the drift velocities of the individual

particles in given fields, we now want.% to essentially sum over

the motion of all particles to determine the behavior of the

plasma. We will be interested in the relatively long time

behavior of the plasma so that we can average the motion of the

individual particles over a time that is long compared to the

Larmor gyration time. Then it is just the drift velocities

calculated in Section III that will determine the plasma behavior .

Suppose we try to repeat the analysis of the stability of a

plasma supported against the force of gravity(l) that was

done from the hydromagnetic point of view in Section II.

Plasma in uniform magnetic field

Directed out of the paper

According to the single particle picture the ions will drift

left and the electrons will drift right.

(1) M. N. Rosenbluth and C. L. Longmire, Annals of Physics _l,
120 (1957) .
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The drift velocity from equation (79) is

e8 e 3(81)

If the plasma is infinite and there is no surface perturbation,

there will be no effects from this drift. What happens when

there is a surface perturbation?

-- O. ++Magnetic field out
of the paper

Due to the drifts there tends to be a charge separation as shown,

and this produces an electric field. The electric field in turn

will influence the drifts. In Section III the fields were all

assumed known. Thus, to utilize those results we must adopt a

self-consistent procedure in which the fields that occur in

those equations must be the net fields including the effect of

particle drifts. We will find that this self-consistent single

particle approach will predict that the perturbation will grow

exponentially and at the same rate as was calculated in Section

II using the hydromagnetic equations.

The electric field produced by the ion drift in the presence

of the surface perturbation shown is parallel to the surface and

perpendicular to the magnetic field. E XS in this case is

upward where the sur face is perturbed upward and downward where

the surface is perturbed downward.
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Therefore the effect of the charge separation is to cause

drifts that tend to increase the perturbation, and the pertur-

bation will grow. Let us calculate the growth rate.

Consider a boundary perturbation of the form

(82)

The separation of charges produces a net electric charge density

that will vary with position on the surface and which is described

by the continuity equation

~~ (83)

where is the total ionic charge per unit area of surface that

is contained within a surface thickness equal to the perturbation,

- efNA (84)

Here N is the volumetric ion density. The electron drift will

be neglected since we see from (79) that the drift velocity is

directly proportional to the mass. Substituting (82) into (83)

we get

(85)
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To first order, 'Vp is independent of y, so Qy is separable

in space and time.

cF 00(86)

and we have

o~t(87)

What are the electric fields that arise from a charge distribution

like this? They can be found in a straightforward manner. The

potential is

V (V) d:A (88)

where

t) -C(c k V-6C('))(89)

when the integration is performed the result is:

VQ4t)Tr o(t) -k-9
>6IT (90C- k (*
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For a small perturbation the E field will merely alter

slightly the surface charge distribution and can be ignored as- a

second order effect. The field, however, will produce a

drift in the- direction given by equation (80).

--. -- c4WclB "4 4,kt
86 c

(92)

But from equation (82)

and we can identify --. as

daQ~_ _ c ST

Differentiating (94) and combining it with (87) we get

Then Ajp can be replaced by means of equation (81):

(93)

(94)

(95)

d27-
4TrNMc-k~cL()

B (96)

All the -quantities in the coefficient of Qa,(t) on the right

hand side of equation (96) are positive constants, so we know

immediately the system is unstable. The solution of equation (96)

is the sum of a positive and negative exponential.
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Everything in the time constant has been well defined

except 6 , the dielectric constant. We need to evaluate it

for an oscillating electric field that is perpendicular to the

magnetic field. Because the frequency of oscillation that is

involved here is small compared to the frequency of collisions

we can use hydrodynamics.

fraytt (97)

where the electrons have again been ignored because of their low

mass. - is given by equation (80):

) ,(98)

which is substituted into (97) to give

The polarization current *can be identified from this

equation to be

- -- (100)

This is the typical equation for a polarizable medium. If fP is

the polarizability

?=PE
(101)
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f"%

then the polarization current is related to by

C dt C (102)

From (102) and (100) P can be identified as

(103)

The dielectric constant is

/LT 'PC
B48(104)

4/rrptc C
Usually so the electric

field will not penetrate far into the plasma. In this case

6 Er -C(105)

We can evaluate this for a typical situation to see how good the

approximation is. Take N = 1014 and B = 104 gauss. Then

t~~rg c -fr. /o'4.0/o"-.,/0-- O
l3~ /0.

$ 10S

Equation (105) can be substituted into (96) to give

(106)

This is equivalent to the result found from the hydromagnetic

point of view. So again we find that the perturbation is
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unstable with an exponential growth constant,

(107)

The agreement between these two vastly different approaches

leads one to wonder if the single particle approach might also

be used for other problems. It is not known whether the two

methods will always agree in other situations. Unfortunately,

the single particle method does not appear to be adapted for

problems involving complicated geometry, and so far has been

restricted to simple problems like that treated here.
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V. The 6W Formalism

In more complicated geometries the method of normal modes

and the single particle approach are too cumbersome. There is

another powerful technique called the SW formalism that is more

adapted to complicated geometries. We will develop the essential

features of this formalism as applied to the magnetohydrodynamic

equations.

The system of equations that will be used to describe a

plasma supported against gravity by a magnetic field are:

J)e (108)

at (109)

(110)

(111)

(112)

cuA 3= rrif ,
(113)

(114)

In equation (108) the gravitational force has been expressed

through the gravitational potential ~f. The analysis will then
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apply to any gravitational-like force. Instead of assuming the

plasma is incompressible as we did in the normal mode analysis,

we have assumed that any compression or expansion of the plasma

is adiabatic as expressed in equation (111).

Let us go to a Lagrangian description of the fluid motion.

In that description all quantities are functions of /O

(the initial location of the fluid element) and time t . We

define the displacement vector (the displacement of each fluid

element from its initial position /i')

(115)

where ./L is the location of the fluid element at time t

Clearly satisfies the initial condition

(116)

Now

(117)

and from (115)

alo

9 A (118)

To first order in i.e. for small displacements from

equi libr ium
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(119)

and therefore

V-70  ~~ )v 0  (120)

Let us now consider systems which are in a condition of

static equilibrium ( %r=- and - O ) at t = 0. The equations

describing this equilibrium are

(121)

i~O (122)

0 )(123)

* (0B0 124)

and ==C) for all time.

If we now make a small displacement of each fluid element by

an amount (1Zo, O*) , then will begin to change with

time by obeying the equations of motion. Hence,

dt (125)
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where is also small. We can also calculate the change in

the other quantities due to the small displacement. We have, by

equations (110) and (112)

at = wt(126)

or

-d-13 - VC )B = cwdr 'rx8 ,
d (127)

Linearizing about the unperturbed state we get

9 0o(128)

which can be written

4(Ld i(* (129)

This can be integrated and solved for $ . The integration

constant vanishes because 5, is zero at t = 0.

1(-130)
51 )V/ 0 BO j-7 x \,( /130)
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or

B 80 Bo + 1vBt Vo x B)0
(131)

From (113) and (120) we get

41('] -=-477go -t- N'

wjo-X 'ZXB,)- -- /*(132)

= 1rjo+ 7r( ,xB) -- r(Vo' )?o X o -

This is combined with (130) to give

. o f 10 X E V g~f-ox
. -- (133)

-[cv.)-v.] x b0 -
Since

__ Wp (/i3v)p
(134)

we have from (109)

it (135)

This we will linearize to obtain

-- tye ± r-0, (136)
tt

or

(137)
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Again because J1 -:-.() at t = 0 we can drop the integration

constant and write

(138)

or

(139)

From the adiabatic law, equation (111)

-Y -Y

(140)

This we combine with (139) to obtain

pp (141)

Now equation (141) is expanded and to first order

(142)

The first order expression for the gravitational potential is

o**
(143)

The linearized force equation can now be written down by substi-

tuting equations (125), (131), (133), (139), (142) and (143) into

equation (1) and dropping all second order terms. We have

(144)
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where f-~ (T can be reduced to

(145)

and where

(146)

Notice F is purely a function of position and independent

of velocity .

We can show with proper boundary conditions that f() is

a'self-adjoint operator. That is

(147)

where J.'C, is integration over all regions of fluid

elements . Note that we do not write F* since it is

a real operator.

Let be a normal mode

*o )(148)

The self-adjoint property of F determines that (W)7 'is real.

Substitute equation (148) into (144).
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_

WJDo

l

(149)

Similarly for the conjugate

jW~f (150)

we multiply (149) and (150) by . and - respectively,

subtract the two and integrate over volume.

(151)

But by equation (147) the right hand side of (151) vanishes and

we have
z 

2. 

w

Cut -w
0 (152)

is real. This agreeswhich proves our assertion that Wi.

with our previous normal mode analysis.

Now consider the change in potential energy.

.... - .-T (153)

Assume that we have a complete set of orthonormal modes, satisfy-

ing equation (149). Then can be expanded

ac e r i(154)

and W can be expressed in terms of the expansion coefficients a,,,
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o -(155)

We see now that 6 W can be negative if and only if there exists

at least one unstable mode, i.e. a mode with imaginary L), .

Hence we have the essence of the j W formalism. In practice one

minimizes S W using all possible ... that satisfy the

boundary conditions and discovers the conditions under which

W can become negative.

This method is clearly related to Rayleigh's principle

which says that if we minimize

K (156)

where

(157)

Then functions which make this stationary are normal modes, and

the Wa' values calculated from (156) are the eigenvalues. Of

cour se this is equivalent to minimizing 6XW with the extra

condition that be normalized by
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This is a serious restraint. We drop this in the SW formal-

ism and gain advantage of easier determination of stability. We

pay the price, however, of losing the ability to calculate the

actual value of 4' . We can still establish stability

criteria but cannot study the detailed behavior of an unstable

situation.

The SW formalism (or the energy principle) has been used

to analyze more complicated geometries than can be handled by

normal mode techniques. In this way, it has been shown that

the stellarator (at low (3 ) should be stable and mirror

machines should be unstable (without shear). Neither of these

prophesies has proven entirely correct. In fact, the history

of the pinch supplies an excellent example of the failure of

the MHD predictions. On the other hand, one does see flute

instabilities, as predicted, in the linear pinch.
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I. Introduction

Besides the fundamental problem for producing controlled

thermonuclear reactions--that of finding a stable configuration

for the confinement and heating of a high energy plasma in a

magnetic field--there are many other questions of equal importance

for achieving a basic understanding of plasma phenomena. The

ramifications of laboratory investigations of the fundamental

processes which govern the behavior of ionized gases in a

magnetic field are relevant to astrophysics, space physics,

energy conversion, atomic theory, to name but a few of the more

important areas that are receiving increased attention in

recent years.

In this series of lectures we shall make the questionable

assumption that it will be possible to thermally isolate a high

temperature plasma by means of magnetic forces. The discussion

will therefore be limited to problems connected with understanding

processes in a stable plasma, except in the section on the

structure of collision-free shockwaves. Even with this drastic

restriction, the subject is extremely complicated and the

difficulties are compounded by the fact that the relevant

equations are generally of a highly nonlinear character, even

when there is equilibrium among the kinetic degrees of freedom

of the charged particles.

There are many approaches to the problem of actually

producing stable high temperature plasmas. Broadly speaking,

the electrotechnical difficulties depend strongly on the
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following factors: magnetic field configuration and strength;

characteristic times, which range from fractions of a micro-

second to steady state; charged particle densitiegwhich differ

by at least ten orders of magnitude in different experiments

now in progress; and the method of heating.

The number of experimental possibilities is accordingly

enormous. However, one can roughly distinguish two avenues,

one involving high pulsed magnetic fields and high plasma

densities ( ~-1015 to 1017 particles /cm 3 ) and the other with

moderate quasi-stationary fields and densities ( a "few" to

~ 1015 particles/cm 3 ) . It would be inappropriate to attempt

a review of all the attempts and failures to reach the ultimate

goals. In any of the particular investigations, one would like

to know if there are common factors which influence the heating

and confinement; the role of impurities (radiation losses);

and the distribution of densities, temperature and fields in

the plasma. Intimately related to such questions is the

experimental goal of refining diagnostic measurements to the

point where it can be determined whether or not the observations

can be fitted into any theoretical picture and to determine the

range of validity of the simplifying assumptions which are

built into the present theories. From this point of view, it

should be emphasized from the outset that plasma physics is still

in its infancy and a great deal remains to be done before one

can understand the most important mechanisms underlying a great

amorphous mass of what are, with rare exceptions, generally

crude experimental observations.
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Since the one common feature of all the experimental

approaches to obtain a high temperature plasma is the presence

of a magnetic field, it will serve our purpose here to choose

a specific geometrical configuration on which to base the

following discussion. The aim is to illustrate what is involved

in the interpretation of the data for a particular and more or

less typical experiment and to indicate the nature of the

diagnostic techniques.

The interpretative sections will be based on the magneto-

hydrodynamic (abbreviated by MHD) approximation with the

restriction that all considerations apply to the case where the

charged particle densities are sufficiently high so that coulomb

collisions play an important role. Then one can expect the

usual transport coefficients for viscosity, thermal and electri-

cal conduction to be meaningful. Furthermore, in such a fluid

description one can hope to treat nonlinear wave phenomena,

i.e. shockwaves, semi-quantitatively.

In addition, if the electron velocity distribution is

Maxwellian, it should be possible to take into account spectral

line and continuous radiation from impurities in an otherwise

pure low-Z gas, i.e. hydrogen or deuterium. This is important

since radiation losses are known to be of great importance in

the energy balance of laboratory plasmas as well as in stellar

atmospheres. To complete the analogy between laboratory plasma

physics and astrophysics, the MHlD equations can provide the

basis for "model atmosphere" calculations which are the foundation
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for the interpretation of stellar spectra. This intimate

connection can be expected to be of significance for fundamental

radiation studies which will aid in the interpretation of vacuum

ultraviolet radiation from the solar corona, where million degree

excitation temperatures are encountered.

For the experimental verification of the MHD equations,

cylindrical systems are most easily studied theoretically (with

the aid of computers) and, therefore, only these will be consi-

dered here.

Finally, it shouldbe remarked that the theoretical analysis

of plasma processes in a hypothetical thermonuclear reactor is

much more involved. At the extremely high temperatures and low

densities expected in a reactor, the importance of charged

particle collisions is reduced. One can expect that a more

sophisticated theory will be required than that based on the

fluid equations for a collision-dominated plasma, especially

if some form of microturbulence manifests itself in the plasma.

II. Cylindrically Symmetic, High-Current Electrodeless

Discharges -- the e-Pinch.

The 9-pinch configuration shown in Figure 1 has been selected

for discussion because of its geometrical simplicity (and

because of the experimental data available to the writer from

the N.R.L.).

The idea of the experiment is to compress and heat a low

density deuterium or hydrogen plasma inside a quartz or ceramic
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Schematic Diagram of the 8-Pinch Configuration
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tube by a rapidly rising axial magnetic field. The. field is

generated by discharging a capacitor- bank into a low..inductance

single coil.

Assume for a moment that the gas is fully ionized initially.

The currents in the coil will produce a rapidly rising-axial

magnetic field within the tube which induces aximuthal gas

currents, i.e. in the ®-direction. These currents flow first in

a thin cylindrical sheath of plasma near the walls. The force

Jg x Bz resulting from these currents drives a plasma shell

inwards with velocities up to about 20 cm./usec., depending on

the electrical parameters and initial gas density. The imploding

plasma sweeps up the gas ahead, thereby producing a radial

compression of the plasma. After this first implosion the plasma

then undergoes a series of damped radial oscillations. These

phenomena are completely analogous to the behavior of a dynamic

linear-pinch with axial currents and azimuthal magnetic fields;

a configuration which has been under investigation for over ten

years and which preceded studies of the e-pinch. The main

disadvantage of the ordinary linear-pinch are violent instabili-

ties which appear during the first few bounces. In this latter

respect, the 6-pinch seems to be somewhat superior.

In practice, the magnetic compression involves the sequential

discharging of at least three separate capacitor banks. A low

voltage, high-inductance bank is switched to the coil, producing

a slowly rising, quasi-static magnetic field everywhere within

the gas. The second discharge which is produced by a fast
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capacitor bank, i.e. with a shorter time constant, is started

after the quasi-static magnetic field builds up to a desired

value. It produces an oscillating magnetic field superimposed

on the quasi-static magnetic field, which in turn generates an

azimuthal electric field. This induced electric field causes

the plasma to break down and then Joule heats it up to

-1- 5 x l04 OK, providing a high initial conductivity.

This "preheating" discharge is used to prepare a fully ionized

gas for the third and main discharge which compresses the plasma

as described earlier.

For reasons which will be explained later, the polarity

of the main discharge is such that the rapidly rising compression

field is in the opposite direction to the quasi-static field.

As will be seen, the cylindrical current sheath moving inward

provides a diamagnetic layer which isolates the external magnetic

field from the interior of the plasma. Therefore, while the

confining main magnetic field remains outside the imploding

plasma, the quasi-static magnetic field which is present during

the preheating cycle is trapped within the imploding plasma

shell. It will be shown that the presence of the trapped field

provides a very effective heating mechanism and also confines the

plasma axially, because the field lines must be closed at the

ends of the plasma column.
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III. The Hydromagnetic Equations' (two fluid model)

These fluid equations can be derived from the Boltzmann

equation. Because we are taking a macroscopic point of view,

the following analytical treatment should be regarded as a

discussion rather than a rigorous derivation.

Consider a fully ionized plasma filling an infinitely

long cylinder. Assume that all quantities depend only on r,

the radial distance from the magnetic axis. In the 9-pinch,

only axial magnetic fields and aximuthal currents are allowed.

We denote them by B and J respectively. It is obvious that by

the rotational symmetry condition any hydromagnetic instabilities

involving turbulance are excluded from the theory by definition.

One recognizes that in a fully ionized plasma there are

two coupled fluids, the ions and the electrons. When the Debye

length is much smaller than the characteristic dimensions of

the plasma, there will be large electrostatic forces if the

plasma departs very much from quasineutrality. In our discussion

of a hydrogen or deuterium plasma we assume quasineutrality which

implies the number densities of the ions and electrons are equal:

ne - ni = n . (1)

1This section is based on K. Hain, G. Hain, T(.V. Roberts,
J. J. Rober ts and W. Koppendor fer , Natur for sch ., 154, 10 39, (1960) ;
K. Hain and A.C. Kolb, Nuclear Fusion, 1962 Supplement, Part 2.,
p. 561.
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Since we assume that there is no radial current in a e-pinch,

i.e. J = n (V" - V6 )r = 0 , the radial components of

the flow velocities are equal:

(Ve)r =(Vi "r v . (2)

Neglecting the electron mass, one obtains the mass.density as

p nma (3)

where'mi is the mass of an ion. The usual continuity equation

which describes the conservation of mass is

r P (4)

Euler's equation for the conservation of momentum can be written

as

dV 4 7(-7' .~+..L TX =2
(5)

where pr andP are the electron and ion pressures. The

viscous term 7; is introduced2 to include a purely artifi-

cial dissipative mechanism of the right form and strength so

that the shock transition, if it exists, will be smooth. By

this method, unphysical discontinuities at the shock front are

avoided and, therefore, no extra boundary conditions are needed

to make the solutions single-valued. The conditions which are

required to make the solution uni~que, if the artificial viscosity

term were not present, are known as the "Rankine-Hugoniot "

2R. D. Richtmyer, Difference Methods for Initial Value Problems,
Interscience Publishers, New York, 1957.
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equations, relations which insure that mass, momentum and

energy are conserved. These are the jump conditions across the

shock front, relating the values of V, p, 3 and internal

energy on each side of the shock front. We shall discuss

these conditions explicitly in a later section. What we want

to point out here is that by introducing an artificial viscosity,

the Rankine-Hugoniot conditions are automatically satisfied at

the shock front, which is now a continuous transition extending

over a small region. In other words, by this method which is due

to J. von Neumann and Richtmyer (1950) the shocks are automati-

cally taken care of whenever and wherever they arise without any

particular attention.

The quantity is the pseudo-viscous pressure which is

given by 0V V

0' a r /D ) (6)

where L is a characteristic length associated with the shock

thickness, to be adjusted according to the specific problem with

which one is dealing (see VII. 3-VII. 5).

In the case of a plasma, one may have a continuous shock

transition even when the viscosity is negligible. The dissi-

pation which removes the discontinuities in the shock front, in

this case, is due to the ohmic heating resulting from the finite

conductivity of the plasma and the currents flowing in the shock

front. The shock thickness is then determined, as we shall

discuss later in detail, by the skin effect. But this dissipa-
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tion mechanism alone is not always sufficient to explain the

shock structure, and therefore, one has to keep the artificial

viscosity term to represent the other dissipation mechanisms

involving the ions which are not yet well understood.

As the index i in equation (6) indicates, we assume that

the artificial viscosity applies only to the ions which transport

the momentum. This implies that the shock heating resulting from

the artificial viscosity is confined only to the ions, whereas

the electron motion behaves adiabatically in the shock zone

because of the small Larmor radii.

The current density J and the magnetic field B in

equation (5) are related to each other by Maxwell's equations.

If one ignores the displacement current which is small by a

factor (7~~), one obtains in gaussian units

-C.

(7a)

In addition to (7a), Maxwell's equations yield the following

relation

? B v x3

c a f c(7b)

where E is the electric field in the coordinate system moving

with the plasma. Ohm's Law relates E to the current density

J by

J (7c)

-81-



where gg is the resistivity tensor. In a plasma with a

magnetic field, the resistivity in the direction parallel to the

magnetic field is different from the transverse resistivity in

the direction perpendicular to the field.

In the present problem, Maxwell's equations reduce to the

following:

- - - (7d)

and

Lr_(7e)
t r ?r 4'7 )r

where is the transverse resistivity.

The temperatures are expressed in terms of an equation of

state

G ) (8)

which is realistic if the densities are not very high so that the

kinetic energy density is large compared to the coulomb-interaction

energy density. In our model, Te and Ti are allowed to be

different to include relaxation effects, i.e. the energy transfer

from one fluid to the other.

Since the particles in a fully ionized gas have only trans-

lational degrees of freedom, the internal energy is given by the

usual ideal gas equation:
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6 =Zid . r---- T.(9)

The specific heat ratio Y is

$ (10)

where is the number of translational degrees of freedom of

the particles. If the plasma density is relatively high and

collisions among the particles are fairly frequent so that the

time between collisions is short in comparison with the compression

times, then the velocity distribution is spatially isotropic. In

this case f = 3 and in equation (9) , 3 = .9 . On the other

hand, for relatively low. plasma densities, where collisions are

rare and the collision time may be long compared to the compression

time, the particles gain energy only in the two directions perpen-

dicular to the magnetic field. In this case, f = 2 and

S=2.

Using the definitions of Te,i and J, and introducing the

local derivative, i.e.

one can rewrite equation (5) finally as

+-L(e #-i$)re 3T (7* !) * d7 1 B r(
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In our general formulation we have assumed that only the

ions are heated directly by viscous dissipation, and only the

electrons are heated directly by ohmic dissipation. It follows,

therefore, that the ions and electrons will have different

temperatures and two more equations are required to describe the

heat balance.

To obtain the two energy equations, we consider the first

law of thermodynamics, i.e. d Q -pd( ) where d q

is the heat given and lost from the system andpd( ')is the

work done by the pressure forces, (p) being the specific

volume. Defining a source term S as

Do S

(12)

so that S is the net heat energy supplied to the plasma per

unit volume per second, and using the continuity equation which

can also be written as

( t(13)

in the first law of thermodynamics one obtains the energy balance

equation:

(14)

Substituting (8) and (9) for and p ,(14) yields two equations,

one for the electrons and one for the ions:
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Dtr ar 1°

where Se and Si are the energy source terms associated with

the electrons and ions, respectively. They lump the thermal

conduction losses, the energy transfer between ions and electrons,

the ohmic heating of electrons, and the shock heating of ions.

In principle, one can include also the radiation losses. The

second term in equations (15), (16) represent the heating ratio

due to the radial compression.

Equations (7e), (11), (13), (15) and (16) form a closed set

of equations which can be solved numerically if not analyti-

cally, for V, or n, Te, T and B as a function of t

and r. They contain all the information about the plasma within

the limitations of the two-fluid hydromagnetic model. The results

of the numerical calculations will be presented in a later

section.
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IV. Source Terms

The source terms in the energy balance equations have yet

to be expressed explicitly in terms of the four unknowns V, p,

Te and Ti in order to make the four hydromagnetic equations a

closed set. All the physics of the problem of investigating the

plasma theoretically enters the formulas through the source

terms. It includes at least six different mechanisms:

1. thermal conduction;

2. relaxation between Te and T.-

3. ohmic heating of electrons;

4. shock heating of the ions;

5. radiation losses;

6. ionization losses due to the impurities.

The diffusion of the plasma across the field is taken care of

automatically due to the finite conductivity.

1. Thermal Conduction Losses (St)
th

The thermal conduction loss is due to the flow of the

heat energy across a temperature gradient. Denoting the thermal

flux by 0 , one can express the thermal conduction loss Sth'

in ergs/(cm 3 ) (sec), as

67A --- ® e

(17)

The thermal flux in turn is given by

- 7 .(18)
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where K- is the thermal conductivity of the plasma. The

factor - stems from the relation between the internal

energy and temperature given by (9) .

In the absence of a magnetic field, an expression for IC
can be derived by means of the kinetic theory of gases, since the

charged particles in the plasma behave like neutral particles to

a first approximation. For our purpose, however, one has to

include the effect of a magnetic field on the thermal conducti-

vity. One obtains theoretically3, 4 that the thermal conductivity

perpendicular to the magnetic field, which is the thermal

conductivity of interest in 9-pinch, is given by

KI

'' ~,,(19)

where

1 = the mobility,

P<.= a numerical constant (o. 1) ,

= time between the collisions,

(4 = gyrofrequency.

Y

3M. N. Rosenbluth and A. B. Kaufmann, Physical Review, 1Q9_, 1
(1958)

4W. Marshall, "Kinetic Theory of an Ionized Gas III. " AERE T/R
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The effect of the magnetic field is contained in ((1 4 r )2-

in the denominator. 5 ,6 The gyrofrequency for an electron is

: B 4.L.
Ye m, C.(20)

and the collision time (See Simon's lectures)

3/L

L -2 .- k-...... sec.
e. (21)

For ions one has approximately

-Si i e (22a)

and

7. (22b)

Using these relations

We'(e .(23)

For a plasma with ne = 1017 electron/cm 3 and T = 106 oK,

Ce) T Z 3xi/O'B
.Ye ' (24)

which indicates that (45 Qe becomes large compared to unity

even at high densities with low magnetic fields of the order of

100 gauss. Thus, the thermal conduction is inhibited sharply

5 See for example; S. Glasstone and Ralph H. Lovberg, Controlled
Thermonuclear Reactions, p. 96, D. Van Nostrand, Inc., Prince-
ton, New York (1960).

6 A .Simon, An Intr oduction to Thermonucle ar Re sear ch, p . 30 ,
InternatioWizTlSerle s of Moid'gr aph s on Nucle ar Ener gy , Per gamon
Press, New York (1959).
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with only a few hundred gauss and decreases with the magnetic

field and temperature as 1/T 3 B2 . In general, it can be concluded

that the thermal conduction perpendicular to the magnetic field

would probably not be a serious source of energy loss for a

stable plasma. The thermal conduction parallel to the magnetic

field does not exist in an infinitely long cylinder because

there is no temperature gradient in that direction. However, it

may be a serious source of energy loss through the ends in an

actual experimental device with a finite length.

2. Thermal Relaxation (Srel)

There is a net energy transfer between the ions and electrons

through the ion-electron collisions when the electron and ion

temperatures are different. Assuming that both ions and electrons

have a Maxwellian velocity distribution, the approximate rate of

energy transfer is given by Spitzer as

eJi=.± T-T;
rel ~-~"-I- Y./ (25)

where e is the equipartition time. The factor ' -I comes

from the fact that (Te - Ti)/ Q7 gives the rate of energy

transfer per unit mass, whereas S in (12) or (16) is defined

as the heating rate per cm3 . The minus sign is for electrons and

the plus sign is for ions. When Te and Ti are widely different,

then one should compute the relaxation in velocity space, for

7L. Spitzer, Physics of Fully Ionized Gases, p. 80, Interscience
Publ., New York (1956).
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example, via the Fokker-Planck equation. Such a more refined

theory would take into account the departures from the Maxwellian

velocity distribution but would be enormously more complicated.

3. Ohmic heating (Sohm

This is due to the finite conductivity of the ionized gas.

The conductivity of the plasma in the presence of a magnetic

field depends on the direction. Since only azimuthal currents

are present in a e-pinch experiment, the ohmic heating involves

only the transverse resistivity in the direction perpendi-

cular to the magnetic field lines. For a strong magnetic field,

the transverse direct current resistivity has been calculated

to be 8

= I. A 9 X /0' / A e.m.a.

e (26)

where the logarithmic term is of the order 10. The value of

is about twice the value of the resistivity of the

plasma in the absence of a magnetic field. The latter resistivity

is also equal to the resistivity in the direction parallel to the

magnetic field lines since the presence of a magnetic field

influences only the transverse resistivity. The reason for this

preferential influence is that in a magnetic field the electron

velocity distribution normal to the field is quite different

from the electron velocity distribution in the direction parallel

to the field. In particular, the fraction of high-velocity

electrons which contribute to the current is decreased as a

8Spitzer, p. 86.
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result of the gyration, and thus, the effective ion-electron

scattering cross section is increased. Therefore, the rate of

momentum transfers to the ions, and thus the resistivity is

increased in the normal direction. The motion of the electrons

parallel to the field is not affected, and hence the parallel

resistivity remains unaffected.

The resistivity of the plasma depends also on the frequency

of the applied signal. However, if the electron-ion collision

time is much less than the period of the applied signal, as it

is in the case of the 8-pinch experiments, the D. C. resistivity

is applicable.

Since one has only azimuthal currents with a density

J= ® which follows from (7), the ohmic heating per cm3
or at'

is Thus,

(~ja
3 m r '(27)

Combining equations (17), (25) and (27), one obtains the

expressions for Se and Si appearing in (15) and (16) as:

= r- (28)
e Y- a I__fr a e '---1 7 W b

and
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Note that the ohmic heating is included only in the source

term for electrons. The reason for this is that the rate at

which a charged particle gains energy from an electric field

is proportional to the velocity of the particle. Since the

electrons can move much more rapidly than the ions because of

their smaller mass, nearly all of the energy absorbed by the

field will be taken up by electrons. Hence,. the ohmic heating

of the ions can be neglected. Also one can see that the electrons

carry most of the current so that the Lorentz magnetic force is

exerted on the electron gas, while the ions are carried along

with the electrons due to space charge.

Note again that the shock heating, the last term in equation

(29), is confined only to the ions. This will be discussed in

detail in later sections concerned with the shock structure.

It must be born in mind that one can have a shock wave even

=0 , as mentioned earlier when j was first introduced

(cf. equation (6) ). In this case the dissipation is due to the

ohmic heating from currents flowing in the shock front. This

dissipation mechanism is automatically included in the ohmic

heating term. When 0 , the shock thickness is determined

by the skin effect. We shall return to the subject of shock

heating later.
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V. Some Comments Concernin gthe MHD Eqcuations

Before going further, it seems appropriate to summarize the

results which we have so far presented. We have *a theory for a

collision dominated ( s3 ) plasma which is suitable for

investigating one-dimensional radial magnetic compression. The

theory includes the ohmic heating of electrons, the shock heating

of ions, the relaxational heating of ions (or cooling of electrons),

and compressional heating of both ions and electrons. Although

we have ignored the radiation losses of electrons and ionization

losses of impurities, they can be included in the theory in

principle. The theory is formulated mathematically by a set of

non-linear coupled differential equations of (7e), (11), (13),

(15) and (16) with the addition of (28) and (29), where the

coefficients are not constant. One can investigate the radial

distribution of V, Te, Ti, B and n as a function of time by

means of these equations under a variety of conditions.

When the collisions are infrequent during the times of

interest, one can take ' = 2 (cf. equation 10) to approximate

this situation. However, one loses rigor rapidly because all

the transport coefficients in the theory are calculated for a

Maxwellian plasma. When collisions are not important, the ion

and electron distributions will depart from Maxwellian, and

could become almost anything. For this reason, it is of interest

to work at high enough densities so that the plasma is collision

dominated up to key temperatures. Under these conditions the

present theory can be tested or at least can be used as a guide

for designing experiments.
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Another restriction on the validity of the present theory

is that it is developed for an infinitely long plasma column.

The finite length of the solenoid is expected to play a role

for times t A, .

where is the length of the plasma column and vi is the

average thermal velocity of the ions. For deuterons, vi is

given by

S /Z cm.sec.

Thus, for an f of a few meters, and Ti = 106 OK (vid/l0 cm/$ sec) ,

the theory might be expected to describe the plasma state for times

of the order of 5 to 10, sec.

Instabilities which could lead to turbulent diffusion and

the like are also not taken into account in this theory. The

types of instabilities observed in 8-pinches will be discussed

briefly later.
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VI. Alfven Waves

In this section, we shall deal with the simplest case of

wave propagation in the linearized magnetohydrodynamic theory,

in particular with the Alfven waves. The results of this

discussion will be useful later when we deal with the subject

of large amplitude shock waves in the nonlinear theory.

Consider the continuity equations (4) and Euler ' s equation

(5), linearize them and eliminate the velocity between them.

Then, in the absence of a magnetic field, one obtains a wave

equation for the density and pressure perturbations in a

compressible field, . a

Using this equation to express the polytropic relation

p = p ( i ), one gets

.. .2

)

where the wave velocity is given by

dr (30)

For adiabatic, isotropic waves, for which = constant,

one obtains the ordinary sound waves with

(31)

where k is the Boltzmann constant.
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In the presence of a magnetic field and in an incompressible

fluid, one gets so-called Alfven waves. If the fluid is

compressible and the magnetic field is present, one gets coupled

Alfven waves and sound waves. A pure Alfven wave results from

the motion of a conducting fluid, which induces currents if there

is a magnetic field present. These currents generate fields

and reaction forces opposing the original motion. This leads

to a wave motion where energy is transferred back and forth

between the field and the fluid.

We shall now discuss Alfven waves very briefly. Consider

a plasma which is initially at rest. Suppose that an external

magnetic field Bo is present in the z-direction and that the

displacement velocity is in the y-direction. As mentioned

earlier, we assume that the fluid is incompressible, i.e.

= constant. We shall look for a wave progagating parallel

to the steady magnetic field, i.e. in the z-direction. Thus, all

the time dependent quantities will be functions of z and t. The

components of the total magnetic field are then given by:

Bz = Bo

By = b(z,t)

Bx = 0

Maxwell's equations are:

..- y = 0 (32)
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-°± ,k£ = E -0 (33)

The generalized form of Ohm's law gives

= e-E + (.B v by vg

where the second termV x B is the electric field arising

from the hydrodynamic motion of the plasma in a magnetic field. 9

The term BY Vz vanishes because in an incompressible fluid

V-\/= 0 and thus V = constant. We can consider a case where

no streaming in the z-direction is present, i.e. \/ = 0. Note

also that 0' refers to the transverse conductivity normal to the

magnetic field.

The y-component of Euler's equation (5) gives

F t - C )(35)

and its z-component is

Y- .. (36)

Substituting Jx from equation (32), one obtains

S- - = constant, (37)
17r

9 Spitzer.
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which expresses pressure balance in the direction of B0.

Again, substitute J, from (32) into (34), differentiate it

once with respect to z, substitute a in the resulting

equation from (33), differentiate now with respect to t,

eliminate (4)Vy/la ai- ) by means of (35), and get

-3. A ____

In the case of infinite conductivity, this equation reduces

to an ordinary wave equation with a speed of propagation

V = B *-
A y (39)

and with a solution for Bx = b (z,t) as

b ( ,t ) = A si 0( -~ A ~co -(40)

where A is a constant which determines the amplitude of the wave.

The time average of the magnetic energy density is

. L .A. (41)

7r /67,

where < > indicates the time average. One can also solve

for the velocity Vy

-Af V* (42)

The time average of the kinetic energy density is found to be

(43)
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Equations (42) and (43) indicate that the Alfven waves correspond

to a wave motion where the energy is transferred back and forth

between the magnetic field and the motion of fluid. The Alfven

waves are often referred to loosely as hydromagnetic (or

magnetohydrodynamic) waves.

When the conductivity is finite, the solution of equation

(38) can be shown to be

A (ctat-K3)
(44)

where K is the root of the dispersion relation

y~r y^(45)

Finding the real and imaginary parts of K, one can rewrite

(44) as

b6= Ae. a (46)
)

where zo and k are the attenuation length and the wave number

respectively. When the attenuation is small ( ~ is large),

zo and k can be approximated by

V)-_(47)

One observes from (47) that the attenuation length decreases with

increasing Alfven velocity and increasing conductivity. This

behavior is qualitatively different than for the electromagnetic

waves, which are governed by a differential equation of the

following form:
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b __E_ + r- a b

The attenuation length, which is called skin depth in electro-

magnetic theory, is given by

° Tr wo )(48)

which becomes shorter with increasing conductivity.

The physical significance of the Alfven speed, which is

proportional to the magnetic field strength and inversely

proportional to the square root of V77g , where p is the

density of the conducting fluid, can be seen by taking the ratio

of the Alfven velocity to the sound speed. From (31) and (39),

this ratio is

VA d : _ Bo/ ~
- - (49)c *vTrAirT/rnnkT( /y

It follows that (vA/c) is of the order of magnitude of the

square root of the ratio of the energy density of the magnetic

field to the kinetic energy density of the plasma. Thus, if the

Alfven velocity is greater than the sound velocity, then the

energy stored in the magnetic field is the dominant term in the

total energy of the system. Hence, one may expect that the

magnetic effects will be very important.
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Experimental studies of Alfven wave propagation are much

easier, in principle, using plasmas instead of liquid conductors

such as mercury or sodium. This follows because the mass density

of a plasma is generally low so that the Alfven velocity is very

large and the attenuation length is correspondingly small.
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VII. Semi-Quantitative Discussion of Heating Rates

We shall now discuss the various heating mechanisms and

their relative importance in heating the plasma under various

conditions.

1. Compressional Heating (Adiabatic Heating)

Adiabatic heating results from the compression of the plasma

at a relatively slow rate, which makes it different from shock

heating where the compression is rapid and inertial forces are

significant. The compression is brought about by the radial

force J x B where J is azimuthal and B is axial in a 9-pinch.

The increase in temperature due to the compression can be

estimated simply when there is no trapped magnetic field, in

other words when the magnetic field inside the plasma is small.

Since the compression takes place at a low rate, one can consider

the steady state equations. From Euler's equation (5) and from

(7), one obtains by ignoring the artificial viscosity term

which yields upon integration with respect to r

1' +-conlstanlt (50)

The quantity ,which is the energy density in the magnetic

field, can be regarded as a "magnetic .pressure" associated with

the field. Then, equation (50) states that the sum of the

kinetic gas pressure p: p+ and the magnetic pressure is

constant at any point within the plasma. If the plasma is

confined completely, the kinetic pressure must fall to zero
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outside the plasma. Hence, denoting the external magnetic

field by Be one obtains from (50)

BB
T 77 '(51)

It is observed that the magnetic field within the plasma is

always less than the external field. Consequently, a plasma

confined by a magnetic field appears to be diamagnetic. It is

convenient to define a dimensionless ratio as

Am (52)
ee

which is the relative magnitude of the kinetic gas pressure at

a given point inside the plasma with respect to the external

magnetic pressure.

If one ignores the trapped field inside the plasma

( = 1 everywhere), equation (51) becomes,

77T(53)

which expresses pressure balance.

Now suppose that the external field is increased from Bo

to B (we drop the subscript e ). Then the pressure increases

and the plasma is compressed from an initial radius R- to R.

The adiabatic law is
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The conservation of particles requires

Combining these two equations with the pressure balance relation

(53), one finds

)2T1 ( f Ior I= 2
T ~ R -R(54)

2Roi //>

or in terms of the initial and final values of the external

magnetic field

(55)

B y/f or (= r/i

For = (5/3) and for a volume compression of ten, i.e.

(R0 /R) 2 = 10, one obtains

T = ~T x o 401V5
and

(56)

Thus, if one had a plasma of 2 key, a volume compression of 10

with a field increase of about a factor 8 would raise the

temperature to 10 key. For ( = 2 the above relations also

apply if9 < I since the magnetic field behaves essentially as

a fluid with two degrees of freedom.
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To actually produce a 10 key plasma in a 9-pinch one would

need to "preheat" initially to a few key. Because of the

relatively high plasma densities the initial fields would also

have to be fairly high, perhaps 40 or 50 k gauss. Then with

final fields of 200-400 k gauss it might be possible to reach

temperatures of thermonuclear interest with time-scales of the

order milliseconds. The technical and scientific problems

connected with such an enterprise would be tremendous, especially

since the basic physics is not very well understood. Here we

shall content ourselves with the "preheating" phase, where the

more modest question is how to reach plasma "temperatures" of

20 or 30 million degrees for some tens of microseconds. This

can be done in at least two ways:

a) inject a plasma with energies in the key range;

b) use a combination shock and ohmic heating with
subsequent compression.

We shall only discuss the second possibility here although

0-pinch injection experiments are also in progress at Los Alamos.

First, we have to consider the structure of shock waves.

2. Shock Waves and the Rankine-Hugoniot Relations

Suppose that one raises the magnetic pressure very rapidly,

that is, in a time short as compared to the time sound waves or

Alfven waves traverse the medium. Then shock waves are formed

which can lead directly to non-adiabatic, irreversible heating

of the ions because of viscous stresses and of the electrons due

to finite electrical conductivity. If there is preferential

heating of either ions or electrons under special circumstances
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then the other component is heated indirectly by relaxation

processes.

The mechanism of the formation of a shock wave in a 9-pinch

can be described as follows: the sudden increase in the external

magnetic field produces high diamagnetic currents and a large

pressure jump in a localized region near the outer surface of

the plasma. A compression wave is then propagated through the

plasma. The propagation velocity increases with the pressure,

with the result that the following portion of the pressure wave

travels faster and tends to catch up with the leading edge. Thus,

the wave front becomes increasingly steeper, forming eventually

a shock front.

At the leading edge of the shock front the flow is not

adiabatic. The entropy can increase due to ion collisions and

ohmic dissipation, ionization or charge-exchange collisions,

and very likely by instabilities for sufficiently high Mach

numbers where the mean-free-paths are very large and the usual

viscosity is small.

Suppose that there is a pressure discontinuity, and and

are the densities in front and behind a shock wave propagating

with velocity Vs to the right. If there is a magnetic field B

present; associated with this discontinuity, currents will be

induced in the plasma near the shock front.

It is clear that the width of the shock transition will

influence the current density J in the shock front, and in
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turn this will influence the rate of the ohmic heating, J2

Thus, it is of importance to know, or at least to estimate, the

connection between the shock thickness and the relative heating

of ions and electrons. In the hydromagnetic equations, as we

have written them down, we have simply put an artificial viscosity

term in the ion-energy equation. But this, as we have mentioned

earlier, really hides our ignorance of the factors which really

determine the structure of the shock wave in the presence of a

magnetic field. If one first ignores the dissipative mechanisms

which determine the detailed structure of the shock wave, one

can relate the values of the flow variables p, V, ( , B,f well

behind the shock discontinuity to those ahead of the shock

discontinuity from the stationary solutions of the magneto-

hydrodynamic equations. These relations, as mentioned earlier,

are the generalizations of the famous Rankine-Hugoniot relations

for the conservation of mass, momentum, and energy in the absence

of a magnetic field. Since the derivation of the Rankine-Hugoniot

relations with a magnetic field can be found in the literature 1 0 , 1 1 , 1 2 '

we shall just state the results for a shock wave propagating through

a transverse magnetic field, since this is the situation of most

interest in a 9-pinch experiments.

10 DeHoffman and Teller, Phys. Rev., .Q, 692 (1950) .

11 R . Lust , _Z. Natur for sch. , 8a, 277 (1953) .

12 H. L. Helfer , Astrophys. J. , 117, 177 (1953) .

-109-



Assume that the plasma has an infinite conductivity. This

assumption is consistent with our neglect of all dissipative

mechanisms. Thus, all electric field components vanish for an

observer moving with the shock front and the flow will appear

time-independent. Therefore, one can use the stationary solutions

of the MHD equations in a frame of reference moving with the

shock front. Owing to the low shock velocities involved, the

relativistic effect will be ignored. Hence, the magnetic field

in the moving system will be identical to that in the coordinate

system at rest. Let u be the flow velocity in the moving frame

and v in the laboratory coordinate system. Then u = V - Vs

follows. Denoting the jump of a quantity across the shock

front by the bracket < > , one obtains the following

conservation laws:

( u =Ox(conservation of mass) (57)

a
0 ,(conservation of momentum) (58)

K+M +t1 (conservation of energy) (59)

<B u)=-0 (conservation of flux) (60)

where is the unit vector in the x-direction, and M is the

conserved value of (O4,~ , i.e.
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where ( °o tx ) and (o& ) are the quantities in front

of and behind the shock front. Since the flow velocity is zero

in front of the shock in a stationary plasma in the laboratory

frame, U = V . Thus, M is the mass swept over by the shock
S

front per unit time per unit area.

Taking the y-z components of (58), one finds the tangential

flow velocity components are the same on both sides of the shock

front, i.e.( <U(4 > ,0 which also implies(Vy(V = 0.

One recognizes in the energy equation (59) that the first term

is the kinetic energy in the flow, the second term is the

internal energy, the third is the energy in the magnetic field,

and the fourth term is the work done in transporting the fluid.

The conservation equations (57), (58), (59), and (60) can

be solved simultaneously to yield the flow parameters behind the

shock front. In the limit of strong shocks, where the pressure

jump p/. is much larger than unity, as is the case in our

experiments where the shock heating can carry the temperature

to quite high values, one finds that the density jump is

approximately given by

or Ir /r . (61)/00 /of

Combining (57) and (60) yields

....... . ..--.. (6 2)
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which is a general relation not depending on the strong shock

approximation. It then follows from (61) and (62) that

B0  '-! .(63)

These are two results of the Rankine-Hugoniot relations which

we shall presently need.

3. Relative Heating Rates of Ions and Electrons in a Shock Front

We shall now give a qualitative discussion of the factors that

determine the relative heating of the ions and electrons. It will

be apparent presently that the heating rates depend on the factors

which determine the shock thickness, i.e. various dissipation

mechanisms both heat the plasma and broaden the shock front.

Let us denote the ohmic heating rate per unit area of

electrons byj. . This is of the order of the integral of

across a shock front with a thickness L, i.e.

/LV (64)

where is the transverse resistivity. The current density

is given by Maxwell's equations (Gaussian units)

- '' - (65)

The shock thickness may be determined primarily by dissipative

mechanisms associated with either the ions or electrons, or by

a combination of both. With (65) , . becomes

j (1/f . (97'?(1-? l. >(66A
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where B is substituted from equation (63). We see that the

thicker the shock the less is the rate of ohmic heating. We have

assumed that the resistivity and current density in equation (64)

represent average values.

Let denote the flow energy transported per second per

unit area by the ions. This is of the order of

(67)

where V and Vs are the flow and shock velocities as defined

earlier, and where is the density behind the -shock -front.

Using equation (61) for gives

js 1.- I /SV(68)

We now introduce a local Alfven Mach number

- V __ _A (69)

If there is negligible dissipation for the ions then

V / VS. We then deal with an ion beam coupled by space

charge forces to the electrons. If a strong dissipation exists

then the shock velocities are still numerically comparable to the

flow velocities according to the conservation equations.

The ratio 1s/'7 follows from equations (64) and (67) 'as
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where we have introduced Lr, which is the characteristic length

(skin depth) associated with the finite resistivity,

A e3(71)

where we take the logarithmic term in the resistivity equal to

10. The average electron temperature in the shock front Teis

in 0K and v is in cm/sec. To give a numerical example, which

is typical for many present experiments: for Te-105 OK in the

shock front and v 107 cm/sec, then Lr - 0.3mm. We see then

that the thickness of a resistive shock can be quite small.

For = 5/3, the ratio (70) becomes

.7 ~ L
j9?MA Lr(72)

One observes from this expression that if the shock thickness

L is equal to Lr , i.e. if the shock thickness is determined by

electron collisions and the resistivity, then the ions transport

relatively more energy in the shock zone than the electrons for

Alfven Mach numbers greater than about 9/2. Thus, for

Alfven Mach numbers greater than about 2, one can also expect

that thermal heating of the ions in the shock front will dominate

over ohmic heating of electrons under certain circumstances,

provided L, Lr.*

This discussion is so far based on the assumption that the

electron velocity distribution is Maxwellian and the resistivity

is given by the usual formula. It must be borne in mind that if

the currents are too high, then the electron drift velocity
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could exceed the electron thermal velocities. This in itself

could lead to two-stream instabilities resulting in anomalous

diffusion rates which could broaden the front. However,.complete

numerical solutions of the resistive shock structure show that

the drift velocities are usually small compared to the electron

thermal velocities for most cases of laboratory interest.

4. Influence of Ion-Ion Collisions (Viscosity) on Shock Structure

If we consider first the case where the shock thickness L

is controlled by the viscosity of the ions, i.e. by ion-ion

collisions, then the shock thickness will be of the order of the

flow velocity times the relaxation time for ion-ion collisions,

L= L ^-'2'.,.V'T/..V/n ,where Ti is in OK and n is

ions/cm3 . Again the logarithmic term is taken to be 10 in

Spitzer's result for the ion-ion collision time T. .13

When ion-ion collisions are frequent then the ordered flow

kinetic energy is partially dissipated and a thermal component

of the ion velocity distribution develops. Thus the ions are

heated by work done against the viscous stresses and the internal

energy 7. g- is comparable to the flow kinetic energy according

to the conservation equations. If the shock heating of ions

dominates the ohmic heating of electrons, then the electrons

are first heated by adiabatic compression in. the shock front and

subsequently by ion-electron collisional relaxation. Under such

circumstances one would then expect the shock thickness to be

13 Spitzer, p. 78.
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controlled by the viscosity and not by the skin effect due to

the currents. This is confirmed by solutions obtained from the

nonlinear equations. In terms of the particle density, the ion

and electron dissipation lengths are comparable when L. = L.
or when

P7= : 2X (TT) V cm .

If we neglect the exchange of energy between the ions and

electrons to first order, then according to the conservation

equations .m1 V '3kT . Using this in the above relation for

the critical density fn , for which the two dissipative lengths

are about equal, one finds

n 2 / { V CMAF

(74)

which depends strongly on the velocity. For example, with

T " 105 oK and V '107 cm/sec, f7c e 10 17 /cm 3 ; and for

5 x 104 K and V 7 x 106 cm/sec, corresponding

to a somewhat slower shock, one finds 0c 6 x 1015 /cm 3 . At

higher densities, for these particular examples, the shock thick-

ness is likely to be connected with the resistive skin depth.

Said another way, at high densities the spatial extent of the

viscous heating zone becomes very small and ohmic dissipation

determines the physical processes in the shock transition.

Finally, one concludes that the production of shock waves in

the laboratory with a thickness determined by the viscous stress

should not be too difficult for densities in the range of 1015
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particles/cm 3 and velocities n 107 cm/sec.

Consider now the ratio for the case where L = .

The equation (72) becomes

's y/ Te. V

- - (75)

Note first that this ratio does not depend on the density. Here

we have again used m v 2  a 3 kT1. Therefore, equation (75)

gives the ratio of the thermal energy .transported by the ions

and electrons. For the previous example (Te 105 5 K and

V 7- 0 cm/sec) with B o 1000 gauss, this ratio is about 30.

For slightly lower velocities of 7x106  cm/sec, the ratio is

reduced by about a factor -of 10. These conclusions are sub-

stantiated from numerical solutions of the full hydromagnetic

equations as discussed later.

5.- Comments on Collision-Free Shock Waves

Let us turn now to the situation at high Alfven Mach

numbers where L 1  oLr. Under such circumstances one would

conclude from equation (72) that shock heating of the ions is

generally the important factor at high Alfven Mach numbers and

that the shock width is connected with the ion-mean-free path.

However, it could turn out that with. very long ion mean-free-

paths for high temperature, that other mechanisms determine the

dissipation of the ion flow -energy. This is- likely since

according to equation (49) the magnetic energy density is then

large compared to the kinetic energy density of the plasma, and

instabilities in the flow may develop. If some kind of turbu-
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lence (about which next to nothing is known) exists, which is

driven by some sort of instability, then the ordered flow energy

could conceivably be randomized over a distance which is short

compared to the ion mean-free-path but which is large compared

to the resistive skin depth. Such shock waves are a class of

so-called "collision-free" shock waves.

It is still an open and controversial question whether or

not such collision-free shock waves exist at all. If shock

waves of this kind actually occur, then a knowledge of this fact

could have great significance in understanding the heating

mechanisms associated with shock waves propagating into the

solar corona and the interplanetary "solar wind", and the

heating mechanisms associated with high energy shock waves in

controlled thermonuclear fusion experiments. A large number of

theories have been propose.d for collision-free shock waves. It

is not our purpose here to review these theories, but to discuss

some of the experimental consequences of their existence in a

qualitative way.

Let us suppose as an exercise that there is such a thing

as a collision-free shock wave whose thickness is connected with

the ion cyclotron radius . (There may well be other lengths

which are more important for collision-free shock waves. Our

purely intuitive choice of r. as such a length was only made

to illustrate the general ideas.) One can then obtain an

expression for L/Lr as

-118-



_ rn/c V
{. Lr eB Lr (76)

Taking v ~ vs for a deuterium plasma and using equation

(71) for Lr , this ratio is approximately

.. _'_ 2 x .O V T
Lr 3. (77)

Suppose a collision-free shock wave propagates into a fully

ionized gas with Te 105 oK, v i 107 cm/sec and B -v 1000 gauss.
e0

One finds (rig /Lr)A 6 O, so that shock heating is very effective.

However, for such a shock wave to be collision-free, the

characteristic length chosen here, mcv/eBo, should be small

compared to the collisional length ,. V . This condition

reduces to

If the collision frequency is large compared to the gyrofre-

quencies, i.e. if there are many ion-ion collisions during a

gyro-period, then the situation should be similar to the ordinary

magnetohydrodynamic case with an ordinary collisional viscosity.

Therefore, one would expect here also the thickness would be

connected with the mean-free-path. Now as we have indicated,

the situation could become much more complicated if the ion

mean-free-path is large compared to' other possible dissipation

lengths such as the ion cyclotron radius. Then one can conceive

of a situation where the density and the temperature discontinui-

ties can occur over lengths which are quite small compared to a
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mean-free-path, forming a collision-free shock front.

To estimate when one might expect collision-free shocks

of this particular type, we consider the collision time for 900

multiple scattering of a deuteron beam with velocity v

(78)

For multiple coulomb scattering 1 4

^70 7r a./a
_"// VVCM

Therefore /

). 7. 2 5x v 3 3 0 .

(79)

According to this inequality, the ion density should be

smaller than 5x101 5 /cm 3 for v v107 cm/sec and B iv103 gauss,

which are arbitrarily taken as typical experimental parameters.

Collision-free shocks could also exist at higher densities for

correspondingly higher flow velocities.

From the experimental point of view, one might phrase the

question of such collision-free (no ion-ion collision) shock

waves as follows: is there a dissipation mechanism for the ions

which is associated with ion pressure jumps, satisfies the

Rankine-Hugoniot relations and has a transition length less than

the ion mean-free path and greater than the resistive skin depth?

These crude estimates given above serve to indicate the kind

of experimental conditions that might result in the production

of collision-free shock waves in the laboratory.

14 Simon p. 15
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One can appreciate the highly nonlinear nature of

collision-free shock waves and inquire by what general process

they will form in a plasma. There are many speculative theories

in this connection, but one can still give a qualitative picture

within the framework of the magnetohydrodynamic theory. However,

only experiments can provide the final justification for such

an approach.

Suppose that one accelerates a plasma with an initial

electron temperature of a few ev by means of x B/c forces.

The ions will be carried along at a high velocity due to the

strong space-charge fields. The conductivity of the electrons

will usually be sufficient to result in a narrow skin layer 'at

the front. Since the electron-electron collision time is

usually small compared to the other times of interest, the usual

formula for the electrical conductivity may have some validity

even at quite low densities. Such a resistive shock will result

in large gradients in the flow velocity, electron temperature

and density at the front. Then because of these steep gradients,

an instability of some sort may develop which dissipates some

fraction of the flow kinetic energy and increases the entropy

of the ions.

The two-fluid MHD equations might still be used to describe

the general structure of such shock waves if the characteristic

length for the dissipation of the ion flow energy were known

either experimentally or theoretically. This length could then

be used in the von Neumann term to compute the ion heating. Such
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a calculation would be of especial significance (1) when the

electron gas is Maxwellian, since then one then knows the

electrical and thermal transport coefficients of the electrons;

and (2) since one of the most important factors for the deter-

mination of the relative heating rates of the ions and electrons

is the ratio of a characteristic randomization length for the

ions and ohmic skin depths, which can be estimated from the

full nonlinear theory.

Finally we should mention that we have not considered here

energy transfer mechanisms in a fully-ionized, pure deuterium

plasma which are associated with such things as the absorption

and emission of Cerenkov and cyclotron radiation, the influence

of electron inertia on the resistivity (which is a factor in

the theory of collision-free "solitary waves"), the acceleration

of ions by voltages associated with instabilities or the finite

resistivity and high currents, departures from a Maxwell

electronvelocity distribution ("run-away" electrons in high

induction fields), or the nonlinear interaction and scattering

of waves in the shock transition zone if there are hydromagnetic

instabilities (which are excluded from the present numerical

solutions which only depend on one spatial coordinate). This

final comment is intended to emphasize the extraordinary com-

plexity of the collision-free shock problem and to qualify the

preceding remarks and estimates. This problem is one of the

most challenging in plasma physics.
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6. Estimates of Shock Velocities

In order to estimate the shock velocities for a given rate

of current rise, it is not necessary to solve the full set of

hydromagnetic equations. This is because the electrical conducti-

vity rises very rapidly during the early stage of the discharge,

making a very thin current sheath which separates the plasma

in the major volume of the discharge tube from the magnetic

field outside. If the magnetic field or the magnetic pressure

is made to rise sufficiently fast to values which are large

compared to the gas kinetic -pressure at the start of the discharge,

then one can neglect the gas pressure in the hydromagnetic

equations for estimating the gross dynamic behavior. In other

words, one can estimate the dynamic behavior by simply balancing

the inertial forces against the magnetic forces. If the situation

is such that the magnetic pressure rises to a value large compared

to the gas' pressure in a time short compared to the time it takes

the plasma to propagate in the center, a shock wave can form.

On the basis of these simplifications, one can write

drnv3 .2 Tr (80)

dft f7r

where Rp is the radius of the plasma.

The situation is illustrated in figure 5 where Ro is the initial

radius. The magnetic field B outside the plasma is shielded

from the inside by the currents induced in the plasma as a

result of the high electric conductivity. One can partially

justify this simple model by photographing the implosion of the
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plasma in an actual experiment. One sees, in fact, that the

plasma does implode in a thin shell with a thickness of 1/10

or even smaller of the radius of the discharge tube. This is the

basis of what is known as the "snowplow" 1 5 , 16 model of the

constricted discharge. The mass in the shell accumulates as the

shell sweeps in over the undisturbed gas initially in the tube.

Thus, the mass of the shell at any instant of time corresponding

to a radius R is
p

(81)

For a solenoid of length with a single turn, the magnetic

field is

cf (82)

Defining y = (Rp/R 0 ), one can obtain a differential equation

for y by combining equations (80) , (81) , and (82) :

977-I(83)

Thus, if one knows the time behavior of the current I, one can

then solve this equation numerically for y, i.e. for the position

of the imploding shell as a function of time. One can obtain

15 M. Rosenbluth, R. Garwin, A. Rosenbluth, USAEC Report
LA-1850 (1954).

16 M. Leontovich and S. M. Osovets, J. Nuclear Enry, 4,
209 (1957).
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from the circuit equations

V = V(o)-L
Pd dt (84)

where V is the plasma voltage, V(O) is the initial voltage of
p

the capacity bank and Le is the inductance of the external

circuit. In this equation, we neglect the term (1/C) I dt, i.e.

we assume that the implosion time is short compared to the

discharge time of the capacitor bank, so that the voltage across

the capacitor bank does not change very much during the implosion

time. This is usually a good approximation. In a typical

experiment, the discharge time may be 1 0 - 2 0 A sec., and the

implosion time is usually less than 0.5A sec.

The plasma voltage is

v d(LI)P d)t(85)

where LI is the magnetic flux and L is the inductance associated

with the discharge tube with a moving conductor in it. The

moving conductor is, of course, the imploding plasma. Now L

is time dependent because of the motion of the plasma, and can

be calculated from

where the integral is extended over the region not occupied by

the plasma. The magnetic field is uniform in the solenoid, so

B can be taken outside the integral. Using the solenoid formula,

one obtains for L,
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IR at
et

(86)

Substituting for L and Vp in equation (84), one obtains the

current

T.. ao0 I

where L(O) is the inductance of the discharge

contains no plasma, i.e.
L

L~o)-C2.

(87)

tube when it

Substituting for I(t) in equation (83) from equation (87), one

obtains

d
d'r

d
9,dT

where )

or v a (88)

)

and where M is the mass per unit length,

M n o R,u 

By numerical integration, one finds for [Le/L(0) = .10 so

that

zr : dRp .,0 7dt [T yr/
,Z 1o E L (o)J (89a)
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where 2l is the speed of the plasma just before it reaches the

center. Measuring L(O) in henries, V(0) in volts and lengths

in cm, one obtains

d2.Cow. soc. (89b)

One gets a similar result for the linear Z-pinch but with a

different numerical coefficient. This result has been verified

quite accurately, particularly at the Institute for Atomic

Energy in Moscow where the implosion velocities were measured

over a wide range of pressures with deuterium, xenon and argon,

in other words, with different masses per unit length. The

V2 and M ~k dependence was verified. Even more remarkably,

the implosion times one calculates with this simple-minded theory

agree within 10-20% with the measured values. All these indicate

that the snowplow model has some utility during the first

dynamic phase when the inertial term in the hydromagnetic

equations is large. This simple equation is very useful for

designing experiments and is an example of a situation where

some crude order of magnitude estimates yield quite good results.

One can also calculate the velocities by numerical integration

from the full hydromagnetic equations, but the results are

similar within 10-15%.

As a numerical example, suppose we apply 40kv to the

capacitor bank, which is a reasonable figure. Let the initial

density be 1015 particles/cm 3 . which corresponds approximately

to 10 micron initial deuterium pressure. Take the initial
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radius to be R0  = 5cm. The calculated velocity for this case

is about .0 8 cm/sec., which corresponds to about 70ev. With a

reversed, trapped magnetic field, one also has to take into

account the magnetic pressure of the field ahead of the shock

wave, which gives rise to a restoring force. The calculations

in the case of a reversed field have been done by numerical

integration of- the full hydromagnetic equations.

7. Reversed Field Heating

Reversed field heating turns out to be very important in

the 9-pinch experiment. The magnetic field configuration when

there is a reversed field present is shown on the following page.

There is a current sheath somewhere in the plasma to support

the reversed field which is initially produced by the quasi-

static magnetic field. The vacuum magnetic field near the walls

is produced by the external coil. This magnetic field configu-

ration is similar to that in the ASTRON experiments at the

Lawrence Radiation Laboratory at Livermore. There, however, the

currents are provided by relativistic electrons supplied by

an accelerator.

The gas particles pile up at the point where the magnetic

field vanishes, i.e. B = 0. Simple pressure balance considerations

would show that the plasma is driven into a region where the

magnetic field has a minimum. Thus, the gas pressure distri-

bution looks like the indicated curve. This distribution can

be observed experimentally. It can also be found in detail by

numerical integration of the hydromagnetic equations. The

-129-



center gas pressure

wall

I.,B=0r
r

B, mag. field

Field and Pressure Distribution in a 9-Pinch With a Trapped

Reverse Field

FIGURE 6

-130-



quantity , which was defined .as the ratio. of the gas. pressure

to the pressure of the confining magnetic field, becomes unity

at the point where. B = 0.

There are several advantages to this configuration.

a. There is a region in the plasma where = 1 (Binside = 0).

Thus, from the definition of , one has

gas - B2_outside
81r

which represents the ideal condition for confinement. In this

region, the plasma is perfectly diamagnetic.

b. The energy stored in the reversed magnetic field is

stored as a result of the currents in the plasma. That means if

the energy in the reversed field is dissipated by some mechanism

such as ohmic heating or even by some fast turbulent diffusion,

then the magnetic energy must be transferred to the plasma.

Consequently, the reversed field dissipation can provide a very

powerful heating mechanism, and indeed it does seem to do so

experimentally.

One can make a little order of magnitude estimate of this

heating by using flux conservation during the initial compression,

i.e. the initial field B. times the initial volume V. is of the

order of the final field Bf times the final volume Vf. Thus,

) (90)
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where f g is the final energy in the trapped field. The ratio

Vi/Vf is, of course, the volume compression. The factor

(BiVS/87T") is the energy stored initially in the quasi-magnetic

field. In other words, equation (90) shows that the energy in

the trapped field increases as a result of the work done on the

trapped magnetic field during the compression and it roughly

increases by the volume compression ratio.

If one starts out with B. = 1000 gauss and there is a

volume compression ratio of 30, one winds up with a trapped

field of about 30 k gauss. The temperature attained if the

energy in the trapped field manages somehow to get into the

plasma can be estimated by

VYk(91)

Combining this equation with equation (57), one obtains:

kTc V
n (92)

For an initial density of the order of n. - 1015 , one comes

out with T - 107 K. So, potentially, reversed field dissi-

pation does provide an important heating mechanism.

8. A Remark About Field Diffusion

Some comments are in order concerning the diffusion of a

plasma in a magnetic field. The MHD equations, as we have

written them, automatically take into account the inter-diffusion

of the magnetic fields, or the diffusion of the particles across

the fields. To obtain an estimate of the diffusion coefficient,
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consider the quasi-stationary case of a confined plasma at a

constant temperature. The pressure gradient in this case is

VP: J'x B
c

The electric field generated by the plasma. diffusion across. the

field lines is

X

Finally, with Ohm's Law

and usingVP:lkTV, one finds

For a flow across the magnetic field, v. = 0, so that

B Maw(93)

The classical effective diffusion coefficient is defined by

7 Z -D 1? . Thus,

nAT(94)

This important result of the classical diffusion theory led to

optimism ten years ago about the possibilities for building

thermonuclear reactors. One can associate a characteristic

time r to the diffusion of the plasma a distance L
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L L e-
T""(95)

.D,1nk T c2

Using = (nkT/BC - 77) , one obtains a characteristic time of

( 7T L-)((96)

where L is a characteristic dimension. The first factor is just

the ordinary skin effect time. In other words, if one has a

copper rod with a characteristic dimension L, the field pene-

trates in times which can be estimated from the first factor.

The second factor 2/ comes from the fact that the plasma,

contrary to the copper rod, can expand and contract.

For L = lcm, = 0.2, the characteristic diffusion time

would be

= .1 4 sec. at 104 OK,

= .1 sec. at 108 OK.

In a e-pinch with a reversed trapped field and field gradients

which extend over a few millimeters, the characteristic diffusion

times would be of the order 10 sec. for Te / 106 OK, accord-

ing to these crude estimates.

We mention this result in passing just to indicate that if

one had a stable plasma where the MHlD equations describe the

diffusion one would expect, in the end, times of this order
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of magnitude. The whole problem is to generate a plasma where

the classical diffusion coefficient depends on the magnetic

field as 1/B 2 .

Equation (83) has been verified with low density plasmas

confined in the magnetic mirror geometry and heated by radio

frequency fields. The 1/B 2 dependence, as well as the numerical

coefficient within the experimental accuracies of about a factor

of 2, has been verified. Thus, plasmas confined by magnetic

fields exist where classical diffusion governs the confinement.

However, one finds that if one drives in high enough

currents along the field lines, for example, toroidal discharges,

the diffusion coefficient is observed to depend on 1/B, indicating

some kind of instability. This instability gives rise to an

anomalous fast diffusion called Bohm diffusion. This is one of

the main problems in controlled fusion research. One has to be

careful with the relative direction of currents in the magnetic

field to avoid this anomalously fast diffusion.
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VII. NumericalSolutionso f the Magnetohydrodynamic Equations

The full set of hydromagnetic equations (Sec. III) which

describe a fully ionized plasma in an infinite cylinder have

been solved on a digital computer. An implicit method for

solving the set of finite difference equations was used which

does not bound the time-step by the characteristics. 1 7 At

each time-step Te, Ti J, n, v, B are computed as a function

of the radial coordinate r. The fluid equations are coupled

to the equations which describe the external circuit

V~: L dl (97)
dfe )

where Vc is the capacitor voltage, C the capacitance, R the

resistance, I the total current and L represents any stray

inductance not connected with the plasma region. The quantity

V® is the voltage around the plasma column given by

:.27B )r (98)

where Bz(r) is given by the hydromagnetic equations and ro

is the initial plasma radius before compression. The total

current which appears in equation (97) is expressed in terms

of the field by the usual formula

17 See reference 1 and also K. Hain, UKAEA report AERE-R3383
"Pinch Collapse " (1961) .

-136-



er 1
/0 ,'(99)

where is the length of a single turn solenoid.

The boundary conditions are discussed in reference 1 and

do not influence the state of the compressed plasma because of

the rapid heating rates. This was demonstrated by direct

computation.

Figures 7, 8, 9 show some typical results1 8 obtained for

a large 9-pinch with an initial reverse field of -4 k gauss.

The other experimental parameters are described further in VIII.

The times (ina sec) corresponding to the various curves are

shown.

The magnetic field rises rapidly near the boundary of the

plasma column and reverses the direction of the vacuum magnetic

field in about 0.3A sec. In this case, when the external magnetic

pressure exceeds the internal pressures the plasma begins to

contract and a large amplitude compression wave moves rapidly

toward the center of the discharge tube.

The density and temperature maxima in figures 8, 9 correspond

to the region where the magnetic field passes through zero.

18 These curves were taken from a more extensive publication
(K. Hain and A. C. Kolb) now in preparation. A preliminary
report was given at the N[ov. 1962 meeting of the American
Physical Society, Division of Plasma Physics in Atlantic City, N. J.
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Because of the high current densities (some tens of kiloamperes/cm 2 )

required to maintain the reversed field inside the diamagnetic

plasma column, there is strong ohmic heating of the electrons

during the implosion. Because of the relatively high densities

and low Alfven Mach numbers, the viscous shock heating of the

ions is negligible (See VII 4). The ions are heated by compression

and thermal relaxation with the hot electrons.

Therefore, this is a case where we deal with a resistive

shock wave whose structure is determined by the skin effect. At

lower densities and longer ion mean-free-paths the viscous

effects would be more important as discussed earlier.

At i N 0.79 sec the compression wave reaches the axis

and the temperature begins to rise rapidly at the center. The

ion temperature is always less than the electron temperature

during the initial implosion phase of the discharge because

there is not sufficient time for complete thermal equilibration

to be reached.

In figure 7 one notices that the magnetic field on the

axis is greater than the vacuum -field at 0. 7 9  sec. This

behavior is typical for dynamic pinches and is due to the large

inertial forces which lead to an overcompression of both the

plasma and trapped magnetic field. This results in subsequent

"bounces" of the plasma column as it undergoes a series of radial

oscillations, accompanied by large time variations in the

pressures near the axis. This "over-shoot" also leads to a
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transient in the temperature near the .axis because .of the high

compression ratio as the shock wave approaches the axis.

At later times (not shown) the temperatures continue to

rise with the increasing magnetic pressure, and Te approaches

Ti by thermal relaxation. Since resistivity decreases with

electron temperature, the ohmic heating rate tends to decrease

and compressional heating becomes relatively more important.

Eventually, however, the reverse trapped magnetic field must

decay and this has an important influence on the energy balance.

The diffusion times can be estimated by the considerations of

VI-7, assuming that there are no instabilities (See VIII for

a brief discussion of 9-pinch stability). The final temperatures

predicted by the theory are in the 106 - 107O K range at the

time of maximum current, depending of course on the initial

parameters. Thermal conduction smooths out the temperature

gradients.

Such detailed theoretical calculations yield a great deal

of information which is invaluable for guidance in the design

of experiments and the interpretation of diagnostic measurements.

It should be possible to investigate the range of validity of the

MHD equations and to study the relative importance of various

heating and loss mechanisms by a careful comparison of the

consequences of the full nonlinear theory and experiment. The

theoretical "information" is now much more abundant than that

gleaned from the small amount of reliable experimental data that

is available.
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VIII. Experimental Observations

1. Apparatus

The magnetic compression of deuterium plasmas in a 0-pinch

is under investigation by many laboratories.1 9 No attempt

will be made to survey all the experimental literature. Instead

we will describe some recent results reported at Salzberg

obtained with PHAROS, which is a relatively large device of the

9-pinch class.

The relevant parameters of the present experiments are:

Initial plasma radius 4.4 cm

Length 180 cm

Time to maximum current 14 u sec

Maximum current A/ 12 megamp

Voltage 18 - 20kV

Initial reverse field 1-4 k gauss

Initial density 1015-1016 ions/cm3

Initial temperature 1-5 ev

Magnetic field r'u 80 k gauss

Stray inductance 2-3 mh h

The maximum field depends of course on the bore and length

of the solenoid as well as on the stored energy in the capacitor

bank. The bank is rated at 2 megajoules but only /'1.5 megajoules

19 See for example the proceedings of the International
Conference on Controlled Fusion Research, Salzburg (1961);
published in Nuclear Fusion 1962 Supplement. Other references
can be found in the several 8-pinch papers.
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has been used so far. With full bank energy and some modifi-

cations to the coil, fields over 100 k gauss can be generated.

The initial magnetic field is generated by a slow 6 kv

capacitor bank normally operated now with 100 k joule. The

deuterium is preheated by discharging a small fast bank

(- 20 kv, 1 k joule, 500 kc/sec) which produces electronic

fields of s 100-200 v/cm and magnetic fields of a few kilogauss.

A combination of ohmic heating and slow compression raises the

plasma to a temperature of a few electron volts which is sufficient

to produce 70-100% ionization at initial pressures less than

0.1 Torr. The highest degree of initial ionization occurs at the

lowest pressures (0.015 Torr).

The initial temperature and density distribution can be

measured by standard time-resolved spectroscopic techniques. 2 0

The temperature is found from the ratio of the Balmer lines to

the radiative recombination - bremsstrahlung continuum. The

electron density is determined from the absolute continuum

intensity (which depends on "e and weakly on Te) or from

the Stark broadening of the Balmer lines (whose widths are

almost proportional to fle ).

These relatively low temperatures are sufficient to produce

a high enough conductivity initially to form a thin diamagnetic

20 W. H. Lupton, E. A. McLean and D. T. Philips p. 2263; also
H. R. Griem p. 1857 in Proceedings 5th Ionization Conference
on Ionization Phenomenon in Gases, Munich 1961, North Holland
Publishing Co., Amsterdam (1962).
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current sheath near the walls when the main capacitor bank is

discharged. The initial magnetic field is then trapped by a

shell of imploding plasma.

An over-all view of the experiment is shown in figure 10.

2. Shock Velocities and Compression

The implosion velocities of the order 8 cm//A sec at 0.05

Torr) are measured with a streaking-image camera that has a

time-resolution of about 0.1lsec in this particular application.

A typical streak photograph is shown in figure 11 which exhibits

the fast implosion, dynamic bounces discussed earlier, and the

subsequent slow compression as the magnetic pressure rises. The

measured velocities agree quite well with the theoretical results

shown in figures 7, 8, 9.

The plasma can also be observed through the ends of the

discharge tube with a framing camera. The photographs shown in

figure 12 show that the plasma column is compressed by the

magnetic field and maintains a fairly high degree of cylindrical

symmetry. The radiation observed photographically is mainly

due to bremsstrahlung. The spectral lines of impurities as

well as the Balmer lines disappear because of the high ionization

rates at high temperatures.

Streak camera photographs taken at different positions along

the axis show that with a trapped reverse field there is an

axial contraction due to the closed field lines at the ends.

Therefore the plasma is confined axially as well as radially
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by the magnetic forces so that end losses do not appear to be

important in this particular experiment.

3. Temperature

Above 106 OK, one can measure the electron temperature from

the soft X-ray emission with a precision of about 20%. Because

of the high densities the electron-electron scattering times are

orders of magnitude smaller than the experimental times, so that

it is reasonable to assume that the electron gas is nearly

Maxwellian. This enables one to compute the intensity of the

soft X-rays emission (bremsstrahlung or radiative recombination)

from the scattering cross-sections as a function of energy with

an average over a Maxwellian velocity distribution for the

electrons. This leads to a factor exp [ T in the intensity

formula.

The exponential shape has been measured and electron temper-

atures of about 107 OK are obtained if the plasma is sufficiently

pure. Such temperatures are in the range predicted by the MHD

calculations. It appears therefore that the Spitzer ohmic heating

rate and the compression can account for the observed electron

temperature.

Since the soft X-ray emission does not depend on the ion

temperature, the measurement described above yields no infor-

mation concerning the ion heating rates. Because of the relatively

high densities the ions will be heated by electron-ion collisions

and by compression and they should also have a fairly high
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temperature. However, this is still a conjecture since there

are as yet no direct ion temperature measurements in this

experiment.

It may be possible to measure the ion temperature indirectly

by observing the Doppler broadening of impurity lines in the

vacuum ultraviolet or soft X-ray regions of the spectrum.

However, experience has shown that such measurements are not

always conclusive, especially if there are instabilities of any

kind with associated strong electric fields.

It may also be possible to get some information concerning

the ion temperature by analyzing the energy of particles which

escape from the plasma column. However, the strong magnetic

fields can act as a filter and one must be sure that the observed

particles are typical of the ions inside the plasma column.

Some idea of the ion energy can be obtained from the measured

neutron flux from d-d reactions in the plasma. In the PHAROS

experiment 108 neutrons are emitted in each pulse at 0.015 Torr,

107 at 0.03 Torr and 106 at 0.05 Torr. Figure 13 shows typical

oscillograms of the X-ray and neutron emission. The ion

"temperatures" obtained from such observations are always clouded

by the suspicion that instabilities of some kind lead to

accelerating electric fields and a non-thermal ion velocity

distribution. Neutron intensity measurements alone are not

sufficient to prove a thermal origin, except perhaps in some

future experiment where the intensity is so high as to leave
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little room for reasonable doubt. This day has not yet arrived

for the 9-pinch.

4. Stability

With poor initial preionization the plasma boundary has

been observed by several workers .to assume a very ragged

appearance due to instabilities. It appears, however, that

the difficulty can be overcome by having the proper initial.

conditions.

Another form of instability has been observed2 1 in experi-

ments on a smaller scale. The plasma seems to rotate and

eventually break up due to the centrifugal forces which drive the

so-called flute instabilities. In some cases the plasma separates

into two distinct filaments which rotate about one another,

(figures 14, 15). At about the same time the end losses are

observed to increase rapidly.

It is suspected2 1 that the diffusion of the magnetic fields

inside the plasma changes the balance of momentum between the

ion diamagnetic motion and the drift motion caused by the inter-

action of the radial space charge electric fields which maintain

the electrical neutrality and the axial magnetic field. Calcula-

tions based on this model seem to be in qualitative agreement

with the measurements.

21 N. Rostoker and A. C. Kolb, Bull. Am. Phys. Soc. 6, 203
(1961), Phys. Rev. 124, 965 (1961). See also ref. 19.
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Because of the relatively large diameter of the PHAROS

plasma column, the diffusion times should be longer than in the

earlier experiments. This should delay the onset of the

rotational instability, and indeed it has not yet been observed

during the first half-cycle of the discharge.

However, a new difficulty has arisen: the plasma drifts

toward the slot in the coil which feeds the currents, presumably

due to small inhomogeneities in the axial field. Attempts are

now being made to stabilize this drift by superimposing a

multipole field, supplied by an auxiliary capacitor bank.

The drift limits the confinement time to a maximum of

about 15 sec (depending on the initial density). After the

plasma strikes the wall there is a flood of impurities and

rapid cooling. However, while the plasma drifts to the wall

the axial confinement is maintained and the cross-section of the

plasma column does not seem to show gross distortions. However,

it should be emphasized that experimental studies of the stability

of a 9-pinch are in a very preliminary stage and it is impossible

to predict the ultimate possibilities with any degree of certainty.

There are all kinds of instabilities connected with finite

resistance, density and temperature gradients, electrostatic

fields, curved field lines, anisotropic pressure, ad infinitum,

that may be important.

The 9-pinch is a useful tool for studying the properties

of a high temperature plasma, shock waves, radiation, confine-
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ment in a magnetic field and stability. It may also be possible

to test certain features of the magnetohydrodynamic theory.

However, like all other thermonuclear enterprises, little can

be said for the future of such devices in this area.

In conclusion, the experimental situation for large

9-pinches can be summarized as follows: electron temperatures

of 106 OK- 107 OK can be produced for times up to about 10Msec

with densities in the range 1016 to -v1017/cm3 , with both radial

and axial confinement. The rotational instability which plagued

earlier experiments can at least be delayed in time. The

magnetohydrodynamic two-fluid theory accounts for the implosion

velocities, bounce frequencies and compression ratio. It also

seems to predict the initial rate of electron ohmic heating

with fair accuracy. Impurities play an important role in the

electron heating, and confinement time is presently limited by

a slow radial drift of the plasma column as a whole toward the

wall of the discharge tube.
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In the following lectures we shall investigate the appli-

cation of singular eigenfunction expansion -methods to the study

of plasma phenomena. In particular, our major concern shall be

with obtaining a solution of the initial value problem for

longitudinal plasma oscillations for the case when ions are

treated as a positive charge background.

Of course, the latter problem is but a special case of the

general investigation of plasma oscillations where one is also

concerned with transverse oscillations and coupling between

transverse and longitudinal modes. However, because the time

in which to present these lectures is severely limited and in

virtue of the fact that the notation for the general problem

is significantly more involved than is that for the special

problem of longitudinal oscillations, it is felt that maximum

information can be transferred by restricting the scope of the

talk. All essential points of the method of solution can be

covered in spite of the limitation we impose and, in fact, should

be clearer as a result. If time permits, the modifications in

the theory which are necessary for obtaining solutions to the

general problem shall be indicated.

The central equation with which we shall work is the

collisionless non-relativistic Boltzmann-Vlasov equation. We

shall not derive this equation here; rather, we shall obtain

a linearized form of the equation and proceed to solve it by

taking Fourier transforms with respect to spatial coordinates

and then performing an eigenfunction expansion in transform
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space. The problem is then reduced to that of obtaining the

solution of a system of singular integral equations.

Since they will be very important in the subsequent work,

let us start by briefly discussing some properties of Cauchy

integrals.
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I . Properties of Cauc Integrals.

Definition (Cauchy Integral):

Given a smooth line, L, in the complex plane.and a

function, 0 (r) defined for the points '2 on L, then

L

____ d-'7 (1.1)

is a Cauchy integral. We have the following theorem:

Theorem:

If L is sufficiently smooth, and we have a function

(T, e ) continuous with respect to 2' and holomorphic-

with respect to Z , then (Tz)d'r =F(2) is also a

holomorphic function.

As a consequence,

L

L

fier) d

is holomorphic except at Z on L.

Definition:

Suppose L were to separate the complex plane into two

A function is holomorphic in a region, R, if it has derivatives
of all orders at every point of R. See N.I. Muskhelishvili,
Singular Integral Equations, P. Noordhoff, N.V., Groningen,
Holland, (1953) for a thorough discussion of these ideas.

1
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sections, D+ and D- . Then the functions () for

Z within D+ and ( for Z within D~ are referred

to as the sectionally holomorphic functions given by (1.1) for

O6(z) given on the boundary L

o D L

D"

Definition (Holder Condition):

A function, f(t) , is in the Holder class in a given

interval iff the following relation is satisfied for any two

points f and f within the interval:

(1.2)

where A is any positive constant and 0< A I

Definition (Principal Value of Cauchy Integral):

When Z is a point on L we must take (1.1) to be the

principal value. We do this by deforming the contour L in

the vicinity of Z in the following way:
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L

where . is the portion of L cut by .he circle of radius

about Z . Then, the principal value of the integral

is defined in the following way:

For Z on L

. dr ~ ' _4defn dO - c(1.3)

In light of the previous discussion it is seen that, for.

Zo on L , the Cauchy integral will have two values depending

00on whether the point Z0 is approached from within D+ or,

on the other hand, D- . This gives rise to the following

formulae (the Plemelj formulae):
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L D

Assume that the point z on L is approached from within D+

and let us calculate + (,) , the boundary value of -(t)
at t = zo. Deform the contour, L, as shown in the diagram

above. Then, by the Cauchy integral formula and the definition

of the principal value, we immediately have:

p 7rk r) r .___f f - .27ri L

Analagously, (1.4a)

a77 1 r* (1.4b)

L

We now rewrite the Plemelj formulae in a form in which they

are frequently found:

1 7* (l .5a )

-162-



and,

(1.5b)

To conclude these remarks, the following two points should

be noted.

Although we have discussed Cauchy integrals for closed

boundaries, the notions are easily extended to the case where L

is the real axis in the complex z plane. In this case, the

principal value of the Cauchy integral means:

The Plemelj formulae are defined in an analogous way and the

results are the same as for the closed boundary except that

+ ~(1.7)

Secondly, it should be pointed out that if (T) belongs

to the H5lder class (1.2) then the existence of the Cauchy

integral (1.1) is assured. However, this is only a sufficient

condition for the existence of the Cauchy integral; in general

it is required only that function -?) be a distribution in

the sense of Schwartz. 2

2 L. Schwartz, Theorie _des Distributions, Paris (1950/52)
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II. The Linearized Vlasov Equation

With these introductions behind us, let us now see how the

singular eigenfunction expansion method is applied to the study

of-plasma oscillations. We start with the Boltzmann-Vlasov

equation for electrons moving in a uniform background of positive

charge, the latter being due to the ions. The distribution

function for electrons will satisfy 3

___________S F o(2.1)

F(r,v;t) is the probability density for finding an electron

at dr about r, having velocity dv about v, at time t.

As we remarked earlier, we shall consider longitudinal

plasma oscillations only. In other words, assume that the

force acting on the particles is of electrostatic nature only

and that the acceleration of the electron is

a= -E t(rt)

3 Reporter's Note: The Boltzmann-Vlasov equation is an
approximation to the full kinetic equation for the electron.
However, it should hold for low density plasmas at relatively
high temperatures. /For a full discussion of the derivation
of this equation, and its relation to more exact kinetic
equations, see e.g. R.L. Guernsey, KineticTheoyof Fully
Ionized Gases, University of Michigan Thesis, 1960.
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We have, in addition to (2.1), Poisson's equation:

(2.2)
Vp"m )

where

lo.
(2.3)

is the excess charge density over background.

Equation (2.1) is a non-linear equation of quite complicated

character. Hence, we look for some applicable linearization

procedure to simplify the job of its solution. To this end,

assume that the equilibrium distribution, /(i) , is

a function not depending on space or time and that, furthermore,

F = f(_v) + f(rv;t),

where fr, t)I << (V)

(2.4)

for all r,v, and t.

Substitute (2.4) into the full Boltzmann-Vlasov equation

(2.1) and neglect velocity gradients of f(r,v;t) as compared

with velocity gradients of fo(v) . One then has

--- -- zr" +E "V -o

(2.5)

which is referred to as the'linearized Boltzmann-Vlasov equation.
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Similarly, substitution of (2.4) into (2.3) yields:

efd 3 zr (2.6)

in virtue of

effo d3z :o, 0
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III.. General Solution

We now proceed to the solution of (2.5) . First, take the

Fourier transform of (2.5) with respect to the. spatial coordinate

r . We quickly get:

- _/(3.1)

with

(3.2)

Note that for convenience the transform index, k, has been

suppressed in the distribution function which we merely write

as . The meaning of " and V is such that

' .-l1k and _ v.Lk .. Note that Z/" is a

two dimensional vector.

In deriving (3.1) we have used the fact that by Poisson's

equation,

qT  Y7re ffd~v.
8r

and thatE (r t)=y ay(r, f)so thatE = -- zkg # .

Now, let us search for eigenfunction solutions of (3.1) of

the type

(3.3)
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Note that this is really equivalent to performing a separation

of variables.

After placing (3.3) into (3.1), one has:

(3.4)

Clearly, however, is a function

only of / Call

dv0d-j6 (3.5)

where c2()/) is to be determined. We then have

which has the formal solution:

Jlr/~ ) _? -- ) + / ?? & ) (?/--Y) (3.6)

/4(), 7/, _ is subsequently to be related to the initial

conditions of the problem.

Equation (3.6) is subject to the following condition

on a fy) which is obtained according to (3.5):

(3.7)
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We see, now, that our problem has been reduced to that of

solving a singular integral equation for a (/) .4

This equation can be written in slightly different form:

This relationship is a condition on the function a( ( ) but

also determines the spectrum of eigenvalues . In this

regard, we have the following cases:

1. If / = any real value:

Integration over 7/- on the l.h.s. of equation

(3.7') gives unity. Hence, the pertinent relation

for real y is:

(3.8)

I (izj)d Y = a(v) ,I (y)
i

4 Reporter's Note: At this point the question was raised
by a member of the audience concerning the relation between
the eigenfunction expansion method of solution of this paper
and an alternate method which involves taking Laplace trans-
forms re. the temporal dependence. It was agreed that an
equivalence exists between the two solutions, a fact which
has indeed been pointed out by K.M. Case (Ann. of Physics,
4, 349, 1959) and G. Backus (J. Math. Physics 1, 178, 1960) .
However, the particular analytic form.of the solutions differs
and each has its own merits for any particular problem.
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where

fd(3.9)

2. If 2/ = any complex value:

Since integration over 7/~ on the l.h.s. of

equation (3.7') equals zero, the following eigenvalue

equation forf is obtained:

A(Y)o=o
(3.10)

3. Also, it is possible that equation (3.10) is satisfied

by real valued Y If, for such eigenvalues it is
J

also the case that (,V_/I O 6then the )/

are legitimate eigenvalues of (3.7') and are to be

included in the discrete spectrum.

Therefore, in general, the spectrum of eigenvalues, 2/J
consists of a continuous set of real valued quantities (case 1,

above) plus a set of discrete complex and real valued quantities

(cases 2 and 3). Due to the fact that 7/')a-Z is

holomorphic there are only a finite number of values Y for
J

which (3.10) is satisfied, i.e., the discrete spectrum is finite.

5Note that #Ofrand,( /?~yj/9are, in general, different func-
tions.

6 This arises from the Plemelj formulae and from the requirement
that both 2I*(/.) = 0 and [(J/}=.
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If the discrete roots are simple roots, let the associated

eigenfunctions be designated by *. On the other hand,
J

the jth root may be of multiplicity Then not only is

&PO V- = i -i(3.11)

f j v--- Y"

a solution of equation (3.4), but so are the . -1 linearly

independent solutions:

ay - (3.12)

However, for convenience of notation, at this point let it

be assumed that the roots are simple. Define

- (3.13)

Thus, in terms of the eigenfunctions associated with ,

the general solution to (3.4) is given by

-ik v. t ..ik a

f{krt)= ZI pf / J+)e d y.
ii' 1(3.14)
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IV. Completeness and the Initial Value Problem

In order for the assertion of (3.13) to be true, it must be

shown that the eigenfunctions form a complete set, i.e., that

almost any arbitrary function can be expanded in the form (3.13).

However, there is a close relation between the demonstration of

completeness and the solution of the initial value problem

because for almost every initial distribution, f(k,v;O), one

can perform the expansion

f(k,v;O) = -). )-f(V2Kr1dy.(4.1)
We now consider the problem of completeness and at the same

time provide an explicit calculation of the eigenfunctions

'(Ytv2) and which solve the initial value problem.

Define

(v-r }? {{k r- o) -Zp(.zor ) .. --1 -(4.2)

Introducing (3.6) into (4.1) and using (4.2) one obtains
+00

~. Y(4.3)
-o

Integrating (4.3) over -te and using (3.8) then

at) A(zr)- () v)a =G r

(4.4)

where the following quantities have been defined:

&(v) v z rjdz/ (4.5a)
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( - (4.5b)

The problem has thus been reduced to that of a singular

integral equation in its dominant form. Using methods described

in section I, above, a solution will now be demonstrated.

Define:

+ o0

N(z) 7 iA_ ,-GdY(4.6)

'- o

By ( 3 .13 ) 1 f k o), fi./~j)dY . Because/l (ky; O)
[+o

is assumed to be in the H5lder class (or otherwise, a distribution
+o

in the sense of Schwartz) , then fdvdvf(k,?v- ;O) /a(v)ad is

finite. Therefore N(± o*)--> 0 , and we can write the Plemelj

formulae:

N (v)--N~( Y) =a.&L( V) (4.,a)

7R N +(v7) + N~ (V) = A? V .(4-?b)

Also, when the following quantities are introduced,

Q i) . f jV) d (4.8a)
.27-f y-- d
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we have

G (II) = M* Or)(4. 9a)

and (from (3.9) and(4.8a) )

R(ir)= I+7Th Q'+
(4.9b)

Using these relationships, the singular integral equation (4.4)

can be written in the following form, where all terms are

expressed as linear combinations of N(z) and M(z):

N.( zr) tI TTrriQ (v)'M(N() fi+2rri[Q~(v) M"v) ( 4.10)

Define:

K() N(2)i+2rri Q()] - M() (4.11)

so that equation (4.10) can be written as

t

K (V) =/ (ir) on the real axis. (4.12)

Because N(z), Q(z), and M(z) are holomorphic, so is K(z). This

is a special case of the homogeneous Hilbert problem, and since

K(z) -- j 0 as z--+ oo then by Liouville's theorem: 7

SSee appendix A .2
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K(Z)=o,

everywhere. Thus, from (4.11), (4.13)

P((2) (4.14)

+-2rri Q(i)

N(z) must be everywhere finite, as seen from the definition

(4.6). This requirement imposes important conditions on M(z)

since M(z) must therefore vanish at the zeros of the denominator

of (4.14). From the definitions (4.8) and (4.5b), the denomi-

nator is

[i*.TrQ( )] I + f (v 4z) dirdvj (4.15)

and (by the previous discussion (3.10) ) has zeros of multipli-

city .3at the points ) ( =,,..I ). M(z) must also

vanish at these points; in other words (see (3.12) )

11()O(4.16)

In terms of the definitions (4.5a) and (4.2), equation (4.16)

becomes

?' | IL I ~ V ( 4.17 )
MI1
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0- -
Since the (p. are related to a ( / ) through equation

J3J
(3.13) we see that (4.17) is a set of equations to be used for

the solution for the latter quantities. It relates the a (Y .)
J

explicitly to the initial condition.

Now, everything else quickly follows in a straight-forward

manner. Knowing the a V( /) , one next calculates Y/.

according to (4.2). Then, a( Y ) follows from (4.5a), (4.7a),

and (4.14) . Once a( Y ) has been determined, then 4 (2; V~)

can be obtained from (4.4) .

Finally, knowing a( ) ) and A(7 5 ?W), the eigenfunctic n

?/~, vj) is obtained from (3.6) . In this way all the

elements of the solution (3.14) have been obtained and f(k,v;t)

is uniquely given in terms of the (almost) arbitrary initial

condition, f(k,v;0).
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V. Further Remarks

The solution, as has been obtained here, is quite useful

in the study of plasma phenomena such as stability, Landau

damping, etc.

For example, using the form (3.14):

it can be quickly shown that if the plasma is close to equilibrium

it is stable (i.e., if fo(v) is Maxwellian). Whereas the existence

o.f discrete roots, V ., in the upper half plane would give

growing oscillations, it'can be shown that no such roots exist

for Maxwellian foe. Also, since the contribution of continuous

eigenvalues is proportional tof ") e a d/and a( / )

has poles only in the lower half plane, this quantity also

provides no growing temporal terms.

However, in the case of damping, it is seen that the

continuous eigenfunctions are very important, with the pole

lying closest to the real axis being dominant.

We have talked only about the initial value problem of the

Boltzmann-Vlasov equation for longitudinal oscillations.

However, the B-V with both longitudinal and transverse oscilla-

tions, taken together with the complete set of Maxwell equations,
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has also been solved. One gets a system of integral equations

which may be written in the form: 8

- ) (5.1)

where

A Av V (5.2)

is due to the isotropic part of the equilibrium

distribution function.

Whenever the equilibrium distribution function is anisotro-

pic we may have coupling between the longitudinal and transverse

modes of oscillation. Such phenomena might occur, for example,

in dense streams of plasmas or plasmas with two different

temperatures .9

8 See appendix A.1 for details.

9 Reporter 's Note: There was a question concerning the class of
initial distributions for which the methods described above
would hold. It was pointed out that a Ho5lder condition

imposed on f(k,v;O) is sufficient so that Q(z), M(z), and
N(z) exist. However, the exposition would be valid for any
Schwartz distribution.
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Appendix A.l: The Initial Value Problem For Longitudinal and
Transversal Plasma Oscillations:

As was indicated in the text, above, the more general

solution to the initial value problem which includes the full

set of Maxwell equations has also been obtained. The method

of solution closely follows, in structure, the solution for the

problem for longitudinal plasma oscillations. However, the

details are many times more complicated. A short summary of

this procedure is given below.

In analogy to (3.3) of the previous treatment, solutions of

the following form are sought:

-ikut

(Al.la) tf=eY/ V-

(Al.lb) E = e e (/)

(Al.lc) H e

where f (k,_v, t) has the same meaning as before, E is the Fourier

transform of the electric field, and H is the transform of the

magnetic field. One then gets, for the Boltzmann-Vlasov equation;

(Al.2) (?/-2/ (v/,6_7/ - + f /*x h-",v =0
and for the Maxwell equations in transform space:

(Al.3a) j/ y (Y- ) --v O

(Al.3c) g- /
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(Al.3d) 3)-j = 0

In the above equations,

(Al.4a)

(Al. 4b)

()
r

zoor-now

y~w) ~ef~3r

The set of equations (Al.2 - Al.4) can be reduced to the

following form (similar to 3.4):

(Al1.5) (v-- Y (VVY + 7J/-- 2/ ~ (vL/- c

+y 97 47L&~'~C vi) 'e; (2)' a(2a&) :0
where

(Al.6a)
y

vw, zr ) dip

Wool /('I)I

V1,11fa
and

(Al.6b) y
7r eme (;/ -V-) v f.
4) am [ yvj-. is -1

e. (y) is a function which will be determined from the

initial data.

It is convenient to introduce the quantities:

(Al.7a) y Il v-Y
v / -,E z(r)

(Al.7b) ..f1

so that equation (Al.5) may be written as
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(Al.8) v--/ y"" ~ (-y7v * " (y)

i k

The latter equation may be solved formally, giving:

(Al.9)

subject to the conditions (Al.7a and b). (In this way, we have

obtained expressions analogous to (3.6) and (3.7) of the text,

above.)

One next obtains eigenvalue equations in order to determine

the spectrum, . Introducing:

(Al.lOa) Y +/7 l) d rdS

(Al.lOb) Ay) : f de-N?4 dvdF -

and

(Al.lOc) V(7 ( .. ) I +/ 2-dzrdz

the following sets of eigenvalue equations are obtained:

If 2/ is real, then the following conditions must be

satisfied:

(Al.lla)

>J/~ (v; y )dr;.=1 A,(M A,, (>) +>)'%.(x)-As(>)E~A')+,jk A M-e /-cf
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and

f A( 3d6 = a, (ja0)A 1 (Y') + q(Y) Vj(v)
(Al.llb)

+ ' V- v "-")I' /C" )

For complex ) , one obtains the condition:

(Al1.12) A/A v

If (A1.12) is satisfied by real 3/ , and in addition

(Al.13a) y _ =0O

and

(Al.13b) f v d =

then these roots, y , are also part of the discrete spectrum.
J

The eigenfunctions corresponding to discrete are:
J

(A1.14)()LW.

(assuming that the roots are simple).

Thing s f ollow along in the s ame way a s be for e, only , of cour se ,

their complexity is order s of magnitude greater .1

10 A detailed account of this pr oblem appear s in Annals of

Physics, September 1962.
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Appendix A.2: The Homogeneous Hilbert Problem

The homogeneous Hilbert problem is:

To find a sectionally holomorphic function (z)
of finite degree at.infinity, under the boundary
condition

t (on L,

where G(t) is a non-vanishing function of the point
t on L, satisfying the H'dlder condition."l

Hence,

(4.12) K+(z) = K~(z) on L is a special

case. The general solution is somewhat complicated. However,

the situation at hand is simplified in virtue of (4.12) and the

fact that K+ and K~ are sectionally holomorphic.

Because of these two properties, by Liouville's theorem,

K(z) must be everywhere a constant. Thus, since K(z) - 0

as z - 0-- 0 * , K(z) 0.

Liouville ' s theorem can be stated as follows: 12

a function which is analytic for all finite values
of z and is bounded everywhere is a constant.

The proof is quickly provided for, by a modification of Cauchy 's

theorem, the derivative of an everywhere analytic function ((a)

is e ! 1(z)
.2 rri ( - a

11 Muskhelishvili, p. 87

12 Mor se , P . M ., and Fe shbach , H ., Methods of_ The or etical
_Physics, p. 351, McGraw-Hill, New York, 1953.
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Let the contour of integration be a circle of radius R centered

at a, and let h(3)K by hypothesis. Then,

/'"(a) =oand / (a) is a constant.

Thus,
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Introduction

The subject of neutron thermalization concerns the manner in

which the "neutron gas" comes into thermal equilibrium (if it

ever does') with the medium which contains it. Its analysis

shows a nice interplay between theories of neutron transport and

theories of the solid and liquid state, and is also reminiscent

of the classical kinetic theory of gases. More precisely, it

resembles the "foreign-gas" problem, where a small number of gas

molecules is introduced into a large collection of molecules already

in equilibrium at some temperature.

The thermalization problem might be compared with a particu-

larly simple, linearized version of the kinetic theory of gases,

were it not for the feature of chemical binding. In all but the

simplest models, the atoms of the moderator interact with one

another, and the complicated motions which result produce a

complex scattering pattern in the laboratory system. Many experi-

mental results in thermalization appear to be quite sensitive to

details of binding, and the over-all result is a new and interest-

ing branch of neutron physics.

Four lectures are adequate for little more than a sketch of

the field. We shall begin with a short discussion of the

"classical" thermalization experiments and the general mathematical

apparatus used in their analysis. Then we shall consider some

very simple models which will indicate those properties of the

scattering operator which control the various experimental results.
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Finally we shall discuss some of the many questions that are current

and unsolved. In all this, our aim is to give a picture of the

field in which terminology and general principles appear, but

where fine mathematical detail is absent. The reader interested

in pursuing some of these topics should consult the reference

section and, in particular, the proceedings of the recent Brook-

haven Conference on Neutron Thermalization.
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Lecture I

Some Experiments in Thermalization

I. The Infinite Medium, Steady-State Distribution

Imagine that we have a large, homogeneous block of moderating

material, and that neutrons of high energy are introduced into

the block in a uniform and isotropic manner. The moderating atoms

will be supposed to be weak absorbers of neutrons ( O ~ << Og )

though strong enough so that many more neutrons are lost through

capture than through leakage. The flux of neutrons in the block

will then have the energy distribution sketched in Figure 1.

The infinite medium distribution is described as being

"Maxwellian, " with "l/E tail." The l/E behavior, which holds

for energies above a few volts, is typical of neutron slowing

down theory, There, the average energy loss for a fast neutron

(i.e., one whose kinetic energy is much greater than the binding

energy of its target) upon collision is proportional to the

energy of the neutron, and the cross section for scattering may

be taken to be independent of energy. Thus, the number of neutrons

in unit volume slowing down past energy E in unit time is

proportional to 1. (E)E. If capture is weak in this region,

the number slowing down past E in unit time is very close to

being the source-strength, S. Thus, (E) P S/. E.
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Figure 1
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When the over-all absorption is weak, the portion of (E)

near kT has the form of the "Maxwellian, "

E
M(E) = 2 exp (-E/T) . (1)

(We use a system of units in which the Boltzmann constant, kB

is unity.) The presence of the Maxwellian component may be under-

stood if we consider that when capture is small, the neutrons,

having long lifetime, come close to being in thermal equilibrium

with the moderator. At equilibrium the neutrons assume the

canonical distribution of statistical mechanics. The number of

neutrons with momenta lying in the element dap about p, which we

denote by n( )d 3 , is proportional to exp(-E/T)d3p, where E is

12

____ ,the neutron energy. When the neutrons are in a sufficiently

large and homogeneous system, n(p) will depend only upon the

magnitude of p, that is, upon the energy. The number density in

energy is then proportional to p exp (-E/T), and the flux

density, 0 (E), is proportional to E exp (-E/T).

In the presence of absorption or leakage, the Maxwellian

and l/E component become distorted and less distinct. The

Maxwellian shrinks in size, and its maximum, in most cases, is

displaced to a larger energy, EM) T, while the slowing-down

component is somewhat depressed. The amount of distortion

produced by a given number of absorbing atoms is governed by the

rate of energy exchange between neutron gas and moderator. One

of the goals of thermalization theory is to describe these
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distortions quantitatively. This goal has not yet been reached.

Infinite medium spectra have been measured in two ways: by

steady-state and by pulsed techniques (1) . In the first, a beam

is extracted from or near the core of a steady, chain-reacting

system and is analyzed into its velocity components by means of

a neutron "chopper," or by means of a crystal spectrometer. The

second method, which gives greater beam intensity, is somewhat

more complicated. It is based on the fact that the steady-state

infinite medium spectrum may be obtained by integrating, with

respect to time, the time-dependent spectrum produced by a short

pulse of fast neutrons. In this case, a pulse of neutrons is

injected into the moderator, and the velocity resolution of the

extracted beam is carried out by means of time-of-flight. It is

clear that the pulsed technique is simplest when the neutron

lifetime in the system is short compared with the flight time

for thermal and epithermal neutrons. Thus, the earliest results

using the pulsed technique have appeared in the study of poisoned

H2 0 systems (2). Recently, the techniques of data analysis have

been improved so as to make measurements of spectra in graphite

possible (2a).

2. The Life History Experiment

This experiment is aimed at studying in detail the manner in

which fast neutrons are thermalized. A burst of high energy

neutrons is introduced at t = 0, and / (E, t) can be measured.

In the absence of leakage and absorption, (E, t) tends to a

Maxwellian distribution when t becomes very large.
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Complete investigations of this sort require intense sources

of fast neutrons, and detection apparatus capable of analyzing an

emergent beam with respect to its component velocities. M. Poole

and his colleagues at Harwell have recently reported the results

of such an experiment in graphite (3). Their source is a linear

accelerator whose pulsed electron beam produces x-rays which, in

turn, liberate neutrons through ( J,n) and ( ',f) reactions.

Their detecting equipment consists of a chopper and a time-of-flight

system. By "phasing" the accelerator pulse and the opening of

the chopper, the experimenters can select various times in the

history of the pulse and can analyze the instantaneous spectra

by time of flight.

The time history experiment yields a great deal of interesting

data, which has only just begun to be analyzed. Figures 2 and 3,

which show the time-dependent spectra and the variation of the

average energy of the pulse are typical experimental results. We

shall next want to know the shape of the final spectrum (if there

is one') the rate at which the pulse "relaxes" into its final

form, the behavior of the pulse in the quasi-slowing-down

region E > kT, the dependence of all these upon geometry, poison

concentration,... In short, there is much matter here for the

neutron physicist.

3. The Final, or Asymptotic (t - oQ) Distribution

In this experiment, the nature of the energy spectrum is

investigated long after the high-energy pulse is introduced. Once

again, a chopper is used in conjunction with time-of-flight
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apparatus. The chopper is opened at a suitable time after the

pulse, and kept open for a time long enough to secure sufficient

neutrons for time-of-flight analysis, but short compared with a

typical flight time. In the interior of a system that is weakly

poisoned, and sufficiently large, the asymptotic flux will assume

the form of the "fundamental decay mode,"

lim 5 (E,r,t) = e-A ot p(E) (2)

t -+ o

The results of such an experiment have been reported by

Beckurts (4). The moderating material was light water, and

96 O(E) was found to be Maxwellian in the interior of the

larger blocks. As the blocks were made smaller, the maximum of

0 o(E) occurred at progressively lower energies. This effect,

which is caused by the preferential leakage of fast neutrons,

is. called "diffusion cooling," and is demonstrated in Figure 4.

The neutrons which emerged from the face of the moderating block

were also analyzed by Beckurts. These, which are in a sense

complementary to the O (E),had their maximum displaced

above the Maxwellian.

These experiments exhibit in a direct manner the interplay

of diffusion and inelastic scattering in the determination of the

asymptotic spectrum. Their analysis in terms of detailed models

of matter has only begun. Related experiments are under way at

the General Atomic Laboratory, where R. Beyster and his colleagues

are measuring leakage spectra from slabs of light water (_5) . It
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Figure 4
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is hoped that these experiments will yield the angular variation

of the leakage flux. Their.interpretation leads one to consider

a form of the "multi-velocity Milne problem."

4. Integral Experiments

The integral experiments of thermalization require much less

equipment for their performance than do the experiments mentioned

above. No attempt is made to measure the distribution-in-energy,

so that choppers and time-of-flight equipment are unnecessary.

Instead, one concentrates upon the temporal charge of the

energy-integrated flux in a pulsed block, or the change in the

activation of foils with change of position in a steady state

experiment.

a) Temporal Relaxation ( A. vs. B2 )

In these experiments, a "l/v" counter is placed near the

moderating block. When a sufficiently long time has elapsed

after initiation of the pulse, the flux has the form of equation

(2), and the counting rate decays exponentially. Figure 4

illustrates the decay of a neutron pulse in a block of beryllium,

as measured by de Saussure and Silver (6) . The linear variation

of the experimental points on "semi-log" paper indicates that we

are indeed in the asymptotic regime. The slope of the upper

curve yields the fundamental decay constant, A 0.

The variation of A o with block size (and shape) will reflect

the relative strengths of the diffusive and thermalization processes

taking place in the moderator. In a moderator containing a 1/v

absorber, diffusion theory predicts that
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,A _ A + <vD , B2

o a (3)

where A a = v 0 o a(vo), B2 is the buckling of the fundamental

spatial mode and <vD) is the average of the product of velo-

city and diffusion coefficient, with respect to the (non-Maxwellian)

asymptotic spectrum. The diffusion cooling effect, which is an

expression of the distortion of the spectrum, shows itself in the

dependence of <vD} upon B2 , and the consequent nonlinearity

of the A o vs. B2 curve. It is customary, therefore, to

rewrite (3) as

A =/I + (vD,> B2 - CB4 +... ,
o a o (4)

where <vD> is a Maxwellian average, C is termed the diffu-

sion cooling coefficient, and the dots represent still higher

terms in the series. A typical curve of A 0  vs. B2 may be seen

in Figure 6.

To form an idea of the time scale of these processes, let

us note that the slowing down time from Mev to ev is roughly

10 microseconds ir sec) for a neutron in water and roughly 100

sec in graphite. In water, approximately 20lu sec are required

for the establishment of an asymptotic mode, while at least

1000gsec are needed in graphite. The flight time for a l-ev

neutron is approximately 70,a sec/meter . Once an asymptotic mode
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time after end of bombardment (msec)
15 0.55 095 135 1.75

k channel number

Decay of the Neutron Flux in a Berryllium Assembly 14 3/8 x 14 3/8 x 16"

Figure 5
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has been established, its lifetime is given by equation (4).

Some approximate experimental values of At0, < vD> 0, and

C follow. It will be seen that the experimental values of C,

which characterize the diffusion cooling effect in a crude

manner, are far from precise (7).

a vD> C

H2 0 4850 + 50 0.35-0.37 x 105 2900-4900

Graphite 88 + 1.5 2.1 + 0.02 x 105 16-38 x 105

-l 2 4
sec cm /sec cm /sec

b) Spatial Relaxation ( K 2 vs. Za

Let us imagine a beam of thermal neutrons incident upon the

face of a semi-infinite block of material. If we sample the

neutron flux, 06 (E, z) , throughout the block, we will find in

many cases that when the distance from the face is sufficiently

large, an asymptotic distribution in energy sets in:

lim 95 (E ,z)--+ e_ (tE) (5)

z -- o0

The 0 occurring in (5) is quite different from the

of equation (2). Indeed, p 0 (E) tends to be diffusion heated

rather than cooled. The decay constant, E , is characteristic

of the state of the moderator, and is the reciprocal of the

thermal diffusion length. Since a determination of ~(E)

seems to be difficult to perform, experiments have been limited
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to the dependence of X on material, on temperature, concen-

tration of 1/v absorber, etc. The K 2  vs. measurements
a

tie in nicely with the pulsed neutron experiments, since it is

possible to show that the curve of a vs. k2 for 1/v absorber

is the analytic continuation of the Avs. B2 curve. Thus, either

experiment will yield values of <vD> and C(8).

Another experiment which illustrates spatial relaxation is

the "two-block" experiment. Here, the relaxation of a neutron

distribution is studied in a system composed of two contiguous

blocks of moderator maintained at different temperatures. Until

quite recently (9), attempts to measure the distribution-in-energy

as a function of position have been thwarted by low neutron

fluxes. Instead, one can observe the approach to equilibrium

indirectly by measuring the dependence of foil activation upon

position. Figure 7 shows a typical set of traverses which are

analyzed by means of a variant of multigroup diffusion theory

("rethermalization theory") to obtain relaxation lengths. Several

experiments, in which graphite and light water serve as moderators

have been analyzed by physicists at Hanford, and are discussed

in a recent report by R. A. Bennett (10).

Experiments describing thermalization in lattices are also

carried out by the foil traverse technique. In this situation,

the neutron distribution varies strongly with position and is

far from the asymptotic shape appropriate to either moderator

or fuel. Rather special methods leaning strongly upon numerical

analysis are used to interpret these experiments. The interested
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reader should consult the proceedings of the recent Brookhaven

Conference for details.
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Lecture II

The Theory of Neutron Thermalization

1. The BoltzmannEquation

The neutron distribution f (E, r , t,f.l. ) relevant to a

particular experiment in thermalization is a solution of the

general Boltzmann equation,

(6)

corresponding to particular initial and boundary conditions. The

notation and derivation of equation (6) are well-known (11) . In

solving it for thermal neutron distributions we face a two-horned

difficulty. The first is the construction of a scattering kernel,

(E >n E .) , adequate to represent the complicated

physical state of the moderator; -the second is to solve the

transport equation which results. It is important to realize

that the "thermal" equation is, in its energy dependence, quite

a different animal from the "slowing-down" equation, though it

contains the latter as a special case. During slowing-down,

neutrons lose energy with each collision. The integral equation

is of "Volterra" form and is amenable to numerical methods of

solution. In the thermal regime, either gain or loss of energy
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may occur during a collision. The integral equation is of

"Fredholm" type (though singular ) and is much more demanding of

machine capacity, if one resorts to numerical methods. Fortunately,

the computing machines presently available are too small to

handle the full thermalization problem. There remains a need

for a physicist's insight in proposing suitable approximations

and simple models, and in seeking general laws in the mountains

of "machine output."

The first approximation often made is the assumption that

the scattering pattern is isotropic in the laboratory system.

Thus, one retains only the first term in a Legendre polynomial

expansion of the kernel with respect to the angle of scattering.

One finds

(7)

The validity of this approximation has been established chiefly

by "handwaving." The higher terms in the Legendre expansion are

proportional to correspondingly higher powers of the ratio of

neutron mass to scattering atom mass. One might argue that the

ratio is more likely that of neutron mass to effective mass of

the scattering atom, the latter being determined by the chemical

binding of the scatterer. In the thermal region, these "effective

masses '" tend to be several times the free atomic masses and,

consequently, the higher terms should be small. The approximation

is sensible only for the inelastic, incoherent portion of the
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scattering, and in the treatment of problems where "last flight "

and transport effects are small. Then, it lends to considerable

simplification of the mathematics. When one finds it necessary

to take anisotropic scattering into account, it may be done by

introducing a proper transport cross section into the scattering

kernel (matrix) (12).

The replacement of transport theory by diffusion theory

represents a second, popular approximation. Here, the implications

of the Ansatz are well-known. To remind the reader, we note that

the angular flux, l('..) , is written

AA

where r is the radius vector appropriate to the geometry under

consideration, 0 (1') is the scalar flux, and is proportional

to magnitude of the current. When equation (8) is substituted

into the transport equation and we make some additional approxi-

mations, among them that the neutron distribution not change

too rapidly in a mean collision time, l/v Z, we are led to the

diffusion equation,

-DE 9'f E, ,P)+ 19 a =Sp }

(9)

The energy dependent diffusion coefficient is D(E) = 1/3Ztr (E),

and S, the scattering operator, is
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S p =f dE'[ i(E') 5, (E'E) - 0(E) T(E,E') (0

in the case of isotropic scattering. When we consider systems in

which the distribution changes rapidly in time or in space, the

approximation will fail. In most cases, however, diffusion

theory is a good "first approximation."

2. The Scattering Operator

The scattering operator plays a central role in thermali-

zation. Before entering into its details, we consider some

general properties. We shall treat only the isotropic operator;

the general operator has quite similar properties.

a) Neutron Conservation

As a consequence of the definition of S,

dES (E) = 0 (11)

for any (E) for which the integral exists. The "physical"

meaning of equation (11) is clear. As an example, when the space

and time-independent Boltzmann equation is integrated with respect

to energy, equation (11) ensures that we are left with "rate of

absorption" equals "source strength."

b) Detailed Balance

This important property of the scattering kernel is

essentially a sufficient condition for the establishment of

statistical equilibrium between the moderator and the neutron
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gas. It is grounded upon the transformation properties, under

time-reversal and space reflection, of the equations of motion

which govern the scattering of the neutron by the atomic nucleus

(12a, 13). It requires that the full scattering kernel satisfy

(E )E,(E,.->E', ,.') = M(E') E , .D'-+E,-.D.),
(12)

while its isotropic part fulfills

M4(E) (E)E')= N(E').(E ,E) (13)

We show in Appendix I that the general scattering kernel which

we consider does indeed satisfy (12).

Equation (13) guarantees that a Maxwellian distribution is

a steady state solution to the infinite medium equation. It also

implies that our scattering operator is "essentially" symmetric.

Thus, if we write 0 (E,...) = [M(E) (E,...), there

results

which is an integral equation having symmetric kernel. We shall,

however , continue to work with the non-symmetric form of the

Boltzmann equation.

The scattering operator adjoint to S will be denoted by S+;

its kernel is the transpose of the scattering kernel in S. Fr om

its definition,
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S+O d* :(E ,E') p(E')- O(E ) , (15)

while detailed balance implies the operator identity,

MS+ = SM , (16)

where M is the Maxwellian.

c) Eigenfunctions and Eigenvalues

We noted in our discussion of experiments the role played

by separable solutions of the form e (E)and e~ I4(E) .

The search for these solutions leads to eigenvalue equations in

which the scattering operator plays an important role. For

example, the evolution of a pulse in a very large block of

moderator might be expressed by:

f(E, )~ E ia(E)e (rn

where the and A. are solutions to the homogeneous integral

equation,

A
(18)

In the second case, that of steady state diffusion in a non-

capturing half space,

leads to the equation
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(19)

for eigenfunctions and eigenvalues. Note that the different

weighting factors on the right hand sides of (18) and (19) cause

the eigenfunctions and eigenvalues to be quite different in the

two cases. More complex problems, in which one takes absorption

and leakage into account further complicate the weight factor.

The calculation of the eigenfunctions and eigenvalues is

not an easy job. This becomes apparent when one expands in

a complete set of "appropriate" basis functions and seeks to

diagonalize the resulting matrix equation. One must calculate

many complicated matrix elements in order to obtain the first

few eigenvalues with reasonable precision. There are two princi-

pal difficulties. The first is that we do not have a set of

basis functions as felicitous as, say, the plane waves of quantum

mechanics. The second is that the eigenvalue spectrum of the

scattering operator is not the usual, discrete point spectrum

extending to infinite. Rather, it is likely that all realistic

scattering operators have a discrete spectrum with a limit point

at some finite value of A , denoted A , augmented by a continu-

ous spectrum extending from 2 o to infinite. The eigenfunctions

corresponding to the continuous spectrum are singular, though

integrable, functions.

-211-



This unusual eigenvalue spectrum would appear to express

the fact that the kernel of the full scattering operator is not

square-integrable. Thus,

0o co14 dE/dE'S(EE')I
0 O

diverges, the Fredholm theorems do not apply, and we must face

"...the presence of finite accumulation points of the spectrum

of eigenvalues, or even of a continuous spectrum, i.e., of eigen-

values filling whole segments of the it-axis or even the entire

A -axis. " [Tricomi, reference (14) .

Recently, we have been able to demonstrate precisely this

behavior in the case of thermalization by a gas of protons (15) .

Finally, the reader should note that equation (16) suggests

a very simple relation between the eigenfunctions of S and S+.

If v is an eigenfunction of S+, corresponding to 7, then

My is an eigenfunction of S, also corresponding to AX. The

eigenvalues are all real.

d) The Scattering Kernel

The cross sections for the scattering of slow neutrons by

matter have an appearance that is quite different from those

describing the scattering of fast neutrons. The reasons are

well known: thermal neutrons have a de Broglie wavelength

comparable with the spacing between scattering atoms, and a

kinetic energy comparable with typical energy-level spacings in

crystals. The first property suggests interference scattering,

or scattering from the system "as a whole, " rather than from
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individual atom. Thus, the "coherent" scattering is anything

but a smooth function of angle and energy. Its elastic portion,

which is dominant, yields the Bragg pattern of spots when the

scattering is due to a single crystal, or the Debye-Scherrer

pattern of rings when the scattering sample is a powder of

crystallites. The second property suggests that the shape of

the kernel will be quite specific and will reflect fine details

of the dynamics of the scattering system. It appears, then,

that solution of a proper thermal Boltzmann equation will be

very difficult if we take account of the full kernel.

The most convenient way of expressing the scattering cross

sections is to use the elegant formulation that is due to Von

Hove (16) and to Glauber (17). The differential cross section

per unit solid angle and unit interval of final neutron energy

is divided into its coherent and incoherent parts, and one has:

(da-d.de)= <a>N k fdrdt exp[i(r-wt)JG(?,t)

the neutron,

- is the momentum transferred by the neutron,and

N = the number of scattering particles.
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The quantity a is the (nuclear) scattering length. It will

depend upon nuclear species and upon the spin state of the

neutron-nucleus scattering system. Averages of a and a 2

appear in (20). We shall limit ourselves to systems composed

of a single type of atom, so that <a} and (a 2 }refer to

spin averages.

Were the scattering amplitude independent of spin, the

cross section would be entirely coherent. The incoherent

scattering is connected with inability of waves representing

neutrons whose spins have been "flipped" during the scattering

process to interfere with those whose spin states remain the

same. In most cases, the coherent scattering cross section

47r <a> 2 is much greater than the incoherent cross section,

47 (a2) - <a)) . The proton and the vanadium nucleus

are famous exceptions to the rule, while the deuteron occupies

an intermediate position. For example,

Cross Sections in Barns
-coh a-inc

H 1.8 79.7
V 0.03 4.8
D 5.4 2.2
C 5.5 ess. zero

The key to equation (20) is the pair of functions, G(r,t)

and Gs(i,t), which contain the dynamical properties of the

scattering system. They are complex-valued functions, containing

i , which possess a simple, physical interpretation when'fl -90, and

they become real functions. In the classical limit, G(?,t)d 3r
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gives the probability of finding a particle in the volume

d 3 r around r when it is known that there was a particle at the

origin of coordinates at time t = 0. G(r,t) is, then, a kind

of "two-particle, time-displaced, correlation function. " It

is natural to express it as the sum of two parts: Gs, which

gives the probability for finding at r the very same particle

which began at -the origin, and Gd, which gives the probability

of finding a different particle at r. The reader will note that

the incoherent scattering depends only upon Gs, while both Gs

and Gd affect the coherent scattering. Further, some reflection

will suggest that Gs is much easier to compute than is Gd, since

the former is, to a good approximation, a one-particle problem,

while Gd involves an N-particle problem.

The relative ease of calculation of Gs leads us to an

approximation which has been used extensively in thermalization.

It is called the "incoherent approximation" and consists in

replacing G by Gs in the expression for the coherent scattering.

We then have a single expression,

(d erd .Q d ~(d r dt exp i(t-r-iat G(rt)(21)

for the scattering kernel. The quantity <a 2, , when multiplied

by 4 77 , is known as the bound-atom cross section, 0-b The

name "free atom cross section" is given to 0-b/(l+/4) 2 , where

is the ratio of neutron mass to scattering atom mass.
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It is not at all obvious that the incoherent approximation

is a good one, though it has performed well in practice. When

the neutron energy is large compared with kT, its wavelength

is a small fraction of the atomic spacing, and small values of

t (time) dominate the integrations in (20). Then, Gs is a very

good approximation to G and the incoherent approximation yields

the correct result. On the other hand, for neutron energies

below the Bragg cutoff energy for the crystal lattice, the

coherent scattering vanishes, and equation (21) if taken literally,

gives nonsense. One can find further discussion of the incoherent

approximation in references (18) and (19), where it is pointed

out that in scattering by crystals the approximation consists in

replacing a sum over reciprocal lattice vectors by an integration.

In any case, Bragg patterns and the typically saw-toothed behavior

of total cross sections no longer appear in the kernel of equation

(21) ; they have been "averaged out" and we deal only with the

self-correlation function, Gs-

We shall introduce some additional notation before proceeding

to a discussion of Gs. The spatial part of the Fourier trans-

form in (20) and (21) is called the intermediate scattering

function. It is denoted by many symbols in the literature, among

them X(t), ( t and I (/,t) . We choose

and (22)

,Id .. e (i . . x 2 t : G (
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The entire integral in (20), (21) is sometimes called the

"scattering law, "S (K ,W). Thus,

(da-jd ad 6)= N <a>2 3 <.)+ N <h -<d)$ (k gg
0

Finally, there is a convenient form of the scattering law, known

as S(oC,l ). When the scattering from a sample is independent

of the sample's orientation in space, S(.A ,W) depends only upon

IC 2- Accordingly, we introduce the dimensionless variables

.=Ci k.,.2 NT and =f T,=where M is the mass of

the scattering atom (not the neutron.) S(o , ) is then

defined as

(24)

Note that S(oC, B1) = S(ef-t ), and that the scattering law is

a function of but two variables when it describes such an

"isotropic" system. For a discussion of the experimental

determination of S(.C, ,8 ), see reference (20).

e) The Self-Correlation Function

The self-correlation function can be calculated for a

variety of useful systems (21). One usually proceeds from the

intermediate function. For example,

i) ideal gas of point particles, at temperature = T

from which we deduce
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ii) free particle (at rest)

(26)

iii) crystal, one atom per cell, isotropic approximation

Z ( a ) exp -[ * 00 d ft*E,****

(27)

-I/

Here f(C)dw is the fraction of normal modes lying between

w/ and W +dW , and z = exp (YtW /T). One obtains the Debye and

Einstein models by taking

(28)

f(w= -,respectively.

The k2 dependence of the .- function in cases i) -iii) is

unusually simple. We may write these functions and the correspond-

ing correlation functions in the form: (22)

-3

[5 V ep[[2 &r(29)
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The self-correlation function describes a generalized

diffusion of the particle from its position at t = 0. The

"width" of the Gaussian, 2 W (t) , is a very complicated function

of the time. In fact, it is not a real function of time, but

rather a real, even function of the complex- time t i

We are concerned with a quantum mechanical "diffusion, " described

by a correlation function that coincides with its classical

counterpart, when t>) Ti/T. The manner in which Gs (t) depends

upon ? is closely connected with the proper.ty of detailed balance

(23) . (See Appendix I) .

While Gaussian models have been used almost exclusively in

studies of thermalization, one should realize that all isotropic

systems do not carry Gaussian correlation functions. Fluids, and

models of crystals more realistic than iii), are non-Gaussian in

behavior. However, it is always possible to write down the

Gaussian part of a particular correlation function, and to

show that the general expression for the width function is (24)

i/it ___a(0ow X1' 3 /jdt'(t-f')(().il-A9 
-T(30)

where ( V-(O).??(t)> T is the correlation function for

velocity, v.

f) Some Approximations (25)

We have stressed the relative simplicity of calculation with

Gaussian correlation functions. These are, however , still too
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complicated to allow exact integration. One must fall back

upon additional approximations, some of which we mention here.

1) The Phonon Expansion. This expansion is historically

the oldest, and physically, the most perspicuous of all. It

is used in the analysis of scattering by crystals, and consists

in splitting the X function of equation (27) into two factors,

one containing the time-dependent exponentials, and the other

the z+l term. The first exponential is replaced by a seriesz-T
expansion in powers of its argument, and the expansion is trun-

cated after a few terms. There appear, in the series, individual
ito ttiwt

terms behaving as 1, e e .... These, when Fourier-

transformed to obtain cross sections, give contributions from

processes in which zero, one, two,...quanta of vibrational

energy (phonons) are absorbed or emitted during the scattering.

The exponential which is independent of time is often called

the Debye-Waller factor. If we write it as exp (-2W) , we see

that W is a decreasing function of <q2 > / A 2, where <q 2 >

is the mean square deviation of an atom from its equilibrium

position in the lattice, and A2 is the square of the neutron

wavelength (elastic scattering'). Its effect is most pronounced

in elastic, coherent scattering, where it expresses the damping

or smearing effect of thermal vibrations upon the scattering

pattern.

True phonon expansion is rarely carried beyond the two

phonon term. Its convergence is poor unless the system is tightly

bound and the neutr on energy is "suitably thermal. "
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2) The Mass Expansion. This expansion, which is a

modification of the phonon expansion, was first proposed by

G. Placzek (26), then discussed in detail in an important paper

by A. Sjolander (27) . It has proved to be of great value in the

analysis of inelastic, incoherent scattering.

The approximation consists in expanding the entire x function

in powers of the width function, the Debye-Waller factor not

being given special treatment. The first few terms in the

expansion are significantly better than the corresponding terms

in the phonon expansion, especially when the energy transfer is

not too large ( M large, and/or "tight binding") . Higher terms

in the expansion may be approximated through an ingenious

application of the Central Limit Theorem of statistics.

3) The Time Expansion. This treatment of the scattering

was first given by G. Placzek (28) ; its present form is due,

however, to G. C. Wick (29). The idea is to expand the X function

in a power series in time. Thus, for the self-correlation

function,

where the Sn(K-2 ), called "Placzek moments," express the inner

nature of the scattering system. That the Sn(K 2 ) are, indeed,

moments of a distribution, appears when one considers moments

do(W- Eof the scattering law. It may be seen that

these quantities are proportional to the SnQC2) . Some values are:
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S = 1
0

S = 0

S 2 hi<-- v>

3c-h t 7 ,(32)

where <K> T is the average kinetic energy of the scattering

atom, and V is its effective potential energy. The moments are

generally polynomials in X 2 /2M, and can be calculated systemati-

cally.

When the expansion (31) is substituted into the equations

which define the cross section, one finds that each term may be

integrated. While the resulting series does not converge, it

is a useful asymptotic series in the region where the neutron's

energy is considerably larger than a "typical" energy level

spacing in the scattering system. This is the "multi-phonon"

region, and the series may be regarded as giving a neat summation

of these multiple processes. Finally, one should note that

when the time expansion is truncated, a polynomial in t remains.

Since the polynomial will not be an even function of (t - )

the cross sections derived from it will not satisfy the detailed

balance condition. However, they will be used only when

E >> T, in which region the loss of detailed balance need not

concern us.

The three approximations we have mentioned have been used

to interpret neutron scattering experiments with the aim of
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learning more about the nature of the solid and liquid states.

Recently, in studies of thermalization, the reverse has occurred.

One begins with simple pictures of the motion of atoms in typi-

cal moderators, constructs the appropriate X function and attempts

to calculate those cross sections needed for an analysis of the

Boltzmann equation. For an example of such calculations, the

reader should consult the general atomic studies of light water

(30) and graphite (3j), and remarks from other sources about

heavy water (3 2) and beryllium (1.). To date, these scattering

kernels have been used most successfully in the analysis of

steady state spectra in infinite homogeneous media and in

lattices. Needless to say, a great deal of numerical calculation

is called for.
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Lecture III

Some Simple Models

Though we may grant that within the next decade we shall

have computing machines capable of calculating a desired

scattering law, then solving the Boltzmann equation to present

us with a pile of "printout" containing all (nay, more than all)

that we want to know about a particular problem, it remains

valuable and satisfying to make some general inquiries about

thermalization. For example, what features of the scattering

kernel (and the moderator) control the thermalization phenomena

we described earlier? We shall try to give a rough answer to

the question in this lecture.

Consider the problem of the steady-state spectrum in an

infinite, homogeneous medium. We described the general features

of the spectrum in an earlier lecture. Now, let us ask how the

Maxwellian and slowing-down components are altered as we change

the amount of absorber for a given moderator, and as we change

the binding of the moderator atoms for a fixed amount of absorber.

A very simple way to describe the spectrum when absorption

is weak is to write it as a Maxwellian, M(E), for 0 < E < E* and

as a slowing down spectrum, l/E, for E > E*. One would take

E* >> T. If the absorption is 1/v, we have Z a(E) =-a(T) .

Then, the steady state character of the distribution requires

that
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- -/ E E * E (33)

Thus, the amplitude of the Maxwellian component varies inversely

with the macroscopic absorption cross section, which appears in

the dimensionless ratio ( Z 1a/ s). The ratio, which we

call A , is one of absorption to slowing-down strength, and

we shall meet it again. The absorption of neutrons is a process

which hinders the establishment of thermal equilibrium, while

the slowing-down strength aids it. The deviation of the

steady-state spectrum from Maxwellian is the result of a

competition between these processes, and its magnitude is generally

a function of ® or of a quantity closely related to it.

Equations (33) are hardly more than schematic. The "Maxwellian

component" of a true spectrum is not a Maxwellian distribution

at the moderator temperature, nor is the slowing-down component

simply l/E. We shall first indicate how the slowing-down

spectrum deviates from l/E as E enters the thermalization domain.

We mentioned earlier that the time expansion of the inter-

mediate scattering function yields expressions for the cross

sections in the form of series that are useful when E )) kT.

For example, the asymptotic series for the total cross section,
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o (E) , is a power series in (T/E) , with coefficients that are
s

combinations of the Placzek moments (32) . One might expect,

therefore, to find a similar series describing the flux, (E) .

The form of this asymptotic series may be deduced after consider-

able calculation. For 1/v capture, and unit source strength,

we find (34),

2112
f>EE= E ( TIE) ( T ( /.

S n:0 - p=0(34)

where [n] denotes the largest integer contained in n, and A
is . T. Note that Q becomes identical with A,
the parameter introduced earlier, whenA , the ratio of neutron

mass to scattering atom mass approaches zero.

The physical properties of the moderator express themselves

through the coefficient 2 , which are functions of the Placzekn
moments. They are determined from the recursion relation

b0 (~i~ ab(n#)2 *.. / Y x(35P 0)

which they satisfy. The connection with the Placzek moments,

Sn (x) , appears through

and
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rn/ 1
n - S x x e'M) 

(37)

The GPI(s) in (36) depend only upon the mass-ratio,A. Thus,
n

the key quantities, the i , are the coefficients in the poly-

nomial expression for the moments. The r are simply related

to moments of the frequency distribution function for lattice

vibrations. Thus,

n n

0 no

(38)

etc.

For n even

0

(w ,Efdwf(wA)co 3(3
Cd (39)

while for n odd

0

Jo df(w)w COt 4Tw

Since f (ta)( coth .hM.is the distribution function for the

average vibrational energy of a mode, the moments we encounter
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in (38) are even moments of either the distribution of frequencies

or of vibrational energy. The quantity <(An> (n odd) is also

related to the Debye-Waller factor.

In Figure 8 we see curves deduced from the series (34)

comparing thermalization by a gas of protons with that by the

bound proton model proposed by Nelkin et al. (35). It is clear

that there is a difference in the predictions of the two models,

and that the bound model gives better agreement with the experi-

ments in light water.

The leading terms in the asymptotic expansion are:

S E zoEI -- - "( T/E ) +(T|+{a|2) ,)(T/E)+...

The second term gives the effect of absorption on the slowing-
0

down spectrum. 7 depends only upon, and the second term

is quite independent of the state of the moderator. In the third

term, 2' again depends only upon u , and ( /2) 2 (T/E) is

independent of T. The only thermalization term is ?' (T/E),

since r is proportional to ' , which in turn is <w/T).

In fact, as ,s -- > 0, 'r approaches r . Since we are dealing

with the average kinetic energy of a linear oscillator, we may

introduce an effective temperature, through <K> ) =Teff. Thus,

(41) becomes, as f - 0

)EsEpE )=Il A(TIE)0A+, Tf* +Y, j.)TE)+-.
(42)
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The foregoing equations show us that the "asymptotic" part

of the thermal flux will be increased as the binding of the

scattering atom is increased, since <Cc) /T > increases with

the stiffness of the lattice. Since the area of the "Maxwellian

component" will not change--in first approximation--unless the

concentration of absorber is changed, it is likely that the

peak of the Maxwellian will be shifted to higher energies, as

the binding is increased. The shift should be proportional to

<w /T> or Teff/T. We shall soon produce other evidence

to support this argument.

The analysis leading to (34) is also applicable to time

and space-dependent problems. To give an example, let us recall

that the Laplace transform, with respect to time, of the

time-dependent Boltzmann equation (infinite medium) is a time-

independent equation containing an additional 1/v absorption.

Thus, by merely rewriting (34) we have the expansion of

O(E,p)= L (E,t) in powers of the transform variable, p.

Since

0o oo n **

the coefficient of pn is proportional to the nth time moment of

the time-varying flux seen at E ) T. These results have not

yet been fully exploited in the study of the "life-history "

experiment.
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Let us turn from the distribution for E>) T to that in the

neighborhood of T. It will be convenient to work through the

time-dependent problem first, and then make use of the fact that

the integral of O(E,t) with respect to time gives the steady-

state, infinite medium flux. Consider, then,

(44)

p % + a p = dE'( p(E')E (E',E}- p(E )Es( EE))+$(Et).
0

If the cross section is "l/v" it may be eliminated from (44) by

writing 95= exp( 7v1: a(r)t) 11 (E,t). Further, let us

assume that S(E,t) is proportional to (E-Eo) p(t), where

Eo is large. Let us consider equation (44) after enough time

has elapsed so that the pulse of neutrons is almost Maxwellian.

We shall write l as a Maxwellian with time-dependent tempera-

ture and containing a fixed number of neutrons. Such a flux

distribution is proportional to T- 3 / 2 Ee -E/T. Thus, if we

write 0 1 (E,T) = M(E,To) #'(E,t), and make use of the detailed

balance property of f s(E,E'), we find

co

, a du[E, E' ES( )(f(E', t - (E, t)),

5(45)

with P(E,t) = (T0 /T) 3  exp [-E( - -- * Now, if we call

T(t) = T0 (l+6(t)), and retain only terms of zero and first order

i6,we have = l( - )6(E = E/To ~ ),T rt
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00

o (46)

Now, multiply by E e and integrate both sides with respect

to E . We may simplify the right-hand side by noting the

symmetry of M(E ) s(E ,'). Thus,

1 3 
(47)

Equation (47) shows an exponential relaxation of the

temperature of the neutron gas to To, the moderator temperature.

The rate of relaxation is given by the Maxwellian-averaged

second moment of energy transfer, which is a good measure of

the "width," or capacity for energy exchange, of the kernel.

We list some values for the ratio of M2 (in barns) to the

free-atom (i.e., high energy) cross section (in barns), below.

1. This cross section appears in the text in a variety of guises.
It will be found as , , ,and O (o) '
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The table illustrates nicely the decrease in thermalizing

power as one goes from free to bound scattering atom, and from

light to heavy mHass. It also shows the effect of an increase

in temperature upon the effective binding.

Model 
M2 O

Gas of point-particles iF'/(l+ ) 3 / 2

= 1 2.83

f = 1/12 0.59

Bound proton (H 2 0), 300K 2.23 (36)

Graphite, 300 0 K 0.22 (37)

1200 0 K 0.53

00 0.59

As a mathematical aside, note that the quantity 2/3V7rt1i

in (47) must be related to the time-decay eigenvalue, A 1 ,

mentioned in an earlier lecture. The relationship is easily

seen by considering the variational expression for A 1, which is

easily deduced from (9). It is

(A j oI0 0 =o(48)

where S is the scattering operator, and is the Maxwellian

flux. A simple trial function, orthogonal to ,is

, z(. - -j-) . When it is inserted into the first of
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equations (48), the "M2 -formula" appears. It is important to

appreciate that the formula is an upper bound toA, and that

its quantitative accuracy has not been assessed. We know, for

example, that it is within 25% of the correct value in the case

of a heavy gas, but wrong by more than a factor of four in the

"heavy-crystal" model.

Let us return to problems of the infinite medium steady

state flux, by recalling the connection between 0 (E) and the

time integral of 0 (E,t) . If U e is the set of ortho-

normal eigenfunctions satisfying

Su~ =u (u'; u )= b/
and (49)

the series

a uk S (E)eAk*(50)

describes the flux distribution induced by a source proportional

to , in an infinite non-absorbing medium.

The steady-state spectrum for 1/v absorption will be

00

- e E T(51)

0

(52)

~o (Ak
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If the absorption is weak enough so that A E ao' we
may write (53) in a form that should be compared with (33), name-

ly,

-I
14___E_ ME+ non-Maxwellian (54)( Arl)component

Thus, A 1 is a more accurate quantity that s for the

description of the thermalizing power of a moderator, though

when we consider the gas of point particles either parameter

appears satisfactory.

We can squeeze a bit more from (53) if we estimate the

first moment, or the average energy of the distribution. When

the Maxwellian term alone is significant, < E> = 2T0, and the

average may be used to define an effective temperature. Let

us assume that when the absorption is small (/A1  > ao)'

the first two terms of (53) give a good representation of 0(E)

near the peak of the distribution. Then, if we calculate < E >
and compare it with its Maxwellian value, <E> , we find

6057 C iA, (55)

where O4 is independent of absorption, independent of source

energy when E s }} 1, and only weakly dependent upon scattering

model, Thus, in weakly absorbing systems the effective tempera-
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ture of the neutron gas is larger than that of the moderator,

and is increased by an increase in absorption, and/or (quite

reasonably') by a decrease in the first relaxation constant.

Earlier, from consideration of the asymptotic solution,

we prophesied that the effective temperature would be increased

in proportion to <K) . Now we say that it will increase in

inverse proportion to A 1 r roughly, M2 . Are these ideas

at all consistent? To answer, note first that <K) and M

are respectively proportional to

f dw coshc/2)AT)
Cof 2TSinh(#w 

I T)

(in general) (56)

and

fdw w$(ww)T)
| Sin (bu2 T

("heavy" crystal) , (38)

where K2 (y) is the modified Bessel function of the second kind.

Now, the cosh function increases monotonically, and CA/2 K2

decreases monotonically as its argument increases, so that the

variation of these parameters with stiffness of binding is just

what we need. Further, for weak binding (i.e., all significant

(w are such that tiW ) < kT) the two parameters are essentially

the same. Finally, one can show that when several suitable

models of the moderator are compared, those having the same

<K>) have pretty much the same M2 (39). In all there is a

reasonable consistency in our discussion.

-236-



The notion of a Maxwellian distribution of neutrons with

temperature shifted slightly from the moderator temperature, To,

is also useful in understanding thermalization in finite systems.

For example, let us ask about the shape of the fundamental mode,

and the size of the decay constant in a typical pulsed neutron

experiment. If, for convenience, we take the absorption to be

'i/v, " and the shape, in space, of the fundamental to be

cos (B- r) , we have

(57)

(E) is the fundamental (energy) mode, and it satisfies

o - D.)B $
(58)

Integration of (58) with respect to E gives

/d -7--.(59)

while multiplication of (58) by E , followed by integration gives

Jdef\I7~b.(E )

N1ow, if we choose to represent the flux as a Maxwellian with

displaced temperature, so that " (E - E/T 2 ex(ET,
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or 0 o (E ) ^P60/G exp (- E /G8) ( e = T/To) , equations

(59) and (60) enable us to determine e and A. Since the

variation of D( E ) with energy plays an important role, we

shall consider those D(E ) having the form D = D E . After a

calculation similar to equations (44-47), we find, to lowest

order in O T/To, that

*D D

(60)

and

Da B

= D , B ' r ' ( /+d) + (%+0c ) T

(61)

Equations (60) and (61) are rich in content. First, note

that if oC = --2, so that the leakage as well as the volume

absorption is 1/v, there is no shift in temperature, and N

is simply DQB2 . If oC is made greater than - , the leakage of

fast (er) neutrons is enhanced, and the "temperature " of the

neutrons inside is lowered. If o< is decreased below - the

reverse phenomenon occurs. In both cases, the change in temper-
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ature varies inversely with the ability of the moderator to

thermalize. Since we are working with trial functions of

Maxwellian type,, the ubiquitous "M2"appears. An eigenfunction

expansion for 0 (E) would introduce A1 , which is the more

precise parameter.

The first term in the expression for the decay constant is

the average of D( 6 )B 2 with respect to a Maxwellian at T
0 T

The second, or "diffusion cooling" term, expresses the distortion

of the spectrum caused by leakage. The reader will note that

the diffusion cooling correction to the decay rate is always

negative, for, whether oC be greater or less than - , the

use of the undistorted Maxwellian overestimates the leakage.

Finally, we note that similar results may be obtained through

the use of a variational expression, similar to equation (48),

for A 0 The trial function may be taken to be a shifted

Maxwellian, whose temperature is used as a variational para-

meter. In this manner, Nelkin (40) first obtained equation

(61). We should mention that he was first to introduce M2

into the study of thermalization, while the use of the distorted

Maxwellian originates in the thesis of van Dardel (41) .

Synthetic Kernels

The semi-quantitative discussion which we have just given

points out the role of energy-transfer moments in thermalization.

It serves as a guide to the next step in improving the approxi-

mate treatment of the Boltzmann equation, namely, the replace-
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ment of the scattering operator, S, by a simpler, "synthetic"

operator, S, which retains only the most important properties

of S. The substitution will be valuable only when the "important

properties" are few.

A popular and simple device is the replacement of the

isotropic scattering operator (10) by a differential operator

of second order. The physics of the device is seen more

clearly if we work with the adjoint operator, S+,

Thus, the replacement is

d45 +dO6 d +rc)
(62)

where r, q, and p are three functions to be determined. Our

three-fold freedom will be short-lived, however, when we insist

that the operator satisfy the conditions of detailed balance

and neutron conservation. It is easily seen that we must have

r( E ) = 0, and

Thus, only a single arbitrary function remains.
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To appreciate the significance of p( E ) and q( 6 ), note

that in general, when S+ operates upon E it yields A1 (E ),

the first moment of the scattering kernel. Since S gives

g( 6 ) when it operates upon E , we are led to the identification

q( ( ) A1( ( ),where

Ap()r dE'i E, '( )(64)

- 2

If we now consider S+ to act upon 2 , we are led to the second

correspondence, p 6( ) <-+ 4 A2 (E ). However, we are not free

to use the A1 ( E ) and A 2 ( ( ) which would result from the

detailed analysis of a scattering model, since they will generally

violate (63). It would appear that the best way to proceed is

to choose a model for the moderator, calculate its first moment,

Al( ( ), take q(C ) A1 ( 6 ) and determine p( ( ) through

(63), i.e.,

oe

p():F (e}d=~t() N-A(e)(65)
A little calculation shows that the synthetic second moment,

A2 ( 6 ) , gives the correct M2 , and that the general behavior of

A2 is not too objectionable (42). There is one scattering

model, the heavy gas, for which A2 is precisely A2. In that

case, q( E ) =32ME~ (2-E6 ), and p(E( ) = 2f E E
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The synthetic kernel technique has not yet been fully

exploited. Using it, one deals with an ordinary differential

equation of second order, rather than an integral equation.

It is then relatively simple to extract series solutions in

positive and negative powers of E , and to estimate decay

constants and eigenfunctions (42). The asymptotic (high energy)

series afford an easy means of checking the accuracy of S. For

example, the heavy crystal series (equation 42) has precisely

the same terms, through (T/E), whether we use S or S. Terms

of higher order, which are dependent upon higher moments of

energy transfer, will not agree perfectly. Similar conclusions

hold for the calculation of decay constants. The lowest modes

should be described rather well by the synthetic kernel; the

higher (and less important:) modes should be defective because

they depend upon higher moments of energy transfer, that is,

upon increasingly finer details of the kernel.

Some bibliographical detail is appropriate here. The

differential model of the heavy gas moderator was proposed by

J. E. Wilkins, Jr. (43) and discussed extensively by Cohen (44),

Hurwitz, and Nelkin (45), and many others. A differential

operator representation of S similar to equation (62) has been

noted in unpublished work by J. Horowitz of Saclay; Schaefer and

Allsopp (44a) and Leslie (;45a) have recently reported upon their

research with the "Horowitz Operator." All treat p( E ) as the

"free function." Leslie uses a "best fit" to experiment, while

Schaefer and Allsopp use different methods for ( ) 1 and(<<l.
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In the high energy region, p (. ) is chosen to give agreement

with the asymptotic series solution to the infinite medium

problem; in the low energy region it is determined from knowledge

of A ( E ) , as we have suggested. Finally, to emphasize that

the subject of synthetic kernels is far from closed, we note a

new paper by the Saclay scientists (46) in which an improved

version of the Horowitz operator is discussed.

-243-



Lecture IV

Eigenva1ues and Decay Constants

We have met the time (and space) decay constants several

times in our considerations, noting, for example, that the

smaller ones can be measured directly and that they aid in the

description of spectra distorted from Maxwellian shape. The

constants, as we saw earlier, may be thought of as eigenvalues

of the scattering operator, with respect to a particular weight-

function. In this lecture we shall discuss some aspects of the

sequence of time decay constantsfk} ' -

We are interested in the trend of the A k(B 2 ) as k - oo

as B2 -+-o , and as the nature of the moderator is altered. Above

all, we should like to know how to calculate them efficiently.

Since these questions are the subject of a great deal of contem-

porary research, our answers must needs be incomplete.

We shall concentrate upon time decay constants, including

spatial effects mostly through diffusion theory. The study of

spatial decay constants proceeds similarly. To begin, we might

inquire about the synthetic kernel of equation '(62) . There, the

quickest way to estimate eigenvalues appears to be through the

W.K.B., or phase integral method (47,42). Its application to

the heavy gas equation gives eigenvalues accurate to about

l%, and predicts a sequence of Ak increasing as k3 /'2 for large k

and having its limit point at infinity. This behavior is not

altered if one includes a leakage term, D( E ) B 2 , having
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reasonable behavior. A similar investigation of the general

differential operator (62), with q( 6 ) +- A ( . ), turns up
1

the very same trends. One cannot take these results too

seriously because, as we noted earlier, the synthetic kernel

does not pretend to give higher moments of energy-transfer---and

therefore, higher eigenvalues---accurately.

We shall now consider the first model for thermalization

that is analytically tractable, yet not trivial---the proton

gas model of Wigner and Wilkins (48). Its simplicity is connected

with a special feature of the scattering of neutrons by free

particles of mass equal to the neutron mass. In that case,

the symmetrized scattering kernel has the form

xtl~c ~ (xx)~ a(x)b(&) xI> x66

being the Green's function for a differential equation of

second order. (We have introduced the useful and dimensionless

velocity variable x (x 2  E = E/T).) Thus, if one operates

upon the Boltzmann equation with the appropriate differential

operator, the result is a differential equation in energy.

Details of the calculation may be found in reference (48). We

merely give the equation which results if we seek a solution to

the eigenvalue problem, suggested by N(Eft) =#,Eep-,V
With the x-var iable , we have (E) oC N (x) , the number
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density in velocity, while N(x) = VM77 V (x) defines the

number density belonging to the symmetrized scattering kernel.

The differential equation is:

{ d 1 d rV( n)Al (x)l +

dx ( Px) dx [ nj

(67)

where V(x) and P(x) are closely related to the scattering cross

section, s (x). We have:

Y~ s(00):I e -)- (+)erf(x)+ s(o)

P(x)=x er f(x)+ e~/ rF V (x)- / er(()

erf(x)= / dt eoo

We may de scr ibe our e igenvalue pr oblem in the f ollow ing

terms: For what values of A does (67) have solutions which

are nowhere singular, which are proportional to x for small x,

and proportional to x e- x 2 for large x? (One can verify that
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the solution of the homogeneous integral equation, with which we

began, must have this behavior.) Since equation (67) is not

particularly transparent, we transform it to one of Schr'5dinger

type and examine the wave-mechanical analog of our thermalization

problem. Thus, put

()[V(x)- 2]XP[- j{ 7rJdx erf lx) ,I x (69)

whence our equation becomes:

"+ E-U Ox A) =
/X (70)

with

. _e__ 37r erf/(x) + y P(x)- x>)--x --- T

E=O (71)

In quantum mechanical terms, our problem is to find values

of the parameter /A , such that the potential U(x, A ) will

bind a particle having zero energy. (z(x) must be proportional

toax as x -- + 0 and to x 3 / 2  -x 2 a +o )Tog h

expression for the potential is complicated, the function itself
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is quite smooth, and one can get an idea of its bound states

with little effort.

The factor (V(x) A-/ ) -lplays an important role in the

analysis. We begin by noting that V(x) is a positive, monotonic

increasing function of x whose minimum value is V(0) = 2

(Figure 9). Thus, the potential for A<2K / will be

quite different in shape than that for 7 > .i V7F , when it

has a singularity on the x-axis. Figure 10 shows the potential

in the former case and Figure 11, the latter. We shall begin

our analysis with the case = 0, then imagine /to increase

towards 2/[, . The shape of the potential will change in a

smooth manner as A changes, and the energy levels will change

(move) smoothly. As A increases, the potential well deepens,

and the energy levels descend into the well. Every / for which

an energy level coincides with E = 0, is an eigenvalue that we

seek. The number that we shall find in the range 0, A 2/ T

depends critically upon the form of U(x, A ) as A approaches

2/ 7T. SinceV(y) - Y - -.-

the potential, U, will have a 1/x 2 singularity at x = 0. In

this limit, the potential contains an infinite number of levels

(49) , and we may conclude that an infinite number of eigen-
_- 2

values, ~ , lie between /l = 0 and A = (xL) mm
s min 7 s (**)-

Thus, the pointt = (x Es min is a limit point for the sequence

of eigenvalues !O A1 2,
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Figure 9
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VfiF

U(x)

xo x

The effective potential, U(x,X) , for a value

of X less than -2- . x is the classical turning
0

point for a particle of zero energy. The arrow

indicates the manner in which the potential

changes, as X increases.

Figure 10
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U(x)

X* X

The effective potential, U, for a value of X

greater than 2. x* is the point at which the

reaction rate, V(x), is equal to X . The arrows

indicate the manner in which the potential changes,

as X increases.

Figure 11
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One can make a similar analysis for the rerjion > 2/{°

the reader may consult our paper (50) for details. One finds only

a finite number of eigenfunctions there, and possibly none at all.

The eigenfunctions belonging to the range 0 / \ 2/

look like "ordinary" eigenfunctions in that they have zero,

one, two,...nodes. However, all of their oscillations occur

in a limited range of x, and it follows that they cannot be a

complete set for the representation, on 0 x <oo , of the

finctions we wish to study. We shall have to augment them by

other functions to get a complete set.

To get additional functions, we must abandon one of the

requirements placed upon our eigenfunctions---the property of

finiteness. If we merely require that our functions be integrable -

so that we admit delta-function singularities - we find acceptable

eigenfunctions for every 2 > 2/(1T . Each of these continuum

eigenfunctions is singular at that value of x for which

V(x) = A (50). The completeness of the augmented set of eigen-

functions has not yet been proved in the case of the proton gas,

but it has been shown to be true for a quite broad class of

scattering kernels. (60) (Also see Appendix II). It is doubt-

less a good bet to assume that the set of eigenfunctions

consisting of the discrete (ordinary) functions, and the continuum

(singular) functions is complete for the representation of all

"physical " solutions to the Boltzmann equation. (Compare with

the discrete and continuum eigenfunctions in the problem of the

hydrogen atom') Thus, we can say
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Nx£ akuk x~e +}d~a()u(x;A)e

(72)

with A * = (x E (x)) .. The discrete eigenfunctions contribute

terms having exponential behavior in time, with decay constants

lying between 0 and A *, while the continuum functions supply a

term that is not exponential, but is proportional to

exp j as?° - . The convergence of (72) is not

likely to be rapid enough to make the series valuable from a

computational point of view.

We have suggested that the behavior found in the case of

the proton gas model will also be found in a large class of

non-trivial models. This conjecture is supported by the following

"hand-waving" argument: if we are to have a discrete, or

"ordinary" mode, we must have a non-singular distribution of

neutrons, uk (x) e-k , which is a solution of the Boltzmann

equation and which has the property and its form---as a function

of x --- is maintained at all times. During the evolution of

the distribution, neutrons are being scattered from one velocity

to another, with local scattering rate v x ES(x), but the only

effect of these scatterings is to give a uniform decrease in the

size of the distribution. Since we are dealing with a coopera-

tive effect that treats all parts of the velocity range equally

and which is characterized by a single rate constant, Aki
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would appear that k must be smaller than the minimum value of

x E:s(x) encountered. To use a pair of homely analogies,

remember that a class of school children can proceed no faster

than its slowest member, and that a convoy of ships can maintain

itself only at speeds slower than that of its slowest member. (53)

We can understand why we failed to observe the limit point

behavior in the case of the heavy gas, if we note that (xEs(x))mi

for the point gas of arbitrary mass is proportional to V57 (51).

The decay constants, on the other hand, are proportional tom,

so that the ratio of A* to 4 k is proportional to/ -l/2

If we now go to the heavy gas limit ( 0) and display our

eigenvalues in the form 1A// , the limit point moves to infinity.

Effects of Diffusion

We shall take diffusion into account by considering the

time decay constants for distributions having a spatial variation

proportional to exp iB-"r , in a homogeneous and isotropic

model of infinite extent. It is known (52) that such a distri-

bution is a good approximation to the truth of the matter in

a finite moderator if (a) the size of the moderator is at

least several times the maximum scattering mean free path

encountered and (b) we wait long enough. We shall consider the

dependence of 21 upon B2 when diffusion is governed by diffusion

theory and by transport theory. In both cases, we focus our

attention upon the proton-gas scatterer to obtain results we

believe to be representative of a large class of models.
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Consider the Boltzmann equation (with isotropic scattering)

in the form in which the scattering operator is split, the total

cross section being returned to the left-hand side and the

scattering kernel remaining on the right. We seek solutions of

the form exp [i-r - 21T] N(x). If B2 = 0, the left hand

side becomes (V(x) - A)N(x). If B2  ' 0 and we use diffusion

theory, (V(x) - A ) becomes (xd(x)b 2  + V(x) - /A) where

[bEs(*o)J 2  = B2 , and d(x) = D(x) (oO) s()/3=(x)

(Both b and d are dimensionless.) Finally, if we use transport

theory, (V(x) -A) is replaced by [137xan I
Taking the proton gas, we ask how the form of the potential well

is altered when these replacements are made.

In the case of diffusion theory, xd(x) is of order x 2 as

x -+i0 and approaches 3x as x-+ Thus, the addition of

xd(x)b2 to V(x) in (71) makes very little difference in the

discussion of the eigenvalues; V(x) + xd(x)b 2  2//f7 +

(2/ 7 +db 2 )x 2 +...for small x, and the effective potential

becomes singular as 2--2/{7, just as before. The volume of

the effective potential becomes infinite, and we may conclude,

as before, that an infinite number of discrete eigenfunctions

exists in the range 0C A S 2/{ . The eigenvalues are

2.
changes as B increases. Since /A 0 will always increase, the

spacing between eigenvalues decreases, and they crowd against

the "barrier, " 2/{ . See e.g. fig. 12.
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The variation of A with B is quite different in trans-

port theory. As we noted, the effective potential U(x,A/) is

altered by the replacement

I_ _ -i .BDX

V(x)-1 an V(x)-2 0(73)

Now, recall that as A approaches V(0) = 2/{7-, the B2 = 0

potential has a 1/x 2 singularity, and the large volume of the

singular potential is responsible for the limit point behavior.

In the case B2 0, the arctangent will always be bounded by

77/2 so that the potential can not be more singular than 1/x.

The latter potential is not strong enough to cause an infinite

number of levels to descend into the well, in the language of

our earlier argument. In other words, the eigenvalue spectrum

of the 1/x (Coulomb) potential is bounded from below (i.e., has

a ground state), while the spectrum of the 1/x 2 potential is

unbounded. Thus, when B2 / 0, there will be a finite number of

eigenvalues lying below 2//3 and possibly one or two with

A > 2/77 . It should not surprise the reader, then, to

learn that for sufficiently large B, there are no discrete

eigenfunctions at all. We give a proof of this fact for a

general kernel, in Appendix III.

It may amuse the reader to learn that the problem we are

discussing is quite similar to the propagation of sound waves of

small amplitude in a gas of rigid, classical spheres. In that

case, one also finds a critical size of propagation vector, B,

such that if B ) Bci , no solution of form
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exp i(B-r -ct) exists.

While the discussion we have given is based upon the proton

gas model, we would conjecture that the same features will be

seen in other models. In Appendix II we give a discussion of the

general case and the results reinforce our faith in the conjecture.

We shall close this section with an observation about the behavior

of A o, the lowest eigenvalue, as the size of a finite sample

of moderator is altered. This point is due to Nelkin (54), and

is a modification of arguments given by G. M. Wing (55) and

B. Davison (56).

Consider the integral form of the Boltzmann equation (56).

We consider the source-free and absorption-free case, and seek

solutions of the form N(r,x, T') = N (r,x) exp(- / T ) . The

eigenfunction equation is:

00 (74)/ dx'x'N(fi''9 ' x)
and we seek solutions which are smooth functions of x. Now,

the factor 1/x in the argument of the exponential will cause

trouble as x -+ 0 unless lim xL s(x)- > 0. Since the
x -i0s

value of x E5 s(x) in this limit appears to be the minimum

x Es(x) in just about all scattering models, (74) tells us

the following: if there is to be a (discrete) A1 greater than

[x Es(x)] min and with it a smooth eigenfunction, the
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inner integral must vanish identically for all x. This is

impossible when N(r ,x) is the fundamental mode, which is every-

where positive, and is unlikely when N(r,x) is one of the higher

modes, which are oscillating functions of x. Thus,/1 0 must be

less than x s min'

In (74) the existence of a limiting value for discrete

eigenvalues is closely tied to the behavior of "zero-energy

neutrons. " These neutrons may be thought of as requiring an

infinite time to traverse the finite sample of moderator. A

similar phenomenon occurs in the study of one-velocity transport

theory (55). There, neutrons diffusing in slab geometry can have

an infinite transit time if they stream parallel to a slab face.

Consequently, the time eigenvalues have a limit point (at vs' 5  *

On the other hand, when the neutrons diffuse in a sphere, all

trajectories lead to escape in a finite time. In .that case, one

finds a sequence of decay constants extending to infinity and a

complete set of discrete eigenfunctions. As a final remark,

note that when we discuss neutrons of "zero energy" as agents

responsible for these unexpected mathematical phenomena, we are

in a domain where the semi-classical transport theory we use

has little validity. At present, we are not quite sure as to

where we stand'

The Computation of Eigenvalue s

Now that we have an idea of the values assumed by the / n

and how these are altered by changes in sample size, we shall

turn to the results of experiment. As we noted in the fir st
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lecture, these have dealt almost entirely with the lowest

eigenvalue, A. The first question to ask is: Are all

2 that have been reported less than v E (v)].i? Paul0 s (v) s min ?Pu

Michael and the author have looked into the matter. If one

compares the range of values of /A 0 (B 2 ) reported in the litera-

ture with (v E smin, one finds:

Moderator Range of A 0 (o s)min

Graphite 0-5000 sec~1  2,600 sec-1

Beryllium 0-8000 sec 1  3,800 sec-1

Light Water 0-30000 sec~1  300,000 sec-1

Figure (12a) shows the dependence of the experimental points

upon B2 for a particular moderator (graphite).

It is clear that some of the measurements at large B2 in

crystalline media are not consistent with the theory. The

discrepancy could easily be attributed to neutron intensity; the

experimenter is unable to wait long enough to ensure that he

is measuring the decay constant of a fundamental mode. In some

interesting experiments on beryllium, de Saussure and Silver

(57) have compared decay constants measured during several time

intervals long after the inception of a pulse. Some of their

results are shown on Figure 13. While the decay constant for

beryllium at 00 C seems to have "settled down" after a waiting

time of about 1 /A 0 , the decay in beryllium of -100 0 C has not

yet reached its fundamental mode, through relatively few neutrons
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remain in the block. The difficulty in measuring fundamental

modes in small samples of crystalline moderator reflects itself

in the wide range of values of diffusion cooling coefficients

that have been reported for these substances, and presents a

serious challenge to the experimental physicist. Let us ignore

experimental difficulties for the moment and ask how one might

best calculate the variation of A0 with B2 and, in particular,

the diffusion cooling coefficient. If we use diffusion theory

and neglect effects of absorption, we can write the transport

equation as:

ra

b7 (75)

One approach that will yield an expansion of )2n in terms of

B2 , is the application of conventional perturbation theory,

taking the leakage term as the perturbation (58). Thus,

(0nIV DI >]'
= .. A +B<n x Dx)|n>-.B E e., ,,b+ --

nf At. - (76)

where the scalar product is
-/

(~V f d~xae] ~~x)$'(x *1(77)

and the unperturbed eigenfunctions obey

SNk=AE' N) <NINt> <kI|}>kJ (78)
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(The summation in (76) may be thought of as a summation over

discrete eigenfunctions, and an integration over the continuous

spectrum). Had we used transport theory in an infinite medium

instead of diffusion theory, the perturbing term would be more

complicated. There are no corrections to (76) in order B2 , and

the transport corrections to B4 has been examined by Nelkin (59)

and found to be small ("' 10%).

The diffusion cooling coefficient is the coefficient of

B in the case n = 0. Thus

7t . (79)

Our eariler thoughts about time eigenvalues and completeness

suggest that equation (79) will converge slowly if at all.

Further, there is the difficulty, typical of the kinetic theory,

that we do not have a convenient set of unperturbed eigen-

functions with which to work. The solution of the equation

S = - / 9is not much easier than the solution of the full

problem. Nevertheless, we can extract some useful information

from (79).

To begin with, we can get some simple bounds on C by

noting that:

(a)

(80)
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and

c. E[0 If)I xD Lv[<J~xe )0> ' 0 J}( 81)

Equation (80) gives a lower bound for C that requires knowledge

of the first (infinite medium) eigenfunction and its eigenvalue,

while (81) requires knowledge only of the first eigenvalue.

Unfortunately, we do not have converged values for these

quantities for a single non-trivial model. They should be

quite useful, however, as a simple calculation will show. Let

us guess that /1(o) is 0.8(v E ) . Then, forgwe
us gestha~1 s minfgraphite,

can assume a reasonable energy dependence for the diffusion

coefficient and find: C <'30 x 105 cm4 /sec as a rough estimate,

while the range of C reported is 16 to 38 x 105 cm4 /sec. A

more refined calculation would be useful, indeed

We can try to use the lower bound to C by guessing at the

first eigenfunction and hoping that the matrix element is not

too sensitive to our choice. If we take N1 proportional to
1 -. 22

(1 - 2 VT x)x 2ex , which is orthogonal to the Maxwellian,

and assume constant diffusion coefficient, we find that the

lower and upper bounds are precisely the same. If we try

2 2 -x2
(1 - - x )x e , which is another function orthogonal to the

Maxwellian, the ratio of lower to upper bound drops only a

little, to about 0.92. Then results are certainly surprising

and suggest again that a refined calculation be made.
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The second trial function leads to a particularly interesting

result. It is:

C> -- (D(x) constant) (82)
37r A

If we use the trial function to obtain a variational estimate

of (o) , as well as an estimate for the matrix element, we

find 2 _M (see equation 48), and C > D 2 / -- M2.fid 1  .. 3 o02

This last estimate, with "greater than" replaced by "equals,"

has been in the literature for some time (62). It is precisely

the result we obtained with the effective temperature model of

lecture III, and we can now get an idea of its accuracy.

The expression on the right hand side of (80) is an under-

estimate of C, and we reach our final expression after approxi-

mating both numerator and denominator. We replace the exact

value of A (o) by a variational estimate, which is an over-

estimate and which lowers the value of the fraction by a

considerable amount. For example, in the case of graphite,

2 M is several times (v ) ,while the correct
s min

A1o) is almost surely less than (v E s)min. Next, we

approximate the numerator in a manner that is "reasonable," and

whose accuracy is difficult to assess. The over-all effect is

doubtless to lower what is already a lower bound, and the

reader should be wary of using the "M2 -formula " for C in any
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but a qualitative manner.

The most accurate calculations of diffusion and diffusion

cooling coefficients we possess are due to H. Honeck (63).

They have been calculated in a manner totally different from

the one we have been discussing. We mentioned in the first

lecture that the coefficients also appear in the expansion of

the diffusion length in powers of the density of 1/v absorber.

Indeed, one can see that the two curves are parts of a single

curve (as illustrated in Figure 14). The k 2 vs. E section isEa

better suited to a machine calculation, and one can compute

the diffusion length for a variety of moderator-models, using

transport or diffusion theory and a large computing machine.

In Figure 14 and 15 one can see Honeck's results and experi-

mental points. The calculations come as close to being exact

as one can, at present. The light water calculations based upon

Nelkin 's model give reasonably good agreement with experiment,

while those for graphite show a greater disagreement. The

following table gives the results of Honeck's study of some

common moderating materials. Both light and heavy water are

described by "five-frequency" models of the type introduced

by Nelkin (30) . The model for graphite is the very subtle one

developed by Parks (2a) .
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Moderator C (theory) C (experiment)

H2 0 3130 cm4 /sec 2900-4900 cm /sec

D2 0 5.13 x 105 cm 4/sec 3.72+0.5 x 10 5

Graphite 24.6 x 105 cm4 /sec 16-38 x 105

It is clear that we need a tightening of the experimental values.

The theoretical values lie well within experimental limits, except

in the case of D20, where some controversy remains about the

analysis of the experimental data.

Systematic studies of higher eigenvalues do not exist at

this time. Their measurement is particularly difficult in

crystalline moderators where one is not even sure that A can
0

be determined accurately. However, the attempt is being made,

and we hope that a few A 's will be caught in the next few

years.

Mathematical study of the eigenvalues presents special

difficulties. As we noted earlier, there is no suitable set

of "unperturbed" functions to begin with, which can be combined

in a rapidly convergent manner to give the exact eigenfunctions.

Further, the limit-point behavior that almost certainly holds

for the eigenvalues suggests that variation-iteration methods

will converge slowly. Considerable effort has been spent in

using, as basis functions in the energy variable, Laguerre

polynomials (of first order) multiplied by the Maxwellian (65).
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These functions, which, in weak moments, appear "natural" to

the thermalization problem, have inappropriate behavior at

high energy. They have demonstrated a "natural" rate of con-

vergence that is poor indeed. Another method, suggested by

the author, is the use of degenerate, synthetic kernels in a

systematic way. It is being studied, at present, at Brookhaven.

Finally, an approach based on multi-group theory, which Honeck

found successful in analyzing , , has not yet been fruitful

in treating higher modes.

We come to the end of these talks with the feeling that we

have neglected almost as many topics in thermalization as we

have mentioned. In the last lecture, we have directed the

reader's attention to questions like a) Do all time-dependent

eigenvalues have a limit point at (v Z )m ? b) How do

non-l/v absorption cross sections affect the eigenvalues? c)

How do proper, transport-theory boundary conditions affect

them?....but only now do we mention that similar problems

arise in the study of space-dependent thermalization. In fact,

we have barely touched upon that aspect of the subject. We

have neglected the velocity-dependent Milne problem, diffusion

in a medium containing a temperature gradient, thermalization

in lattices...and more. Perhaps these omissions will be partly

forgiven if we close by emphasizing that our subject is rich in

problems requiring, for their solution, degrees of talent

ranging from modest to formidable. If these lectures attract

some of the talent to a new and interesting field of physics,
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they will have been well worth-while.
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APPENDIX I

The Scattering Kernel and Detailed Balance

To illustrate some of the remarks made in text, we consider

the scattering from a collection of N identical, spinless nuclei.

d * mLd - -- /( d3 rdt exp Ii( Ie-r -C t) & (r t) .

The cross section for scattering from momentum po to p is

(p o,p) and we have

- __d____ Na (dd 2)
0 n pTI d.ldE .27r7A mlp fdrd(-2)

The space-transform of G (r, t) has been denoted byXL (k, t) .

The general theory (29) gives

where (I-3)

N
N. exp ikr (t)]

is a quantum-mechanical operator containing the coordinates of

the N atoms, and the symbol (< .*.. >)) represents a quantum-

mechanical expectation value taken in state " o. " of the
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scatterer, followed by a thermal averaging over states. Thus,

we may also write

(K ,t) = N Trace (F+(O)F(t)eH/T)- -2. Trace e-H/T.

(I-.4)

We wish to show that is a real, even function of 'L = t

-.. and that this property is closely connected with the
2T

property of detailed balance. Consider, then, X o(t), defined

through

( t) =" (t + )oCTrace (F+(O)eH/2T F(t) e-H/ 2 T).

(I-5)

We have used, in (I-5), the relation

F(t) = exp[r 1 F(0) exp - 3 . (I-6)

The complex conjugate of Z 0 (t) may be written as

x o(t) oe Trace (F(O)eH/ 2 T F+(t) eH/2T), (1-7)

if one uses the "cyclic" property of the trace. Now, we shall

need two additional assumptions. First, the properties of the

scattering system will not depend upon its orientation in space

(no single crystals')e. We deduce at once that Xoe is a function

only of g 2 and that replacement of kC- by - l is of no consequence.
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Second, we assume that the properties of the system are unchanged

by translation in time, that is, that Trace(F+(t ) ... F(t1+t) .. )

is independent of ti. We use the first property after noting

that the operator adjoint to F(t) is formed by replacing

t by -L . Since this operation, when performed on all of the

F(t) which appear, cannot affect the value of the trace, we

conclude that (1-7) gives the same result as (1-5). Thus,

o (t) is real.

To prove that 0 (-t) = X 0 (t), we use

Xo(t) = X (t) ad Trace (F+(t) e-H/2T F(o) e-H/2-T

(I-8)

If we write -t for t in (I-8) and use the time-translation

property noted earlier we see that (I-8) is equal to 1-5). Thus,

we have shown that Z is a real and even function of P'= t -
- 2T

Now, the property of detailed balance follows easily.

Equation (I-2) tells us that

0

POIO(Po, )C /cdt e~i t  ( Z(.
2 ,t)

or-

Po e- E/2T o.(-p 0 -) c dt e-it 2(,+ (I-9)) 2T
oo.

Since XY is an even function of T , both sides of the second

equation are symmetric in po and p, and the detailed balance

relation,
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pole-Eo/T OO.P) = I I e-E/T , (1C-10)

follows at once. (E = E 0 -E=?'i w) .
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APPENDIX II

The Time Deca Constants - In Infinite Media

We remarked in the text that the discrete and continuous

behavior of the time-decay constants found in the case of moder-

ation by monatomic hydrogen gas could be expected to hold for

more general systems. We shall sketch here the basis for that

belief, using the Laplace transform solution of the initial

value problem.

Consider the Boltzmann equation in the form

a n

iL + IXIPe(X/fl:dI xIP X xj5!n( x 0;cr~ (II-l)

We are using dimensionless units, related to the usual v,r, and

t by v = vBx, r = R/ 1f: B' ss

Let us take, as a source, a distribution proportional to

~( I xI - I xolj) ( ? ) exp [iB-R] . When we obtain

a description of the evolution of this pulse in the form of a

Laplace inversion integral, we shall have, at the same time,

its representation in terms of energy modes. To simplify

matters, we assume that the scattering kernel is isotropic.

The manner in which (II-1) is analyzed is well known. We

remove the space-dependence of n(2,R,rT) *by setting it propor-
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tional to exp iB-R , then obtain the Laplace-transformed

equation in the usual way. If Ais the transform variable, we

find, in a region where real part of A > 0,

i3- + A + x N (x) ] N(x, A ) = fdx 'I P )

N (X') + .... 1-( x - ).(II-2)

Next, we divide by the factor multiplying N(xt, t) and integrate

both sides over orientations of x. The final equation contains

only the magnitudes of x and B as variables, and is an integral

equation,

N(x,A.) = L 1  n + x + iBx dx'x'(x
2iBx A + x - iBx1[

N(x') + b(x-x) .x (11-3)

We are concerned with the dependence of N upon A , and it

is clear that this is dominated by the logarithm in (11-3).

We have assumed that B is real, and it follows that the singu-

larities of the logarithm (and of N(x, E/)) will be in the

left half-plane. For fixed x, the logarithm can be made single-

valued if the ? -plane is "cut " between the points -xe + iBx

and -xgo + iBx. The family of "cuts " obtained by letting x

vary from zero to infinity describes an area in the -plane

bounded by the line of singularities, N = - G(9 (.() +. iB.(

( od ot }> 0) . When we deform the integration contour to
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convert the inversion integral into a "sum of residues," we

shall obtain contributions from poles, and then run up against

the line of singularities.

Of course, not all of the singularities of N(x, A ) will

be due to the logarithm. The function will be singular for those

A for which solutions to the homogeneous version of (11-3)

exist. These are the "discrete" decay constants, and since we

deal with a real kernel which may be made symmetrical, they

will be real (and negative). For A real we may write the

homogeneous equation as:

3x~ I,+Xo rJ x''~x). x) (11-4)

0

which is a familiar form. Thus, the situation in the A -plane

is as illustrated in Figure (16), and inversion of the Laplace

transform gives:

N(x,)=akN,(x)e k k7 +-= date NxA)
(II-5)

The / 1 k are functions of B2 , and all lie between zero and

[xe' (x)] min, while the integration is carried out along

the curve F' (B2 ), which is the line of singularities mentioned

earlier. If the equation for F' is used to change the complex
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X - plane
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Figure 16
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integral into a real integral between o( = 0 and oC =0 ,

(11-5) will assume an instructive form.- For, when -exp iB-R

(or exp iBz ) is restored we find a -superposition of damped

"neutron waves." The factor exp A ] becomes

exp [ ( )? - exp iB(z±.Cb T) and represents distur-

bances found previously in connection with the Telegrapher's

equation (for neutrons) (11, 61).

There are two special cases of (11-5), worth mentioning.

As B --' 0, the curve P becomes narrower and approaches the

segment of the real axis extending from-[x P (x) min to

Equation (11-5) then assumes the form of equation (72) of the

text. As B2 -+ oo a critical B2 is reached, beyond which no

discrete eigenvalues may be found (see Appendix III). Then,

only the integral of (11-5) remains.

The connection between (11-5) and the singular, or continuous

eigenfunctions mentioned in the text, should be clear. We have

really been calculating the Green's function for the time-

dependent problem, and (11-5) is its "spectral decomposition."

With some manipulation, the equation may be put into the form

ed2 NN 4N,~((II-6

k k(11-6)
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and the discrete and continuous eigenfunctions read off. Thus,

existence and completeness appear simultaneously. The reader

is invited to try the calculation when the scattering kernel

has the simple form, /O(x' ,x)AN ((x')x 1 (x)M(x).
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APPENDIX III

We wish to show that there exists a critical B, B*, such

that when B > B*, no proper solutions of the homogeneous

equation (II-4) exist. We shall actually prove an easier version

of the theorem, namely, that no energy mode which is everywhere

positive exists. Since the fundamental mode is always positive,

the theorem refers to it, in particular. The theorem may be

proved for any mode, but with additional discussion that is

unnecessary here.

The modes which we consider decrease exponentially when

x is large. The function xe(x) increases linearly when x is

large. We shall assume that a solution to the homogeneous

equation exists, then multiply the equation by x (x) and

integrate. Thus,

(III-1)

The left-hand integral will always exist; we shall normalize

it to unity. Further, the arc tangent will always be bounded by

/2. Thus, with the assumption that change of order of

inte gr ation is allowed (and n (x) > 0 ') we can wr ite

d 0y0)

I.B
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where

00

g(y) dx p(y,x)p(x) .
0

(III-2)

We shall show that g(y) is always less than K (y), where K is

a positive number independent of B. When this bound is sub-

stituted into the first of (III-2) we see that the inequality

will lead to nonsense for sufficiently large B

Then, the positive mode cannot exist.

Consider g(y). It is characteristic of the scattering kernel

and is certainly continuous and bounded in the range 00 > y*

y > 0. We will want to examine it as y-+0 and as y-, oo.

The second limit presents no difficulty since the thermal kernel

becomes the slowing-down kernel when y is large. When the

slowing-down form is used in (111-2) one sees easily that g(y)

is finite as y .

In examining the limit, y-0, it is convenient to write

O0 (y,x) = O (y) 7r (y,x), where Tr(y,x)dx is the probability

that a neutron which is scattered at velocity y will be scattered

into the range x, x+dx. 7T(y,x) is never singular for the models

we consider, though 0 (y) behaves as l/y when y -0. Thus

y(y) =p(v)f dx 7r(y,x)(x) 
(11-3)

In the limit y -y 0, we will consider 7T(O,x) (x), which may

be singular as x -p0. However, the key point in the argument
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is that 77 (0,x) approaches zero as x--s0 in such a way as to

ensure the convergence of the integral in (111-3). That is,

the probability of elastic scattering vanishes, as the neutron

speed vanishes, in all scattering kernels that we consider in

thermalization. Thus, g (y) is no more singular than (y), and

we may bound the former, g(y) < K O (y). The constant, K, is

in no way dependent upon B2 . The proof of the theorem follows

directly.
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The Electron-Neutron Interaction

Introduction

The study of the electron-neutron interaction started

thirty years ago in the same year (1932) in which the neutron

was discovered. P. I. Dee investigated the possibility of forces

between these particles by looking for recoil electrons and

ion pairs produced by neutrons passing through a cloud chamber.

He placed an upper limit on the cross-section which was actually

several hundred times the figure currently considered to be

accurate. In the next fifteen years the problem was not

investigated.

The first indication that the interaction was other than

that due to magnetic moments came in 1947 from experiments by

Havens, Rabi, and Rainwater who measured the total neutron

cross-sections of liquid lead and bismuth and inferred the

electron-neutron cross-section. (These measurements were redone

by Melkonia, Rustad and Havens to a high degree of precision.)

Other important determinations of the cross-section were made

by Fermi and Marshall, by Hammermesh, Ringo and Wattenberg,

and by Hughes, Harvey, Goldberg, and Stafne. These determinations

will be discussed below.

The present exposition will be divided into three parts:

a discussion of the experiments, a phenomological description

of the interaction, and a survey of some aspects of the meson
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theoretic structure of the nucleon in its relation to the

interaction. Although our discussion is primarily intended to

cover the electron-neutron interaction, we shall find that it

will naturally generalize to include the proton.
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I. Scattering of Slow Neutrons by Atoms

Before discussing the experiments mentioned, it will be

necessary to give a brief discussion of the elastic scattering

of a slow neutron by an atom as a consequence of its inter-

action with the nucleus and the atomic electrons. For simplicity,

the spin portion of both forces will be ignored.

The force we are looking for is a weak, short-range,

spin and velocity independent interaction; this excludes the

contribution of the ordinary magnetic dipole interaction known

to be present. If the proposed interaction exists it will be

describable by a potential depending on the e-n separation.

(Henceforth, we will use the small letters "e", "n", and "p"

to stand for electron, neutron, and proton respectively. N will

stand for nucleon, 77 for pi meson.) The interaction Hamiltonian

for the n-atom system will then be

i:/ (I-l)

where r is the neutron coordinate, r. the coordinate of the

ith atomic electron and U( iY ) represents the interaction of

the neutron with the nucleus, the latter assumed to be infinitely

heavy and located at the origin. This latter assumption is for

convenience and will be relaxed. The summation is over the Z

atomic electrons.
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The total Hamiltonian of the system is

H = Ha + p2/2m +1 , (1-2)

where Ha is the Hamiltonian of the isolated atom and p 2 /2m

is the kinetic energy of the bombarding neutron.

We now must solve the time-independent Schrodinger

equation for the scattering

H r, = E (r, r2, . ,rg,r). (1-3)

As noted earlier we only want to look at elastic scattering and

therefore (in Born approximation) will only need the ground-

state wave-function for the atom, 4o(i 2, 2 ', rZ) . If Eo

is the ground state energy of the atom,

H a= E . (1-4)a 0 o o

The energy of the incident neutron will be written in terms of

the neutron wave number k,

E = p2/2m = = 2 k 2 /2m. (1-5)

The initial wave number of the neutron is ki; the final wave

number is k , and for elastic scattering from an infinitely

heavy target k. = k f = k.

We will calculate the elastic scattering amplitude in the

Born approximation. In a quantization volume ..1 we can

write .the initial wave function of the unperturbed system

and the final wave function as
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and

- _eik~

(I-6)

The transition matrix element in the first Born approxi-

mation is given by

Tfi = <-

-, 
, f-f

where q = ki-k fis the wave number of the momentum transfer.

The wavelength of low energy neutrons ( N 20 kev)

2 77 U(-+ hee
/k will be long compared to the range of U( r ). There-

fore in this energy interval

fdi *e'''u|| - d rU(r ).
f eL( 7 f (( (I-8)

The factor o * o in this term of (I-7) has already been

integrated to one. Introducing an the nuclear scattering

amplitude for low energy neutrons

-O-l r ao 7 /0(-9

an is independent of k as long as (I-8) holds. At somewhat

higher energies it will be a slowly varying function of k

provided that there are no resonances nearby.
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The term involving the interaction of the neutron with

the ith electron in (I-7) is

Defining

equation (I-10) may be written

f()I(1-12)

(ri) is the probability of finding the ith electron in the

volume element dr. at ri. If we now assume that the range of

V is small compared to atomic dimensions, we may regard f()
as essentially constant over the region where V is non-zero in

(I-12), evaluated at the point = r. In that case equation

(1-12) becomes

( V (1-13)

where the subscript on merely reminds us this is the term

for the ith electron.
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By analogy with (I-9),

QI I- ' / e- J (I-14)

where ae is the scattering amplitude for low energy neutrons

by a fixed electron. Defining a "form factor" - ( ) for

the charge distribution of the ith electron

e t- (I-15)

equation (I-13) becomes

(1-16)

Adding up all such terms, (I-7) becomes

-a & )L (1-17)

where 7(q) is the "form factor" for the atom

and aa is the coherent scattering length of the atom.
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The differential cross-section is

do- )IaIZ I Q n t 4 (9 )I-8

If the possibility of neutron capture is neglected an is real.

Further, if the electron distribution in the atom is spherically

symmetric 7 is real and a function of q (=1 qi ) only.

Equation (I-18) then can be written

Apart from a factor e, 9 (q) is the Fourier transform of

the average electron charge density in the atom. For small q,

7(q) = 1, while in general as q increases from zero, 7(q)

decreases monotonically until values of q are reached where

1 (q) becomes sensitive to the details of the electron charge

distribution. For elastic scattering

q = 2k sin 9/2,

where 9 is the angle between kf and ki, and so for low energies

(I-19) is independent of angle and the total cross-section is
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For energies such that the neutron wave length ( i 1/k) is

small compared to atomic dimensions but still large compared to

nuclear dimensions, an will still be given by the zero energy

form (1-9) while the interference from scattering at various

parts of the electron cloud will be nearly complete and the

total cross-section will drop to the value

7ra
tot 1'

(1-21)

Since we shall need an in order to evaluate ae as can be seen in

equation (1-19), this is a valuable result.

The forward scattering amplitude (q=o) is always given by

aa = an + Z ae.

This means that the index of refraction 4 for neutrons incident

on a bulk sample composed of the type of atoms described is

-

where N is the number of atoms per unit volume and , is the

wavelength of the incident neutrons.

Equations (1-19)7, 20,. and 22 with (I-21) as an impor tant

auxiliary relation provide us with the necessary connection

between the e-n scattering amplitude, which we want to determine,

and experimentally observable quantities.
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We have performed our calculations on the basis of an

infinitely heavy atom: the results of course are applicable in

the center-of-mass system for an atom of finite mass. This

will render the distribution of scattered neutrons non-isotropic

in the laboratory system even if it is isotropic in the center-

of-mass system. If the atoms have a velocity in the lab system

as in the case of scattering from a gas, some care is required

to separate the effects of atomic motion from the effects of

the atomic form factor in converting the observed laboratory

distribution to the center-of-mass system where our formulas

are applicable. In scattering from solids or liquids there

will also be diffraction and interference effects resulting

from scattering from different atoms which may effect the

determination of the cross-section of a free atom. Neither of

the above effects influences the index of refraction.

The interaction of the neutron spin with the spin of the

nucleus has been ignored so far. If this is included an

would become the coherent nuclear scattering amplitude. Actually

our evaluation of an is not satisfactory even with this modifi-

cation since the Born approximation is not valid for the small

energy neutron-nuclear scattering. However, because nothing in

the analysis depends on the way in which an is evaluated, the

empirical value may be used directly.
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Finally, we have ignored the contributions due to scattering

by the nucleus and subsequent rescattering by the electrons. This

is valid so long as an is small compared to atomic dimensions

which holds in all cases of present interest.
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II. Experiments on the Electron-Neutron Interaction

Experimental determinations of the e-n cross-section are

in general of three types: two of these are based on equation

(1-19) for the differential cross-section and the other on the

expression for the index of refraction in equation (1-22).

In the first two types of experiments, equation (I-19) is

used with the term in a 2 dropped as small compared to an2,

that is, no attempt is made to measure the electron-neutron

scattering amplitude directly (incoherently). Instead the

experiments rely on the determination of the interference of

the "known" amplitude an with the unknown amplitude ae; this

requires a good knowledge of a . Since a is not well known,n n

measurements of the differential cross-section either at

several neutron energies or several angles are required to yield

a reliable value for ae. Experiments using the angular depen-

dence were performed by Fermi and Marshall 5 and then more

accurately by Hammermesh, Ringo and Wattenberg.6

A second type of experiment looks at the energy dependence

of the total cross-section based on the expressions in (I-20)

and 21. Such experiments have been performed by Havens,

Rainwater and Rabi.

The third type of investigation utilizing equation (1-22)

for the index of refraction has been done by Hughes, Harvey,

Goldberg and Stafne, who measured the relative index of refrac-

tion of two materials where the nuclear contribution was similar
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for each.

The results of these experiments are usually expressed

in terms of a parameter Vo which is defined as the depth of a

square potential well which has a radius equal to the classical

electron radius e2/mc2 and which yields the same scattering as

the actual e-n interaction. Using (I-14),

i vz V o X a V (r) d 3- mT~ (11-1)

The results of the precision experiments which have been performed

to date are presented in Table I. The grand average was computed

using a weighting according to the percent experimental errors

quoted.

Table I

Melkonian,Rustad, & Havens

Hammermesh, Ringo, & Wattenberg krypton

Crouch, Krohn, & Ringo xenon

Mean of the two results above

Hughes, Harvey, Goldberg & Stafne

Grand Average

Vo=-(4165+265) ev.

Vo=-4500 ev.

Vo=-(3000) ev.

Vo=-(2900800) ev.

Vo=-(3860±370) ev.

Vo=-(4050200) ev.

This value of Vo corresponds to ae = 1.46x10-1 6 cm.

These experiments seem to indicate clearly the existance of

a weak, central interaction between the electron and neutron

exclusive of magnetic interactions. The weakness of this force
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can be appreciated by noting that for nuclear forces

Vo J - 10 Mev.
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III. Character of the Interaction

It has been established in the experiments described above

that there does seem to exist a weak, short-range force between

the electron and neutron aside from the magnetic dipole-dipole

interaction. The next question to explore is that of the origin

or type of the force; whether it is some aspect of a familiar

interaction or a basically new kind of interaction. We shall

ignore the second possibility, at least at first, on the grounds

of economy and attempt to associate the findings of the experi-

ments with one of the known forces.

The strong interactions are too strong: as previously

noted strong interactions correspond to a Vo of about 10 Mev., a

factor of 103 too large. The Fermi interaction in -decay is

an attractive possibility but the Vo corresponding to this force

is 103 times too small. The other simple possibility is that

the force is electromagnetic in origin and the coupling in this

case is of the right order of magnitude. Indeed the initial

investigators expected an electromagnetic interaction based on

simple meson-theoretic considerations. In such a picture one

expects the neutron to appear as a proton continuously emitting

and reabsorbing virtual 7T mesons, a structure which would

have electric multipole moments and consequently be capable of

interacting with an external change.

We can make a crude estimate of the strength of the inter-

action based on this simple picture. If the neutron can be
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regarded as existing as a proton and a 77~ meson essentially

all the time, then it will produce a field proportional to the

charge e divided by the size of the cloud of e/(h/m1 c)

where the size of the cloud has been taken to be the Compton

wavelength of the meson. The interaction energy for an

electron near this configuration is e2 /(h/mff c). Using (II-1)

this yields

Vo t 105ev.

Although this is about 10 times too big, it is encouragingly

close in view of the fact that a more accurate version of the

calculation would tend to reduce Vo somewhat, since one expects

the r-meson to be separated from the proton only a portion

of the time.

We wish to develop a scheme to describe the e-n interaction

phenomonologically, that is, given a charge and current distri-

bution characterizing the neutron (assuming the electron is a

point distribution), write down the Hamiltonian for the system

and the scattering cross-section in terms of these distributions

without yet inquiring into the structural dynamics of the

neutron which produces them. This procedure will reduce the

problem to one of determining the charge and current distributions

of the neutron from one theory or another without reference to

the electron (provided we neglect external effects such as

polarization of the charge and current distributions).

Suppose we take a preliminary look at the neutron regarded

as a spherically symmetric charge distribution with center at r
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and a charge density (b) where b is measured from r.

In an external electrostatic field f the potential energy

of the "neutron" located at the point r is

V(r) = fdb (b) (r!b) .

If varies smoothly over the volume of the neutron we may

expand it in a Taylor series about r.

p('*)= p()+ b-9 p+ .b d b +... (m1-2)

from which

V( f)= db (b) 4(1)+V(r)-fb p(b)db

-4 --*(III-3)

Since the neutron has a net charge of zero, the first term is

zero. The second term is zero for (b) spherically symmetric

so that the lowest order non-vanishing term arises.

The guantity (b2> is the second radial moment of the

neutron charge distribution. If
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= - e/r

then

and (b 2 > can be determined from the experimental value of

Vo given in Table I through the relation in (11-1) yielding

<b2> = (3.5x10~ cm.)2

an estimate of the size of the neutron for the model we have

chosen.

It should be noted that the field the neutron was in could

have been thought to be produced by any source of an electrostatic

field as for example a + meson. Henceforth we will, for the

most part think of the neutron as being in some externally

produced electromagnetic field without regard for the source of

the field.

The foregoing remarks can form a framework for the more

precise procedure we wish to undertake. The structure of the

neutron will be represented as the most general charge and

current distributions consistant with our qualitative knowledge

of the electromagnetic properties of the neutron and basic

invariance requirements. The interaction of these charge and

current distributions with -an external electromagnetic field

will then be expressible in terms of quantities which reflect

the characteristics of the distributions. Comparison of the

predicted scattering with the experimental results may then
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specify (although not necessarily unambiguously) the distri-

butions. It is then the task of the various structural theories

to reproduce the type of distributions required.
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IV. Phenomonologyof Electron-Nucleon Scatteri ng: Non-relativistic

We shall now discuss the specification of the interaction

of a spin 1/2 particle possessed of a given charge and current

distribution with an external electromagnetic field described

by the potentials A and 0. At first we will restrict our

attention to the non-relativistic case since the results are

somewhat easier to visualize and will parallel the results of

the relativistic calculation for the most part. Note that we

will include the proton as well as the neutron in our considera-

tions. First we will write down the Hamiltonian for a non-

relativistic point charge in an external electromagnetic field.

With i=c=1, it is

H =(+e (?,t), (1V1)

where e is the charge of the particle and m is its mass.

H can be written in three parts:

4440+21+??' )(IV-2)

where

Ho = p2 /2m

(linear in the field);

'e f - .A-(7,t) +A (rt) -)(IV-3)
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and

At) (quadratic in the field).

If we limit our attention to weak fields/' will be small

and can be ignored. In addition this represents the assumption

that the structure of the nucleon is not radically affected by

the external field. Note that can be rewritten in the more

general form

(IV-4)

For a point charge with no magnetic moment, (IV-4) will reduce

to (IV-3) with

(o v S. p .. 1)

ela m r
(Iv-5)

ic is the convection current due to the motion of the particle.

If the particle also has a spin angular momentum and an

associated magnetic dipole moment this must be included as a

magnetization current,

j =V xl (IV-6)

where f1 is the magnetization producing this current. For a

point magnetic moment with spin
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M = (-'), (IV-7)

where A is the dipole strength carried by the particle.- Replacing

-4 -4 -r

j in (IV-4) by jc + , the Pauli Hamiltonian is obtained,

X|=e -. A ?,t)+ (t}-'-p a (-x(* )). TV8

We can generalize / to the case of extended sources by

replacing the - functions inO ' ,jc, and j by finite spheri-

cally symmetric distribution functions.

(-(P 1 )):(IV-8)

Note that the distribution function in jg has not been chosen

to be the same as that in and jc. There is no necessity at

this point to make any connection between f and f
e m

Note that (IV-9)

if m( I | r-r'i ) dr' = 1

Fe (- -r' ) dr' = +_ 1 for particles of charge + e

Ofor particles of charge 0.
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The generalizations just made are natural enough but the

question of just how general has become might be raised. It

can be shown that we have included above all possible cases

under the following assumptions:

1) If the particle undergoes a translation in space

the charge and current distribution associated with it

undergo the same translation;

2) is a scalar and j is a vector under rotation;

3) 9 is invarient and j changes sign under inver-

sion in space or time;

4) the operators for andj are functions of r and

spin and of no higher order than first in the momentum.

The most general form of interaction Hamiltonian in the

non-relativistic limit is then

71fdr'fe fa(A-t') p('t)--
(IV-10)

with p and 7 operating on r (not r ' ). If the particle has

spin 1/2 it has no quadrupole moment and f (r-Y') = f ( r-r' )

If the particle has spin 1, fe is not necessarily spherically

symmetric.

The first order perturbation theory gives for the scatter-

ing matrix element for the transition i --+ f
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for a nucleon scattered by an external electromagnetic field.

The wave functions in this approximation are plane waves,

= u .e

r -- E t)

(IV-12)

where ... is the normalization volume, ui and uf the initial and

final neutron spinors, 7 j and pf the initial and final momenta,

and Ei and Ef the corresponding energies. Using these wave

functions, (IV-ll) becomes

- e<u u )F,,,u(F(.). A

(IV-13)

where q and go are the momentum and energy transfers, defined as

q = Pf -pi,

qo = Ef - Ei. (IV-14)

The following definitions have also been made.

Ai di fdr' ~' (,1-
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Several conclusions follow from these results, some of

which will persist in the relativistic treatment.

1) A transition i -+ f with momentum transfer q and

energy transfer q0 is possible only if the external fields have

a q space Fourier component and a qo time Fourier component.

This will be true for the relativistic treatment. The occurance

of the transition is then independent of the source of the

fields and in the case of electron-neutron scattering we can

"replace" the electron by equivalent fields with the same

Fourier components as are produced by the electron: these

fields are the Moller potentials.

2) A spin-flip transition can only occur in a magnetic

field and then only if the scattered particle possesses a magnetic

moment. This will not be the case for a Dirac particle.

3) If the scattered particle is neutral (eFe(q) = 0),

then an electrostatic field has no effect on it. This also is

not the case for a Dirac particle.

The calculation we did originally on the scattering of

neutrons by atoms included only the electrostatic part of the

e-n interaction. (This is the only part of (IV-13) which

satisfies our assumptions made at that time about the form of

the interaction.) We may compute the e-n cross-section in this

approximation from (IV-13) by setting A = 0 . Then

d o e'm'
dw A 4 77-a e ir.
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If

then

,V rZe
-a...Yi- Ze

and

d - Ze CSC - )
d , a e

This is the Rutherford cross-section for the Coulomb scattering

of two point charges, modulated by the form factor Fe2(q) arising

from the charge distribution of the neutron. If we had allowed

the charge Ze to be distributed as well, the cross-section would

have been

dw 9E,/ e,
where F(q) is the form factor of the charge Ze. This feature,

whereby the form factors occur multiplicatively in the cross-

sections, will also be true in the relativistic calculations.

The factor Fe 2(q) can be evaluated in the limit of small

q as

where < b 2 > is again the second radial moment of the

neutron. Higher order terms in the expansion of Fe (q) would be

successively higher order (even) moments of the charge distri-

bution of the neutron. If now we connect < b2 >) to the
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definition of a using (III-4) and (1-14), we can regain the

result in (I-18) by setting a=n 0 in that equation since we

have disregarded the presence of the nucleus in the calculation

above.

We have now connected our phenomonological study of the

neutron's structure and its effect on the low energy e-n inter-

action back to the experimental studies which have been made,

establishing that these experiments may indeed be explainable

on the basis of the neutron possessing some sort of charge

(and current) structure. This is essentially all that can be

done in the nonrelativistic limit. We must now repeat the

calculations for a Dirac particle scattering by an external

electromagnetic field. This is essential, not only for purposes

of interpreting the recent high energy electron-nucleon scatter-

ing experiments such as those done by Hofstadter at Stanford

and Wilson at Cornell, but also because the motion of a Dirac

particle in an external field exhibits some kinematical peculi-

arities which will modify the concepts of the origin of the

charge and current distributions which we have developed in the

nonrelativistic calculation.
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V. Kinematics of a Dirac Particle

The Hamiltonian for a free Dirac particle may be written

Ha
H0 = ~m + '( . p, (V-l)

where and .c are the Dirac matrices. There exist four

linearly independent plane wave solutions to Ho for a given

momentum p . These correspond to an energy E where

E :AV z m) -±1+(V-2)

Two solutions belong to E = +1 and two to A = -1. The

remaining degeneracy cannot be resolved by the Dirac spin

operator

since it is not a constant of the motion; Dirac particles cannot

stay in states where f'"z is a constant as can Pauli particles.

However, there does exist an operator Z1which is a constant

of the motion and which has components parallel or antiparallel

to p, p which are constants of the motion. For A = 1 one

solution corresponds to Z p = +1 and the other to Z p = -1

(with a similar situation for A = -1.) (For t p = +1 the

spin of the particle is parallel to p, etc.) Thus all four

states are uniquely specified by giving A and 27 p.

It is instructive to connect the Dirac Hamiltonian (V-l)

to the nonrelativistic Hamiltonian. This may be done by applying
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the proper unitary transformation to H to get..

S e(V-3)

where

fan' (V-4)

This yields for Ho'

H[+..] . (V-5)

where we have expanded in powers of /m . (V-5) corresponds to the

usual non-relativistic Hamiltonian if we ignore the rest energy

of the particle and stay at low energies where higher order

terms are neglible. If a certain representation for the Dirac

matrices is used,

(I o O e O 0
o -1/ )1 (V-6)

the four solutions to the Dirac equation take the form

O 0

A *1:-1. (v-7)

The matrices in(V-6)are actually 4 x 4 where I is a 2 x 2 unit

matrix, etc.: in(V-7) the matrices are 4 x 1 with il a 2x 1

matrix, etc. Using (V-5) with only the term quadradic in p,
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(V-6) and (V-7) yields the usual two componentPauli theory.

Let us now return to equation (V-l). The velocity operator

r has the value

(V-8)

If we compute the value of a component of aC we find it can only

be +c (the velocity of light), a most peculiar result. There is,

however, another operator, -, which we can construct which

"moves" in a manner consistent with our notion of a position

operator, namely R - 'p. This operator may be arrived at in the

following way.

When the position operator r is transformed according to

(V-3) its form is very complicated:

-+ is - as 'c<C -P)-Px
r'= e re r =9a-, - R (-9sOE (E+mc") .2E(rEmc) -

This operator does not represent the position of the particle in

the nonrelativistic limit so it is not so surprising that r

in the original representation did not correspond to what we

should think of as a velocity. The first term in (V-9) is the

position operator of the particle in the low-energy limit. Then

applying the F-W transformation (V-3) in reverse to this operator

should give us an operator in the original representation which

does correspond to what we like to think of as the velocity of

the particle. Letting
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R- r e(v )
(V-10)

where Nis now in the original representation where H0 has the

form (V-i) we get

P A Cp/E . (v-li)

R will be called the mean position operator and from (V-li) it

has a time development in keeping with our usual notion of a

velocity.

We may interpret the relation between r and R in the

following way. r measures the instantaneous position of the

particle which oscillates or "dances" around the position i
with a velocity c (the Zitterbewegung). The extent of the

region in which the particle performs these gyrations is

h/mc. This is one of the kinematic peculiarities previously

mentioned. Forces which are exerted on the particle will act

at r. Thus in an electromagnetic field a point Dirac charge

with no intrinsic magnetic moment will appear to have an

extended charge distribution spread over a region of dimensions

h/mc and, because of the circulation of charge, a magnetic

moment. The magnitude of this moment (called the normal Dirac

moment) is e/2mc. The effective spreading of the charge

distribution of the particle due to the Zitterbewegung gives
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rise to the "Darwin" term in the low-energy Hamiltonian which

must be included if one is interested in terms of order 1/c 2 .

The motion of a Dirac particle carrying a point charge e in

an electromagnetic field is described by

H=m+ e4(r,+ -p'- X(At) .

(V-12)

Thus a point Dirac charge described by (V-12) has an effective

finite charge distribution and a magnetic moment which interacts

with the field, although the Hamiltonian gives no indication

that this would be the case. Pauli pointed out that a Dirac

particle could also have an intrinsic point magnetic moment

(before dancing) as do the proton and neutron. The form of the

Hamiltonian for this addition is

(V-13)

where :YXA

and E=-v - A/' .

In the non-relativistic limit, the scattering produced by

the Hamiltonian in (V-13) will be that of an extended charge

with a magnetic moment A p + e/2m where pis the "anomalous "

Pauli moment. The first term in the square brackets multiplying

Ap is the interaction of the Pauli moment with the external

magnetic field. The second term is necessary to keep H Lorentz
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covar ient and may be interpreted as due to the fact that a

relativistic particle with an intrinsic magnetic. moment. which

is in motion will develop an electric moment at right angles

to both the particle momentum and the intrinsic magnetic moment.

This electric moment will then interact with the external. E

field.

The non-relativistic limit of (V-13) can be used to cal-

culate the scattering of a point neutron from an electrostatic

field. There will be scattering as a result of the induced

electric moment described above. If the electrostatic field is

regarded as being produced by a point charge -e and the results

are expressed in terms of V it can be shown that

V = 77 _ T

- -4080 ev,

which is almost exactly the strength required by the low energy

experiments previously described.

Although initially gratifying, this is a most embarrassing

result. Apparently the e-n interaction can be almost exactly

explained on the basis of the anomalous Pauli moment of the

neutron, or more properly by the electric moment pr oduced by the

motion of the anomalous Pauli moment. Of course the experimental

errors ~on the measured value of V will permit a nominal

addition to the result deriving solely from the Pauli moment

from some intrinsic structure of the neutron, but our estimate
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of the contribution which might be expected from a simple

separation of charge led to a V0 about one hundred times too

large by itself. The Pauli moment must arise from some sort of

charge structure, but calculations in weak coupling meson theory

which reproduce the anomalous moment also yield a charge

separation implying a V many times too big. Also the recent

electron scattering experiments conducted on H2 again suggest
that the neutron has no intrinsic charge distribution at all

but only a Pauli moment. (It should perhaps be remarked that

"intrinsic" as used here will always refer to something attached

to the particle and not properties due to the relativistic

kinematics.)
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VI. Phenomenology of the Electron-Nucleon Interaction: Relativistic

We now wish to write down the Hamiltonian for a Dirac

particle with a given (intrinsic) charge and current distribution

interacting with an external electromagnetic field in analogy

with equation (IV-10) for the non-relativistic case.

The Dirac equation for a free particle can be written in a

manifestly Lorentz covarient form:

Y + mix =0
(Vi-1)

where the y matrices are obtained from the Dirac matrices upon

multiplication of the latter from the left with f, and

x = xI,x2'X 3 'X 4 = x,y,z,i t. Now we should like to add to

(VI-l) the most general form of interaction term encompassing

the possible structure of the particle which is in first order

in A (= Ax,Ay,At i ), the external field, independent of

the momentum of the particle and gauge invarient. One can show

that the Hamiltonian will then become

(VI-2)

where the coefficients 1., andIt4 characterize the charge and

current distribution of the particle. If Ap is static, this is

just an expansion in charge and current moments of the particle.
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We can write (VI-2) in terms of form factors if A corres-

ponds to a Mller potential.

A oC ei( 4 ' ~ q0 t).

The effect of the d'Alembertian 0 on this potential is to

multiply it by 2 _ - q2 _2, the square of the invarient
0

four-momentum transfer. Note that the form factors thus obtained

will depend on q2 rather than q2 as was true in the non-relativistic

case. The first sum in (VI-2) will then contain something of the

form

(62)q -- > F(q2
n fl

and the other sum will define a similar function F2 (q). These

will be called the form factors of the particle in question.

F 1 (q 2 ) can be considered roughly as the Fourier transform of the

intrinsic charge distribution of the particle and F2 (q 2 ) as the

transform of the intrinsic current distribution. The actual

scattering of such a particle by an electrostatic field will

involve both form factors at all energies; the same is true

for a static magnetic field.

We have now succeeded in summarizing the information about

the intrinsic charge and current distributions of a Dirac

particle in an external field in terms of two functions F1 (q 2 )

and F2 (q 2 ), where q2 is the four-momentum transfer associated

with a Fourier component of the external field. We have already

in effect discussed these functions in the non-relativistic region

for the neutron and should now like to consider the recent high

energy experiments which have been done.
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VII . High Ener gElectron-Nucleon Scatter ink

The proton and neutron taken together are describable by

specifying four form factors as functions of q2 ( = 2 _ 2) ,
p0

two for each nucleon. These are for the proton F1(q 2 )

and F2p(q
2 ) , and for the neutron F1 n(q 2 ) and F2 n(q 2 ) . We shall

always write these with the electric charge e factored out of

F1 and the anomalous magnetic moment factored out of F2 . Then

for q2 = 0

F1 P(0) = 1 , F2 p(0) = 1

F1Fn(0) = 0 ,F n(0) = 1.

Also from the low energy experiments on electron-neutron

scattering

dF n
0.

d(q2 J q 2  =0

Total knowledge of the nucleon charge and current distri-

butions implies knowing F1 and F for all values of q2 . Infor-

mation for large q 2 has been obtained in the experiments at

Stanford and Cornell as previously mentioned. The scattering

in these experiments can be characterized by the Feynman

diagram in Figure 1 representing the scattering of an electron

by a nucleon via the exchange of one virtual photon carrying a

momentum g and an energy q .
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N FIGURE 1 e

The field effective at the position of the nucleon is then the

M4ller potential previously mentioned. As remarked before, if

one assumes that the electron has no structure we can forget

about it and consider only the nucleon-photon vertex, where the

photon carries a momentum q and energy q and comes from any

source. This vertex will actually appear as shown in Figure 2

where the shaded area denotes that the interaction takes place

over an extended region because of the finite charge and current

distributions of the nucleon.

N
FIGURE 2

The characteristics of this vertex are of course completely

determined by F1 and F2 and the value of q2 associated with

the photon.
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The cross-section for the process shown in Figure 2 has

been calculated by Rosenbluth and has the form

do- __ _/ f coseT (

dw qE sin9 /L..F+ Msin 2(A/

damd a (eT )_,I(?a)aa

where Eo is the incident energy of the nucleon, M its mass and

the magnitude of the anamolous magnetic moment. The first

factor in (VII-l) is 1/e 2 times the Rutherford cross-section.

The first term inside the curly brackets corresponds to scatter-

ing off the charge distribution of the particle, the term in

tan2e/2 is the scattering off the total magnetic moment of the

particle (normal plus anamolous) and the last term is the

scattering off the electric moment induced by the anamolous

Pauli moment. Vacuum polarization has been neglected in the

derivation of this formula. If we set F1 = 1, F 2 = 0 in (VII-l)

we have scattering off a point charge with a normal Dirac moment.

If F1 = 1, F2 = 1, the scattering is off a point charge with an

intrinsic point moment.

If F1 and F2 can be obtained for the proton and neutron

as a function of q2 by experiment, we will have obtained a

complete phenomonological description of the interaction of

nucleons with electromagnetic fields. Observations on e-N

scattering for two values of E0 and G at fixed q2will provide

sufficient information to determine F1 and F2 at that value of q2.
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The proton form factors can in principle be determined with

relative ease by scattering high energy electrons off hydrogen.

The neutron interaction must be studied indirectly: the most

likely source of information is electrodisintegration of the

deuteron. However, the theoretical interpretation of the data

must take into account many corrections. For instance, the

bombarding electron may scatter off the meson associated with

the exchange current. Extensive refinements are being made on

the theoretical treatment of the deuteron problem and results for

the neutron can be obtained with difficulty. The current infor-

mation on the form factors for the proton and neutron are

presented in Figures 3 and 4 respectively.

I.0

(X/O cM

FIGURE 3

ot

F"

I(x ,o("cm )

FIGURE 4
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The curve for F1p seems to be leveling off at large q

values, indicating an increasingly dense distribution of charge

as one penetrates deeper into the proton; F2 p seems to be

approaching zero at large q indicating that the currents in

the proton which are producing the intrinsic magnetic moment

are peripheral. F1 n seems to be zero at all q2 or at least

very small, indicating no intrinsic charge separation in the

neutron. The q dependence of F2 n seems to be commensurate

with that for F2 P

We have developed a phenomonology for the interaction of

nucleons with an external electromagnetic field and found that

the interactions can be characterized by two form factors for a

nucleon. We should now like to consider the prediction of these

form factors from theory, e.g. to investigate the dynamical

structure of protons and neutrons.
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VIII. Theory of Nucleon Structure

The most general form of the matrix element describing the

scattering of a spin 1/2 particle by the absorption of a single

photon is dictated to a large extent by requirements of Lorentz

covariance and gauge invariance. If is the four vector

current operator for the nucleon which is scattered from a

momentum state pi to pf:

V'4'IP> Y E £ KfT(OVi~ () ~ I& -

where

Ia

This matrix element is associated with the diagram in Figure 5.

FIGURE 5

The problem of predicting the functions F1 and F2 is equivalent

to determining what processes are contained in the extended

vertex. For instance, the nucleon is capable of emitting a

virtual 77- meson. Then the photon could either be absorbed

by the meson or by the nucleon in the presence of the meson.

The graph in Figure 5 can be decomposed into a number of graphs

to symbolically represent the various contributions to the
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scattering. This is done in Figure .6.

FIGURE 6

The meson is represented by a dotted line. Clearly as more than

one meson can be emitted at a time (and even different types of

mesons) the actual structure of the vertex in question and hence

the prediction of F1 and F2 is a very complicated problem.

(Note that for the neutron the first graph on the RHS of Figure

6 would be absent.)

A possible line of attack has been investigated using weak

coupling perturbation theory and pseudo-scalar mesons. In this

theory the ratio of the anamolous magnetic moments of the neutron

and proton is independent of the value of the coupling constant.

The predicted ratio is about 7 instead of 1, so that little

faith can be placed in these results. This value is obtained

by considering contributions only from the three graphs in

Figure 6. If the last graph is also neglected the ratio

obtained is not too bad. Since both of the graphs with one

meson processes are of the same order, it is not clear why

one should be suppressed.

Another type of calculation is based on the Chew-Low static

model for the pion-nucleon system in which one treats the nucleon

as in infinitely heavy extended source of mesons. Using this
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picture one can obtain results for N- Zr and N-e scattering

which are reasonable, but the.assumptions about the meson

source preclude a relativistic treatment and an ambiguity

exists even in the non-relativistic limit as to what electro-

magnetic properties to assign to the meson source. Hence it must

be concluded that this method of calculation is inadequate to

the problem.

The technique of dispersion relations began to be used in

1957-58 in investigations on N- 7r scattering and has also been

applied to the N-e problem. This sort of calculation can be

motivated in the following way. Consider the diagram in Figure

7 for N-e scattering.

Ne
FIGURE 7

This is drawn according to the Feynman convention with time

increasing from the bottom to the top of the page. It repre-

sents a nucleon and an electron scattering from initial momentum

states to final momentum states through the exchange of a

virtual photon. We can now think of "reorienting" this graph

by redrawing it as shown in Figure 8 with the same convention

for the direction of increasing time.
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N

e-

FIGURE 8

This diagram represents an entirely new process; the annihilation

of an electron-positron pair with the emission of a photon which

subsequently produces a nucleon-antinucleon pair.

The S matrix elements for these two diagrams are identical

except for the values of q2 which one puts into the nucleon

form factors F1 and F2 : in Figure 7, q2 > 0 and in Figure 8,

q 2< 0. We have then effectively extended our definitions of

F1 and F2 to negative values of q2. They are now defined partly

on the +q 2 axis and partly on the -q 2 axis. This suggests that

we extend their definitions into the complex q2 plane whereby

we can utilize the theory of analytic functions.

The analyticity of F1 (q 2 ) and F2 (q 2 ) has been investigated

in the complex q 2 plane with the result that these functions

seem to be analytic at every -point except for a cut extending

2 2 2from q =-4m, toq =- 00 . ( isthepionrestmass.)

This result has been proved to every order in perturbation theory,

but has not as yet been proven for the functions themselves.

(That is, even though every term of a series is analytic a t
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a point the series itself need not be analytic at that point.)

This procedure yields a dispersion relation for either

F in the form

00

an unsubtracted dispersion relation which requires F(q 2 ) -.-.- Q

as q 2 _-_ OO or

o*

a I4m Tma)

a subtracted dispersion relation where F(q 2 )/q2 --- + 0 as

q2 o®

These dispersion relations (whichever form is pertinent)

can only be of use if we know Im F(q 2 ) for all q2 . This

quantity can be expressed as contributions of the following

kind. Consider any system into which a virtual photon with

2 = m
q can go with energy and momentum conservation such

that this system can in turn annihilate and produce a nucleon-

antinucleon pair. Then each such system contributes to the sum

an amount which depends on the two amplitudes involved, i.e.

the amplitude for the photon production and the amplitude for

subsequent annihilation and nucleon-antinucleon production.

Note that for m2 ) -4m 2 there are no contributions.
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The process involving a 7T + - - pair in the intermediate

state is shown in Figure 9.

N N

7r t 7

FIGURE 9

The program indicated for a full evaluation of ImF( m2 )

is clearly difficult considering the number of processes possible

as m2 gets more and more negative, but several approximate

approaches suggest themselves. For q2 small one might expect

the major contributions to the integral to come from small m2 ,

that is from intermediate states of small mass. The first

approximation then is to represent ImF (m2) by the two -pion

contribution shown in Figure 9.

From the above discussion it is evident that we need the

matrix element for the process -- + 77++ 77~ . This is a

difficult problem in itself. However, the pion has only one

form factor, F (q 2 ), which must be determined. We can now
*7T

repeat the above discussion for F. (q2 ) and in the same way

arrive at the problem of evaluating the graph in Figure 10.

FIGURE 10
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This diagram contains the photon-pion vertex again and also

7T -- 7T scattering, which we do not now know how to treat. This

problem has been investigated by Frazer and Fulco whose work

indicates the necessity for a strong T = 1, J = 1 resonance

in rr - 7r scattering. Among the variety of resonances (or new

particles) which have recently been discovered, two seem to

have the right quantum numbers to play a role, the 1 with

T = 1, J = 1- and a mass of - 780 Mev and the w with T = 0,

J = 1~ and a mass of ' 790 Mev. The (0and w suggest

that the isoscalar and isovector parts in the theory can

(accidentally) cancel as they should to give F 1 n(q 2 )^_ 0.
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Introduction

It is indeed a pleasure for me to present these lectures

on the theory of mesons and baryons. In order to -develop a

subject like this in a meaningful way, I think it would be

best for me to summarize some well-known ideas in the beginning.

Strongly interacting particles can be divided into two

groups -according to their statistics. Those which obey the

Bose-Einstein statistics are called mesons and those which

obey the Fermi-Dirac statistics are called baryons. The mesons

and baryons which have been experimentally observed are shown

in Table 1. Notice that the antimesons* are listed with the

mesons, while the antibaryons are listed separately. We will

comment on this difference later.

Table 1

Known Mesons and Baryons

Mesons Baryons

Nucleons

7T"

K Mesons Hyperons

We aniparicleof APlus an antibaryon for

* edenote the atprilofAas A. Note that 77 = 7T
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Conservation of charge and baryon number are two well

known conservation laws which govern the interactions of these

mesons and baryons. Conservation of charge states that the

total charge of a system of particles does not change.

Conservation of baryon number states that, in a system of

particles, B (the number of baryons) minus B (the number of

antibaryons) does not change. There are also conservation laws

for energy and momentum, but we need not explicitly consider

them here.

Conservations of charge and baryon number alone are not

sufficient to account for the observed properties of the

interactions of mesons and baryons. For example, the following

two reactions conserve both charge and baryon number:

7' + p M .}+ K (1)

77~+ - n+ .(2)

Reaction (1) is found to have a large cross section, while

reaction (2) is not observed. This problem was solved by

Gell-Mann1 and Nishijima2 by introducing the idea of strange-

ness. They assigned a new quantum number, called strangeness,

to each particle, and postulated that strangeness is conserved

for strongly interacting particles. We then find that in

reaction (1) strangeness is conserved while in reaction (2)

it is not.
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A mathematical formulation of these ideas was given by

d'Espagnat and Prentki 3 . They utilized the concept of the

three-dimensional charge space called the isospace and obtained

a relation of the form

Q =I3 + U, (3)

where Q is the charge in units of e, 13 is the third component

of the isospin, and U is the hypercharge. The name hypercharge

for the quantity U, which is closely related to the strangeness,

was first used by Schwinger4 .

It is well known that the invariance of the Lagrangian

density L under rotations in the isospace gives the conser-

vation of I3. D'Espagnet and Prentki have also tried to derive

the conservation of hypercharge by requiring that L be invariant

under inversion (reversal of the three axes) in the isospace.

But such an inversion only ensures the conservation of parity

in the isospace, and gives us

A U=4n, (4)

where n is a positive, negative, or zero integer. To overcome

this difficulty they imposed the restriction that U can take

only the values

U = 0, +1, (5)

which, together with (4), leads to the conservation of U in the

usual type of interactions. However, the restriction (5) is
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not only rather artificial but also looks suspicious, because

it rules out the existence of any new charged mesons or baryons,

although several claims for the possible existence of such

particles have been made from time to time.

There have been many attempts to extend this theory.

These attempts usually extend the number of dimensions in the

isospace to four or more in order to replace the discrete three-

dimensional inversion by a continuous four-dimensional rotation.

The invariance of L under all rotations in this four-dimensional

space gives the conservation of U without limiting its values.

However, the number of particles introduced in the theory is

much larger than has been observed. One hesitates to accept

a theory with many unverified particles.

We shall, therefore, follow a different approach in which

we return a three-dimensional isospace but replace the discrete

inversion by a suitable continuous transformation. We shall

thus obtain the conservation of hypercharge without any artifi-

cial restriction and without introducing too many new particles.
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I. Three-Dimensional Spinors

Before formulating the theory of mesons and baryons, we will

discuss the mathematical theory of three-dimensional spinors

by simplifying the original work of Cartan5 .

Let a be a vector with complex components and such that

2 2 2a1  +a2 + a3 0. (6)

Since a satisfied equation (6) we can construct only two

independent quantities from its components. Let us choose

them as

u = (-a 1 + ia 2)2

v = ( a1 + ia 2)

uv = a3 ' (7)

where the third relation fixes the relative signs of u and v.

The components of a transform under an infinitesimal rotation

as

a' = a. + (.ik ak('1 1 k k '(8

where the WiA are real infinitesimal quantities with the

antisymmetrical property 44)ik = - (4) k i. Applying equation

(8) to equations (7), we see that u and v transform under an

infinitesimal rotation as
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u' = u + iW1 2u + (i° 2 3 +W 3 1 )v

v' = v - i 1 2 v + (i&) 2 3 - 3 1 )u (9)

If we write

(10)

then equations (9) can be written in a more compact form as

41' ' Z 2W3 G1 31 2 f / '3)
(11)

where

(O-i

dowoop 
Toz

ti / A

4 3 =® 
I

(12)

The two-component quantity 9 is called an isospinor.

Consider the transformation of 9 under inversion. The

components of a transform under inversion as

ai= a ,

and therefore, according to (7), 9 transforms either as

L ( , ?J'= L zr yof / "

r 44, (13)
i

or as

LI "
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The two preceding transformation relations refer to isospinors

of the first and second kind, respectively.

The following two theorems relating to these isospinors

are particularly useful:

Theorem 1

Let 4 = ( r ) be an isospinor of the first kind.

Then u = ( '*) is an isospinor of the secon

Proof

We see from the complex conjugates of equations

(9) that 0 transforms as an isospinor under

infinitesimal rotations:

d kind.

0. 3 / 3l j +W 3 +

Further, under inversion, u and v transform as

u' = iu,

v' = iv,

so that u* and v* transform as

=a
u*' =-iu*,

v*' =--iv*,

and 0 transforms as an isospinor of the second kind,

0' = -- i0.
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Theorem 2

If is an isospinor of the first kind and Y

is an isospinor of the second kind, then

A) * and '*$ are isoscalars,

B) j* I and are isopseudoscalars,

C) '* '1 4'and * * 1are isovectors,

D) $* o r' and * T f are isopseudovectors.

In Theorem 2, we have used the following definitions:

An isoscalar (isopseudoscalar) is a one component

quantity in the isospace which does not (does)

change sign under inversion.

An isospinor of the first (second) kind is a two

component quantity in isospace which is multiplied

by i(-i) under inversion.

An isovector (isopseudovector) is a three component

quantity in isospace which does (does not) change

sign under inversion.

The proof of the above theorem easily follows from

the transformation relations for isospinors under

infinitesimal rotation and inversion.

We can construct quantities with any number of isospace

components. For example, a four-component quantity is obtained

by first multiplying a spinor, q' = (p.), and a vector,
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U,
U = ( U&), to get a six-component quantity

U3

= vU. ), i = 1, 2, 3,

and then imposing the condition, =0, to eliminate two

of the six components of . A five component quantity is

obtained by taking a symmetrical tensor, Ugk and imposing the

condition i = 0, and so on.
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II. Isocovariance And Isocharge

For any isocovariant quantity , we can express the

transformation relation for an infinitesimal-rotation as

23:1(31 - 3,> (15 )

where 9 is written as a column matrix, and, in general, can

have any number of components, while I, 12, and 13 are the

Hermitian isospin matrices.

We can illustrate this general transformation by several

examples. An isoscalar or isopseudoscalar, , transforms as

(16)

and the isospin matrices are

I = I =2 3 = 0.

An isospinor of the first or second kind, = ( u-), trans-

forms as

(17)

and the isospin matrices are

I. -

-350-



UI,
An isovector or isopseudovector, ) = ( / ), transforms as

U3

U'. = U. +C ik U k (18)1 1

and the isospin matrices are

/00 0
I = 100-i

l 0 0

fQ O12 =(o oo)
I 2 = O000

- 0 0

0-49 O

13 = (£00

\00/

For the isovector and isopseudovector, it is more useful

to choose the components of in such a way that 13 is

diagonal. Thus, if we take

where

U 3

then 13 is diagonal and given by
oO 

O

'3 = (l0, )

Table 2 lists the diagonal 13 isospin matrices for isoco-

variants with one to five components.
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Table 2

Diagonal 13 Isospin Matrices

I socovar iant11
3

One Component 0

( 0
Two Components

0 -

Three Components 0 0 0

0 0-1

3/2 0 0 0

0 b 0 0
Four Components

0 0-b 0

0 0 0-3/2

2 0 0 0 0

0 1 0 0 0

Five Components 0 0 0 0 0

0 0 0 -l 0

0 0 0 0-2

Consider an infinitesmal rotation is isospace through an

angle about the X3 axis. For this rotation, the trans-

formation coefficients (4i are
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W 2 3  =0 3 1  = 0

0)12 = d II

i transforms asand the isocovariant

P =(+ SOI (19)

Since S 9 is infinitesimal, we can write (19) as

a$~q (20)
)

and for a finite angle of rotation ', equation (20) becomes

ow" e' 5 (21)

Let us denote the rth diagonal element of I3 as Zn and

call Zr the isocharge associated with the rth component of .
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III. Inversion and Hypercharge

Inversion is usually regarded as a discontinuous transfor-

mation. However, we can associate a complex plane with each

of the three axes and rotate any axis through an angle 9 in

its complex plane as shown in Figure 1. Inversion is then

obtained by the simultaneous rotation of all three axes through

an angle g = 77 in their complex planes.

Figure 1

Complex X, -Plane

81

Xi 1

Under a rotation of all three axes in their complex

planes through an angle g, the unit vectors transform as

L =L e-+ +i-

(22)

At first one would think that if A is an isoscalar and B. is

an isovector, then they would transform under the rotation (22)

only as
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A'= A
(23)

B, _ .. e
. : 3j (24)

But, it follows from (24) that the isoscalars 3. , B. .. and
* 2.B1 transform as

Ba
3. :e

.. 2I9it -B A 3 . =3B3 i1i
ie( *2: e .3. (25)

' )

and by multiplying the above relations with each other we can

obtain further transformation relations for the isoscalars.

We can, however, obtain the same result more easily in the

following way: Let the isoscalar A transform as

A'e'A ,(26)

where Y is a constant which is to be determined from the

condition that e Y= for 0 = 7T . This gives us

e =1 (27)
)

or

+a (28)

Thus, we obtain infinite types of isoscalars with different

transformation properties under (22), which would be indistin-
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guishable from each other if we confine ourselves to the usual

discontinuous inversion.

In general, any isocovariant transforms as

'I = e , (29)

and, since a rotation through an angle 7T corresponds to

inversion, we get the following restrictions on y:

e iTy = 1, for isoscalars and isopseudovectors, (30a)

e= -1, for isopseudoscalars and isovectors, (30b)

e1 rry= i, for isospinors of the first kind, (30c)

e17y = -i, for isospinors of the second kind. (30d)

Equations (30) imply that

y = 0, +2, +±4,... , for isoscalars and isopseudovectors,(31a)

y = +1, +3, +5,... , for isopseudoscalars and isovectors, (31b)

y = +2, +14,..., for isospinors of the first kind, (31c)

y = - -%2, - +4,±... , for isospinors of the second kind.

(31d)

We call y the hypercharge associated with the isocovariant

When 13 is diagonal, we can also define Q as *

Q = 13 + y, (32)

where the rth diagonal element of Q is called the charge asso-

* Note that y in equation (32) and U in equation (3) differ by
a factor of two.
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ciated with the rth component of the isocovariant

The values of isocharge for any isocovariant 41are
uniformly distributed about zero, and therefore its average

value vanishes. Thus, the hypercharge equals the average charge

associated with the components of - .
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IV. Charge Conservation

We shall now make use of the following well-known theorem

from field theory:

Let a system of fields be described by the isoco-

variant field operators, P (1) , ... , 4 (n), such that

each field operator is a one column matrix. Let

r (s) , the rth element of // (s), contain the

annihilation operators for particles with charge

Qr (s) and the creation operators for particles with

charge -Qr (s) . If the Lagrangian density, L, of this

system is invariant under the transformation of all the

field operators as

(s f= e '~Cs y S

(33)

with oC an arbitrary constant, then the total charge

of the system is conserved.

We postulate that L is invariant under arbitrary rotations

in isospace as well as under simultaneous rotations of the

isospace axes in their complex planes through any arbitrary

angle. It then follows that L is invariant under the trans-

formations

(3(s)

CS,'d I3 C (34)a
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and

i. () S)

F. .(35)

Since L must be invariant under the product of transformations

(34) and (35) , we also obtain invariance of L under the trans-

formation

s) ' I s + ( ) (s) - g S) s) ( 6e 3 Y-e OQ (36)

which, in view of the above field-theoretical theorem, leads to

charge conservation.

Transformation (35) contains inversion as a special case,

and hence L is invariant under inversion. However, invariance

under inversion does not imply invariance under the transfor-

mation (35). Thus, the invariance of L under isospace rotations

and inversion is not sufficient to imply charge conservation

in general.

We have derived charge conservation in strong interactions

by considering only the structure of the theory of strong

interactions. It has not been necessary to invoke the gauge

invariance of the electromagnetic field.
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V. Multiplets Of Elementary Particles

Elementary particles with the same values of baryon number,

isospin, and hypercharge are said to belong to the same

multiplet. Particles belonging to the same multiplet must have

the same parity and spin. Their masses should also be the same.

However, they are found to be only approximately equal. For

example, there is a 4.6 Mev mass difference between the charged

and neutral pions. Proposals have been made to account for

the mass differences on the basis of electromagnetic inter-

actions6 , but we will not comment on the merits of these

proposals.

If we assume that corresponding to every set of values of

isospin, isocharge, and hypercharge there exists one meson, one

baryon and one antibaryon, and if we restrict the charge of the

mesons and baryons in any multiplet to Q = 0, +1, we obtain

the mesons and baryons shown in Table 3.

Notice that for every baryon there is an antibaryon with

opposite isocharge and hypercharge. We are free initially to

choose any one of the particles as a baryon or antibaryon.

However, the remaining assignments follow from the conservation

of baryons. It should also be noted that since the number of

mesons is not conserved, it is impossible to divide them into

mesons and antimesons in a unique way.
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Table 3

Meson and Baryon Multiplets with = 0, +1

H

Iso- Iso- Hyper- Anti-

Isocovariance spin charge charge Charge Meson Baryon baryon

Isoscalar 0 0 0 0 A

Isopseudo- 0 0 1,-1 11-1 0,X,

scalar

Isospinor + 0 %- o
first kind ,/- 1,0 K ,K p,-n

Isospinor ^' -
second kind - - 0,-1KK .-. n

Isopseudo- + .
vector 1 1,0,-i 0 1,0,-1 iT 7 L, ,

Isovector* 1 1,0,-1 -

* The smallest value of the hyper charge (1, -1) gives doubly
charged particles for the isovector. Thus, there are no
isovector multiplets with Q = 0, +1.



Without any mathematical inconsistency, we could have

defined Q in a more general way as

Q = 13 + cy,

where c is any constant. However, it is easy to see that when

c = 1, the number of particles in multiplets with Q = 0, +1

is maximum. Thus, nature seems to prefer multiplets with

Q = 0, +1.
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VI. Interactions of Mesons and Baryons

We denote the field operator of a particle by the symbol

for the particle, as shown in Table 4. For instance, g denotes

the operator for the proton field, which contains the annihi-

lation operators for protons and the creation operators for

antiprotons.

Table 4

Field Operator

Meson Baryon
Isocovariance Field Operator Field Operator

Isoscalar A

Isopseudoscalar -,' 0- . X Y

Isospinor first kind K X N*"h

Isospinor second kind K = +*= -: (t)

Isopseudovector 77.

77: -- -- (s-.

7r 7r7

.3 3

In writing the interaction terms, we will assume that all

mesons have spin zero and all baryons have spin . This may
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not be sufficiently general, and some particles may have

higher spins. However, the theory can be easily adapted to

include higher spins.

Table 5 lists all the meson-baryon interaction terms

which:

1. are invariant under the transformations leading to
conservation of isocharge and hyper charge;

2. are invariant under Lorentz transformations;

3. conserve baryon number ;

4. are invariant under charge conjugation; and

5. are linear in meson fields and bilinear in baryon
fields.

Table 5

Meson Interaction Terms

7r)+ -rfK +K A)

. ,7(N ri f *+ fn N o + (r nY1K ~2n 
: l %eA n An x a ~ t~ - g)+

jF~nX + + A ojJ:
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In Table 5, the symbol : : denotes the.ordered

product7 , and Cijk is the completely antisymmetric tensor

with (E123 = 1. Further, N = N* I etc., where an asterisk

denotes the Hermitian conjugate.

The interaction terms also involve the operator , which

is chosen in such a way that the interaction is Hermitian as

well as invariant under space inversion. It is well known

that the behavior of a field operator under space inversion is

given by

P qfor a meson field, (37)

and

9 P Pfor a baryon field, (38)

where P = +1 denotes the parity of the field operator. It

follows that if P1 , P2 , and P3 are the parities of the three

field operators coupled to each other, then

if P1 P2 P3 = 1, (39)

and

if P 1 2P 3 = -1. (40)

One might ask whether the parity of a particle is an

observable quantity. The answer is that what we observe is the

effect of parity on the interaction of particles, and therefore

in general PlP 2P3 is an observable quantity. If in an inter-

action term it is required by theory that P1 = p2 , then
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PlP 2 P3  = p1
2 p3  =P 3 '

and thus P3 becomes an observable quantity. However, if the

theory does not require any definite relationship between

Pi, P2, and P3 , these parities separately are not observable

quantities. The interaction terms for mesons and baryons

show that the parity of pions is observable, while the parity

of K mesons can be fixed only by convention.
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VII. Experimental Evidence for the Mesons and Baryons

All the particles listed in Table 3 have been observed

except , , ~~, X and Y , and there is some

evidence for the existence of these particles.

The c'has the following properties: It has zero isospin

and is neutral. We would expect it to have zero spin, since the

mesons which have been observed, the 77 and K, have zero spin.

However, a higher spin for the is not definitely ruled out.

The * interacts strongly with every baryon and, thus, should

be readily produced. Since the has not been observed, it

should be extremely unstable and presumably decay strongly into

pions. This, of course, is possible only if the ° has a

mass greater than that of two pions.

Several resonances have recently been reported in pion

final states, and one of these could be the 1* . Abashian,

et alb have reported a resonance with the quantum numbers of

a scalar, neutral meson. Maglid, et a19 have reported a

resonance with the quantum numbers of a vector, neutral meson.

Moreover, Pevsner, et allO have reported a neutral pion

resonance, which has been classified as pseudoscalar by

several authors. 11  Besides these direct experimental results

for the existence of the ?" , the nucleon-nucleon interaction

gives some evidence of the 0 .12
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The 0+ and a-~ could correspond to the heavy mesons

of mass about 1500 /e and strangeness + 2, which are needed

for the interpretation of the observations of Fry, Schneps, and

Swmi13 adotes14Swamil, and others . The Y could correspond to the heavy

baryon of mass about 3200 me and strangeness - 3 observed

by Eisenbergl 5 , and the relationship between the X+ and Y~

baryons could be regarded as similar to that between the p and

baryons, which ensures that an equal number of positively

and negatively charged baryons exist in nature. The above

experimental evidence refers to anomalous events observed

during the study of cosmic-ray stars, and further experimental

work in high-energy laboratories is needed to settle the

question of the possible existence of these particles.
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VIII. Quantitative- Calculations

For strong interactions the coupling constant is greater

than one. For instance, for pion-nucleon interactions,

.. |70C :n I

In perturbation theory an expansion is carried out in powers of

the coupling constant, and therefore the higher order terms in

the series should get progressively larger. One wonders if

perturbation theory has any meaning at all for strong inter-

actions.

It is interesting to observe that in spite of the large

coupling constants, it is sometimes possible to obtain meaning-

ful quantitative results by applying the perturbation theory.

For instance, it is well known that in the case of nuclear

forces the range of the force is roughly proportional to the

inverse of the mass of the particles exchanged between the

nucleons. Specifically, the range is:

Ma (41)

Thus, if m, is the pion mass, the nuclear force is approxi-

mately given by one pion exchange for distances of nucleon

separation greater than about M7rC , by one and two

pion exchange for distances greater than about AAmrr
and so on.
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One pion exchange has been used by Moravcsik et al. 1 6 , and

one and two pion exchange has been used by Breit et al.1 6 for

proton-proton scattering up to 310 Mev in the laboratory system.

Roughly speaking, their calculations show that, except for s

and p waves, we can reasonably well account for all higher

partial waves in proton-proton scattering by using one and two

pion exchange interactions. It is, of course, natural to find

that s and p waves cannot be treated in this way, because for

such waves the interaction at very small distances cannot be

ignored. A full discussion of the nucleon-nucleon interaction

would be outside the scope of these lectures, and I have

therefore confined myself to these brief remarks.
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