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LIST OF SYMBOLS

In the following some of the more frequently used mathematical

symbols are defined. Whenever possible the equation in which the symbol

is first introduced is given and the reader is referred to the text for

definition. Some symbols are used for more than one quantity, but their

meanings should be clear from the context.

A

A(K'k';Kk)

a

a+(X,K, s), a(X,K, s )

a 2 _ coh inc

BA+1

B ( ',) B (P' ,P),B (P" P P')
a o-- - a

D

D -(t)

E, EK

E(X,x)

ER

E

EKk, Er

EA
k

A
E

- Atomic mass

- Scattering "frequency", Equation (5.2)

- "Free-atom" scattering length

- Creation, destruction operators for
neutrons at (X,K,s)

- Scattering lengths, see Equation (4.71),
(4.72), and (4.76)

- (m+MA-MA+l) c2

- Fission frequencies, Equations (2.80),
(5.43b), and (5,43c)

- Density operator, Equation (2.29); also
see Equation (4,45)

- Density matrix, Equation (2.28)

- Neutron energies, my2/2 or -h2 K2/2m

- Step function, Equation (2.2)

- Nuclear recoil energy, Equation (4..53)

- Photon energy, -hcK

- Relative energies, Equation (4.4)

- External energy of mass A nucleus in

external state k

- Internal energy of mass A nucleus in
internal state a
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F (X,K, t) or F1 (_K t )1 -

Fs (XK,t)

F (X, _,t)
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1 -
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G(r,t)

H

H'

In(x)

- Excitation energy of a-th level in mass
A+l compound nucleus

A+1 A+1
- E - B

- EA+1 + s + BA+1
a a

- Coarse-grained neutron singlet density,
Equation (2.27)

- Spin-dependent coarse-grained neutron
density, Equation (3.65)

- Coarse-grained photon density, Equation
(3.67)

- Coarse-grained singlet density for a
particles, Equation (5.44a)

- Coarse-grained neutron doublet density,
Equation (2.70)

- Coarse-grained doublet density for a
particles, Equation (5.44b)

- Coarse-grained cross density for neutrons
and a particles, Equation (5.44c)

- Neutron density, Equation (2.30)

Density of mass A nucleus, Equation (4.27)

- Scattering frequency, Equation (2.80)

- Detection frequency, Equation (5.l45c)

- Resolvent operator, Equation (3.2)

- See Equation (4.78)

- Hamiltonian of system which interacts
with the neutrons

- See Equat ion (2. 42)

- Modified Bessel function of order n and
argument x
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JK

{Ks}

k

k

ktB

L

t(v'-> v)

M

m

mL

N(X,K,s), N'(X,K,s)

NA(X)

n

n >

P

P

- Neutron wave vector, //; also a particle
wave vectors

- A set of J neutron wave vectors

- A set of J wave vectors which contains

(does not contain) the wave vector K

- Wave vector and spin labels of the J
neutrons produced by fission

- Quantum label of nuclear external state,
Equation (3.38)

- Wave vector of a nucleus, p/t

- Boltzmann's constant

Cell length in coarse-grained configuration
space

- Superscript or subscript denotes a
particular nucleus

- Fission frequency, Equation (3.99)

- Mass of the nucleus

- Neutron mass

- Mass of L-th nucleon

- Neutron occupation number at (X,K,s) in
the state In>, In'>

- Number of mass A nuclei in the spatial cell
centered at X

- Nuclear density

- Neutron state, Equation (2.18); system state,
Equation (3.35)

- Total number operator

- See Equation (4.45)

- Neutron momentum; momentum of a~ part icle
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- Distribution of external nuclear states

L
- Nucleonic momentum conjugate to

- Neutron momentum transfer divided by T1

- Total reaction rate

- Scattering reaction rate, see Equations
(3.95) and (3,97)

- Position vector of center-of-mass of 2-th
nucleus

- Reduced transition matrix, Equation (3.33)

- Reduced reaction matrix with neutron and
photon number dependence extracted,
Equation (3.51)

- Position of L-th nucleon in £-th nucleus

- See Equations (3.42), (3.51), (3.52), and

(3.94)

- See Equations (3.81), (3.82), (3.96), and

(3.98)

- See Equations (3.68) and (3.69)

- See Equations (3.87) and (3.88)
C_

- Neutron spin orientations label

- Shift function, Equation (3.49)

- Reduced potential for elastic potential
scattering by £-th nucleus, Equation (3.73)

- See Equation (4.19)

- Nuclear matrix element for emission
(absorption) of a neutron by 2-th nucleus

- Nuclear matrix element for emission (absorp-
tion) of a photon by 2-th nucleus, Equation
(5.55)
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- VN+V7

- Nuclear velocity

- Neutron-nuclear interaction

- Photon-nuclear interaction

- Neutron velocity

- Potential functions for elastic potential

scattering, Equation (3.71)

- Transition probability per unit time,
Equation (2;.56)

- See Equation (3.39)

- See Equations (2.65), (2.67), (2.73), and
(2.71.)

- Position vector locating the center of a
spatial cell

- Equilibrium position vector of the 2-th
nucleus in a crystal.

- See Equation (4..5); see also Equation (5,23);
also as complex variable

Greek Letters

a - Quantum label of nuclear internal state

- (kBT) 1

- Width function, Equation (3.50)

- Partial radiation (neutron) width for a-th
level

ra

r(R) (p(N))

7 (Z)
n

- Width and shift function

- EK - EK'
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x

n nn

- Dirac delta

- Kronecker delta.

- See Equation. (4.45)

- Scattering angle (laboratory)

- Photon wave vector

- Photon polarization; also as effective
range in neutron-nuclear interaction

- See Equation (3.72)

- Reciprocal neutron wave vector, K~
- Reduced mass; also as chemical potential,

Equation (5.6)

- Neutron number operator, Equation (2.16)

- Macroscopic cross section for capture,
detection, fission, scattering and total
reaction

- Microscopic cross section

- Energy and angle differential scattering
cross section, Equation (4.36)

- Microscopic cross section for potential,
resonant, and interference scatterings

- Cell function, Equation (2.1)

- See Equation (4.25)

- Oscillator frequency

- See Equation (3,17)
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I. INTRODUCTION

Theoretical studies of neutron distributions(l) are usually

based - more or less directly - upon the transport equation,

( + v V + v ) f (x, v, t)

= fdv'vt E' f(x, v', t))'(v' -v) + S(x, v, t). (l.)

Here E is a macroscopic cross-section (or probability per unit path for

small paths for a binary interaction), )' is a scattering frequency, and

S is a neutron source which may or may not depend upon f. The distribu-

tion function, f(x, v, t), is the neutron singlet density in phase space

or the expected number of neutrons per unit phase volume to be found at

the phase point (x, v) at time t.

The theoretical defense of this equation is generally couched

in phenomenological, though plausible, terms.(1) However, its usefulness

as a description of neutron distributions has received so much experi-

mental verification that little interest has been generated for the

exploration of the logical basis for its phenomenological derivation.*

Nevertheless, such an exploration seems desirable - if only on esthetic

grounds, or "for the sake of completeness." Thus in this work such a

study is initiated.

The axiomatic basis for the theoretical examination of macro-

scopic systems is usually taken to be the Liouville equation. Although

*See, for example, the determination of neutron age in water. (2)

-l-
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there is a deceptively classical appearance to Equation (1.1), it

turns out to be practically necessary to start from the quantum

Liouville equation. This necessity manifests itself almost as soon

as the problem is posed, and in several different ways. In the first

place, at least some notion of a Hamiltonian for the system must be

formulated. And though such a notion is at best fuzzy and incomplete

in the present instance, it is almost unthinkable classically. That

is, there does not seem to be any classical formalism suitable to the

treatment of systems in which particles of given kinds are not conserved.

But in multiplying and/or absorbing media, the density of neutrons,

photons and nuclei may be continuously changing due to fission and

radiative capture. Furthermore these reactions may contribute signifi-

cantly to the over-all rate of change of these densities, and therefore

are not generally ignorable. To facilitate a convenient and systematic

discussion of these matters, we turn to the formalism of quantum field

theory.

There is a second, more fundamental, reason for resorting to

quantum mechanics in the effort to develop a unified theory of the

neutron balance relation. As is suggested by the resonance structure

of many neutron-nuclear interaction cross-sections, the discreteness

of nuclear energy states has an explicit influence on neutron distri-

butions. Such discreteness is not comprehensible in classical terms.

Thus if a unified treatment of the neutron balance is to be undertaken

the subject must necessarily be viewed from the quantum perspective.

Furthermore, the necessity for this perspective receives reinforcement
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from the fact that, under some circumstances, the discreteness of the

energy states of the macroscopic medium may also exercise an influence

on neutron balance. Actually, although the peculiarly quantum character

of the energy states of the macroscopic medium (of, say, phonon states

in a crystal) is known to play a significant role in the determination

of slow neutron ( t 1 ev) scattering; it is not wholly clear what its

influence is on neutron balance. Nevertheless, it is potentially of

some significance and surely should not be unnecessarily disregarded.

As an aside, it is worth noting that a given system - a

fission reactor, for example - may be observably influenced simul-

taneously by nuclear level separations of from Kev to Mev and by

macroscopic medium level separations of tenths of an ev or less.

There is a third reason for investigating these matters in

quantum - rather than classical - terms. It originates in the attempt

to give meaning to the notion of an observable density in phase space.

In the absence of further qualifying comment, the density described

by Equation (1.1) is ambiguous. Conventionally, it is required that

f(x, v, t) d3x. d3v represent the expected number of neutrons to be

found in the phase volume d3x d3v about the phase point (x, v) at

time t. But this is impossible (by virtue of the uncertainty

principle) if the volume element ddx d3v is interpreted in a limit-

ing sense and if not in a limiting sense, then how? In the quantum

development, as will be seen, this question can be answered operation-

ally and unambiguously, though not necessarily uniquely. This follows

because quantum field theory provides us quite naturally with an

operator representative for the number of particles of a given type
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in a phase cell of sufficient volume. Conversely, in the classical

derivations of equations analogous to Equation (1.1), this question

does not arise at all at the level of the definition of the density

function. However, it does seem to enter through the back door

during the course of the derivations, and then is usually disposed

of by means of operationally obscure "coarse-graining" procedures.

The situation seems to be that in the quantum theory - in contrast

to classical theory - it is possible to obtain an accurate translation

of the notion of the observable - and of the limits of its observ-

ability - into operational terms.

Finally, there are still other peculiarly quantum effects

which should, at least in principle, modify details of neutron balance.

For example, the velocity space distribution of fully thernalized

neutrons should be of the Fermi-Dirac type rather than Maxwellian.

This implication should be explicit in the structure of the neutron

transport equation and, in a sense, will be seen to be so. However,

quantum details such as these are not anticipated to be of much

practical significance, since it is difficult to visualize situations

in which the neutron Fermi-Dirac distribution will be distinguishable

from a Maxwellian.

As suggested above this work is intended to initiate a study

of the foundations of neutron transport theory. Consequently, our con-

cern shall be much more for posing questions than answering them.

Whenever it is easy and elementary enough, we shall sketch arguments,

which are hardly to be construed as proofs of anything, leading to
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answers of a sort. That is, the present discussion must be interpreted

solely as providing an illustration of some of the sufficient conditions

for the validity of an equation like Equation (1.1) for the description

of neutron distributions. Many approximations will be made with oper-

ational precision, but with little or no attempt at quantitative

justification.

The presentation is divided into four main parts. In

Chapter II, a certain amount of formalism is introduced and discussed.

Some familiarity with quantum field theory is helpful here, but not

necessary if our approach is accepted as axiomatic. Deductive argument

is sketched in fairly complete detail. In this portion distribution

functions are defined, and the main problem of deducing their time-rate-

of change is joined. The effect of transport (free flight) on the

balance relation is explicitly considered. Conventionally this effect

influences neutron balance through the term of the form v - Vf which

measures the net efflux out of the element of volume in which particle

balance is being computed. This is the result found here also, though

only in an approximate sense. That it must necessarily be approximate

can be partially seen from the fact that particles of some specified

momentum require a volume for localization of least linear dimension

somewhat greater than the De Broglie wavelengths for these particles.

But the difference between the values of the distribution function on

opposite sides of this volume cannot generally be represented solely

in terms of the first derivative of this function. Thus we anticipate

that the study of transport will be both complex and subtle.
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Chapters III and IV are given over to an investigation of

the effects of some binary interactions on neutron balance. Since

it is our purpose to point out and illustratively deal with some of

the fundamental problems of neutron transport theory, our attention

to the details of interactions decreases with increasing complexity

of the process. Thus radiative capture and elastic scattering (both

potential and resonance) are studied quite fully for nuclei in gases

and crystals. -Fission and inelastic scattering are too complicated

to be treated with the same care, but are too important to be neglected

entirely. Also the study of reaction rates in liquids presents formid-

able tasks which we merely touch on in passing. Other reactions are

ignored entirely - not because they are unimportant, uninteresting, or

impossible to deal with, but rather because their inclusion seems un-

necessary for present purposes.

The, study of interactions is divided into two parts. In

Chapter III general formulas for the indicated reaction rates are

derived. These formulas are then examined for some of the salient

features of the specifically nuclear aspects of these reactions.

Thus in this portion of the work the discussion must be in some respect

implicit rather than explicit, since it must necessarily touch upon

nuclear forces which are less than fully understood at the present

time. However, it turns out that, for the purpose of obtaining use-

ful estimates of reaction rates, less than full knowledge is required.

In Chapter IV the influence of the macroscopic medium on

these reaction rates is studied. Attention here is restricted exclusively
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to scattering and radiative capture in gases and crystals. Since

there is an abundant literature on these matters, we discuss them

here in somewhat idealized terms simply to illustrate some principles

and techniques in the context of the over-all problem of neutron

transport.

Finally, in.Chapter V,.two disparate and specialized aspects

of neutron balance are discussed in detail. The first has to do with

the nature of the velocity space distribution of thermal neutrons,

while the second relates to the study of higher order densities.

The discussion of thermodynamic distributions is conventional

to the theory of gas dynamics, and is included here essentially for

the sake of completeness. It is not a discussion of neutron thermali-

zation, but only of some of the concepts which underlie what might be

called neutron thermodynamics. However the second topic is non-

conventional in that it represents a systematic development of the

theory of second (and, by implicit extrapolation, higher) order densities

in systems in which particles of various kinds are created and destroyed.

In this matter as in all others in this work, attention is restricted

solely to the derivation of illustrative equations - practically none

being given to the exploration of their implications.
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II, A TRANSPORT EQUATION IN COARSE-GRAINED PHASE SPACE

It was pointed out by the foregoing remarks that the con-

ventional neutron density f(x, v, t) cannot be interpreted as a

quantum mechanical observable because of the uncertainty principle.

To avoid this difficulty, we shall at the outset introduce a discrete

phase space. Such a space can be generated by dividing the continuum

into cells and then representing all points in each cell by the coordi-

nate of its center. Particle densities are then defined in terms of

these coarse-grained coordinates, and no attempt is to be made to

determine the location of a particular particle within any given cell.

In a multiplying and/or an absorbing system the number of

neutrons in a given region in phase space is constantly changing, not

only due to the natural flow of these particles but also due to fission

and absorption processes. The creation and destruction of neutrons can

be quite conveniently described in the formalism of second quantization

by representing the particles by a two-component spinor field operator

r (x), where j = 1 or 2 is the spinor index. The field formalism plus

a procedure for coarse-graining phase space enables us to obtain a

particular representation of the number operator, the eigenvalue of

which gives the number of particles in a given region in phase space.

In terms of the number operator a coarse-grained, quantum mechanical

analogue of f(X:, v, t) can be defined. This new neutron density will

be the quantity for which a transport equation is deduced, and thus

provides the basis of the present investigation of neutron transport

theory.

-9-



-10-

A. Some Basic Formalism

We will first review some of the fundamental concepts and

introduce the notations which will allow us to define a coarse-grained

particle density in the next section. To introduce the coarse-grained

phase space in operational terms we divide the configuration space into

identical cubical cells with edge length L. Let an arbitrary point in

configuration space be denoted as x and let the set of position vectors

{xJ denote the cell centers. The coarse-graining procedure now con-

sists of introducing the cell function, (1)

-3/2 iK-x
cp (X,K,x) = L E(X,x) e - - , (2.1)

where

3
E (X,x) = II E(Xi,x ) (2.2)

i=1

E (Xi,xi) = 1, Xi - L/2 < xi < Xi + L/2

= 0, otherwise.

The cell function cp(X, K, x) is seen to describe a plane wave

which is nonvanishing only within the cell centered at X. In Equation

(2.2) the step function, E (X, x), is not defined at the end points.

However, if it is represented by the integral

Xi+L/2

E (Xi, x.) = 8(xi - y) dy. . (2.3)

Xi-L/2

It can readily be shown that

E (X ,X~ + L/2) = 1/2 , (2.4)

EX.,xi) = S(xi - Xi+ L/2) -8(x - Xi- L/2). (2.5)
~xi
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These relations describe the behavior of the cell function at the

boundaries, and will be used in the description of particle transport.

For mathematical convenience we will apply periodic boundary conditions

at the interfaces and thereby restrict the components of the wave

vector to take on discrete values, Ki = 2rtMi/L, Mi being any positive

or negative integer or zero. Hence the decomposition of configuration

space results in a transformation of the continuous momentum space to

a lattice of discrete points.

The coordinates of X.and IiK are to be regarded as coarse-

grained variables in our description of particle densities. The phase

point (X, BK) is seen to represent a cubical region of volume h5 in

phase space. Any particle found in this volume will be assigned the

coordinates of the phase point. The uncertainty in position and

momentum implied by this procedure is therefore consistent with the

uncertainty principle.

The cell functions, (p (X, K, x), by virtue of the properties

of the step function, provide an analytical means of dividing the con-

figuration space into cells. They can be used to obtain an operator

representation of the neutron field in the coarse-grained coordinates.

Since these functions form an orthonormal and complete set, i.e.,

d x p*(X,K,x) cp (X',K',x) = S ,XXSKK'(2.6)

7 *(X,K,x) p (X,K,x') = 5(x - x') (2.7)

X,K
the spinor field can be expanded as
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4r(x) = 7 a(X,K,s) u (s) cp (X,K,x), (2.8)

X,K,s

where the functions up(s), s = + 1, are the components of unit vectors

in spin space which may have the simple representations, (2)

u(l) = (0) , u(-1)= (0). (2.9)

Furthermore, they have the properties that*

u (S) uk(s) = Sjk ,(2.10)
s=+l

ut(s) u.(s') = 5 , , (2.11)J a s

where the superscript "+" denotes Hermitian conjugate. Note that the

index s labels the orientation of the neutron spin.

The coefficient in the expansion of vj(x),

a(X,K,s) = d x cp*(X,K,x) up(s) *j(x), (2.12)

is an operator governed by the same commutation relations specified for

the field operator. For neutrons and other fermions the operators

satisfy anticommutation rules,

[* (x), *k + = Sjk 8(x - x') (2.13)

[( (x')],= +(x) k +r(x)] = 0.

~We employ the convention in which repeated spinor indices are summed.
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Using Equation (2.12) we find

[a(X,K,s), a (X',K',s')]+= 8n' 8 , S , ,(2.14)

[ (a(X,K,s), a(X',K',s')]+ = [a+(X,K,s), a+(X',K',s' )] = 0.

For bosons Equations (2.13) and (2.14) would still apply if everywhere

the anticommutator [A,B]+ is replaced by the commutator [A,B].

The operator a(X,K, s) and its Hermitian conjugate are the

conventional fermion destruction and creation operators. This is best

illustrated by considering the effect of these operators when acting

on a given state. Explicitly, let us consider an operator whose

eigenvalue gives the total number of neutrons in a given state. This

operator(2)

ddx *4(x) * (x)j- .j-

(2.15)
= ) a+(X,K,s) a(X,K,s)

X,K, s

is the total number operator and is term-wise Hermitian. A representa-

tion can always be found in which the operator

p1 (X,K,s) = a+(X,K,s) a(X,K,s) (2.16)

is diagonal (hence JYis diagonal since the p's at different points

commute), i.e.,*

p (X,K, s)j|n> = N(X,K, s)I|n > , (2. 17)

*We use Dirac' s notation of bras and kets.(3)
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where N(X,K, s) is the number of neutrons at phase point (x,bK) with

spin orientation s. Since the neutron is a fermion, the occupation

number N(XK, s) .can only be zero or unity. The operator p1 (X,K, s) is

seen to be the number operator at the indicated phase point.

In the above representation, the state in> (ignoring other

kinds of particles in the system for the moment) specifies the distri-

bution of neutrons in X-K-s space as well as the total number of

neutrons in the state. Thus

in > = I N(X,K,s 1 ) N(X 1 K1 , s2 ) . .. N(X,K, s) ... > (2.18)

with

N(X, K, s) = N, (2.19)

X,K, s

where N is the corresponding eigenvalue of the total number operator .

It will be convenient to replace the ordered arguments X , K, and s by an

ordered set of subscripts with one-to-one correspondence. Equation (2.18)

then becomes

| n > = |N1 N2 ... Nx... > . (2.18a)

By using the appropriate commutation relations and starting with Equation

(2.17) one can readily show that for fermions(2)

a n > = 9 N NN 2 ... l-N ... > , (2.20)

a in > = 9 (1-N ) 1N1N2 ... Nx ... > , (2.21)
X-1

9= (-1)bX , bx = 7N~
The phase factor 9arises because the states before and after the oper-

ation of a~ and a~g must be properly labeled. For bosons one finds
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a. n> = [N] 1/2 1N1N2 ... N -l ... > , (2.22)

a+ In> = [NX+l]|/2INlN 2 ... N +l ... > . (2.23)

Of course, the occupation numbers for bosons can be any positive integer

or zero.

B. A Kinetic Equation for F(X,K,t)

Having introduced the neutron number operator in coarse-grained

phase space, we can now define a particle density which has the same

interpretation as that purportedly ascribed to f(x,v,t) and which will

be suitable for use in deriving an approximate transport equation for

neutrons. Let the state of the system of interest at time t be denoted

by Y(t). The expected number of neutrons per unit cell volume at the

phase point (X, fK) is therefore given by

F(X,K,t) = L3 < Y(t)|I pl(X,K) |(t) > , (2.24)

with

p(X,K) = 7' a+ (X,K,s) a(X,K,s) . (2.25)

The expansion

Y(t) = Cn(t) n > (2. 26)

n

results in another form of the expectation value

F(X,K,t) = L 7'Dmn(t) < n |p 1 (_,9)Im> (2.27

fn

= LF Tr D(t) p(X,K) ,
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where

Dn(t) = C*(t) Cm(t) (2.28)

is the Von Neumann density matrix, whiph is the quantum mechanical

equivalent of the classical Gibbs ensemble.*(5,6)

The time dependence of F(X,K, t) is expressed through the

density matrix operator which satisifies the quantum Liouville equation,

D-:i [D, H] (2.29)
at fi

H being the Hamiltonian of the system. It is worth noting that the trace

is invariant under unitary transformations; hence, the representation in

which Equation (2.27) is evaluated may be chosen for convenience. Unless

specifically stated otherwise, we shall calculate all matrix elements in

the representation which diagonalizes the number operator. In the sense

of Equation (2.18), Dnn(t) is seen to have the interpretation as the

probability that at time t the system is in the state |n > in which the

number of neutrons and their distributions in X-K-s space are specified.

The function L3F(X,K,t) represents the expected number of

neutrons with momentum P = fiK and any spin orientation in the cell

centered at X at time t. Since F is the expectation value of an

operator whose eigenvalues are positive or zero, it is greater than

or equal to zero everywhere and hence is appropriate as a particle distribu-

tion function. As defined, F is a density only in configuration space

and not in manentum space; moreover, unlike the function f, it is not a

*The interpretation that a pure quantum mechanical state ~r esponds
to a classical en emble is in agreement with van Kampen;
see also Fano. 6
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distribution in continuous configuration space. The present derivation

of the transport equation actually requires this discrete domain, however,

as conventional results are usually expressed in a -continuous momentum

space, we will ultimately, whenever warranted, sum F over a small

elemental volume d3K according to

F(X,K,t) = (-) F(X,K,t) d K (2.30)

KEd K

= f(X,K,t) d3K

= f(X,P,t) d3P

It is f(X,P, t) that is to be identified as the analogue of the conven-

tional neutron density.

It is perhaps of some value to digress and indicate briefly

how the present approach is related to the phase-space distribution

functions employed in some recent investigations of transport phen-

omena.(1' '8 Consider a generalized phase-space distribution function

xkt) = d35  x- y (1) y Zxy
xd y *k( ~ ) p (x - , x + - 9,t)pk( - =), (2.51)

where {k(x)} is an orthonormal and complete set of space functions and

p(l) is a reduced density matrix given by

(l)(x,x',t) = Tr $[(x') D(x_) D(t) . (2.32)

The function g(x,k,t) has been studied by Mori (7 in deriving the Bloch

equation, (9) and by Ono, (1) in the coarse-grained formalism, in deriy-

ing the Uehling-Uhlenbe ck e quat ion. (0)It provide s a c onvenient mneans

with which one can obtain either the fine-grained or the coarse-grained

distribution functions. For if one uses plane wave for pk(x-), the result

is equivalent to the familiar Wigner distribution function, (8'11)



g(x,k,t) = diy e k p ()(x , x + Zt) . (2.55)

If the cell function is used the result is

g(x,X,K,t) = d3 y cp*(X,K,x--) p (x. - ,_x + ft) (2.34)

y
(x) Cp (X,K,x +

The coarse-grained distribution function is then obtained by integrating

g(x, X, K, t),

G(X,K,t) = dix g(xx,,K,t)

(2.35)

= d3x d3x' cp*(X,K,x) cp (X,K,x' )Tr 4f(x) (x')D t.

In view of the spinor field expansion, Equation (2.8), the above expression

for G(X,K,t) is seen to differ from Equation (2.27) only by a volume factor.

We now consider the time dependence of F(X,K,t). If the system

Hamiltonian is assumed not to be an explicit function of time*, then a

formal solution to the operator equation, Equation (2.29), is

- iTH,/ .iTH/I1
D(t + T) = e D(t)e / . (2.36)

The Hamiltonian can be written quite generally as

H = T+Hs +V+Vnn, (2.37)

* (12)
Problems with time-dependent Hamiltonians are also of general interest,
In the present case it might be realized if the neutrons were exposed to a
time varying gravitational or inhomogeneous magnetic field. These effects,
however, are not likely to be significant in neutron transport theory.
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where T is the kinetic energy of the neutrons, Hs that part of the

energy of the system independent of the presence or absence of

neutrons,* V is the energy of neutron-nuclear and photon-nuclear interactions

and Vnn is the energy of the neutron-neutron interaction. In the

following we shall ignore Vnn, as its effects are truly negligible

in the studies of neutron transport in macroscopic media.**

In the quantized field formalism the non-relativistic neutron

kinetic energy is of the form(2)

T = - _ d-x 2 (x) , (2.38)
2mf0' 0

where m is the neutron mass. This operator can be expressed in terms of

coarse-grained coordinates by means of the spinor field expansion. We

obtain

T = 6 + T' + T", (2.39)

where

~' 22
iK

=2 p (X,K,s) , (2.40a)
/s2m ~~ -"

X,K, s

* In passing, we observe that if Hs is made sufficiently inclusive and if
an appropriate selection of operator representatives of dynamical vari-
ables to be measured is made in any given case, then Equation (2.29)
along with the general form of an observable expectation value,ao(t) = Tr D(t), encompass Maxwell's equations - hence all of classical
electricity and magnetism; equations for radiant energy (photon) trans-
fer(13,15) - hence all of the equations of reactor shielding as well a
the theory of photon interactions with matter; equations for neutral( )
and charged particle(12) gas kinetics; equations of Newton - hence all of
classical mechanics; etc. This is merely an involved way of suggesting
that, in our opinion, Equation (2.29) and D(t) , when appropriately
phrased, provide a suitable starting point for investigations in all
branches of science and engineering.

**The ratio of the neutron density to the nuclear density in a reactor is at
most 10~f or less. If one assumes that the cross section for (n,n) scat-
tering is roughly the same as that for (n, ), then the mean free path for
neutron-neutrori interaction is of order 100 cm or more.
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- i2 ix -(K' -K)

T' = a(X,K,s) a(X',K',s) dx e

X',K; s
X,K

(x) [E(X',x)K''9E(X,x) - E(X,x)K E(X',x)], (2.40b)

i12 + ix '(K' -K )
T"= 2a (X,K,s) a(X',K',s) d3x e -- (- --

2mL3 -. ~ ~ ~~ ~

X_'K~j s
X,K

(x) [VE(X,x) -VE(X',x)] . (2.I.Oc)

The term 8 represents the sum of neutron kinetic energies at every phase

point. This term will serve the useful purpose of determining the neutron

states between which collision-induced transitions take place. The term

T', as will be seen presently, describes the transport of neutrons from

cell to cell. The term T" represents an apparent infinite contribution

to the Hamiltonian. * It is surmised that this term is actually meaning-

less and should henceforth be ignored.

The Hamiltonian now appears as

H = T' + H', (2.41)

with

H' = E + Hs + V . (2.i-2)

This particular decomposition of H is made because we anticipate that H'

is important in connection with collision processes only. In general it

is not true that V is concerned solely with the effect of collisions on

the variation of F. If the particles interact with "external" force

fields, or with each other or other kinds of particles through forces

*The divergences arise as a result of the mathematical procedure. No attempt
should be made to ascribe a meaning to the above decomposition, and the var-
ious terms in Eq. (2.39)should be discussed only in the context of' evaluating
an expectation value such as Tr D[T, p] (cf. (50a)).
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characterized by effective ranges substantially greater than L, then

a portion of V should be incorporated into the description of

transport" (12) The long-range part of V will then provide smoothly

varying forces leading to curved trajectories for the particles between

impulsive events. For the present discussion, however, we shall assume

that V represents only extremely short-range interactions. The operators

T' and H' therefore will give rise to transport and collision phenomena

respectively.

It will be desirable to treat the effects of transport and

collisions separately. To do this we first write

-iT(T't+H' )/h
U(T) = e

(2.1.3)
-iTT' /'h -iTH i

= e e J(T) ,

where J(T) is a unitary operator to be determined by the equation,

= u(t)J, (211.11.)
at

and the boundary condition J(O) = I, I being the identity operator,

The function u(t) can be represented in a variety of ways.. Two such

examples are

i 4 + itT ' /fit -itT ' /ti
u(t) = [H' - U'(t) e "/ H' et U'(t)] , (2.11.5)

and

Co
n+m

where-

U' (t) = e (2.47)
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and [A,B]n denotes the n-th order commutator of A and B, i.e.,
n

[A, B]0 = B,

[A, B]1 = [A, B], (2.x48)

[A, B]2 = [A, [A, B] ],

etc. Making use of this operator decomposition in Equation (2.36), we

find that Equation (2.27) becomes

F(t + T) = L-3 Tr p1 U(T) D(t) U+(-)

_5 iTT'/fi -iTT'/fi+
= L Tr e p1 e U'(T)J(T)D(t)J (T)U' (T),

(2.49)

where use is made of the cyclic invariance of the trace. The dependence

of F andp on X and K will not be explicitly indicated when no risk of

confusion is incurred.

Thus far we have proceeded formally without considering the

structure of the equation we ultimately wish to obtain. The fact that

the neutron transport equation, Equation (1.1), is a first-order linear

differential equation in time suggests that, in order to derive a

similar equation for F, Equation (2.49) should be examined for some

small time interval, T. One can anticipate that there will be a range

of intervals, say T1 < T <T2, in which it is meaningful to decompose

Equation (2.49) into terms describing either transport or collision

effects. The description of transport is expected to be valid so long

as T is less than some upper limit T2 > whereas the description of

collisions is expected to be valid for T greater than some lower

limit T.These limits are rather ill-defined at this point, but

a qualitative estimate for T 2 is suggested by the requirement that
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[(2F/at 2 )/(6F/6t)] << T 2  and for T1 one may take the neutron-

nuclear interaction times to be discussed later.

According to the above considerations we will treat T as

a small but finite interval. Then

F(t + T) = L~5 Tr { p1 + I [T', p1 ] (2.50)

00

+ 7 (i~ '[T', pl]m }U'(T)J(T)D(t)J+(T)U'(T)

m=2

L~3 Tr {p 1 + [T', p1 ]} U'(T)J(T)D(t)J (T)U'+(T)

For sufficiently small T such that all terms in the m sum can be neglected,

transport is described by the second term in Equation (2.50). Since this

term is already proportional to T we will keep only the leading term in

the transformation

U'(T)J(T)D(t)J+(T)U'+(T) = D(t) + 0(T) . (2.51)

For the first term in Equation (2.50) we will ignore the effect of the

operator J. This approximation is justified by the fact that

J(T) = I .+ 0(T2) . (2-52)

In more physical terms the neglect of J here implies that in treating

collsions in a given cell the effects due to particles outside the cell

are ignored. Equation (2.50) now becomes

F(t+T) y Tr {p 1 U'(T)D(t)U'+(T) + [T', p1 ]D(t)} . (2.50a)

The present approximations result in a complete separation of the effects

of T' and H', and hence will lead to a transport equation in which terms



affected by transport or collision processes enter independently of

each other. This does not mean, however, that the momentum and

spatial dependence of the solution is decoupled.

In the representation which diagonalizes p1 the first term

in Equation (2.50a) may be arranged to give

TrplU' ( T)D(t )U,+(-r) IN. N(X,K)Dm(t)|IUn, (T )|2 , (2. 53)

nn'

where we have ignored the off-diagonal elements of the density matrix.*

Since U'(T) is unitary,

U'(T) 2 = 1 - IU''n(T) 2 , (2.54)

n'

where the prime on the summation indicates that terms for which n = n'

are to be excluded. Then Equation (2.53) becomes

Trp U'(-r) D (t) U,+(-) 'o e .L3 F(t)

+ 2 Dnn(t)IUn'n(-r)l [N'(X,K) - N(X,K)]. (2.55)

nn'

Here the occupation numbers N' and N denote the eigenvalues of p1 in the

states In' > and In > respectively. Combining Equations (2.50a) and

(2.55) we have

*This is equivalent to the so-called Random a priori Phase Approximation

which has been studied only in very specialcss(-L7)
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[F(X,K, t+T) - F(XK,t)] T' - -1--Tr [T',p 1 (X,K)] D(t)
~ ~fiL3~~

(2.56)

L~3 Wn'n(T)Dn(t) [N'(x,K) - N(X__)]

nn t

where

Wn'n(T) = IU''in( 'I

The first term will be replaced by the time derivative of F, although

in a strict sense it should always be thought of as a finite difference.

However, even for T- 10~8 sec., coarse-graining of the time domain is

not likely to be significant in most investigations of physical systems.

The remainder of this chapter will be devoted to a reduction

of the remaining terms in Equation (2.36). It will be shown that the

second term provides the conventional description of neutron transport ,

whereas the terms on the right-hand side provide the description of

interactions. With these reductions, Equation (2.56) will then bear

considerable similarity to Equation (1.1).
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C. The Streaming Term

In order to exhibit in Equation (2.56) the transport term which

appears in Equation (1.1) it is necessary to evaluate the commutator,

Pl(Xy K)

2

2mnL3
X'X"K'

K"s'

[a+ (X',K',s') a (X",K",s f), p1 (X,K)]

(x) d3x ex(K"-K') [E (X",x) K". -V E (X',x) - E (X',x)K'VE (X",x)].

(2.57)

One can readily show, using the commutation relations given in Equation

(2.14), that

a+ (X,K,s') a (X",K",s ), a+ (X,K,s) a (X,K,s)]

= { a+ (X' ,K',s) a (X,K,s)e TI - a+ (X,K,s) a (X",K",3) a, ' ,}5
XX ' KK's

(2.58)

Thus Equation (2.57) assumes the form,

[ T', p1 (X,K)] = Q - Q+

where

(2.59)

.g2 X = '
2mL 3

X'K's

a( 'K 3  ix (K-K')
a+ (X',K',s) a (X,K,s) d3x e - --

(x) [ E (X,x) K. VE (X',x) - E .(X',x) K' . vE (X,x)]

(2.60)
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With the help of Equations (2.4) and (2.5) we find

2 mL. a+(X',K's) a (X,K,s) d.3x E(X,x)E(X',x) e - (K-K')

X'K's

3

(x) 7 { K. [8(x.-X'.+ L) - 8(x.-X'- T)]
j =1

- K' [8(x.-X.+ L) - S(x.-XL.- )] } (2.61)
J J 2 332

(+)2(K. + K.)
4mL3  .~L - 3 3

sj K'

(x) { [a+ (X.+L,K ) - a+ (x.-L,K')] a(X.,K.)

+ a+ (X.,K.) [a (X.+L,K') - a (X.-L,K')] } , (2.61)

where the upper or lower sign is used depending upon whether

M. = - (K.-K) is even or odd respectively in the K' sum. In writing

the arguments of the operators we have suppressed the spin labels as well

as those components of the two phase points (X', rK') and (X, tK) which

are the same.

The contributions from the K = K' terms in fl andA+ are easily

recognized. Taking only these terms into account the transport term in

Equation (2.56) becomes

- Tr p1  _Dt T', p(X,K)] D()=- K.VF (X, K, t). (2.62)

The gradient operation actually represents a finite difference in the



sense that

aF(X,~yt) - 3 T-3Tr [a+(X + 2'- a+(X-L,X 2 ,X 3 ,K,s)]
.xlS

oa(X,K,s) + a+(X,K, s)[a(X1+L,X 2 ,X 3 ,Ks) - a(X 1 -L,X 2 ,X ,K,s)]} D(t)/2L.

(2.63)

Equation (2.62) is seen to be the conventional streaming term which rig-

orously describes the flow of non-relativistic, massive particles in free

space in both classical and fine-grained quantum theories.

The contribution from K K' terms in fl do not lead to any readily

interpretable result. However, they appear to describe the correlation of

neutrons with different momenta in adjacent cells. Such effects may be

regarded as corrections to the streaming term due to space-momentum cou-

pling. In view of the fact that these terms do not appear in a fine-

grained theory, it is reasonable to conclude that the coupling is a direct

consequence of coarse-graining. Indeed, as L becomes arbitrarily small

the separations between 'AK, the momentum point under consideration, and

other points in the momentum lattice approach infinity. One may then

anticipate the K' sum to collapse to only the K = K' term.

It would be of interest to investigate the quantitive effects

of these terms, We observe that a typical term in f2 is

Tr a+ (X.+L, K'.) a (X., K.) D (t)

= < Y (t) a+ (X .+L, K') a (X .K)| I(t)>, (2.64)

which has the appearance of a reduced density in coarse-grained phase-space
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coordinates (see Equation (2.32)). Similar quantities have been encountered

in recent studies of many-body problems such as ground state energies,

the nature of elementary excitations, and thermodynamics.(18) Thus the

formlismand he tchnie e(18)
formalism and the techniques developed for those approaches to a

statistical theory of interacting particles may well be applied in the

present context to the understanding.of the K K' terms.

D. The Collision Terms

We have derived in Equation (2.56) a kinetic equation for the

coarse-grained neutron density F(X,K,t). The effects of neutron-nuclear

interactions are described by the transition probability per unit time,

W 'n. With regard to the neutron transport equation the reactions of

primary interest are capture, scattering,and fission. A direct calcula-

tion of the transition probabilities, hence the cross sections, associated

with these processes is a rather involved task and will be considered in

the next two chapters. Our main concern here, therefore, is to extract

the dependence on neutron density of the various relevant collision con-

tributions so that Equation (2.56) can be directly compared to Equation

(1.1).

It is convenient to subdivide the elements of the transition

matrix W into classes according to the number of neutrons in the state

In'> as compared to the number in the state In>. The reason is that

given a fixed number in the initial state the number in the final state

depends upon whether the reaction is capture, scattering, or fission, and
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is different in all three cases.* Thus the sum over n', which may be

regarded as the final state, can be exhibited as a sum of distinct con-

tributions corresponding to the three types of interactions.**

Consider first the capture of a neutron with wave vector K

in the space cell Xi. The transition probability for this reaction is

simply

Wen w N(X.,K.), (2.65)
nn K. -1-3

where wK is the reduced transition probability for the capture of a
-.

neutron at phase point (X., M K.).*** Note that if initially there is
-i-3

no neutron at (Xi, K .), the present interaction would have zero contribu-
1-3

tion. The sum over n' in this case implies a sum over all states in

which the total neutron number is one less than the number in the state

In>. It is effectively a sum over all Xi and K.; however, because of

the factor [N'(X,K) - N(X,K) ] all terms would vanish unless Xi = X and

K. = K, in which case the factor becomes -1. Hence,

-3=-3 D WIK X

CX= L Dnn Wn'n [N'(X,K) N(X,K) ]

nn'

= - WcF (X,K,t) .(2.66)

*
A possible ambiguity may arise in the case of a fission event pro-
ducing only one neutron. This particular case, although indis-
tinguishable in the present context from a similar situation in
scattering, is .actually different when the nuclei involved are
taken into consideration.

** All interactions are approximated as binary collisions .

*** Spatial dependence of w will be suppressed for convenience.
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Consider next the scattering* of a neutron in cell Xi from

initial wave vector K. to final wave vector K . This process is equiv-

alent to the absorption of a neutron at (Xi, Kj) and the creation of one

at (x,K), so that

_ ~N(X. K2)

Ws -s N(X ,K.) [1- N]x e , (2.67)
n'n K J-> K -_ ~~

where w is the reduced transition probability for the scattering

of a neutron in cell X. from K. to K ** The factor [1 - N(Xi,K)/2]

is the number dependence associated with the creation process and we

have assumed that the neutron spin orientation is random, i.e.,

N(X,K,s) = N(X,K)/2 , (2.68)

with N(X, K) equal to zero, one or two. The factor [N' (X, K) - N(X, K) ]

can be either +1 or -1 in this case depending upon whether (X", K)=(X, K)

or (XK) = (X,K). Thus we find

* The distinction between elastic and inelastic scatterings is
not necessary here, In the next chapter, the two processes will
have to be treated separately.

**
We ignore here any spin-dependent effects in -the scattering.
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L3 I =D Ws, [N'(x, K) - N(X, K)]

nn'

- -N(X,K9g
= - D N(X, K) :Us XK)[ - ]

nn -- K-4KI 2

n K

N(X,K) _s
+ D [1 - KK]n2s4 N(X, K .) . (2.69)

- - -
n K.

It is obvious that the loss term in Is represents the scattering of a

neutron out of the phase point (X, fiK) while the gain term represents

the scattering of a neutron into (X, --hK). Whenever K = K =K the net

contribution vanishes as expected.

In Equation (2.69) we have terms proportional to the expecta-

tion value of a product of two number operators which is a higher-order

density and can be defined as

F2(X,K,X',K',t) =L Tr pXK) p(X',K') D(t). (2.70)

It is conventional to call F(X,K,t) a singlet density and F2 (X,K,X',K',t)

a doublet density. The appearance of the doublet is a consequence of

the quantum statistics, and hence these terms can be expected to vanish

in the classical limit. To show this we need to transform Equation (2.69)

to continuous momentum space according to Equation (2.30). It is found

that

I = 0 (K) d3K

= (P) d 3 P , (2.71)
5-
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and

= - f (x,P,t) d3 P ws(P-4P

+ d 3 P, f (x,P.,t) w s(PJ - P)

3 rh) -3 -

+ (2 )3  P f (xPxP 2 ,t) ws -~'
2I

- (2nf)3 3 p f2 -(x;x,.,t) w5 (P.-+).

(2.72)

Observe that ws when we summed over the elemental volume d3 K,
K>K

becomes a distribution,

-s3
w = ws(K-+K,) d K

KEd K2

=ws (P-- P d) 3P ,(2.73)

Thus in the classical limit (ii-+3O) only the first two terms in Equation

(2.72) survive.

Lastly we consider the contributions arising from fission

processes. Let a neutron be absorbed at (x., K.) and the resulting

reaction produce J neutrons with momentum distribution specified by a

set of wave vectors, {K}. We shall neglect delayed effects so these

neutrons are all emitted in the spatial cell X and within the time

interval T1. The transition probability for this event can be written

as

nn= wN(Xi,K) G(X ,{K} ) , (.4
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where -F is the reduced fission transition probability, and

G(X, ) = N(X, K) (2,75)

is the degeneracy factor which contains a product of J factors accord-

ing to the J wave vectors in {K 1,}. It has just been shown that these

terms lead to a dependence on higher-order densities which vanishes as

'hi-+0. Since we are primarily interested in the fission contributions

in the classical limit we shall replace G by unity in the following.

Hence

L3 IF = Z D N(X,K)

n
J, K

- (1 - Q
a=

+ ZDnn
n

J, {e2}J,
K

J

a~c=1
p

+

n

n

Dnn N(X,K)

Dnn N(X,K)

J, K

w~ L~lj (a-l) Q

-F
wK- {2}

+ Dn
n

J, {- }J
K.

J

N(X,K.) aS"}.I Q K{K}

a =1

(2.76)

where Q is the probability that of the J neutrons emitted with

momentum distribution K there are exactly a neutrons with wave vector K.
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The collision terms, Equations (2.66), (2.69), and (2.76),

along with the transport term, Equation (2.62) can be entered into

Equation (2.56) . Keeping in mind that time and spatial derivatives are

actually finite differences, we may exhibit the resulting equation, in

the absence of quantum effects, as

(+ K . _ + w) F (X,. K, t)at m -X(xKt
J

= ~kF(X,K ,t) [wK-K + wK {K} a {K} '
- -,f 

K 
- - - "J, K-}-a-J

- J .e J .(2.77)

where

W = we+ wKKs I WK4K
K +K-, K K-+ K l

= we + s + WF .(2.78)
K K K

In order for this equation to be directly comparable to the conventional

neutron transport equation, it is necessary that we transform to contin-

uous momentum space and express the transition probabilities as cross

sections. The present transport equation then becomes

+ - __+ (P)] f (x,P,t)

= d.3P, -i f (X,P',t)[ Z_ (P')')(P'-.P)+ Zf(P') a P )(2ms'-
1 -3T e .L7 /'%F T I \ f / _ 1 1 f - (2.179)
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where

= w
t P

Zs(P')) (P'-+ P) = wsp' 4p

f(P') B (p',p) = P IIL J QK{K}

(K_ J(2.80)

The frequency Ba is introduced such that B (P',P)d3P is the probability

that a fission induced by a neutron at P' will produce exactly J neutrons,

ax of which have momenta in d3 P, about P.

E. Effect of an External Field

In closing this chapter we consider briefly the effect of a

time-independent external field, ex(x_) .* The Hamiltonian H is now modi-

fied by the addition of Vext

Vex = (x) *(x)ext (x) . (2.81)

In the decomposition of H we shall group Vext with T' so that the effect

of the external field appears only in the commutator, [Vext' 91 (XK)].
It will be convenient to evaluate the present commutator in a

manner somewhat different from the way in which the streaming term is

derived. We note that an integral representation of the number operator

p, is

p1 (_X,K) = d x cp*(X,K,x) cp (X,K,x') 'V (x) * (x') . (2.82)

*

An example of et(x) is the gravitational field.
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Then from Equations (2.81) and (2.82)

[Vext, p] = fcd3x d.3 x' d.3x" p* (X,K,x) p (XKx ext()

(x) [$ I(x")$ , (x"), x) (x')]

fa3xd3x' cp*(X,K,x)cp(X,K,x)(x) (x)[ t(x)

~ext( -*

(2.83)

Because of the cell functions the x and x' integrals only extend over

the cell centered at X. If now Oext is a slowly-varying function over

a distance of order L, it may be approximately represented as

0 et e, ) + -(x )Xj(et ____ . (2.84)

Entering this expression into Equation (2.83) we find

[ext' pl - L 3 e=Xk fd3x d 3x' E(X,x') E (X,x)

(x) (xk - xk) 4 (x) (xI) e-iK.(x -x)

(ext bp(X,K)= i Q-x)~(.5
ax Kijx=Xj BK

The effect of an external field on the transport equation, Equa-

tion (2.56), is thus described by the additional term
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- Tr [V ,xtp l(XK)] D () ' ext BF(LiXi t)

Lg g Pp (2.86)

which, like the streaming term, is a familiar result in fine-grained

theories. Note that in the present instance coarse-grained momentum

is treated like a continuous variable. This procedure is acceptable

so long as K.L >> 2t, which then represents a lower limit in the choice

of cell size. A corresponding upper limit is determined by the truncated

series expression of ,ext' Equation (2.84).
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III. NEUTRON-NUCLEAR INTERACTIONS: MAINLY NUCLEAR CONSIDERATIONS

In this chapter we will undertake an investigation into the

effects of neutron-nuclear collisions upon the balance relation (2.56).

Many kinds of nuclear reactions may be initiated by such collisions.

However, we shall concentrate our attention on only a few of them.

There are at least two reasons for this restriction. In the first

place there are only a few such reactions that can be dealt with at

all adequately by the rather elementary analytical techniques that we

envisage here. In the second place our main emphasis is on an illustra-

tive investigation of the basis of the theory of the distribution of

relatively low energy neutrons. Consequently, fission, radiative

capture, and elastic scattering are probably an adequate sample of

representative and significant interactions.

There are two types of effects which must be taken into

account in the description of a collision process - the specifically

nuclear effects and the effects of the macroscopic medium. The former

depend upon nuclear forces, while the latter depend upon the non-

nuclear interactions of the nucleus with its surroundings in the system.

Because of their importance, it is essential that the present discussion

of the transition probability per unit time, Wn'n, be made sufficiently

general to include both nuclear and medium effects.

The specifically nuclear effects can be treated by means of

the steady-state theory of nuclear reactions as, say, presented by

Blatt and Weisskopf(l) and reviewed by Lane.(2) However, it is not

-41-
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clear that chemical binding effects can be conveniently grafted onto

this elegant and rigorous theory of binary nuclear reactions. At

the opposite extreme we have straightforward perturbation methods

for a successive approximation evaluation of Wntn. Although such

an approach enables easy incorporation of the medium effects, this

extreme must also be avoided since it appears that only potential

scattering can be readily and usefully treated in this manner. For

indirect processes, many of which contribute significantly to (2.56),

conventional perturbation methods are therefore not adequate.

As a compromise, we will follow an approach originally

developed by Heitler 3) in the study of photon interactions with

matter. The theory, sometimes known as damping theory,(3-5) is

sufficiently elementary so that both medium and nuclear effects

can be considered and is, at the same time, sufficiently sophisti-

cated to allow a useful exposition of the essential features of

both types of phenomena.

From the point of view of the neutron transport equation

some of the collisions of importance are those which result in capture,

elastic and inelastic scattering, and fission. We do not regard as an

essential part of our purpose the detailed investigations of the

specifically nuclear effects of these reactions since very complete

and thorough discussions are available in the literature.*

*See reference 1 for a general discussion of theory of nuclear reac-
tions. For those aspects of particular interest in reactor physics
see Weinberg and Wigner.( 6 )



For this reason many aspects of the following calculations will not

be explored as fully as possible. Moreover, not all the reactions

are treated with equal emphasis. It will be seen that considerable

detail is presented in the study of radiative cature and elastic scattering,

whereas the discussions of inelastic scattering and fission processes

are brief and, at best, descriptive.* What we attempt here, in

essence, is to illustrate another approach to nuclear reaction theory

that is capable of producing, at least qualitatively, the conventional

results and also allows a systematic treatment of the external degrees

of freedom of the nucleus.**

A. Formal Development of the Transition Probability

The task of evaluating the transition matrix Wn'n is essent-

ially that of determining the off-diagonal matrix elements of the

"temporal evolution" operator U'(T). Thus far, the representation in

which the matrix elements are to be calculated is only required to

diagonalize the neutron number operator, otherwise it is unspecified.

With the diagonalization of p1 , we observe that E, the kinetic energy

of neutrons within cells, also becomes diagonal.

In order to develop a general expression for U',n(T) some

consideration must be given to other degrees of freedom of the system.

For the moment they need only to be introduced formally, detailed dis-

cussion being necessary only when a specific reaction is to be

*This by no means i-s intended to imply the relative importance of the

reactions in the transport equation in general, although there are
special cases in which the effects of a given reaction or reactions
are suppressed.

**The present approach has also ~e nemployed in recent studies of,~

photon transport in dispersive 7 media, and of line shape theory.( >')
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investigated. We therefore further specify that the above representa-

tion also diagonalize the operator Hs, i.e.,

( + Hs) In > = en In > . (3.1)

The states In-> are assumed to form an orthonormal and complete set.

Although Hs describes the entire system exclusive of neutrons, the only

part of it that will require our subsequent attention, in view of the

reactions of interest, is that relevant to the description of nuclei;

and of photons in the case of resonance capture.

The operator U'(T), as given by (2.11.7), has as its Laplace

transform

00

G(z) = d U'(T) e-Tz/

o -l

= (z + iH')1 , (3.2)

where H' = E+ Hs + V. The form of this operator is particularly suit-

able for. developing approximations. As will be seen, the present cal-

culation provides an approximate expression for the off-diagonal matrix

elements of G(z). Once Gnn(z) is known, the inversion then gives

7 +io

U', (T) =- dz G , (z) e . (3.3)
nn 2ni nn

y-io

From Equation (5.2) we have the matrix equation

(z + isn) Gnnt + i Vnn, GnIn' = nn' (-1-
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It will be convenient to treat the diagonal and nondiagonal parts of

G separately. For this purpose we introduce an operator Q such that

G , = GnnQnn'G ,, , (3.5)

for n j n'.

The diagonal elements of G then satisfy the formal relation

i4i -l
Gm(z) = (z + ien + -h- yn) (3.

where

2n7n+ j Vnn'Gn'n'Q nin (3.7)

n'/ n

An essential step in the development is the determination of

Qnn . From Equation (3.4) we obtain

[z + i (en + Vnn)] GnnQnn+iVnn, (3.8)

+ i Vnn"Gnn1Qn" n t = 0,

n" #n,n'

or

Qnn' iVnn - VnntGn! n" n"n'

n"#n,n'

(3.9)

+ i VnnttGn" ni"i nG Qn , .

A useful, approximate solution to this equation can be obtained by ex-

panding Q as a power series in V, and ignoring the dependence of G on V.
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This is readily accomplished by writing

V -> XV,

a+l

a=o

(a)
(3.10)

and considering X as a bookkeeping parameter ultimately to be evaluated

at the unit point. We find, to second order in X

Qnn'(z) = -iV, -

n":n,n'

Vnn" Vn~n'

i-h(311z + i n" + -yn

and

- 7n(Z)2
= iV+

n n +

ivnn 12

z + ien
(3.12)

With yn(z) given by Equation (3.12) the diagonal elements of G are now

explicitly determined by means of Equation (3.6). The higher order

terms which have been ignored can be investigated. But we anticipate

that the predominant features of the reactions of interest are usefully

described by the two terms in Equation (3.11). To this order of approx-

imation, the off-diagonal elements of U'(T) are given as

U' , () ti7+ iod A

Unn'2-c n( n,( z )e

7 -i°°

(3.13)

(x) [-iVnnI -

n"n ,n'

VnnfVnttnAnts (z) ] ,
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where

k(z) = [z + ien + yn(z)] (3.4)

The quantity yn(z) is the width and shift function for the

energy level corresponding to the n-th eigenstate of the system. It

will be shown that when evaluated at z = -iEn the real part gives the

shift of the unperturbed energy level due to interactions, while its

imaginary part describes the width and hence the finite lifetime of the

state In >. The only reason that we cannot neglect these quantities

completely in the present problem is that many of the neutron-nuclear

reactions we are concerned with proceed via excited states which are

known to be significantly broadened. At the same time, in the systems

of predominant concern here, it is most probable that the interacting

nuclei are initially in their internal ground states. If also we con-

sider only time intervals (T) long compared to the lifetimes* of the

intermediate states, the final states can also be taken as ground

states so far as the specifically nuclear degrees of freedom are

concerned. Hence for our purposes the only states whose widths and

shifts will have appreciable influence on the collisions are the

intermediate states. We will accordingly ignore the width and shift

functions in An(z) andA n'(z) in Equation (3.14), thus

7+io

1 - _z/finU' ,(T) 1 0dz Bn(z) Bn'(z) e/

7- ic

(3.1J5)

(x) [-iVnn' V~n nvn5n(z )],

*This provides a qualitative lower limit for T.
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where

n(z) = (z + ien)1(5.16)

In Equation (3.15) the two terms represent the effects of

direct and two-stage (compound nucleus) processes respectively. It

is anticipated that the first term will suffice to describe potential

scattering, whereas the second term will lead to a description of

resonance reactions (including fission). In the instance of elastic

scattering, both terms must be considered simultaneously thus enabling

an examination of potential scattering, elastic resonance scattering,

and the interference between them.

The evaluation of the first integral in Equation (3.15) is a

simple matter, and we find

7+z/ 
-iUnT i D , T (.71dzBn(z) Bn,(z) e/ = - ei (l-e n ), (.

2ni -lin,

7 -i

where Ma = En, and C)nn, = En - Ento The second integral can be

expressed as a convolution(lO)

7+ioo z

h(T) = 1dz Bn(z) n'(z) Anu(z) e

7-io
(3.18)

TT'
= T-2 dT' An,,(T-T ') di" Bn'T(TT") Bn(T")

where

-i* 
.i /

B (T) = en
, 9
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and An(T) is the inverse Laplace transform of In(z). This function,

An(T), has been studied and estimated.9 The results can be demon-

strated by means of a rather simple argument; which, however, does not

suggest much as to its validity. We observe in Equation (3.14) that if

7n = 0,then In(z) will have only a simple pole at z = -iEr. This

suggests that An may be estimated by approximating yn by a truncated

Taylor series,

7n(z) 7n(-iEn) + (z + iEn n Z=-iE *(3.20)
n

If only the first term in Equation (3.20) is retained then Equation (3.14)

becomes approximately

in -l
A (z) _ [z + iE + 2-- 7 (- 16 3.21)

and also

kn(T) _ en '( )T~(3.22)

We have glibly approximated a function of a complex variable

by its value at a point on the imaginary axis. This procedure is un-

ambiguous so long as the function is well defined at that point. How-

ever, in the present case yn possesses branch points on the imaginary

axis, and this is readily demonstrated by examining the boundary values

of 7n(z) as the imaginary axis is approached from both sides of the

complex plane. One finds that

xl 0+ 7n (x + iy) = is(y) + r (y), (5.235)
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lim ifi
x - 7n(-x + iy) = isn(y) - rn(y), (3,24)

where

sn(y) = n nn'Iv I 2 & 1 , (3.25)

n' 'n y+ n

rn 7 ~ n 1nn, 2(y + En's) .(3.26)

n n

In obtaining these expressions from Equation (3.13) we have made use

of the relation*

l 0 _ - i + i 8(y), (3.27)
x + iy y

where () is the principal value of l/x. Comparing the Equations (3.23)

and (3.24) we see that in crossing the imaginary axis the value of 7n(z)

changes by an amount 2Pn(y) which vanishes everywhere except at the

points y = -. En, n' ] n. Hence 7n(z) does not have a branch point at

z = -ien and the approximation (3.21) is unambiguous. Note that by

exhibiting the real and imaginary parts of 7n(-iEn) as in Equation (3.23)

we can rewrite Equation (3.22) as

AnT , e~"n( -En)T/' e-iT[En + sn(-En)]/ i(3.28)

Having obtained an expression for An(T) we find from Equation

(3.18)

*See Heitler, (3) p. 70.
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-(7n"+ in )T/-h TdT' n"+ n)T'/h
h( T) =ee

0

dTT -iEnt(T ' -Tt)/l iET
(x) -- e e (3.29)

0

-{ e c T_,e-i~nT/i

i(En-En) nt + i (nt -En) 
1

'nti+ i(n, -En )

i~cn-cnw) e + i~ntt )T/fi
1 (En-Ent) e

[rnn + i(ntt-Ent)][rnt + 1( n -En

where

ns= En" + snit(-En ,,). (3.30)

This result shows that the dominant contribution to h(T) arises from the

first two terms when en E n, . The third term is exponentially attenu-

ated; and, since our earlier comment that T should be greater than the

lifetime of intermediate states implies the condition rn"T >> fi, we can

neglect this term. If we now anticipate energy conservation and treat

the denominators of the first two terms as the same, the inversion

integral becomes

+ nn" n n n
U' e(T) nVTl-ei'- nt.

nn nn En -En+ 2- 73 (-16n")

n" n n'2

. (3.31)

The transition matrix is the absolute square of U' , divided by T,



2

7Vnn -nn"tn n, 1-c

n"Vn,n' En"En + 7n(-iEnv) XT

(3.32)

For sufficiently large T, i.e., o , T >> 1, the last factor

in Equation (3.32) is a sharply peaked function about L un, = 0,* and can

be replaced by a delta function. The quantity nmTT will always be sub-

stantially greater than unity if the width of the intermediate state is

small compared to its energy above ground, i.e., if >ionn' n. If such

is not the case, the notion of the intermediate state becomes fuzzy and

so does the concept of the transition probability per unit time.

We have obtained a useful, though approximate, expression for

Wu,. It is convenient to exhibit this general result as

Wn'n =5(n -En,) Rn'n 73*33)

n Vn7n2Vn n 2

n" n,n' En-En + 7n (-iEn?)

The transition probability is independent of T as one might expect in the

present situation. In order to develop explicit cross-section formulas

for the various reactions, it is now necessary to consider in more detail

the states {n>} and the matrix elements of the interaction , V.

The eigenstates {n>} were introduced in Equation (3.1)

simply as a diagonalizing representation for the kinetic energy of free

neutrons in cells and for the total energy of the "system" with which

*See Schiff,( 1 1 ) p. 198.
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the neutrons interacted according to a potential V. We shall regard

the "system" as an assembly of electrons, photons, and nuclei of

various kinds. In the present study we will ignore the interactions

between neutrons and the electrons(12) on the ground that they have

little effect on neutron transport.* Consequently, electronic

coordinates appear only in H. We will also ignore the photon-

neutron coupling; however, photon coordinates will appear in both Hs

and V because it is convenient to incorporate the energy of free

photons in the former and the interaction of photons with nuclei in

the latter. It is necessary to take explicit account of the photons

only for the description of radiative capture; for the other pro-

cesses to be considered here the presence of photons has little

influence on the cross sections.

Following the above remarks, we exhibit the eigenstate

n > as a product of eigenstates appropriate to each kind of particle,

| = KN s> |N > |N>(3.35)
X,K,s X,K,x A,a,k

The eigenstates for the neutrons and the labels that characterize them

were introduced in Chapter II. There it was mentioned that a neutron

state In>, denoted here as INXs >, is completely specified by a

set of occupation numbers for all spin and momentum states and cell

labels. From Equation (2.18),

INXs > = jN(X 1 K,s 1 )N(X1 K,s 2 ) .. (3K, . (.6

*The inclusion of neutron-electron interactions entails no difficulty
in principle.
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It is appropriate to treat the photons also by the field formalism.

Then the photon eigenstates will be specified by a set of occupation

numbers for all polarization and momentum states and cell labels,

|NXx > = |N(X 1, , ,1 )N(X ,1x2 ) ... N(X X )... >, (3.37)

where N(X,K, X)-is the number of photons in cell X with momentum ir

and polarization X. Since photons are bosons,this number can be any

positive integer or zero.

The eigenstates for the entire collection of interacting

nuclei and electrons are less easily described and more cumbersome

to deal with. In the first place, like the neutrons and the photons

the nuclei are not conserved, so that one is tempted toward a field

formalism for their description. But on the other hand, the nuclei

may well be localized, as atoms bound in crystals, thus making the

application of field theory awkward if not obscure. If, in fact,

the nuclei (atoms or molecules) are in gas phase, then their treatment

in analogy to that of the neutrons and photons would be quite appropri-

ate. However, for the general discussion (more applicable to solids

and liquids) we will make use of eigenvectors whose components them-

selves are many-particle configuration-space wave functions describing

definite numbers of nuclei of definite kinds. Different components

would then describe different numbers of nuclei of definite kinds.

These eigervectors will be presumed to be orthonormal,and it will be

further presumed that V has some non-vanishing off-diagonal matrix

elements with respect to these representations. As a notation we will

write
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INA,,k > = N (A1 a 1k2 ) ... N(A ak ) ... > (.38)

to represent a nuclear state with N(A1 , al,k 1 ) nuclei of kind A with

internal and external states specified by labels al and k respectively,

etc. It is important to keep in mind that the components of these

vectors are not functions in occupation number space, but rather in

ordinary configuration and spin space.

We will treat the various interactions separately. Following

the approach outlined in Chapter II we decompose all interactions into

classes according to the relative number of particles of a given kind

in the states In> and In' >. This will be seen to be a natural way

of classifying the different binary neutron-nuclear reactions. Scatter-

ing reactions, both potential and resonance scattering, are character-

ized by the same total number of neutrons in the final state as in the

initial state. This is true for both elastic and inelastic events,

although inelastic scattering really belongs to a sub-class in which

the number of photons in the final state differs from that in the

initial state.* If the neutron and the photon (photons) are emitted

separately in an inelastic scattering process, such an event will

require a description which allows at least two intermediate states.

Since the present treatment is restricted to only one intermediate

state, our discussion of scattering will initially be limited to

elastic processes. Later, we will assume that the approximation in

which the compound nucleus decays to ground state by a simultaneous

*We continue to treat the nuclei in both initial and final states as
in their internal ground states.
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emission of neutron and photon is adequate for treating inelastic

scattering. Radiative capture reactions, as well as all other

neutron capture processes which are followed by a decay to ground,

are distinguished by one less neutron in the final state than in

the initial state. Finally fission is a reaction in which the

neutron number in the final state may be increased by one or more

with respect to that of the initial state. Thus in the following

we shall consider radiative capture, scattering, and fission reactions.

Though these hardly exhaust all the interesting possibilities, they

are the main processes which significantly influence neutron trans-

port in many reactor situations.

As an initial step in the reduction of collision terms in

Equation (2.56) we rewrite Equation (2.56) as

+ --iV D-7 + - K. ---- F (X, K, t) = -V~l W , D
m a X(X- - -, n'n nn

nn's

1sG mi sL
+nv7 W, D - V~7 W, D (.9)

nnas nn's

+ V [N'(X,K,s) N(X,K, s)] Wn n Dn

where we decompose the n' sum for a given n into sums corresponding

sG
to the different types of Wn'n. The terms proportional to Wn'n are

all those for which the final states contain the siae total number as

the initial and for which N'(XK,s) = N(X,K,s) + 1. They are therefore

the scattering gain contributions to the balance relation in the binary



-57-

sL
collision approximation. Analogously, the terms containing Wn'n

constitute the scattering loss contribution.* The terms containing

Wc, are all those (except fission) for which the total neutron
n n

number in the final state is one less than in the initial state and

for which N4(X,K,s) = N(X,K,s) - 1. These represent the effect of

neutron capture reactions. The companion terms representing neutron

gain by emission from excited nuclei have been neglected in writing

Equation (339).** Finally the terms containing are to represent

the fission contribution in which an arbitrary increase in the number

of neutrons is allowed. A number of other binary interactions could.

be included in Equation (339), however, they are of more special

interest** and need not be considered in a general discussion of

collision effects in neutron transport.

The following sections in this chapter will be devoted to

a study of the specifically nuclear aspects of the various transition

probabilities indicated in Equation (3.39). When reduced, the collision

terms will have the same form as those discussed in the previous chapter,

but in the present instance explicit expressions for the reduced tran-

sition probabilities will be derived. - In the next chapter the influence

of macroscopic medium effects will be investigated in some detail.

*The scattering gain and loss terms will consist of both elastic and
inelastic contributions.

This is not justified if, say, the concentration of photo:-neutrons
in the system is appreciable.

*For example, the (n,2n) reaction in Beryllium.



B. Radiative Capture"

The radiative capture reaction (n,7) is not the simplest

reaction considered in the present work. It is generally viewed

as a two-stage process involving the passage through an intermediate

state. Consequently, a more complicated description is required

than that for the direct process of elastic potential scattering.

However, a general treatment of elastic scattering must also include

considerations of resonant scattering, a process of the sane order

of complexity as radiative capture. Thus we shall first examine

the (n,7) reaction and will make use of certain features of the

resonance process in general in later discussions of elastic scattering.

The (n,7) reaction is schematically represented by

n + ZXA XA+l 7+ (XA+1 ,(3.4o)

where we assume that the neutron interacts with the nucleus to form a

compound nucleus which then decays directly to its ground state via

the emission of a photon. The transition probability WC associatedn n

with this process is given formally by Equation (3,33) and (3.3i).

The potential V describes both neutron-nuclear and nuclei-electro-

magnetic interactions. These interactions are presumed to be

separable in the sense that

v = V7+VN (1l)

*Other capture reactions such as (n,p) and (n,az) will not be considered

here. Their contributions to the transport equation can usually be
ignored (see, for example, reference 6, p. 51).

+The reader may see Dresner(13) for a thorough investigation of the
effects of resonance absorption of neutrons in nuclear reactors; see
also the work of Nordheim(lk) and a review by Sampson and Chernick. (15)
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where VN involves the specifically nuclear forces and is that part

of V which causes the transition from initial to intermediate state

(neutron absorption), and V7 is the electromagnetic part that causes

the transition from intermediate to final state (photon emission).

A consequence of this separation is that V will have no non-vanishing

matrix elements in which both the neutron and the photon numbers are

changed.* The reduced transition matrix thus becomes

N 2

nRn 2Vn'n" n(34

n" 1ngn' fliE n - + 7n i(-iEn)

It is now appropriate to obtain a more explicit expression

for the width and shift function 7. We recall from Equation (3.12)

the expression

IVn" mI12
7n(-ien) = Vnni + ,n43m

2 tmr enn -Em
m/ii~'

The m sum is to be regarded as a summation over all possible sets of

neutron and photon occupation numbers, and over all states of the nuclei.

This sum can be decomposed into contributions arising from those states

like the initial state, those like the final state, those like the

intermediate state, and all other states for which Vn1Im does not vanish.

The contributions from the last class of states are not considered here

In treating inelastic scattering we will find it necessary to violate
this condition, This is, however, due to the fact that we insist on
using Equation (3.34+) to describe what is essentially a three-stage
proce-ssa
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and will henceforth be neglected.* Note that by two alike states we

mean that the number of any given kind of particles is the same in

both states and nothing is to be inferred about their respective

momentum and spatial distributions.

The contribution to the m sum in Equation (3.43) from states

like the initial state may be written in the form

Vk" ,k , 2 [-N(X,K,s )]

- (3.)44)I _K " 1:(
EA+1 + EA+l- E -EA -BA+l

k.K.,s. as" k" K. k

A
where we designate as EK and Ek respectively the kinetic energy of a

neutron with momentum 'iK and the "external" energy of a nucleus of

mass A in "external" state k. Unless stated otherwise the label k

denotes the state of translational motions of the nucleus. We have

assumed here that the total energy of a nucleus, E , can be expressed

as the sum of its "internal" energy EA and EA. The binding energy,

(m + MA'- MA+l)c 2 , is represented by BA+l, where all reference to

nuclear masses is to ground state rest masses. The various energies

which will enter into the present discussion are illustrated in the

energy diagram given in Figure 1. In Equation (3. 4i) we have extracted

from the off-diagonal matrix elements their dependence upon occupation

number in much the same manner as in Section D of Chapter II. The

relevant part of the potential here is seen to be VN since the terms

which contribute are those describing the emission of a neutron. To

An example of such a contribution is that which describes the decay
of the intermediate state by proton or alpha particle emission as in
(n,p) or (n,a) reactions.
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Figure 3.1. Energy Level Diagrams for the Formation and Decay of a Compound
Nucleus; (a) Initial State |n>, (b) Intermediate State in">,
(c) Final State In'>.
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illustrate how the sum over neutron occupation numbers is performed

we explicitly display the distribution of the particles among cells

in a given m state (see Equations (3.35) and (3.36)) as

m > = |NX > |Ng > 17(X,K , sl) .. N' (X,K ,s ). .. >

= IN" > |N" > IN"(X iJ,s-)... 1s . >,
XKX Aak~ ~

where we have written the photon and neutron occupation numbers relative

to the intermediate state, In" > = IN > N" > INKs > . The

photon distribution is not changed since we are considering only VN,

and in this particular case the neutron with spin si at the phase

point (X., -K ) is being emitted. So far as the sum over neutron

occupation number is concerned the m sum now becomes a sum over X,

K. and s, as any of the neutrons present in any m state can be emitted.

We can immediately set X. = X because only the neutrons at X are of

interest and emission is presumed to take place at the point of inter-

action. Thus the dependence upon neutron occupation number for the

emission process is simply [1 - N(X.,K. , s)]. We have also attempted

to show explicitly in Equation (3.44) those degrees of freedom which

will influence the matrix elements of VN. Since in the state im >

the nucleus is in its "internal" ground state, the dependence upon

a is suppressed.

In a similar manner we may display the contributions from

states like the final state as

S Vk~a, k g Xg 12[1 + NX 4

k.K.X EA+l + EA1 - kA 1 'E3.5
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where EK represents the energy of a photon with momentum 'iw, and the

contributions from states like the intermediate state as

N 2

V ,, , |IN(X,K' ,s)[1 - N(X,%K',s )]
k a',k a K s K s -- j J--

A+1 EA+l A+1 A+1 + E (34)
k.a.K's.s Ea"'l a + k" - E k E + EK'- EK

(k"a"K'.K"s"s")

On account of their denominators, the terms in Equation (3.46) make a neg-

ligible contribution except perhaps when a. = a". This special case

corresponds to an increase in the width and shift function due to a

scattering interaction between the compound nucleus and the neutron

field. We expect the effects of this type of collision broadening to

be relatively small, and will ignore such terms in the following. The

contributions to the m sum in Equation (3.41.3), to a good approximation,

are then given by expressions in Equation (3.44) and (3.11.5).

It will be convenient to replace the momentum sums by appropri-

ate integrals. For typical quantization cells with characteristic length

L ~i 10~4 cm, the momentum uncertainty AK/K (or AK/ ) is of order 10-3 for

10~3 ev neutrons (or Key photons). Thus in all practical cases the dis-

tribution of points in momentum space may be treated as essentially con-

tinuous. The second term in Equation (3.43) then becomes



7 L () d5K
k s.

N 2
IVI~cy[1 +N(X, K,Xs)]

EA+l + EA+l - EA+l - E
k' a" k. i

L1
k.X.

(_)35 d53 (3"47)

or

1
2

2i)C~nk s.
33 s

00

K 
KE1/2

0

dS~ d EEd
KKEA-

0 k

lV~?w Is [l-N(X,K,s.)]

El+ Ek" K - k

(L> 53
+ 2i

kjI

y~t2 [1+ N(XK x.)]

+i EA+1 EA+l
+ EuEk E

,1 , _ k

The energy difference E, 1  - BA is denoted here as Ea,± The

integrals in Equation '(3 5)i-7) may appear to be singular; however, we

recall from section A that 7n~ (1n)is to be evaluated in the sense

of a limit, i oe.o,

lim 7n~ (x - i enii)

By applying Equation (5.2 7) we find that Equation (343 may be
written as
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-1'y
2

= - :i (3.48)

where

= Vkil a" k" d"

2
(L 1(i 3

/n -
k3 s

00

0

1/2
dEKEK

IV N ~ 
2 1-kCY kKs I > > )

EA+1 + EA+l - E
a" k" K

EA
- k.

+

k.X 0
. 33 1

clE E
,kj~Cs' k 2 [i + N(X,K)]

EA+ + EA+ EA+l E
kJ

(3.49)

lr -

2 L f krs.
233

k~j Xj

k a , kjKsj

2
[:~-N(XK Es j)] 4/21 A+1- A+1

EK=EaI1 +Ekt: -Ek

{OI§Varrkrr I [1 + N(X , (Xj)] E }
.K A+1A+1 A3

(3.50)
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The function 7 is now expressed in terms of its real and

imaginary parts. When entered into Equation (3.42), sk sa~ gives rise

to a displacement of the resonance line the width of which is determined

by ?l,,. In our discussion we shall merely note the existance of

skta"t and will not be concerned with its effects. On the other hand,

the existence of rk a" is obviously crucial in the development of a

theory of resonance reactions, and we will shortly return to more discus-

sion of this quantity.

Entering Equation (3.48) into Equation (3.42) and again extract-

ing neutron and photon number dependence from the matrix elements we can

exhibit the capture reaction matrix as

Rc = N(X,K,s)[l + N(X, K',X')]rc (3.51)k ) ' ,kKs - - k' ,kKs

V7  vN 2
c k2s k 'K'X ,k? a"! k t a"t ,.kKsc2 

K k a s9k 

' ' ',kK~s 
A+1* A+1 A -k a"k EAtl+s +EAk -E -EA - r a '

k" k~ a " k " K k 2 k a

(3.52)

Note that we are labeling the matrix elements again by state labels rather

than by occupation numbers. This is because the sum over occupation num-

bers in the final state in Equation (3.39) actually reduces to a sum over

states as in the earlier cases. The sum over occupation numbers in the

initial state is to be carried out formally according to the specific

dependence indicated in Equation (3.51).

Thus far we have not given any specific consideration to the

matrix elements of V7 and VN. The discussion of V7 can be made more
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quantitative and will be considered first. The portion of the inter-

action between nuclei and electromagnetic field which describes single

photon emission or absorption is

V7 = eLA r )-L(3.53)
= Z)mLc

where the subscript 2 specifies the nucleus and the superscript L speci-

fies the nucleon. The momentum of the nucleon is denoted by p and the

vector field A represents the transverse radiation field quantized in

a manner wholly similar to the quantization of the neutron field in

Chapter II. The matrix elements of V7 then become

Vk' ?_'I'k"a" =< k'O 7 eLe-l'.ra (_

2,L

-iK'-R 2  R!
ti < ki je Ik">U 0 ,, (K'X'), (3.54)

where

Se L
U (LKX) = <0 e ~ 2 a ( - (3-55)

Oa -0 mLc --

L

The label 0 is used to denote the ground "internal" state of the nucleus.

In order to arrive at the above factorization we have introduced the

center-of-mass position vector, R , and the relative displacement, p, so

L L
that r = R_ + p. These coordinates, how ever, are not independent .

The momentum L.scojgaet rL, and therefore consists of contributions
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from center-of-mass motions as well as from relative motions. But because

the nuclear momentum is very small compared to the nucleonic momentum we

have neglected the former and set pL ,L. It is only in this approximate

sense that we may isolate the effects due to external medium. The factor

UR now depends solely upon internal motions and describes the response
Oa"

of the nucleons to the photon field.

Since a particular Fourier component of the neutron field is

involved in the matrix element, VN and since the range of neutron-
,k a T,'kKs'

nuclear forces is small compared to the dimension of the quantization cell,

it is expected that the matrix elements describing neutron absorption de-

compose in a fashion similar to the factorization of the photon-emission

matrix elements in Equation (3.54). We shall therefore write

S  iK.RNA
S<k"|e- k(> U Ks). (3.56)

k a' ,kKs - a 0t -
A

Both matrix elements of V and VN are seen to contain the sum over nuclei.

These sums, however, will not appear in the calculation of the reaction

matrix (3.52). This is because such a reaction matrix is intended to

describe the evolution of the system from a state characterized by a cer-

tain number of neutrons, photons, nuclei of masses A and A+l to a state

characterized by one less neutron, one -more photon, one less mass A

nucleus, and one more mass A+l nucleus. The nucleus which absorbs the

neutron must be the same nucleus which emits the photon, thus elements

of the reaction matrix between specified initial and final states will

only depend upon the properties of a single nucleus.
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The reduced reaction matrix for capture :now becomes a sum of

matrices each appropriate to an individual nucleus. For the nucleus

designated by the label A we have

r - )
k'K'X',kKs .

k"a

where we have ignored the

upon the external degrees

R,2 N,2-i sK' R iK'Ri

U~a"(g'S ')Ua"O(Ks)<k'je ~ ~Ek"<k" e ~ k.

" tIt + EA+- E -E -area" k" 1 K k 2 a

(3.57)

dependence of the level width and level shift

of freedom of the nucleus, and where

EA+1
a a

- BA+1 + s0 at (3,.58)

is the energy of the ax-th level in the nucleus of mass A+1 as seen by a

free neutron in the laboratory. If we assume for illustrative purposes

that the nuclei in the system are characterized by well separated energy

levels,* then Equation (3.57) reduces to a sum of a single-level

resonances

rc 2n
k'K'X',kKs -'Ti UR0l"'x')LUNoaKs)

Oa - a"0

2

(x)

k"

< k'|le -E |k"> <k" e - 1k>

.. " ~+ l-E- E- a"a k K k 2 01

2 -

.(3.59)

*
In the conventional theory of resonance (1),(6) one introduces a level-
spacing D which represents the average separation between neighboring
resonance levels,. Values of D range from several hundred Kev for
light elements down to a few ev for A1OO, and will in general decrease
with increasing excitation energy. Thus it is meaningful to speak of
isolated resonance levels only if r ,,<<D

a!
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The matrix elements and U incorporate all the responses
00 a"O0

in the interior of the nucleus to the reaction, and are complicated quan-

tities which cannot be discussed quantitatively in the present development.

For our purposes it is sufficient to replace them by more familiar quan-

tities. We observe that the level width given in Equation (3.50) can be

identified as a sum of partial widths-.appropriate to the decay of compound

nucleus by either neutron or photon emission. Specifically the radiation

width for the a"-th level is

1 (R) L 3 -i-Rd{<k"e jk> 2
2 a" - 21the K

k.X.

2
(x) hU(Kx ) [1 + N(~, )] E(x) _ 22%

a 0 - jE A+1 A+l A+1'
E a"+ Ek" - Ek

(3.60)

where use has been made of Equation (3.54).- We will assume that we may

ignore the factor [1 + N (X, !, x)] . If we further assume that the dif-

A+l A+l
ference in "external" energies, Ek, - E is negligible compared to

the excitation energy of the compound nucleus, then the sum over k. may

be performed to give

1 _2R) L 3 (EA+l) 2  d. U O 2  (3.61)
2E ) 2:' 1 20c(K '0i'

Using similar arguments and approximations we find the first terr in

Equation (3.50) to be given by
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1(1 N) 3L K ~fcu Ni, 2
r(N)K U (Ks) (3.62)

2 a" 2 21r -t K K a 0 -

S

which can be identified as the neutron width. In the sense of the above

approximations .and if iURj2 and UN j2 can be considered as constants

these results show that the radiation width is essentially energy

independent, whereas the neutron width is proportional to the neutron

speed.* Equations (3.61) and (3.62) are useful in that they allow us to

write the elements of the reaction matrix in terms of level widths, and

in the present treatment the latter quantities will be treated as empir-

ical- parameters. It is expected that .UR o0
2 is quite insensitive to

the directions of K, so that we have**

1 (N) 2 L f 22
2 r TT, 2n(-- U (Ks) .2(3.63)2 -2 -Ka"0

s

The same may be said for -the dependence of |U |2, although as we will
aO

show later the assertion is not necessary in this case.

Further progress from this point, at least so far as the reduc-

tion of Equation (3.59) to useful forms is concerned, requires specific

assumptionsregarding .the macroscopic state of the system. It will be

necessary to know whether the external degrees of freedom of the nuclei

are those appropriate to a system in solid, liquid, or gaseous state in

order to compute the indicated matrix elements. These matters will be

* For the case of U235 see Oleksa.(1 6 ) Because of its dependence upon
(A12the radiation width can be expected to decrease as A increases.

The energy depend 9 nce of the neutron width is in agreement with the con-
ventional results ~~)for neutrons of zero angular momentum and therefore
implies that |UNA j2 can .indeed be treated as a constant so long as the
neutron energy is not so high that neutrons with higher angular momaentum
begin to interact appreciably.

** This is equivalent to the assumption that neutron emission or absorption
is essentially spherically symmetric, a condition usually valid at least
for EK 2 100 Kev.( 6 )
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considered in the following chapter. In concluding this section we shall

examine some of the more general aspects of the collision terms in the

balance relation which describe the effect of radiative capture processes.

These terms now appear in Equation (3.39) as

V-1

Wn'n Dn(t) = V- 1  N(X,K, s) [1 + N(X,

nn 's 2k'K'X'ns

(x r g''kKs Dnn(t) 58(EA+1- B+1k.-E - EK), (3.64)

Evidently the n sum leads to functionals of various doublet densities.

However, to avoid explicit consideration of these higher-order densities,

we shall liberally (and for the moment uncritically) replace averages of

functions by functions of averages.* Thus,

V 1 Z Wc'n Dnn(t) 1Fs(X,K,t) [1 + FX,(Xv',t)]

nn's Ak1' ''s

(x) rkC1 Dkk\, EA+1- BA+l+ E - EA - E (3.65)
t , t( ) ( ,k' ' ,kIKs kk k' K k K '

where Fs(X,K,t) is the expected number of neutrons per unit volume at

time t with spin s and momentum t1K at X, F (X, K, t) is the expected

number of photons at time t with polarization X and momentum -hy at X,

* Had we retained the doublet densities then Equation (3.39), which may-
be regarded as an equation for the singlet density would be incomplete
for the determination of F(X,K,t). An equation for the doublet density
is therefore necessary, and we will find that it contains the triplet
densities. Hence, an infinite set of coupled equations is generated,
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and Dkk(t) is the probability of finding the target nucleus in the state k

at time t. For most applications involving the neutron transport equation

the neutron spin orientation is not a variable of interest,* so that there

will be no loss of generality if we assume the spins are randomly distri-

buted, or

F sXK XKt = - F(X,K,t) (3.66)
2

Now Equation (3.65) becomes

V- Wen Dnn(t) _ F(x,K,t) [1 + F,(X,',t)]

nn's £k'1'I's

(x) r', s (EA+l+ E ,- BA+E - E) D ).(67)2 kKX kK k K k K kk

The capture contribution is thus in a conventional form of a reaction rate

times the neutron density. In the following chapter we shall show how

this reaction rate can be reduced to the more familiar expressions for the

cross section,

C. Elastic Scattering

For neutrons with energies below the inelastic scattering thresh-

old, about 1 Mev for light nuclei down to 100 Kev for high A, the only

process available for their energy moderation is elastic scattering.** The

neutron energy distribution as determined from the transport equation can

be quite sensitive to the energy-transfer mechanisms underlying this type

* A possible exception could be the case of neutron transport in inhomogene-
ous magnetic field, Admittedly this is not a system of practical interest.

** For a discu si n of the slowing down of neutrons by elastic collisions
see Marshak 1 7) and Ferziger and Zweifel(1 8 ).



of collision. The fact that the neutron scattering can be significantly

influenced by the atomic motions of the system not only introduces addi-

tional complexities into the transport equation at low energies, but also

suggests the use of neutrons as an effective probe for the study of solids

and liquids. These remarks will be elaborated in greater detail in the

next chapter on the bases of the development presented in this section.

There are two types of elastic scattering processes which

should be distinguished at the outset since they will require somewhat

different treatments. The first process is like radiative capture in

that a compound nucleus is formed, but rather than decaying by the emis-

sion of a photon the compound nucleus decays to ground state by the emis-

sion of a neutron. This reaction is known as elastic resonant scattering.

The second process is a direct reaction known as potential scattering,

which can be considered as taking place in the immediate vicinity of the

surface of the nucleus so that there is effectively no penetration.* In

general, in energy regions away from any resonance potential scattering

dominates, whereas within the vicinity of the resonance peak resonant

scattering dominates, In regions where both kinds of sattering are af the same

strength it is known that appreciable interference can exist, which is

generally destructive at the low-energy side and constructive at the high-

energy side.** We shall therefore consider both processes at the same

time in order to include such interference effects in the present analysis.

*
Cf, ref, 1, p. 3935; see also remarks by Lane and Thomas(2)/, p. 261.

**
A rather striking example of this phenomenon is the sulfur resonance
line at ,100 Key (also the Silicon line at sld5O Kev).(19)
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The reaction matrix describing the scattering interaction is

again given by Equation (3.34) where now only VN, the nuclear part of the

potential, needs to be considered. Here the class of initial and final

states is that characterized by the conservation of neutrons, photons,

and nuclei. There are, however, two sub-classes corresponding to the

increase and decrease respectively of a neutron at the phase point of

interest. In the binary collision they constitute the scattering gain

and loss to the balance relation as indicated in the qualitative discus-

sion given in Chapter II.

For the treatment of both direct and resonance processes we

assume that VN has non-vanishing matrix elements between initial and final

states as well as between intermediate state and final or initial state.

The reaction matrix can be written in a form similar to Equation (3.51)

and (3.52),

Es Es
REs = N(X,K, s) [l-N(X,K',s')] r , (3.68)

k'K's ,kKs k'K's ',kKs

Es 2 N
r - V
k'K's',kKs i k'K's',kKs

VN VN 2
k'K's',k"a" k"a" (5.6kKs

- -(3.69)
A+1* A+l A i

ak+ E + s +E - E - E - - rk a,,
ak"a" k" k K 2 k

These two expressions are appropriate to collisions resulting in

"scattering loss ". Corresponding expressions for "scattering gain" are
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obtained by merely interchanging the state labels (k,K,s) and (k',K',s').

The various energies appearing in Equation (3.69) are the same as those
N

introduced in the previous section. The matrix elements of V may again

be factored as indicated in Equation (3.56), and we obtain

Es 2it N
rk,,= -- VkKs s

k'K's ' ,kK~s ' k'K's ',kK~s

N2 N2 -iK'.RK 1K.R k> 2

Ulea"akle -- I" kke--"k

hcT k" 2 +El E E-
a" k" k K 2 a

(3.70)

where we have introducedGT according to Equation (3.58).

The direct matrix elements, VN can be estimated in
k'K's',kKcs

terms of a specific model of a neutron-nuclear interaction. It is to be

emphasized that this use of a model does not affect the other matrix

elements of VN, those describing resonance scattering. This will become

evident in the following, for the parameters of the model are to be deter-

mined according to comparisons with data from low-energy potential scat-

tering. Since these parameters are fitted to experiments in the sense of

certain calculational approximations, i.e., the Born approximation or

first-order perturbation theory as presented here, it is not clear that

such a model should be employed in general theoretical analyses which

are not restricted to these approximations. Conversely, it will be seen

that the model employed in the context of first-order perturbation theory

can be adjusted to describe the experimental results exceedingly well,
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and its use enables one to explore the specifically macroscopic medium

effects with reasonable confidence.

The model, as we shall construe it, is introduced formally as

the potential,

V= fd xKj(x) * (x) v (x4- RI)

+ I -"1 (x)a k (~) v(x - I 21 (3.71)

The spinor field operator 9 (x) has been discussed in the previous chapter.

The components of the vector a are the Pauli spin matrices(11) and conse-

quently g/2 represents the intrinsic spin (in units of T) of the neutron.

The vector Ii represents the observed angular momentum of the £-th nucleus

in its ground state, Instead of the delta function (pseudopotential)

introduced by Fermi, (20),(21)* we shall depart slightly from convention

and suggest the use of Yukawa functions to represent the short-.range

potentials vi, i = 0,1,

v1(r) = g (372)
1r

The reasons for our preference for this potential function will be made

more explicit later; for the moment we simply remark that it provides a

cross section for neutron-nuclear potential scattering with a somewhat

expanded range of qualitative validity.

* (2
The Fermi approximation has been recently studied by Plumnmer(2 and.
Sumnmerfield~ 23),
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A more useful expression of V is obtained by using the spinor

field expansion in Equation (2.8) . We find

V =

XKK'ss'

a s ' )+(XK, s) a(X,

2

-iQ.R
UJ2(-_Q,s,s') e ~-2 , (3.73)

where

Q = K - K' (3.74)

U (Q, ss') = V 1 d5 R E(X,R +R)
iQ-R

e -

(x) v2 (R) + I.
O ss' -A

ut(s) a u (s') vi(R)l.
3 -jk k 1

(3.75)

The Hermitian character of this coarse-grained potential can be readily

demonstrated, for

V+ = I a+(X,K',s') a(X,K,s)

XKK' ss'

U2(-Q,ss')

2

eiQ.Rse
(g, 76)

and since S and a are Hermitian, and vi are real, we have

+
U (_Q,s',s)

-l 3 -iQ-R
= V d R E(X,R + Re --

(x) v0 (R)S, + I-u, (s' )- kuk(s)v (R)

= U (-_Q,s,s') (3.77)
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Thus by interchanging (K,s) and (K',s') in Equation (3.76) we obtain V+=V

which is of course a necessary property of the potential.

The direct matix elements of VN are now of the form

N -iQ-RV =k s < k U (-Q,s,s') e ~ ~ k> . (3.78)

Because of the presence of spin dependent interactions it is necessary to

reinterpret .the states |k> to include possible spin states of the nuclei

in their ground states. Elements of the reduced transition matrix for

elastic scattering, with this particular choice of a potential for

potential scattering, become

Es 2t \7-iQ-R,
rk'K's ,kK s - i ,<kI Ug(-Q,s,s') e

Z N s N -iK'-R iK-Rk 2
UOa",( -s') Ua"o(Ks) <k'|e - " | -- lk> 2

Tf T T +1 AE E -ir
ak +E k" k K "2

(3.°79)

Although still rather formal, this expression will provide a suitable

starting point for explicit considerations of medium effects and for the

introduction of useful assumptions and approximations. We shall close

this section by noting that the elastic scattering contributions to the col-

lision terms in Equation (3.39) may be displayed in a form analogous to

Equation (3.67),
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VV W 7 - W1sEsnnt)

nn's

-j-1 - XK'tr ,,, Uy5 E -EA ES (X_,t )] F(X_,K_,)tE kKs,k'K's' K k'kt

K' k's'ks

- F(X,K,t[) Z[l - F(X,K',t) ] rk' AE-(E + EK- t)Dkk(t)

K' k's'ks

(3.80)

D. Fission and Inelastic Scattering

The contributions to the balance relation (3.39) from fission

and inelastic scattering, like those from elastic scattering, also can

be. expressed as gains and losses, the fission lots term combining with

the radiative capture loss to account for the removal of neutrons by

absorption. The processes of fission and inelastic scattering are

relatively more complicated in that they should be properly regarded as

multiple-stage (at least three) reactions, for it is likely, in the case

of fission, that the compound nucleus decays to two excited fragments

which then subsequently decay to less excited fragments via neutron and/

or photon emission. In the case of inelastic scattering, the compound

nucleus emits a neutron, leaving an excited nucleus which will de-excite

by photon emission after some time lag,* Thus a reaction theory capable

of describing three-stage events is necessary in order to treat these

processes, The reaction matrix given in Equation (3.3)+) can be used to

describe only first and second-order processes, so that higher order

terms would have to be included in Equations (5.11) and (5.12). The

generalization of the formalism in section A is a straigtforward mnatter; however,
*

Inelastic scatterings in general need not involve the formation of a
compound nucleus, A number of direct reactions of this type have been
cited in Lane and Thomas(2),p. 264. The direct scattering by a rotat-
ing non-spherical nucleus has been investigated by Chase, et al.(2 4 )
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the additional complexity in manipulation which is necessarily involved

is not warranted since we do not intend to discuss these two processes

quantitatively. Instead, we shall falsify the description by representing

these reactions as two-stage events, and this is accomplished by allowing

matrix elements of VN between states of compound nuclei and "fragment-plus-

neutron" or "fragment-plus-neutron-plus-photon" states,

It should be mentioned that the following brief treatment of

fission and inelastic scattering does not imply that these processes are

not significant considerations in the study of the neutron transport equa-

tion. Quite to the contrary, the importance of the role of fission in

nuclear reactors is obvious; and in fast reactors where it becomes

necessary to obtain as high a mean neutron energy as possible, inelastic

scattering is certainly an essential factor in the analysis. Nevertheless,

there also exists a large class of problems in which the transport equation

without fission and inelastic scattering effects is studied, Our purpose

in this section is essentially to extract the neutron number dependence

of these reactions so that the balance relation (3.39) may be expressed as

an equation for F(X,K,t).

As in section D of Chapter II, we consider a fission event in

which J neutrons are emitted.* The momentum and spin orientation labels

of these neutrons will now be designated by {Ks} . The elements of the

reaction matrix characterizing this particular process are

*

Again we shall ignore delayed neutrons,
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R ({Ks} ) = N(X,Ks) II [1 - N(X,K°,s.)]r ({Ksj}),
l1kol,kKs J {Ks} k a,kKs j

(3.81)

F 21 =21t lal, k "an K k) a, Ks2r ({Ks} ) =- - 2
kial, kKs J+ iA+1- EA -E K

kka" a"+ k" k K 2 a
(3.82)

In Equation (3.81) the product is such that whenever (K.,s.) = (K,s) the

factor [l-N(X,K,s)] is to be replaced by unity. This then ensures that

a neutron can be emitted having the same momentum and spin as that of the

neutron initially absorbed. The matrix element describes the formation

of a compound nucleus and has been encountered previously. Its dependence

upon "external" degrees of freedom is given by Equation (3.56), The other
N

matrix element, Vk a k a"1({Ks}), represents the "falsification" mentioned

above since it describes the decay of the compound nucleus into two fission

fragments in external states k and internal states al, and J neutrons

with momentum and spin distribution {Ks}. In this case an expression

similar to Equation (3.56) for the "external state" dependence is not to

be expected since neither of the fission fragments may be regarded as

located at the center-of-mass position of the compound nucleus and one has

no knowledge of which of J neutrons is emitted by a given fragment.

The fission contributions to the balance relation can be decom-

posed into gain and loss terms depending upon whether or not the distribu-

tion {Ks}y contains the momentum and spin of interest. In the sense of

approximations inherent in Equation (3.80), they may be displayed~ as
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V' [N'(X,K,s) - N(X,K,s)

nn's

_i Z Z F(X,K',t) 11*

AJk K {K}JK

K'k's'

(x) D , ,(t) S(E ,+ EK,-

S Dnn(t)

[1 - F(X,K.,t)] 1 ,kK ({K}2 F 2 kK rXkXKs JK

V IF(X,K.t)]I rF.e ({K}')
2 eJ i k~s 37K

- F(X,Kt)
I* [1

AJkscxl {K} {K}J

(x) Dw(t)e(Ee + EK

where

(383)

rF ({K}) = Z rnn ({Ks} )

{S}j

(3.84)

The distributions {K}J and {K} denote those which contain and do not

contain the momentum K respectively. The energy Ef may be obtained as

follows. The total energy before fission is

= (m+MA) c2 +E + En k K' (3.83)

and, according .to the present approach, the total energy after fission is

En, = (M1 + Jm)c2 + E + Ek + E{}
1 1 1KfJ

(3e86)

where Ml is the sum of the rest masses of the two fission fragments, Ea



their internal energy (subsequently leads to emission of y, P, and

neutrons), Ek their "external" (kinetic) energy and E{K is the
1 J

kinetic energy of the fission neutrons. Thus

Ef= E - (m + MA) c2

f n' A

The sum of thelast three terms in Equation (3.86) gives the energy released

by the fission process. For U235 this is about 200 Mev, (6)roughly the same

as the energy due to the mass difference. Hence from the standpoint of

energy conservation there is effectively no fission threshold.* Such

will not be the case for inelastic scattering.

We now consider the decay of the compound nucleus by neutron

emission; the residual nucleus, being in an excited state, then decays

to ground state by gamma emission. In order to treat this process with

the formalism employed throughout this chapter, it will be necessary to

assume that a potential exists that has non-vanishing matrix elements

between states in which both neutron and photon numbers are changed. We

shall denote this potential as V' since it does not conform to the separ-

ation (3.41) into parts purely electromagnetic or nuclear. The relevant

elements of the transition matrix for inelastic scattering, in the present

approximation, are therefore

* (6)
See, however, Weinberg and Wigner, %Up. 108, with regard to the cases
in which A is even.
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Is Is
R , , , ,k N(X,K,s) [1-N(X,K,s')][l+N(X,K', ')]r

k K's ,kKs---k'K's' ,kKs 7
(3.87)

Is
r

k ??ta""

VkK s K I,kau? aI,??s.

a" k kK 2 a"

(3.88)

In this case we may

compound nucleus to

(3.56),

expect the matrix elements describing the decay of the

be approximately factorable as in Equations (3.54) and

' -iR .(K'+K') ,

V f < k' le ~e~ |k" > U 2  (K's 'X'),
k-'K 'x',k La 0"

(3.89)

Since the nucleus emitting the photon and neutron has to be the one that

captures the neutron,we can again introduce the reduced reaction matrix

appropriate to a single nucleus,

2 N2 -iRo(K'+K') iK-R 2
Is2 2n Uoa" Ua",o <k'le ~ ~~~|k"> <k" e ~81k>

rk'K's ' K'1',kKs -i--
k " a " + A + 1 - E A - E"

(3.90)

The contributions to the balance relation due to inelastic scattering now

become
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Is IsL
v- (w~ - w ) D(t) _

n'n n'n nn-

nn 's

[1 - YF(X,K,t) ] F(X,K',t) [1 + Fx(X,_,t)]

£k.'K's 't ks

(x) 1 rIs~e (EA + EK - E - EK- E) Dkk,(t)
2 kKsX,k'K's' k K k K k

- F(X,K,t) 1[1- F(X,K',t)] [1 + F ,(X,K',t)]

Ak'K's '1'lX'ks

(x) ITsA DE + E Et)A(-.91)

k'K's' 'X',kKs k K + kk

The total scattering effects in Equation (339) are therefore given by

the sum of Equations (3.80) and (3.91).

E. The Neutron Balance Equation in Continuous Momentum Space

The neutron balance equation, as given in Equation (3.39) has

been reduced by a systematic study of the various collision terms.

Expressions for the associated transition probabilities, although still

rather formal, have been derived using Heitler 's damping theory. Having

determined the explicit dependence upon neutron occupation number of

each process, we thus obtain an equation describing .the neutron density

F(X,K,t). This equation can be written as

-+ K + R(XK) F(X,Kt).,,t m -J 6X. T - -

= F(X,K',t) [Rs(X;K'-+K) + RF(X;K'->K)] , (3.92)
K'

where we have introduced the following reaction rates,
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RT(x) = R (x) + R(x) + R(x), (5.95)

R X K - ~ 1 1 +F ? s 1r

D t C +E _A(x) kk(t) k K k+S -BAlK
(3*91k)

R(x,K)

Lk'K's 'ks

[1 - V F(X,K',t) ] Dk(t)
2

(X) 2 rEs
r k'K' s , kK s

(~E k+EK ' K1)

+17[1 + F , (XI',t) ]

Is 2
r
k'K's 'r 'X',kKs

8(EA+E+E-A
k K K' k

(5.95)

RF(XK) = I
ks{K}'

JK

11*

{K}'
JK

[1 - 2 F(XKj~t)] Dkk(t)

1 F2
(>2 rka. ~ (3.96)

R(X; K- K)= [1- - F(X Kt)]
2 --

2k 's'ks

Dklk, (t)

(x) 2 kKsk K s' (EA +E A -E~k K k' K,

Is2 A
) [ + (x~,)] (E -- kKstv X k K s' k

A
E ,- Ek - - E)-
K'

(5.97)
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V
R (X;K'K) = ) 1* 1 - - F(X,K,t)] D (t)

F{K}2 -j k k

Alkal -JK

k's'{K}
JK

Ekfk 'K (3.98)

The expressions for these reaction rates have been discussed in the

previous sections in this chapter. Equation (3.92) is now seen to be

identical in structure to the conventional neutron transport Equation

(1.1); however, the present equation has been derived on the basis of

a discrete phase space.

It has been indicated earlier that the distribution of

momentum points is so dense compared to resolutions in any practical

measurement that no appreciable error can result by expressing Equation

(3.92) as an equation in continuous neutron momentum space. This is

readily accomplished by the use of Equation (2.30) whereupon we find

®+ v - _7 + v Z (X9 v) f, (X, v,t)

=fd v' v'f(X,v',t) (X,v')' (v'-+v) + (3099)

where we have introduced the neutron velocity as a variable, v = -1KJm ,

and have expressed the collision rates in terms of corresponding macro-

scopic cross sections, . The two frequencies, and in Equation

(3.99) are defined as follows,
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R_(X;K'-->K) = R (X,K') 'a\(K'->K) d3K

Ked3K

= v' Z (X,v')(v'--v d3v , (3.100)

Z R (X;K'--K) = R_(X,K)Q(K'- K) d3K

= v' ZF (X,v') (v'->v) d3v . (3.101)

As usual, 9 '(v' ->v)d3v is to be interpreted as the probability that

given a neutron scattered with velocity v' it will have its final

velocity in d3v about v, whereas Z(v'--> v)d3v represents the expected

number of neutrons emitted with velocity in d3v about v given that a

fission event has been initiated by a neutron with velocity v'.

For the reactions of interest the cross sections andeZ are

independent of the .direction of the incident neutron. Moreover, '' often*

depends only upon the initial and final speeds and the scattering angle,

G = v -v'K/ I v' l . Inserting these simplifications into Equation (3.99)

and assuming that the discrete configuration space can be replaced by

a continuum, we finally obtain the neutron transport equation in a form

that is conventionally employed in all investigations of neutron slowing

down, diffusion, and thermalizat ion.

An exception might be the scattering frequency for low energy neutrons
in crystals.
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IV. .NEUTRON-NUCLEAR INTERACTIONS: MEDIUM EFFECTS

In detailed investigations of neutron transport in macro-

scopic systems, the use of adequate cross-sections in the transport

equation is essential. And adequacy here requires that the cross-

sections not only reflect the specifically nuclear processes under

consideration, but also all relevant environmental effects. The

environment can significantly influence the description of the cross-

section in at least two ways. The dynamics and symmetries of the

system can either separately or simultaneously modify an observed

reaction rate.

The ratio of nuclear force ranges to characteristic inter-

nuclear distances is of the order of 10-5 or less. Thus it is antici-

pated that a given neutron will interact with the nuclei in any medium

one at a time. Nevertheless the probability of a collision between a

neutron and a nucleus will be affected (because of the requirements of

energy and momentum conservation) by the character of the states avail-

able to the target nucleus in the system. In turn, the nature of these

states is determined by the dynamics of the macroscopic system.

Furthermore, system dynamics modifies reaction rates in still another

way, since they will depend upon the relative probabilities of finding

a target nucleus in particular available states before a collision

occurs. The effects on reaction rates depending upon the nature of

the available states for the nuclei are often referred to as "binding

effects", whereas those depending upon the probabilities of occupancy

of these states are called "Doppler effects"
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System symmetries, which for practical purposes may be

regarded as distinct from system dynamics, can also play a role in

determining reaction rates for neutrons at sufficiently low energies

that their De Broglie wavelengths approach or exceed internuclear

spacings, i.e., energies of the order of tenths of an electron volt

or less. The most striking example of symmetry effects on neutron

cross-sections is probably Bragg scattering in crystals.

For the very low energy neutrons for which symmetry effects

markedly influence reaction rates, dynamical effects of both kinds

(binding and Doppler) are generally expected to be significant also.

Since molecular dissociation and crystal dislocation potential

energies are typically of the order of a few electron volts, it is

anticipated that, at least in principle, there will be neutron reaction

rates which are affected by both aspects of system dynamics, but not by

symmetries. Finally, for still higher energy neutrons, binding effects

should decrease in importance and only the Doppler effect should remain

as an influence on cross-sections.

The expressions for neutron-nuclear reaction rates which

have been derived in the previous chapter implicitly include all of

these effects. In this chapter we shall explicitly investigate some

aspects of them.

The following discussion is restricted to radiative capture

and elastic scattering because, for simple systems, the calculation

involved is straightforward and the results obtained are of cons ider-

able interest from the standpoint of reactor analysis.*

*MFor example, the temperature dependence of reactivity ()and the study
of th rnalization and diffusion of neutrons in the energy region below
1 ev." 2
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Because of the complexities of inelastic scattering and fission

reactions and of our intention to describe them only qualitatively,

a quantitative investigation of medium effects in these processes

does not seem feasible at this point. Furthermore, it is unlikely

that inelastic scattering reactions will be observably sensitive to

medium properties due to the large neutron energy required. It is

also unlikely that fission reactions will be influenced by binding,

although Doppler effects may be important.

One neutron-nuclear reaction in which medium effects are

prominent is elastic potential scattering at low energies. With the

advent of high-flux reactors and the development of high-resolution

neutron spectrometry it has become feasible to measure in considerable

detail the energy and angular distributions of the scattered neutrons.

These investigations not only provide cross-section data for reactor

calculations, but also constitute a quantitative means of studying

atomic motions in solids and liquids.*

In the latter cases the emphasis is on the proper inter-

pretation of the measurements, and for this purpose a realistic

description of the scattering system must exist. The theory of

neutron scattering by crystals and low density gases, on the basis

of available models capable of representing quite accurately the

motions in actual systems, has been developed to the extent that

quantitative understanding of the various processes involved is

possible. On the other hand, the corresponding theory for liquids,

R~or an extensive list of references as well as a number of importan~t
papers see the proceedings of the "Symnposium on Inelastic Scattering
of Neutrons in Solids and Liquids" .held in Vienna, 1960, and the
proceedings of a similar symposium held in Chalk River, 1962.(3)
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as is also the case of the theory of liquid state in general, suffers

from the lack of a systematic and reliable description of molecular

motions. The complexities of these motions make it necessary to intro-

duce simplifying assumptions and specialized models in order to carry

out an analysis. Since much of the theory of neutron scattering by

liquids is still under development, this aspect of the investigation

of medium effects will not be considered in the present work.

From the reaction-rate expressions already derived it can be

seen that the effects of the external degrees of freedom of the nuclei

are partially specified by the matrix elements of exp(iqr), where q

is either a neutron or photon wave vector. The direct calculation of

these matrix elements necessarily involves specification of dynamical

and symmetry properties of the medium. For the purpose of illustration

we shall consider two simple systems, the ideal gas and the Einstein

crystal. Although these are rather idealized descriptions of actual

systems, they are capable of providing useful cross-sections for

realistic reactor calculations. The discussion presented here is

primarily concerned with the translational motions of the atoms.

Thus the results obtained, strictly speaking, are applicable only to

monatomic systems. For polyatomic molecules the same procedure may

be used to treat the center-of-mass degrees of freedom, but in addition

molecular rotations and inter-nuclear vibrations must also be taken

into account.

A. Transport in an Ideal Gas

The simplest dynamical system appropriate for the discussion

of medium effects is one in which the atoms do not interact appreciably
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with each other. The recoil of these atoms in a collision with

neutrons will be like that of free particles, so that only two

properties of the system can be expected to influence the cross

sections: the particle mass which influences the magnitude of the

recoil and the temperature which characterizes the average energy

of the atoms. The use of a free-particle description makes the

cross section calculations quite easy, and the results are often

useful in transport problems, since systems other than dilute gases

can also be treated in this manner whenever neutron energies are

such that chemical binding is ignorable.

Radiative Capture

The reaction rate describing radiative capture in isolated

levels has been derived in the preceding..chapter. From Equations (3.94)

and (3.59) we have

A+l A+1 A 2
Rc = [1 + F (X,i 't)] 8 (Ek ' - B. + EK 1-Ek -EK)I|UOa( 'x')I

c 2k'iKX'

ksa
(4.1)

-iC'R iKR

2 <k'le k"I> <k" e k 2

(x) U I(Ks) jDkk(t)Ai
a+Ek" - EkE -2a

k"

For a system of non-interacting particles with no internal degrees of

freedom the Hamiltonian is s imply the sum of individual particle kinetic

energies. The k-th eigenstate of the system is a product of individual-

particle cell eigenstates, each characterized by a wave vector which is
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discrete in exactly the same sense for the neutrons. The two matrix

elements in the k" sum can now be written as

-is ' - R iK- R

< k' e - - |k" > < k" | e-~ ~ 1k> = SK(k + K_' . - k_')K( -

(4I.,2)

where k , k" , and k' are wave vectors characterizing the £-th nucleus

in initial (mass A), intermediate, and final (mass A+1) states respec-

tively. The symbol 8K(x-x') denotes a kronecker delta. Because of

Equation (4.2) the absolute square of the k" sum becomes

SK(k' + ' - K -k

(24.43)
(& -E )2 + (r )2

where

MK ik 2

p = mM/(m + M) and we have suppressed the subscript £. As one may expect,

in a collision in which the nucleus is in motion the effective neutron

energy is the relative energy E .

In the energy conserving delta function in Rc the molecular

energies (Ek =2k2/2M) are exceedingly small compared to the binding

energy BA+l or the photon energy E ,. If we assume that the difference

EA+1 - EA can be effectively ignored*, the summation over k' states can
k' k

be performed immediately since then only the kronecker delta depends upon

k' . The energy of the photon emitted during the capture process is

usually many orders of magnitude greater than the characteristic thermal

*Keeping this difference entails no difficulty in principle. The approx-
imation is made here for convenience in calculation.
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energy kBT, where kB is the Boltzmann's constant and T the equilibrium

temperature. Therefore it is usually justified to neglect in Equation

(4.1) the distribution F,(X,s',t) compared to unity. We now have

Rcs(E' - BA+l- EK) U 1 U 2

K'a l's

(x) 7 Dkk(t) (4.5)

k (E - EKk) 2 + (r/2 )2

It is convenient to replace the k sum by an appropriate integral. This

is accomplished by letting the system volume become arbitrarily large

and observing that

Dkk(t) = P(k) d k . (4.6)

ked3k

In Equation (4.6) it is often assumed that the system is in a thermo-

dynamic state so that P is time-independent. The sum over photon

momentum can also be replaced by an integral and in so doing we may

introduce the radiation and neutron:partial widths as given in Equations

(3.61) and (3.63). The ratio

(EA+1  -2 dEE 2 8(EK - BA+l - EK) (4.7)

0

is seen to be essentially unity in view of the neglect of molecular

energies. After some simplification the absorption rate becomes
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R -=7"h(N)](R) d3k P(k)
c 2mKL3 /La-aE) 2 + 2(4.8)

The microscopic cross section a is related to the reaction rate

R by dividing the latter by the incident neutron speed and the nuclear

density. Since Rc represents the neutron absorption rate by mass A nuclei

located in the configuration volume specified by X, the 2 sum in Equation

(4.8) merely gives a factor of NA(X), where NA(X) is total number of mass

A nuclei in the cell. The nuclear density in this case is NA(X)L~3 so

that

a (K) = [L3/NA(X)] c (X,K)
c

(4.9)

t2 (N) (R) F d.k Pk)

C(E - E Kk) + (ra 2)

where E is the macroscopic capture cross section and K = 1/K. For
c

systems in a thermodynamic state we may use for P(k) the Maxwell-

Boltzmann distributionand we then find that ac depends parametrically

upon the medium temperature. Equation (4.9) therefore gives the

familiar single-level resonance capture cross section.

The energy dependence of each term in Equation (4.9) gives the

so-called resonance line shape. In the limit of zero temperature P(k)

becomes 5(k), and
(N) (R)

a (K) - (4.10)'
c2 - (a- EKO)2 + (r )2l0

*The effect of thermal motion upon radiative capture of nutrons by gas-

phase nuclei was first considered by Bethe and Placzek.( 4 )
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describes radiative capture by a stationary absorber. Note however,

Equation (4.lo) still contains the effect of recoil of the compound

nucleus. Each line shape in this case is called "natural", the

Lorentzian being characterized by a width Fa/2. At finite temper-

atures, the integral (4.9) gives a weighted superposition of many

Lorentzians so the resulting line shape can be significantly broadened,

but with an accompanying depression of the peak value. This effect is

known as "Doppler broadening" and is of considerable importance in

studies of reactor safety and control,* for it is well known that the

broadening of a resonance line can cause a significant increase in

the effective absorption in a system.

The integral in Equation (4.9) can be reduced to a form that

is conventional in the investigation of Doppler effect in reactors.**

In terms of velocity variables,

ac(v.) , 2N) (R) dV(V)

Sc2Y - Er)2  + a

where

M -MV /2kBT

P(V) = (2cBT)/ 2  e

Er = r22 , (4.12)

vr = v-V,
r

v = fiK/m,

V =dik/M .

*For a review of Doppler effect in thermal reactors see Pearc .(l The
effect in fast reactors has been discussed by Feshbach et al~5 and by
Nicholson(l). Recently the problem of n n-uniform temperature distri-
bution has been investigated by Olhoe ft. (6)

**See, for example, L. W. Nordheim, "Resonance Absorption of Neutrons."
Lectures at the Mackinac Island Conference on Neutron Physics, June,
1961, available as a report of the Michigan Memorial Phoenix Project,
University of Michigan.
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Since v is a fixed vector in the integration,the integral becomes

v+V Vr

2n V dV P (V) dyr 2) 2

0 1v-V I+

By changing the order of integration and performing the V integral, we

obtain

2 (N) (R)

c2v )- 
22  +

4dx cy (e 1+4
2y

where we have introduced the variables

xa = 2(E - .. a) a

y = 2(' - Er)/rJ'

2 = 4 m EkBT/M, (4.15)

In arriving at this result it has been assumed that p 'v m and that in the

exponential

TE _ fE (1 + -- ).
r-.2E

The integral * has been studied extensively and its values as a func-

tion of A and x are tabulated. It is somewhat interesting to note

that at very high temperatures (i small) the contribution to the integral

comes mainly from y = 0. The resonance line shape is then essentially



-103 -

governed by the Gaussian exp (-x 2 /.4), the width of which,

2(4EkT/A)1/2, is known as the Doppler width. The parameter t/2

therefore is the ratio of natural width to Doppler width.

Elastic Scattering

From the preceding section it is observed that the external

degrees of freedom of nuclei in gases influence a given .collision only

kinematically. Because not all atoms move with the same velocity, the

cross section appears as an average over a distribution (usually thermo-

dynamic) of target velocities. The same remarks are also applicable to

elastic scattering, and in the case of potential scattering the average

is rather easily performed. The reaction rate describing an elastic

process in which the neutrons suffer an energy change of EK, - EK and.

direction change of A = cos" (K -K') is given by

R = L 31 8(E_4,+ E E, Pt) 7- Rs T- (E , K - K'k'(S

kk' ss'

(4..16)

- [<k|e ~ - Ugk'>

N2 N. -iK-R iK'R
tU0 (Ks) Ua0(K's') < k| e -- -k" > < k"le - -k'> 2

A+1 A
a + Ek"? - Ek, - EK' - a

in which we have replaced Dkk(t) by Pk(t) as in Equation (4.6).

In calculating the various matrix elements we note from Equation

(3.75) in the expression for Upthe integrand contains the step func-tion



E(X, R + R) as well as v .. Because of the short range of nuclear

forces, L >> Xi, we may effectively write the step function as E(X,R)

and obtain

<1k U" e - 2k' >= U SK (k - k' + _Q) , (li..i8)

where

3L3i -iQ - R + 2
SL d R e ~~ ~~ [8s5 5 'v(R) + I2-u (s)jkuk(s')vl(R)],

(ii.. 19)

and again the subscript I appropriate to the nuclear momenta in the

kronecker delta is understood. For potentials which depend only upon

the magnitude of R (as assumed here) U2 is real. The matrix elements

in e which describe resonant scattering are given by Equation (I-.2)

with K' replacing K', so the k" sum can be treated as before. The

momentum conserving kronecker deltas appearing in both terms of e

involve only the neutron and the 2 nucleus*, the sum is therefore

incoherent and may be removed outside the square of the absolute

value. This sum again gives a factor of NA. Now we have

e = SK(k - k' + Q)

U( 2 U 2 - 2U(Ea - EKk')U 2
(x) U2 + .Y4.0

( - EK'k, )2 + (1a/2) 2

In writing the cross terms in Equation (4.20) which represent the inter-

ference between potential and resonant scatterings, it has been assumed that

the neutron emission and absorption matrix elements are at most only weakly

*This is only true for ideal gases in which there is no interparticle

interaction.
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dependent upon momentum and spin so that

oc (Ks) aO(K's')_ |U

This approximation eliminates the explicit occurrence of real terms

proportional to i. The particular model describing potential scatter-

ing used here has been introduced with a spin-dependent term. Spin

effects can also be taken into account in the analysis of resonant

scattering; although this particular aspect has not been emphasized.

In the interest of illustrating the dynamical consequences of macro-

scopic medium effects we shall ignore the effects arising from neutron-

nuclear spin coupling in our discussion. This neglect implies the

following:

2 = 2U

ss'

-- 2 - 2 (N)

U lU alN U ra -

ss

Making use of these results and inserting Equation (4.20) into Rs, we

obtain

R = (I)3 2NA - Ek' + A)Pk'(t)

kk'

(x Kkk~ ~2+ ~ [ 2  () 2 
-2(c-~k)[ 5)

cx ~ a - EK'k' ) 2 + (P cx2) 2

(4.22)
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where AE = EK - EK', and we further suppress the superscript A in the

energy symbols. At this point it becomes convenient to treat the

neutron momentum as a continuous variable, then SK becomes a Dirac

delta,

2-st 5
(k - k' + Q = (-)3 k - k' + Q .(4.23)

Moreover, it is also appropriate to treat the k and k' sums as

integrals.

In the case of spinless nuclei the potential U characterizing

the direct process may be written as

-iQ- R - R/X

U = L g/d< R R (4.24)

2
x(Q),

mL5

with

x/i)2
X(Q) = 2gm 2 . (4.25)

1 + (XQ)

Comparing with Equation (3.73) we see that this expression is valid so

long as X << L, i.e., range of interaction small compared to the linear

dimension of the spatial cell. Since X is of order 10~13 cm, this con-

dition is always fulfilled for any reasonable choice of L. If, on the

other hand, we had used the Fermi pseudo-potential instead of the

Yukawa potential we would have obtained

X = m(-_) a, (4.26)
M

where X is the bound.-atom scattering length and a is the conventional

"free-atom" scattering length.
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The final form of the elastic scattering reaction rate may

now be expressed as

R = j3- d~k dik' f AX k',t) 5(Ek-Ekt+ LAE SAyCk k ) (k-k'+Q)

m2

1 (N) 2  (N)
+(r'a2) - x( - EKtkI)'ra/2)]

(x) .x2 +. (4.27)

a EK k') 2 + 2 .7

Here we have denoted [NA(X)/L3]P(k', t) by f',k,'t) which as an analogue of

the neutron density, represents the average number of nuclei of mass A

having momentum 'ik' to be found at X at time t. For X > 0, the last

term in Equation (1.27) shows that the interference between potential

and resonant scatterings is destructive at the low-energy side and

constructive at the high-energy side of the resonance line.

The results in the present section can be summarized in terms

of an equation describing the transport of neutrons in monatomic gases

in which the dominant neutron-nuclear interactions are radiative

capture and elastic scattering,

[--+ - *v + - Et(K)] f(X,K,t)

= d5K' f(X,Kt) ( ) s(K' )? (K' - K), (4.28)

where the macroscopic cross sections are

k(K) = Ec(K) + Zs(K) ,(4.29)

Z (K) = r(5N)r(R) d3 fA(,(4.30)
c a a - E ) 2 +(a2)
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2E(K) = -- J d.k d 5k' d 5K' fA(X,k,t) 8(Ek-Ek,+6E) s(k-k'+Q)

(X) [x2 + 7' .XF x (Ea -Em)( (N)P2]("
a ( - EKk +

and the scattering frequency 91 (K' -> K) is given by

E s(K' ) (K' -->K) = f'd 5 k dik' fA(X,k',t) 8(Ek-Ek,+AE)8(k-k'+Q)

2 2 X~l2 - XGa - EgK ' Xce
(x) EX + (4.32)

L +a (aEKk')
2 + (ra/2)2 I

The cross sections, through their dependence upon the nuclear density,

are of course also functions of position. The transport Equation (4.28)

has been extensively employed in reactor analysis. Usually, additional

simplifications are introduced in attempts to treat a problem analytically.

For example, in neutron thermalization and diffusion investigations it is

conventional to assume "l/v" absorption* and neglect the effects of

resonant scattering.

The potential part of the scattering cross section can be

further reduced. Ignoring the contributions from resonant and inter.-

ference effects we have from Equation (4.31)

EsK = x 2  diK' di k f(X,k,t) 8(ER+ -~ Qe k- ) (.

*The inverse speed dependence of the capture cross section follows from

Equations (4.30) and (3.63) for neutron energies far below resonances.
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where ER (Q)/2M is the recoil energy and we have suppressed the

nuclear mass designation in f(X,k,t). Upon the use of the integral

representation of the delta function this expression becomes

2EE(E/2 -t'(E4.)/)
Es(E) = 2f dE' (E)l/2 ' dt'<>T ''it'(ER 4A

0 -0

3-it'fiQ- k/M

< > = d k f(X,k,t)e
T ~-

2
-kBT(Qt') /2M

= ne .(4.3'5)

In Equation (4.35) a Maxwellian distribution is again assumed in evaluat-

ing the integral. The nuclear density [N(X)/L3] is denoted here simply

as n. The scattering cross section is now expressed in terms of the more

conventional energy variable. From Equation (4.34) we can identify a

microscopic cross section a(E -+ E', @) which describes the scattering

of a neutron from energy E to E' with a specified change of direction

of motion,

E(EJ) = n dE'd2' a(E-+E',9) , (4.36)

where
2

-(ER-SE) / 4 ERkBT

2 (E')1/2 e
a(E -+E ', ) = (X(--)T)1/2

(4xERkBT )

The variable 9 denotes the angle between K and K'. The integration of

a over energy~ or angles (10) can be carried out. These calculations,

being quite complicated and not particularly illuminating, will not be
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discussed here. On the other hand, the high-energy limit is interesting

and readily available. For E N ev the nuclei can be taken to be

*
initially at rest ,

f(X,k,t) _ n8(k)

and we obtain instead of Equation (4.37)

2 E' 1/2
a(E ->E',9) = X ( -) S(ER - DE (x.38)

The angular integral of this result is readily performed,

______ 1

SE(l-a) 1 + (EE')/
2  , QE < E' < E (4.39)

a(E ->E') -

0 , otherwise

with c = 2gmX/Xi and a =(Mm) . If the second factor is ignored then

a(E -> E') gives the scattering frequency familiar in reactor theory

**
and leads to a constant total cross section a(E) = 4xrc 2 , This is

equivalent to assuming that X is a constant which is actually valid

for energies up to about 104 ev. Beyond this region experimental results

show a gradual decrease in a(E) that can be fitted qualitatively by an

expression of the form (1 + fE)l-, P being an adjustable parameter.

From Equation (4.39) we find that a(E) is in fact given by this form,

a(E) = 4c2

1 + 2MX 2 (1 - a)F6 2

If resonant scattering is ignored.,the transport Equation

(4.28), upon making use of the above results, becomes

*This is equivalent to the limit of zero temperature.

**The same result is obtained by using the Fermi pseudopotential instead

of the Yukawa functions to describe neutron-nuclear interaction.
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+ v -V + v f(v)f(Xvt)

= d3v' V' f(Xv',t) (v' -v,), (4.4)

with E = no. This integro-differential equation has been the fundamental

equation in many investigations of neutron transport. (11) The energy-

independent form of Equation (4.40), the "one-speed" transport equation,

provides a problem of practical interest for the application of the

(12,13
theory of singular integral equations., The first two angular

moments of Equation (4.40) give the diffusion equation which constitutes

the analytical basis for many of the present studies of nuclear reactors.

B. Transport in Crystals

It has been shown in the preceding section that, in the

absence of chemical binding, nuclear recoil effects on the cross-

sections can sometimes be analyzed by a straightforward calculation.

For systems in which interatomic forces cannot be ignored this

effect is in general considerably more complicated. However, in

the case of strong chemical binding, it is again possible to discuss

medium effects in analytical terms, for then one can reasonably

represent the atomic motions as oscillations and make use of well-

developed dynamical models in solid-state theory.(1 After elimi-

nating the dependence upon electronic coordinates(1) one obtains

in the harmonic approximation, a description of nuclear motions

identical to that for a set of coupled oscillators, which can then

be decoupled by a transformation to normal coordinates. However it

is our purpose to illustrate the general features of medium effects on
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neutron interactions. Thus to avoid an involved discussion of

crystal dynamics we shall restrict our considerations to a system

describable by a set of uncoupled oscillators. It will be assumed

that each nucleus experiences identical interactions with its

surroundings so that it executes isotropic oscillations about

an equilibrium position (a lattice site in the crystal) independent

of all other nuclei. From this it follows that the fundamental

vibrational frequencies can all be taken to be the same.

The present model, the Eistein crystal, is admittedly a

severe idealization of actual atomic motions in bound systems.

Nevertheless, the results derived on the basis of such a description

are meaningful and, like the ideal-gas cross sections, often useful

for practical calculations. In general it can be expected that the

model will provide an adequate description of integral properties of

the cross sections, but is not suitable for quantitative analysis of

differential cross section measurements. One can, however, extend

the following results to more elaborate crystal descriptions; the

required modifications being mainly refinements of the model and not

changes in the method of calculation

Radiative Capture

A natural extension of the investigation of neutron capture

(4)
by free atoms is the corresponding treatment for atoms bound in a

crysal. hisproblem was first considered by Lamb whoe1or)i

*In some crystals it is possible that the vibrational motions can be

adequately described by an Einstein model. Such an example could be the
hydrogen atom in Zirconium hydride. (6
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of more general significance because the process of radiative capture

is closely related to other nuclear processes characterized by a

point interaction, a fact that has attracted attention only recently. (18)

For example, one encounters the same matrix elements of the form

< kj exp(iqR)j)|k' > in the problem of emission and absorption of

nuclear gamma rays,* With respect to neutron absorption Lamb showed

that if the lattice binding is sufficiently weak the resonance line

shape is the same as that of a free nucleus but at an effective temper-

ature corresponding to the average energy per vibrational degree of

freedom of the nucleus including zero-point vibration. -We shall first

obtain the general cross section and then show how this limit emerges.

The reaction rate to be studied is that given in Equation

(4.1). Since the energy eigenstates 1k> are no longer momentum

eigenstates, the matrix elements must be obtained by a different

approach. We shall again ignore the external energies EA and EAl
k k

in the delta function** and also neglect the photon distribution

function compared to unity. The expression for Rc becomes

Rc (E, -BA+1 EK> 2  N a 2

In fact, Lamb's theory provided the initial explanation of recoil.Less
gamma ray transitions, a process now known as the Mossbauer effect. (19)

** Although this approximation is conventional, it is here as in Section
A not necessary. For example, the method of analysis used in the
following to obtain elastic scattering cross section can be equall~y
well applied here.



iK-R 2

= 7 P k(t) < k"Ie k > , (4.42)

k k" -- EK - E + T +1

where as a result of performing the k' summation the k" sum appears

outside the square of the modulus, The quantity <>, except for a

constant multiplicative factor, is identical to the expression con-

sidered by Lamb,(l 6 ) In order to carry out the k" summation, we

rearrange the resonance denominator by writing

o

(E-ir)~ = i ds e

0

so that

-(s+s' )r/2 i(s-s' )(EK~ a) (4.43)
< > = ds ds 9 e e < >T1 )

i(s-s' )H -iK - R -i(s-s'$)H iK - R

=)P k(t) < k le e e e - k>.
T / k

k
(i.44)

For an Einstein crystal in thermal equilibrium it is a

straightforward matter to evaluate < >T. The calculation is discussed

in detail at the end of this section and we quote here only the result,

-DK2 -n[Z - ifio(s-s')]

< > = e In(PKe2

n=-oo

where D = 'q coth Z, P = 'q csch.Z, ra = 'di/2MoD, Z = fLD/2kBT, o is the

oscillator frequency and In the modified Bessel function. Inserting

this result into Equation (4.435) and performing the indicated integrals
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we obtain an expression for Rc. Upon introduction of the partial widths

as before, the capture cross section is given by

n -DK2  (N) (R)
o- c(K) = 2--2 e

(4.46)
In(PK2 -nZ

(x)
/ (E -E - na)2 + (r 2)

n=-o K

The integer n denotes the number of phonons that are created or destroyed

depending upon the sign of n. The case of n = 0 gives a resonance line

centered at C . This absence of recoil corresponds to the fact that the

neutron momentum is absorbed by the crystal as a whole. In general the

line shape of each resonance can be quite complicated and may even show

fine structure indicative of phonon transitions.(17)

It is of some interest to investigate the implications of

Equation (4.46) in the limits of strong and weak binding. The condition

of tightly bound nuclei is simply expressed by taking the vibrational

frequency to be arbitrarily large. In this limit the cross section

becomes

(N) (R)

ac (K) ' 7 , (4.47)
CD- 0o F(6a - EK )2  + (ra 2)

where by virtue of the small-argument representation of the modified

Bessel function,

nx-+0 2 n.

*As in most crystal models the mass of our system is assumed to be
infinite. In practice, however, there will always be a finite, though
vanishingly small, amount of recoil.



we have ignored all but the n = 0 term. As one can expect there is no

temperature or recoil effect for rigidly fixed absorbers so each reson-

ance is described by its "natural" line shape. It is to be noted that

this result is not equivalent to the zero-temperature limit because in

that limit the zero-point vibration effect is still to be taken into

account. For the latter case ac(K) is given by Equation (4.47) multi-

plied by the factor exp(-rK 2 ).

The form of the cross section in Equation (4.46) is not con-

venient for examining the weak binding limit. For this purpose we return

to a consideration of < >. Upon the introduction of a delta function

and its integral representation, Equation (4.42) becomes

00 -iK .- R 2

A A+1 |< k|e >
< > = dp 8(p - Ek + Ek"r / 2 k

-, (a -EK-p ) 2 + (ra 2)2

00

itH -iK - R -itH
- d t Pk <k| e e - - e |k" >

-0O kk"

(x)<k"j e- - |k >ipdpe

(E - EKp p)2 + (ra 2)2

1 -iK -R(t) iK - R -it(- -EK)-11Jt|/2= - dt<e - e - >T e
r T

-00

where

< e -- e - >T = /Pk<ke - - e- -k

k
(4.-49)

= g(t )
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As in Equation (4.45) it can be shown that

g(t) = TK
2 [coth z(cos -Trt - 1) - i sin bt] . (4.50)

If now g(t) is expanded in a power series and terms up to second order

in t are retained,

g(t) _ -iERt - ER~t2 /2, (1.51)

with

E = t coth z

= [ <n> + ) , (4.52)

where <n>T is the average oscillator level. It is seen that f represents

the average energy of a vibrational degree of freedom including zero-

point vibration. For the truncated series to be valid it is necessary

that the integrand in Equation (4.48) make negligible contribution when-

ever .t t ,l>;1. If this is to be the case, the sum 2 +6g(t) must be large

and positive; in other words we require

F+ ER .2(4,53)

which is the condition of weak binding.

The approximate form of g(t) given by Equation (4.51) allows us

to express the crystal cross section in terms of the $(~x integral

introduced for the free-atom cross section. (16,19) We observe that Equation



(4.48) can now be written as

2iy(&-EK+ ER) - 5)2
dye e (4.54)

2
where L = 4ERE and the a subscript is suppressed. Again making use of

the delta function and its integral representation, we have

-~ly 1 rlisz -Izi -isye - f ds J dz e
2n

-o -00

00 -isy

-ds + -(4.55)
-Co

With the help of this expression the y integration in Equation (4.54) yields

<>= -*(,x) (4.56)

with I = r/A and x = 2(EK-E -ER)/I'. The quantity x is defined here some-

what differently from that given in Equation (4.15); the difference is of

order (m/M) 2 . Equation (4.56) shows that the resonance line shape in

crystals for the case of weak binding is the same as that in gases, but by

comparing the two D's the crystal line shape is seen to correspond to an

effective temperature of E/kB. This result was first obtained by Lamb.(17)

Elastic Scattering

An elastic scattering is an interaction in which the number of

all kinds of particles, translational kinetic energy, and momentum are

conserved. Evidently, in the previous chapter because of our preoccupation
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with the specifically nuclear aspects of neutron-nuclear reactions, we

treated this notion rather casually. There, we implied that a process

was elastic if the initial and final "internal" nuclear states were the

same. Literally, such an implication is never justified. Practically,

it is justified in the present discussion if the target nuclei are

aggregated in an ideal, monatomic gas, since we -have ignored all neutron-

electron interactions and hence electronic excitation of atoms. But also

practically, it is not justified here if the nuclei experience appreciable

binding as they do in molecules, crystals, and liquids. In fact, in these

latter instances, an elastic collision is one in which both the "internal"

and "external" initial and final nuclear states are the same, We shall

adhere to this more careful interpretation henceforth.

The reduction of Rs as given by Equation (4,16) and (4.17) to

give cross sections describing potential, resonant, and interference

scatterings can be carried out without approximation. The resonant cross

section will be examined in the limit of short lifetime of the compound

nucleus, which, as will be seen, is quite similar to the above weak binding

limit. Various aspects of the potential cross section are of interest, and

these will be discussed and used to predict the behavior of the total cross

section.

The reduction of Rs involves the evaluation of matrix elements

of the type given in Equation (4.44). We rewrite (4.17) as

e ei > (4.57)

i =1
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-iQ-R ,iQ-R
0 = UAUA, <kie ~ 1k'> <k'le--k >, (4.58)

*
02 03

= -i U UNU f ds e-is(a- raC
oa 00 a

(x) <k'I e - I'k><k e -R- eiK'RA( ks) '> , (4.59)

* is(6u + r ) -is'(A- r p-. ')

8 = U U' (iU'U ) Idsds' e 2ae a 2 (3
0 N'2)4 0 0co J4 Oa a0 0 a0

iK'-Re(-s) iK-R -iK-R -iK'-R (-s')
(x) <k' e ~~ e ~~~k><kl e ~~~2e 1k'> , (4.60)

where = -EK and in writing Equation (4.60) it is assumed that the

resonances do not overlap. Note that now there will be contributions

from terms with A A', these terms lead to diffraction effects which

for crystals cannot be ignored. The calculation of 81 is tedious but

proceeds in a completely straightforward manner. We shall display only

the results in the form of a differential cross section in final neutron

energy and scattering angle, i.e.,

(E'-+E,9)= a (E'-+E,9) + a'(E'-+E,9) + or(E'-+E,9) , (4.61)s s s s

where the superscripts denote the potential, interference, and resonant

contributions, and where
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P

(E'-3E9®)

s

2 x2~ ~1/2 eDQ2 {00
fl=-co

~(LE-nt~uo) I (PQ2) efl

+ S(am) N e}
A Z

(x.62)

or'(E'-4 E,®) =
s x() 1/2 ejQ I -r(N){eD (K2+K? 2 )/2 5(1 E - [n 1+n 2 lTh)

(X)Z

n'n 2 n5 [E-(n 1+n5) u] + (p'a/2) 2

+ p(t) e K V iQ X~ ~
U~eI

1,91 n

In c~i')CCIE'rr~u~-nZ

(a-'n1)2 + (rj/2) 2
} , (4,65)

(X) In (PK 2)

E (1~/2 1

In2QPK12) r j

______

{e -D (K2+K 2) n n6 [i l+~kIm

n2 l,., '6

In. (PK.K')e njZ ]e -(nl+n 2 ) Z

(x)
[Ea-E '(n 2 +n 4+n 6 )f] LeEE'-(n 2 +ri 5+n5 )t] + (r.1/2) 2

[ E-n+4n)w+I /)}[. n 3n)~]
2 +(rF/2) 2}

+ 5(~) e 2DK 2 1

NA 2.'

eIQ(Ax )

nfl

I (PK'K')I_ (n~u C -'-~t)(a2 ] n~2

ni -'n )+r 2 2 [E E n ) (a2 2 }
(4a64)
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The equilibrium position of the £-th nucleus (atom) is denoted by x.

In each cross section the direct terms (2 = 1') have been separated from

the "interference" terms (. # 2'), the latter involve no energy transfer

and therefore contribute only to elastic processes.* A discussion of the

potential cross section will be deferred until later. From Equations

(4.63) and (4.64) it can be observed that the influences of chemical bind-

ing upon resonance phenomenon are quite complicated and that interpretation

of these results appears feasible only in the limiting cases.** The

dependence of a upon the scattering angle appears solely in the argument
s

of the modified Bessel functions and in Q. In the event of 90* scatter-

ing Equation (4.64) is considerably simplified since all the n.'s except

nl and n2 are zero and the corresponding Ini 's are to be replaced by unity.

The exponential exp[-D(K2+K' 2 )], in the resonant scattering

cross section is known as the Lamb-Mossbauer factor. This factor provides

an attenuation of any resonance process that is influenced by temperature

and lattice binding through the parameter D. On the other hand, the

corresponding exponential in the potential scattering cross section is

exp[-D(K-K')2], which is the familiar Debye-Waller factor. The attenua-

tion of direct processes is therefore sensitive, in addition, to the

*
This is a direct consequence of the assumption of independent vibrations.
In a more realistic model which treats the atomic motions as coupled
oscillations there will then be both elastic and inelastic "interference"
or diffraction effects.

**

See, for example, the discussion of elastic resonant scattering by
Trammell. (20) Analogous expressions employing more realistic models
of crystals have been obtained by E. Wissler (unpublished).
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angular correlation between initial and final neutron momenta. This

comparison is interesting since it tends to suggest that if the lifetime

of the compound nucleus is very short the attenuation factor of a reso-

nance process can conceivably be expressed in an angular dependent form.

We shall now investigate Equation (4.64) in such a short lifetime limit.

As in the case of the weak binding limit in radiative capture,

a "time-dependent" representation of oa is more convenient for the
s

present purposes. If we consider only the direct terms of Equation (4.64),

we have

S(E-+E,9) = ( ,1/2 C[r (N) 2

00 00

1 dte-itE ds e -(s+s')I'a/2 -i(s-s')((Ea-E') (ss't)
(x)2° dt e dsds' e ea e, (4.65)

-O0 0

where

(ss't) = g {K 2 g(t) + K' 2 g*(s-s'-t)

+ Ko K' [g(s') + g*(s) - g(s'+t) - g*(s-t) ]} , (4.66)

with g(t) given by Equation (4.50). For very large r the contribution to

the s and s ' integrals will come mainly from s, s ' i'Q~l. This suggests

that the terms in which depend only upon s or s' may be represented by

truncated power series. Retaining only the first two terms we obtain

p(ss'tn) _ - DQ + ife (KK')(s-s') + ' (ss t (4.67)
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ra+ +iTht 2 2 +ifs (is - s')+iDrs ifes'
'(ss't) = e- [K +K' e- -K'K'(e- -e ) ], (4.68)

2

where a+ = coth Z + 1. In Equation (4.68) the double sign denotes a sum

of two terms corresponding to upper and lower signs respectively. The

terms neglected in the above approximation are of order (rs)2 and higher,

so a condition for Equation (4.67) to be applicable can be stated as r >> r,

Thus if the lattice binding is small compared to the resonance width the

attenuation factor in a is also effectively given by the Debye--Waller
s

factor.*

The resonant scattering section which one obtains by using the

approximate form of is very similar to Equation (4.64). We will not

exhibit this result, but instead if we introduce a further approximation

by writing

p' (ss't)
e _. 1 + '(sst), (4.69)

we would obtain

r E 1/2 -DQ 2  F [;tr(N) 12 ()
s -E E9e2 

( -_E '+()2+(ra/2)2

a +

04 \1+rr' E /1rw E._' -16
+ -= S6(L E+1 xi) sr -+

2 L(E +) 2+(ra/2)2 ( -EK'+( + r) 2 + (ra/2)2

(E -E '+( +4-- - P )Q(C -E '+(+ F ) (6 -E'+- . F )(F -E'+(+4+ )
a - 2Q a Oa 2 a 2 a~ aO - 2

_____ ____ ____ ____(4.70)

If we interpret the compound nucleus lifetime as the interaction time, the
above condition implies that the collision time be short compared to the
characteristic vibration period in the lattice. This conclusion is in
general agreement with Trammell. (20)
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with ( = iri (Ko K'). The first term in Equation (1.7o) represents the

contribution from elastic scattering, and, in the remaining terms, upper

and lower signs denote inelastic events in which the neutron loses or

gains energy by an amount *o (one-phonon processes). Higher order

inelasticity has been neglected by virtue of our expansion in Equation

(4.,69),*

In the remaining part of this chapter we shall restrict our

attention to potential scattering only,** The cross section given in

Equation (4.62) is seen to contain X simply as a multiplicative factor.

This is a consequence of our implicit assumption that the system is

spinless and mono-isotopic.For an arbitrary system with nuclear spin

and isotopic mixture it will then be necessary to replace the X2

multiplying the direct and interference terms by a2 and a2 respectively,

where

2 I+12 >I 2
a1  = < a > + < a >

2I+ 1 + 21+1 -

a2 1+1 a2 + 2 a2
a =Ka +a >, (+071)

2 21+1 + 2I+1 -

I being the nuclear spin and the symbol < > here denotes isotopic

average. The quantities a+ and a_ characterize the interactions in which

neutron and nuclear spin orientations are parallel and antiparallel, and

*
This s1 somewhat similar to the "time" expansion first introduced by
Wick. 21

*For potential scattering of neutrons by crystals the reader should see
the excellent review by Kothari and Si w ;(22) for the time-dependent
representation approach see Sjolander; a number of fundamental
aspects of the gener 1l theory have been reviewed in detail by Yip,
Osborn, and Kikuchi. ~4
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are defined by

a+ = X 0 + X ,

2w+1

where

(.,72)

x0,1
= dR v (R) e iQ

2ti 2 v0 ,1
(4.73)

In the special case of neutron-proton scattering a+ and a_ would

correspond to the conventional triplet and singlet scattering lengths,

although in the present treatment they are functions of the momentum

transfer. With the above modification the differential cross section

for potential scattering* can be given in more general form,

as (E'-> E,) 1 (E. ) fdt e
2xNt E1'/2

0

( x) [a~ 72 A2  (Q,t) + a

22'
A22 ' (Q,t) ,

where

A 2 (Q,t) =

k

iQ - e -iQ.R, ,k> (4.75)

It is sometimes conventional to speak of as in terms of its coherent and

incoherent parts, Thus if we introduce coherent and incoherent scattering

*
Henceforth we suppress the superscript p.
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lengths as

2 2 2 2 2
a =a , a = a -a2, (4.76)

coh 2 inc 1 2

the cross section becomes

11E/2 0 -inEt/'Ti
a- (E'->E,G) =>/- dt e

s 2xl% E'

0

2 2a

(x) a.c Ae2 (Q,t) + aoh , (Qt) . (4.77)

For the Einstein crystal this is not a particularly convenient representa-

tion so we shall continue to discuss the contributions from direct and

interference scatterings separately.

Thus far it -has been possible to calculate A(Q,t) directly

because for the simple systems under consideration, the exact eigenstates

1k> are known. For more complicated dynamical systems, such as liquids,

this approach is still straightforward but now the calculation depends

upon less satisfying models for explicit forms of the wave function.

There exists, however, an alternate and equivalent procedure for formu-

lating the general scattering problem, In this approach the cross sec-

tion is expressed in terms of a space and time dependent function which

describes all the dynamical properties of the scattering system, (25) so

that the approximation in describing a complicated system then enters in

the determination of this function. This function is defined as

G(r,t) = (2i) 5  d5 Q e - l_ A , (Q,t) , (4.78)

aA'
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and similar quantities for the 2=2 and /' terms only are denoted as

Gs (r,t) and Gd(r,t). The cross section is then expressed as a four-

dimensional Fourier transform

a(E'-+E,9) =a1.1/2 Ea2 S (Q,)+a 2  S (Q,AE), (4.79)
21t E ' / -linc inc ~~ coh coh -j

fiScoh (Q,AE) = dtd3r G(r,t) e i(Qr -Et/)(4.80)

and Sinc .is obtained by replacing G with Gs' The function S is called the

scattering law, and is a quantity in terms of which the scattering data

can be analyzed and presented for use in the transport equation.(26)*

The function, G(r,t), was introduced by Van Hove(25) a

natural time-dependent generalization of the familiar pair distribution

function g(r) which describes the average density distribution as seen

(29)
from a given particle in the system. Aside from neutron scattering,

G(r,t) is in fact a quantity of general interest in the statistical theory

of many-body systems.** From the reality of S one has

G*(r,t) = G(-r, -t), (4.81)

*

For a discussion of the properties of the scattering law see Nelkin(27)-

and Rosenbaum.(28)

See, for example, Fano, (30U) and Singwi and Sjolander,.(1 8 )
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The fact that G is in general complex implies that it cannot be inter-

preted as an observable . As suggested by Van Hove, under classical condi-

tions or more specifically when R(t) commutes with R, G gives the proba-

bility that given a particle at the origin at t = 0 there will be a

particle at r and t. A number of attempts have been made to develop a

theory of slow-neutron scattering by liquids on the basis of such an

interpretation.

We now return to more detailed consideration of neutron scatter-

ing by an Einstein crystal. From Equation (4.74) we can write the cross

section as

= (E'-+E9) = S(AE) eDQ2 [a I 0(PQ2) - a]

2
2 2

2 ~DQ 1 iQG-x.2
+ S(AE) a e e -N--

2 N

/E 1/2 2 -DQ22 -nZ+ (E a1 eQ8(E - ntC) In-(PQ 2 ) e (4.82)

n=-o

n 4 O

The elastic contributions are exhibited in two separate terms, The second

term contains the interference factor

1 e'x 22
N

where now 2 extends over all the scatterers in the spatial cell and N is

their total number, For a cell of characteristic length L.10~4 cm, N is

*For a discussion of the classical limit of the cross section see
Aamnodt, Case , Rosenbaum and Zwe ifel, Phys,. Rev,., 126, 1165 (1962),.
A discussion of the classical limit of G(r,t) has been given by
Rosenbaum. (28)
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of order 1012 so that this factor gives the well-known Bragg condition

for elastic interference scattering in the usual way. As a result of

the assumption of uncorrelated vibrations, diffraction effects are seen

to be purely elastic. This will not be the case if we employ-a model

that describes the nuclear motions as coupled oscillations.J(24)

The n 0 terms in as constitute the inelastic portion of the

cross section and these give rise to a set of equally-spaced lines in

the spectrum corresponding to different phonon excitations. This struc-

ture is in marked contrast to the smooth distribution predicted by the

gas result in Section A. Since the vibrational states are stationary in

the harmonic approximation (infinite phonon lifetime) all lines have zero

width.* It can be observed that so long as energy conservation is satis-

fied any inelastic process may occur. At T = 0 the neutron cannot gain

any energy because exp(-nZ), interpretable as a measure of the probability

of finding the oscillator in the n-th eigenstate, vanishes.

The exponential factor exp(-DQ2) in Equation (k.82) is the

quantum analogue of the Debye-Waller factor originally derived in X-ray

diffraction to account for the effects of thermal motions of the scatter-

ing system. It attenuates all processes, particularly at high temperature

or small Z ; the effect does not vanish entirely at T = 0 because of

zero-point motions of the scatterer. For very small Z the asymptotic

form of the modified Bessel function

-1/2

In(x) _ (2iix) e
x-+o

*
For discussions of finite phonon li et me in neutron scattering see
Maradudin and Fein, (32) and Akcasu.3
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becomes applicable, the exponential part of which then cancels the Debye-

Waller factor. Obviously the same situation holds in the case of large

2
Q so we see that interference effects will be negligible in the region

of high momentum transfer.*

Since as(E'-E,9) is the differential cross section in energy

and angle, the total potential scattering cross section as(E') is

obtained upon integrating Equation (4.82) over _O and E . Because

as(E') enters directly as a parameter in the transport equation it is

of some interest to examine its behavior on the basis of Equation (4.82).

The macroscopic system under consideration is in general not a single

crystal, so the cross section should be averaged over crystal orientations.

This aspect, however, is not relevant to our discussion. Therefore we will

ignore it along with spin and isotope effects. At very low neutron energies

(E' t 10~3 ev) the cross section predicts no appreciable elastic processes

because IO(x) is essentially unity (a 2 
= a2 = X2) and the wavelength is suf-

1 2

ficiently long that the Bragg interference condition cannot be satisfied

at any scattering angle.. Also in this region (E' <feo) the neutrons can-

not lose energy, so the only permissible process is that by which the neutrons

gain energy. The cross section therefore varies as -, and generally

increases with temperature. As the incident energy is raised,elastic

processes begin to contribute. A significant increase occurs when the

Bragg condition which allows the largest wavelength is just satisfied.

At still higher energies the interference term begins to be attenuated

*
In a general theory which admits elastic as well as inelastic inter-
ference scattering the present remark applies only to the elastic por-
tion which, however, usually provides the dominant diffraction effect,
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by the Debye-Waller factor, and, while the cross section will continue

to exhibit sharp jumps as additional sets of crystal planes give rise

to interference scattering, the over-all oscillatory behavior is damped.

For sufficiently fast neutrons (El 't ev) the dominant process is

inelastic scattering .in which the neutrons lose energy. Here each

scatterer can be treated as a free particle so that the result in sec-

tion A is applicable . In fact, in the weak-binding limit one can show

that Q-s(E ') -+ 4t(MX/M+m) 2 . The above remarks are illustrated in Figure

4.1 which is in general agreement with observations .for such scatterers

as graphite, beryllium, and lead.(4)

All the discussions in this chapter have been concerned with

monatomic systems and hence the center-of-mass degrees of freedom of

the nucleus. However, in polyatomic systems, the neutron can excite all

the degrees of freedom of the molecule so that internal molecular degrees

of freedom also have to be considered. The intermediate scattering func-

tion A(Q,t) can be written as a product of two functions, one depending

on center-of-mass translations and the other on the internal molecular

motions. If rotation-vibration coupling .is ignored, A can be further

decomposed so .that the effects of translation, rotation, and vibration

may be considered separately. From the standpoint of analyzing a partic-

ular experiment it is important to .treat the rotations properly since:

their energies are of the same order as those of translations. The

presence of rotational transitions can therefore complicate any inter-

pretation of the scattering data with regard to intermoleclar forces.

The method of calculation presented in this section can be

used to treat the normal modes of internuclear vibration. The influence
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REGION OF INTERFERENCE
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Figure 4.1. Qualitative Behavior of Total Potential Scattering Cross
Section.
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of molecular rotations has been investigated mainly in neutron scattering

by gases. The cross section of a free rotator can be obtained

rigorously, but the application of the formalism is rather

involved.* On the other hand, in systems where appreciable orientation

dependent forces exist rotational motions will likely become hindered.

An interesting example is water where experiments have revealed prominent

modes of hindered rotation. This type of motion is still not completely

understood, although attempts to describe its effects in neutron scattering

(39), (40)
are probably sufficiently accurate for thermalization calcula-

tions.

The Thermal Average

In the preceding cross section calculations it was necessary to

evaluate averages of matrix elements of the form

S , = Pn <nl e i /he ~-~ R2e-He i- ~j, in> (x-.83)

n

for an Einstein crystal.** In this notation Pn is the probability that

initially the crystal is in a state specified by the eigenstate In>, H is

the crystal Hamiltonian, K is a momentum vector and R~g is the instantaneous

position of the £-th nucleus in the crystal. If equilibrium position x2

is introduced then

* A number of approximations have been proposed, see McMurryi. 8 )

*The following approach was first given by Zemach and Glauber.~
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s , = XW e t, '2)181 , (4.84)

-iK-u (t) iK-u ,W ,1= <e - e-t i - -t> , (4.85)

where we have let R = x + u and have introduced the Heisenberg

operator

u2 (t) = eit k e-itH/f (4.86)

Since the Hamiltonian consists of a sum of individual particle Hamiltonians,

the only part of H that does not commute with u 2 is H2 . In Equation (4.85)

the symbol <Q>T denotes an appropriate average of the expectation value of

the operator Q. This quantity is often called the thermal average because

the crystal is assumed to be initially in a thermodynamic state, Note

that W.., is a function of t only if 2=2'; this is the case of direct

scattering which will be considered first,

According to the Einstein model,nuclear vibrations are isotropic;

so each of three directions of motion can be treated independent of the

others. The fact that each nuclear coordinate is an independent oscillator

coordinate reduces the calculation to a one-dimensional problem, i.e,,

w= (4.87)
a=l

W22 = P n leiKaua(t) . (4.88)I, = na <n ee- In?(8

For a crystal in thermodynamic equilibrium we have



P _ e -nanw/kBT ( e-na/k T -\-1

nan
na~

= e-2Znx (1 - e-2Z) (4.89)

where w is the characteristic vibrational frequency and Z = n'nx/2kBT. The

thermal average WO, can be rewritten upon the use of an operator identity

eA B A+B+ -2[A,B] (4.90)

which applies whenever operators A and B commute with their commutator

[A,B]. In our case [ua(t), ua] is just a c-number so .that

K2

a 2 [ua(t),ua] iKa[ua(t ) -ua]
W = e <e >T (4.91)

This expression can be further simplified according to a corollary to

Bloch 's theorem,

1 x2
X 2 < x2>T492

< e > = e , (1.92)
T

where x is a multiple, or some linear combination, of commuting

.oscillator coordinates and their conjugate momenta. Thus

2

W11=exp{- [<u (t)T+ <u -2 <ua(t)u T] j (4.93)

For the purpose of evaluating the indicated thermal averages in

Equation (4.93) it is convenient to replace particle displacements by

"creation" and "destruction" operators similar to those introduced in

Chapter II. The new operators are governed by the commutation rule
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[aa(t), ac, (t)] = [ac, ac,] =

and have the properties that

(4.94)

a In >_= $nal1na l>, a(t)In = 4n. e

a+In = na+1 na+1>, a+(t) n =4na+1 e na+1>

In terms of these operators,

ua(t) = [a (t) + aa(t)] ,

and similarly for u. The following thermal averages are then readily

found,

<ua(t)>T =<u + e(2<n>T + 1) ,

<u(t)u (<T ' [na +1) e t+ <n >T ei

(4.95)

(4.96)

(4.97)

where

n 
-2Z -2Z -1) n P=e (

Ta
(4i.98)

It is seen that inW the only dependence upon a is in K2 . Thus the ax

product in Equation (4,87) leads to a dependence only upon K2 as one would

expect, and we find

S
22

-DK 2

= e

n = -oo

in(PK 2) e n(Z--.iwt.) I (4.99)
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where

D = 'qcoth Z ,

P = r csch Z ,

= -//2Mn

and use has been made of the generating function of the modified Bessel

function of the first kind,

Y(r + 1/r) **

e r= rnIn(y). (4.1oo)

n=-oo

In a very similar manner the corresponding result for inter-

ference scattering (,2/A2') is

iK- (x ,-x0) -iK-u iK-u
S., = e <e -- 2> <e-- 2 >

T T

-DK2  iK(- (x )l-x)

Equations (4.99) and ( 1101) have been used to write Equations (4.5),
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V. SPECIAL TOPICS

In this chapter we examine some aspects of two interesting

but specialized and unrelated topics. The first has to do with what

might be called neutron thermodynamics, i.e., the origin, nature and

applicability of a certain time independent, velocity-space distribu-

tion for neutrons and atoms which is achieved in special circumstances.

This topic is specialized only when viewed in the context of the re-

actor. But it will also be seen to be an important part- of the general

subject of gas thermodynamics.

The second topic is also to be regarded as specialized only

when considered as a part of reactor technology. As presented here

it is the beginning of a study of higher order particle distributions

in reactors--in particular of a few relevant doublet densities. Such

studies lead to a quantitative appreciation of the phenomena of

correlations and fluctuations in the distributions of various kinds

of particles. In this connection it is of interest to note that

reactor-type systems are perhaps uniquely suited to an experimental

investigation of these matters.

A. Neutron Thermodynamics

Most attempts at an analytical study of neutron distributions

in reactors explicitly divide the energy range into at least two parts,

in each of which the neutron densities are treated according to approx-

imations peculiar to the range. The lower energy part of this sub-

division is referred to as the thermal range--its upper limit being
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some few times the (kT) of the atoms in the system. The reference to

thermal, however, is presumably not solely based on the fact that its

demarcation is roughly tied to the mean energy of the atoms in the

reactor but also to the expectation that, at least in many instances,

the neutrons themselves in this energy range will be in a quasi-

thermodynamic state. In some specific instances this expectation

has been essentially verified experimentally." But in most cases

it is defended merely on speculative grounds. As a part of a study

of the fundamentals of neutron transport theory, it seems appropriate

to probe a little for the limitations on what can or cannot be asserted

in this matter.

The initial approach to the subject will be in terms of a

very special problem. Consider neutrons and a single kind of atoms

mixed homogeneously in gas phase. Assume, however, that these

distributions are not in a steady state. It is reasonable to expect

that the mixture will indeed eventually achieve some sort of steady

state and the question is--what can be said of it. This, of course,

is a familiar problem in the kinetic theory of gases.

For reasons that will become apparent later, it will be

assumed that the only interaction between neutrons and nuclei and

between atoms that need be considered is potential scattering. Neutron

radiative capture processes could be included in the argument if the

inverse gamma-neutron reaction was also considered and if kinetic

equations for gamma rays were adjoined to the equations for the

*See, for example, B. T. Taylor, AERE-N/R-lOO5 (l952).
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neutrons and the atoms. However, such a system (analogous to a

chemically reactive gas) would be one which in the equilibrium state

would not only be characterized by a specific velocity distribution

for the particles and 7-rays but also by a specific ratio of particle

densities. A study of the kinetics of such a situation might be

interesting, but it. is difficult to regard it as relevant. Reasons

for not including resonant-elastic scattering are a bit more obscure

and hence will not be discussed at this point.*

According to these remarks, the neutron balance relation

as obtained from Equation (1.28) is

. = diK'd3k'dkA(K'k'; K k)[g(K)gA(k)f(K')fA(k')

at

- g(K' )g (k' )f(K)fA(k)] , (5.1)

where

A(Kk;K'k'=) =S(Ek+EK-Ek, -EK, )(k+K-k' -K')

= A(K'k'; Kk). (5.2)

In Equation (5,1) we have retained the factors g(K) = 1 - 4 -stf(K) and

gA(k) = 1 + (2-st) fA(k). The former enters because neutrons are

fermions and the latter because it has been assumed, for the sake

of illustration, that the nuclei are spinless bosons. Strictly speak-

ing, neither of these factors should be given much consideration because

of the extreme unlikelihood of finding real systems degenerate with

respect to either neutrons or nuclei. Nevertheless, it is correct to

keep them, and the keeping occasions no difficulty. The extent of

their practical significance will be discussed later on.

*See, however, the footnote for Equation (5.18).



To proceed further, a balance relation for the nuclear

distribution function is required. This could be deduced from first

principles just as has been done for the neutrons earlier, but such

a derivation would be repetitious. Hence, we merely note that

aA ,- fd.k'd.kd.k 1A1 (kk{k ~A
= k ~kdk1 A A 1 A- A-1

-g (k' )g (k' )f (k)f (k )
A- A-l A A l

+ d 5K'd 5 k' d 5KA(K k',K k)[g(K)g (k)f(K' )f (k')-- -- -A A-

- g(K' )gA(k)f(K)fA(k)] . (5.3)

The first term on the right-hand side describes atomic collisions with

A1 being the scattering frequency appropriate to elastic collisions be-

tween neutral atoms, while the second term represents the effect on the

atomic distribution due to neutron-nuclear collisions.

Now note that a sufficient condition that the neutron and

nuclear distribution functions be independent of the time is the

vanishing of the integrands in Equations (5.1) and (5.3), i.e.,

f (K' ) fA(k' ) f (K) fA(k )

~---(5.4a)
g(KI) gA k) gK A~k

and

fA(') f A ' ( k))fAA 1

(5 .4b)gA A lA 5A 1a0(k') gA(k{) =g,(k) gAQ(k,)

Since the primed and unprimed variables are essentially the pre- and

post-collision momentum variables for particles experiencing elastic
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collisions, it follows that the logarithms of the factors in Equations

(.5. 4 a) and (5.4b) are at most linear, scalar combinations of the

collisional invariants, i.e.,

~_f(K)

g(K) --
and

fA(k)
lnA- = aA + .- Mik+ YE, (5.5b)

gA(k)- k

where a, aA., ,, and y are six arbitrary constants. A little examination

reveals that the arbitrariness in the constant vector I must be inter-

preted as a velocity shared by all of the particles of both components

of the gas and, as such, is ignorable in the present context. After

some rearrangement, one finds that Equations (5.5a) and (5.5b) imply

that

P(p+EK) -l
f(K) = [4Tc(e + 1) ] , (5.6a)

and

3 PG iA+Ek) -
fA(k) = [8t (e - 1)A]+- (5.6b)

In these latter expressions, P, , and pA are again arbitrary constants;

though the structure of these steady state solutions to Equations (5-1)

and (5.3) strongly suggests their interpretation as the thermodynamic

solutions - and hence the identification of P as (kBTY 1 and andA

as the chemical potentials for the neutrons and nuclei respectively.

To reinforce this interpretation, construct
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s(t) = -k d 5K [f(K,t) ln f(Kt)

+ g(.K,t) In g(K,t)]

- kB fd5k [fA(A(t)5In

- gA(k,t) in gA(k t

This function is studied because, when evaluated in the time independent

state corresponding to the distributions (5.6a) and (5,6b), it is (to

within a constant) the usually accepted expression for the entropy of

an ideal gas mixture of half-integral spin fermions and zero spin bosons

in the thermodynamic state.(l) It is now our purpose to show that this time-

dependent generalization of the thermodynamic entropy function monotonically

increases in time until it reaches a steady state which indeed turns out to

be the steady state just referred to. That is, we present an H-theorem which

suggests that Equations (5.1) and (5.3) describe an irreversible evolution

in time of the distributions f(K, t) and fA(k, t) toward the steady states

given in Equations (5.6a) and (5,6b), and that these latter distributions

are to be interpreted as the thermodynamic distributions of the gas

mixture.

Differentiating S we find that

s- -k dK-lnf

dt B a

- kB d.5k ln fA ''

where use has been made of the fact that the total number of particles

of a given kind in the system is constant in time,~ Using Equations



-149-

(5.1) and (5.3) to eliminate the time derivatives in Equation (5.8)

and taking maximum advantage of the symmetries of the transition

probabilities A(K'k';K k) and A 1 kq; kk), we find that

S = - dK'd k d Kdkg(K )gA(kA)g(K)gA(k)A(K'k ;K k)
dt 2

(x nf (K)fAk)g(K' )gA(k') (K')fAQ~k) f (K)fA(k)1(x) in AAAA (5.9)

g(K)g (k)f (K' )f (k1) Lg(K' )g (k') g(K)g (k)
g( A A A A

-kB dk'd kdkdkgA(k A )g (kl)g(k)gA (k)A)(k'k'k
1 A A- A-lA-A -lA-- 1- 1

(x~ kfln ~ g~k )g(k.j) FfA(k' )fAQ'ki) -A(k)fA(kl)]

g (k)g (k )f (k°')f (k') Lg (ko')g (k') g (k)g (k )i AA AlA- Al A- A l A- A-l A- A-l

Thus the entropy function increases in time until the distribution

functions satisfy the conditions (5.4a) and (5.l.b), at which time S

becomes maximum and stationary. In consequence, we shall henceforth

interpret- the functions (5.6a) and (5.6b) as the thermodynamic

distributions for neutrons and nuclei respectively in the "ideal

gas" system.

However, before these distributions can be useful to us,

some estimate of the parameters p and pA must be made. This is

accomplished by the usual normalization requirement that the various

particle densities represent a definite number of particles per cm.

Application of the requirement leads to the observation that the

factors exp(pp) and exp(pp) are exceedingly large, except for most

unlikely conditions of high density and/or high temperature and/or

small mass particles. (Conditions met, for example, by the gas-like
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conduction electrons in some metals at room temperature, by nearly .

zero-temperature gases - or liquids of He4 and He3, and by electron-

proton gases in the cores of stars), Consequently, for reasonable

reactor conditions, we may approximate

-pk 34A
f(K) e /8-s e ,

£ (k) _ e k/ e ; (5010)
A-

which, when properly normalized, are simply the usual Maxwell-Boltzmann

distributions for classical gases. We shall regard them as so approxi-

mated for the rest of the present diiscussion. It should be recalled

that we have also so regarded the one for the neutrons in the preceding

chapters.

The above discussion provides a fairly satisfying demonstra-

tion of the plausibility of the assertion that the solutions (5.6a)

and (5,6b) (or more practically (5.lo)) represent the thermodynamic

distributions for the neutrons and nuclei in gas phase (assuming no

sources or sinks and elastic scattering only). However, it is a bit

disturbing that the demonstration was presented in so restricted a

context, After all, most reactors so far have been constructed in

the solid or liquid phase. Furthermore most nuclear environments inter-

act with neutrons in many other ways than elastic scattering. Many of

these interactions, such as radiative capture, fission, and nuclear

inelastic scattering for example, are true preventatives of the

realization of the above thermodynamic states - at least under realistic

conditions. But it is anticipated - and has been suggested experiment-

ally - that the above thermal neutron distributions will be
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realized in other states of matter than gas phase. Thus we present

an argument or two more or less germane to the point in an effort to

reinforce that anticipation.

First we note that Equation (5.1) may be rewritten as

(bearing in mind the above assumption of nondegenerate systems)

= d3K' [f(K') 9(K' -+K) - f(K) (K -+K')] , (5.11)

where evidently

d'(K' -+ K) = d3k'd3k A(K'k'; K k)f (k'), (5.12a)

(K K')= d k'd k A(K'k_; Kk)fA(k) . (5.12b)

With the present phrasing of the equation for the neutron distribution,

a sufficient condition for a steady state becomes

f(K') 7}i(K' -K) = f(K) 1 (K-+ K') (5.13)

The scattering kernel, , is essentially a momentum transfer cross-

section times the speed of the incident neutron. If we demand that

this steady state be characterized by a Maxwellian neutron distribution,

we find - after a few manipulations to extract from J'the energy trans-

fer cross-section - that

E'e a(E' -E) = Ee a(E-+E') .(5.l1)

That is, if' the steady state is to be a thermal one for the neutrons,

then the ef'fective energy transf'er cross-section (which of' course is



presumed to incorporate an appropriate thermal distribution for the

scatterers) must satisfy a detailed balance condition, Equation (5.14).*

It is noteworthy that the effective cross-section for scatterers in the

crystalline phase does indeed satisfy this condition as is evidenced in

Equation (4.62). Thus it is suggested that the equilibrium distribution

of neutrons in crystals will also be Maxwellian.

In a second attempt to give some force to this suggestion,

we consider an H-theorem for the density matrix itself. Again, it is

not so much a theorem as a plausibility argument. But when phrased in

terms of the density matrix rather than the singlet densities it seems

to represent a significant generalization of the above discussion to

arbitrary scattering systems.

Recalling Equation (2.56), we have

6Dn n(= Wnn' (3nn'.nn). (5'15)
6t

nI

Again define an entropy function by

S -kB Dnnln D . (3.16)

n

If the transition probability, W, has certain symmetries, it is easily

demonstrated that

dS
- > o. (5.17)

See the discussions of Hurwitz, Nelkin and Habetler, ()Appendix A.
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The necessary symmetry required of W in order that Equation (5.17) hold

is probably not known, but it is certainly sufficient that*

Wm' = Wn'n ' (5.18)

Actually it is not difficult to show that Equation (5.17) holds under the

weaker symmetry requirement(4 )

Wn,Dnnn = WmTDnn '(5.19)

n jn' n n'

However, as we have seen, most of the useful representations of W for

the description of neutron-nuclear reactions in the energy range germane

to thermodynamic considerations actually satisfy Equation (5.18). Thus

we will spend no effort here to explore the implications of weaker re-

quirements.

See Heitler,(3) Appendix 5. Note that from Equation (3.34) we have

Rn nVnn" Vnn' 2

nn' 1 nn° A + iB
n" n n'

with A and B real, and Vnn Vn'n (V Hermitian). Thus Wn, is symmetric
if B = 0 or Vnn'Vn'n"Vn"n is real. In the case of either a direct or a
pure resonance event as in the cases of potential scattering and radiative
capture, condition (5.18) holds to the order of the present calculations.
However, when resonant scattering is included the symmetry of the corres-
ponding transition matrix depends upon properties of the nuclear matrix
elements, UN, which have not been discussed. By assuming

U (Ks)UN ,(K'sU2

as in Equation (4.20) we have effectively asserted that Equation (5.18) is valid
in this case as well.



-154-

The equality in Equation (5.17) obtains if and only if

Dn'n' = Dnn for all states |n > and In' > for which Wn, does not

itself vanish. Recalling that Wnn' is non-zero only if En' = En,

it seems evident that the time derivative of the entropy will vanish

whenever the density operator assumes the form of a functional of

the energy, H, i.e.,

D -+ D(H) (5.19)

An argument suggesting a choice of a particular functional proceeds as

follows. Consider a system consisting of two weakly interacting systems.

The Hamiltonian will be of the form

H = HA + HB + HAB . (5.20)

Suppose now that this system is left isolated for a sufficient time.

A steady state will be reached which we anticipate will be the thermo-

dynamic state. If the interaction between the systems is sufficiently

weak, we further anticipate that the distributions of particles among

the states characteristic of each separate system will be essentially

determined only by the nature of that system - excepting that each

distribution will share a parameter common to both, the temperature.

That is, we expect that

DH+ HB + HAB) D(HA + HB) = D(HA)D(HB). (5.21)

A solution of the functional Equations (5.20) (neglecting HAB) and

(5.21) is

D = Z 1 e- (.
(5e22
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where

Z = Tr e

so that

(5.23)

(5.24)Tr D = 1.

Applying these arguments to. a system consisting of a neutron

gas interacting with nuclei, we have for the Hamiltonian

712
K 2  

+
H = --- a (K,s) a(K,s ) + Hs + V

__2m

Ks

Y-52K2
a+(K,s) a(K,s) + Hs

2m

Ks

(5.25)

The thermal density

D =

matrix then becomes in this instance,

Dn Ds (5.26)

where
2 K2  +

n exp - s2m a(K,s) a(K s)J

D = ~ ~ _
Tr- 2K2 +

Tr exp -P 2m a (K, s ) a(K, s)

_ Ks 2

(5.27a)

and

s exp [- HS]

Tr exp [- Hs]

The neutron density corresponding to this density matrix is

f(K) = Tr (S a+(K,s) a(K,s)) D

= Tr (E a+(K,s) a(K,s)) Dn
s-

(5.27b)

(5.28)
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A straight forward calculation leads us again to the expression (5.,6a).

Thus by these arguments also we find the conventional expression for a

fermion density in momentum space. However, in this case the distribu-

tion of the nuclei is not restricted to gas phase.

B. Higher Order Neutron Densities - Particularly the Doublet Density

To this point the discussion has been exclusively devoted to

singlet densities (especially neutron singlet densities) and approximate

equations which describe them. Actually this devotion to singlet

densities has been more apparent than real, since we have in fact

slid over the matter of dealing with higher order densities whenever

confronted with them. Many times above, we have casually replaced

certain averages of products by products of averages. Thus, without

explicit comment, we have frequently met, and disposed of, higher order

densities by approximating them by products of singlet densities. For

the purpose of deducing equations to describe the singlet densities

these approximations are expected to be justified in the context in

which they are introduced, That is, it is not anticipated that the

interpretation of measurements of quantities determined primarily

by mean values will be seriously falsified by ignoring.fluctuations

about the mean. However, occasionally experiments are designed for

the explicit purpose of measuring - directly or indirectly - these

fluctuations, It is perhaps obvious that such observations cannot

be interpreted in terms of mean values (singlet densities) only. Thus,

in order to develop a framework in which these observations can be

studied as well as in which to investigate the importance of the
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approximations referred to above, we turn now to a brief examination of

higher order stochastic quantities. Actually we shall restrict our

attention almost completely to second order densities, although the

generalization necessary for the consideration of densities of arbitrary

order will be seen to be trivial in principle but tedious in practice.

We define a doublet density for neutrons by

F(n)(XK,X',K',t)
2 --- -

= L 6  Tr a(X,K,s ) a(X,K, s) a(X',K', s ') a(X',K', s')D(t)

SS'

= L-6 Tr p (X,K) p (X',K') D(t). (5.29)
1 - - 1 - -

In the representation which diagonalizes the density operator with

eigenvalue N(X,K), we find

(n) -6
F (X,K,X',K',t) = L N(X,K) N(X',K') Dnn(t) (5o30)

2- -- nn

n

In earlier sections we have consistently approximated averages of products

like the above by products of averages; -which, if done here, would lead to

the statement that

(n) tt (n) (n)
F2 (XKX',_',t) F (X,K,t) F (X.'K't).o.12 -- - 1 -- _

As we have already mentioned, it is not anticipated that the error intro-

duced by approximations like Equation (5.31) into the descriptions of

the singlet densities themselves is important. However, the interpreta-

tion of experiments which, in one fashion or another, are designed to

measure the difference between the left - and right - hand - sides of
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Equation (5.31) surely requires a more elaborate treatment of F(n)
2

Thus we shall briefly sketch the deduction of a transport equation

for the doublet density defined in Equation (5.30).

Recalling Equation (2.4+3) and the discussion leading up to

it, we find that

-L 6 Tr p1 P] D(t) (5.32)

P n 1 9nn nn nn '
nn'

Using the relation

[°ip p'] = [0', pt ] +.[0'', p ]p' , (5.32a)
1 1 1 1 1 1

in connection with the arguments leading from Equation (2.ii-5) to (2.49)

facilitates the calculation of the first approximation to the transport

terms, and we obtain

[a 'lK a '!K a (n)
-- --- + --- j --- F (X,K,X',K',t)

L t m X m X ' . 2

rv L~ 5 [N'(X,K) N'(X ,K t ) - N(X,K) N(X',K')] W , D (t)

nn'

As in Chapter II, the remainder of our task here is the reduction of

the interaction terms on the right-hand-side of Equation (5.33) to

useful form giving due regard to all nuclear and macroscopic medium

interactions which might significantly influence the distribution,

F )-Also the details of cross.-section calculations proceed here
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essentially the same as in Chapters III and IV. Hence little of this

detail need be recapitulated; and, since our interest is in illustrat-

ing how a theory of fluctuations and correlations may be systematically

constructed and not in deriving working equations for the analyses of

realistic cases, we shall confine our attention to the relevant aspects

of scattering, radiative capture, and fission only, Then here, as in

Equation (3,29), we can write the right-hand-side of Equation (5,33)

as the sum of three sets of terms, i.e.,

+ __..+ _._F n(X, K, X' ,K't)at im X. m 3X 2

= L 6 7 [NI(X,K) N'(X'K) - (X,K) N(XK')] c D (t)
-7- -- n'n nn

nn'

+ L~67 [N'(x,K) N'(X',K
t ) -N(X,K) N(X',K')]W, (t)

n'n nn
nn'

+ L £ [N'(x,K) Ni(X',Kt) - N(X,K) N(X,'K)]W D (t)
- - - - - - n'n nn

nn'

where W'n 'Wn , and Wnn are those elements of the transition prob-

ability required for the description of radiative capture, scattering,

and fission respectively,

Although it is not the simplest interaction to deal with here,

we shall first consider the scattering terms. The point is that this

interaction is sufficiently complicated to illustrate all of the inter-

esting features of the influence of binary interactions on the time rate

of change of the doublet density, and at the same time -simple enough to



be described in some detail. On the other hand, the treatment of

the capture reactions here is almost an obvious and trivial general-

ization of that required earlier in the discussion of the equation

for the singlet density, whereas our discussion of the fission

contributions to Equation (,314) must necessarily be confined to

results only, as their derivation is quite tedious though straight-

forward.

In order to carry out the sum over final states, it is

convenient to distinguish between the terms for which X #.X' and

those for which X = X'. We thus write

I = L 6  [N'(X,K) N'(XT,K') - N(X,K) N(X ,K)] Ws D (t)
sn n nn

nn'.

= (1 - ,)6 [N'(X,K) NT'(X',K') - N(X,K) N(X,K )] WsD(t)
n 2 - - - - nnno

nnt

+ , L67 [N'(x,K) N'(X',K') - N(X,K) N(X',K')] Ws'nDn(t).
-XX

nn'

Our purposes here will be adequately served if we suppress all detail

associated with cross-section calculations and treat the distributions

of target nuclei as statistically decoupled from the neutron distributions.

It is to be emphasized that the neutron and nuclear distributions will not

be regarded as uncorrelated in all circumstances. In fact such a corre-

lation is crucial to the interpretation of certain fluctuation experi-

ments to be discussed later. In view of these remarks we find as in

Equation (2.67) that



-s N(X, K)
W _w N(X,K) 2 l-]1 (56)n n 2~ 2 2

where X designates the spatial cell in which the scattering event takes

place and K2 and lrepresent the momentum of the neutron before and

after the collision. The meaning of the quantity ws is best

described by the relations

P

- 2 Z( 2 ) (5.3 7a)
m

and

-s tiK3

w - 2r E(K )=9(K -+K )d 5 K
K K -K1 m s 2 -2 1 1

K K 2 -1

-l 1

- ( 2) 2  l 1 . (5.37b)

In Equations(5.37a) and (5.37b) Zs is the usual macroscopic cross-section

and9 is the scattering frequency. Entering Equation (5.56) into

Equation (5.55), the sums over both final and initial states may be

carried out quite straightforwardly (bearing in mind, of course, that

only binary collisions are to be considered). If furthermore we pass

to the continuum in momentum space, we find that
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+ (2r) 5 fn)(X,P',X,P) + (2th) 5 fn(X,P,X,P)

(2 )6 (n) (2n)6 (n
+ 2) f3(X,P,X,P,X,P') - .2 f3()-PX'Pi,X,P .

(5.38)

The first four terms in this expression are strict analogues of the

corresponding scattering contributions to the balance relation for the

singlet density as seen in Equation (5.1) for example. It is evident

that the dependence of these terms upon the third order densities is

purely a quantum effect, and here also is of importance only for

degenerate systems. The remaining terms, non-vanishing only at the

points X = X' are classical and quantum contributions to a correlation

effect resulting from the fact that at X = X' scattering can transfer

neutrons between momentum cells -within the doublet density. The

factor (2nd/L) to which 9 s is proportional is common to all terms

in the balance relation and may be ignored throughout henceforth.

In the classical limit (limit as -h -p 0) Equation (5.38) becomes

s + d P" (s " -, -) Pf ()XP",X',P)

d3P11 pe(n) t

+ d"(p") '(P" ->P' ) f  (X,P,X',P")
m s - - 2 - - -

m

+ [8(Pf-P') E(P ) f)n)(X,P

+ 8(P-P' ) dSP" s -()?(" P) f n(X,P")

__m)

- s-~-' ) f (XP) - -( - fn)(P

(5-39)



The remainder of our considerations in this chapter will be confined

to this classical limit.

Our discussion of the "capture" contributions to Equation

(5.34) can be brief. We find, in the continuum,

I = L. [N'(X,K) N'(X',K') - N(XK) N(X',K)]Wc, D (t),
cL__ n n nn

nn'

c = - m E 2 (P) f (XX',P')

(5.40)

- (P' )f (X,P,X',P' )
-m 2 - - -

5XX' P
+---S(P - P') (P) f (,P)

L3 -E-fm(X--

The structure of this result is evidently the same as that seen in

Equation (5.38) (or (5.39)). That is, the first two terms are analogous

to the capture terms appearing in the singlet balance relation, whereas

the last is inhomogeneous and implies a capture contribution to corre-

lation. These inhomogeneous terms are interpreted to imply correlation

to the extent that their presence in the balance relation for the doublet

density prevents solutions of the form

f n)(X,P,XI,P_f) = f(n)(X,P)f(n)(XI,P) .(5.41)
2 Tno4

The cntribuion of fissions to Equation (5.34~i) is calculated

to be
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In this equation, we have introduced some frequency functions repre-

sentative of various aspects of the distribution of neutrons produced

by fission. These are:

J T, 3
B (P",P )d P = The probability of a fission induced

by a neutron at P" producing exactly J neutrons, a of which

have momenta in d3P about P, (5.)43a)

B (P",P)d 3P The probability of a fission induced

by a neutron at P" producing exactly J neutrons, a + a of

which have momenta in d3 P about.P, (5.43b)

B .(P"IP,P')d3Pd3P r = The probability of a fission
axa --

induced by a neutron at P" producing exactly J neutrons,

a of which have momenta in d3P about P and a of which have

momenta in d3 P' about P'. (5,Ii-3c)

Evidently, for a given value of J, a and a take on all integral values

and zero subject to the condition that their sum not exceed J.

Converting the left-hand-side of Equation (5.31i.) to the con-

tinuum in momentum space, and substituting Equations (5.39), (5.40 )

and (5.42) into the right-hand-side of Equation (5,34) provides us with

a transport equation for the neutron doublet density. One aspect of

this equation is notable and requires comment. Though the equation is

inhomogeneous (terms proportional to the singlet density appear in it)

it does not contain the usual inhomogenities proportional to the triplet

*See also Equation (2,80) and Equation (3,101). Note that

z B (P, ) P_'- P)
J,0!
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densities (at least not in this classical limit). The absence of

such terms is a direct consequence of neglecting neutron-neutron

collisions and of treating the nuclear densities as known and deter-

mined independently of the neutron distributions. As we shall see

below, the latter of these simplifications will have to be discarded,

at least in part, if certain fluctuation experiments are to be under-

stood and analyzed.*

An example of problems in fluctuation analysis might be

the moment analysis of the record of counts by a BF neutron detector.

In this instance the particles detected are the alpha particles pro-

duced in the B(n, He)Li reaction. The count record may be analyzed

in a variety of ways. Perhaps the most straight-forward is to divide

the record into a large number of equal time intervals and record the

number of counts per interval. These numbers may then be averaged.,

squared and then averaged, etc. to obtain any moment of the alpha

particle accumulation that is desired. The same count record may

then be re-divided into time intervals of a different width and the

moments recomputed. This process is repeated until the desired

moments have been obtained as functions of the interval width. If,

for example, the mean value of the count rate changes with time,

certain rather obvious refinements of the analysis of the record

must be introduced. The theory to be sketched here will deal with

the first two moments obtained as indicated.

*For recent w rk on the theory of ne t 'on fluctuation in reactors

see Pluta,(5) Matthes,( 6 ) and Bell.I 7) In all these investigations
the theory was developed on the basis of an ensemble probability
for the reactor and the phenomenological derivation of an equation
to. describe it.
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The first thing to be noted is that the actual observations

have nothing directly to do with neutron distributions at all. How-

ever, it will be seen that the second moment of the alpha particle

accumulation (which may in fact be interpreted as the doublet density

for the alphas) is coupled to the second order cross-density for alphas

and neutrons; which, in turn, - is coupled to the neutron doublet density

for which an equation was derived above. The neutron doublet and

singlet densities are coupled also to the doublet and singlet densities

for the delayed neutron precursors. We shall ignore these latter

couplings (and hence delayed neutrons) since they add great bulk to

the analysis but nothing new in principle. Of course, the actual

interpretation of the experiment requires their consideration.

From these remarks, it is evident that even the limited

treatment envisaged here will require more equations than have been

derived so far, Specifically we require balance relations for the

singlet and doublet densities for the alpha particles and for the

doublet alpha-neutron cross density. These densities are defined by

Fj(X,Kat) = L Tr a(X,K) aa(X,K) D(t) , (5.44a)

(a)) -6 + + I
F (X,KX,K,t) = L Tr aa(X,K) aa(,K) a KK ) aa(x,K' )D(t ),

2 _ca - O- (5.44b)

F2(a X,K,Xt,K',t) = L Tr a (X,K) aa(X-'K) an(X ,K') an(X*,K )D(t) ,

where the (a,n) sub (super)-scripts refer to quantities appropriate to

alpha particles and neutrons respectively. Equations describing these

densities in the classical limit and in the momentum continuum are
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In these equations we have introduced the notation () or the macro-

scopic cross-section for the absorption of' a neutron of' momentum P by

the Boron in the detector, F-()= Zs(P) + ()+ ~ )+ F(~
and

~3(P -+ P' )d P' f'or the probability that, if' a neutron of' momentum P



is absorbed by a Boron nucleus, an alpha particle of momentum P' in

d 5P' will be produced.

The experiment with the alpha-particle count record referred

to above consists of a measurement of the singlet and doublet density

for the alpha particles defined in Equations (5.44a) and (5.li-4b). Thus

the interpretation of that experiment in terms of system parameters

requires (at least) the solution of the coupled system of Equations

(5.45a), (5.li-5b), (5.i5c), (5.34) (taking into account Equations (5.39),

(5.40), and (5.42)), and the equation for the neutron singlet density

discussed in the previous chapters. And even this formidable task is

unrealistic since it overlooks the influence of delayed neutrons. The

kinetics of these "fluctuations" appears to be sensitive to these

neutrons, and consequently balance relations for the singlet and doublet

densities for the delayed neutron precursors must be considered along

with those just referred to. Approximate attempts- to deal realistically

with these experiments have been made.(5)

In order to facilitate a few final remarks regarding the

structure of the equations for the singlet and doublet neutron

densities, we recapitulate them here, We display them this time

as functions of velocity rather than momentum and keep the explicit

indication of the arguments of functions to a minimum. Correspond-

ingly the equation for the singlet density reads

+V- + RT fi = d5 V" G(V"->V) f1(v"t ) , (5.46)

and the equation for the doublet density is
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-f 3V" G(V" 4 V) f 2 ("V,)

+ RT(VIt)] f 2

I d5V" G (V1'" - V ')f 2 (V V

= 8(X-X') C8(v-V') RT(V) f1 (V) - G(V -V') fl(V) (5.11.7)

-G(V' -+v) f (VI) + 5(v-v') I d3V" R (V,") (vII -_v) f 1 (v")

+of dV 1 H(V"IV, V ) f 1(V )J]

Here we have introduced the reaction rates, R(V) = V E(v), and the

frequencies (un-normalized);

G(V" -v) R5(I (") 'v"-v) + ry(v") ZaBJ(V", V) (5.418)

and

H(V" 
Iv-v' 

)

-8(v-vJ)c

- wV")[
joua

o~a -BJ_(v"Iv, v')

ca BJ (v",v) + 8(V-V )j7C. BJ(V"t V]

jcz

(5.1x+9)

We have also made the identification

5(x- x') = su,/L 3 (5.50)

where (x-x') is to be interpreted as a Dirac delta function if we

regard the domain {xJ as continuous. It is worth noting that

fG(V"--*V) d~v = R (V" )- + R F(V") < J >" , (5.51 )
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and

H(V" |V, V') d. 5Vd.V' = RF(v) <J 2 
>" (5. 52)

where, for example, the symbol < J >" represents the mean number of

neutrons produced in a fission induced by a neutron with speed V". In

many practical applications, the dependence of < J >" and <J 2 >" upon

the energy of the fission-inducing neutron is ignorable to a good

approximation.

Only rudimentary investigations of the implications of the

coupled systems of equations like Equations (.1i.6) and (5.i7) for

neutron distributions have been carried through so far. Nevertheless

a couple of rather general observations regarding the structure of

the solutions to Equation (5.47) can be made immediately. Recalling

Equation (,.46), it is seen that f 2 (X,V,X',V',t) = f (X,Vt) f(X,V',t)

is a solution to Equation (5.4+7) if the right-hand-side of the latter

is set equal to zero, i.e., if the inhomogeneous terms are ignored.

Thus the inhomogeneous terms may be interpreted as a source of correla-

tions. Furthermore, it is to be noted that, in systems in which the

singlet density may be regarded as space independent, the source term

depends only upon X-X'. Thus it may be inferred that, in such systems,

the doublet density will depends only upon X-X' also, However,

more importantly, it is also inferable that the doublet density will

not be space-independent in such systems.* The significance of this

latter observation remains to be explored.

*The authors are grateful to Professor F. Shure for bringing this

point to their attention.
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