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3.	 Mutagenic approaches, such as that produced by 
administration of the gametic mutagen ethylnitrosourea 
(ENU), are random and provide no direct information as to 
what allelic variants or gene combinations are involved (2).

4.	 Artificial selection seems useful, yet selection on risk fea-
tures such as increased body weight, high blood pressure, 
or hyperglycemia would not contain the full complement 
of underlying disease mechanisms. These problems are 
even more limiting because chronic diseases emerge not 
as discrete events, but as clusters, often as a consequence 
to a negative health environment. These considerations led 
us to invent a more fundamental and perhaps mechanistic 
approach to the development of animal models of disease 
that focused on networks rather than single pathways.

Natural selection and replication are the basic mechanisms 
that make biology different from other sciences. Evolution 
builds on what went before such that a simple process even-
tually becomes complex. We reasoned that if evolution is an 
accurate statement of our biology, then mechanism of disease 
must be tightly associated with its patterns. We propose that 
the etiology of complex disease is linked with the evolution-
ary transition to cellular complexity that was afforded by the 
steep thermodynamic gradient of an atmospheric oxygen 
environment. From this, we put forward that natural selection 
weighs the benefit of molecular change by its worth for energy 

A Fundamental Approach to the Development  
of Animal Models
The heterogeneous genetic (G) and environmental (E) condi-
tions of human populations impart considerable difficulty for 
uncovering the etiology of complex diseases. Animal models 
where G and E variation is more controlled can be of major 
value for both identifying mechanisms of complex disease as 
well as validation of human data. For an experimental model 
to emulate any complex disease, these rules apply: (i) “mech-
anistically” correct, (ii) polygenic, (iii) equate with clinically 
known features, and (iv) influenced by environmental factors 
(both in positive and negative forms).

From our view, most commonly utilized animal models are 
not sufficient for reasons summarized in these four statements

1.	 Chemical and physical maneuvers, such as administration 
of streptozotocin to mimic diabetes or ligation of coronary 
arteries to emulate arterial disease, more accurately reflect 
response to injury and not the progression of disease.

2.	 Single or multiple gene approaches are problematic 
because complex diseases generally result from expression 
of networks of allelic variants sensitive to a given environ-
ment (1). Thus, a gene knockout only reveals essentiality 
of a gene and the biologic reorganization subsequent to its 
loss. Transgenic models, to be meaningful, require a priori 
knowledge of the disease-producing sequence variance.
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representing the widest genetic heterogeneity of laboratory 
rats available. In theory, one may ultimately be able to deter-
mine which allelic variants from the eight progenitor strains 
segregate due to selection (12).

For each rat, aerobic capacity was estimated from total dis-
tance run on a speed-ramped treadmill test to exhaustion 
that was patterned after clinical treadmill tests. The founder 
population ran to exhaustion by 355 m of distance run which 
corresponds to about a 23 min run. At each generation, a with-
in-family rotational breeding scheme was applied to 13 families 
for the low and high lines. This paradigm of breeding retains 
genetic heterogeneity and keeps the rate of inbreeding at just 
less than 1% per generation (13).

Eleven generations of selection (Figure 1a) produced a 
347% divide in running capacity between the low and high 
selected lines. On average, the treadmill running capacity 
decreased 16 m per generation in low capacity runners (LCR) 
and increased 41 m per generation in high capacity runners 
(HCR) in response to selection. At generation 11, the LCR rats 
averaged 191 ± 70 m (14.3 min) and the HCR rats ran for 853 ± 
315 m (41.6 min) (14). Currently at 21 generations (completed 
in June 2007), the LCR and HCR differ by over 450% in aerobic 
treadmill running capacity.

Selection produced differences in body weight as a correlated 
trait. The low line became increasingly heavier and the high line 
increasingly lighter at each generation (Figure 1b). By genera-
tion 11, male LCR rats weighed 92 g more (39%) than HCR males 
and similarly the LCR female rats weighed 44 g more (24%) than 

transfer. In other words, biological properties derive from and 
operate within the Laws of Thermodynamics, and this can be a 
useful foundation to describe how biological systems respond 
to changes in environment. As a result, individual phenotypes 
at all levels of biological organization represent a cumula-
tive selection on the exchange of low entropy inputs for high 
entropy outputs to yield a continuous stream of transferred 
energy.

Aerobic capacity associates with disease risk
Inefficient oxygen metabolism is a critical feature in essentially 
all human disease conditions including type 2 diabetes  (1), 
cardiac arrhythmias (3), inflammation (4), neurodegenera-
tive dysfunction (5), and cancer (6). In a study with over 6,000 
subjects, Myers et al. (7) concluded that peak exercise capac-
ity is a more powerful predictor of mortality than other estab-
lished risk factors. For subjects with various risk factors such 
as history of hypertension, pulmonary disease, diabetes, smok-
ing, obesity (BMI ≥ 30), or total cholesterol (>220 mg/dl), the 
relative risk of death from any cause increased significantly as 
exercise capacity decreased. In all subgroups (with or without 
adjustment for age), the risk of death from any cause in sub-
jects whose exercise capacity was less than 5 MET (metabolic 
equivalent, defined as ~3.5 ml/kg/min) (<50% age-predicted 
exercise capacity) was roughly double that of subjects whose 
exercise capacity was more than 8 MET. They report each 1 
MET increase in aerobic exercise capacity was associated with 
a 12% increase in survival. This study confirms the presence 
of a graded inverse relation between exercise capacity and 
all-mortality.

Rat models selectively bred for low  
and high aerobic capacity
The current phenotype of aerobic exercise capacity can be 
divided into two components: (i) intrinsic (untrained) and 
(ii) adaptational (a response to exercise training). Both com-
ponents show considerable heterogeneity, presumably related 
to an interaction between genetic and environmental factors 
(8,9). Multiple systems such as cardiovascular, metabolic, 
sensorimotor, and neuromuscular as well as aspects of social, 
behavioral, and present local environmental factors are pre-
sumed to combine to determine a current aerobic phenotype. 
Because of the linkage between aerobic capacity and health, 
we deemed it important to develop rat models that contrast 
for low and high aerobic capacity. We hypothesized that if the 
statistical association between oxygen metabolism and disease 
risk has mechanistic meaning, then artificial selection based 
on low and high aerobic exercise capacity would yield animal 
models that contrast in propensity for development of complex 
disease. For the initial step, we developed rat genetic models 
that contrast for the experimentally simpler intrinsic compo-
nent of aerobic capacity (10).

In 1996 we started large-scale artificial selection for aerobic 
capacity using the genetically heterogeneous N:NIH rats as 
the founder population (11). This stock of rats was developed 
from the intentional crossbreeding of eight inbred strains 
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Figure 1 Development of rat models for the study of complex disease.  
(a) By 11 generations, rats selectively bred for low and high intrinsic 
aerobic running capacity divided by 347% for distance run to exhaustion. 
The low capacity runners (LCR) averaged 191 ± 70 m (14.3 min) and the 
high capacity runners (HCR) ran for 853 ± 315 m (41.6 min) on a treadmill 
aerobic exercise test. (b) Changes in body weight followed as a correlated 
trait. LCR male rats weighed 39% more than HCR males and similarly 
LCR females weighed 24% more than HCR females. Data are expressed 
as means ± SD. (Reproduced by permission from ref. 14.)
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by comparison to HCR, suggesting that hyperinsulinemia 
resulted at least partly from reduced insulin clearance; and 
(iv) LCR had more visceral adiposity, elevated triglycerides, 
and higher plasma free fatty acids compared with HCR rats. In 
summary, LCR and HCR rats provide unique heterogeneous 
models with inherent differences in aerobic capacity and sev-
eral clinical features related to the metabolic syndrome.

Genes regulating mitochondrial biogenesis and respiration 
efficiency in skeletal muscle provide one mechanistic frame-
work for likely determinants that modify aerobic capacity. 
Furthermore, several lines of evidence suggest that impaired 
mitochondrial function is linked with numerous obesity-
related risk factors including intramuscular lipid accumulation 
and peripheral insulin resistance. We hypothesized that the 
LCR will have compromised mitochondrial function relative to 
the HCR rats. An important mediator of these processes is the 
transcriptional coactivator peroxisomal proliferator-activated 
receptor γ coactivator-1α (PGC-1α) (22). The cellular content 
of six proteins essential for mitochondrial biogenesis and func-
tion (1,22) was measured in soleus muscle, which is composed 
mainly of oxidative fibers (type 1). The content of PGC-1α, per-
oxisome proliferative activated receptor-gamma (PPAR-γ), ubi-
quinol-cytochrome c oxidoreductase core 2 subunit (UQCRC2), 
cytochrome c oxidase subunit I (COXI), uncoupling protein 2 
(UCP2), and ATP synthase H+ transporting mitochondrial 
F1 complex (F1-ATP synthase) was markedly reduced in the 
LCR rats by comparison to the HCR (14). The decline in these 
proteins supports the hypothesis that reduced aerobic metabo-
lism underlies the differences between the LCR and HCR rats. 
Importantly, when fed a high-fat diet (HFD) (see below), both 
COXI and UCP3 increase significantly more in HCR relative 
to LCR suggesting a possible mechanistic role in the HCR for 
“resistance” to poor dietary environments (23).

HCR females. Multiple regression analysis using weight and gen-
eration as predictors of running capacity revealed that changes 
in body weight explained between 7% and 20% of the variation 
in distance run. At later generations, the LCR male rats weighed 
40% more than HCR males, and the LCR females weighed over 
30% more than HCR females. As such, it seems as if the low and 
high lines might also serve as contrasting models to determine 
genes that influence body weight and composition.

Polygenic features of aerobic rat models
The timing and nature of emergent functional features resulting 
from artificial selection are not predictable. In general, it appears 
that selection produced changes in aerobic running capacity by 
influencing numerous peripheral and central components dif-
ferentially across time. As early as generation 7, maximal O2 
uptake (VO2max) was greater in HCR compared to LCR. This 
difference was not in central O2 delivery (e.g., cardiac output), 
rather due exclusively to a greater capillary-to-tissue oxygen 
transfer by skeletal muscle of HCR (15). The greater tissue O2 
extraction and utilization in HCR was the result of increased tis-
sue O2 diffusive capacity (15); this was paralleled by greater cap-
illary density (result of smaller fiber size) and higher oxidative 
enzyme activity (citrate synthase and β-hydroxyacyl CoA) (16). 
By generation 15, VO2max was 50% higher in HCR than LCR. 
The greater VO2max in HCR was entirely the result of greater 
maximal cardiac output. This, in turn, was mediated primarily 
by a higher stroke volume (48%) (17). Left ventricular weight, 
and a trend (P = 0.07) toward shorter left ventricular cell length, 
is apparent in LCR compared with HCR rats. Furthermore, 
estimates of isolated left ventricular cell systolic function and 
diastolic function were lower in LCR rats compared to HCR 
rats (14) as was calcium handling by cardiomyocytes (18).

Aerobic rat models divide for several  
clinical risk factors
A deterioration in cardiovascular function in LCR compared 
to HCR model was accompanied by evidence for increased 
risk of cardiovascular disease, such as higher mean arterial 
blood pressure, increased insulin resistance, greater visceral 
adiposity, and dyslipidemia. Data in Table 1 summarize 
risk factors identified in LCR and HCR rats: (i) blood pres-
sure telemetered over 24 h from rats in their home cages was 
13% higher in LCR than in the HCR rats. Extrapolating from 
human data (19), this higher blood pressure doubles the likeli-
hood that the LCR will develop cardiovascular disease relative 
to the HCR; (ii) nitric oxide-mediated vasorelaxation from 
isolated ring segments of carotid arteries was 48% greater in 
HCR relative to LCR. The concentration of acetylcholine that 
provoked a half-maximal response (median effective concen-
tration, or EC50) was 7.8-fold greater in LCR rats. Endothelial 
dysfunction is an independent predictor of cardiovascular 
disease (20) by contributing to increased peripheral vaso-
constriction and impaired exercise capacity (21); (iii) blood 
glucose and insulin levels were higher in LCR relative to the 
HCR rats, demonstrating that the LCR are more insulin resist-
ant (14); C-peptide/insulin molar ratio was reduced in LCR 

Table 1 LCR and HCR rats differ significantly for disease  
risk factors

LCR HCR
% difference  
LCR vs. HCR

VO2max  
(ml kg−0.75 min−1)

43 ± 2 68 ± 3 −58%a

Economy of running  
(ml O2 kg−0.75 m−1)

4.9 ± 0.1 4.2 ± 0.2 17%a

Blood pressure, mm Hg  
(24 h average) 102 ± 7 90 ± 7 13%

Endothelial-mediated 
vasodilation 58 ± 7 86 ± 7 48%

Random glucose, mg/dl 86 ± 6 75 ± 12 15%

Fasting glucose, mg/dl 110 ± 9 92 ± 5 20%

Insulin, pM 684 ± 195 296 ± 172 131%

C-peptide/insulin, ratio 2.4 ± 0.4 3.8 ± 1.2 −58%

Visceral adiposity/bwt, % 1.55 ± 0.39 0.95 ± 0.32 63%

Triglycerides, mg/dl 67 ± 24 25 ± 4 168%

Free fatty acids, mEq/l 0.64 ± 0.22 0.33 ± 0.04 94%

Data from ref. 14.
aValues expressed in relation to body mass raised to the power of 0.75 when 
individuals with different body weights are compared.
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by differences in energy intake. In fact, energy consumption 
expressed relative to body weight was greater in HCR rats, 
regardless of diet.

The effects of other environmental risk factors are in progress 
in the LCR/HCR rats and include: (i) response to low calo-
rie diet, (ii) daily exposure to tobacco smoke, (iii) long-term 
access to voluntary wheel running, (iv) estimation of non-
exercise activity thermogenesis (NEAT) (24), and (v) influence 
of stressful environments associated with depression and/or 
anxiety-like behaviors.

Summary
The LCR and HCR rats are hypothesis-based models selec-
tively bred for intrinsic (untrained) aerobic running capac-
ity. The LCR score high on numerous disease risks including 
those leading to the metabolic syndrome and the HCR score 
high for health factors such as maximal oxygen consumption. 
Importantly, the LCR also respond more to negative environ-
mental health risks, e.g., HFD whereas the HCR show signs of 
resistance. Our next effort will be to interrogate mechanism 
at the level of gene expression and apply a multilevel bioin-
formatic approach to identify the molecular network of aero-
bic capacity and its association with disease genes. The strong 
linkage of high aerobic metabolism with both physical capacity 
and health is presumably a product of the integral role of oxy-
gen in our evolutionary history. Even if this tight coupling of 
oxygen with function is correct, recognizing and interpreting 
this embedded pattern remains a challenge.
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