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Summary. We provide methods that can be used to obtain more accurate environmental exposure assessment. In particular,
we propose two modeling approaches to combine monitoring data at point level with numerical model output at grid cell
level, yielding improved prediction of ambient exposure at point level. Extending our earlier downscaler model (Berrocal, V.
J., Gelfand, A. E., and Holland, D. M. (2010b). A spatio-temporal downscaler for outputs from numerical models. Journal
of Agricultural, Biological and Environmental Statistics 15, 176–197), these new models are intended to address two potential
concerns with the model output. One recognizes that there may be useful information in the outputs for grid cells that are
neighbors of the one in which the location lies. The second acknowledges potential spatial misalignment between a station
and its putatively associated grid cell.
The first model is a Gaussian Markov random field smoothed downscaler that relates monitoring station data and computer
model output via the introduction of a latent Gaussian Markov random field linked to both sources of data. The second model
is a smoothed downscaler with spatially varying random weights defined through a latent Gaussian process and an exponential
kernel function, that yields, at each site, a new variable on which the monitoring station data is regressed with a spatial linear
model. We applied both methods to daily ozone concentration data for the Eastern US during the summer months of June,
July and August 2001, obtaining, respectively, a 5% and a 15% predictive gain in overall predictive mean square error over
our earlier downscaler model (Berrocal et al., 2010b). Perhaps more importantly, the predictive gain is greater at hold-out
sites that are far from monitoring sites.

Key words: Change of support; Data fusion; Gaussian Markov random field; Numerical model calibration; Smoothing;
Spatially varying random weights.

1. Introduction
The need for accurate assessment of exposure to air pollu-
tants arises to effectively investigate the linkage between am-
bient exposure and health effects. It also arises with regard
to compliance with legislated regulatory standards to control
levels of environmental exposure. As a result, the US Envi-
ronmental Protection Agency (EPA) monitors pollutant levels
using information from monitoring networks as well as esti-
mates generated by deterministic numerical models. The for-
mer measure pollutant concentrations using instruments at a
sparse set of stations, while the latter yield estimates of the
average concentration in grid cells of prespecified dimensions
by numerically solving complex systems of differential equa-
tions capturing various diffusion, chemical, and atmospheric
processes. The computer model output spans large spatial do-
mains with no missingness.

Fusing these information sources can improve exposure as-
sessment at high, in fact, point-level resolution. Combining

data from multiple sources, so-called data assimilation, is well-
known in the atmospheric sciences (Kalnay, 2003). There, the
goal is to combine observational data on the current state of
the atmosphere with a short-range forecast in order to obtain
initial conditions for a numerical atmospheric model. Most
methods proposed in atmospheric data assimilation are algo-
rithmic, ad hoc and do not address the “change of support”
problem (Cressie 1993; Gotway and Young 2002; Banerjee,
Carlin, and Gelfand 2004, chapter 6).

The statistics literature on “data fusion” can be grouped
into two paths. One is Bayesian melding (Fuentes and Raftery
2005) where observational data is combined with computer
model output by introducing a latent point-level process driv-
ing both sources of data. The numerical model output is
then expressed as a linearly calibrated integral over a grid
cell (scaled by the area of the cell) of the latent point-level
process while the monitoring data is related to the latent
process via a measurement error model. A spatio-temporal
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extension of Bayesian melding has been presented by
McMillan et al. (2010). This approach offers a solution to
the problem through upscaling to grid cells.

The second approach uses a two-stage regression, dating
to Guillas et al. (2008) and subsequently Liu, Le, and Zidek
(2008), with an ad hoc method to allow the coefficients of
the linear regression to be spatially interpolated. Berrocal,
Gelfand, and Holland (2010a, 2010b) propose univariate and
bivariate hierarchical downscaler models that relate the mon-
itoring station data and the computer model output using a
spatial linear model with spatially varying coefficients in turn
modeled as Gaussian processes (GPs). These models offer the
advantage of local calibration of the numerical model output
without incurring in problems due to the dimensionality of the
computer model output, as for example in Bayesian melding,
since they are only fitted at the numerical model grid cells
where the monitoring stations reside.

The contribution of this article is to provide two useful
neighbor-based extensions of our earlier downscaler modeling
work. That is, there may be useful information in the output
at neighboring grid cells to the one where the location lies and
there may be misalignment between stations and putatively
associated grid cells. These extensions do not seek directly to
remedy other forms of error that may be built into the nu-
merical model (errors reflecting uncertainty in model input,
uncertainty in the partial differential equations for the dy-
namics of pollution transport, and uncertainty introduced by
the numerical approximation methods used to solve the re-
sulting system of partial differential equations). In particular,
these new models provide adaptive smoothing to the com-
puter model output which achieves stronger association with
the observed station data. Improved spatial interpolation of
the ambient exposures results; using hold out data, we achieve
gains of 5% and 15%, respectively, in predictive mean square
error over our original downscaler. One extension introduces a
Gaussian Markov random field (GMRF) to smooth the com-
puter model. The other introduces spatially varying weights
driven by a latent GP to accomplish the smoothing. This last
model falls in the realm of recent work to render condition-
ally autoregressive models (CAR; Besag 1974; Banerjee et al.
2004) more flexible by allowing adaptive adjacency structure
(e.g. Lu and Carlin 2005; Kyung and Ghosh 2010).

We apply our approach to interpolate ozone levels in space
and time for the summer of 2001 using station data and the
Community Multiscale Air Quality model (CMAQ; Byun and
Schere 2006) output. However, the strategy is applicable to
other environmental contaminants and to other data fusion
settings.

The format of the article is as follows. In Section 2, we
present the motivating data. In Section 3, we review the el-
ementary downscaler model (Berrocal et al., 2010b) and in-
troduce two extensions. In Section 4, we discuss computa-
tion details relative to the fitting of these downscaler models,
while in Section 5, we present results on the predictive perfor-
mance of these models. We conclude with Section 6 where we
briefly discuss future extensions of the smoothed downscaler
with spatially varying random weights. Supplementary mate-
rial including additional figures and results is available online
at the Biometrics website (http://www.biometrics.tibs.org).

2. Data
Ground-level ozone is one of the six “criteria pollutants” that
the US EPA is required to monitor by the Clean Air Act. To
keep track of ozone concentration, the EPA utilizes monitor-
ing devices sparsely located across the United States along
with estimates of ground-level ozone concentration produced
by the deterministic numerical air quality model, Models-3/
Community Mesoscale Air Quality model, CMAQ (Byun
and Schere 2006; http://epa.gov/asmdnerl/CMAQ). We il-
lustrate our fully model based fusion approach using these
two sources. In both cases, the data refer to the daily
8-hour maxima ozone concentration (henceforth daily con-
centration) for the Eastern United States during the summer
months of June, July, and August 2001, when the elevated
temperatures and solar radiation exacerbate the production of
ozone.

Figure 1 displays the locations of the 800 monitoring sites
belonging to the National Air Monitoring Stations/State and
Local Air Monitoring Stations (NAMS/SLAMS) network that
we employed for our analysis. Of the 800 sites, we selected 700
at random as a fitting dataset (percentage of missing data dur-
ing the 92 summer days of 2001 = 2.8%), while we used the
remaining 100 (percentage of missing data = 2.2%) to assess
the out-of-sample predictive performance of four approaches:
(i) a kriging model using only the station data, (ii) the spatio-
temporal downscaler model discussed above (Berrocal et al.,
2010b), (iii) a downscaler model with GMRF smoothing, and
(iv) a downscaler model with smoothing obtained using spa-
tially varying random weights.

Following Berrocal et al. (2010b), Sahu, Gelfand, and
Holland (2007) and references therein, we have modeled ozone
concentration on the square root scale to achieve approximate
normality and stabilize the variance. The observed ozone con-
centration data display a fair degree of variability during the
summer months of 2001: the daily mean of the daily ozone
concentration over the 800 monitoring sites, ranges from 5.8
to 8.5

√
ppb (parts per billion), while the daily standard de-

viation varies from 0.7 to 1.6
√

ppb (Figure 2a).
CMAQ produces estimates of ozone concentration over the

United States at predetermined spatial and temporal scales.
We used CMAQ for the eastern United States at 12-km reso-
lution yielding 40,044 daily grid cell values. Although at areal
scale rather than at point level, the CMAQ output has the
advantage of complete spatial coverage and no missingness. In
addition, it is moderately to fairly strongly correlated with the
observed ozone concentration data, suggesting its potential
for improved spatial interpolation. In particular, Figure 2(b)
displays the daily correlation between the square root of ob-
served ozone concentration at site s and the square root of
the CMAQ output at the grid cell B that contains s.

3. Modeling
We briefly review the downscaler model of Berrocal et al.
(2010b) and then we present the two promising specifications
that extend the downscaler model to improve the fusion in
light of concerns mentioned in the Introduction. For each
model, we first present its static version and then its spatio-
temporal formulation.
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Figure 1. Training and validation sites used to fit and assess the out-of-sample predictive performance of the ordinary
kriging model, the downscaler, the GMRF smoothed downscaler and the smoothed downscaler using spatially varying random
weights.

3.1 Static Setting
3.1.1 The univariate downscaler. Let Y (s) denote the

square root of the daily ozone concentration observed at site
s, and let x(B) indicate the square root of the daily ozone
concentration predicted by CMAQ over grid cell B.

In the downscaler model, the change of support problem is
addressed by relating Y (s) to the CMAQ output, x(B), at the
grid cell B that contains s, via the model

Y (s) = β̃0(s) + β̃1(s) x(B) + ε(s), ε(s) ind∼ N(0, τ 2), (1)

where ε(s) is a white noise process with nugget variance τ 2,
and β̃0(s) and β̃1(s) are spatially varying coefficients that can
be decomposed as

β̃0(s) = β0 + β0(s)

β̃1(s) = β1 + β1(s), (2)

with β0 and β1, respectively, the overall intercept and slope in
calibrating the CMAQ model output and β0(s) and β1(s), re-
spectively, the local adjustments to these terms. Anticipating
association between β0(s) and β1(s), the two spatially vary-
ing coefficients are in turn modeled as correlated mean-zero
Gaussian spatial processes using the method of coregional-
ization (Wackernagel 2003; Gelfand et al. 2004). Thus, we

assume two mean-zero unit-variance independent GPs v0(s)
and v1(s) each, for convenience, equipped with an exponential
covariance structure having decay parameters, respectively, φ0

and φ1, such that

(
β0(s)
β1(s)

)
= A

(
v0(s)
v1(s)

)
, (3)

where the unknown A matrix in (3) can be assumed, without
loss of generality, to be lower-triangular. To complete the hi-
erarchical specification, we need to provide prior distributions
for the overall bias terms, β0 and β1, the nugget variance, τ 2,
the three nonnull elements of the coregionalization matrix A,
and the decay parameters φ0 and φ1.

The downscaler model “fuses” the two sources of data
while avoiding problems due to the large number of grid cells
(>40,000) associated with the CMAQ model output since only
numerical model grid cells with monitoring station observa-
tions are used in fitting. As a result, we can address the change
of support problem while avoiding introduction of stochastic
integrals, needed in the scaling up associated with Bayesian
melding. Such integrals render the latter models computa-
tionally challenging to fit for a large number of grid cells and
hopeless when we introduce measurements over time.
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Figure 2. (a) Daily mean (filled circles) and standard deviation (empty circles) of square root of observed ozone concentration
at all the 800 monitoring sites. (b) Daily correlation betweeen square root of observed ozone concentration and square root
of CMAQ output of ozone concentration. In both plots, the three days for which we will present results in Section 5 are
surrounded by a box. They are, respectively, July 4, July 20, and August 9, 2001.

Comparison with ordinary kriging has shown that the
downscaler model yields better in and out-of-sample predic-
tive performance. Lower predictive mean square and absolute
value errors along with predictive intervals having coverage
close to the nominal value result.

3.1.2 A GMRF smoothed downscaler. In (1) the CMAQ
model output enters as a covariate. Here, we introduce a
smoothed version of the {x(B)} surface arising from a latent
Gaussian Markov random field (GMRF), i.e., let

x(B) = μ + V (B) + η(B) η(B) ind∼ N (0, σ2) (4)

with μ an overall mean and V (B) a mean-zero Gaussian
Markov random field equipped with a conditionally autore-
gressive structure (CAR; Besag 1974; Banerjee et al. 2004).
In other words, if g is the number of numerical model grid
cells, then we assume that

V (Bi )|{V (Bj ) : j �= i} ∼ N

(∑
j∈δB i

V (Bj )
mi

,
ξ2

mi

)
i = 1, . . . , g

(5)

where δBi denotes the set of grid cells that are neighbors
to Bi . Although the joint distribution of the {V (Bi )} is
improper, the joint distribution for the {x(Bi )} given the
V ’s is proper and so we have a valid model for the data
{x(Bi )}. Also, the GMRF specification makes it clear that
{Ṽ (B) : Ṽ (B) = μ + V (B)} is a smoothed version of {x(B)}.
Hence, for s ∈ B, we revise (1) to

Y (s) = β̃0(s) + β1Ṽ (B) + ε(s) ε(s) ∼ N (0, τ 2) (6)

where, again, β̃0(s) = β0 + β0(s) with β0(s) modeled as a
mean-zero GP with exponential covariance structure, decay
parameter φ0 and marginal variance σ2

β 0
.1

Differently from the downscaler model, with the GMRF
smoothed downscaler model we sacrifice dimension reduction.
Though (6) is still fitted only at those grid cells B with ob-
servations, (4) with (5) requires the entire latent field V (B).
Fortunately, the computation associated with a GMRF is lo-
cal so we can still fit this model efficiently. Also, (6) through
(4) and (5) clarifies that we are implicitly relating the Y (s)
with the CMAQ model output at all the grid cells that are
neighbors of the grid cell B containing s.

3.1.3 A smoothed downscaler using spatially varying random
weights. Here, we introduce smoothing using weights that
are random and spatially varying. Now, we regress the obser-
vation at site s, Y (s), on a point-level regressor, x̃(s), obtained
by creating, at each site s, a weighted average of all the nu-
merical model output with weights that are site-specific.

We replace (6) with

Y (s) = β̃0(s) + β1x̃(s) + ε(s) ε(s) ∼ N (0, τ 2) (7)

where β̃0(s) is as in (6) and

x̃(s) =
g∑

k=1

wk (s)x(Bk ). (8)

The weights wk (s) are in turn defined as follows: let rk ,
k = 1, . . . , g be the centroids of the g numerical model grid

1 With Ṽ (B) unobserved, a spatially varying β̃1(s) will not be
identifiable.
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cells, and let Q(r) be a mean-zero GP having exponential
covariance function with decay parameter φQ and marginal
variance σ2

Q . Then, given {Q(rk )}, the g-dimensional random
vector of weights {wk (s)}k=1, . . . ,g at s is given by

wk (s) :=
K(s − rk ;ψ) · exp(Q[rk ])∑g

l=1 K(s − rl ;ψ) · exp(Q[rl ])
(9)

where K(s − rk ;ψ) is an exponential kernel with decay
parameter ψ.

Expression (9) is reminiscent of the discretized version of
process convolution introduced by Higdon (1998). However,
that work developed a stochastic process model with covari-
ance function induced by the kernel K. Here, we are only
interested in creating a spatially varying set of weights that
are spatially dependent, positive and sum to 1. If we define
the weights wk (s) without introducing the latent GP Q(r)
they would not be directional and would have the same cir-
cular contour when moving from site to site. From (9), the
Q(·) process is not identified; its center is arbitrary. So, we
impose a “sum to 0” constraint, implementing it on the fly in
the model fitting. Further discussion regarding the effect on
the weights due to ψ, φQ , and σ2

Q is provided in Section 4.
Evidently, we allow calibration in the association between

the observational data at s, Y (s), and the revised numerical
model output at the grid cell B that contains s. Also, we
clearly relate Y (s) to CMAQ levels at neighbors of the grid cell
s belongs to. Moreover, as in the GMRF smoothed downscaler
model, the collection {x̃(rk )}k=1, . . . ,g can be interpreted as a
smoothed version of the CMAQ model output, analogous to
the collection {Ṽ (Bk )}k=1, . . . ,g .

3.2 Spatio-Temporal Modeling
We now extend these downscaler models to handle data col-
lected over space and time.

3.2.1 The univariate downscaler. Let t denote time with
t = 1, . . . , T , and let Y (s, t) denote the square root of the daily
ozone concentration observed at site s and time t. Following
Section 3.1.1, x(B, t) is the square root of the CMAQ pre-
dicted daily average ozone concentration over grid cell B at
time t. As in the static setting, we associate to each point s
the CMAQ grid cell B in which it lies, and extend (1) to

Y (s, t) = β̃0(s, t) + β̃1(s, t)x(B, t) + ε(s, t), (10)

where ε(s, t) ind∼ N (0, τ 2). For each t = 1, . . . , T , we decompose
β̃i (s, t), i = 0, 1 as the sum of an overall coefficient and a local
adjustment to it, that is: β̃i (s, t) = βi,t + βi (s, t), i = 0, 1.

We consider two ways to introduce temporal dependence
in the time varying parameters β0, t , β1, t , β0(s, t), and β1(s, t).
The first is to assume that they are nested, i.e. they are inde-
pendent across time; the second is to assume that they evolve
dynamically in time (West and Harrison 1999). For the for-

mer, we would adopt βi,t
ind∼ N (μi , σ2

i ), i = 0, 1 while if they
are dynamic, we would assume

βi,t = ρiβi,t−1 + ζi,t ζi,t
ind∼ N

(
0, ς2

i

)
i = 0, 1. (11)

If the β0(s, t) and β1(s, t) are assumed nested within time,
then for each t = 1, . . . , T , they are expressed as a linear com-
bination of uncorrelated latent mean-zero unit-variance GPs
v0(s, t) and v1(s, t) having exponential covariance functions

with decay parameters, respectively φ0, t and φ1, t , i.e. similar
to (3), (

β0(s, t)
β1(s, t)

)
= A

(
v0(s, t)
v1(s, t)

)
(12)

with A coregionalization matrix and v0(s, t) and v1(s, t) in-
dependent replicates of two GPs. Conversely, if β0(s, t) and
β1(s, t) evolve in time, then, following Gelfand, Banerjee, and
Gamerman (2005), for each t = 1, . . . , T , we could assume

βi (s, t) = γiβi (s, t− 1) + νi (s, t) i = 0, 1, (13)

where the innovations νi (s, t) are correlated mean-zero GPs
defined as: (

ν0(s, t)
ν1(s, t)

)
= A

(
v0(s, t)
v1(s, t)

)

with the vi (s, t) as above. In addition, for this model, we set
βi (s, 0) = 0, for i = 0, 1. In both (12) and (13), we might en-
vision A = At with At independent across time.

With two different ways in which time dependence can
be modeled for each of the time varying parameters,
β0, t , β1, t , β0(s, t), and β1(s, t), we can formulate four differ-
ent versions of the spatio-temporal downscaler model. In ex-
periments carried out with ozone concentration data for 2001
(Berrocal et al. 2010b), the spatio-temporal downscaler model
with all time varying parameters nested within time yielded
the best predictive performance. The flexibility to choose
daily decay parameters is better than the introduction of au-
toregressive structure in the β’s. In addition, fitting condition-
ally independent daily models is computationally much faster.
Hence, in what follows we only consider this specification.

3.2.2 The GMRF smoothed downscaler. To extend the
GMRF smoothed downscaler model to the space-time setting,
we assume that

Y (s, t) = β̃0(s, t) + β1, t Ṽ (B, t) + ε(s, t) ε(s, t) ind∼ N (0, τ 2),
(14)

where we decompose β̃0(s, t) as β̃0(s, t) = β0, t + β0, t (s). Poten-
tial temporal dependence models for β0, t , β1, t and the single
GP β0(s, t) can take the forms described in Section 3.2.1. Ex-
tending the measurement error model (4), we have:

x(B, t) = μt + V (B, t) + η(B, t), (15)

where η(B, t) ind∼ N (0, σ2) and, then Ṽ (B, t) = μt + V (B, t).
To model the temporal dependence in the latent field

Ṽ (B, t), as before, we consider two cases. In the first, we
assume that for each t, the Vt = {V (B, t)} are independent
replicates over time of a Gaussian Markov random field pro-
vided with a conditional autoregressive prior, that is, for
each t:

V (Bi , t)| {V (Bj , t) : j �= i} ∼ N

(∑
j∈δB i

V [Bj , t]
mi

,
ξ2

mi

)
. (16)

In a second case, we assume that the g-dimensional random
vectors Vt , t = 1, . . . , T , have an AR(1) structure in time.
Therefore, for each t

Vt = ρVt−1 + κt , (17)
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where κt = {κ(B, t)} is a Gaussian Markov random field with
a conditional autoregressive structure and V0 = {V (B, 0)} ≡
0. As noted above, we only consider the model where the
β0, t , β1, t , β0(s, t), and the Vt = {V (B, t)} are independent in
time.

3.2.3 The smoothed downscaler using spatially varying ran-
dom weights. Extending (7), we assume that:

Y (s, t) = β̃0(s, t) + β1, t x̃(s, t) + ε(s, t) ε(s, t) ∼ N (0, τ 2),
(18)

where β̃0(s, t) = β0, t + β0(s, t). Potential models for the time
varying parameters β0, t , β1, t and β0(s, t) are as in Section 3.2.1
and 3.2.2. To define x̃(s, t), straightforward extension of (8)
yields

x̃(s, t) =
g∑

k=1

wk (s, t)x(Bk , t), (19)

where the weights wk (s, t) are random and varying both in
space and time. Again, we let rk , k = 1, . . . , g denote the cen-
troids of the g numerical model grid cells. First, we introduce
independent latent mean-zero GPs, Q(r, t), t = 1, . . . , T , with
exponential covariance structure, decay parameter φQ t and
variance σ2

Q . Then, the weights wk (s, t) take the form:

wk (s, t) :=
K(s − rk ;ψt ) · exp(Q[(rk ; t])∑g

l=1 K(s − rl ;ψt ) · exp(Q[rl ; t])
, (20)

where K(s − rk ;ψt ) = exp(−ψt |s − rk |), an exponential kernel
with decay parameter ψt . This model allows the flexibility of
spatially and temporally varying weights.

In an alternative formulation, the weights can be specified
dynamically by assuming that the latent GP Q(r, t) follows
an AR(1) process in time, i.e.,

Q(r, t) = γQ(r, t− 1) + λ(r, t) (21)

with λ(r, t) independent GPs, Q(r, 0) ≡ 0 and the weights as
in (20). Again, we only consider the γ = 0 case, i.e. indepen-
dent Q surfaces over time. As in the static setting, we impose a
sum to 0 constraint on each of the GPs Q(r, t), t = 1, . . . , T .

4. Model fitting
4.1 Priors
All the downscaler models introduced in Section 3 arise as a
Bayesian hierarchical formulation and are completely spec-
ified given priors for all the parameters. In this section,
we briefly discuss the priors adopted for the various model
parameters.

First, we consider the static case. Global calibration of the
numerical model output results from β0 and β1 for which we
employ a bivariate normal prior with prior mean equal to
(0 1)′ and a diagonal prior covariance matrix with very large
diagonal entries corresponding to vague prior variances. For
the coregionalization matrix A introduced in the downscaler
model in (3) we specify a prior via its entries. More precisely,
we place vague lognormal priors on the diagonal terms of A,
as they are related to the variances of the local adjustments
β0(s) and β1(s) and a vague normal prior on the off-diagonal
element A21. For all models, we adopt standard conjugate
inverse gamma priors for all the variance terms, that is, for τ 2,

σ2, ξ2, σ2
β 0

, σ2
Q . In particular for σ2

Q we chose an inverse gamma
prior with prior scale equal to 2 and with prior mean equal
to 1.0. With more interest in smoothing than in measurement
error, we place a rather informative prior on σ2 specified so as
to produce a posterior mean for σ2 smaller, on average, than
that of ξ2, hence allowing for more variability in V (B) than
in η(B).

For the GMRF smoothed downscaler model, we assign a
vague normal prior to μ with prior mean equal to the average,
over all grid cells B, of the numerical model output, x(B).
Similar definition was adopted in the spatio-temporal case;
for each t = 1, . . . , T , the prior mean for μt was taken to be
equal to the average of x(B, t).

Regarding priors for the decay parameters, it is not possible
to consistently estimate all the spatial covariance parameters
under weak priors (Zhang 2004). In light of this, we adopted
the following strategy: we used a continuous prior—an inverse
gamma—for the marginal variance, while we used a discrete
prior placed on a grid of values for the decay parameters. That
is, for φ0 and φ1, we placed a discrete uniform prior on the
grid of values, 0.0015, 0.001, 0.01, 0.05, and 0.1, corresponding,
respectively, to practical ranges of about 3000, 2000, 300, 60,
and 30 km. In the spatio-temporal case, we assumed that for
each t, φ0, t , and φ1, t followed the same discrete uniform prior.

We could adopt the above specifications for the spatial de-
cay parameters ψ and φQ in the downscaler with spatially
varying random weights. However, we chose to keep them
fixed. We set ψ equal to 0.08 yielding an exponential ker-
nel with a range of approximately 36 km, that is three 12-
km grid cells. Essentially, only first, second, and third order
grid cell neighbors contribute nonnegligibly to the weighted
average x̃(s) at s. Experiments with ψ’s in the neighbor-
hood of 0.08 didn’t reveal sensitivity in terms of predictive
performance.

The parameter φQ determines the smoothness of the pro-
cess Q(r) and, thus, affects the smoothness of the weights
wk (s) as s moves across the spatial domain. It is clear that
the smaller φQ is, the smoother realizations ofQ(r) will be and
thus, through (9), resulting weights may be less site-specific
than we wish. So, we set φQ equal to 0.12 (larger than ψ),
which corresponds to a range of approximately 24 km, i.e.,
two 12-km grid cells. Experiments with daily decay param-
eters ψt and φQ t yielded no distinguishable gain in model
performance.

4.2 Computational details
We fit each of the downscaler models presented in
Sections 3.1.1, 3.1.2, and 3.1.3 using a Markov Chain Monte
Carlo (MCMC) algorithm. Previous experience with the
downscaler (Berrocal et al. 2010b) suggested that we keep
only the local intercept adjustment β0(s) different from zero.
Thus, we have a single GP and all priors are conjugate.

In the smoothed downscaler using spatially varying ran-
dom weights, the posterior distribution of the latent GP Q(r)
does not have a closed form. Hence, it is necessary to use a
Metropolis–Hastings algorithm within the MCMC algorithm
where we impose the sum to 0 constraint “on the fly” af-
ter each MCMC iteration (Besag et al. 1995). Moreover, we
also face a dimensionality problem. To obtain a new sample of
weights at each iteration, it is necessary to derive a realization
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of the latent process Q(r) at the g numerical model grid cell
centroids rk . Given the size of g, to reduce the computational
burden associated with the sampling of the weights in (9) and
(20), respectively, we replace Q(rk ) and Q(rk , t), respectively,
with the predictive processes (Banerjee et al. 2008) Q̃(rk ) and
Q̃(rk , t). We used m = 648 knots thinned from the centroids
of the overall set of 40,044 CMAQ grid cells by systematically
selecting knots every 8 rows and 8 columns. So many knots se-
lected in a space-filling fashion avoids concern regarding knot
selection issues (see Banerjee et al. 2008). More details on
predictive processes and our implementation are provided in
the Appendix.

Extension of the MCMC algorithm to the space-time set-
ting is straightforward when the time varying parameters are
independent across time. However, we still fit a joint model
due to the common variance parameters, e.g., τ 2, σ2, ξ2, σ2

Q .
If some of the time varying parameters evolve dynamically in
time, fitting requires embedding the Forward Filtering Back-
ward Sampling (FFBS, Carter and Kohn 1994; West and
Harrison 1999) algorithm within the MCMC algorithm. Fi-
nally, we accommodated missingness in the training dataset
by using data augmentation to fill in the missing Y (s, t) at
each MCMC iteration under the assumption that the miss-
ingness is ignorable.

5. Results
We discuss results for the spatio-temporal versions of the three
downscaler models where all the time varying parameters are
assumed to be independent across time along with an ordinary
kriging model obtained from (10) by setting β̃1(s, t) equal to
0. As mentioned in Section 2, we fit the models to 700 training
sites and we assess the predictive performance of the various
models at 100 hold-out sites. We evaluate the out-of-sample
predictive performance of each model in terms of Predictive
Mean Square Error (PMSE), averaged across space and time,
Predictive Mean Absolute Error (PMAE), averaged across
space and time, the average length of the 95% predictive inter-
val, averaged across space time, and the empirical coverage of
the 95% predictive interval. Table 1 presents results for these
statistics for the four models. All downscaler models yield pre-
dictions with much lower PMSE and PMAE than an ordinary
kriging model, demonstrating the benefit of using the infor-
mation contained in the CMAQ output. In turn, both the
GMRF smoothed downscaler and the smoothed downscaler
using spatially varying random weights provide substantial
improvement over the downscaler, supporting the need to ac-
count for error in the association that links the observation
at a site s, Y (s), to the numerical model output at the grid
cell B that contains s. In particular, the GMRF smoothed
downscaler provides a 5.3% and a 1.9% reduction, respec-
tively, in PMSE and PMAE over the downscaler, while the
smoothed downscaler using spatially varying random weights
yields a 14.5% and 5.7% improvement, respectively, in PMSE
and PMAE. It is noteworthy that the improvement in PMSE
and PMAE of the GMRF smoothed downscaler and of the
smoothed downscaler with spatially varying weights over the
downscaler model is larger at sites that are farther from mon-
itoring training sites (figure available in online supplementary
material).

Table 1
Predictive Mean Squared Error (PMSE), Predictive Mean

Absolute Error (PMAE), average length of the 95% predictive
interval, and empirical coverage of the 95% predictive interval
for the numerical model CMAQ, the new regressor x̃(s, t), an
ordinary kriging model, the downscaler, the GMRF smoothed

downscaler and the smoothed downscaler with spatially
varying random weights

Average Empirical
length of coverage

Model PMSE PMAE 95% PI of 95% PI

CMAQ model 135.9 9.1 − −
x̃(s,t) 124.2 8.7 − −
Ordinary kriging 60.9 5.8 30.6 94.8%
Downscaler 53.1 5.3 30.4 94.9%
GMRF smoothed

downscaler
50.3 5.2 29.4 94.9%

Smoothed
downscaler with
spatially varying
random weights

45.4 5.0 27.7 95.0%

Spatial plots of the posterior mean of {x̃(rk , t)}k=1, . . . ,g ,
{Ṽ (Bk , t)}k=1, . . . ,g and of the CMAQ model output
{x(Bk , t)}k=1, . . . ,g for July 4, 2001 for a subregion of the
Eastern US are shown in Figure 3. Both the GMRF
smoothed downscaler and the smoothed downscaler using
spatially varying random weights yield surfaces that are
smoother than the original CMAQ output and, as Table 1
indicates, are better associated with the monitoring data. All
three downscaler models yield predictions of ozone concentra-
tion over the entire spatial domain. However, differently from
the numerical model output, the three downscaler models
produce predictions that are better calibrated than CMAQ
itself.

Figure 4 shows the observed ozone concentration on Au-
gust 9, 2001 at monitoring sites located in two subregions of
the Eastern US along with the posterior predictive mean of
ozone concentration resulting from the smoothed downscaler
with spatially varying random weights. The predictive sur-
faces displayed in panels (b) and (d) reproduce the spatial
gradient that is visible in the monitoring station data and
tend to agree rather well with the observational data.

All three downscaler models provide information on the
daily local and global bias of the CMAQ model output
through β0, t , β1, t and β0(s, t). Though all the downscaler mod-
els have been fitted to ozone concentration on the square root
scale, inspection of the posterior mean and 95% credible in-
tervals for β0, t and β1, t clearly indicates that there is a need
for calibration of CMAQ since for most days during the three
months of June, July, and August 2010, all three models yield
posterior estimates for β0, t and β1, t significantly different from
0 and 1, respectively.

Spatial plots of the weights wk (s, t) for July 4, 2001, asso-
ciated with four sites located in the Eastern US and depicted
in Figure 5(a) are shown in Figures 5(b)–(e). In each plot,
the location of the site within the numerical model grid cell is
marked with a dot. As Figures 5(b)–(e) illustrate, the weights
have a different orientation and magnitude from site to site.
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Figure 3. Spatial maps of: (a) the square root of the CMAQ
output, x(B, t), (b) the posterior mean of Ṽ (B, t), and (c) the
posterior mean of x̃(B, t), for July 4, 2001 for a subregion in
the Northeast.

In particular, sites s1, s2 and s3 assign a larger weight to the
grid cell B where they lie, while site s4 assigns similar weights
to three numerical model grid cells, including the one in which
it lies. In addition, the weights reveal different directionalities
for the different sites. The weights wk (s, t) not only vary in
space, but they also vary in time. This is evident by inspect-
ing the posterior mean of the weights wk (s, t) at the same
four sites using two additional days—July 20 and August 9,
2001 (figure available in the supplementary online material).
These days were chosen because they are characterized by dif-
ferent conditions in terms of variability in the observed ozone
concentration data as illustrated in Figure 2 .

Finally, we investigated whether the new regressor, x̃(s, t),
is better correlated with the monitoring data, i.e., it explains
the observational data better than the numerical model out-
put itself. In this regard, we have computed the daily corre-
lation between Y (s, t) and, respectively, the numerical model
output x(B, t), the posterior mean of Ṽ (B, t), and the pos-
terior mean of x̃(s, t) where B still denotes the grid cell con-
taining s. Table 2 reports values of these correlations for the
three selected days of July 4, July 20, and August 9, 2001.
We see that x̃(s, t) has a higher correlation with Y (s, t) than
x(B, t) and Ṽ (B, t).

6. Discussion
We have presented two extensions of our earlier downscaler
approach that smooth the computer model output for in-
sertion into a linear regression with spatially varying coef-
ficients. These regressions provide daily interpolated expo-
sure surfaces, assimilating the observed station data with the
computer model output. Through a hold-out sample 5% and
15% improvement in predictive mean square error emerges
for these new models relative to the original downscaler. Fur-
thermore, greater improvement in predictive performance is
found at sites that are far from the monitoring sites.

These new models are more demanding to fit than the orig-
inal downscaler. However, the GMRF smoothed downscaler
can take advantage of the associated convenient full condi-
tional updating while the smoothed downscaler with spatially
varying random weights can be implemented using dimension
reduction through predictive processes. User-friendly software
for fitting the latter model is available on request. Again, fit-
ting a daily fusion model that requires stochastic integration
is infeasible with more than 40, 000 grid cells much less across
the time of an entire ozone season. Furthermore, despite being
uncalibrated, CMAQ contains useful information for predict-
ing ozone concentration at unmonitored sites: all downscaler
models yielded a substantial improvement in out-of-sample
predictive performance over an ordinary kriging model.

Both extensions of the downscaler model can be used in
conjunction with an environmental exposure analysis. If the
health data is point-referenced, then the health outcome at s
could be modeled as a function of ozone concentration at s,
where the ozone concentration at s is the posterior predictive
mean obtained from the model. Similarly, if the health out-
come is aggregated over an area, then it could be regressed
on the posterior predictive mean of the average ozone con-
centration over the area. Arguably better is a joint Bayesian
approach that models exposure and health outcome jointly
and induces a conditional model for outcome given exposure.
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Figure 4. (a)–(c) Observed ozone concentration (ppb) on August 9, 2001 in two subregions of the Eastern US. (b)–(d)
Posterior predictive mean of ozone concentration on August 9, 2001 as yielded by the smoothed downscaler with spatially
varying random weights.

Further work is following two tracks. One notes that the
primary US EPA air quality standard for ozone is specified
in terms of the fourth highest daily maximum across the year
exceeding a particular threshold. Using these new models, we
would like to provide predictive distributions to assess com-

pliance with respect to this criterion. A second track seeks
to develop conditional CAR models using weights that are
driven by a GP. That is, given the GP realization, we will
define the weights to yield a valid Gaussian CAR model. This
enables CAR models with random, spatially varying weights.
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Figure 5. (a) Location of the four sites for which we are displaying the posterior predictive mean of the spatially varying
random weights wk (s, t). (b)–(e) Posterior predictive mean of the spatially varying random weights wk (s, t) for sites: (b) s1;
(c) s2; (d) s3; and (e) s4 on July 4, 2001.
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Table 2
Correlation between the square root of the observed ozone

concentration at the training sites, Y (s, t), and the square root
of the CMAQ output, x(B, t), the posterior mean of Ṽ (B, t)
where s ∈ B, and the posterior mean of x̃(s, t) for three days
in the summer of 2001: July 4, July 20, and August 9, 2001

Posterior mean of Posterior mean
Day x(B, t) Ṽ (B, t) of x̃(s, t)

07/04/2001 0.52 0.59 0.61
07/20/2001 0.76 0.80 0.81
08/09/2001 0.78 0.85 0.86

Allowing directionality in weights enables improved recon-
struction of blurred images using GMRF’s. We will report
on this in a forthcoming manuscript.

6. Disclaimer
The U.S. Environmental Protection Agency through its Office
of Research and Development partially collaborated in this
research. Although it has been reviewed by the Agency and
approved for publication, it does not necessarily reflect the
Agency’s policies or views.

7. Supplementary Materials
Web Figures referenced in Sections 1 and 5 are available un-
der the article information link at the Biometrics website
http://www.biometrics.tibs.org.
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Appendix

A.1 Predictive Process Models
In this appendix we provide a brief review on predictive pro-
cess models and we illustrate how predictive processes can be
employed in the smoothed downscaler model with spatially
varying random weights to ease computation.

Let Y (s), s ∈ D, denote a spatial process, not necessarily
Gaussian. The classical geostatistical model decomposes Y (s)
as follows:

Y (s) = μ(s) + w(s) + ε(s) ε(s) ind∼ N (0, τ 2), (A.1)

where μ(s) represents the mean structure of Y (s), and w(s)
is modeled as a mean-zero GP with covariance function
C(·, ·; θ). Inference on the covariance parameter θ is com-
putationally challenging if a large number of observations is
available.

The predictive process model addresses this problem by re-
placing w(s) in (A.1) with the predictive process w̃(s) defined
as follows. Let r∗1, . . . , r

∗
m be m pre-specified sites, or knots,

in D and let w∗ denote the m × 1 vector (w(r∗1), . . . , w(r∗m ))′.
Then, for each s ∈ D, the predictive spatial process w̃(s) de-
rived from the parent process w(s) is defined as

w̃(s) = c′(s; θ) · C∗−1(θ) · w∗, (A.2)
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where c(s; θ) is the m × 1 vector with ith component
equal to C(s, r∗i ; θ), i = 1, . . . , m, C∗(θ) is the m ×m ma-
trix with (i, j)th element equal to C(r∗i , r

∗
j ; θ) and w∗ ∼

MV Nm (0,C∗(θ)).
In other words, the predictive process w̃(s) is the projection

of the original spatial process w(s) onto the m-dimensional
space generated by w∗. Simulation experiments assessing the
performance of predictive process models on knots location
has shown little sensitivity of results on knots selection, par-
ticularly if the knots are chosen on a regular grid with small
spacing relatively to the range of the parent process w(s).

In the smoothed downscaler model with spatially varying
weights, we introduce predictive processes to alleviate compu-
tation when working with the complete CMAQ model output
consisting of g=40,044 grid cells. In this situation, as men-
tioned in Section 4.2, rather than working with the full 40,044-
dimensional vectors (Q[rk ])k=1, . . . ,g and (Q[rk , t])k=1, . . . ,g , we
replace Q(rk ) and Q(rk , t), respectively, with Q̃(rk ) and
Q̃(rk , t) defined using (A.2) andm (=648) dimensional vectors
Q∗ and Q∗

t . Then, at each MCMC iteration, we update the
m-dimensional random vector Q∗ = (Q[r∗1], . . . , Q[r∗m ])′ and
Q∗
t = (Q[r∗1, t], . . . , Q[r∗m , t])

′, respectively, by block-updating,
using four blocks of dimension 162 and a random-walk multi-
variate normal proposal with diagonal covariance matrix and
proposal variance appropriately chosen to achieve an accep-
tance rate of 25 − 40%. We then update the predictive pro-
cess Q̃(rk ), k = 1, . . . , g (respectively, Q̃[rk , t]) and the corre-
sponding new sets of weights wk (s), k = 1, . . . , g (respectively,
wk (s, t), k = 1, . . . , g) for each site s, and we accept or reject
the new proposed value following the conventional Metropolis-
Hastings scheme. The conditional distributions of the remain-
ing parameters are sampled directly.

A.2 Full Conditionals
Here we provide full conditionals for Vt and Q∗

t in, respec-
tively, the GMRF smoothed downscaler and the smoothed
downscaler with spatially varying random weights. To fa-
cilitate exposition, we present full conditionals for the case
of no missing data. Extension to handle missing data is
straightforward.

For each t, let Yt = (Y [s1, t], . . . , Y [sn , t])′ denote
the n × 1 vector of observations of ozone concen-
trations for day t and β0t denote the n × 1 vector
β0t = (β0[s1, t], . . . , β0[sn , t])′. Let Y(B i )

t and β
(B i )
0t de-

note, respectively, the ni × 1 vectors (Y [sj , t])j=1, . . . ,n i and
(β0[sj , t])j=1, . . . ,n i with sj ∈ Bi . For each t and i = 1, . . . , g,
from (14), (15), and (16), it follows that the full conditional
distribution [V (Bi , t)|{V (Bj , t), j �= i}, μt , β0, t , β1, t ,β0t , ξ

2,

τ 2, σ2,Yt , x(Bi , t)] is a N (γi , ς2
i ) distribution with

ς2
i =

(
niβ

2
1, t

τ 2 +
mi

ξ2 +
1
σ2

)−1

and

γi = ς2
i ·
{
β1, t

τ 2 1′(Y(B i )
t − β0, t1 − β1, t μt1 − β

(B i )
0t

)

+

(∑
j∈δB i

V (Bj , t)
ξ2

)
+

(
x(Bi , t) − μt

σ2

)}
,

where 1 is a ni × 1 vector of all 1’s.
Now we derive the full conditional distribution of Q∗

t in the
smoothed downscaler model using spatially varying random
weights. For each t = 1, . . . , T , let Q̃(rk , t), k = 1, . . . , g denote
the predictive spatial process derived from the parent process
Q(r, t). Then, from (A.2), for each k = 1, . . . , g

Q̃(rk , t) = c′
(
σ2
Q , φQ t

)
· C∗−1(

σ2
Q , φQ t

)
· Q∗

t . (A.3)

We indicate with ẽQ
d

t the g × g diagonal matrix with
(k, k)th element exp(Q̃(rk , t)), and with J the g × g matrix
of all 1’s. Let Kt indicate the n × g matrix Kt = (K[si −
rj ;ψt ])i=1, . . . ,n ;j=1, . . . ,g and let Wt denote the n × g matrix
of spatially varying weights Wt = (wj [si , t])i=1, . . . ,n ;j=1, . . . ,g .
Then, from (20) it follows that

Wt =
Kt · ˜eQ

d

t(
Kt · ˜eQ

d

t

)
◦ J

, (A.4)

where ◦ indicates the Schur product of matrices and the above
division of matrices is element-wise.

The Gaussian prior specification for the parent process
Q(r, t), and the likelikood in (18) imply that the full
conditional distribution [Q∗

t |β0, t , β1, t ,β0t , τ
2, σ2

Q , φQ t , ψt ,Yt ],
t = 1, . . . ,T is[

Q∗
t |β0, t , β1, t ,β0t , τ

2, σ2
Q , φQ t , ψt ,Yt

]
∝ 1

(τ 2)
n
2

× exp

{
− 1

2
(Yt − β0, t1 − β1, tWtXt − β0t )

′ (τ 2I)−1

(Yt − β0, t1 − β1, tWtXt − β0t )

}
· 1∣∣C∗

(
σ2
Q , φQ t

)∣∣ 1
2

exp
{
−1

2

(
Q∗′
t C∗−1(

σ2
Q , φQ t

)
Q∗
t

)}
,

where Xt is the g × 1 vector Xt = (x(B1, t) . . . x(Bg , t))′,
I is the n × n identity matrix and Wt is as
in (A.4).


