Michigan Memorial Phoenix Project

Ford Nuclear Reactor
Phoenix Memorial Lab

Annual Report, 1998-1999
Michigan Memorial Phoenix Project

Ford Nuclear Reactor
Phoenix Memorial Laboratory

Address
2301 Bonisteel Blvd.
North Campus, The University of Michigan
Ann Arbor, MI 48109-2100

Hours of Operation
Monday - Friday 8:00 a.m. - 5:00 p.m.
Facilities can be made available 24 hours a day, if required.

Tours
Monday - Friday 9:00 a.m. - 3:30 p.m.
Tours should be scheduled at least 48 hours in advance.

Project Staff

Interim Director John C. Lee (734) 764-6215
Associate Director David K. Wehe (734) 764-5225
Reactor Manager Christopher W. Becker (734) 764-6224
Assistant Manager, Operations Bernard P. Ducamp (734) 764-6222
Assistant Manager, Research Materials Science Testing Radiochemical Production Philip A. Simpson (734) 764-6221
Assistant Manager, Laboratory Cobalt Irradiator Facility Radiopharmaceutical Production Robert B. Blackburn (734) 936-1582
Senior Research Associate Neutron Radiography John T. Lindsay (734) 936-1583
Senior Research Associate Neutron Activation Analysis Leah D. Minc (734) 936-1584
Business Affairs Eric Touchberry (734) 936-1572
Information and Tours (734) 764-6220
Fax Number (734) 936-1571
Michigan Memorial Phoenix Project
Summary of Research and Educational Activities, 1998-1999

Foreword: Looking to the Future .. 1

Michigan Memorial Phoenix Project Overview 2
 Ford Nuclear Reactor. ... 4
 Gamma Irradiation Facility .. 5
 Other Facilities Available .. 5
 Facility Organization .. 6
 MMPP Staff ... 6

Research and Scholarship Activities ... 7
 Support for Academic Research ... 7
 Support for Teaching and Training .. 8
 Public Outreach Education .. 8

Research Programs and Services .. 9
 Research Advisory Committee Review 10
 Research Advisory Committee Recommendations 11
 Recent Enhancements and Improvements 11

Instrumental Neutron Activation Analysis Program 13
 INAA Studies in Archaeology ... 15
 INAA Studies in Geology ... 20
 INAA Studies in Chemistry and Chemical Engineering 21
 INAA Studies in Health Science Fields 23
 INAA Studies in Nuclear Engineering and Radiological Sciences 23
 INAA for Industrial Applications ... 24

Ar-Ar Geological Dating Program ... 25

Neutron Radiography Program .. 29
 Neutron Radiography Techniques .. 29
 Neutron Radiography Facilities ... 30
 Recent Applications ... 30
 Neutron Radiography Program Summary 33
 Neutron Radiography for University of Michigan Departments 33
Neutron Radiography for Federal and Industrial Research Organizations 34
Neutron Radiography Training for International Laboratories 34

Materials Science Testing Program .. 35
Academic Research .. 35
Commercial Testing .. 38

Radiochemical and Tracer Production Program 39
Radiochemical Production for Academic Research 39
Radiochemical Production for Industrial Research 39

Cobalt Irradiation Program ... 41
Hospitals and Tissue Banks ... 41
Academic Biomedical Research .. 44
Biomedical Research Organizations ... 44
Biological Studies and Instruction .. 45
Environmental Studies ... 45
Physics Research .. 46
Industrial Research .. 46

Radiopharmaceutical Program ... 47

Collaborative Programs with Academic Departments 50
Nuclear Engineering & Radiological Sciences 50
Nuclear Chemistry .. 56
Nuclear Medicine .. 57
Department of Environmental and Industrial Health 59
Museum of Anthropology Program in Archaeometry 59

Research Support and Funding Programs 60
Research Support for UM ... 60
Phoenix Grants for UM Faculty Research 63
D.O.E. Reactor Sharing Program .. 64

Teaching and Training Activities at MMPP 67
University Lectures and Labs ... 67
Public Outreach Education .. 68
Researchers Utilizing Facilities and Services at PML/FNR .. 73
Recent Publications Based on Research at PML/FNR ... 78

Research Highlights:

Household Ceramic Economies Among the Moros Villagers of Bronze Age Hungary 18
The Museum of Anthropology Micaceous Ceramic Project 19
Characterization of the Structure and Absorption Characteristics of Silver Ion-
 Exchanged Zeolites Y, X, and Low Silica X ... 22
Ar Dating of Near-Surface Faulting ... 27
An Application in Transmission Lubrication Studies .. 31
Heavy-Section Steel Irradiation Program ... 37
Tissue Banks International .. 43
Design, Modeling, and Performance of Hybrid Portable Gamma Camera 53
An Improved Method for Determining Radionuclide Depth Distributions Using
 in situ Gamma-Ray Spectrometry ... 54
Self-Biased GaAs Diodes for Thermal Neutron Detection 55

List of Tables:

1. Visitors to the Ford Nuclear Reactor ... 8
2. Neutron Activation Analysis Summary .. 14
3. Summary of Irradiations for Ar-Ar Dating ... 28
4. Neutron Radiography Summary ... 33
5. Radiochemical Production Summary ... 40
6. Cobalt Irradiator Utilization Summary .. 42
7. Therapeutic Pharmaceutical Production Summary 47
8. Diagnostic Pharmaceutical Production Summary ... 48
9. Recent NERS Doctoral Dissertation Research Projects Utilizing the FNR 52
10. Recent Grants to UM Departments for Research Utilizing PML/FNR 61
12. Research Projects Supported by DOE Reactor Sharing Program 65
13. University of Michigan Courses Utilizing PML/FNR 69
14. Teaching and Research Utilization of FNR .. 71
Michigan Memorial Phoenix Project:

Founded in 1948 as a World War II memorial, the Michigan Memorial Phoenix Project (MMPP) is dedicated to encouraging and supporting peaceful applications of nuclear science and technology for the benefit of humankind. In pursuit of that mission, the Ford Nuclear Reactor and associated facilities in the Phoenix Memorial Laboratory support academic research, teaching, and service in a broad range of disciplines within the University of Michigan and other academic institutions, and provide contract services to government agencies, hospitals, and industry.

Research facilities at MMPP feature the Ford Nuclear Reactor (FNR) with a licensed power of 2.0 MW, which provides in-core and ex-core neutron irradiations within the reactor pool and offers facilities for neutron beam experiments. The Cobalt Irradiator Facility (CIF), housed in the Phoenix Memorial Laboratory (PML), also plays a key role as a source of intense gamma rays. In addition, the PML offers a number of specialized laboratories that allow for the analysis and handling of radioactive samples under a safe and controlled environment.

MMPP supports the peaceful applications of nuclear science through service to the public and academic communities in four key areas:

- **Academic Research** involving college and university students, faculty, and staff.

- **Teaching and Training** for college and university students as part of formal courses.

- **Public Outreach Education** for non-collegiate groups and professional organizations.

- **Applied Research and Development** for industrial and governmental organizations.
Ford Nuclear Reactor
Phoenix Memorial Laboratory

"...a vital facility with current programs that are worthy of the illustrious past of the Phoenix Memorial Laboratory."
 David M. Gilliam, Group Leader
 Neutron Interactions and Dosimetry, NIST

"...critically important to the research conducted by faculty and students in our department."
 David K. Rea, Chair
 Dept. of Geological Sciences

"...a tremendous research asset that we enjoy at the University of Michigan."
 John O'Shea, Former Director
 Museum of Anthropology

"...the future success of the Nuclear Engineering and Radiological Sciences Department is dependent on this facility."
 Stephen W. Director, Dean
 College of Engineering

"...a critical component of not only our research, but also the national (and indeed international) effort to understand and mitigate neutron irradiation embrittlement of [nuclear power plant] structural steels."
 G. Robert Odette, Chair
 Department of Mechanical & Environmental Engineering, UC-Santa Barbara

"...a unique educational experience for students who would otherwise never have the chance to go into a real nuclear science laboratory."
 Katrine Klapheke, Education Coordinator
 Ann Arbor Hands-On Museum

...providing research and educational opportunities for the University, the public, and industry for over 40 years.
The Ford Nuclear Reactor

The Ford Nuclear Reactor is a two-megawatt MTR-type research reactor immersed in a 30,000-gallon open pool of demineralized water. When operating at maximum power, the reactor produces a peak thermal flux of approximately 2.0 x 10^15 neutrons/cm^2/sec. Among the University research reactors currently operating in the U.S. with a power rating of 1.0 MW or higher, the 2-MW FNR is regarded as one of three leading facilities, together with the 300-MW University of Minnesota reactor and 40-MW Massachusetts Institute of Technology reactor.

The FNR operates on a schedule of ten days at full power followed by four days of shutdown and maintenance, for an average of 120 hours of operation per week. The 10-day operating cycle provides long irradiation periods, which are desirable in many research studies, and offers experimental uses of the facilities for approximately 85% of the calendar year.

As an instrument of MMP's mission, the FNR provides safe and reliable operation of the facility for the purposes of academic research, teaching, and service for the University of Michigan, other educational institutions, government agencies, and industry. The Ford Nuclear Reactor serves as a source of neutrons for materials irradiations; radiography; damage studies; neutron activation analysis radiography; beam extraction experiments such as neutron radiography and neutron scattering; and teaching and laboratory experiments related to reactor physics, radiation safety, and materials analysis.

Technical Information

Neutron Physics Characteristics

- 2 MW steady-state
- 5.5 x 10^15 n/cm^2/sec peak thermal flux
- 5.0 x 10^14 n/cm^2/sec peak fast flux (E > 1 MeV)

Irradiation Testing Capabilities

- In-core/Ex-core Irradiation Facilities
 - Core irradiation facilities (thermal flux: 7 x 10^14/cm^2/sec; fast flux: 3 x 10^13/cm^2/sec)
 - Core-face locations with low flux gradient (thermal flux: 8 x 10^13/cm^2/sec; fast flux: 3 x 10^12/cm^2/sec)
 - Large experimental graphite riser fuels for long-term irradiation of samples
 - Heavy-water reflector test fuel (thermal flux: 3 x 10^15/cm^2/sec; fast flux: 1 x 10^14/cm^2/sec)
 - Pneumatic tube system

Beam Facilities

- One horizontal beam port dedicated to short-lived fission product characterization, whose products released from fission targets are transported for chemical enhancement and subsequent gamma spectroscopy via a vacuum line.
- Two horizontal ports providing monenergetic, low-thermal neutron beams for detector testing, neutron dosimetry studies, and materials irradiation measurements.

Technical Information

Neutron Physics Characteristics

- 2 MW steady-state
- 5.5 x 10^15 n/cm^2/sec peak thermal flux
- 5.0 x 10^14 n/cm^2/sec peak fast flux (E > 1 MeV)

Irradiation Testing Capabilities

- In-core/Ex-core Irradiation Facilities
 - Core irradiation facilities (thermal flux: 7 x 10^14/cm^2/sec; fast flux: 3 x 10^13/cm^2/sec)
 - Core-face locations with low flux gradient (thermal flux: 8 x 10^13/cm^2/sec; fast flux: 3 x 10^12/cm^2/sec)
 - Large experimental graphite riser fuels for long-term irradiation of samples
 - Heavy-water reflector test fuel (thermal flux: 3 x 10^15/cm^2/sec; fast flux: 1 x 10^14/cm^2/sec)
 - Pneumatic tube system

Beam Facilities

- One horizontal beam port dedicated to short-lived fission product characterization, whose products released from fission targets are transported for chemical enhancement and subsequent gamma spectroscopy via a vacuum line.
- Two horizontal ports providing monenergetic, low-thermal neutron beams for detector testing, neutron dosimetry studies, and materials irradiation measurements.

Technical Information

Neutron Radiography and Radiography Facilities

- Large format (entrance: 12.7 cm, 1/12 radiographic imaging plane: 25.5, 1/12 imaging plane: 62.4; thermal flux: 3.3 x 10^14/cm^2/sec; 10^14/cm^2/sec)
- High-resolution (entrance: 12.7 cm, 1/12 lower imaging plane: 13.2, 1/12 upper imaging plane: 40.7; thermal flux: 2.3 x 10^14/cm^2/sec; current ratio = 200)
Gamma Irradiation Facility

The Cobalt Irradiator Facility was constructed in 1958 and has served as a major gamma irradiation facility in the U.S. for sterilization of human tissue for reconstructive surgery and for studies of radiation effects on various materials. The CIF source consists of 9 rods, each a stainless steel tube approximately one-half inch in diameter and 13 inches long, that contains inch-long pellets of radioactive 60Co. The three rods are arranged in a circular array, providing irradiation locations within the center or around the periphery. The source resides on an elevator platform; the 60Co rods are stored 12 feet under water to provide radiation shielding and are raised above water for sample irradiations. With the CIF licensed to 25 kCi of 60Co in rods, the facility offers higher gamma dose rates than usually available in larger production facilities. The CIF is available 24 hours per day, seven days a week.

Other Facilities Available

- Shielded hot cores for remote examination and handling of radioactive materials. One hot core is connected to the reactor pool by a water lock system allowing the transfer of irradiated material from the pool directly to the hot core.
- Radiochemistry laboratory facilities with walk-in hoods that exhaust through specialized particulate filters, pneumatic-tube connections to the reactor core, and drains for radioactive liquids to retention tanks.
- Machine and electronics shops providing in-house capability for design, construction, and maintenance of customized irradiation facilities and handling equipment.

Gamma Irradiation Facility

The Cobalt Irradiator Facility was constructed in 1958 and has served as a major gamma irradiation facility in the U.S. for sterilization of human tissue for reconstructive surgery and for studies of radiation effects on various materials. The CIF source consists of 9 rods, each a stainless steel tube approximately one-half inch in diameter and 13 inches long, that contains inch-long pellets of radioactive 60Co. The three rods are arranged in a circular array, providing irradiation locations within the center or around the periphery. The source resides on an elevator platform; the 60Co rods are stored 12 feet under water to provide radiation shielding and are raised above water for sample irradiations. With the CIF licensed to 25 kCi of 60Co in rods, the facility offers higher gamma dose rates than usually available in larger production facilities. The CIF is available 24 hours per day, seven days a week.

Other Facilities Available

- Shielded hot cores for remote examination and handling of radioactive materials. One hot core is connected to the reactor pool by a water lock system allowing the transfer of irradiated material from the pool directly to the hot core.
- Radiochemistry laboratory facilities with walk-in hoods that exhaust through specialized particulate filters, pneumatic-tube connections to the reactor core, and drains for radioactive liquids to retention tanks.
- Machine and electronics shops providing in-house capability for design, construction, and maintenance of customized irradiation facilities and handling equipment.

Other Facilities Available

- Shielded hot cores for remote examination and handling of radioactive materials. One hot core is connected to the reactor pool by a water lock system allowing the transfer of irradiated material from the pool directly to the hot core.
- Radiochemistry laboratory facilities with walk-in hoods that exhaust through specialized particulate filters, pneumatic-tube connections to the reactor core, and drains for radioactive liquids to retention tanks.
- Machine and electronics shops providing in-house capability for design, construction, and maintenance of customized irradiation facilities and handling equipment.
Facility Organization

The Ford Nuclear Reactor and Phoenix Memorial Laboratory are operated by the Michigan Memorial Phoenix Project of the University of Michigan under the Office of the Vice President for Research. Oversight and direction are provided by the MMPP Faculty Executive Committee, while the operation and safety of the Ford Nuclear Reactor are regularly reviewed by the Safety Review Committee. The members of these committees are:

Faculty Executive Committee
- Prof. Mary L. Brake
 (Nuclear Engin. & Radiological Sciences)
- Prof. Billy J. Evans
 (Department of Chemistry)
- Prof. David W. Gidley
 (Department of Physics)
- Prof. Nicholas H. Steneck
 (Historical Center for Health)
- Prof. Richard L. Wahl (Internal Medicine)
- Prof. Gary Was
 (Nuclear Engin. & Radiological Sciences)
- Prof. Robert Whallon
 (Museum of Anthropology)
- Prof. Charles F. Yocum
 (Department of Biology)

Safety Review Committee
- Prof. Henry C. Griffin (Dept. of Chemistry)
- Prof. John S. King, *Interim Chair*
 (Nuclear Engineering & Radiological Sciences)
- Prof. James E. Martin
 (Environmental & Industrial Health)
- Prof. William R. Martin (*since Sept., 1999*)
 (Nuclear Engineering & Radiological Sciences)
- Prof. Massoud Kaviany
 (Mechanical Engineering & Applied Mechanics)
- Prof. Fredrick C. Neidhardt (*until Dec., 1998*)
 (Vice President for Research)
- Prof. Richard E. Robertson (*since Sept., 1999*)
 (Material Science and Engineering)
- Prof. Fawwaz T. Ulaby (*since January, 1999*)
 (Vice President for Research)
- Mr. Douglas Wood (V.P., Advent Engineering)
- Mr. Mark Driscoll, *ex officio* (Rad. Safety Officer)
- Mr. Christopher W. Becker, *ex officio* (FNR)

MMPP Staff

The total number of full-time personnel employed by the Michigan Memorial Phoenix Project is currently 24. The interim Director and Associate Director hold split appointments between the MMPP and Department of Nuclear Engineering and Radiological Sciences (NERS). The Nuclear Reactor Laboratory Manager reports to the Director and Associate Director, and supervises three assistant managers covering MMPP activities in three areas: Reactor Operations, Research Support Activities, and Laboratory Operations.

A total of 13 staff members, including the three assistant managers, currently hold U.S. Nuclear Regulatory Commission (NRC) licenses, either as a Reactor Operator or Senior Reactor Operator. To maintain around-the-clock operations, a number of staff members with primary responsibilities in other areas serve as relief operators at regular intervals.

Performing in-house research and providing research support are two Ph.D. staff members and two laboratory technicians. Two engineering technicians and one electronics engineer perform machine shop and electronics repair services and also work as relief FNR operators. Two administrative associates and three secretarial staff provide administrative support for the reactor and laboratory operations as well as for the MMPP administration. Two Health Physics personnel provide health physics surveillance and support for the diverse irradiation and laboratory facilities.
Research and Scholarship Activities

The Ford Nuclear Reactor and Phoenix Memorial Lab serve as valuable resources at the University, state, and national levels. Although our primary purpose is to provide the University with special research and training facilities, we also support the research and training of students and scholars at other campuses.

Support for Academic Research

University students, faculty, and staff utilize the Reactor through active research programs involving neutron activation analysis, irradiations for geochronology, neutron radiography, materials science testing through accelerated neutron aging, and radiotrace production. The Cobalt Irradiation provides a unique service facility for sterilization of human, animal, and plant tissues, and also contributes to material science testing as a source of intense gamma irradiation. Utilization of MIMPP facilities by researchers and educators is requested and encouraged through a variety of research support services. The success of our research support program is demonstrated by several factors:

- University researchers supported: during the past year, 40 faculty researchers and 60 student researchers working on advanced degrees at the University of Michigan utilized research facilities and services at MIMPP.
- Volume of irradiation services: the Ford Nuclear Reactor provided over 13,500 experiment hours for academic research during 1998-1999.
- Per hour services: more than $200,000 in irradiation and analytical services were provided at no cost to University faculty for research and teaching, during the 1998-1999 academic year. An additional $200,000 of support was provided in the form of laboratory and office space.
- Research dollars facilitated: grants and awards brought into the University over the past two years by faculty and students whose research is significantly based on access to facilities and services at MIMPP.
- National contribution to research: MIMPP serves a diversity of other colleges and universities other than the University of Michigan. In the past academic year alone, 40 faculty researchers and over 100 student researchers from 18 other academic institutions across the country.

Research and Scholarship Activities

Support for Academic Research

University students, faculty, and staff utilize the Reactor through active research programs involving neutron activation analysis, irradiations for geochronology, neutron radiography, materials science testing through accelerated neutron aging, and radiotrace production. The Cobalt Irradiation provides a unique service facility for sterilization of human, animal, and plant tissues, and also contributes to material science testing as a source of intense gamma irradiation. Utilization of MIMPP facilities by researchers and educators is requested and encouraged through a variety of research support services. The success of our research support program is demonstrated by several factors:

- University researchers supported: during the past year, 40 faculty researchers and 60 student researchers working on advanced degrees at the University of Michigan utilized research facilities and services at MIMPP.
- Volume of irradiation services: the Ford Nuclear Reactor provided over 13,500 experiment hours for academic research during 1998-1999.
- Per hour services: more than $200,000 in irradiation and analytical services were provided at no cost to University faculty for research and teaching, during the 1998-1999 academic year. An additional $200,000 of support was provided in the form of laboratory and office space.
- Research dollars facilitated: grants and awards brought into the University over the past two years by faculty and students whose research is significantly based on access to facilities and services at MIMPP.
- National contribution to research: MIMPP serves a diversity of other colleges and universities other than the University of Michigan. In the past academic year alone, 40 faculty researchers and over 100 student researchers from 18 other academic institutions across the country.
Support for Teaching and Training

MMPP directly benefits University of Michigan students through a variety of formal courses, and offers educational opportunities for college students enrolled at other institutions as well. At the University of Michigan, MMPP regularly offers courses that incorporate the Ford Nuclear Reactor into their curriculum through tours, labs, lectures, and research projects. Key instructional areas include nuclear engineering, physics, and analytical chemistry, but also include such diverse disciplines as art and archaeology, geology, and biology. Training programs are offered in neutron activation analysis, neutron radiography, and reactor operations and instrumentation.

During the academic year 1998-1999, the FNR provided instructional opportunities for:
- Over 70 students in Nuclear Engineering & Radiological Sciences.
- Nearly 50 students from 10 other University departments.
- More than 100 students from other academic institutions.

Public Outreach Education

MMPP provides a public educational service by offering reactor tours, lectures, and demonstrations to school children, high school students, professional groups, and the public at large (Table 1). Pre-college physics and chemistry classes visited the facility for an introduction to reactor physics, nuclear chemistry, radiography, and determinative methods such as neutron activation analysis. Professional groups visiting the facility included high school science teachers working on advanced degrees, and local fire fighters viewing training in the handling of radioactive materials. During the past year (1998-1999):
- More than 1250 visitors toured FNR and PML facilities.
- Over 500 high school and middle school students visited FNR for science instruction.

Public Outreach Education

MMPP provides a public educational service by offering reactor tours, lectures, and demonstrations to school children, high school students, professional groups, and the public at large (Table 1). Pre-college physics and chemistry classes visited the facility for an introduction to reactor physics, nuclear chemistry, radiography, and determinative methods such as neutron activation analysis. Professional groups visiting the facility included high school science teachers working on advanced degrees, and local fire fighters viewing training in the handling of radioactive materials. During the past year (1998-1999):
- More than 1250 visitors toured FNR and PML facilities.
- Over 500 high school and middle school students visited FNR for science instruction.

Table 1. Visitors to the Ford Nuclear Reactor, 1998-1999

<table>
<thead>
<tr>
<th>Type of Visitor</th>
<th>Groups</th>
<th>Visitors</th>
</tr>
</thead>
<tbody>
<tr>
<td>University of Michigan</td>
<td>Faculty & Staff</td>
<td>2</td>
</tr>
<tr>
<td>Students</td>
<td>19</td>
<td>234</td>
</tr>
<tr>
<td>Other college students</td>
<td>3</td>
<td>43</td>
</tr>
<tr>
<td>High school students</td>
<td>16</td>
<td>245</td>
</tr>
<tr>
<td>Middle school students</td>
<td>4</td>
<td>196</td>
</tr>
<tr>
<td>Elementary school students</td>
<td>3</td>
<td>99</td>
</tr>
<tr>
<td>Adult/Professional</td>
<td>8</td>
<td>143</td>
</tr>
<tr>
<td>Adult/Family Public</td>
<td>33</td>
<td>203</td>
</tr>
<tr>
<td>Total</td>
<td>77</td>
<td>1079</td>
</tr>
</tbody>
</table>

Table 1. Visitors to the Ford Nuclear Reactor, 1998-1999

<table>
<thead>
<tr>
<th>Type of Visitor</th>
<th>Groups</th>
<th>Visitors</th>
</tr>
</thead>
<tbody>
<tr>
<td>University of Michigan</td>
<td>Faculty & Staff</td>
<td>2</td>
</tr>
<tr>
<td>Students</td>
<td>19</td>
<td>234</td>
</tr>
<tr>
<td>Other college students</td>
<td>3</td>
<td>43</td>
</tr>
<tr>
<td>High school students</td>
<td>16</td>
<td>245</td>
</tr>
<tr>
<td>Middle school students</td>
<td>4</td>
<td>196</td>
</tr>
<tr>
<td>Elementary school students</td>
<td>3</td>
<td>99</td>
</tr>
<tr>
<td>Adult/Professional</td>
<td>8</td>
<td>143</td>
</tr>
<tr>
<td>Adult/Family Public</td>
<td>33</td>
<td>203</td>
</tr>
<tr>
<td>Total</td>
<td>77</td>
<td>1079</td>
</tr>
</tbody>
</table>

Table 1. Visitors to the Ford Nuclear Reactor, 1998-1999

<table>
<thead>
<tr>
<th>Type of Visitor</th>
<th>Groups</th>
<th>Visitors</th>
</tr>
</thead>
<tbody>
<tr>
<td>University of Michigan</td>
<td>Faculty & Staff</td>
<td>2</td>
</tr>
<tr>
<td>Students</td>
<td>19</td>
<td>234</td>
</tr>
<tr>
<td>Other college students</td>
<td>3</td>
<td>43</td>
</tr>
<tr>
<td>High school students</td>
<td>16</td>
<td>245</td>
</tr>
<tr>
<td>Middle school students</td>
<td>4</td>
<td>196</td>
</tr>
<tr>
<td>Elementary school students</td>
<td>3</td>
<td>99</td>
</tr>
<tr>
<td>Adult/Professional</td>
<td>8</td>
<td>143</td>
</tr>
<tr>
<td>Adult/Family Public</td>
<td>33</td>
<td>203</td>
</tr>
<tr>
<td>Total</td>
<td>77</td>
<td>1079</td>
</tr>
</tbody>
</table>

Table 1. Visitors to the Ford Nuclear Reactor, 1998-1999

<table>
<thead>
<tr>
<th>Type of Visitor</th>
<th>Groups</th>
<th>Visitors</th>
</tr>
</thead>
<tbody>
<tr>
<td>University of Michigan</td>
<td>Faculty & Staff</td>
<td>2</td>
</tr>
<tr>
<td>Students</td>
<td>19</td>
<td>234</td>
</tr>
<tr>
<td>Other college students</td>
<td>3</td>
<td>43</td>
</tr>
<tr>
<td>High school students</td>
<td>16</td>
<td>245</td>
</tr>
<tr>
<td>Middle school students</td>
<td>4</td>
<td>196</td>
</tr>
<tr>
<td>Elementary school students</td>
<td>3</td>
<td>99</td>
</tr>
<tr>
<td>Adult/Professional</td>
<td>8</td>
<td>143</td>
</tr>
<tr>
<td>Adult/Family Public</td>
<td>33</td>
<td>203</td>
</tr>
<tr>
<td>Total</td>
<td>77</td>
<td>1079</td>
</tr>
</tbody>
</table>
Research Programs and Services

The Ford Nuclear Reactor and Phoenix Memorial Laboratory facilities provide irradiation and analytical services, some not available from any other source, to the University of Michigan, to other universities, and to government and industrial users. Major service areas include:

- **Instrumental Neutron Activation Analysis.** INAA provides sensitive, high-precision characterization of elemental composition (in ppm or ppb) of many types of materials through the creation of radioisotopes and measurement of their subsequent decay. Over the past decade, FNR has irradiated more than 32,000 samples for researchers representing nearly a hundred universities and colleges in the U.S. in such disciplines as art history and archaeology, chemical engineering, environmental science, geology, medicine, and zoology.

- **Ar-Ar Dating.** Mass spectrometric measurement of the concentrations of 39Ar (produced through neutron irradiation of 39K) and of 40Ar (formed through natural decay of 40K) yields the age of geological samples. Mineral samples are irradiated in-core at FNR and then returned to geochronology laboratories for analysis. FNR's dedicated irradiation facility (featuring a low flux gradient, high fast-to-thermal neutron ratio, and a favorable J-factor of 2×10^{4}/hour) provided 2145 hours of in-core irradiation for ten major geochronology labs worldwide in 1998-1999.

- **Neutron Radiography and Radioscopy Program.** Neutron radiography provides a nondestructive method to image light materials (particularly hydrogenous fluids) contained within dense, opaque, metallic structures, using a beam of neutrons in a manner analogous to X-ray radiography. In addition to high-resolution photographic systems, real-time neutron imaging (neutron radioscopy) systems allow studies of dynamic phenomena. Under the full-time direction of a Ph.D. research scientist, the neutron radiography program has contributed to such projects as high-resolution radiography of coking in fuel injectors in a jet aircraft turbine engine and lubricant movement in operating engines and transmissions.

- **Neutron Irradiation and Materials Science Testing Program.** Neutron irradiations for dosimetry and for materials damage studies are available both in-core and in the pool with fluence rates as high as 10^{13} n/cm2-s. Accurate, NIST-certified dosimetry is provided through the Materials Dosimetry Reference Facility (MDRF). Designed and constructed by NIST, the MDRF provides a high-intensity neutron reference spectrum similar to that experienced by nuclear power plant reactor structural materials and pressure vessels. This characteristic makes the MDRF a valuable national resource for the calibration of neutron dosimeters.

- **Radioisotope Production.** Preparation and custom labeling with radioisotopes are available for biological, medical, and industrial research.

- **Cobalt Irradiation Program.** The cobalt irradiator is used in a large number of applications requiring a high dose rate of gamma radiation. Typical applications include sterilization of bone and cartilage for human grafts and transplants, sterilization of growth media for biomedical research, and studies of radiation effects.

- **Radiopharmaceutical Program.** Radioiodine compounds are synthesized for clinical studies on a regular basis for distribution to 60 hospitals in the United States and Canada.
Research Advisory Committee Review

In February, 1999, the Michigan Memorial Phoenix Project established a strategic plan for the future of the project. To accomplish long-term enhancement of MMPP research productivity and to determine future directions for focused research activities this plan called for a Research Advisory Committee (RAC) to provide an in-depth discussion and exchange of ideas with experts in a few selected areas of direct relevance to MMPP research programs. The RAC would be charged with (1) evaluation of the quality of the technical staff and research and service programs, and the utilization of MMPP facilities; (2) provide advice and counsel to the Phoenix Project on its research directions and focus; (3) provide support, within and outside the University, for the mission and programs of the Phoenix Project; and (4) serve as an expert resource for developing MMPP research programs, as appropriate. With the concurrence of the MMPP Executive Committee and the Vice President for Research, the Director assembled the committee:

J. Michael Rowe
Committee Chair
Director, NIST Center for Neutron Research
(General reactor utilization, neutron scattering)

Robert Brugger
Former Director, University of Missouri Research Reactor Center
(General reactor utilization, neutron scattering, BNCT)

John I. Sackett
Deputy Assoc. Laboratory Director, Argonne National Lab-West
(Reactor utilization, reactor physics/safety)

Jacob I. Trombka
Senior Fellow, Goddard Space Flight Center
(Radiation measurements, space applications)

G. Robert Odette
Chair, Mechanical & Environmental Engineering, UC- Santa Barbara
(Radiation effects, materials science)

John S. King
Professor, Nuclear Engineering & Radiological Sciences, UM
(Reactor utilization, reactor physics, neutron scattering)

On August 13th, 1999, the Director hosted the first RAC meeting. The staff made presentations on the current programs and facilities at MMPP and planned facilities enhancements:

Current programs and facilities:
- Ar/Ar geological dating
- Neutron activation analysis
- Pressure vessel steel/ materials science testing
- Neutron radiography and radioscopy
- Cobalt irradiator
- Nuclear medicine
- GaAs(B-10) neutron detectors /
- Spent fuel imaging program

Planned facilities enhancements:
- Pneumatic tube system replacement
- Dedicated Ar/Ar irradiation facility
- Prompt gamma activation analysis
- Silicide fuel
- Pressure vessel steel handling & testing facility
- Reactor control room upgrade
- Radiation effects on zeolites
The committee noted that many of the reactor facilities which supported the initial development and application of nuclear technology are being lost. This is due in part to a shift in emphasis for reactor-based research, which is moving away from reactor development and towards the application of nuclear technology to a broad range of technologies. Collaboration with researchers in these broader fields is essential to success of MMPP. They recommended seeking opportunities for collaboration within the university, with other universities, national labs, industry and foreign interests. This collaboration should be sought through a combination of marketing and joint proposal development. MMPP must first and foremost become more outward focused and entrepreneurial in approach. Opportunities for expansion are there, but it is up to the staff to develop them. However, efforts should not attempt to duplicate existing capabilities that exist elsewhere, by placing too much emphasis on one strategy. Rather, they felt that efforts should identify unique strengths and capabilities at UM, such as the area of neutron dosimetry. The committee made specific recommendations in several major program areas.

Research Advisory Committee Recommendations

Instrumental Neutron Activation Analysis (INAA): INAA is a major part of MMPP both at present and as seen for the future. Although the quality of instrumentation is adequate, the reliance on a single pneumatic tube irradiation location is a situation that must be addressed as soon as possible. The design of a replacement pneumatic tube system must carefully consider neutron spectrum, intensity, and reproducibility. Additionally, increasing competition from new techniques makes expansion of the user base (through better publicity and aggressive contact with a variety of users not currently familiar with INAA) critical.

Materials Science Testing: MMPP is currently playing a crucial role in the field of irradiation effects on materials that is critical to a number of technologies, including the reliability of aging nuclear power plant structures, safe isolation of nuclear wastes, development of fusion energy, space science, radiation detection, and semiconductor device processing. MMPP has facilities that are unique on a worldwide basis, including the hot cells to conduct low-to-intermediate flux irradiations of materials. The current showcase project is the poolside IAR/IVAR irradiation facilities. The value of these facilities lies in their flexibility to vary the neutron exposure conditions and the ability to insert and remove large-volume irradiation capsules routinely in a cost effective manner. More direct participation of staff is necessary to exploit these opportunities and develop closer connections with the physical and intellectual infrastructure at UM and partnerships with researchers at other institutions in both the national and international arenas. Additionally, the development of a higher flux in-core facility is important to cement MMPP’s position as a world leader in material irradiations.

Argon/Argon Dating: FNR’s in-core irradiation facility (combined with UM’s geochronology program) provides an Ar/Ar dating capability that is probably foremost in the U.S. The scientific research level and intra-UM interest is strong. The current FNR facility is not optimized and could become more competitive internationally. A fully optimized facility could be provided for a relatively small investment and would solidify UM’s position as one of the foremost Ar/Ar dating facilities in the world.

Neutron Radiography: This program could potentially be world-class in its capabilities, but needs improved visibility in the areas of research and technical development. This could be best accomplished by writing up each new technical development for publication in peer-reviewed journals. Collaboration with other researchers in the field would also be beneficial.
Nuclear Medicine: Interactions between MMPP and the nuclear medicine community at UM is hindered by the fact that there is no staff member within MMPP that has research experience in the application of radioisotopes in nuclear medicine.

Cobalt Irradiation Facility: This facility provides MMPP with an important resource providing a competitive edge in several fields of research. Opportunities to expand the research role of this facility, especially in the area of radiation effects, must be pursued with collaborations within UM.

Overall, the Committee was impressed with the performance of MMPP but encouraged a more outward focus that is entrepreneurial in its approach. Current programs received a strong endorsement, but the Committee noted that sustained effort over several years would be required to build programs to their fullest.

Recent Enhancements and Improvements

With guidance from the RAC review, MMPP is continuing its pursuit of enhancements and improvements to the areas of research productivity, instructional outreach and support, and operations. Recent and on-going enhancements include:

Reactor Control-Room Upgrade: The whole-scale replacement for the original reactor instrumentation system has begun with funding from the U.S. Department of Energy (§85,000) and the University (§25,000). This is the first of a series of steps to upgrade the entire reactor control system, much of which is still original. We will being by replacing the annunciator, reactor scram, and rod control systems. This project will continue through the next several years and will provide much needed documentation to support reactor relicensing.

Neutron Radioscopy Facilities: A new, large-format analog neutron imaging camera was recently made possible through the generous gift of $57,000 from the Ford Motor Company.

Pneumatic Tube System Replacement: A new and innovative ptube systems will be designed in stages utilizing the expertise of senior Mechanical Engineering students in UM’s Capstone design course (ME450). This collaborative effort both upgrades FNR research facilities, and extends the teaching and training mission of MMPP.

Additional Research and Technical Staff: An important factor influencing MMPP research productivity is the availability of research and technical support staff. Over time, the number of administrative positions will be decreased and the number of research staff positions increased. In addition, existing technical staff with sufficient experience will be elevated to research status, thereby improving MMPP’s capability for contributing to the richness of scholarship and creative activity.
Instrumental Neutron Activation Analysis Program

Instrumental Neutron Activation Analysis Program (INAA) is a highly sensitive analytical technique for identifying and measuring trace quantities in samples from a broad range of scientific fields. Sixty-seven common and rare earth elements become radioactive when exposed to the neutron flux in a reactor. As the activated nuclei decay, they produce gamma radiation at energies (measured in keV) characteristic of each element. Measurement of the gamma radiation permits both isotopic identification and provides high precision determination of elemental concentrations, often in parts per million or even in parts per billion.

In some cases, this new configuration will be available to INAA's customers. This configuration is a radioactive nuclide which functions as a prompt gamma ray source, capable of providing an additional one or more characteristic delayed gamma rays. This decay salvo placed at a much higher rate than the prompt gammas, according to the unique half-life of the radioactive nuclides in the target material. The unique energy and unique half-life of this decay to identify isotopes present in the target material.

INAA is an important analytical tool in many fields, owing to the accuracy, low detection limit, and the number of elements that can be identified simultaneously. The technique is highly utilized by archaeologists and geologists for multi-element analysis of minerals, where the radioactive characterizes the trace-element composition of artifacts to source the raw materials, while geologists examine rock minerals to reconstruct ancient marine environments or evaluate plate tectonics. INAA is also used to analyze contaminants in environmental samples and industrial products for quality control.

Gamma-ray spectroscopy facilities in PNL's Counting Room include those High Purity Germanium (HPGe) detectors, two of which are connected to automated sample changer systems and utilized for Nuclear Products Group "Genie Workstation" software operating on two Digital Equipment Corporation VAX computers.

In some cases, this new configuration will be available to INAA's customers. This configuration is a radioactive nuclide which functions as a prompt gamma ray source, capable of providing an additional one or more characteristic delayed gamma rays. This decay salvo placed at a much higher rate than the prompt gammas, according to the unique half-life of the radioactive nuclides in the target material. The unique energy and unique half-life of this decay to identify isotopes present in the target material.

INAA is an important analytical tool in many fields, owing to the accuracy, low detection limit, and the number of elements that can be identified simultaneously. The technique is highly utilized by archaeologists and geologists for multi-element analysis of minerals, where the radioactive characterizes the trace-element composition of artifacts to source the raw materials, while geologists examine rock minerals to reconstruct ancient marine environments or evaluate plate tectonics. INAA is also used to analyze contaminants in environmental samples and industrial products for quality control.

Gamma-ray spectroscopy facilities in PNL's Counting Room include those High Purity Germanium (HPGe) detectors, two of which are connected to automated sample changer systems and utilized for Nuclear Products Group "Genie Workstation" software operating on two Digital Equipment Corporation VAX computers.

In some cases, this new configuration will be available to INAA's customers. This configuration is a radioactive nuclide which functions as a prompt gamma ray source, capable of providing an additional one or more characteristic delayed gamma rays. This decay salvo placed at a much higher rate than the prompt gammas, according to the unique half-life of the radioactive nuclides in the target material. The unique energy and unique half-life of this decay to identify isotopes present in the target material.

INAA is an important analytical tool in many fields, owing to the accuracy, low detection limit, and the number of elements that can be identified simultaneously. The technique is highly utilized by archaeologists and geologists for multi-element analysis of minerals, where the radioactive characterizes the trace-element composition of artifacts to source the raw materials, while geologists examine rock minerals to reconstruct ancient marine environments or evaluate plate tectonics. INAA is also used to analyze contaminants in environmental samples and industrial products for quality control.

Gamma-ray spectroscopy facilities in PNL's Counting Room include those High Purity Germanium (HPGe) detectors, two of which are connected to automated sample changer systems and utilized for Nuclear Products Group "Genie Workstation" software operating on two Digital Equipment Corporation VAX computers.

In some cases, this new configuration will be available to INAA's customers. This configuration is a radioactive nuclide which functions as a prompt gamma ray source, capable of providing an additional one or more characteristic delayed gamma rays. This decay salvo placed at a much higher rate than the prompt gammas, according to the unique half-life of the radioactive nuclides in the target material. The unique energy and unique half-life of this decay to identify isotopes present in the target material.

INAA is an important analytical tool in many fields, owing to the accuracy, low detection limit, and the number of elements that can be identified simultaneously. The technique is highly utilized by archaeologists and geologists for multi-element analysis of minerals, where the radioactive characterizes the trace-element composition of artifacts to source the raw materials, while geologists examine rock minerals to reconstruct ancient marine environments or evaluate plate tectonics. INAA is also used to analyze contaminants in environmental samples and industrial products for quality control.

Gamma-ray spectroscopy facilities in PNL's Counting Room include those High Purity Germanium (HPGe) detectors, two of which are connected to automated sample changer systems and utilized for Nuclear Products Group "Genie Workstation" software operating on two Digital Equipment Corporation VAX computers.

In some cases, this new configuration will be available to INAA's customers. This configuration is a radioactive nuclide which functions as a prompt gamma ray source, capable of providing an additional one or more characteristic delayed gamma rays. This decay salvo placed at a much higher rate than the prompt gammas, according to the unique half-life of the radioactive nuclides in the target material. The unique energy and unique half-life of this decay to identify isotopes present in the target material.

INAA is an important analytical tool in many fields, owing to the accuracy, low detection limit, and the number of elements that can be identified simultaneously. The technique is highly utilized by archaeologists and geologists for multi-element analysis of minerals, where the radioactive characterizes the trace-element composition of artifacts to source the raw materials, while geologists examine rock minerals to reconstruct ancient marine environments or evaluate plate tectonics. INAA is also used to analyze contaminants in environmental samples and industrial products for quality control.

Gamma-ray spectroscopy facilities in PNL's Counting Room include those High Purity Germanium (HPGe) detectors, two of which are connected to automated sample changer systems and utilized for Nuclear Products Group "Genie Workstation" software operating on two Digital Equipment Corporation VAX computers.

In some cases, this new configuration will be available to INAA's customers. This configuration is a radioactive nuclide which functions as a prompt gamma ray source, capable of providing an additional one or more characteristic delayed gamma rays. This decay salvo placed at a much higher rate than the prompt gammas, according to the unique half-life of the radioactive nuclides in the target material. The unique energy and unique half-life of this decay to identify isotopes present in the target material.

INAA is an important analytical tool in many fields, owing to the accuracy, low detection limit, and the number of elements that can be identified simultaneously. The technique is highly utilized by archaeologists and geologists for multi-element analysis of minerals, where the radioactive characterizes the trace-element composition of artifacts to source the raw materials, while geologists examine rock minerals to reconstruct ancient marine environments or evaluate plate tectonics. INAA is also used to analyze contaminants in environmental samples and industrial products for quality control.
demand for INAA services. Longer-term plans include up-grading the VAX to a Windows NT-based system.

The INAA program is available as a turnkey service performed by the PML staff. The irradiated samples may also be returned to researchers for their own analyses using their own equipment or PML facilities. Researchers utilizing the INAA program come from the UM Museum of Anthropology, and from the departments of Geological Sciences, Chemistry, and Chemical Engineering, as well as from other universities and research institutions in the United States. The U.S. Department of Energy (DOE) Reactor Sharing program has provided resources to subsidize the use of INAA facilities by scientists from other universities, both U.S. and overseas.

Over 2000 samples were irradiated and analyzed for trace-element composition at the facility and by the facility staff (Table 2). Roughly 45% of these samples were submitted by researchers at the University of Michigan. Samples were also irradiated and analyzed for researchers at eight other colleges and universities, under the DOE’s Reactor Sharing program. A sampling of recent projects utilizing INAA follows by discipline.

<table>
<thead>
<tr>
<th>Organization</th>
<th>Number of Samples</th>
<th>Irradiation Time (hrs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>University of Michigan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anthropology</td>
<td>574</td>
<td>204</td>
</tr>
<tr>
<td>Chemical Engineering</td>
<td>214</td>
<td>36</td>
</tr>
<tr>
<td>Nuclear Engineering</td>
<td>128</td>
<td>32</td>
</tr>
<tr>
<td>School of Dentistry</td>
<td>16</td>
<td>10</td>
</tr>
<tr>
<td>School of Public Health</td>
<td>6</td>
<td>20</td>
</tr>
<tr>
<td>Subtotal</td>
<td>938</td>
<td>302</td>
</tr>
<tr>
<td>Colleges, Universities, & Other Public Institutions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calvin College</td>
<td>27</td>
<td>20</td>
</tr>
<tr>
<td>Eastern Michigan University</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Indiana University</td>
<td>283</td>
<td>142</td>
</tr>
<tr>
<td>Michigan State University</td>
<td>90</td>
<td>41</td>
</tr>
<tr>
<td>SUNY-Albany</td>
<td>452</td>
<td>84</td>
</tr>
<tr>
<td>University of California-San Diego</td>
<td>32</td>
<td>25</td>
</tr>
<tr>
<td>University of Colorado</td>
<td>8</td>
<td>20</td>
</tr>
<tr>
<td>Wayne State University</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Subtotal</td>
<td>898</td>
<td>339</td>
</tr>
<tr>
<td>Federal and Industrial Research</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSF International</td>
<td>72</td>
<td>29</td>
</tr>
<tr>
<td>Natural Systems, Inc.</td>
<td>14</td>
<td>40</td>
</tr>
<tr>
<td>XRAL</td>
<td>115</td>
<td>32</td>
</tr>
<tr>
<td>Subtotal</td>
<td>201</td>
<td>101</td>
</tr>
<tr>
<td>Total</td>
<td>2032</td>
<td>742</td>
</tr>
</tbody>
</table>
Household Ceramic Economies Among the Maros Villagers of Bronze Age Hungary

Kostalena Michelaki

Museum of Anthropology, University of Michigan

This dissertation research project focused on the analysis of ceramic material from two Bronze Age settlements—Kiszombor-Új-Élet (2700-2000 BC cal) and Klárafalva-Hajdova (2000-1650 BC cal). These settlements belonged to the Maros Group, who lived in small (40-60 people), politically autonomous villages at the confluence of the rivers Tisza and Maros, around the borders of modern Hungary, Romania and Yugoslavia. The Maros lived in simple extended family households, and exploited both domestic and wild plants and animals. They also made ceramics, stone, bone, bronze, and copper tools and ornaments, and wove textiles. The goal of this project was to contribute to our understanding of the social life of the Maros, by focusing on the way they made and used their ceramics.

While technological choices and the organization of production activities are indisputably material in character, they are also intrinsically social phenomena. Nevertheless, several alternative approaches can be used to carry out any particular technological process, such that the particular approach chosen is laden with cultural meaning and reflects not only the conscious decision of an individual, but also the abstract cultural rules behind them. To be able to examine both the material and the social dimensions of the Maros ceramic technology, I had to document a broad range of activities, from raw material procurement to vessel forming to firing methods, using a variety of techniques, including instrumental neutron activation (INAA), petrographic analyses, scanning electron microscopy (SEM), and X-ray diffraction (XRD).

Trace-element analysis using INAA indicated that the Maros were using local clays in the manufacture of their ceramics. At Kiszombor, multivariate analysis of constituent elements revealed that the bulk of the ceramic samples represent a single compositional group. At Klárafalva, two closely linked compositional groups can be identified; both appear as part of a larger compositional continuum and are about equally abundant in the sample. It is thus possible that they both represent local clay sources. In both sites, the ceramic samples differed from the architectural clay samples in their calcium concentrations suggesting that clays with shell (the primary source of Ca in the architectural daub) were avoided for pottery manufacture. Petrographic analysis of ceramic thin sections revealed that the Maros potters crushed other ceramics to create temper for their new vessels. At Kiszombor, potters created two distinct sizes of temper and used the large inclusions for their thick vessels and the small ones for their thin vessels. In contrast, potters at Klárafalva consistently varied the amount of inclusions added (rather than the size), perhaps using a standardized measurement, such as a handful.

After they had prepared their raw materials, Kiszombor potters built simple, mainly undecorated vessels with surfaces that were either roughened or burnished. At Klárafalva, however, more than 90% of the vessels were burnished and most of them have complex shapes and decoration. SEM and XRD showed that the Maros potters fired their pots under 800°C, without kilns. Their choice of relatively low firing temperatures was wise, since at higher temperatures their vessels would deform and be rendered useless. Again, in Klárafalva we can detect greater consistency in firing, and fewer firing mistakes.

Considering all the stages of ceramic production we see that while no dramatic changes occurred in ceramic technology from the Early to the Late Maros, the focus of the potters shifted from what cannot be seen (raw material preparation) to what is most evident about a vessel (its shape, color and texture). In Late Maros, potters skipped important steps in temper preparation and instead put their time into making more complex shapes and burning and decorating their vessels. This change reflects the changing role of pottery in the Maros communities through time. In Early Maros Kiszombor social inequality was not evident in settlements and differences in social status were only expressed in death, through grave goods placed in burials. In the latter Klárafalva, however, social inequalities were expressed during life, through the display of food consumption and subsistence wealth. Eating and drinking vessels, along with storage vessels, were central in such displays.

Through this detailed examination of ceramic technology, made possible by powerful analytical methods such as INAA and SEM, it was possible to document a change in the Maros society, which was on its way to a more complex political organization.
This project combines INAA, archaeology, and history to shed light upon 19th-century Apache and Hispanic interactions in New Mexico. The geochemistry of micaceous clay mined historically for production by both groups is compared to ceramic sherds recovered from historic Apache and Hispanic archaeological sites. INAA is used to relate ceramic sherds to clay source locations, and it is used to characterize differences in ceramic production styles between Hispanic and Apache potters. This is achieved by relating the localized distributions of ceramics, the patterning of which illuminates the role of women's domestic labor in the production of these vessels.

INAA results are integrated with other archaeological and historical data to develop theories regarding the role of women in the production of the ceramic artifacts recovered from this region.

The project combines INAA, archaeology, and history to shed light upon 19th-century Apache and Hispanic interactions in New Mexico. The geochemistry of micaceous clay mined historically for production by both groups is compared to ceramic sherds recovered from historic Apache and Hispanic archaeological sites. INAA is used to relate ceramic sherds to clay source locations, and it is used to characterize differences in ceramic production styles between Hispanic and Apache potters. This is achieved by relating the localized distributions of ceramics, the patterning of which illuminates the role of women's domestic labor in the production of these vessels.

INAA results are integrated with other archaeological and historical data to develop theories regarding the role of women in the production of the ceramic artifacts recovered from this region.

The project combines INAA, archaeology, and history to shed light upon 19th-century Apache and Hispanic interactions in New Mexico. The geochemistry of micaceous clay mined historically for production by both groups is compared to ceramic sherds recovered from historic Apache and Hispanic archaeological sites. INAA is used to relate ceramic sherds to clay source locations, and it is used to characterize differences in ceramic production styles between Hispanic and Apache potters. This is achieved by relating the localized distributions of ceramics, the patterning of which illuminates the role of women's domestic labor in the production of these vessels.

INAA results are integrated with other archaeological and historical data to develop theories regarding the role of women in the production of the ceramic artifacts recovered from this region.

The project combines INAA, archaeology, and history to shed light upon 19th-century Apache and Hispanic interactions in New Mexico. The geochemistry of micaceous clay mined historically for production by both groups is compared to ceramic sherds recovered from historic Apache and Hispanic archaeological sites. INAA is used to relate ceramic sherds to clay source locations, and it is used to characterize differences in ceramic production styles between Hispanic and Apache potters. This is achieved by relating the localized distributions of ceramics, the patterning of which illuminates the role of women's domestic labor in the production of these vessels.

INAA results are integrated with other archaeological and historical data to develop theories regarding the role of women in the production of the ceramic artifacts recovered from this region.

The project combines INAA, archaeology, and history to shed light upon 19th-century Apache and Hispanic interactions in New Mexico. The geochemistry of micaceous clay mined historically for production by both groups is compared to ceramic sherds recovered from historic Apache and Hispanic archaeological sites. INAA is used to relate ceramic sherds to clay source locations, and it is used to characterize differences in ceramic production styles between Hispanic and Apache potters. This is achieved by relating the localized distributions of ceramics, the patterning of which illuminates the role of women's domestic labor in the production of these vessels.

INAA results are integrated with other archaeological and historical data to develop theories regarding the role of women in the production of the ceramic artifacts recovered from this region.

The project combines INAA, archaeology, and history to shed light upon 19th-century Apache and Hispanic interactions in New Mexico. The geochemistry of micaceous clay mined historically for production by both groups is compared to ceramic sherds recovered from historic Apache and Hispanic archaeological sites. INAA is used to relate ceramic sherds to clay source locations, and it is used to characterize differences in ceramic production styles between Hispanic and Apache potters. This is achieved by relating the localized distributions of ceramics, the patterning of which illuminates the role of women's domestic labor in the production of these vessels.

INAA results are integrated with other archaeological and historical data to develop theories regarding the role of women in the production of the ceramic artifacts recovered from this region.

The project combines INAA, archaeology, and history to shed light upon 19th-century Apache and Hispanic interactions in New Mexico. The geochemistry of micaceous clay mined historically for production by both groups is compared to ceramic sherds recovered from historic Apache and Hispanic archaeological sites. INAA is used to relate ceramic sherds to clay source locations, and it is used to characterize differences in ceramic production styles between Hispanic and Apache potters. This is achieved by relating the localized distributions of ceramics, the patterning of which illuminates the role of women's domestic labor in the production of these vessels.

INAA results are integrated with other archaeological and historical data to develop theories regarding the role of women in the production of the ceramic artifacts recovered from this region.

The project combines INAA, archaeology, and history to shed light upon 19th-century Apache and Hispanic interactions in New Mexico. The geochemistry of micaceous clay mined historically for production by both groups is compared to ceramic sherds recovered from historic Apache and Hispanic archaeological sites. INAA is used to relate ceramic sherds to clay source locations, and it is used to characterize differences in ceramic production styles between Hispanic and Apache potters. This is achieved by relating the localized distributions of ceramics, the patterning of which illuminates the role of women's domestic labor in the production of these vessels.

INAA results are integrated with other archaeological and historical data to develop theories regarding the role of women in the production of the ceramic artifacts recovered from this region.

The project combines INAA, archaeology, and history to shed light upon 19th-century Apache and Hispanic interactions in New Mexico. The geochemistry of micaceous clay mined historically for production by both groups is compared to ceramic sherds recovered from historic Apache and Hispanic archaeological sites. INAA is used to relate ceramic sherds to clay source locations, and it is used to characterize differences in ceramic production styles between Hispanic and Apache potters. This is achieved by relating the localized distributions of ceramics, the patterning of which illuminates the role of women's domestic labor in the production of these vessels.
Recent research within the Economic Geology Research Group (University of Utah, Department of Geological Sciences) have undertaken a major study of the geochemistry of diamond-bearing ultramafic and alkaline rocks of New England with the intent to decipher the tectonic setting in which the magmas evolved. The boundary between the original North American rocks and Avalon is now obscured in much of New England by peridotite and It was allochthonous rocks that were thrust over this major basement terrane. Virtually all the current studies focus on granitoids that have invaded the cover rocks with the support of which were resource, compositional, and secondary processes of element partitioning and distribution. The Ph.D. candidate Tim Johansson completed a detailed survey involving trace elements, fluid inclusions, and stable isotopes, to identify the processes responsible for (a) the mountains of emplacement of (b) hydrothermal beryllium mineralization at Spor Mountain, Utah. Paragenetic sequence and stable isotope analysis of both whole-rock and mineral separations will be spatially correlated to trace element distributions. Fluid inclusions and secondary hydrothermal mineral veins afford independent geothermometers for reconstructing the thermal regime. Other examples of current research include isotopic and petrologic studies of Ca-Ni-PGE and T1-P mineralization in the Duluth Complex of Minnesota and geochemical studies of hydrothermal fluid flow and alteration in the North Shore Volcanic District. The Analytical Geochemistry program in INAA focuses on the rare earth elements and platinum group elements.

Recent research within the Economic Geology Research Group (University of Utah, Department of Geological Sciences) have undertaken a major study of the geochemistry of diamond-bearing ultramafic and alkaline rocks of New England with the intent to decipher the tectonic setting in which the magmas evolved. The boundary between the original North American rocks and Avalon is now obscured in much of New England by peridotite and It was allochthonous rocks that were thrust over this major basement terrane. Virtually all the current studies focus on granitoids that have invaded the cover rocks with the support of which were resource, compositional, and secondary processes of element partitioning and distribution. The Ph.D. candidate Tim Johansson completed a detailed survey involving trace elements, fluid inclusions, and stable isotopes, to identify the processes responsible for (a) the mountains of emplacement of (b) hydrothermal beryllium mineralization at Spor Mountain, Utah. Paragenetic sequence and stable isotope analysis of both whole-rock and mineral separations will be spatially correlated to trace element distributions. Fluid inclusions and secondary hydrothermal mineral veins afford independent geothermometers for reconstructing the thermal regime. Other examples of current research include isotopic and petrologic studies of Ca-Ni-PGE and T1-P mineralization in the Duluth Complex of Minnesota and geochemical studies of hydrothermal fluid flow and alteration in the North Shore Volcanic District. The Analytical Geochemistry program in INAA focuses on the rare earth elements and platinum group elements.

Recent research within the Economic Geology Research Group (University of Utah, Department of Geological Sciences) have undertaken a major study of the geochemistry of diamond-bearing ultramafic and alkaline rocks of New England with the intent to decipher the tectonic setting in which the magmas evolved. The boundary between the original North American rocks and Avalon is now obscured in much of New England by peridotite and It was allochthonous rocks that were thrust over this major basement terrane. Virtually all the current studies focus on granitoids that have invaded the cover rocks with the support of which were resource, compositional, and secondary processes of element partitioning and distribution. The Ph.D. candidate Tim Johansson completed a detailed survey involving trace elements, fluid inclusions, and stable isotopes, to identify the processes responsible for (a) the mountains of emplacement of (b) hydrothermal beryllium mineralization at Spor Mountain, Utah. Paragenetic sequence and stable isotope analysis of both whole-rock and mineral separations will be spatially correlated to trace element distributions. Fluid inclusions and secondary hydrothermal mineral veins afford independent geothermometers for reconstructing the thermal regime. Other examples of current research include isotopic and petrologic studies of Ca-Ni-PGE and T1-P mineralization in the Duluth Complex of Minnesota and geochemical studies of hydrothermal fluid flow and alteration in the North Shore Volcanic District. The Analytical Geochemistry program in INAA focuses on the rare earth elements and platinum group elements.

Recent research within the Economic Geology Research Group (University of Utah, Department of Geological Sciences) have undertaken a major study of the geochemistry of diamond-bearing ultramafic and alkaline rocks of New England with the intent to decipher the tectonic setting in which the magmas evolved. The boundary between the original North American rocks and Avalon is now obscured in much of New England by peridotite and It was allochthonous rocks that were thrust over this major basement terrane. Virtually all the current studies focus on granitoids that have invaded the cover rocks with the support of which were resource, compositional, and secondary processes of element partitioning and distribution. The Ph.D. candidate Tim Johansson completed a detailed survey involving trace elements, fluid inclusions, and stable isotopes, to identify the processes responsible for (a) the mountains of emplacement of (b) hydrothermal beryllium mineralization at Spor Mountain, Utah. Paragenetic sequence and stable isotope analysis of both whole-rock and mineral separations will be spatially correlated to trace element distributions. Fluid inclusions and secondary hydrothermal mineral veins afford independent geothermometers for reconstructing the thermal regime. Other examples of current research include isotopic and petrologic studies of Ca-Ni-PGE and T1-P mineralization in the Duluth Complex of Minnesota and geochemical studies of hydrothermal fluid flow and alteration in the North Shore Volcanic District. The Analytical Geochemistry program in INAA focuses on the rare earth elements and platinum group elements.

Recent research within the Economic Geology Research Group (University of Utah, Department of Geological Sciences) have undertaken a major study of the geochemistry of diamond-bearing ultramafic and alkaline rocks of New England with the intent to decipher the tectonic setting in which the magmas evolved. The boundary between the original North American rocks and Avalon is now obscured in much of New England by peridotite and It was allochthonous rocks that were thrust over this major basement terrane. Virtually all the current studies focus on granitoids that have invaded the cover rocks with the support of which were resource, compositional, and secondary processes of element partitioning and distribution. The Ph.D. candidate Tim Johansson completed a detailed survey involving trace elements, fluid inclusions, and stable isotopes, to identify the processes responsible for (a) the mountains of emplacement of (b) hydrothermal beryllium mineralization at Spor Mountain, Utah. Paragenetic sequence and stable isotope analysis of both whole-rock and mineral separations will be spatially correlated to trace element distributions. Fluid inclusions and secondary hydrothermal mineral veins afford independent geothermometers for reconstructing the thermal regime. Other examples of current research include isotopic and petrologic studies of Ca-Ni-PGE and T1-P mineralization in the Duluth Complex of Minnesota and geochemical studies of hydrothermal fluid flow and alteration in the North Shore Volcanic District. The Analytical Geochemistry program in INAA focuses on the rare earth elements and platinum group elements.

Recent research within the Economic Geology Research Group (University of Utah, Department of Geological Sciences) have undertaken a major study of the geochemistry of diamond-bearing ultramafic and alkaline rocks of New England with the intent to decipher the tectonic setting in which the magmas evolved. The boundary between the original North American rocks and Avalon is now obscured in much of New England by peridotite and It was allochthonous rocks that were thrust over this major basement terrane. Virtually all the current studies focus on granitoids that have invaded the cover rocks with the support of which were resource, compositional, and secondary processes of element partitioning and distribution. The Ph.D. candidate Tim Johansson completed a detailed survey involving trace elements, fluid inclusions, and stable isotopes, to identify the processes responsible for (a) the mountains of emplacement of (b) hydrothermal beryllium mineralization at Spor Mountain, Utah. Paragenetic sequence and stable isotope analysis of both whole-rock and mineral separations will be spatially correlated to trace element distributions. Fluid inclusions and secondary hydrothermal mineral veins afford independent geothermometers for reconstructing the thermal regime. Other examples of current research include isotopic and petrologic studies of Ca-Ni-PGE and T1-P mineralization in the Duluth Complex of Minnesota and geochemical studies of hydrothermal fluid flow and alteration in the North Shore Volcanic District. The Analytical Geochemistry program in INAA focuses on the rare earth elements and platinum group elements.

Recent research within the Economic Geology Research Group (University of Utah, Department of Geological Sciences) have undertaken a major study of the geochemistry of diamond-bearing ultramafic and alkaline rocks of New England with the intent to decipher the tectonic setting in which the magmas evolved. The boundary between the original North American rocks and Avalon is now obscured in much of New England by peridotite and It was allochthonous rocks that were thrust over this major basement terrane. Virtually all the current studies focus on granitoids that have invaded the cover rocks with the support of which were resource, compositional, and secondary processes of element partitioning and distribution. The Ph.D. candidate Tim Johansson completed a detailed survey involving trace elements, fluid inclusions, and stable isotopes, to identify the processes responsible for (a) the mountains of emplacement of (b) hydrothermal beryllium mineralization at Spor Mountain, Utah. Paragenetic sequence and stable isotope analysis of both whole-rock and mineral separations will be spatially correlated to trace element distributions. Fluid inclusions and secondary hydrothermal mineral veins afford independent geothermometers for reconstructing the thermal regime. Other examples of current research include isotopic and petrologic studies of Ca-Ni-PGE and T1-P mineralization in the Duluth Complex of Minnesota and geochemical studies of hydrothermal fluid flow and alteration in the North Shore Volcanic District. The Analytical Geochemistry program in INAA focuses on the rare earth elements and platinum group elements.

Recent research within the Economic Geology Research Group (University of Utah, Department of Geological Sciences) have undertaken a major study of the geochemistry of diamond-bearing ultramafic and alkaline rocks of New England with the intent to decipher the tectonic setting in which the magmas evolved. The boundary between the original North American rocks and Avalon is now obscured in much of New England by peridotite and It was allochthonous rocks that were thrust over this major basement terrane. Virtually all the current studies focus on granitoids that have invaded the cover rocks with the support of which were resource, compositional, and secondary processes of element partitioning and distribution. The Ph.D. candidate Tim Johansson completed a detailed survey involving trace elements, fluid inclusions, and stable isotopes, to identify the processes responsible for (a) the mountains of emplacement of (b) hydrothermal beryllium mineralization at Spor Mountain, Utah. Paragenetic sequence and stable isotope analysis of both whole-rock and mineral separations will be spatially correlated to trace element distributions. Fluid inclusions and secondary hydrothermal mineral veins afford independent geothermometers for reconstructing the thermal regime. Other examples of current research include isotopic and petrologic studies of Ca-Ni-PGE and T1-P mineralization in the Duluth Complex of Minnesota and geochemical studies of hydrothermal fluid flow and alteration in the North Shore Volcanic District. The Analytical Geochemistry program in INAA focuses on the rare earth elements and platinum group elements.
based on the relative abundance of natural (stable) isotopes, particularly those of silicon. In terrestrial materials, the relative abundance of the primary silicon isotopes, ^{28}Si and ^{29}Si, is 92.2% and 4.7%, respectively. Previous analyses of reportedly meteoric samples using SIMS indicated that the relative abundance of ^{28}Si and ^{29}Si varied markedly from this earthly norm, supporting an extra-terrestrial origin. However, re-analysis using INAA concluded that the silicon isotopic ratios were consistent with materials of terrestrial origin.

Under the direction of Prof. David Budd (University of Colorado, Department of Geological Sciences), Ms. Terry Church completed a project to assess palaeo-oceanographic events that may have led to the demise of coral-stromatoporoid fauna at the end of the Frasian (Late Devonian). Geochemical analyses of limestone samples spanning two separate mass-extinction events (the end-biostrome of the Late Devonian and the Frasian-Fammennian boundary) yielded distinctly different signals, indicating that very different mechanisms were responsible for the two extinctions. Ms. Church’s research was supported by the McNair Scholars Program.

INAA Studies in Chemistry and Chemical Engineering

Prof. Levi Thompson (University of Michigan, Chemical Engineering) is using neutron activation analysis to determine the metals content of early transition metal carbide and nitride catalysts. These catalysts are being developed for use in hydrocarbon conversion, water-gas shift and steam reforming reactions. The latter two reactions are used to convert hydrocarbons into hydrogen for use in fuel cells. Several of Prof. Thompson’s students are also utilizing the INAA program at the FNR.

Under the direction of Prof. Thompson, Ph.D. student Chris Bennett (University of Michigan, Chemical Engineering) is conducting research involving the synthesis, characterization, and evaluation of novel materials for potential use as catalysts for several industrially important reactions. Since the optimization of a material for a particular catalytic application requires a detailed knowledge of the pertinent structure–function relationships, extensive characterization is performed. The characterization techniques utilized include numerous x-ray, electron, and sorption techniques to probe both the surface and bulk of the materials. A full understanding of the structure–function relationships also requires detailed analysis of the catalyst composition, which is accomplished via the combination of neutron activation analysis (performed at the FNR) and combustion analysis. The culmination of these investigations has elucidated the mechanisms by which these materials catalyze several key reactions.

In a related project, Prof. Thompson and doctoral student Michael Neylon (University of Michigan, Chemical Engineering) are utilizing INAA to assess the metals content and purity of molybdenum carbide catalysts. Molybdenum carbide is synthesized from molyoxide by high temperature exposure to methane and hydrogen. These materials have high surface area and good activity towards many catalytic reactions. Synthesis and catalyst activity can lead to oxygen, excess carbon, and sulfur forming on the surface of the material. Understanding the relationship between composition (both bulk and surface), structure, and catalyst activity can lead to engineering better catalysts.

Prof. Ralph T. Yang and doctoral candidate Nick D. Hutson (University of Michigan, Chemical Engineering) have completed a study involving the characterization of the structure and adsorption characteristics of silver ion-exchanged zeolites. Silver is known to strongly affect the adsorptive properties of some zeolites,
Characterization of the Structure and Adsorption Characteristics of Silver Ion-Exchanged Zeolites Y, X and Low Silica X

Nick D. Hutson and Ralph T. Yang
Department of Chemical Engineering, University of Michigan

Silver is known to strongly affect the adsorptive properties of some zeolites. It is also known that thermal vacuum dehydration of some argentiferous zeolites leads to the formation of charged silver clusters within the zeolite. In this work we synthesized silver zeolites of the types Y, X and low silica X. The zeolites were treated in such a way as to promote the formation of intracrystalline charged silver clusters. Equilibrium room temperature isotherms were measured for adsorption of nitrogen for each of the zeolites after various heat treatments and dehydration. The materials were analytically characterized using neutron activation analysis at the Ford Nuclear Reactor. The materials were structurally characterized via Rietveld refinement of neutron powder diffraction patterns collected at the NIST Center for Neutron Research (NCNR) at the National Institute of Standards and Technology in Gaithersburg, MD. Color changes upon heat treatment and subsequent X-ray photoemission spectroscopy (XPS) confirmed some reduction of Ag\(^+\) -> Ag\(^0\). The effects of various dehydration conditions, including the time, temperature and atmosphere, on the room temperature adsorption of nitrogen were also characterized. Structural characterization, along with valence bond calculations, revealed the presence of cations in a novel site (called II\(^+\)) which are more active in Ag-LSX samples which were vacuum dehydrated at 450°C as compared to those which were vacuum dehydrated at 350°C.

The separation of air for the production of nitrogen and oxygen is a very important operation in the chemical processing industry. Historically, this separation has been done mostly using cryogenic distillation. However, as adsorption systems have become more efficient and new, more effective sorbents have been synthesized, separation by adsorption processes (e.g., pressure swing adsorption (PSA), and vacuum swing adsorption (VSA)) have become increasingly competitive and are already favorable for small-to-medium scale operations. Currently, approximately 20% of air separations are done using adsorption technologies. Li ion-exchanged low silica X zeolite (Si/Al = 1.0) is currently the best adsorbent for use in the separation of air by adsorption processes.

We have synthesized type X zeolites containing varying mixtures of Li and Ag. The addition of very small amounts of Ag and the proper dehydration conditions resulted in the formation of a material with enhanced adsorptive characteristics and increased energetic heterogeneity as compared to those of the near fully exchanged Li-zeolites. The performance for air separation by the best of these sorbents, containing, on average, only one Ag per unit cell, was compared to that of the near fully Li ion-exchanged zeolite using a standard PSA cycle by numerical simulation. The results showed that the new adsorbent provides a significantly higher (>10%) product throughput, at the same product purity and recovery, when compared to that of the near fully Li ion-exchanged zeolite.

The location of the extraframework silver in relation to the aluminosilicate framework is of primary importance for elucidating the effect of silver clustering on the adsorptive characteristics of the zeolite. The silver contents of the mixed Li/Ag-zeolites were determined using INAA at the Ford Nuclear Reactor. The materials were structurally characterized via Rietveld refinement of neutron powder diffraction patterns collected at the NCNR. Structural characterization, again, confirmed the presence of cations in a novel site (called II\(^+\)). Silver in this site boosts the adsorption capacity of the mixed Li/Ag-zeolites over that of the near fully Li ion-exchanged zeolite.
with thermal vacuum dehydration of some argentiferous zeolites leading to the formation of charged silver clusters within the zeolite. In this work, silver zeolites of the types Y, X and low silica X were synthesized and treated in such a way as to promote the formation of intracrystalline charged silver clusters. The materials were analytically characterized using neutron activation analysis at the FNR.

In a second study under the direction of Prof. Ralph T. Yang, Ph.D. student Richard Long (University of Michigan, Chemical Engineering) is employing INAA in their study of elective catalytic reduction of nitric oxide. Selective catalytic reduction (SCR) of nitric oxide with hydrocarbon and ammonia in the presence of excess oxygen is an efficient way to abate NO emission. These researchers investigated a series of metal ion-exchanged pillared clay, MCM-41 and ZSM-5 catalysts for this reaction. The catalysts were prepared according to the conventional ion-exchanged method in aqueous solution. The content of metal was measured by neutron activation analysis at the Ford Nuclear Reactor. The element concentrations of Cu, Fe, Al, Na and Rh were determined through direct comparison with the standard reference materials. The data provided important information for searching and modifying catalysts because the metal ion concentrations of the catalysts are critical for the SCR reaction.

At Eastern Michigan University, the Ford Nuclear Reactor and Phoenix Memorial Laboratory facilities were used for teaching a number of analytical chemistry classes (Chem. 381 and Chem. 481); nearly fifty students were introduced to neutron activation analysis through a lab on sample irradiation and gamma spectrometry.

NAA in Health Science Fields

Dr. William O'Brien and undergraduate research assistant Irina Elterman (University of Michigan, School of Dentistry) used INAA to evaluate the 238U content of dental porcelains to assess their conformity with ISO specifications. The 238U radioactivity in dental porcelains results from the minerals used in their formulation, but total activity cannot exceed 0.1 Beq/g.

In an innovative study supported in part by a Phoenix Faculty grant, Drs. David Hamby and Srinantha Kannan (University of Michigan, Environmental Health Sciences) are monitoring the biodistribution of minerals in plant-based food products using radioactive tracers. The FNR facility has enabled them to combine features of INAA, biokinetic modeling of minerals, and food processing to develop and to test the feasibility of this novel application of the isotopic tracer technique. In a recently completed experiment, naturally occurring iron (58Fe) in dried black beans was activated to create the radioactive tracer 59Fe. Approximately 3 weeks following irradiation, the activated bean products were fed to animals (Sprague Dawley rats). In order to study absorption of the mineral, loss of mineral in the feces was monitored by counting the amount of 59Fe in fecal samples using the PML low background gamma spectrometer. A control group of rats was fed the non-radioactive diet and rat tissues were activated to further trace the retention of the mineral in rat bones using INAA.

INAA in Nuclear Engineering & Radiological Sciences

Doctoral candidate Binxi Gu, working under the direction of Research Scientist Dr. Lumin Wang (University of Michigan, Nuclear Engineering and Radiological Sciences), is utilizing INAA to examine ion exchange solutions from zeolites and to compare with the results obtained from atomic absorption analysis. The main elements of interest are strontium and cesium. Their research is part of a long-term project to identify materials appropriate for
high-level radioactive waste storage. For further details, see project description under Materials Science Testing Program.

INAA for Industrial Applications

National Sanitation Foundation International of Ann Arbor utilized INAA to verify the trace-element composition of polyethylene plastics. A suite of six elements are added to the plastics in different combinations, and used as tracers to identify the products of specific batches for quality control.

Natural Systems, Inc., an environmental consulting firm in Muskegon, Michigan, approached the FNR’s INAA program about assessing soil samples for metal contamination. Soils from both allegedly contaminated and non-contaminated sites were analyzed for antimony, selenium, barium, and vanadium content.

XRAL Activation Services Incorporated operated a neutron activation analysis program headquartered at the Ford Nuclear Reactor to serve geologists and the mining industry. The XRAL program utilized laboratory and reactor space; samples were irradiated in the reactor and analyzed by XRAL employees.
Ar-Ar Geological Dating Program

Another active research program at the Ford Nuclear Reactor is geological dating through the determination of potassium isotopic concentrations in mineral samples. Rocks have a natural isotopic ratio between ^{39}K and ^{40}K of 7971:1. However, ^{40}K is radioactive and decays to ^{40}Ar with a half-life of about 1.28 billion years. Determination of the amount of ^{40}K that remains and performance of radioactive decay calculations permit the determination of a rock's age.

The reactor is used to assist in determining the amount of ^{40}K that remains in a rock. High energy neutrons from the reactor convert some of the ^{39}K to ^{39}Ar, by the reaction $^{39}\text{K}(n,p)^{39}\text{Ar}$. After irradiation, vacuum extraction of both isotopes of argon is conducted, and the isotopes are quantified by passing the extracted gasses through a gas chromatograph. The argon isotope ratio permits determination of the potassium isotope ratio, which in turn yields the age of geological samples.

For example, based on the half-life of 1.28 billion years, if the sum of the amount of ^{40}K that has decayed and the current amount in a rock were determined to be 1,000 atoms and the current number of atoms were 500, half the atoms present would have decayed (one half-life), and the rock would be 1.28 billion years old. If the current number of atoms were 250, two half-lives would have passed, and the rock would be 2.56 billion years old. The data are then used to interpret a variety of geological problems, including the tectonic evolution of mountain belts, the volcanic history and potential hazards of particular volcanic fields, and the potential for the production of hydrocarbons in sedimentary basins.

The Ford Nuclear Reactor offers one of the best facilities in the U.S. for the irradiation of rock and mineral samples for $^{39}\text{Ar}/^{40}\text{Ar}$ dating. FNR's dedicated irradiation facility provides a highly desirable low flux gradient, high fast-to-thermal neutron ratio, and a favorable J-factor of 2×10^4 /hour. Equally important, our operation schedule permits the long irradiation times required for dating samples of extreme age (such as lunar and Martian samples) with great precision.

To date, the FNR has provided irradiation services only. However, we have recently established a collaborative program with the University of Michigan's Argon Geochronology Lab, to offer $^{39}\text{Ar}/^{40}\text{Ar}$ dating directly to interested geologists. In this arrangement, irradiations will be performed at FNR; the samples will then be analyzed by Dr. Chris Hall (Argon Geochronology Lab) for mass spectrometric measurement of the concentrations of ^{39}Ar and of ^{40}Ar to determine the age of geological samples. This service will be of particular interest to geologists interested in dating clays, an area in which Dr. Hall has pioneered the vacuum encapsulation technique.

The primary users of the $^{39}\text{Ar}/^{40}\text{Ar}$ dating services come from the University of Michigan's Department of Geological Sciences, as well as from other research institutions in the United States, western Europe, and New Zealand. In 1998-1999, FNR's dedicated irradiation facility provided nearly 1500 hours of in-core irradiation for ten major geochronology labs worldwide (Table 3).

The geologic research that is supported by access to the Ford Nuclear Reactor is diverse and covers a range of applications:
At the University of Michigan, the argon dating facility within the Department of Geological Sciences is involved in a large number of collaborative studies with investigators both at UM and at other universities. In the recent past, researchers have conducted projects ranging from tectonic studies aimed at working out the histories of mountain belt formation and uplift, to studies combining the dating precision of Ar-Ar dating with excellent stratigraphic control possible with deep sea sediments to confirm recent astronomically based time-scales, which had assumed that variations in oxygen isotopes (associated with temperature and glacial ice volume changes) are caused by astronomical forcing. In a pioneering effort, UM researchers developed a reliable way to "vacuum encapsulate" samples, enabling researchers to date fine-grained minerals, like clays. Clays are useful in working out sedimentary basin histories, and they are frequently the only datable minerals in economically important ore deposits. Ar-Ar dating of clays has also helped in interpreting the weathering environment during the recent ice ages.

Current projects include (but are not limited to): testing a model of preservation of an unusually old near-surface gold deposit in Cuba; doing the first large-scale spatial and temporal estimate of volcanic eruption rates in a subfunction related zone in Mexico; finding the timing of rapid motion along deep faults using argon dating of rock melted along faults during earthquakes (pseudotachylites); extending the use of argon dating as a geochemical tracer in oceanographic studies; using argon dating of clay mixtures in the rock "flour" found in active faults (fault "gouge") to estimate the timing and duration of near surface fault motion.

Researchers at the University of Houston's Thermochronology Laboratory utilize Ar-Ar dating to determine: (1) the precise dating of volcanic eruptions to provide chronologic constraints on magmatic and eruptive processes; (2) the timing and rates of uplift of rocks in the Himalaya and other mountain ranges to provide information on orogenic events caused by continent-continent collision; (3) relative movements of continental and oceanic plates by combining age constraints with palaeomagnetic work; and (4) the thermal history of sedimentary basins with a focus on implications for development of oil and gas deposits.

Geologists at the University of Manchester and their collaborators are investigating: (1) the age of mare volcanism on the Moon to establish a timescale of basaltic volcanism on the moon and the relationships between mare-filling and earlier basin formation events; (2) the geochronology of martian meteorites by dating separated mineral components, providing information on the formation of martian atmosphere and the possible existence of life on Mars; (3) the chronology of diamonds through Ar-Ar dating of silicate inclusions to determine whether populations of diamonds crystallized continuously or at distinct time intervals; and (4) the determination of the halogen content of the mantle through time through analysis of diamonds of different age and depth of formation, using an extension of the Ar-Ar method.

The Institute of Geological & Nuclear Sciences in New Zealand utilizes FNR irradiation facilities for (1) geological dating programs related to orogenic, tectonic and volcanic histories in various geological terrains of New Zealand and the southwest Pacific region; and (2) neutron irradiation of very small (0.01g) silicate mineral samples to maintain incremental heating and laser heating variants of noble-gas mass spectrometric analytical techniques.
Radiometric dating of ductile shear zones has revolutionized our understanding of fault evolution and deep-crustal processes. However, the timing of shallow faulting has primarily been constrained using stratigraphic and other indirect dating techniques. One of the major problems at near-surface conditions is the presence of mineral phases that are both detrital (primary) and authigenic (secondary) in origin. Therefore, radiometric dating of such rocks typically reflects a mix between these mineral populations. We are proposing 40Ar/39Ar vacuum-encapsulation geochronology to accurately date clay-bearing fault rock that resolves the inherently mixed origin of clay minerals in fault rocks. Mineral characterization and modeling of X-ray diffraction patterns, supported by microscopic characterization, allow quantification of the percentages of detrital vs. authigenic phases through their characteristic crystal structures or polytypes. Ages of samples that contain known authigenic/detrital ratios allow us to extrapolate these 'mixed ages' to their detrital and authigenic end members. The advantages of our Ar encapsulation technique over traditional K-Ar ages are small sample size (1-2 orders of magnitude less), simple chemical preparation, detailed information through degassing steps (total gas and retention ages, and mineral/chemical heterogeneity) and improved precision (>1 order of magnitude greater). The likelihood for success of the method is shown by preliminary data on clay gouge from the Lewis Thrust in the southern Canadian Rockies. We propose further testing and development of standard procedures for this work, which includes comparison with traditional K-Ar dating. The second component of the project involves field application of our method in three structural settings and with variable mineralogies: a section across the southern Rockies, dating of normal faulting in Utah (Moab), dating of gouge along the San Andreas Fault (Punchbowl). We anticipate that, once fully developed, this method of radiometric fault dating will see widespread application in regional geology/tectonics.

Researchers at Lehigh University use Ar-Ar dating in a large number of studies, including the geochronology of metamorphism in the Pakistan Himalayas; the geochronology of detrital mica from Early Paleozoic sedimentary rocks of the Appalachian foreland; thermochronology of K-feldspars of eastern Maine; the geochronology and thermal evolution of Kinya Konga peak, China; recycling of subducted sediments in Tertiary volcanics, Nicaragua; geomorphic evolution of the forearc region, Costa Rica; dating of Neogene tuffs from NW Argentina, cooling history of Late Paleozoic granitics, southern Appalachian Piedmont; timing of ultrahigh-pressure metamorphism, China; chrono-stratigraphic of the Fort Union Formation, North American mid-continent; and the age of late hydrothermal alteration, Adirondack Mountains, New York.

At the Universite Blaise Pascal, Ferraud, France, Ar-Ar dates are used (1) to analyze the driving mechanisms of mountain building through thermochronology; (2) for the dating of volcanism, especially young volcanism in various geodynamical settings; and (3) to monitor and model argon loss to assess the physical background of argon diffusion in glass and silicates.
The New Mexico Geochronology Research Lab (NMGRL), under the direction of Prof. Matt Heizer, conducts a broad range of Ar-Ar dating projects, with support for the Ford Nuclear Reactor. Recent key projects include:

Yucca Mt. Project. The NMGRL performed an extensive geochronological study of the Lathrop Wells volcanic center near the proposed high-level radioactive test site at Yucca Mt., Nevada. This young volcanic center has a very controversial geochronology database which directly impacted probability calculations for volcanic risk assessment at Yucca Mt. Numerous samples were irradiated at the Ford Reactor for the dating at Lathrop Wells volcanic center. Their analyses strongly suggested the volcanic center to be 75,000 years old and a single eruptive event, thereby providing significant data to constrain volcanic hazard models for the repository at Yucca Mt.

Rocky Mt. Project A grant from the NSF continental dynamics program to study the Rocky Mts. and other regions of the western U.S. has been underway for about 1.5 years. The project is very large and dozens of scientists and students from several universities are participating. The project requires a significant component of argon geochronology and to date, more than 100 samples have been irradiated at the Ford reactor for this project.

Trans-Hudson Orogeny Project. Principle investigators K. Condine, M. Heizler, S. Kelley (New Mexico Tech.) and P. Bickford (Syracuse) have recently been awarded a grant from the NSF tectonics division to study the Trans-Hudson Orogeny of Central Canada. Over 100 samples were collected during the 1998 field season and approximately 150 minerals have now been irradiated at the FNR from these samples. The project is supporting a MS student at NMT and a Post-doc at Syracuse and preliminary results were recently presented at the 1999 GSA meeting in Denver, CO.

In addition to these large, highly visible projects, 33 other NMGRL projects required irradiation of samples at the Ford Nuclear Reactor. These projects involved mostly geological research conducted by students or colleagues at many universities. Overall, NMGRL supported in excess of one million dollars in research, involving 20 faculty members and 13 graduate students.

<table>
<thead>
<tr>
<th>University or Institution</th>
<th>Irradiation Time (hrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>University of Michigan</td>
<td>247</td>
</tr>
<tr>
<td>Inst. of Geological & Nuclear Sciences, New Zealand</td>
<td>120</td>
</tr>
<tr>
<td>Lehigh University</td>
<td>50</td>
</tr>
<tr>
<td>New Mexico Institute of Mining & Technology</td>
<td>422</td>
</tr>
<tr>
<td>Ohio State University</td>
<td>242</td>
</tr>
<tr>
<td>Universite Blaise Pascal</td>
<td>84</td>
</tr>
<tr>
<td>University of Arizona</td>
<td>15</td>
</tr>
<tr>
<td>University of California, Los Angeles</td>
<td>180</td>
</tr>
<tr>
<td>University of Manchester, UK</td>
<td>111</td>
</tr>
<tr>
<td>Total</td>
<td>1471</td>
</tr>
</tbody>
</table>

Table 3. Summary of Irradiations for Ar-Ar Dating, 1998-1999
Neutron radiography is analogous to X-ray radiography in that a beam of radiation is used to create images of objects. However, while X-rays interact with electrons in the atomic shell and cannot penetrate dense materials, neutrons interact with the atomic nucleus, and hence can penetrate dense materials. This makes neutron radiography an important nondestructive tool in constructing images that are complementary to X-ray radiography. Materials with a high Z, such as lead, titanium, and steel, readily stop X-rays but are in turn penetrated to a certain extent by neutrons. Materials with a low Z, such as water, oil, and human tissue, which are essentially transparent to X-rays are on the other hand easily imaged using neutrons. The difference in interaction between neutrons and X-rays allows the imaging of phenomena that is impossible with X-rays.

The neutron radiography facility at the FNR provides services for (a) high-resolution film radiography, where a neutron beam interacts with a neutron-absorbing screen to produce secondary radiation and exposes a photographic film and (b) real-time radiography or radioscopy, which converts optical images from the neutron beam into digital images.

Recent applications of PML neutron radiography facilities include (a) high-resolution radiography of coking and debris deposition in fuel injectors in an automobile engine, (b) radioscopy of lubricant movement in operating engines and transmissions, and (c) radioscopy study of two-phase flow and fluid flow in porous structures. Solid-state GaAs(10B) detectors have been developed for neutron radiography and tomography applications and will be used in a three-year DOE research project to measure key characteristics of spent nuclear fuel elements.

Neutron Radiography Techniques

In film neutron radiography a screen is used to convert the modulated neutron beam, which is itself non-ionizing, into an ionizing form to expose the film. The type of screen and film used is dependent on the level of resolution that is desired in the image. The most common form of screen is 25 µm thick gadolinium metal vapor-deposited on an aluminum backing and covered with 25 nm of sapphire to protect the gadolinium from moisture in the air. This screen converts the neutron into electrons which are then used to expose the film and gives the highest resolution available. If a lower resolution image is sufficient, then a gadolinium oxysulfide rare earth phosphor screen is used. This screen converts the neutron image into a light image which can then expose the film in the same manner as regular photography. These films are then developed in a similar fashion to X-ray films. Film neutron radiography is used when the image is static and not changing with time.

If the object or phenomenon being imaged is moving or changing with time, neutron radioscopy is used. Once again, a gadolinium oxysulfide screen is used to convert the neutron image into a light image and is then intensified and viewed with a TV camera. The output from the TV camera is then input into a computerized image processing system. This allows enhancement of the images and/or information retrieval by computer from the images. These neutron radioscopy images are then stored on video tape in real time at a framing rate of 30 frames (or new images) per second.
Neutron Radiography Facilities

Neutron radiography at MMPP utilizes the Ford Nuclear Reactor as a source of neutrons. Neutron beams are extracted via the heavy water tank located along the north side the reactor, resulting in a very low energy neutron beam which in turn yields a very high sensitivity to most materials.

Two radiography beams are used at the Phoenix Memorial Laboratory. The first beam is a vertical beam with L/D, or collimator ratio, of 340 to 450 and a beam diameter of 2.8" used for high resolution film neutron radiography, neutron radioscopy, and neutron tomography. The second beam is a horizontal beam with a L/D of 50 and a beam diameter of 12" used for imaging large objects and smaller objects where high resolution is not needed.

Two neutron radioscopy imaging systems are used as well. The first is a LIXI-NID manufactured by LIXI, Inc. of Downers Grove, Illinois. This system uses a 2" gadolinium oxysulfide screen which is coupled by fiber optics to a micro-channel plate image intensifier to provide dynamic images. This imaging system is then viewed with an extended red neuicon camera. The second imaging system is a Thompson, CSF, 9" Neutron Imaging System. This imaging system uses a gadolinium oxysulfide screen to convert the neutron beam to a light image. The output screen is then viewed with a Neuicon camera.

Recent Applications

Coking and Debris Deposition in Fuel Injectors. An issue of concern in the gas turbine industry is fuel injector nozzle blockage resulting from build-up of hydrocarbon deposits, called coking, and other foreign matter. Coking and debris in a fuel injector can cause problems with the combustion in the gas turbine engine and can lead to a reduction in or loss of power and increased maintenance. Previous methods used to study coking of fuel injectors involved sectioning nozzles suspected of coking problems and visually inspecting the sectioned nozzle. However, sectioning the nozzle dislodges a considerable amount of the coking, and accurate assessment of its location prior to sectioning becomes impossible. High resolution, film neutron radiography can be used to image coking and foreign matter inside nozzles used in gas turbine engines without disturbing the nozzle or the internal deposits.

During the past year efforts have been ongoing to study the effect of neutron beam energy on coking determination. Radiographs have been made using reactors around the world and papers presented on the results. In addition, work is ongoing to assist other neutron radiography facilities to enhance the capability for coking imaging.

Lubrication Studies. Neutron radioscopy has been used to image the lubrication of several automotive transmissions. Verification of the presence or absence of lubrication was performed and where absent, neutron radioscopy was used to track down the obstruction or design fault. After modifications were made, neutron radioscopy was performed to verify that the problem was corrected and the modifications did not adversely affect other locations in the transmissions. In addition, neutron radioscopy has been used to image the lubrication in operating engines, lubrication of bearings, lubrication of valve guides, lubrication movement in pre-loaded bearings, lubrication of combustion chambers and piston rings, and many other applications where determination of lubrication presence, absence, or amount is required.
The past year has seen continued use of a dedicated transmission test stand designed for and with Ford Motor Company with full motoring and loading capabilities. The new test stand is able to drive any current transmission manufactured by Ford Motor Company while providing a dynamometer for loading the transmission. Flow rates in various circuits, as well as pressure and temperature control, is also available. This test stand enhances FNR ability to respond quickly to production problems in the automotive transmission field. During the past year this test stand was used to solve a critical “neutralizing out” problem. Dr. John Lindsay received a special achievement award for his work from Ford Motor Company. In addition, the facility received an equipment grant to purchase a Precise Optics imaging system as a “thank you award” from Ford Motor Company for the fast, efficient use of neutron radioscopy to solve their problem.

Liquid Spray Imaging. Neutron radioscopy has also been used to image different types of sprays and spray phenomena inside metallic structures. These include: (1) diesel fuel spray injection in an operating, single-cylinder diesel engine; (2) differences in spray density profiles as a function of pressure and orifice type; wall wetting in combustion chambers and injection ports; (3) imaging the flow characteristics of the Space Shuttle Main Engine preburner injectors; and (4) the imaging of steady state sprays in a 3-D tomographic manner.

Oil Recovery Methods. Different acidizing methods are used in oil bearing limestone to increase oil recovery in shale. Real time neutron radiography has been utilized to image the acid-produced capillary structure in limestone without destroying the structure itself. Standard methods of imaging the capillaries, called worm holes, involve filling them with molten Wood’s metal and dissolving the limestone from around the metal after it has solidified. A great deal of the structure, which is quite fine, is lost. Radiographic imaging permits the entire capillary system to be observed without destroying the limestone. One Ph.D. degree was obtained in Chemical Engineering during the past year using neutron radiography.

Fluid Flow in Porous Structures. Neutron radioscopy has also been used to study flow in porous structures. These include organic and inorganic contaminant flow in soils, water flow in soils, oil flow in various shales, gas/water flow in filters, and many other applications where it is desired to image the flow of hydrogenous fluids in porous structures.

Additional Applications. Film and real time neutron radiography have been used to study many additional phenomena including: (1) monitoring of plastic injection molding and lost wax castings; (2) imaging of remaining wax in turbine engine blades as a standard quality control measure; (3) the study of miscible and immiscible flow in porous media; (4) the study of gas flooding and recovery in porous media; (5) the development of fingers in the flow of ground water through soil (important in the prediction of ground water contamination modeling); (6) observation of the progression of a layer of moisture ahead of the moving front of burning material in a lighted cigarette; (7) determination of the crack growth rates in powder metal components; (8) measurement of the presence and size of air bubbles in titanium ingots; and (9) imaging cavitation induced in pumps by injection of air in pump suction lines.

New Detector Development. New, solid state GaAs(\(^{10}\)B) neutron imaging detectors have been developed recently. The new detectors are radiation hard, easy to construct, self discriminating to gammas, and provide the
ability to be pixilated for imaging purposes. This is very important due to the decreased availability of cameras that can withstand a high neutron radiation field. This work is ongoing with the assistance of Dr. Douglas McGregor (*University of Michigan, Nuclear Engineering & Radiological Sciences*). This past year has seen further construction of a new design, demonstration of the gamma/neutron differentiation, and further radiation hardness testing of the concept. By the end of this year, two and three-dimensional images will have been developed using these new detectors on test objects. The next year will see these detectors used to image spent fuel at FNR.

Neutron Radiography Program Summary

A summary of neutron radiography performed at PML during 1998-1999 is provided in Table 4 by organization. A total of 275 radiographs were imaged, involving 1250 researcher man hours. Within the University of Michigan, one department (NERS) utilized the neutron radiography services, as did two outside customers (NIST and Ford Motor Company). In addition, training in neutron radiography and radioscopy was provided for researchers from Bangladesh, Japan, and Brazil. A description of research projects follows.

Table 4. Neutron Radiography Summary, 1998-1999

<table>
<thead>
<tr>
<th>Department/Organization</th>
<th>Research Man-Hours</th>
<th>Number of Radiographs</th>
</tr>
</thead>
<tbody>
<tr>
<td>University of Michigan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nuclear Engineering & Radiological Sciences</td>
<td>280</td>
<td>183</td>
</tr>
<tr>
<td>FNR-Research</td>
<td>870</td>
<td>86</td>
</tr>
<tr>
<td>Subtotal</td>
<td>1150</td>
<td>269</td>
</tr>
<tr>
<td>Federal and Industrial Research</td>
<td></td>
<td></td>
</tr>
<tr>
<td>National Inst. of Standards & Technology</td>
<td>20</td>
<td>6</td>
</tr>
<tr>
<td>Ford Motor Company</td>
<td>80</td>
<td>0</td>
</tr>
<tr>
<td>Subtotal</td>
<td>100</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>1250</td>
<td>275</td>
</tr>
</tbody>
</table>

Neutron Radiography for University of Michigan Departments

Jiyoung Park (*University of Michigan, Nuclear Engineering & Radiological Sciences*) has finished her Ph.D. thesis titled *Neutron Scattering Correction Functions for Neutron Radiographic Images*. She is currently teaching at the Catholic University of Korea, Research Institute of Biomedical Engineering, Seoul, Korea. Her advisors were Prof. John Lee and Dr. John T. Lindsay.
As part of her thesis research, Ms. Park developed an image reconstruction algorithm that involves the point spread functions (PSFs) to account for image degradations due to neutron scattering and due to image system unsharpness. The algorithm is based on a modulation transfer function approach and uses a maximum likelihood method that iteratively estimates the scattering effects and hence the unknown geometry. Inherent fluctuations in the experimental data are represented through a Kalman filtering algorithm. A number of neutron radiographs were obtained with collimated thermal neutrons at the Vertical Beam Port of the Ford Nuclear Reactor and the images were reconstructed through the scattering and system PSFs explicitly utilized. The scatter-correction algorithm determines neutron scattering components based on the best estimates of the scattering functions and removes the scattering effects in reconstructing neutron radiographic images. Clear enhancements in the reconstructed images were obtained in an idealized experiment involving two paraffin disks.

Neutron Radiography for Federal and Industrial Research Organizations

A new $310,000 contract with Ford Motor Company has resulted in the second use of the transmission test stand developed earlier. The project was the "Neutraling Out" problem for which FNR and Dr. Lindsay won two awards. This also resulted in the awarding of the equipment grant mentioned above that was used to obtain the Precise Optics Neutron Imaging Device.

A new project is being considered by Daimler-Chrysler to use neutron radioscopy to study the root cause in catalytic failures in current models. This work will be performed with Automotive Testing Technologies, Inc.

Neutron Radiography Training for International Laboratories

Mr. Nurul Islam of the Bangladesh Institute of Nuclear Science and Technology (INST) of the Atomic Energy Commission in Dhaka, Bangladesh, finished a six-month International Atomic Energy Agency training fellowship in neutron radiography at the FNR last year and is currently applying for further IAEA support for FNR's assistance in training additional personnel and assisting in the establishment of their neutron radiography program. Mr. Islam over sees the neutron radiography program at INST TRIGA reactor.

Mr. M. Matsubayashi of the Japan Atomic Energy Research Institute (JAERI), Tokai Research Establishment, Japan, who recently completed a one-year training fellowship at FNR in neutron radiography, is currently in charge of the JAERI neutron radiography program. In particular, the work performed with the JRR-3 research reactor. He is continuing the work he started at FNR on neutron tomography, computerized image processing, and high resolution film radiography.

Dr. H. Kobayashi, at Rikyo University in Japan, has proposed a new neutron effective energy measuring device. We are currently assisting Dr. Kobayashi in testing this devise at various research reactor neutron beams.

Dr. Reynaldo Publiesi of the Supervisao de Fisica Nuclear-TFF of Sao Paulo, Brazil spent two weeks visiting the neutron radiography facility at FNR during the previous annual report time frame and has sent Mr. Mario de Menezes (his Ph. D. student) for training in neutron radiography this year. Next year he has requested a reciprocal visit from FNR personnel to assist in setting up their facility.
Materials Science Testing Program

The FNR and associated facilities have been extensively used in recent years for material testing programs. Included are neutron and gamma radiation damage studies of various materials and components performed in the FNR core, in spent fuel storage, and in the 60Co irradiation facility. Neutron spectrometers at selected beam ports and neutron radiography facilities are used to perform neutron attenuation tests for shielding materials as part of the quality assurance and materials testing process. Currently, substantial service is provided in certification of Boral or Boraflex materials, utilized extensively in spent fuel pools at nuclear power plants.

Significant effort has been underway at the FNR, for a number of years, to study the effects of long-term neutron and gamma irradiation on materials, as part of collaborative research with national laboratories and federal agencies. Current collaboration involves Oak Ridge National Laboratory and the University of California at Santa Barbara, in a four-year program initiated in 1997 and funded by the U.S. Nuclear Regulatory Commission (NRC). The material testing program focuses on establishing the integrity of pressurized steel vessels that play a crucial role in ensuring the safety of nuclear power plants around the world. Considerable investments have been made in equipment and facilities in the FNR to capitalize on the stable, long irradiation periods of the FNR cycle. Both incore and excore irradiation sites have been developed and are utilized by a number of investigators. More detailed descriptions of these projects follow.

Academic Research

Materials Dosimetry Reference Facility (MDRF). Designed and constructed by the National Institute of Standards and Technology (NIST) in cooperation with FNR, the MDRF provides a high-intensity neutron fluence similar to that experienced by nuclear power plant reactor structural materials and pressure vessels. This characteristic makes the MDRF a valuable national resource for the calibration of neutron dosimeters and, in particular, those used for monitoring neutron exposure of power plant reactor structural materials. Accurate dosimetry is vital to properly assessing the neutron damage experienced by these materials.

Basically, the facility design is a steel cylinder (15 cm o.d., 5 cm i.d.) wrapped in cadmium and mounted in the pool close to the core of the Ford Nuclear Reactor. An irradiation thimble, inserted from the top of the reactor pool, locates passive or active detectors at the core midplane. Alternative thimbles provide two spectrum options for investigating detector response characteristics and validating dosimetry measurement methods. The standard thimble generates a reference spectrum with a near-1/E distribution below 0.1 MeV down to the cadmium cut-off at 0.4 eV. In contrast, a 10B liner truncates the spectrum at 4 keV.

The nominal MDRF fast neutron fluence rate (E>1 MeV) is 2.8×10^{11} cm$^{-2}$s$^{-1}$. Certified fast-neutron fluences are established with 58Ni(n,p)58Co activation detector monitors calibrated by means of neutron fluence transfer from the NIST 252Cf Fission Neutron Irradiation Facility.
The development and characterization of the MDRF was a joint project of the FNR and NIST, with major support and funding provided by the Nuclear Regulatory Commission (NRC). The NRC interest in such a facility was based on their need to be able to assess the quality of fluence measurement data presented to them, as by a utility wishing to gain NRC approval for a reactor license extension. In this example, parallel sets of fluence monitors are irradiated at the utility and in the MDFR, along with a NIST nickel foil. Based on their count of the 56Co activity in the nickel foil and from their knowledge of the shape of the neutron energy spectrum, NIST scientists can assign an accuracy value to the MDRF irradiation and counting, as done by the utility.

Cooperation between the University and the government's measurement laboratory - NIST- has provided the nuclear utilities and the Nuclear Regulatory Commission with an objective measure of measurement quality.

University of California Santa Barbara (UCSB). Specimen irradiation for a multi-year research project sponsored by the Nuclear Regulatory Commission and the Mechanical and Environmental Engineering Department of the University of California Santa Barbara, investigating neutron radiation damage in iron alloys is continuing. The project is examining the fundamental mechanisms behind atom displacement damage caused by fast neutron interactions and the resulting degradation in the mechanical properties of iron alloys.

Approximately 40,000 specimens will be irradiated to a variety of total neutron exposures at differing exposure rates and temperatures. To date, irradiations are complete for almost 10,000 specimens. The specimens are model alloys that have been spiked to differing levels with elements that are known to be "bad actors" - elements that seem to enhance neutron damage. The specimens are in the form of miniature mechanical test specimens that will be examined for hardness, yield and tensile strength and fracture toughness. Selected specimens will also undergo an extensive examination of their microstructure.

The objective of the program is to unravel how alloy composition, temperature, irradiation rate, and total neutron exposure cause observed changes in mechanical properties. The irradiation facility for this project was designed and fabricated by Oak Ridge National Laboratory with the consultation of UCSB and FNR staff.

Heavy Section Steel Irradiation (HSSI). Test specimen irradiation for the NRC sponsored HSSI Program at Oak Ridge National Laboratory takes place in temperature-controlled irradiation facilities (IAR) developed for FNR by Oak Ridge National Laboratory. The IAR facilities are designed to straddle each side of the UCSB irradiation facility. In this program, specimens of actual reactor pressure vessel steels are being examined to investigate the damage response of these materials through accelerated neutron aging.

This program is directed at one of the major re-licensing issues facing currently operating pressurized water nuclear reactors: Can we restore the neutron damaged mechanical properties of existing reactor pressure vessels such that they can be relied upon to safely operate an additional ten years or more beyond their current licensed lifetime? The answer to this question may lead to a substantial reduction in the cost of generating electricity by nuclear power. But, more importantly, the answer will have a broad impact on the major environmental issues of global warming, acid rain, and greenhouse gases.
The objective of the Heavy-Section Steel Irradiation (HSSI) Program, a major safety program sponsored by the U.S. Nuclear Regulatory Commission (NRC) at Oak Ridge National Laboratory (ORNL), is to provide a thorough, quantitative assessment of the effects of neutron irradiation on the material behavior, particularly the fracture-toughness properties, of typical pressure-vessel steels as they relate to light-water reactor pressure vessel (RPV) integrity. The program centers on experimental assessments of irradiation-induced embrittlement augmented by detailed examinations and modeling of the accompanying microstructural changes. Effects of specimen size; material chemistry; product form and microstructure; irradiation fluence, flux, temperature, and spectrum; and post-irradiation heat treatment are being examined on a wide range of fracture properties. Fracture toughness (Klc and JIC), crack-arrest toughness (Kia), ductile tearing resistance (dJ/da), Charpy V-notch (CVN) impact energy, drop-weight (DWT) nil-ductility transition (NDT), and tensile properties are included. Models based on molecular dynamics simulations and observations of radiation-induced microstructural changes using the atom-probe field-ion microscope (APFIM) and the high-resolution transmission electron microscope (TEM) are being developed to provide a firm basis for extrapolating the measured changes in fracture properties to wide ranges of irradiation conditions. Archival storage and disbursement of correlation monitor materials provide support for commercial light-water reactor (LWR) irradiation surveillance programs. Collaborative research activities with other domestic and foreign research programs provide a wider experimental base for understanding embrittlement effects.

Results from the HSSI studies are used to help resolve major regulatory issues facing the NRC. Those issues involve RPV irradiation embrittlement such as pressurized-thermal shock, operating pressure-temperature limits, low-temperature overpressurization, and the specialized problems associated with low upper-shelf (LUS) welds. Together, the results of these studies also provide guidance and bases for evaluating the overall aging behavior of light-water RPVs.

This program is coordinated with those of other government agencies and the manufacturing and utility sectors of the nuclear power industry in the United States and abroad. The overall objective is the quantification of irradiation effects for safety assessments of regulatory agencies, professional code-writing bodies, and the nuclear power industry. All HSSI irradiations are performed at the University of Michigan’s Ford Nuclear Reactor (FNR). HSSI accomplishments include:

- Fabrication, installation, and testing of the Irradiation, Anneal, and Reirradiation (IAR) Facility, with dual reusable capsules, at the FNR. The IAR facility has been designed to maintain specimen temperatures at 288°C within ± two degrees during irradiation. The facility has operated successfully for ca. 5500 effective full power hours.

- Characterization of the neutron field in the HSSI reusable irradiation facilities at the FNR. Using TORT, a 3-D neutron-transport code, measurements of radiometric monitors, and the FNR core power distribution, the exposure parameter distribution and displacements per atom (dpa) rate in iron were calculated.
Atom Probe Tomographic characterization of the solute distribution in a neutron-irradiated and annealed pressure vessel steel weld. The size of the neutron-induced, Cu-enriched precipitates increased and the number density decreased upon isothermal annealing. The precipitates were also found to be enriched in Ni and Mn at the precipitate-matrix annealing.

Completion of a major irradiation campaign at the FNR using a German high-copper weld to evaluate curve-shape effects and the assumption of constant shape of the fracture-toughness transition-temperature region. This is an important test of the fracture-toughness, master-curve method.

Completion of a major irradiation campaign to (1) evaluate the effects of temper embrittlement on the coarse-grained, heat-affected zone in RPV steels and (2) examine the effects of reirradiation on KJc and Kla in order to evaluate the relative changes in the recovery and reembrittlement between CVN and fracture-toughness properties and a detailed examination of the reembrittlement rates.

Pressure Vessel NDE. In a program indirectly related to the HSSI program, the NRC has contracted PML/FNR to act as a host site for a comparison of non-destructive evaluation techniques that could be applied to nuclear reactor pressure vessels. This program seeks a quantitative relationship between properties that can be non-destructively measured, such as ultrasound transmission or magnetic acoustic emission, and mechanical properties such as ductile-brittle transition temperature, yield and tensile strength, and fracture toughness of irradiated steels. The ultimate goal is to find NDE techniques that can reliably predict the mechanical condition of the pressure vessel at the time of testing.

The NRC is making a set of very well characterized unirradiated and irradiated pressure vessel steel specimens available for testing. The specimens will give research groups a chance to apply their NDE techniques to a standard set of specimens. The program also provides the NRC with the opportunity to independently evaluate the current NDE state of the art. While the NRC is particularly interested in the development of NDE techniques for testing pressure vessels, any advances in this area will have much broader application in the overall arena of non-destructive testing.

The PML/FNR will be providing a temporary home and the hot cell facilities for handling and measuring the radioactive specimens. Staff and logistics support for visiting research teams will also be provided.

Dr. Brian Roe (*University of Michigan, Physics*) has been testing the irradiation hardness of aerogel, a material of potential interest in the development of particle detectors for use in the particle accelerator at Argonne National Lab near Chicago.

Commercial Testing

During the year, material testing and neutron radiography of Boral coupons was performed for *AAR Advanced Structures* as part of their quality assurance program. This testing included visual inspection of the specimens, neutron attenuation measurements, and dimensional measurements. This testing is performed to quantify boron content in the plates to ensure it exceeds the minimum specification for use in the spent fuel pools. Similar testing was conducted for *Pacific Gas and Electric.*
Radiochemical Production for Academic Research

A number of radioisotopes for academic and industrial research are produced by neutron irradiation in the FNR, followed by processing in the FMI hot cells. These radioisotopes are typically used as tracers in various scientific and industrial research programs in University of Michigan departments, other universities, and industrial laboratories (Table 3). Recent activities in tracer applications include:

- The labeled hydrocarbons for the study of oil consumption in car engines.
- Na-labeled sodium carbonate for processing in chemical and petrochemical plants.
- Na-labeled hydrocarbons for testing in chemical and petrochemical plants.
- Na-labeled hydrocarbons for the study of oil consumption in car engines.
- Na-labeled sodium carbonate for processing in chemical and petrochemical plants.

Radiochemical Production for Industrial Research

A number of radioisotopes for academic and industrial research are produced by neutron irradiation in the FNR, followed by processing in the FMI hot cells. These radioisotopes are typically used as tracers in various scientific and industrial research programs in University of Michigan departments, other universities, and industrial laboratories (Table 3). Recent activities in tracer applications include:

- The labeled hydrocarbons for the study of oil consumption in car engines.
- Na-labeled sodium carbonate for processing in chemical and petrochemical plants.
- Na-labeled hydrocarbons for the study of oil consumption in car engines.
- Na-labeled sodium carbonate for processing in chemical and petrochemical plants.

Radiochemical Production for Radiochemical and Tracer Production Program

A number of radioisotopes for academic and industrial research are produced by neutron irradiation in the FNR, followed by processing in the FMI hot cells. These radioisotopes are typically used as tracers in various scientific and industrial research programs in University of Michigan departments, other universities, and industrial laboratories (Table 3). Recent activities in tracer applications include:

- The labeled hydrocarbons for the study of oil consumption in car engines.
- Na-labeled sodium carbonate for processing in chemical and petrochemical plants.
- Na-labeled hydrocarbons for the study of oil consumption in car engines.
- Na-labeled sodium carbonate for processing in chemical and petrochemical plants.

Radiochemical Production for Academic Research

A number of radioisotopes for academic and industrial research are produced by neutron irradiation in the FNR, followed by processing in the FMI hot cells. These radioisotopes are typically used as tracers in various scientific and industrial research programs in University of Michigan departments, other universities, and industrial laboratories (Table 3). Recent activities in tracer applications include:

- The labeled hydrocarbons for the study of oil consumption in car engines.
- Na-labeled sodium carbonate for processing in chemical and petrochemical plants.
- Na-labeled hydrocarbons for the study of oil consumption in car engines.
- Na-labeled sodium carbonate for processing in chemical and petrochemical plants.
measurements were employed in a number of proprietary projects to reduce exhaust emissions and improve product performance.

In a new study initiated this year, General Motors R&D developed a radiotracer method to measure piston ring wear during engine operation. Piston rings coated with molybdenum were irradiated to produce 99Mo-tagged components. Initial measurements show that the sensitivity of the technique is sufficient to measure wear rates at all engine operating conditions. Current work is aimed at the effects of lubricant formulation and lubricant condition on engine wear.

Hydrocarbon-based tracers labeled with radioactive 82Br, 140La labeled hydrocarbon cracking catalysts, and sodium carbonate tracers labeled with radioactive 24Na were produced for ICI Tracerco and Tru-Tec Services Division of Koch Industries. Both firms are service providers to the oil and petrochemical industry and are involved in analyzing problems and improving the efficiency of refinery processes. Short-lived radioactive tracers and sources produced at FNR are injected into refinery process streams at various points and can be followed to test the operation of the process. Short-lived, high energy, high activity sources are used with gamma detection equipment to perform radiography of catalytic cracking columns.

<table>
<thead>
<tr>
<th>Department / Organization</th>
<th>Irradiation Time (hrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UM - Dept. of Chemistry</td>
<td>1</td>
</tr>
<tr>
<td>G.L. Environmental Research Lab</td>
<td>1</td>
</tr>
<tr>
<td>General Motors Research Lab</td>
<td>225</td>
</tr>
<tr>
<td>ICI Tracerco</td>
<td>1</td>
</tr>
<tr>
<td>TruTec</td>
<td>35</td>
</tr>
<tr>
<td>Total</td>
<td>263</td>
</tr>
</tbody>
</table>
Cobalt Irradiation Program

With a maximum 50°C activity of 25 kCi, the Cobalt Irradiation Facility (CIF) is used in a large number of applications requiring a high dose rate of gamma radiation. The most common applications are the sterilization of bone and cartilage for human grafts and transplants. Other uses include high doses of gamma irradiation for the sterilization of solutions, proteins, and studies of radiation effects on chemical systems, polymers, plastics, electronic and metallic components, satellite components, food, seeds, plants, and parasites.

Irradiation services at the facility are available to UM hospitals and departments, other universities, hospitals, and federal and industrial laboratories, 24 hours per day, seven days a week. The CIF has been in use over 33% of calendar hours in this past fiscal year.

Irradiation services provided by the Cobalt Irradiation Facility are double sealed in plastic or aluminum packs, but some are wrapped in plastic and irradiated frozen on dry ice. A typical radiation dose for frozen-dried or frozen materials is 1.8x10³ rad administered over 8-16 hours.

Cobalt Irradiation Program

With a maximum 50°C activity of 25 kCi, the Cobalt Irradiation Facility (CIF) is used in a large number of applications requiring a high dose rate of gamma radiation. The most common applications are the sterilization of bone and cartilage for human grafts and transplants. Other uses include high doses of gamma irradiation for the sterilization of solutions, proteins, and studies of radiation effects on chemical systems, polymers, plastics, electronic and metallic components, satellite components, food, seeds, plants, and parasites.

Irradiation services at the facility are available to UM hospitals and departments, other universities, hospitals, and federal and industrial laboratories, 24 hours per day, seven days a week. The CIF has been in use over 33% of calendar hours in this past fiscal year.

Irradiation services provided by the Cobalt Irradiation Facility are double sealed in plastic or aluminum packs, but some are wrapped in plastic and irradiated frozen on dry ice. A typical radiation dose for frozen-dried or frozen materials is 1.8x10³ rad administered over 8-16 hours.

Cobalt Irradiation Program

With a maximum 50°C activity of 25 kCi, the Cobalt Irradiation Facility (CIF) is used in a large number of applications requiring a high dose rate of gamma radiation. The most common applications are the sterilization of bone and cartilage for human grafts and transplants. Other uses include high doses of gamma irradiation for the sterilization of solutions, proteins, and studies of radiation effects on chemical systems, polymers, plastics, electronic and metallic components, satellite components, food, seeds, plants, and parasites.

Irradiation services at the facility are available to UM hospitals and departments, other universities, hospitals, and federal and industrial laboratories, 24 hours per day, seven days a week. The CIF has been in use over 33% of calendar hours in this past fiscal year.

Irradiation services provided by the Cobalt Irradiation Facility are double sealed in plastic or aluminum packs, but some are wrapped in plastic and irradiated frozen on dry ice. A typical radiation dose for frozen-dried or frozen materials is 1.8x10³ rad administered over 8-16 hours.
Table 6. Cobalt Irradiator Utilization Summary, 1998-1999

<table>
<thead>
<tr>
<th>Department/Organization</th>
<th>Number of Irradiations</th>
<th>Number of Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>University of Michigan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atmospheric & Oceanic Science</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>Biology</td>
<td>2</td>
<td>212</td>
</tr>
<tr>
<td>Chemical Engineering</td>
<td>37</td>
<td>528</td>
</tr>
<tr>
<td>Civil & Environmental Engineering</td>
<td>13</td>
<td>342</td>
</tr>
<tr>
<td>Dentistry</td>
<td>1</td>
<td>48</td>
</tr>
<tr>
<td>Phoenix Project, Michigan Memorial</td>
<td>27</td>
<td>979</td>
</tr>
<tr>
<td>Physics</td>
<td>11</td>
<td>107</td>
</tr>
<tr>
<td>University Hospital/Medical School</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Internal Medicine</td>
<td>4</td>
<td>69</td>
</tr>
<tr>
<td>Orthopedic Research</td>
<td>6</td>
<td>17</td>
</tr>
<tr>
<td>Subtotal</td>
<td>104</td>
<td>2341</td>
</tr>
<tr>
<td>Other Colleges, Hospitals, & Institutions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LifeNet</td>
<td>1</td>
<td>112</td>
</tr>
<tr>
<td>Michigan Regional Tissue Bank</td>
<td>3</td>
<td>742</td>
</tr>
<tr>
<td>Michigan State University</td>
<td>5</td>
<td>1149</td>
</tr>
<tr>
<td>Northern California Transplant Bank</td>
<td>123</td>
<td>14092</td>
</tr>
<tr>
<td>St. Luke's Hospital</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Sparrow Hospital</td>
<td>1</td>
<td>21</td>
</tr>
<tr>
<td>University of California-Davis</td>
<td>2</td>
<td>19</td>
</tr>
<tr>
<td>Subtotal</td>
<td>136</td>
<td>16141</td>
</tr>
<tr>
<td>Federal and Industrial Research</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aastrom Biosciences, Inc.</td>
<td>3</td>
<td>27</td>
</tr>
<tr>
<td>Dow Corning</td>
<td>1</td>
<td>24</td>
</tr>
<tr>
<td>Eastman Kodak</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Pall Gelman Sciences Inc.</td>
<td>51</td>
<td>12285</td>
</tr>
<tr>
<td>Montana Biotech Corporation</td>
<td>7</td>
<td>527</td>
</tr>
<tr>
<td>New Waste Concepts</td>
<td>2</td>
<td>40</td>
</tr>
<tr>
<td>Pelorus Enbiotech Corporation</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Raven Biological Laboratories, Inc.</td>
<td>2</td>
<td>176</td>
</tr>
<tr>
<td>SoloHill Engineering, Inc.</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>USDA Forest Service, Forest Products Lab</td>
<td>1</td>
<td>90</td>
</tr>
<tr>
<td>Subtotal</td>
<td>70</td>
<td>13229</td>
</tr>
<tr>
<td>Total</td>
<td>310</td>
<td>31711</td>
</tr>
</tbody>
</table>
Tissue Banks International

Northern California Tissue Bank
Multi-Tissue Operations, National Processing Center
San Rafael, California

Tissue Banks International (TBI) was founded in 1962 as a non-profit, non-governmental network of 40 tissue banks, which includes but is not limited to musculoskeletal and eye banking activities in the US and overseas. The TBI National Processing Center (TBI/NPC), located in San Rafael, California, is the central processing facility for Multi-Tissue Operations for TBI in the United States.

The TBI National Processing Center was established in 1968 as the Northern California Transplant Bank (NCTB), a hospital based program to provide human allograft tissues for transplantation, research, and medical training. A pioneer in encouraging multi-tissue donation and procurement by a single donor, NCTB promoted the awareness that one tissue donor could provide a wide variety of grafts to benefit as many as 60 individuals in need of transplants. NCTB is fully accredited by the American Association of Tissue Banks (AATB).

Under its Ocular Division’s VisionGraft service, TBI provides corneas and other eye tissues, while the Multi-Tissue Division of TBI provides tissues such as bone, skin, sclera, cartilage, pericardium, heart valves, and saphenous veins to surgeons throughout the US and abroad. Many of these allografts are distributed from TBI’s National Processing Center through its TranZgraft tissue service. Other allografts, through strong partnerships, may be provided by the Center to biotechnology companies, a practice which enables patients to benefit from their proprietary innovations. These TranZgraft allografts and innovative tissues are used for spinal, knee, hip, and other orthopedic sports injuries, tumor resection, oral, dental, maxillofacial, urological and other reconstructive procedures. Last year alone, TBI provided approximately 1100 multi-tissue donors, which resulted in many thousands of allografts restoring health and mobility to grateful recipients.

Today, TBI/NPC processes, stores, and distributes a wide range of human allograft tissues to physicians, hospitals, and surgical centers from its state-of-the-art facility. Multi-tissue donors recovered at all TBI-affiliated tissue banks are directed to its National Processing Center for allograft preparation and distribution. A strict protocol is followed for each tissue to ensure quality, sterility, strength, and safety. Several different preservation processes are used to satisfy the diverse requirements of transplant and other surgeons. Freeze drying, ultra-low freezing, demineralization, and preservation in sterile solution or other media are alternative ways of preparing tissue for surgery. Tissue is then directed to the Phoenix Memorial Lab for gamma irradiation in the 60Co irradiator facility to assure a final level of safety prior to transplantation to the patient. Quality control is strictly and methodically observed; along with thorough reviews of medical and social histories, numerous tests for infectious diseases and rigorous standards are stringently enforced to ensure patients throughout the United States and abroad a safe, high-quality tissue for their surgical procedures.

TBI/NPC has had a long, well established relationship with the Phoenix Memorial Lab, extending well over 14 years. Utilizing very controlled systems of sterilization for target dosage for TBI/NPC allografts, Phoenix Memorial Lab shares our commitment to “Do no harm” to the patients we serve, and enables TBI/NPC to provide the ultimate safety and sterility in allografts.
Saint Luke's Hospital. Small quantities of frozen femoral head bones are sterilized in the Cobalt Irradiator while frozen on dry ice. Talc is also irradiated and sterilized for use in the operating room.

Sparrow Hospital. Brian Sklapsky is sterilizing operating room pens and pencils.

Academic Biomedical Research

Deborah Cieslinski, the laboratory director for Dr. H. David Humes (University of Michigan, Internal Medicine), is growing endothelial cells on polysulfone hollow fibers in order to study their permeability characteristics under perfusion conditions. The single hollow fibers are irradiated in the Cobalt Irradiator to sterilize them prior to cell inoculation.

Steven A. Goldstein, Ph.D. (University of Michigan, Orthopedic Research) is investigating the role of a single dose gene therapy on bone repair in a critical defect. The primary experiment consists of four groups of eight animals each. Each animal will undergo bilateral defects. One side will be treated with a gene therapy and the other side will be filled with cancellous allograft. Five animals in each group will be used for biomechanical torsion testing, and the remaining three will be used for histologic analysis. Long term evaluation will consist of eight dogs undergoing the identical surgical procedure. Four dogs will remain post-operative for 32 weeks and four will continue for 52 weeks.

Prof. David Mooney (University of Michigan, Chemical Engineering) is sterilizing polymer sponges that are used in experiments with cultured mammalian cells and as vehicles for cell transplantation. He is studying how the function of mammalian cells is regulated by signals present in their micro environment (for example, adhesion to specific materials). This understanding is utilized in a second experimental area: design of devices to transplant cells and engineer new tissues. Tissue engineering may ultimately provide alternatives to whole organ and tissue transplantation. The work is motivated by the tremendous shortage of available tissues and by the large numbers of people who either die or survive on sub-optimal therapies due to the shortage.

Dr. Seth M. Feder (University of Cincinnati, Biomechanics) has been investigating the effects of ionizing radiation on the mechanical and material properties of collagenous tissues used in orthopaedic reconstructive procedures. This research is both timely and important because gamma irradiation is currently being used by surgeons and tissue banks to sterilize transplant tissues, yet the effects of the radiation on the tissues is not well documented.

Bruce Rutherford and Paul Krebsbach (University of Michigan, School of Dentistry) sterilized a synthetic polymeric non-woven “cloth” (polyglycolic acid) from a commercial source. Cells derived from tissue biopsies are propagated in vitro and adhered to the cloth to construct tissue graft substitutes for implantation in vivo.

Biomedical Research Organizations

Aastrom Biosciences. Dr. Bernard Palsson and his associate, Matthew Heidmous, utilize the Cobalt Irradiator to sterilize polyethylene tubing, bioreactors, and other materials for use in bone marrow transplant research.

Montana Biotech. Fred Albert and Joan Combie irradiated microorganisms to identify radiation resistant strains isolated from extreme environments. They are irradiated, cultured, and cell viability determined.
Pall Gelman Sciences. Gelman has utilized the Cobalt Irradiator to sterilize various experimental medical devices such as microfunnels and filters. The effects of radiation on the materials of these devices are being observed.

Pelorus Enbiotech Corporation. William R. Mahaffey, Ph.D., sterilized soil and ground water by gamma irradiation to be used as controls for studying the capacity of microorganisms to degrade organic and inorganic compounds by natural assimilation and biodegradation.

Raven Biological Laboratories. _Bacillus pumilus_ spore strips are being irradiated in the Cobalt Irradiator to determine the lethal gamma dose value for various _Bacillus pumilus_ lots. Long term lethal dose values of some older lots are being studied to determine shelf-life of spore strips. The laboratory will also sterilize culturing strips that will be used in a new culturing technique which Raven Biological is developing. Various materials used in this new culturing system will be irradiated to study the effects of gamma sterilization.

Solo Hill Engineering. Gamma sterilization was conducted on callogen micro carrier beads used in producing cell cultures.

Biological Studies and Instruction

Prof. Ruthann Nichols (*University of Michigan, Biology*) and Keri Paisley are researching a peptide that inhibits heart rate in fruit flies (*Drosophilamelangaster*). They are using gamma irradiation mutagenesis to generate deletions of the peptide gene in the fruit fly, and then monitoring the effect of eliminating the peptide in an attempt to understand the physiological function of this peptide in the whole animal.

Prof. Robert Helling (*University of Michigan, Biology*) irradiated soybeans from low to high gamma doses for use in Biology 301 class projects.

Environmental Studies

Alex Orlov, Hildegard Selis, and others (*University of Michigan, Civil & Environmental Engineering*) are sterilizing soil with _60Co_ gamma radiation for Dr. Walter Weber. They are investigating the bioavailability of organic pollutants from various soil materials. Their studies include long term adsorption and desorption studies of toluene and correlating these with biodegradation rates. They need sterile soil that has not been sterilized chemically or heat sterilized. First, they will assess the influence irradiation may have on the sorption properties of the contaminants due to effects on the soil by the irradiation. Second, they will test for bacterial spore survival in the soil after sterilization.

Xianda Zhao, a research assistant working for Prof. Thomas C. Voice (*Michigan State University, Civil & Environmental Engineering*), is gamma sterilizing biofilm-coated granular-activated-carbon (GAC). He is testing a pilot scale fluidized bed system used to treat ground water contaminated with three milligrams of toluene per liter of water. The GAC is used as the carrier media for microbial growth. The biofilm-coated GAC is taken from the system each month and sterilized. The sterilized GAC is used in an adsorption isotherm experiment to determine the remaining adsorption capacity.

Rod Venterea (*University of California at Davis, Land, Air and Water Resources*), is using soils in studies to examine biological and chemical transformations of a wide range of organic and inorganic chemicals in natural, agricultural and polluted environments. The
 sterilized soils are used as controls in biodegradation experiments to assess the importance of abiotic transformation processes.

Alex Chow (University of California at Davis, Land, Air and Water Resources) sterilized peak soil to serve as a control in a study that examines peat soils at various incubation temperatures and at various moisture contents. He looked at the wet-dry cycle effects on the quality and quantity of dissolved organic carbon production.

Physics Research

Bruce Block (Sr. Engineer, Atmospheric and Oceanic Science/Space Physic Research Lab) is studying the effects of gamma irradiation on silicon microcircuits. Analog device performance is characterized before and after each gamma exposure up to an exposure that disables them.

Neville Wadia and Prof. Byron Roe (University of Michigan, High Energy Physics) are utilizing the Cobalt Irradiator to test a system of detectors for use in the proposed MiniBooNE experiment at the Fermi National Laboratory. MiniBooNE will utilize an 8GeV proton beam for the production of neutrinos; the UM researchers seek to monitor the secondary beam, produced after the protons strike a target. Materials used in the detector system need to be tested to ensure that they will function in the high radiation environment. The researchers will expose detector materials to fixed doses of gamma rays and later neutrons, checking for any changes in the refractive index of the materials after each dose in order to determine any radiation damage.

Drs. Tim Killeen and Heinz Grassi (University of Michigan, Space Physics Research Lab) investigated the radiation effects on the throughput of a flint glass optic assembly. It will be used in a satellite based doppler interferometer for wind and temperature measurements.

Dr. H. Richard Gustafson, an Associate Research Scientist (University of Michigan, Physics), is irradiating epoxy compounds and plastics with 60Co gamma rays to observe radiation damage. The materials being irradiated will be used in the fabrication of electronics and detector components.

Industrial Research

Dow Corning Corporation. Kevin Hawes sterilized painted metal tubes used to contain adhesive. He is looking at the radiation effects on the adherence of the paint to the metal.

Eastman Kodak. A continuing goal of development work in diagnostic imaging equipment is to make devices light, lower in X-ray absorption, and stronger. David Steklenski is gamma irradiating an aluminum/polypropylene/aluminum composite called Hylite as a possible replacement for aluminum in several imaging applications. It has the strength of aluminum at a fraction of the weight. The major concern with the material are the effects of radiation, the stability of the polypropylene, and the polypropylene/aluminum bond.

New Waste Concepts. Tom Nachtman gamma-irradiated Instacote material at various doses for damage studies. The material is used as a coating for walls and items that are radioactively contaminated.

USDA Forest Products Lab. Simon Curling gamma sterilized wood to study the relationship between bending strength and chemical composition (hemi-cellulose chemistry) compared to steam sterilization. The wood is exposed to decay fungi after sterilization and the effect of decay monitored.
Radiopharmaceutical Program

Four radioiodine compounds are synthesized for clinical studies on a regular basis by the radiopharmaceutical program at PML using three iodine isotopes. Iodine-labeled radiopharmaceuticals are routinely analyzed for purity as part of the quality assurance program associated with their production.

- NP-59, a derivative of cholesterol, is an adrenal scanning agent used in the detection of abnormalities in the adrenal gland. NP-59 is synthesized twice monthly for distribution.

- mIBG-123 diagnostic doses are synthesized twice monthly for the University of Michigan Hospital. MIBG-125 and 131 therapeutic doses are synthesized on demand.

- mIBG-therapeutic, a radioiodinated analog of guanethidine, an antihypertensive drug, is an adrenal medula scanning agent used in the detection and treating of disease in the adrenomedulla.

- IBVM-diagnostic is a structural analog of vesamicol, a compound that has been shown to bind to acetylcholine storage vesicles found within cholinergic nerve endings. It is theorized that a radio-labeled benzo vesamicol might serve as a non-invasive in vivo marker for cholinergic nerve endings in the brain. Such a marker could potentially serve as an indicator of the damage that occurs in brain disorders such as Alzheimer disease. IBVM is being synthesized weekly for in house human studies. It may become a production compound in the near future.

Radiopharmaceuticals were synthesized 104 times and shipped to 46 hospitals in 23 states and the District of Columbia in the United States; and to three hospitals in Alberta, Ontario, and Saskatchewan, Canada.

A summary of therapeutic radiopharmaceutical production broken down by country, state, and hospital, is presented in Table 7. Table 8 is a similar listing for diagnostic radiopharmaceutical production. In general, therapeutic samples contain larger amounts of radioactivity than diagnostic samples.

Table 7. Therapeutic Radiopharmaceutical Production Summary, 1998-1999

<table>
<thead>
<tr>
<th>Recipient</th>
<th>Hospital</th>
<th>mIBG-131 Injections</th>
</tr>
</thead>
<tbody>
<tr>
<td>California</td>
<td>City of Hope Nat'l. Medical Center, Ouarte</td>
<td>2</td>
</tr>
<tr>
<td>Georgia</td>
<td>Emory University, Atlanta</td>
<td>3</td>
</tr>
<tr>
<td>Michigan</td>
<td>University Hospital, Ann Arbor</td>
<td>3</td>
</tr>
<tr>
<td>Minnesota</td>
<td>Mayo Clinic, Rochester</td>
<td>1</td>
</tr>
<tr>
<td>North Carolina</td>
<td>Duke University, Durham</td>
<td>24</td>
</tr>
<tr>
<td>Tennessee</td>
<td>Vanderbilt Medical Center, Nashville</td>
<td>2</td>
</tr>
<tr>
<td>Total Number of</td>
<td></td>
<td>35/30</td>
</tr>
</tbody>
</table>
Table 8. Diagnostic Radiopharmaceutical Production Summary, 1998-1999

<table>
<thead>
<tr>
<th>Hospital</th>
<th>NP-59</th>
<th>mIBG-123</th>
<th>IBVM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alberta</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foothills Provincial General Hospital, Calgary</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ontario</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Toronto Hospital, Toronto</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saskatch.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pasqua General Hospital, Regina</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>United States</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>California</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VA Medical Center, Long Beach</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>University of California, Los Angeles</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kaiser Foundation Hospitals, Sacramento</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conn.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>University of Connecticut Health Center, Farmington</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D.C.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Georgetown University Hospital, Washington</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Florida</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jackson Memorial Hospital, Miami</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Illinois</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hines Veterans Administration Hospital, Hines</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Michael Reese Hospital, Chicago</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northwestern Memorial Hospital, Chicago</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rush Presbyterian-St. Luke Medical Center, Chicago</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loyola University Medical Center, Maywood</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indiana</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Luthern Hospital of Indiana, Ft. Wayne</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Methodist Hospitals-Southlake Campus, Merillville</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maryland</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>John Hopkins, Baltimore</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Walter Reed, Silver Spring</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Michigan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>St. Joseph Mercy Hospital, Ann Arbor</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>University of Michigan's Hospital, Ann Arbor</td>
<td>86</td>
<td>68</td>
<td>38</td>
</tr>
<tr>
<td>Henry Ford Hospital, Detroit</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saint John Hospital, Detroit</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>William Beaumont Hospital, Royal Oak</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N.J.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>St. Barnabus Medical Center, Livingston</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>New York</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mem. Sloan-Kettering Cancer Center, New York City</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>New York Hospital, New York City</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>St. Vincent's Hospital, New York City</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUNY University Hospitals, Stoney Brooke</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N.C.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North Carolina Baptist Hospital, Winston-Salem</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ohio</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>University of Cincinnati, Cincinnati</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ohio State University Hospital, Columbus</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 8. Diagnostic Radiopharmaceutical Production Summary, 1998-1999 (cont.)

<table>
<thead>
<tr>
<th>Hospital</th>
<th>Radiopharmaceutical Production</th>
</tr>
</thead>
<tbody>
<tr>
<td>Okla.</td>
<td>University of Oklahoma, Oklahoma City</td>
</tr>
<tr>
<td>Oregon</td>
<td>Sacred Heart General Hospital, Eugene</td>
</tr>
<tr>
<td>Penn.</td>
<td>Lehigh Valley Hospital, Allentown Hospital of the Univ. of Pennsylvania, Philadelphia</td>
</tr>
<tr>
<td>R.I.</td>
<td>Rhode Island Hospital, Providence</td>
</tr>
<tr>
<td>S.C.</td>
<td>Medical University of South Carolina, Charleston</td>
</tr>
<tr>
<td>Tenn.</td>
<td>Baptist Memorial Hospital-Central, Memphis</td>
</tr>
<tr>
<td>Texas</td>
<td>Hermann Hospital, Houston University of Texas Medical Branch, Galveston University of Texas System Cancer Center, Houston</td>
</tr>
<tr>
<td>Virginia</td>
<td>University of Virginia Hospital, St. Louis</td>
</tr>
<tr>
<td>Wash.</td>
<td>University of Washington, Seattle</td>
</tr>
<tr>
<td>Wisc.</td>
<td>University of Wisconsin, Madison</td>
</tr>
</tbody>
</table>

| Total Radiopharmaceutical Production | 178 | 68 | 40 |
support DOE's Environmental Management Program in the development of mobile robotic devices needed for environmental assessment, decontamination, and decommissioning of DOE facilities. Within the NERS department, work has centered on developing portable gamma ray imaging sensors. The project is funded through the U.S. Department of Energy's Office of Environmental Management ($900,000/12 mo).

Research on Room Temperature Semiconductors for Radiation Spectroscopy: Developed by Prof. David Wehe and Dr. Douglas McGregor, this project is dedicated to material-related research to improve the characteristics of room temperature semiconductors. Much of the current work with room temperature semiconductors is limited by a lack of knowledge of the surface effects. While most current research examines effects in the bulk, their research shows that the major limitations occur near the surface. Recent work has involved development of boron-coated GaAs detectors for spent fuel assays. The project is supported by Argonne National Laboratory.

Improved Method for Determining Radionuclide Depth Distributions Using in situ Gamma-ray Spectrometry: The dissertation research of Roland Benke implemented a unique collimator design with conventional radiation detection equipment. Cylindrically symmetric collimators were fabricated to allow only those gamma-rays emitted from a selected range of polar angles (measured off the detector axis) to be detected. Positioned with its axis normal to surface of the media, each collimator enables the detection of gamma-rays emitted from a different range of polar angles and preferential depths. Based on the results of actual measurements, this method increases the potential of in situ gamma-ray spectrometry as an independent characterization tool in situations with unknown radionuclide depth distributions. The Ford Nuclear Reactor has been a primary producer of sources for project testing and development.

Development of a Hybrid Portable Gamma Camera: The doctoral research of Ph.D. recipient Eric Smith has involved the design, construction, and analysis of a hybrid portable gamma camera for industrial gamma ray imaging. In order to calibrate the camera and simulate object scenes in the typical industrial setting, gamma-emitting radionuclides of various energies and shapes were necessary. Over the past three years, the Ford Nuclear Reactor has been a primary producer of sources, including 60Co, 198Au, 203Hg, and 58Co in shapes and quantities that are not commercially available.

Radiation Effects on Materials in the Near-Field of a Nuclear Waste Repository: Researchers Dr. Lumin Wang and Prof. Rod Ewing are addressing the issue of long term radiation effects in materials related to nuclear waste disposal. Site restoration activities at DOE facilities and the permanent disposal of nuclear waste generated at DOE facilities involve working with various types and levels of radiation fields. Radionuclide decay and the associated radiation fields lead to physical and chemical changes that can degrade or enhance material properties. The principal sources of radiation at the DOE sites are the actinides and fission-products contained in high-level wastes currently in storage. Alpha-decay of the actinide elements and beta-decay of the fission products lead to atomic scale changes in the material structure (radiation damage and transmutation). During site restoration, materials will be exposed to radiation fields that exceed 10^4 rad/hr. The radiation exposure due to the release and sorption of long-lived actinides (e.g., 237Np) and fission products (e.g., 137Cs and 90Sr) may cause changes in important properties (e.g., cation exchange capacity) in geological materials (e.g., clays and zeolites).
along transport pathways. The objective of this research program is to evaluate the long term radiation effects in the materials in the near-field of a nuclear waste repository with accelerated experiments in the laboratory using energetic particles (electrons, ions, and neutrons). Experiments on the microstructure evolution during irradiation of two important groups of materials, sheet silicates (e.g., clays) and zeolites, are being conducted using PML/FNR facilities (neutron irradiation and neutron activation); and studies of radiation-induced changes in chemical properties (e.g., cation exchange capacity) are underway. These research efforts are supported by the U.S. DOE’s Environmental Management Science Program ($408,000/3 yrs).

Table 9. Recent NERS Doctoral Dissertation Research Projects Utilizing the FNR

<table>
<thead>
<tr>
<th>Student</th>
<th>Thesis Title</th>
<th>Advisor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benke, Roland</td>
<td>Neutron Scattering Correction Functions for Neutron Radiographic Images</td>
<td>J. Lee, J. Lindsay</td>
</tr>
<tr>
<td>Park, Jiyoung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LeBlanc, James W.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smith, L. Eric</td>
<td>Design, Modeling and Performance of a Hybrid Portable Gamma Camera</td>
<td>D. Wehe</td>
</tr>
<tr>
<td>Stuenkel, David</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Christodoulou, Emmanuel G.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gormley, Jerome E.</td>
<td>Experimental Comparison of Electrical and Mechanical Gamma-Ray Collimation</td>
<td>D. Wehe</td>
</tr>
<tr>
<td>Miyamoto, Jun</td>
<td>A Study of Micro-Strip Gas Chambers for the Measurement of Ionizing Radiation</td>
<td>G. Knoll</td>
</tr>
<tr>
<td>Guru, Shankar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hawari, Ayman</td>
<td>The High Accuracy Determination of HPGe Detector Relative Full Energy Peak Efficiencies for Gamma-Ray Spectrometry</td>
<td>R. Fleming</td>
</tr>
<tr>
<td>Venkatarman, Ramkumar</td>
<td>The Measurement of Photofission Interference in Fission Detector Results</td>
<td>R. Fleming</td>
</tr>
</tbody>
</table>

52
Design, Modeling, and Performance of a Hybrid Portable Gamma Camera

L. Eric Smith
Department of Nuclear Engineering & Radiological Sciences, University of Michigan

The combination of a mechanically-collimated-gamma-ray camera with an electronically-collimated gamma-camera offers both the high efficiency and good angular resolution typical in a mechanically-collimated camera for lower photon energies and the good spatial resolution needed for higher energies. The prototype camera developed at the University of Michigan (UM) for the Hybrid Portable Gamma Camera (HPGC) project has a vertically-mounted Fabry-Perot etalon with external photomultiplier and a horizontally-mounted silicon detector with external photomultiplier. The prototype camera has been designed for high energy resolution at 140 keV and 400 keV. The prototype camera was mounted on an ultralightweight carbon fiber frame. The prototype camera has been developed for use in industrial applications. The prototype camera has been developed for use in industrial applications.

Analytical calculations of angular resolution components and efficiency for the HPGC were compared to Monte Carlo calculations of the same quantities. The predicted angular resolution performance for one point sources, a central scatter angle of 0° and a detector separation distance of 33 cm from 0.1 to 2 MeV is shown in Figure 1. The mechanical calculation shows that the angular resolution is expected to be 0.01° at 0.1 MeV and 0.10° at 1 MeV. The electronic calculation shows that the angular resolution is expected to be 0.01° at 0.1 MeV and 0.10° at 1 MeV. The experimental angular resolution is shown in Figure 2.

Although work has been done on mechanical collimation and electronic collimation camera operating independently, no truly hybrid imaging system has been constructed that uses the same gamma-ray for both mechanical and electronic collimation. This work compares the relative information per photon for three imaging modules, mechanical collimation, electronic collimation, and hybrid collimation. The analysis is done for both point sources and for one point source, a central scatter angle of 0° and a detector separation distance of 33 cm from 0.1 to 2 MeV. The mechanical calculation shows that the angular resolution is expected to be 0.01° at 0.1 MeV and 0.10° at 1 MeV. The electronic calculation shows that the angular resolution is expected to be 0.01° at 0.1 MeV and 0.10° at 1 MeV. The experimental angular resolution is shown in Figure 3.

Although work has been done on mechanical collimation and electronic collimation camera operating independently, no truly hybrid imaging system has been constructed that uses the same gamma-ray for both mechanical and electronic collimation. This work compares the relative information per photon for three imaging modules, mechanical collimation, electronic collimation, and hybrid collimation. The analysis is done for both point sources and for one point source, a central scatter angle of 0° and a detector separation distance of 33 cm from 0.1 to 2 MeV. The mechanical calculation shows that the angular resolution is expected to be 0.01° at 0.1 MeV and 0.10° at 1 MeV. The electronic calculation shows that the angular resolution is expected to be 0.01° at 0.1 MeV and 0.10° at 1 MeV. The experimental angular resolution is shown in Figure 4.
Nuclear Chemistry

Prof. Henry C. Griffin heads a joint program linking FNR to UM’s Department of Chemistry. Current research projects include a collaborative project with Prof. James Martin and research associate Chul Lee (School of Public Health), aimed at refining the use of radioactive materials to keep track of a hazardous industrial material used in the production of chlorine and sodium hydroxide (NaOH). Both chlorine and NaOH are among the top ten chemical products in terms of tonnage; both products can be made by electrolytic decomposition of NaCl solutions. The purest NaOH is made in cells in which one electrode is liquid mercury, and production plants utilizing this method might have a million pounds of the metal on site. The cells for electrolytic decomposition of NaCl solutions are complex, and the amount of mercury in a given cell can be difficult to determine. One solution is to add a small amount of radioactive "tracer" which mixes with all of the mercury in a cell, and serves as a reference by which the amount of mercury in the entire system can be monitored. Current research at PML concentrates on how to improve the accuracy of the technique. In particular, these researchers are analyzing the significance of how the radioactive material is added to the cells, when samples of mixed mercury are taken, and how the samples are counted.

Prof. Griffin also works with a group of undergraduate students as part of the Undergraduate Research Opportunities Program (UROP) to develop chemical procedures for isolating thorium (Th) from uranium (U). The first step in the decay of 235U produces 234Th; gram amounts of U produce nanogram amounts of Th, but the rate of decay of the two substances is the same. That rate can be determined by weighing the uranium, and if the chemical procedure is "quantitative" (i.e., all of the thorium is isolated), the rate of decay of the thorium will be known. This thorium sample becomes a standard for radioactivity that is available to anyone who has a balance for weighing and a known chemical form of uranium (e.g., uranium nitrate). This 234Th is particularly useful as a standard for low energy radiations (gamma rays and X-rays) and can be used to determine how efficiently radiation detectors can detect low energy (5-100 keV) radiations.

Another important collaborator in the Nuclear Chemistry team has been Prof. Krish Rengan (Department of Chemistry, Eastern Michigan University). Prof. Rengan has conducted extensive ion-exchange studies, particularly on the chelating resins used in radiochemical separations and for pre-concentration of trace-elements prior to analysis. The properties of these resins are not well characterized, and the EMU Radiochemistry Laboratory has initiated a program to systematically study the property of these resins. Distribution co-eficients have been measured between aqueous solutions of several elements and the resins; the measurements are performed with radioactive tracers produced at FNR. Earlier work has been published as an article in Radioanalytical and Nuclear Chemistry in 1999.

In an on-going collaborative project, the UM and EMU Nuclear Chemistry teams are joining forces to generate a reference gamma spectrum for 49Ca. Most radioactive materials can be recognized by their gamma-ray spectra, that is, the characteristic energies and intensities of the gamma rays emitted in their decay. These are nuclear "fingerprints". This project contributes to a standard reference book and CD of spectra (the Heath Gamma-Ray Catalogue), beginning with a high quality spectrum for the decay of 49Ca. High quality entails not only using pure sources of 49Ca, but counting for a sufficient period of time so that the spectrum is well-defined. Because 49Ca disappears rather quickly (with a half-
life of 8.7 minutes), the pneumatic transport system of the Ford Nuclear Reactor is used to make a new sample every 10-20 minutes for several days. Students in the Undergraduate Research Opportunity Program (UROP) are important members of the team, operating the transfer system and the detectors using the extended counting.

In addition, during 1999 the necessary chemical separation procedures for obtaining the gamma-ray spectra of some strontium and yttrium nuclides produced in fission have been developed. The methods will be used in the coming months to obtain gamma-ray spectra of these nuclides for publication in Heath Gamma-Ray Catalogue as well.

Future collaborative research efforts will utilize the gas jet system installed in a beam port of FNR to characterize the nature of other volatile fission product species. Results from previous research in this area, performed over the last several years, were presented in three papers in Nuclear Instruments and Methods in Physics Research. Current plans include using the gas jet to obtain enriched samples of 91Sr by sweeping fission krypton and allowing 92Kr to decay in delay line before collection of 91Kr and its decay products. At present one graduate student is finishing her thesis work in this area, and additional students (graduate or undergraduate) are expected to join this project during the coming year.

Nuclear Medicine

The nuclear medicine group comprises five staff members, under the overall direction of Prof. Donald M. Wieland of the Department of Internal Medicine. Research programs in nuclear medicine at the PML focus on the development of radiotracers for diagnostic imaging. Research efforts include the development of:

- mIBG, a radioiodinated analog of catecholamines for adrenal tumor imaging;
- adrenal scanning agent NP-59; and
- radiolabeled marker IBVM for the study of brain disorders such as Alzheimer and Parkinson disease.

In Nuclear Medicine imaging procedures, the *in vivo* localization of an administered radiolabeled compound (radio-pharmaceutical) is monitored externally by detection and measurement of the emitted gamma radiation using specialized cameras. Unlike competing modalities such as MRI and CT, Nuclear Medicine imaging provides functional information on *in vivo* biochemical and physiological processes.

Radiopharmaceuticals for diagnostic imaging are commonly labeled with either single photon emitting radioisotopes [e.g. 99mTc ($t_{1/2} = 6$ h), 123I ($t_{1/2} = 13.5$ h)] or positron emitting radioisotopes [e.g. 11C, ($t_{1/2} = 20$ min), 18F ($t_{1/2} = 110$ min)]. The vast majority of clinical radiodiagnostic procedures utilize radiopharmaceuticals labeled with 99mTc.

Development of radiopharmaceuticals for studying the function of the cardiac sympathetic nervous system in health and disease is a major focus of PML's Nuclear Medicine laboratory studies. Sympathetic neurons synthesize and store norepinephrine, the endogenous neurotransmitter of the sympathetic nervous system. Animal studies have shown that tritium-labeled norepinephrine and related analogs are sequestered within sympathetic neurons upon intravenous administration. This sequestration occurs by a high affinity uptake process via a specific protein (the norepinephrine transporter). At PML, the approach has been to utilize synthetic analogs of norepinephrine that are high affinity substrates for this uptake process.
Thus, several structural analogs of neuropeptides were synthesized and radiolabeled with either 11C or 18F. Rat biodistribution and dog imaging studies were also conducted with these radiotracers to determine their localization in tissues displaying high sympathetic neuronal innervation such as the heart and spleen.

These studies led to the selection of 11C labeled methylated tyrosine (14). [11C]HED has been in vivo imaging agent for cardiac sympathetic neurons. Numerous positron emission tomography (PET) studies have been conducted with [11C]HED at Michigan and several other institutions around the world. [14] has provided considerable assessment of the integrity of the cardiac sympathetic nervous system in the normal and transplanted human heart and in disease states such as acute myocardial infarction and diabetic neuropathy.

Another focus of the Nuclear Medicine research program concerns the development of radiotracers for the external imaging of tumor metastases in prostate cancer (PC). The appropriate treatment strategy for PC (surgical or hormonal therapy) critically depends on its accurate staging (presence or absence of tumor metastases). Current screening techniques for PC detection (including the prostate specific antigen test) fail to reliably distinguish clinically-localized disease from metastatic disease. A reliable imaging technique for the detection of PC metastases would therefore be of immense value to the clinician to determine the appropriate treatment plan and/or confirm or monitor disease progression.

Thus, several structural analogs of neuropeptides were synthesized and radiolabeled with either 11C or 18F. Rat biodistribution and dog imaging studies were also conducted with these radiotracers to determine their localization in tissues displaying high sympathetic neuronal innervation such as the heart and spleen.

These studies led to the selection of 11C labeled methylated tyrosine (14). [11C]HED has been in vivo imaging agent for cardiac sympathetic neurons. Numerous positron emission tomography (PET) studies have been conducted with [11C]HED at Michigan and several other institutions around the world. [14] has provided considerable assessment of the integrity of the cardiac sympathetic nervous system in the normal and transplanted human heart and in disease states such as acute myocardial infarction and diabetic neuropathy.

Another focus of the Nuclear Medicine research program concerns the development of radiotracers for the external imaging of tumor metastases in prostate cancer (PC). The appropriate treatment strategy for PC (surgical or hormonal therapy) critically depends on its accurate staging (presence or absence of tumor metastases). Current screening techniques for PC detection (including the prostate specific antigen test) fail to reliably distinguish clinically-localized disease from metastatic disease. A reliable imaging technique for the detection of PC metastases would therefore be of immense value to the clinician to determine the appropriate treatment plan and/or confirm or monitor disease progression.

Thus, several structural analogs of neuropeptides were synthesized and radiolabeled with either 11C or 18F. Rat biodistribution and dog imaging studies were also conducted with these radiotracers to determine their localization in tissues displaying high sympathetic neuronal innervation such as the heart and spleen.

These studies led to the selection of 11C labeled methylated tyrosine (14). [11C]HED has been in vivo imaging agent for cardiac sympathetic neurons. Numerous positron emission tomography (PET) studies have been conducted with [11C]HED at Michigan and several other institutions around the world. [14] has provided considerable assessment of the integrity of the cardiac sympathetic nervous system in the normal and transplanted human heart and in disease states such as acute myocardial infarction and diabetic neuropathy.

Another focus of the Nuclear Medicine research program concerns the development of radiotracers for the external imaging of tumor metastases in prostate cancer (PC). The appropriate treatment strategy for PC (surgical or hormonal therapy) critically depends on its accurate staging (presence or absence of tumor metastases). Current screening techniques for PC detection (including the prostate specific antigen test) fail to reliably distinguish clinically-localized disease from metastatic disease. A reliable imaging technique for the detection of PC metastases would therefore be of immense value to the clinician to determine the appropriate treatment plan and/or confirm or monitor disease progression.

Thus, several structural analogs of neuropeptides were synthesized and radiolabeled with either 11C or 18F. Rat biodistribution and dog imaging studies were also conducted with these radiotracers to determine their localization in tissues displaying high sympathetic neuronal innervation such as the heart and spleen.

These studies led to the selection of 11C labeled methylated tyrosine (14). [11C]HED has been in vivo imaging agent for cardiac sympathetic neurons. Numerous positron emission tomography (PET) studies have been conducted with [11C]HED at Michigan and several other institutions around the world. [14] has provided considerable assessment of the integrity of the cardiac sympathetic nervous system in the normal and transplanted human heart and in disease states such as acute myocardial infarction and diabetic neuropathy.

Another focus of the Nuclear Medicine research program concerns the development of radiotracers for the external imaging of tumor metastases in prostate cancer (PC). The appropriate treatment strategy for PC (surgical or hormonal therapy) critically depends on its accurate staging (presence or absence of tumor metastases). Current screening techniques for PC detection (including the prostate specific antigen test) fail to reliably distinguish clinically-localized disease from metastatic disease. A reliable imaging technique for the detection of PC metastases would therefore be of immense value to the clinician to determine the appropriate treatment plan and/or confirm or monitor disease progression.

Thus, several structural analogs of neuropeptides were synthesized and radiolabeled with either 11C or 18F. Rat biodistribution and dog imaging studies were also conducted with these radiotracers to determine their localization in tissues displaying high sympathetic neuronal innervation such as the heart and spleen.

These studies led to the selection of 11C labeled methylated tyrosine (14). [11C]HED has been in vivo imaging agent for cardiac sympathetic neurons. Numerous positron emission tomography (PET) studies have been conducted with [11C]HED at Michigan and several other institutions around the world. [14] has provided considerable assessment of the integrity of the cardiac sympathetic nervous system in the normal and transplanted human heart and in disease states such as acute myocardial infarction and diabetic neuropathy.

Another focus of the Nuclear Medicine research program concerns the development of radiotracers for the external imaging of tumor metastases in prostate cancer (PC). The appropriate treatment strategy for PC (surgical or hormonal therapy) critically depends on its accurate staging (presence or absence of tumor metastases). Current screening techniques for PC detection (including the prostate specific antigen test) fail to reliably distinguish clinically-localized disease from metastatic disease. A reliable imaging technique for the detection of PC metastases would therefore be of immense value to the clinician to determine the appropriate treatment plan and/or confirm or monitor disease progression.
Department of Environmental and Industrial Health (EIH)

EIH, in collaboration with Phoenix Memorial Laboratory, operates a low background gamma spectrometer at PML. The facility is intended primarily for quantifying gamma emitting isotopes in environmental samples. In an innovative study supported in part by a Phoenix Faculty grant, Dr. David Hamby and Dr. Srinanatha Kannan (Department of Environmental Health Sciences, University of Michigan) are monitoring the biodistribution of minerals in plant-based food products using radioactive tracers. The FNR facility has enabled them to combine features of instrumental neutron activation analysis, biokinetic modeling of minerals, and food processing to develop and to test the feasibility of this novel application of the isotopic tracer technique. In a recently completed experiment, naturally occurring iron (\(^{58}\text{Fe}\)) in dried black beans was activated to create the radioactive tracer \(^{59}\text{Fe}\). Approximately 3 weeks following irradiation, the activated bean products were fed to animals (Sprague Dawley rats). In order to study absorption of the mineral, loss of mineral in the feces was monitored by counting the amount of \(^{59}\text{Fe}\) in fecal samples using the PML low background gamma spectrometer. A control group of rats was fed the non-radioactive diet and rat tissues were activated to further trace the retention of the mineral in rat bones using INAA. Similar mineral biodistribution studies are planned for the year 2000. It is anticipated that results from these experiments and others can be used to set the micronutrient reference intakes and to improve the mineral status of individuals.

Museum of Anthropology Program in Archaeometry

An educational initiative linking PML and the Museum of Anthropology is the program in material science in archaeology, or archaeometry. PML research scientist Dr. Leah Minc, an archaeologist by training, has developed a course on INAA applications entitled Neutron Activation Analysis in Archaeology, offered through the Department of Anthropology. The course makes the technical field of INAA accessible to social scientists, and covers irradiation procedures, gamma-ray spectrometry, and quantitative analysis of compositional data. The MMPP also currently shares with the Museum of Anthropology the support for a graduate student research assistant, who works under the supervision of Dr. Minc, to extend the collaboration between the two units.
Research Support and Funding Programs

Utilization of MMPP facilities by researchers and educators is fostered and encouraged through a variety of research support services. In addition, research is supported directly through two granting programs. Phoenix Faculty grants support innovative research by University of Michigan faculty. Through the Department of Energy (DOE) Reactor Sharing Program, the Ford Nuclear Reactor and Phoenix Memorial Laboratory provide research opportunities, analytical services, and teaching facilities to other universities and institutions.

Research Support for UM

MMPP provides research support for the University of Michigan in the form of *pro bono* services: irradiation and analytical services provided a no cost to University faculty and students. Frequently utilized services include INAA, irradiations for Ar-Ar dating, radiotracer production, and irradiation damage studies. During the 1998-1999 academic year, more than $200,000 in *pro bono* services was provided to University faculty for research and teaching, and to graduate students for research leading to an advanced degree. An additional $280,000 of support was provided to researchers in the form of laboratory and office space.

In many cases, MMPP services serve as matching funds in securing outside funding. Over the past two years, grants and awards brought into the University by faculty and students whose research is significantly based on access to facilities and services at PML or FNR exceeded 4.8 million dollars (see Table 10). For example:

- Researchers within the *Department of Nuclear Engineering and Radiological Sciences* were awarded 6 grants totaling over 2.7 million dollars for projects directly involving the Ford Nuclear Reactor and Phoenix Memorial Laboratory.

- The *Department of Chemical Engineering* obtained nearly 1.5 million dollars through 9 separate grants; research conducted at FNR is a critical component in each project.

- Over $500,000 was awarded to researchers in the *Department of Geological Sciences* for Ar-Ar dating studies that will be initiated at the FNR.
Table 10. Recent Grants to UM Departments for Research Utilizing PML/FNR

<table>
<thead>
<tr>
<th>Anthropology</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Darling</td>
<td>INAA of Obsidian: A Test using Old Data.</td>
<td>$8,725 (pending)</td>
</tr>
<tr>
<td>S. Fowles</td>
<td>Regional mobility and the development of segmentary structures: a case study from the prehistory of the Taos District, NM.</td>
<td>$10,286</td>
</tr>
<tr>
<td>W. Griffin</td>
<td>African Initiative Fellowship, Ph.D. dissertation research in Madagascar.</td>
<td>$2,800</td>
</tr>
<tr>
<td>Anthropology Subtotal</td>
<td></td>
<td>$21,811</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Geological Sciences</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C.M. Hall, S. Kesler</td>
<td>Test of a Model for Formation and Preservation of an Ancient Late State Epithermal Precious Metal Deposit.</td>
<td>$49,765/12 mo</td>
</tr>
<tr>
<td>C.M. Hall, B. Van de Pluijm</td>
<td>Argon Dating of Near-Surface Faulting.</td>
<td>$131,894/30 mo</td>
</tr>
<tr>
<td>R. Lange, C.M. Hall</td>
<td>Quantification of the Eruptive Flux along the Western Mexican Volcanic Arc.</td>
<td>$264,862 / 24 mo</td>
</tr>
<tr>
<td>C.M. Hall</td>
<td>Applying Argon Dating of Fine-Grained Sediments as a Geochemical Tool for Marin Sediments.</td>
<td>$74,602/24 mo</td>
</tr>
<tr>
<td>Geological Sciences Total</td>
<td></td>
<td>$521,123</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nuclear Engineering and Radiological Science</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>R. Fleming, P. Simpson, and J. Lee</td>
<td>Neutronic Analysis of the FNR Core for the Heavy Section Steel Irradiation Program.</td>
<td>$34,000/20 mo</td>
</tr>
<tr>
<td>L. Wang, R. Ewing</td>
<td>Radiation Effects on Materials in the Near-Field of a Nuclear Waste Repository.</td>
<td>$408,000/36 mo</td>
</tr>
<tr>
<td>G. Knoll, D. Wehe</td>
<td>Advanced Devices and Systems for Radiation Measurements.</td>
<td>$900,000/12 mo</td>
</tr>
<tr>
<td>D. McGregor, J. Lindsay, J. Lee</td>
<td>Non-Destructive Spent Fuel Characterization with Semiconducting Gallium Arsenide Neutron Imaging Arrays.</td>
<td>$534,821/36 mo</td>
</tr>
<tr>
<td>D. Wehe, D. McGregor</td>
<td>Room Temperature Semiconductors for Radiation Spectroscopy.</td>
<td>Argonne Nat’l. Lab support</td>
</tr>
<tr>
<td>D. Wehe</td>
<td>Robotic Systems for Hazardous Environments.</td>
<td>$900,000/12 mo</td>
</tr>
<tr>
<td>Nuclear Engineering and Radiological Sciences Subtotal</td>
<td></td>
<td>$2,776,821</td>
</tr>
</tbody>
</table>
Table 10. Recent Grants for Research Utilizing PML/FNR (cont.)

<table>
<thead>
<tr>
<th>Chemistry</th>
<th>Amount</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>H. Griffin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gamma-ray Spectroscopy of Chemically Isolated Radionuclides.</td>
<td>$41,745</td>
<td>9 mo</td>
</tr>
<tr>
<td>Precision Isotope Dilution Analysis</td>
<td>$19,000</td>
<td>12 mo</td>
</tr>
<tr>
<td>Chemistry Subtotal</td>
<td>$60,745</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chemical Engineering</th>
<th>Amount</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>R. Yang, et al.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Sorbents for Gas Separation by pi-Complexation (National Science Foundation, CTS-9520328)</td>
<td>$204,506</td>
<td>36 mo</td>
</tr>
<tr>
<td>New Sorbents for Gas Separation by p-Complexation, National Science Foundation, supplement to CTS-9520328 for Impact of Research.</td>
<td>$25,000</td>
<td>12 mo</td>
</tr>
<tr>
<td>Pillared Clays as Superior Catalysts for Selective Catalytic Reduction of NO by Hydrocarbons, U.S. Department of Energy.</td>
<td>$199,992</td>
<td>36 mo</td>
</tr>
<tr>
<td>Separations Using Chemical Complexation Adsorbents, Chevron Research & Technology Company, Richmond, CA.</td>
<td>$240,000</td>
<td>36 mo</td>
</tr>
<tr>
<td>New Adsorbents Development for Olefin-Paraffin Separations, UOP, Des Plaines, IL.</td>
<td>$50,000</td>
<td>18 mo</td>
</tr>
<tr>
<td>High-Activity Pillared Clay Catalysts for NO Reduction by Ammonia, Electric Power Research Institute, Palo Alto, CA.</td>
<td>$265,939</td>
<td>24 mo</td>
</tr>
<tr>
<td>Support for Sorbent Studies, NGK Insulators, LTD, Nagoya, Japan.</td>
<td>$40,000</td>
<td>18 mo</td>
</tr>
<tr>
<td>New Sorbents for Separations and Purifications by Weak Chemical Bonds, National Science Foundation, CTS-9819008.</td>
<td>$200,000</td>
<td>36 mo</td>
</tr>
<tr>
<td>Air Separation by Pressure Swing Adsorption Using Superior Sorbents, U.S. Department of Energy, DE-FG26-98FT40115.</td>
<td>$200,000</td>
<td>36 mo</td>
</tr>
<tr>
<td>Chemistry and Chemical Engineering Subtotal</td>
<td>$1,467,182</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>$4,847,682</td>
<td></td>
</tr>
</tbody>
</table>
Table 12. Research Projects Supported by DOE Reactor Sharing Program, 1998-1999

<table>
<thead>
<tr>
<th>INAA Studies in Archaeology</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Clarence Menninga,</td>
<td>Characterization of ancient pottery from Abila excavation, Jordan.</td>
</tr>
<tr>
<td>Calvin College</td>
<td></td>
</tr>
<tr>
<td>Prof. Michael Smith,</td>
<td>Sourcing Aztec-period ceramics from Morelos, Mexico, based on their geochemical signature, to examine ceramic production and exchange systems.</td>
</tr>
<tr>
<td>SUNY - Albany</td>
<td></td>
</tr>
<tr>
<td>Amy Horseman and</td>
<td>Characterize trace-element composition of clays and polychrome ceramics from Tarascan archaeological sites, Mexico.</td>
</tr>
<tr>
<td>Prof. Helen Pollard,</td>
<td></td>
</tr>
<tr>
<td>Michigan State University</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INAA Studies in Geology</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tim Johnson &</td>
<td>Trace elements analysis to identify processes responsible for hydrothermal beryllium mineralization at Spor Mountain, Utah.</td>
</tr>
<tr>
<td>Prof. Edward Ripley</td>
<td></td>
</tr>
<tr>
<td>Indiana University</td>
<td></td>
</tr>
<tr>
<td>Dr. Michael Dorais,</td>
<td>Determination of the tectonic setting of magmas of Massabesic Gneiss Complex, NH, from metaigneous rock samples.</td>
</tr>
<tr>
<td>Indiana University</td>
<td></td>
</tr>
<tr>
<td>Dr. Erika Elswick</td>
<td>Rare earth element quantification of various igneous rock samples to check the calibration of the Lab’s ICP set-up.</td>
</tr>
<tr>
<td>Indiana University</td>
<td></td>
</tr>
<tr>
<td>Terry Church &</td>
<td>Assessment of palaeo-oceanic events that may have led to the demise of coral-stromatoporoid fauna at the end of the Frasnian (Late Devonian) based on geochemical analyses of limestone samples from SE Nevada.</td>
</tr>
<tr>
<td>Prof. David Budd,</td>
<td></td>
</tr>
<tr>
<td>University of Colorado</td>
<td></td>
</tr>
<tr>
<td>Dr. Vernon RussellClark</td>
<td>Investigate materials of possible extra-terrestrial origin, based on the relative abundance of silicon isotopes.</td>
</tr>
<tr>
<td>Univ. of Cal., San Diego</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INAA Studies in Nuclear Chemistry</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Krish Rengan</td>
<td>Irradiation of pure sources of 49Ca to generate a reference gamma spectrum for inclusion in the Heath Gamma-Ray Catalogue.</td>
</tr>
<tr>
<td>Eastern Michigan Univ.</td>
<td></td>
</tr>
<tr>
<td>Prof. Ellene Contis,</td>
<td>Irradiations for analytical chemistry classes, including an introduction to neutron activation analysis and gamma spectrometry.</td>
</tr>
<tr>
<td>Eastern Michigan Univ.</td>
<td></td>
</tr>
<tr>
<td>Ar-Ar Dating for Geochronology</td>
<td></td>
</tr>
<tr>
<td>-----------------------------</td>
<td></td>
</tr>
<tr>
<td>Lehigh University</td>
<td>Studies of tectonic evolution of mountain belts, both active and ancient, in the Himalayas and Appalachians; evolution of Andean and Central American subduction systems.</td>
</tr>
<tr>
<td>New Mexico Institute of Mining & Technology</td>
<td>Investigations of volcanism and mineralization in the western U.S.A., Central and South America, and Antarctica.</td>
</tr>
<tr>
<td>New Zealand Institute of Geo. & Nuclear Sciences</td>
<td>Geological dating programs relating to the orogenic, tectonic, and volcanic histories in various geological terraines of New Zealand and the southwest Pacific region.</td>
</tr>
<tr>
<td>Ohio State University</td>
<td>Geothermal histories for the Adirondack Mountains of New York, the Black Hills of North Dakota, North Atlantic sea-bed cores, SE Asia, and Argentina.</td>
</tr>
<tr>
<td>Universite Blaise Pascal</td>
<td>Analysis of the driving mechanisms of mountain building through thermochronology; the dating of volcanism, especially young volcanism in various geodynamical settings; and monitoring and modeling argon loss to assess the physical background of argon diffusion in glass and silicates.</td>
</tr>
<tr>
<td>University of Arizona</td>
<td>Noble gas analysis of irradiated rocks and minerals to provide ages and geothermal histories.</td>
</tr>
<tr>
<td>University of California, Los Angeles</td>
<td>Analysis of irradiated rocks and minerals to provide ages and geothermal histories.</td>
</tr>
<tr>
<td>University of Houston</td>
<td>Studies into the thermal and tectonic history of samples from Nepal, China, Korea, Bolivia, Argentina, Grenada, and the U.S.</td>
</tr>
<tr>
<td>University of Manchester</td>
<td>Investigations into: the geochemistry of halogens in the Earth’s mantle; chronology of diamonds; age of mare volcanism on the moon; geochronology of martian meteorites; and ancient mineralizing fluid systems.</td>
</tr>
</tbody>
</table>
Teaching and Training Activities at MMPP

University Labs and Lectures

The Phoenix Memorial Laboratory provides facilities for courses that are conducted by faculty members from the University of Michigan (Table 13). In addition, a number of classes and labs are taught by laboratory staff members for the benefit of students from other colleges and universities and high schools. Overall, 200 college students attended classes at the FNR, while more than 500 high school students participated in short-courses and labs during the past academic year (Table 14).

The Nuclear Engineering and Radiological Sciences Department (NERS) uses the laboratory and reactor for a number of formal University courses, and conducts extensive, on-going research projects in the areas of neutron spectroscopy, radiation effects in materials, and cross section measurements.

Within the NERS department, the Nuclear Reactor Laboratory (NERS 445) often serves as one of the senior year Capstone courses, allowing the student an opportunity to integrate the understanding gained in previous courses. The use of an actual research reactor - the FNR - presents the students with a direct comparison of experimental results with the analytical and computational models they have been taught.

The class investigates several aspects of reactor engineering and physics, challenging the assumptions of the theory with careful measurement. The determination of the reactor thermal power in the megawatt range uses the thermal-hydraulic characteristics of the system as a simple calorimeter. The relationship between the reactivity of the system and its time-dependence is investigated in two experiments addressing FNR steady-state behavior, as well as the response to both positive and negative reactivity insertion. The non-fission neutron source provided by the heavy water tank on the north face of the FNR makes this study much more valuable. The use of radio-activation and gamma spectrometry to gain insight into both the spatial and the energy dependence of the neutron flux in the reactor. A simple gold foil activation provides experience in the measurement of the intensity and dose of a neutron beam. The irradiation of an iron wire extending vertically through a fuel element provides an axial flux distribution used to access the space-dependent aspects of the reactor behavior.

The overall insight into the FNR as a reactor is best gained through two comprehensive measurements which exploit the entire system: the critical loading experiment and the investigation of the 135Xe reactivity transient after shutdown from full power. The loading to critical duplicates the first measurement on any reactor, and for many of our students is their only opportunity to have this experience. The xenon measurement is a 24-hour measurement of the vital signs of the FNR following shutdown, and is designed to provide the student with insight into the space and time variation of a complicated system.

The Nuclear Reactor Laboratory course has been taught since the reactor was built and has evolved with the FNR and the NERS department. The FNR provides an ideal teaching tool for this purpose.

In addition to serving as the focal point for NERS courses, FNR facilities and staff
provide opportunities for students from other departments and from other colleges to gain first-hand experience with topics such as nuclear chemistry, instrumental neutron activation analysis, and reactor operations.

The University of Michigan's Department of Chemistry utilizes the facilities at FNR for upper-level undergraduate courses in nuclear chemistry taught by Prof. Henry C. Griffin. Students in Dr. Griffin's submit samples containing a variety of elements for irradiation. The students perform their own subsequent analysis. Dr. Griffin has also been actively involved in the UROP program, introducing undergraduate students both to the Reactor and the rigors of nuclear chemistry research.

In the Department of Geological Sciences, Geology 455 introduces students to neutron activation analysis and gamma-ray spectrometry. The Department of Anthropology now offers a course (Anthro. 589) on the use of neutron activation analysis in the analysis of archaeological materials, including ancient pottery, stone tools, and objects of metal.

Students from outside the University of Michigan benefit from the Ford Nuclear Reactor, as well. Prof. James Johnson (Dept. of Physics & Astronomy, Wayne State University) incorporates a visit to the Ford Nuclear Reactor into his summer course on Modern Physics. The course is offered each year as part of the Summer Science Institute, a program which provides condensed science courses for middle school, high school, and community college teachers. This year, 30 teachers participated in a tour of the Reactor. In addition, samples were irradiated for use in a half-life experiment. In the future, the FNR will also become a regular feature of the new Modern Physics Laboratory course for undergraduate Physics majors.

At Eastern Michigan University, the FNR and PML facilities were used for teaching a number of analytical chemistry classes (Chem. 381 and Chem. 481); this past year, nearly fifty students were introduced to neutron activation analysis (INAA). The use of Ford Reactor facility for these classes will continue. Four faculty members are involved in teaching these classes. In addition, a new course, Introduction to Radiotracer Techniques (Chem. 485), will be offered winter term, 2000. The course will use FNR for production of short-lived tracers as well as for NAA experiments.

A similar short-course on neutron activation analysis is presented annually to local high school senior chemistry classes. Participating high schools include the International Academy in Bloomfield Hills, Michigan, and Carroll High School, Ft. Wayne, Indiana.

Public Outreach Education

As part of MMPP's outreach and public education program, tours of the Nuclear Reactor Laboratory were provided to school children, university students, and the public at large. During the past year, over 1250 visitors viewed the facility as part of 77 public tours. These groups visit the Cobalt Irradiator Facility for an introduction to the importance of gamma irradiation in the sterilization of tissue transplants, and the Ford Nuclear Reactor, where reactor operations, nuclear power, and peaceful research applications of nuclear science are discussed.
Table 13. University of Michigan Courses Utilizing PML/FNR

Anthropology 589: Neutron Activation Analysis in Archaeology. Offered in cooperation with the University's Ford Nuclear Reactor, this course provides students with the fundamental principles and methods of neutron activation analysis (NAA), along with hands-on experience in utilizing NAA to determine the trace-element composition of archaeological materials. Irradiation procedures, gamma-ray spectrometry of trace-elements, quantitative analysis of NAA data, and the archaeological use and interpretation of NAA results are covered.

Geology 455: Determinative Methods in Mineralogical and Inorganic Materials. Introduction to the principal quantitative methods of characterizing the chemistry and structure of inorganic phases, including X-ray diffraction, XRF, microprobe, SEM, wet chemical, optical, resonance, and Mossbauer spectroscopy. Laboratory provides student with practical experience with principles covered in lectures. Designed for geologists, chemists, physicists, metallurgists, and materials scientists.

Chemistry 399: Undergraduate Research in Chemistry. Research procedures and applications in the area of Nuclear Chemistry.

Chemistry 480: Physical and Instrumental Chemistry. A laboratory exploration of methods for the measurement of physical and spectroscopic properties of substances and the application of these methods in instrumental analysis.

NERS 211: Introduction to Nuclear Engineering and Radiological Sciences. This course will discuss different forms of energy, the history of nuclear energy, the fundamentals of fission and fusion nuclear power, radiological health applications, and electromagnetic radiation in the environment. Current topics in the media such as radon, radioactive waste, and nuclear proliferation will also be covered.

NERS 311: Elements of Nuclear Engineering and Radiological Sciences I. Photons, electrons, neutrons, and protons. Particle and wave properties of radiation. Introduction to quantum mechanics and special relativity. Properties and structure of atoms and nuclei. Introduction to interactions of radiation with matter.

NERS 315: Nuclear Instrumentation Lab. An introduction to the devices and techniques most common in nuclear measurements. Topics include the principles of operation of gas-filled, solid state, and scintillation detectors for charged particle, gamma ray, and neutron radiations. Techniques of pulse shaping, counting, and analysis by radiation spectroscopy. Timing and coincidence measurements.

NERS 400: Elements of Nuclear Energy. Ideas and concepts important to the development of nuclear energy for peaceful purposes — intended for those in fields other than nuclear engineering. History of the nuclear energy program, elementary nuclear physics, fission and fusion reactors, radiological health physics, and nuclear medicine.
Table 13. University of Michigan Courses Utilizing PML/FNR (cont.)

NERS 441: Introduction to Nuclear Fission Reactors. An introduction to the theory of nuclear fission reactors including such topics as neutron diffusion, the one-speed theory of nuclear reactors, reactor kinetics, multigroup diffusion theory and criticality calculations, and neutron slowing down and thermalization.

NERS 442: Nuclear Power Reactors. Analysis of nuclear fission power systems including an introduction to nuclear reactor design, reactivity control, steady-state thermal-hydraulics and reactivity feedback, fuel cycle analysis and fuel management, environmental impact and plant siting, and transient analysis of nuclear systems. A semester-long design project of the student's choice.

NERS 445: Nuclear Reactor Laboratory. Measurements of nuclear reactor performance, activation methods, rod worth, critical loading, power and flux distributions, void and temperature coefficients of reactivity, xenon transient, diffusion length, pulsed neutrons.

NERS 462: Reactor Safety Analysis. Analysis of those design and operational features of nuclear reactor systems that are relevant to safety. Reactor containment, engineered safety features, transient behavior and accident analysis for representative reactor types; NRC regulations and procedures; typical reactor safety analyses.

NERS 543: Nuclear Reactor Theory II. A continuation of NERS 441 including neutron resonance absorption and variational methods, flux synthesis. Analytic and numerical solutions of the neutron transport equation including the S_n and B_n methods, collision probabilities and Monte Carlo methods.

NERS 590: Special Topics in Nuclear Engineering. Selected advanced topics such as neutron and reactor physics, reactor core design, and reactor engineering. The subject matter varies by term.

NERS 599: Master's Project. Individual or group investigations in a particular field or on a problem of special interest to the student. The course content will be arranged at the beginning of each term by mutual agreement between the student and a staff member. This course may be repeated for up to 6 credit hours.

University Course 280: Undergraduate Research (UROP). At FNR, research opportunities are provided for undergraduates in the areas of nuclear chemistry, radioisotopic tracers, and neutron activation analysis.
Table 14. Teaching and Research Utilization of FNR Facilities and Staff (1998-1999 Academic Year)

<table>
<thead>
<tr>
<th>Institution/Department</th>
<th>Faculty & Staff Users</th>
<th>Student Users</th>
<th>Degrees Supported 1998-1999</th>
<th>Reactor Service Provided</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>BS</td>
<td>MS</td>
</tr>
<tr>
<td>University of Michigan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anthropology</td>
<td>5</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Classical Art & Arch.</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Chemical Engineering</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Chemistry</td>
<td>2</td>
<td>11</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Dentistry</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Geological Sciences</td>
<td>13</td>
<td>11</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Environ. & Indust. Health^1</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>History of Art</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mechanical Engineering</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Nuclear Engineering & Radiological Sciences</td>
<td>9</td>
<td>73</td>
<td>33</td>
<td>16</td>
</tr>
<tr>
<td>Physics</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Zoology</td>
<td>1</td>
<td>8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>UM Total</td>
<td>40</td>
<td>119</td>
<td>38</td>
<td>21</td>
</tr>
<tr>
<td>Other Colleges, Universities, and Academic Institutions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Univ. of Arizona/ Geographical Sciences</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>U. of Cal., Sta. Barbara/ Mech. & Environ. Eng.</td>
<td>8</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>U. of Cal., San Diego/ Chemistry</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>U. of Cal.- Los Angeles/ Geological Sciences</td>
<td>2</td>
<td>8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Calvin College/ Geology</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Univ. of Colorado/ Geological Sciences</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>E. Michigan University/ Chemistry</td>
<td>2</td>
<td>33</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>University of Houston/ Geosciences</td>
<td>2</td>
<td>14</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Indiana University/ Geological Sciences</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Inst. Geol. & Nuc. Sci./ New Zealand</td>
<td>18 (6)^2</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Lehigh University/ Earth. Environ. Sciences</td>
<td>22</td>
<td>10</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>
Table 14. Teaching and Research Utilization of FNR (cont.)

<table>
<thead>
<tr>
<th>Institution/Department</th>
<th>Faculty & Staff Users</th>
<th>Student Users</th>
<th>Degrees Supported 1998-1999</th>
<th>Reactor Service Provided</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>BS</td>
<td>MS</td>
</tr>
<tr>
<td>Other Colleges, Universities, and Academic Institutions (cont.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Univ. of Manchester/Geochemistry</td>
<td>8</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Michigan State Univ./Anthropology</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>NM Institute of Mining & Technology</td>
<td>1 (24)²</td>
<td>18</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>Ohio State University/Geoscience</td>
<td>4 (8)²</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SUNY - Albany/Anthropology</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Blaise Pascal/Earth Science</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Wayne State Univ./Physics</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Other Colleges Total</td>
<td>120</td>
<td>103</td>
<td>3</td>
<td>16</td>
</tr>
<tr>
<td>Government and Industry</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brooks & Perkins</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Dept. of Comm., GREL</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>General Motors Corp.</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ICI Tracerco</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Natural Systems Inc.</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>NSF Int'l.</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Nucl. Reg. Comm.</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pacific Gas & Electric</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oak Ridge Natl. Lab.</td>
<td>14</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Tru-Tech</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gov. and Industry Total</td>
<td>41</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>201</td>
<td>223</td>
<td>41</td>
<td>37</td>
</tr>
</tbody>
</table>

¹Includes UROP students involved in research sponsored by department.
²Numbers in parentheses indicate collaborators from other universities.
<table>
<thead>
<tr>
<th>Name</th>
<th>Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smith, Adam</td>
<td>Anthropology</td>
</tr>
<tr>
<td>Grassi, Heinze</td>
<td>Atmospheric & Oceanic Science/Space Physics Research Lab</td>
</tr>
<tr>
<td>Killeen, Tim</td>
<td>Atmospheric & Oceanic Science/Space Physics Research Lab</td>
</tr>
<tr>
<td>Helling, Robert</td>
<td>Biology</td>
</tr>
<tr>
<td>Nichols, Ruthann</td>
<td>Biology</td>
</tr>
<tr>
<td>Mooney, David</td>
<td>Chemical Engineering</td>
</tr>
<tr>
<td>Thompson, Levi</td>
<td>Chemical Engineering</td>
</tr>
<tr>
<td>Yang, Ralph</td>
<td>Chemical Engineering</td>
</tr>
<tr>
<td>Gordus, Adon</td>
<td>Chemistry</td>
</tr>
<tr>
<td>Griffin, Henry</td>
<td>Chemistry</td>
</tr>
<tr>
<td>Weber, Walter</td>
<td>Civil and Environmental Engineering</td>
</tr>
<tr>
<td>Hamby, David</td>
<td>Environmental Health Sciences</td>
</tr>
<tr>
<td>Kannan, Srinantha</td>
<td>Environmental Health Sciences</td>
</tr>
<tr>
<td>Lee, Chul</td>
<td>Environmental Health Sciences</td>
</tr>
<tr>
<td>Martin, James</td>
<td>Environmental Health Sciences</td>
</tr>
<tr>
<td>Essene, Eric</td>
<td>Geological Sciences</td>
</tr>
<tr>
<td>Hall, Chris</td>
<td>Geological Sciences</td>
</tr>
<tr>
<td>Johnson, Marcus</td>
<td>Geological Sciences</td>
</tr>
<tr>
<td>Lange, Rebecca</td>
<td>Geological Sciences</td>
</tr>
<tr>
<td>Kessler, Steve</td>
<td>Geological Sciences</td>
</tr>
<tr>
<td>Rea, David</td>
<td>Geological Sciences</td>
</tr>
<tr>
<td>Van der Pluijm, Ben</td>
<td>Geological Sciences</td>
</tr>
<tr>
<td>Block, Bruce</td>
<td>High Energy Physics</td>
</tr>
<tr>
<td>Wadia, Neville</td>
<td>High Energy Physics</td>
</tr>
<tr>
<td>Ciesielski, Deborah</td>
<td>Internal Medicine</td>
</tr>
<tr>
<td>Humes, David</td>
<td>Internal Medicine</td>
</tr>
<tr>
<td>Van Dort, Marcian</td>
<td>Internal Medicine</td>
</tr>
<tr>
<td>Jung, Yong-Woon</td>
<td>Internal Medicine</td>
</tr>
<tr>
<td>Wieland, Donald</td>
<td>Internal Medicine</td>
</tr>
<tr>
<td>Herbert, Sharon</td>
<td>Kelsey Museum of Classical Art and Archaeology</td>
</tr>
<tr>
<td>Ford, Richard</td>
<td>Museum of Anthropology</td>
</tr>
<tr>
<td>Micc, Leah</td>
<td>Museum of Anthropology</td>
</tr>
<tr>
<td>O'Shea, John</td>
<td>Museum of Anthropology</td>
</tr>
<tr>
<td>Wright, Henry</td>
<td>Museum of Anthropology</td>
</tr>
<tr>
<td>Brake, Mary</td>
<td>Nuclear Engineering & Radiological Sciences</td>
</tr>
<tr>
<td>Ewing, Rod</td>
<td>Nuclear Engineering & Radiological Sciences</td>
</tr>
<tr>
<td>Fleming, Ronald</td>
<td>Nuclear Engineering & Radiological Sciences</td>
</tr>
<tr>
<td>He, Zhong</td>
<td>Nuclear Engineering & Radiological Sciences</td>
</tr>
<tr>
<td>Kearfott, Kimberly</td>
<td>Nuclear Engineering & Radiological Sciences</td>
</tr>
<tr>
<td>Kerr, William</td>
<td>Nuclear Engineering & Radiological Sciences</td>
</tr>
<tr>
<td>Knoll, Glenn</td>
<td>Nuclear Engineering & Radiological Sciences</td>
</tr>
<tr>
<td>Lee, John C.</td>
<td>Nuclear Engineering & Radiological Sciences</td>
</tr>
<tr>
<td>McGregor, Doug</td>
<td>Nuclear Engineering & Radiological Sciences</td>
</tr>
<tr>
<td>Wang, Lumin</td>
<td>Nuclear Engineering & Radiological Sciences</td>
</tr>
<tr>
<td>Welhe, David</td>
<td>Nuclear Engineering & Radiological Sciences</td>
</tr>
<tr>
<td>Wang, Shixin</td>
<td>Nuclear Engineering & Radiological Sciences (Research Fellow)</td>
</tr>
<tr>
<td>Wildermer, Scott</td>
<td>Nuclear Engineering & Radiological Sciences (Research Fellow)</td>
</tr>
<tr>
<td>Yi, Yongsung</td>
<td>Nuclear Engineering & Radiological Sciences (Research Fellow)</td>
</tr>
<tr>
<td>Goldstein, Steve</td>
<td>Orthopedic Surgery</td>
</tr>
<tr>
<td>Gustafson, Dick</td>
<td>Physics</td>
</tr>
<tr>
<td>Roe, Byron</td>
<td>Physics</td>
</tr>
<tr>
<td>O'Brien, William</td>
<td>School of Dentistry</td>
</tr>
<tr>
<td>Rutherford, Bruce</td>
<td>School of Dentistry</td>
</tr>
<tr>
<td>Krebsbach, Paul</td>
<td>School of Dentistry</td>
</tr>
</tbody>
</table>

1Includes individuals authorized to use FNR/PML facilities for research, teaching labs, and experiments, and researchers submitting materials for irradiation and/or analysis.
Researchers from Other Universities

Srinivasan, V.S.
Menninga, Clarence
Contis, Ellene T.
Rengan, Krish
Brophy, James
Dorais, Michael
Elswick, Erika
Ripley, Edward
Adams, Christopher
Zeitler, Peter K.
Idleman, Bruce
Pollard, Helen
Voice, Thomas
Heizler, Matt
Condle, K.
Kelley, S.
Wapnir, Raul
Elliot, David
Fleming, Thomas
Foland, Ken
Hubacker, Fritz
Kelley, Simon
Kobayashi, H.
Metzger, Ellen
Smith, Michael
Baldwin, Suzanne
Swindle, Timothy
Zreda, Marek
Arnaud, Nicolas
Montigy, Raymond
Chow, Alex
Ventera, Rod
Wartho, Jo-Anne
Klingsmith, Doug
Lucas, Glenn E.
Odette, G. Robert
Vernon-Clark, Russell
Feder, Seth
Budd, David
Copeland, Peter
Burgess, Ray
Turner, Grenville
Johnson, James

Bowling Green St. University
Calvin College
Eastern Michigan University
Indiana University
Indiana University
Indiana University
Indiana University
Inst. of Geol. & Nuclear Sci. Ltd.
Lehigh University
Lehigh University
Michigan State University
New Mexico Inst. Mining & Tech.
New Mexico Inst. Mining & Tech.
North Shore University Hospital
Ohio State University
Ohio State University
Ohio State University
Ohio State University
Open University
Rikyo University, Japan
San Jose State Univ.
SUNY Albany
University of Arizona
University of Arizona
University of Arizona
Université Blaise Pascal
Université Blaise Pascal
University of California-Davis
University of California-Davis
Univ. of California, Los Angeles
Univ. of Calif., Santa Barbara
Univ. of Calif., Santa Barbara
Univ. of Calif., Santa Barbara
Univ. of Calif., San Diego
University of Cincinnati
University of Colorado, Boulder
University of Houston
University of Manchester
University of Manchester
Wayne State University

Chemistry
Geology
Chemistry
Chemistry
Geological Sciences
Geological Sciences
Geological Sciences
Geological Sciences
Nuclear Science
Earth Sciences
Earth Sciences
Anthropology
Civil & Environ. Engineering
Geosciences
Geosciences
Pediatrics
Geological Sciences
Geological Sciences
Geological Sciences
Geological Sciences
Earth Sciences
Nuclear Sciences
Geology
Anthropology
Geosciences
Geosciences
Geosciences
Centre Geochemique Ar-Ar
Centre Geochemique Ar-Ar
Land, Air, &Water Resources
Land, Air, &Water Resources
Geology
Mech. & Environ. Engin.
Mech. & Environ. Engin.
Mech. & Environ. Engin.
Chemistry and Biochemistry
Biomechanics
Geological Sciences
Geosciences
Earth Sciences
Earth Sciences
Physics and Astronomy
Researchers from Other Institutions

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schmidts, Ross</td>
<td>AAR Advanced Structures</td>
</tr>
<tr>
<td>Palsson, Bernard</td>
<td>Aastrom Biosciences</td>
</tr>
<tr>
<td>Heidmous, Matthew</td>
<td>Aastrom Biosciences</td>
</tr>
<tr>
<td>Islam, Nurul</td>
<td>Bangladesh Inst. of Nucl. Sci. & Tech.</td>
</tr>
<tr>
<td>Hawes, Kevin</td>
<td>Dow Corning Corp.</td>
</tr>
<tr>
<td>Steklenski, David</td>
<td>Eastman Kodak Company</td>
</tr>
<tr>
<td>Gooden, John</td>
<td>Ford Motor Co.</td>
</tr>
<tr>
<td>Rosenberg, Stan</td>
<td>Ford Motor Co.</td>
</tr>
<tr>
<td>Waterbury, Ed</td>
<td>Ford Motor Co.</td>
</tr>
<tr>
<td>Yusuf, Siaka O.</td>
<td>Gamma Metrics, Inc.</td>
</tr>
<tr>
<td>Blossfeld, Doug</td>
<td>General Motors Co.</td>
</tr>
<tr>
<td>Lechman, D. C.</td>
<td>General Motors Co.</td>
</tr>
<tr>
<td>Schneider, Eric</td>
<td>General Motors Co.</td>
</tr>
<tr>
<td>Robbins, John</td>
<td>Great Lakes Environmental Research Lab</td>
</tr>
<tr>
<td>Landrum, Peter</td>
<td>Great Lakes Environmental Research Lab</td>
</tr>
<tr>
<td>Matsubayaski, M.</td>
<td>Japan Atomic Energy Research Institute</td>
</tr>
<tr>
<td>Albert, Fred</td>
<td>Montana Biotech Corporation</td>
</tr>
<tr>
<td>Combie, Joan</td>
<td>Montana Biotech</td>
</tr>
<tr>
<td>Nachtman, Tom</td>
<td>New Waste Concepts</td>
</tr>
<tr>
<td>Forsell, James</td>
<td>Northern California Transplant Bank</td>
</tr>
<tr>
<td>Brown, Allen</td>
<td>Northern California Transplant Bank</td>
</tr>
<tr>
<td>Rosseel, Thomas</td>
<td>Oak Ridge National Laboratory</td>
</tr>
<tr>
<td>Baldwin, C.A.</td>
<td>Oak Ridge National Laboratory</td>
</tr>
<tr>
<td>Corwin, W. R.</td>
<td>Oak Ridge National Laboratory</td>
</tr>
<tr>
<td>Heatherly, D.W.</td>
<td>Oak Ridge National Laboratory</td>
</tr>
<tr>
<td>Iskander, S.K.</td>
<td>Oak Ridge National Laboratory</td>
</tr>
<tr>
<td>McCabe, D.E.</td>
<td>Oak Ridge National Laboratory</td>
</tr>
<tr>
<td>Miller, M.K.</td>
<td>Oak Ridge National Laboratory</td>
</tr>
<tr>
<td>Nanstad, R.K.</td>
<td>Oak Ridge National Laboratory</td>
</tr>
<tr>
<td>Remec, I.</td>
<td>Oak Ridge National Laboratory</td>
</tr>
<tr>
<td>Sokolov, M.S.</td>
<td>Oak Ridge National Laboratory</td>
</tr>
<tr>
<td>Stoller, R.E.</td>
<td>Oak Ridge National Laboratory</td>
</tr>
<tr>
<td>Thoms, K.R.</td>
<td>Oak Ridge National Laboratory</td>
</tr>
<tr>
<td>Igarashi, Brian</td>
<td>NIST</td>
</tr>
<tr>
<td>Parker, Randy</td>
<td>Pacific Gas and Electric</td>
</tr>
<tr>
<td>Sinclair, Art</td>
<td>Pall Gelman Sciences</td>
</tr>
<tr>
<td>Kyle, Jeff</td>
<td>Pall Gelman Sciences</td>
</tr>
<tr>
<td>LaCoe, Scott</td>
<td>Pall Gelman Sciences</td>
</tr>
<tr>
<td>Mahaffey, William</td>
<td>Pelorus Enbiotech Corp.</td>
</tr>
<tr>
<td>Nyberg, Russ</td>
<td>Raven Biological Laboratories</td>
</tr>
<tr>
<td>Carroll, Pat</td>
<td>St. Luke's Hospital</td>
</tr>
<tr>
<td>Kotowicz, Ellie</td>
<td>St. Luke's Hospital</td>
</tr>
<tr>
<td>Hillegas, William</td>
<td>SoloHill Engineering, Inc.</td>
</tr>
<tr>
<td>Sklapsky, Brian</td>
<td>Sparrow Hospital</td>
</tr>
<tr>
<td>Publiesi, Reyanildo</td>
<td>Supervisao de Fisica Nuclear, Brazil</td>
</tr>
<tr>
<td>Curling, Simon</td>
<td>USDA Forest Products Lab</td>
</tr>
<tr>
<td></td>
<td>R&D and NAO Planning</td>
</tr>
<tr>
<td></td>
<td>Microbiology</td>
</tr>
<tr>
<td></td>
<td>Materials Reliability Div.</td>
</tr>
<tr>
<td>Name</td>
<td>Department</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>Paisley, Keri</td>
<td>Biology</td>
</tr>
<tr>
<td>Bennett, Chris</td>
<td>Chemical Engineering</td>
</tr>
<tr>
<td>Hutson, Nick</td>
<td>Chemical Engineering</td>
</tr>
<tr>
<td>Long, Richard</td>
<td>Chemical Engineering</td>
</tr>
<tr>
<td>Neylon, Michael</td>
<td>Chemical Engineering</td>
</tr>
<tr>
<td>Selis, Hildegard</td>
<td>Civil and Environmental Engineering</td>
</tr>
<tr>
<td>Orlov, Alex</td>
<td>Civil and Environmental Engineering</td>
</tr>
<tr>
<td>Harris, John</td>
<td>Geological Sciences</td>
</tr>
<tr>
<td>Fortuna, John</td>
<td>Geological Sciences</td>
</tr>
<tr>
<td>Simon, Gregory</td>
<td>Geological Sciences</td>
</tr>
<tr>
<td>Tohver, Eric</td>
<td>Geological Sciences</td>
</tr>
<tr>
<td>Boven, Karen</td>
<td>Geological Sciences</td>
</tr>
<tr>
<td>Streepey, Margaret</td>
<td>Geological Sciences</td>
</tr>
<tr>
<td>Dong, Hailiang</td>
<td>Geological Sciences</td>
</tr>
<tr>
<td>Barford, Dan</td>
<td>Geological Sciences</td>
</tr>
<tr>
<td>Ambrose, Kirk</td>
<td>History of Art</td>
</tr>
<tr>
<td>Paraventi, Denise</td>
<td>Material Science and Engineering</td>
</tr>
<tr>
<td>Eiselt, Sunday</td>
<td>Museum of Anthropology</td>
</tr>
<tr>
<td>Griffin, William</td>
<td>Museum of Anthropology</td>
</tr>
<tr>
<td>Gulick, Jennifer</td>
<td>Museum of Anthropology</td>
</tr>
<tr>
<td>Michelaki, Kostalena</td>
<td>Museum of Anthropology</td>
</tr>
<tr>
<td>Rupley, Eric</td>
<td>Museum of Anthropology</td>
</tr>
<tr>
<td>Alexandreanu, Bogdan</td>
<td>Nuclear Engineering & Radiological Sciences</td>
</tr>
<tr>
<td>Barrett, Carla</td>
<td>Nuclear Engineering & Radiological Sciences</td>
</tr>
<tr>
<td>Benke, Roland</td>
<td>Nuclear Engineering & Radiological Sciences</td>
</tr>
<tr>
<td>Bialik, Shawn</td>
<td>Nuclear Engineering & Radiological Sciences</td>
</tr>
<tr>
<td>Branch, Clair</td>
<td>Nuclear Engineering & Radiological Sciences</td>
</tr>
<tr>
<td>Brink, Jeffrey</td>
<td>Nuclear Engineering & Radiological Sciences</td>
</tr>
<tr>
<td>Brock, Kristy</td>
<td>Nuclear Engineering & Radiological Sciences</td>
</tr>
<tr>
<td>Busby, Jeremy</td>
<td>Nuclear Engineering & Radiological Sciences</td>
</tr>
<tr>
<td>Capell, Brent</td>
<td>Nuclear Engineering & Radiological Sciences</td>
</tr>
<tr>
<td>Chen, Chen</td>
<td>Nuclear Engineering & Radiological Sciences</td>
</tr>
<tr>
<td>Clarke, Geoffrey</td>
<td>Nuclear Engineering & Radiological Sciences</td>
</tr>
<tr>
<td>Daniels, Matthew</td>
<td>Nuclear Engineering & Radiological Sciences</td>
</tr>
<tr>
<td>Du, Yanfeng</td>
<td>Nuclear Engineering & Radiological Sciences</td>
</tr>
<tr>
<td>Gan, Jian</td>
<td>Nuclear Engineering & Radiological Sciences</td>
</tr>
<tr>
<td>Grambau, Benjamin</td>
<td>Nuclear Engineering & Radiological Sciences</td>
</tr>
<tr>
<td>Gu, Binxi</td>
<td>Nuclear Engineering & Radiological Sciences</td>
</tr>
<tr>
<td>Hammig, Mark</td>
<td>Nuclear Engineering & Radiological Sciences</td>
</tr>
<tr>
<td>Keyser, Marc</td>
<td>Nuclear Engineering & Radiological Sciences</td>
</tr>
<tr>
<td>Kim, Sung Hyun</td>
<td>Nuclear Engineering & Radiological Sciences</td>
</tr>
<tr>
<td>LeBlanc, James</td>
<td>Nuclear Engineering & Radiological Sciences</td>
</tr>
<tr>
<td>Li, Wen</td>
<td>Nuclear Engineering & Radiological Sciences</td>
</tr>
<tr>
<td>Lian, Jie</td>
<td>Nuclear Engineering & Radiological Sciences</td>
</tr>
<tr>
<td>Marcinkowski, Karin</td>
<td>Nuclear Engineering & Radiological Sciences</td>
</tr>
<tr>
<td>McAnallen, Julia</td>
<td>Nuclear Engineering & Radiological Sciences</td>
</tr>
<tr>
<td>Park, Jiyoungh</td>
<td>Nuclear Engineering & Radiological Sciences</td>
</tr>
<tr>
<td>Patrick, Daniels</td>
<td>Nuclear Engineering & Radiological Sciences</td>
</tr>
<tr>
<td>Phillips, Michael</td>
<td>Nuclear Engineering & Radiological Sciences</td>
</tr>
</tbody>
</table>
Porter, Mark
Reddy, Nishan
Robinson, Duncan
Seifert, Allen
Selvaganapathy, P.
Skrabis, Peter
Smith, Leon Eric
Tian, Huahang
Wines, James
Yang, Yonghong
Yu, Qingkai
Ashoak, Josh
Perez, Ricardo
Berebitsky, Daniel
Gonzalez, Eric
Gupta, Milan
Ries, Kelly
Degenhardt, James
Yam, Ly
Mansukhani, Surat
Marsac, Patrick
Epp, Erik
Trombley, John
Wong, Emma

Nuclear Engineering & Radiological Sciences
UROP - School of Public Health
UROP - School of Public Health
UROP - Chemistry (Physics)
UROP - Chemistry (Chemical Eng)
UROP - Chemistry (Pre-Business)
UROP - Chemistry (Chemical Engineering)
UROP - Chemistry (Physics)
UROP - Chemistry (Computer Science)
UROP - Chemistry (Undeclared)
UROP - Chemistry (Chemical Engineering)
UROP - Chemistry (Chemistry)
UROP - Chemistry (Education)
UROP - Chemistry (Undeclared)

Students from Other Colleges

Paige, Matthew
Johnson, Tim
Hirshman, Amy
Zhao, Xianda
Xifan, Zhang
Juan You, Shi
Parent, Laura
Hare, Timothy
Church, Terry
Johnson, L.H.
Kendrick, M.
Nardini, I.
Thrower, C.

Indiana University
Indiana University
Michigan State University
Michigan State University
Ohio State University
Ohio State University
San Jose State University
State University of New York Albany
University of Colorado, Boulder
University of Manchester
University of Manchester
University of Manchester

Geological Sciences
Geological Sciences
Anthropology
Civil & Environ. Engin.
Geological Sciences
Geological Sciences
Geology
Anthropology
Geological Sciences
Earth Sciences
Earth Sciences
Earth Sciences
Earth Sciences
Recent Publications & Papers Related to Research at PML/FNR

Archaeology

Biological and Environmental Sciences

Chemical Engineering

Geological Sciences

M.T. Heizler, K.E. Karlstrom, and M.J. Timmons, “Where have all the old micas gone?” *NMGS - Spring meeting* (1999).

V.T. McLemore, M.T. Heizler, and E.A. Munroe, “Geochemistry of host rocks, veins, replacements, and jasperoids in the Hillsboro District, Sierra County, New Mexico, USA,” NMGS – Spring meeting (1999).

V.T. McLemore, E.A. Munroe, M.T. Heizler, and C. McKee, “Geochemistry of the Copper Flat porphyry and associated deposits in the Hillsburo Mining District, Sierra County, New Mexico, USA,” Geochemical Exploration, v. 66 (1999).

Industrial Applications

Materials Science

Medicine

Nuclear Medicine

Nuclear Chemistry

Nuclear Fission Reactors

Nuclear Waste Management

Radiation Measurement and Imaging

Z. He, G.F. Knoll, and D.K. Wehe, “Direct measurement of electron drift parameters of wide band gap semiconductors,” accepted for publication in Nucl. Inst. and Meth. , Jan. 1998. Also appeared

Radiological Health Engineering

The Regents of the University of Michigan:

David A. Brandon, Ann Arbor;
Laurence B. Deitch, Bloomfield Hills;
Daniel D. Horning, Grand Haven;
Olivia P. Maynard, Goodrich;
Rebecca McGowan, Ann Arbor;
Andrea Fischer Newman, Ann Arbor;
S. Martin Taylor, Grosse Pointe Farms;
Katherine E. White, Ann Arbor;
Lee C. Bollinger (ex officio).

The University of Michigan, an equal opportunity/affirmative action employer, complies with all applicable federal and state laws regarding non-discrimination and affirmative action, including Title IX of the Education Amendments of 1972 and Section 504 of the Rehabilitation Act of 1973. The University of Michigan is committed to a policy of non-discrimination and equal opportunity for all persons regardless of race, sex, color, religion, creed, national origin or ancestry, age, marital status, sexual orientation, disability, or Vietnam-era veteran status in employment, educational programs and activities, and admissions. Inquiries or complaints may be addressed to the University's Director of Affirmative Action and Title IX/Section 504 Coordinator, 4005 Wolverine Tower, Ann Arbor, Michigan 48109-1281, (734) 763-0235, TDD (734) 647-1388. For other University of Michigan information call (734) 764-1817.

Editor: John C. Lee

Technical writing and layout: Leah Minc

Computer graphics: Eric Touchberry

Front Cover: Phoenix Rising, original emblem for the Michigan Memorial Phoenix Project, designed by Leonard Zamiski (ca. 1948).

© The University of Michigan, 2000.