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Logistic regression analysis of biomarker
data subject to pooling and
dichotomization

Z.Zhang,**" A. Liu,® R. H. Lyles® and B. Mukherjee®

There is growing interest in pooling specimens across subjects in epidemiologic studies, especially those involving
biomarkers. This paper is concerned with regression analysis of epidemiologic data where a binary exposure is
subject to pooling and the pooled measurement is dichotomized to indicate either that no subjects in the pool
are exposed or that some are exposed, without revealing further information about the exposed subjects in the
latter case. The pooling process may be stratified on the disease status (a binary outcome) and possibly other
variables but is otherwise assumed random. We propose methods for estimating parameters in a prospective
logistic regression model and illustrate these with data from a population-based case-control study of colorectal
cancer. Simulation results show that the proposed methods perform reasonably well in realistic settings and that
pooling can lead to sizable gains in cost efficiency. We make recommendations with regard to the choice of design
for pooled epidemiologic studies. Copyright © 2011 John Wiley & Sons, Ltd.
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1. Introduction

Biomarkers play a prominent role in epidemiologic research by providing large amounts of valuable
information about various exposures. On the other hand, expensive and time-consuming assays are often
required to extract information from biomarkers. To make efficient use of limited resources and some-
times to overcome limits of detection, it has become increasingly common in epidemiologic studies
to pool specimens across subjects and work with pooled measurements of biomarkers [1-9]. Sta-
tistical methods have been developed for regression analysis with pooled exposure measurements in
case-control (CC) [1] and cohort studies [9].

All of the aforementioned developments assume that a pooled exposure measurement is an average
or, in some cases, a weighted average across subjects. This assumption may be appropriate when the
pooling involves equal or known aliquots from different subjects, the mixing process is essentially addi-
tive, and the measurement process is sufficiently accurate and precise. However, the assumption can be
easily violated if a pooled measurement results from complex biochemical events. For example, allele
frequency measurements from pooled DNA samples are subject to errors from several sources: DNA
quantification, sample preparation, polymerase chain reaction, and allele frequency determination [10].
Ideally, the statistical analysis should utilize all available information in pooled measurements of allele
frequencies, with appropriate modeling techniques to account for the various sources of error. If fea-
sible at all, this would require a lot of modeling assumptions which are difficult to verify in practice.
Another approach, which is less than ideal but simpler and presumably more robust, is to dichotomize
a pooled measurement. With a single-nucleotide polymorphism (SNP), for instance, it should be easier
to ascertain whether a particular allele is present in a pooled DNA sample than to determine its average
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frequency among subjects in the same pool. If the presence of that allele is considered a binary exposure
for an individual subject, then a dichotomized measurement of that exposure based on a pooled DNA
sample is not an average but the maximum exposure level among individual subjects in the pool.

Interestingly, this dichotomization for a binary exposure subject to pooling is analogous to a group-
testing approach to disease screening and prevalence estimation, where subjects are tested in groups
and the test result indicates whether the disease or condition is present in the group. The group testing
approach has been applied in several areas of medicine including sexually transmitted diseases [11-13],
HIV [14-16], hepatitis [17], and drug development [18]. Following decades of research, a variety of
statistical methods are now available for screening [11, 18-20], prevalence estimation [21-25], and
regression models for disease prediction [26,27]. All of these methods presume that the variable subject
to group testing is the outcome of interest. We are not aware of any previous methodological research
on regression problems where group testing is performed on a covariate, such as a SNP in a molecular
epidemiologic study.

In this paper, we consider logistic regression analysis where a binary exposure is subject to pooling
and the pooled measurement is dichotomized. We describe the study design and formulate the statisti-
cal problem in the next section. Then we propose methods for estimating the regression parameters in
Sections 3 and 4. It seems necessary to deal with regression coefficients separately for linear terms that do
or do not involve the binary exposure subject to pooling. Those involving the exposure subject to pooling
can be recovered from a poolwise binary regression model relating the pooled exposure measurement
to the outcome and other covariates, as we show in Section 3. For the other regression coefficients, we
present two methods in Section 4 whose applicability depends on the pooling mechanism and the nature
of the covariates. In Section 5, we illustrate the methods with real data from a CC study of colorectal
cancer and evaluate them in simulation experiments mimicking the same study. A discussion in Section 6
concludes the paper.

2. Notation and assumptions

Let Y denote a binary outcome variable such as a disease, X a binary exposure subject to pooling,
and Z a collection of confounders and/or effect modifiers. For example, ¥ may indicate the presence
of colorectal cancer, X may represent the presence of a risk allele at a particular SNP, and Z may
include environmental variables such as aspirin use, statin use, and vegetable consumption. Suppose
that, prospectively, these variables are related through the following logistic regression model:

logitP(Y = 1|X.Z)=a+ BX +y'Z +¢'(XZy,). (1

where Z, is typically a subvector of Z. The interaction term here is flexible and optional. For a model
without interactions, most of our methodology remains applicable if we just ignore the terms involving
Z4 or ¢, with the exception of Section 4.1. We are primarily interested in the association of ¥ with X
while adjusting for Z, which can be characterized by the log-odds ratio 8 + ¢’ Z,. We are also interested
in the association of ¥ with Z, which involves y and ¢.

We consider both prospective and retrospective (i.e., CC) designs. It is well known that the prospective
model (1) remains valid under CC sampling, except for the value of the intercept [28]. We can obtain
consistent and efficient estimates of (8, y, ¢) by fitting model (1) directly to cross-sectional, cohort, and
CC data if all variables are completely observed. The challenge for us is, of course, that X is not mea-
sured for each individual subject but rather for pooled specimens only. In this paper, we consider three
types of pooling mechanisms:

Random pooling. Subjects are pooled randomly regardless of their disease status and
covariate values.
CC pooling. Subjects are pooled randomly within each disease status (i.e., cases with

cases, controls with controls).
Further stratified (FS) pooling. The sample is stratified further by ¥ and Z together, and subjects are
pooled randomly within each stratum defined by Y and Z.

We use the subscripts ij to denote the jth subject in the ith pool, j = 1,...,m;, i = 1,...,n.1Itis
important to understand the relationship between the subscripted variables (for a particular member of a
particular pool) and the unsubscripted ones (for a generic subject chosen randomly from the population).
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In a prospective study, random pooling implies that
(Xij, Zij, Yij) ~ (X, Z2,Y), independently across (i, ).

Obviously, this is not the case under a retrospective design. In the pooling literature, no advantages have
been demonstrated for random pooling, as compared with more refined pooling mechanisms, under a
retrospective design. We will therefore consider random pooling only for a prospective study. Under
CC pooling (regardless of the sampling mechanism), we can make the pooled data representative of the
target population by conditioning on the outcome. This can be expressed formally as

(Xij, Zij|Yij = yij) ~ (X, Z|Y = yij), independently across (i, j). (2)

For FS pooling, a connection between pooled and unpooled data can be made by conditioning on
(Yij, Zij):

(Xij1Yij = yij. Zij = zij) ~ (X|Y =yi;, Z = zi;), independently across (i, j). 3)

Note that the latter two pooling mechanisms can be used in both prospective and retrospective studies,
and Equations (2) and (3) hold in both situations because the outcome has already been conditioned
upon. In general, it is important to consider the implications of the study design and the pooling mecha-
nism in developing and choosing the appropriate methods of analysis. In the rest of the paper, statements
made without specifying the study design or the pooling mechanism will be understood to hold in all
possible situations.

We obtain pooled assessments of the X;; as follows. For each pool, we know either that X;; = 0 for
all j or that X;; = 1 for some j; in other words, we observe V; = max{X;; : j = 1,...,m;}. With
the other variables fully observed, we can then summarize the observed data as (V;,Y;,Z;)7_,, where
Y, =i, ....Yim,) and Z; = (Z;1, ..., Zim,;) . Valid estimates of (B, y, ¢) from such pooled data are
not readily available. The naive approach that simply substitutes V; for X;; is unjustified theoretically
and can be shown numerically to yield seriously biased inference. In the next two sections, we propose
methods for estimating (8, ¢) and y separately.

3. Estimation of (8, ¢)

The proposed method for estimating (8, ¢), the exposure-specific coefficients, is based on a poolwise
binary regression model for V; given (Y;, Z;), which we can derive as follows. We start by writing

m; m;
P(V: =0Y; =i, Zi =) = [ [ P(Xi; = 01Yyj = yij, Zij = zij) = [ [ PX = 01Y = yij, Z = z4).
j=1 j=1

“)

This is obvious under random pooling. For FS pooling, the above follows directly from expression (3).
For CC pooling, it suffices to note that expression (2) implies expression (3), which can be seen as fol-
lows. On the event Y;; = y;;, the conditional distribution of X;; given Z;; on the left-hand side of (3)
is determined by the joint distribution of (X;;, Z;;) on the left-hand side of (2), and the same relation-
ship holds for the unsubscripted variables on the right-hand side. Equality of the joint distributions then
implies equality of the conditional distributions.

To understand the far right side of Equation (4), we deduce from model (1) that

f(ZIX=1,Y =0)

logitP(X =1|Y,Z) = BY +¢'(YZ,) + log TZIX=0.Y =0) + const., 5)

where f(-|-) denotes a generic conditional density or mass function. The essence of this relationship has
been discussed before without a formal justification [29]. For the reader’s convenience, we give a simple
proof in the Appendix. The last two terms in (5) are unknown and not straightforward to estimate, so we
model them as

f(ZIX=1,Y =0)
f(ZIX=0,Y =0)

- _______________________________________________________________________________________________|
Copyright © 2011 John Wiley & Sons, Ltd. Statist. Med. 2012, 31 2473-2484

log + const. = o* 4+ y*'Z*,




Statistics
7.7ZHANG ET AL.

where Z* is a (vector-valued) function of Z, which we specify. For example, if Z is a categorical vari-
able, then Z* is just a collection of dummy variables. If (Z|X = 0,Y = 0) and (Z|X = 1,Y = 0)
are both normally distributed with the same variance (but possibly different means), then it suffices to
set Z* = Z. If the two normal distributions have different variances, then Z* will also need to involve
quadratic terms. In practice, especially when Z has several continuous components, specification of Z*
will require a systematic approach. It is certainly possible to use a general model selection algorithm
to compare a number of candidate models (with different specifications of Z*), either sequentially or
simultaneously, in terms of a suitable criterion such as the Akaike Information Criterion or the Bayesian
Information Criterion. Another possible criterion, which is specific to this pooling problem, is driven
by the objective of estimating (3, ¢). Using the latter criterion, one would start with a small vector Z*
and add new terms of decreasing importance until the estimates of (8, ¢) have stabilized. A sensitivity
analysis could be performed to compare different starting vectors and different orderings of additional
terms.
Once Z* is specified, we can rewrite (5) as

logitP(X = 1Y, Z) =a* + BY +y*'Z* + ¢' (Y Z,),

and the resulting model for (V;|Y;,Z;) is

mj
logit P(V; = 0[Y:, Z;) = [ [[1 + expla™ + BYy +v*' Z} + ¢/ (Yij Zaij)}] ™" (6)
j=1

reminiscent of the disease prediction model considered by Vansteelandt et al. [26] in the context of group
testing. It is straightforward to estimate 6 = (a*, 8, y*, ¢) by maximizing the likelihood

n
[1p(¥i.2::6)" 11 = p(Yi. Zi26)}' "

i=1
where p(Y;,Z;; 0) = P(V; = 1]Y;,Z;) is one minus the probability of non-exposure given by (6). The
corresponding score equation is
Vi — p(Yi, Zi:0)}d(Y;, Z;: 6) _
= p(Yi,Zi:0){1 — p(Yi, Z;: 0)} '

where
d(Y;,Z:: 0) = i expla® + BYij +y*' 25 + ¢'(Yij Zaij)} (1, Yij, 23 Vi 20y )
c =1 1 +expla* + BYij + y*'Z5 + ¢'(Yij Zaij)} '

We have explored a quasi-Newton algorithm as well as an iteratively reweighted least squares algorithm
for maximizing the above likelihood. Our numerical experience suggests that the two algorithms yield
virtually identical results when they both converge and that the quasi-Newton algorithm is much more
stable and less prone to convergence problems. The quasi-Newton algorithm is readily available in R
through the ‘optim’ function (method = ‘BFGS’); the only input required is the likelihood and score
functions shown above. In addition to the maximum likelihood estimate (MLE), the ‘optim’ function
also returns the observed information.

This method of estimating (8, ¢) requires specification of the term y*'Z* in model (6), which may
appear restrictive at first sight. However, we should note that the method does not require correct spec-
ification of the term y’Z in the original model (1); only the terms involving X have an impact on the
appearance of model (6). A standard analysis of model (1) based on complete data would require cor-
rect specification of the term y’Z. Thus, the amount of modeling required for the proposed method is
comparable with that for a standard logistic regression analysis of the original, unpooled data.

4. Estimation of y

We have developed two methods for estimating y, the regression coefficient for Z in model (1). Their
applicability depends on the pooling mechanism and the nature of Z.

- _______________________________________________________________________________________________|
Copyright © 2011 John Wiley & Sons, Ltd. Statist. Med. 2012, 31 2473-2484



Statistics
7. 7ZHANG ET AL.

4.1. Maximum likelihood estimate for discrete Z

Let us start by assuming that Z is discrete, taking integer values between 0 and k, say. We will represent
such a Z in model (1) by k indicators (one for each level above 0), and accordingly y will be a k-vector
with elements

PY=1X=0,Z=2)P(Y =0/X=0,Z=0)
PY =0[X=0,Z=2)P(Y =1|X=0,Z=0)"

y, = log z=1,...,k. @)

We can further express each probability on the right-hand side as

PY =y)P(Z=z|Y =y)P(X =x|Y =y,Z =2)

PY =ylX=x,Z=2)= .
Y=o P =d)P(Z =z|Y =d)P(X =x|Y =d.Z =72)

Plugging this into Equation (7), we then have the following characterization:

P(Z =z|]Y =1)P(Z =0]Y =0) o PX=0Y=1,Z=2)P(X =0|]Y =0,Z=0)

P(Z=0]Y =1)P(Z=z]Y =0) gP(X =0Y=1,Z=0P(X=0|Y =0,Z=2)
®)

The two terms on the right-hand side pertain to distinct aspects of the underlying distribution: the first

term is determined by the conditional distribution of (Z|Y) and the second term by the conditional
distribution of (X |Y, Z). This characterization of y, has several important implications:

Yz = log

1. It suggests a simple way to estimate y,. We can estimate the first term on the right-hand side of (8)
by its empirical counterpart

NizNoo

NioNoz'

log )

where N, , denotes the number of subjects with ¥ = y and Z = z. We can estimate the last term
in (8) using the same machinery developed in Section 3. Taking Z* = Z, = Z, we can rewrite the
last term in (8) as

{1+ exp(a* + B)}1 + exp(a™ + y)}
S+ expe + B+ 77 + o) +explar)}’

(10)

where the subscript z denotes the zth element of a vector. We easily obtain an estimate of expres-
sion (10) by replacing the unknown parameters with estimates from Section 3. Adding this to (9)
yields an estimate of y,, which we denote by 7.

2. Equation (8) helps to show that ¥, is an MLE. Indeed, because the distributions (Z|Y) and
(XY, Z) range freely of each other and contribute separately to the likelihood for the observed
data, we can obtain their MLEs separately. The estimate given by (9) is clearly an MLE. The
estimates given in Section 3 are also MLESs. As a composition of MLEs, 7, must also be an MLE.

3. Equation (8) also helps with variance estimation. The two terms in (8) correspond to uncorre-
lated score functions, which implies that the variance of ¥, is a simple sum of the variance
of (9) and the variance of the MLE of (10). Expression (9) has a simple variance estimate:
NG+ Nog' + Nigt 4+ Nyt and we can obtain a variance estimate for (10) using the delta method.

To our surprise, extension of this approach to an arbitrary covariate vector Z does not seem straight-
forward. Intuition suggests that we can generalize the first component of (8) by specifying a model for
(Z1Y) or, almost equivalently, for (Y |Z). However, if Z has continuous components, model (1) is gen-
erally unsaturated and imposes a subtle constraint on the distributions (Z|Y) and (XY, Z). It is not yet
clear how to model the latter two distributions in a flexible and convenient way that both complies with
model (1) and facilitates estimation of y. If we can specify these distributions appropriately, it may be
possible to deal with the constraint using a profile likelihood approach [30,31].

4.2. A restricted Weinberg—Umbach method for case-control pooling

For a non-discrete Z, estimation of y is still possible under CC pooling, as we can fit another poolwise
binary regression model, for (Y;|X; = 0,Z;), using the results of Weinberg and Umbach [1]. Although
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Y, is a vector, it can only take two values (0 and 1) under CC pooling, so this is indeed a binary regres-
sion problem. In their original proposal of the CC pooling design, Weinberg and Umbach point out that a
logistic regression model for the individual subjects implies a logistic regression model of the same form
for pools of subjects with all covariates summed within pools [1]. In the present context, their result can
be formulated as

m; m; mj
logit P(Y; = 1|X;, Z;) =logr(m;) + ™ mi + B Y Xij +v' Y Zij +¢' > XijZaij. (1)
=1 j=1 j=1

where o** is a constant that is generally different from «, and r(m;) is the number of case pools of size
m; divided by the number of control pools of the same size.

Weinberg and Umbach assume that the interaction term is absent and that the X;; in each pool are
averaged into a pooled measurement. Together, these two assumptions would allow us to fit model (11)
and estimate (B, y) using a standard logistic regression routine. In this paper, however, we do allow
an arbitrary interaction term. More importantly, we work with pooled measurements of the X;; that
are obtained as poolwise maxima rather than averages. The information available to us is insufficient
for evaluating the sums in model (11) that involve X;;. Nonetheless, estimation of y is still possible if
we restrict attention to pools with V; = 0 (i.e., X; = 0). This selection process depends only on the
covariates in model (11), which therefore remains valid for our selected pools but takes a simpler form:

mi
logit P(Y; = 1[X; = 0.Z;) =logr(m;) +o**m; +y' > Zij. (12)
i=1

We can obtain an estimate of y from a simple logistic regression analysis based on model (12). The
restricted Weinberg—Umbach (RWU) method is not available for random pooling and at least not imme-
diately applicable to FS pooling. For CC pooling, it may not be fully efficient because it only uses a
portion of the data (i.e., the pools with V; = 0).

5. Numerical results

We now illustrate and evaluate the proposed methods in the setting of a study of colorectal cancer. The
Molecular Epidemiology of Colorectal Cancer (MECC) study is a population-based CC study of patients
who received a diagnosis of invasive colorectal cancer in northern Israel between March 31, 1998 and
March 31, 2004 [32]. Participants were interviewed to obtain demographic information, personal and
family history of cancer, medical history, medication use, and health habits. They also completed a
dietary questionnaire and had a blood sample collected. Genomic DNA was extracted from blood using
the Puregene kit. Genotyping was performed by allele-specific PCR and PCR-restriction fragment length
polymorphism. Genotype and other covariate information were available for 3864 subjects (1900 cases
and 1964 controls) for our analysis.

We based our comparative analyses of these data and the related simulation experiments on a gene—
environment interaction model, where we take X to be the indicator for the presence of a risk allele at
a SNP (assuming a dominant model for genetic susceptibility) and Z an environmental variable such as
aspirin use (at least one per week in the past 3 years) and sports participation. The SNPs and environ-
mental variables are chosen to cover a range of situations with different probabilities of exposure. Here
we consider two choices of X: the C allele at RS16892766 and the G allele at RS548598. The first SNP
has been implicated in a genome-wide association study of colorectal cancer [33], whereas the second
is chosen to illustrate the rare exposure situation. The proportion of subjects with the allele of interest is
approximately 28% for the first SNP and 8% for the second SNP. About 19% of the subjects are aspirin
users as defined previously, and 36% of them participate in sports. Both environmental variables have
been found to be negatively associated with colorectal cancer, and it will be of interest to see if the
association is modified considerably in a subpopulation with a particular genotype. For each choice of
(X, Z), the objective is to estimate (8, y, ¢) in model (1) with an interaction term.

Table I presents analysis of the MECC data, both in full and in pools, for the first SNP (RS16892766)
together with aspirin use. The full-data analysis in the top row reveals a significant positive effect of X,
a significant negative effect of Z, and a non-significant interaction between X and Z. The rest of the table
is for pooled data, with the leftmost column specifying the pooling mechanism (FS or CC) and the pool
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Table I. Analysis of MECC data, both in full and in pools, using a naive approach and the proposed method
(PM) with two options for estimating y (MLE and RWU; see Section 4 for details).

Point estimate Standard error
Pooling Method B y 1) B y ¢
None Full data 0.34 —0.52 —0.15 0.08 0.11 0.20
FS-2 Naive 0.44 —0.50 —0.13 0.08 0.13 0.18
PM-ML 0.38 —0.53 —0.11 0.09 0.11 0.21
FS-4 Naive 0.50 —0.57 0.00 0.09 0.19 0.21
PM-ML 0.32 —0.56 0.00 0.11 0.12 0.27
FS-8 Naive 0.72 —0.23 —0.35 0.16 0.33 0.34
PM-ML 0.29 —0.52 —0.13 0.18 0.14 0.40
CC-2 Naive 0.39 —0.52 —0.06 0.08 0.12 0.18
PM-ML 0.34 —0.53 —0.08 0.10 0.12 0.31
PM-RWU 0.34 —0.53 —0.08 0.10 0.13 0.31
CC+4 Naive 0.55 —0.53 —0.01 0.09 0.17 0.20
PM-ML 0.30 —0.55 0.12 0.14 0.17 0.70
PM-RWU 0.30 —0.60 0.12 0.14 0.19 0.70
CC-8 Naive 0.62 —0.72 0.17 0.16 0.36 0.37
PM-ML 0.13 —0.72 0.68 0.26 0.36 1.30
PM-RWU 0.13 —0.82 0.68 0.26 0.43 1.30

The model includes aspirin use (as Z), the presence of a C allele at RS16892766 (as X ), and a possible interaction. The
first column specifies the pooling mechanism and the pool size.

size (2,4, 8). Each pooled sample is analyzed using the proposed method as well as a naive approach
that simply substitutes a pooled measurement V; for each X;; in the pool. The proposed method has
two options for estimating y (MLE and RWU). RWU is only applicable to CC pooling, whereas MLE
is applicable to both pooling mechanisms. Under FS-2, the proposed method yields estimates (both
point estimates and standard errors) that are fairly close to the full-data analysis. The naive approach
yields similar results, too, although its point estimate of B is slightly different. Under FS-4, reasonably
close point estimates are obtained for (8, y) using the proposed method and for y only under the naive
approach. The discrepancies for ¢ are smaller than the corresponding standard errors. Under FS-8, the
proposed method again produces point estimates that resemble the full-data analysis and standard errors
that are slightly larger as expected, considering the smaller amount of information in the pooled data.
The naive approach, on the other hand, produces point estimates that are substantially different from the
full-data analysis. The comparison under CC pooling is qualitatively similar, except that no reasonable
estimates are produced under CC-8. In most scenarios considered in Table I, the proposed method is con-
sistent with the full-data analysis in terms of the direction and (non-)significance of the covariate effects
and the interaction. Larger pool sizes (e.g., 16) have been attempted without producing any informative
results due to convergence problems. This is primarily due to difficulties with fitting model (6) when
nearly all pools are exposed (i.e., V; = 1), which happens more often with larger pools.

The results based on one or a few pooled samples may be arbitrary and difficult to generalize, so we
compare the same methods by using simulated data. Each simulated sample has the exact same numbers
of cases and controls as in the original sample, and we generated each simulated sample by sampling
cases and controls separately with replacement from the original sample. This mechanism of data gen-
eration is consistent with model (1), which is saturated, and the true values of regression parameters are
identical to the estimates in a full-data analysis of the original sample (first row of Table I). We analyze
each simulated sample using the same set of methods under the same pooling scenarios as in Table I.
Simulations for larger pools (FS-16 and CC-16) have not been successful due to convergence problems.
For the scenarios shown in Table I, we have encountered no numerical problems under FS pooling and
only a minor one under CC pooling (the proposed estimate of y is not available in one out of 1000 repli-
cate samples under CC-8). The methods are compared in terms of bias, standard deviation (SD), coverage
probability (CP) of intended 95% confidence intervals, and relative cost efficiency (RCE), defined as the
pool size multiplied by the variance ratio of the full-data analysis to the proposed method. The RCE
measures the efficiency of the proposed method relative to the full-data analysis while considering the
cost reduction owing to a smaller number of assays for pooled samples. Based on incomplete data, the
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proposed method is expected to be less efficient than a full-data analysis, but it requires fewer assays and
therefore may be less expensive. The RCE can be a useful measure of cost efficiency if the cost is driven
primarily by the assays.

Table II presents the results of a simulation experiment targeted at the analyses in Table I. In the table,
it is clear that the naive approach tends to produce biased estimates under both pooling mechanisms.
The proposed method is virtually unbiased in small pools and becomes biased for y and ¢ in large
pools (FS-8 and CC-8). In terms of efficiency, the proposed method is nearly as efficient as a full-data
analysis under FS-2, slightly less efficient under FS-4, and much less efficient under FS-8. In terms of
cost efficiency, the proposed method works best under FS-4. Under CC pooling, the proposed method
is generally less efficient than a full-data analysis. The proposed method appears cost efficient (by a
small factor) for estimating (8, y) under CC-2 and CC-4 but not for estimating ¢. Recall that the two
versions of the proposed method differ in estimation of y under CC pooling. In Table II, they are almost
equivalent in small pools in terms of bias and SD, and the difference only shows under CC-8, in which
case MLE is less biased and more efficient than RWU. Finally, Table II shows that the proposed method
has the desired level of coverage, especially in small pools.

Table III presents pooled and unpooled analyses for the second SNP (RS548598) together with sports
participation. The full-data analysis in Table III reveals a significant positive effect of X, a significant
negative effect of Z, and a non-significant interaction between X and Z. A notable feature of this SNP
is the relatively low occurrence (~ 8%) of the dominant allele, which implies a smaller probability of
poolwise exposure than for the other SNP with the same pool size. This may help to deal with the conver-
gence problem in large pools and allow larger pools to be used. Indeed, Table III shows pooled analyses
under FS-16, CC-16, and even FS-32. Other than that, the findings in Table III are somewhat similar to
those in Table I. Under both pooling mechanisms, the point estimates from different methods are similar
in small pools, and the proposed method continues to produce reasonable point estimates in large pools,
at least for (B, y). Furthermore, the proposed method produces standard errors that seem more plausible,
given that a pooled sample contains less information than the original sample.

Table IV presents the results of a simulation experiment targeted at the analyses in Table III. Although
Table III includes pooled analyses under FS-32 and CC-16, we have not been able to repeat such analyses

Table II. Empirical comparison of full-data analysis, a naive approach, and the proposed method (PM) with
two options for estimating y (MLE and RWU; see Section 4 for details), in terms of bias, standard deviation
(SD), relative cost efficiency (RCE) and coverage probability (CP) of intended 95% confidence intervals, in
the setting of the MECC study with X denoting the presence of a C allele at RS16892766 and Z indicating
aspirin use.

Bias SD RCE CP
Pooling ~ Method B Y é B Y ¢ B Y ¢ B Y ¢
None Fulldata  0.00  0.00 000 008 011 019 1.0 1.0 10 095 095 096
FS-2 Naive 006 004 —003 011 015 025 077 086 0.84
PM-ML 0.00  0.00 000 009 011 021 17 19 17 09 096 095
FS-4 Naive 0.19 013 =009 0.17 032 042 043  0.67 0.66
PM-ML 0.00  0.00 000 0.11 012 027 22 34 21 095 09 095
FS-8 Naive 051 —0.40 047 046 3.66 3.69 030 0.53 0.3
PM-ML 0.00 —0.33 039 0.18 143 174 18 00 0.1 096 098 0.97
cc-2 Naive 0.04 —0.01 0.07 010 0.13 0.18 0.84 095 094
PM-ML 0.00 —0.01 001 010 0.13 031 14 14 08 096 095 096
PM-RWU 0.00 —0.01 001 010 0.3 031 14 14 08 096 095 096
cC-4 Naive 0.15 0.00 0.09 0.17 0.19 022 0.52  0.93 091
PM-ML 000 000 -005 015 019 063 13 13 04 094 093 096
PM-RWU 0.00 000 -005 015 019 063 13 12 04 094 094 096
CcC-8 Naive 044  —0.03 0.13 042 039 041 034 095 0.95
PM-ML 001 —0.04 —040 027 038 227 08 06 0.1 095 093 099
PM-RWU 0.01 -0.14 —-040 027 1.03 227 08 0.1 01 095 095 099

The true parameter values are based on the full-data analysis in Table I. The first column specifies the pooling mech-
anism and the pool size. The RCE is calculated by multiplying the pool size with the variance ratio (full-data to PM).
Each entry is based on 1000 replicates unless otherwise noted in the text.

Copyright © 2011 John Wiley & Sons, Ltd. Statist. Med. 2012, 31 2473-2484



Statistics
7. 7ZHANG ET AL.

Table ITI. Analysis of MECC data, both in full and in pools, using a naive approach and the proposed method
(PM) with two options for estimating y (MLE and RWU; see Section 4 for details).
Point estimate Standard error
Pooling Method B y 1) B y ¢
None Full data 0.41 —0.41 —0.14 0.16 0.07 0.25
FS-2 Naive 0.38 —0.41 —0.11 0.12 0.08 0.19
PM-ML 0.37 —0.41 —0.11 0.16 0.07 0.26
FS-4 Naive 0.46 —0.41 —0.08 0.09 0.08 0.15
PM-ML 0.41 —0.42 —0.08 0.17 0.07 0.27
FS-8 Naive 0.62 —0.20 —0.46 0.08 0.10 0.14
PM-ML 0.47 —0.39 —0.35 0.18 0.07 0.29
FS-16 Naive 0.48 —0.64 0.21 0.09 0.15 0.17
PM-ML 0.29 —0.44 0.09 0.22 0.08 0.37
FS-32 Naive 1.59 0.99 —1.50 0.20 0.26 0.27
PM-ML 0.55 —0.38 —0.45 0.36 0.08 0.55
CC-2 Naive 0.29 —0.16 0.10 0.12 0.05 0.14
PM-ML 0.22 —0.17 0.21 0.19 0.05 0.26
PM-RWU 0.22 —0.15 0.21 0.19 0.05 0.26
CcC-4 Naive 0.39 —0.43 0.04 0.09 0.08 0.15
PM-ML 0.29 —0.43 0.16 0.23 0.08 0.59
PM-RWU 0.29 —0.40 0.16 0.23 0.08 0.59
CC-8 Naive 0.77 —0.44 0.08 0.08 0.10 0.14
PM-ML 0.38 —0.45 0.67 0.28 0.09 0.97
PM-RWU 0.38 —0.44 0.67 0.28 0.11 0.97
CC-16 Naive 0.63 —0.41 —0.01 0.10 0.15 0.17
PM-ML 0.31 —0.42 0.04 0.53 0.15 1.58
PM-RWU 0.31 —0.55 0.04 0.53 0.20 1.58

The model includes sports participation (as Z), the presence of a G allele at RS548598 (as X), and a possible interaction.
The first column specifies the pooling mechanism and the pool size.

Table IV. Empirical comparison of full-data analysis, a naive approach, and the proposed method (PM) with
two options for estimating y (MLE and RWU; see Section 4 for details), in terms of bias, standard deviation
(SD), relative cost efficiency (RCE), and coverage probability (CP) of intended 95% confidence intervals, in
the setting of the MECC study with X denoting the presence of a G allele at RS548598 and Z indicating sports
participation.
Bias SD RCE CP
Pooling ~ Method p Y ¢ p Y ¢ B y ¢ B Y ¢
None Full data 0.00 0.00 —-0.01 0.16 0.07 026 1.0 1.0 1.0 095 094 094
FS-2 Naive 0.03 0.01 —-0.02 0.17 0.08 0.28 0.83 093 0.82
PM-ML 0.01 0.00 -0.02 0.16 007 027 20 20 19 095 095 09%4
FS-4 Naive 0.06 0.02 -0.02 020 0.12 0.32 0.64 0.82 0.65
PM-ML 0.01 0.00 —-0.01 0.17 007 028 35 41 34 094 095 094
FS-8 Naive 0.12 0.05 —-0.04 024 021 040 046 0.60 0.50
PM-ML 0.00 0.00 -0.01 0.18 0.07 030 63 7.8 59 095 095 0.95
FS-16 Naive 0.30 0.12 —0.08 038 053 0.67 0.30 040 0.37
PM-ML 0.01 0.00 0.00 022 0.08 037 88 144 79 096 095 096
CC-2 Naive —0.02 0.00 0.06 0.15 0.08 0.20 0.87 094 0.93
PM-ML 0.00 0.00 —-0.01 020 008 039 14 1.7 09 094 094 095
PM-RWU 0.00 0.00 -0.01 020 008 039 14 1.7 09 094 094 095
CC-4 Naive 0.00 0.00 0.10 0.16 0.08 0.16 0.73 095 0.90
PM-ML 0.02 0.00 —-0.02 026 008 057 15 32 08 095 095 095
PM-RWU 0.02 0.00 —-0.02 026 008 057 15 30 08 095 095 095
CC-8 Naive 0.06 0.00 0.12 0.19 0.10 0.14 0.58 095 0.86
PM-ML 0.02 0.00 —-0.03 039 010 101 14 43 05 097 095 098
PM-RWU 0.02 -0.01 -0.03 039 o0.11 101 14 37 05 097 095 098

The true parameter values are based on the full-data analysis in Table III. The first column specifies the pooling mech-
anism and the pool size. The RCE is calculated by multiplying the pool size with the variance ratio (full data to PM).
Each entry is based on 1000 replicates.
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for a large number of simulated samples. For the scenarios shown in Table IV, we have encountered no
numerical problems under either pooling mechanism. The findings in Table IV are largely consistent
with those in Table II, except that the proposed method performs really well under FS-8 and FS-16, with
very little bias and a high RCE for each parameter. This shows that the benefit of pooling can be dramatic
for a rare exposure, especially when the pooling is stratified on relevant variables and the pool size is
suitably large.

The simulations in Tables II and IV are retrospective in the sense that specified numbers of cases
and controls are simulated separately. As suggested by a reviewer, we have also performed prospective
simulation experiments where we start with the collection of all subjects (regardless of disease status)
with their original covariate values and generate the disease status randomly using the same logistic
regression model with parameter estimates from the full-data analysis. This has been done for both
gene—environment combinations, and the results are quite similar to those in Tables II and IV and are
therefore omitted.

6. Discussion

There is growing interest in pooling specimens in biomarker studies, both as a cost-saving measure and
as a way to overcome limits of detection. A fair amount of statistical methodology has been developed
for effective use of pooled measurements of biomarkers to address important epidemiologic questions.
The available methods for pooled exposure measurements usually assume that a pooled measurement is
an average or weighted average of individual exposure levels. This assumption may be questionable in
reality, as with pooled DNA samples, and we therefore propose to dichotomize pooled measurements
of a binary exposure. The proposed approach avoids complex modeling assumptions about measure-
ment errors and may be preferable when the pooled measurement process is not well understood. On
the other hand, it is generally less efficient than methods that incorporate all available information using
correctly specified models. Where possible, a sensitivity analysis should be conducted that includes both
the proposed approach and non-dichotomized methods based on plausible models.

Numerical results, some of which are not reported here, show that the proposed approach performs
reasonably well in several realistic situations. The method for estimating (8, ¢) may have a conver-
gence problem with large pools; this is more of a design issue than a methodological one (see following
paragraphs). There are currently two methods for estimating y: the MLE method for a discrete Z and
the RWU method for CC pooling. When they are both applicable (i.e., CC pooling with a discrete Z),
our numerical experience suggests that they perform similarly to each other in small pools, the MLE
method being only slightly more efficient. In that case, one may choose to use the RWU method for
ease of implementation (although the MLE method is not really difficult to implement). Neither method
is applicable under FS pooling with a non-discrete Z, which calls for further research. Another area
for further research is how to make joint inference on (8, y,¢) when y can be estimated. Poolwise
bootstrapping seems to be a good possibility.

The findings in this paper demonstrate the cost efficiency of pooled biomarker studies and shed light
on the proper design of such studies. We have found that FS pooling generally leads to better efficiency
than does CC pooling. This suggests that we should try to identify the most important confounders and
effect modifiers in the design stage, stratify on them (in addition to the outcome) in the pooling process,
and adjust for them in the subsequent analyses. Since pooling has irreversible consequences, care should
be taken to select stratifying variables that are relevant for general purposes and not just in one specific
analysis. We have also found that pools should not be too large. The probability of poolwise exposure
(i.e., V; = 1) increases with the pool size and the probability of individual exposure (i.e., X;; = 1). If
the pool size is too large for a given probability of individual exposure, nearly all pools are exposed and
the proposed method for estimating (8, ¢) may fail to converge. This suggests that we should consider
the probability of individual exposure in each pooling stratum and make the pool size small enough to
ensure a reasonable probability of poolwise exposure. Furthermore, even without the convergence prob-
lem, the results in Table II show that the proposed method can perform poorly when the pool size is too
large and the number of pools is too small. In practice, we recommend that a conservative pool size be
chosen through a range of simulation experiments targeted at the application at hand. A hybrid design
where some specimens are pooled and some are not [8] may be a reasonable compromise when pooling
seems to help with some analyses but not others.

- _______________________________________________________________________________________________|
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Appendix A. Proof of Equation (5)

Letus write i(y, z) = logitP(X = 1|Y =y, Z = z). Then h(1, z)—h(0, z) is the log-odds ratio relating
X to Y in the subpopulation with Z = z. In the same subpopulation, model (1) says that the log-odds
ratio relating Y to X is given by 8 + ¢'z,, where z,, is to z what Z, means to Z. The invariance of odds
ratios for binary variables then implies that i(1, z) — h(0,z) = 8 + ¢'z4, and therefore

h(y.2) =y(B +¢'za) + (0. 2). (13)
By definition,

Z|IX=1,Y=0
h(0,Z) =1logitP(X =1|Y =0,Z) =log ;EZ:X — 0’ v = O; + const., (14)

where the second step follows from Bayes’ law. Substituting (14) in (13) completes the proof of (5).
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