Improving Software Configuration Troubleshooting
with Causality Analysis

by

Mona Attariyan

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
(Computer Science and Engineering)
in The University of Michigan
2012

Doctoral Committee:

Associate Professor Jason Flinn, Chair
Professor Peter M. Chen

Assistant Professor Satish Narayanasamy
Assistant Professor Mark W. Newman

© Mona Attariyan 2012
All Rights Reserved

To my mother, father, and
two sisters, Parya and Roya,

for their unconditional love and support

ACKNOWLEDGEMENTS

First, would like to express my sincerest gratitude to myiser Professor Jason Flinn.
| consider myself truly lucky to have worked with him durirtgetpast few years. He is an
excellent researcher and mentor, and | am thankful for lgestirch an incredible advisor.

| also owe thanks to the remaining members of my dissertatbonmittee: Professor
Peter Chen, Professor Mark Newman, and Professor Satidy&tsasamy. They all do-
nated their time to help shape this dissertation. | wouldi@aarly like to thank Prof.
Chen for his insightful comments and invaluable advicemyrny Ph.D. years. He is an
incredible researcher, and | am grateful for the opporyuoitvork with him.

| was lucky to be part of an awesome research group. Ya-YurnmgSuthe first member
of the pervasive computing research lab that | worked withe ®as an excellent friend
and mentor. Dan Peek, Kaushik Veeraraghavan, and Benjieabktays made time to
listen to my thoughts, questions, and complaints and vety trelpful and patient. I'd
like to especially thank Mike Chow for his incredible helptiwthe X-ray project. X-ray
would never make it without his help and passion. | thank Tilperovich for accepting
partial responsibility for breaking my two index fingershanhk Sushant Sinha for dragging
me into irrelevant and never ending discussions, which plyemiss. | also thank Jon
Oberheide, Jessica Ouyang, Brett Higgins, Jake Czyz, Khhstlyalkalkar, Yunjing Xu,
and Jing Zhang for having countless tea-times with me andniaking 4929 the most
awesome lab.

The CCCP lab, where my husband worked, was my second homezat @& grateful

for having incredible friends at CCCP. They were alwaysdHer me when our own lab

was too stressful to stay in. | especially thank Ganesh Raaild Mojtaba Mehrara for
wasting so much of my time waiting for my husband to finish oreeround of Quake
with them. | thank Mike Chu for being friendly in his own wayné Shuguang Feng,
Shantanu Gupta, Mark Woh, Mehrzad Samadi, Amin Ansari, iK&an, Nathan Clark,
Hyoun Kyu Cho, Po-Chun Hsu, and Yongjun Park for being frigrid a more normal
way.

Living in Ann Arbor would have been impossible without my grdriends: Nilou-
far Ghafouri, Mojtaba Mehrara, Armin Alaghi, Elnaz AnsaMiehrzad Samadi, Parisa
Ghaderi, and Alireza Tabatabaeenejad. I'd especiallytikéihank Niloufar Ghafouri for
generously letting me crash at her place for so many days. lueky to have such great
friends and | hope that our friendships get stronger everyda

Finally and most importantly, my family deserves major gjuate. My parents and my
sisters, Parya and Roya, provided their unconditional &meencouragement through this
whole process. | thank my mom for always having me in her pgay®eing away from my
family was the most difficult thing during these years, anddhwl could visit them more
often. Above all, | thank my husband, Amir, for his love, sagpand infinite patience. |
wouldn’t be able to get through grad school without him, anddrateful to have him by

my side as we discover the adventures of life.

TABLE OF CONTENTS

DEDICATION i
ACKNOWLEDGEMENTS ii
LISTOFFIGURES viii
LISTOFTABLES IX
ABSTRACT X
CHAPTER

[. Introduction

1.1 CausalityAnalysis
1.2 SigConf: Troubleshooting with coarse-grained catysahalysis .
1.3 ConfAid: Troubleshooting with fine-grained causalibalysis .. 6
1.4 X-ray: Troubleshooting performance problems 8
15 Roadmap e

II. SigConf: Troubleshooting with Coarse-grained
Causality Analysis. e 12

2.1 Introduction

2.2 Background
2.3 Design e
2.4 Implementation,
25 Evaluation

25.1 Methodology

252 Results
26 Conclusion

lll. ConfAid: Troubleshooting with Dynamic
Information Flow Analysis 26

3.1 Introduction 26

3.2 Designprinciples 28
3.2.1 Usewhite-boxanalysis 28
3.2.2 Operate on application binaries 30
3.2.3 Embrace imprecise analysis 30
3.3 Design and implementation 31
3.3.1 Overview: How ConfAidruns 31
3.3.2 Basicinformation flowanalysis 33
3.3.3 Heuristics for performance 38
3.3.4 Heuristics for reducing false positives 0 4
3.3.5 Multi-process causality tracking 43
3.3.6 Limitations and futurework 44
3.4 Evaluation 45
3.4.1 Experimentalsetup 45
3.4.2 Real-world misconfigurations 46
3.4.3 Effect of the weighting heuristic 51
3.4.4 Effects of bounded horizon heuristic 52
3.45 Randomfaultinjection 53
3.5 Conclusion 55

IV. Deterministic Record and Replay: Taking Control of

Overhead and Non-determinism. 56
4.1 Design e 57
4.2 Implementation 58
4.3 Evaluation 61

V. X-ray: Troubleshooting Performance Anomalies with

Causality Analysis. e 63
5.1 Introduction 63
5.2 X-ray OVervIEW o e e 66

5.2.1 Troubleshootingwith X-ray 66
5.2.2 Mechanicsof X-ray. 68
5.3 Performance summarization 69
5.3.1 Basic performance summarization 69
5.3.2 Differential performance summarization 07
5.4 Implementation 70
541 Onlinephase 71
5.4.2 Offlinephase 72
55 Evaluation 78
5.5.1 ExperimentalSetup. 78
5.5.2 Root cause identification 78
56 Conclusion 86

Vi

VI. Related Work

6.1 SigConf 90

6.2 ConfAid 91

6.3 Xerayo 92

VII. Conclusion e 95
7.1 Futuredirections 95
7.1.1 Detectinganomalies 95
7.1.2 Fixing configuration problems 96
7.2 Contributions 97

98

BIBLIOGRAPHY

Vil

Figure
3.1
3.2
3.3
3.4
3.5
4.1
5.1
5.2
5.3
54

5.5

LIST OF FIGURES

Example to illustrate causality tracking
Examples illustrating ConfAid path analysis
Example to illustrate alternate path pruning

Example to illustrate the weighting heuristic
The effect of varying the horizon
Overhead of deterministic recording

Example of X-ray output for Apache
Overviewof X-ray i
Example of performance summarization
Example of differential performance summarization
An example of X-ray request extraction. The intervalsk@d asl or2 in

each process correspond to the portions of process exedhtib X-ray
associates with the first and second requests, respectively

viii

37

40

42

LIST OF TABLES

Table
2.1 Description of injectedbugs 20
2.2 Description of predicates for each application 21
2.3 Precision of bug diagnoses for targeted predicates 23
2.4 Precision of bug diagnoses for kitchen sink predicates 24
3.1 Description of real-world configurationbugs 47
3.2 Results for 18 real-world configurationbugs 51
3.3 Random faultinjectionresults 54

5.1 Description of the Apache, Postfix and PostgreSQL pexdoce test cases 79

5.2 The results for our performance testcases. 83

ABSTRACT

Improving Software Configuration Troubleshooting with Gality Analysis

by

Mona Attariyan

Chair: Jason Flinn

Software misconfigurations are time-consuming and frtisfgeto troubleshoot. The fo-
cus of this thesis is to reduce the time and human effort ree@é&oubleshoot software
misconfigurations by automating the diagnosis process.

The core idea of this thesis is to automate misconfigurat@grobsis by using causality
analysis to determine specific inputs to an applicationchase that application to produce
an undesired output. This thesis shows that we can levehgge tausal relationships to
determine the root cause of misconfigurations. Further, @meahstrate that it is feasible
to automatically infer such relations by analyzing the ex®n of the application and the
interactions between the application and the operatinggsysBased on the idea of causal-
ity analysis, we designed and developed three misconfigardtagnosis tools: SigConf,
ConfAid, and X-ray.

SigConf uses coarse-grained causality analysis to diggposblems. The focus of
SigConf is on misconfigurations that are known, i.e., thebfgnm has been previously
reported to a misconfiguration database. This databasesqaaintained by the developers
or the users of an application. Thus, the problem of diagrgan unknown bug on sick

computercan be reduced to identifying that the sick computer is imgestimilar to a buggy

state in the database. SigConf deduces the state of themighkuter by running predicates

that test system correctness and generating signatured baghe execution path of each
predicate. SigConf generates these signatures by regatttencausal dependencies of the
predicate execution. For example, reading a file makes #haxion causally dependent on

the content of the file. SigConf compares these signatur@sstghe signatures recorded
in the database to diagnose the problem at hand.

Our second tool, ConfAid, uses a fine-grained causalityyaisato diagnose miscon-
figurations. Compared to SigConf, ConfAid considers a weeroset of root causes, i.e.
tokens in the configuration files. However, it does not rezjoiutside help to diagnose
problems, and it can diagnose previously unknown miscordigans. As the program
executes, ConfAid instruments the program binaries and dgeamic information flow
analysis to extract causal dependencies introduced thrdata and control flow. It then
uses these dependencies to link an erroneous behaviordidicpenfiguration tokens that
caused it.

While SigConf and ConfAid focus on problems that manifesinasrrect outputs, X-
ray, our final tool, tackles misconfigurations that lead tdgrenance problems. The goal
of X-ray is to not only determinehatevents happened during a performance anomaly, but
also inferwhy these events occurred. Similar to ConfAid, X-ray employsha-firained
causality analysis, and it considers root causes in saétwanfiguration files, as well as
input requests. X-ray introduces the technique@fformance summarizatido diagnose
misconfigurations. Performance summarization first atteb performance costs to fine-
grained events, such as individual instructions and systalts. It then uses dynamic
information flow to determine the probable root causes ferdakecution of each event.
The cost of each event is assigned to root causes according telative probability of the
causes leading to the execution of that event. Finally,dked tost for each root cause is
calculated by summing the per-cause costs of all events.rddtecause with the highest

cost is the biggest contributor to the performance anomaly.

Xi

CHAPTER |

Introduction

Complex software systems are difficult to configure and man&ghen problems in-
evitably arise, operators spend considerable time trehblating those problems by iden-
tifying root causes and correcting them.

Many studies suggest that misconfigurations are often therdgmt cause of problems
in deployed systems. For example, Jim Gray'’s classic waek &ributes 42% of system
outages to administration, while software, hardware, amit@enment failures account for
25%, 18%, and 14% of failures, respectively. Murphy and 348} note that the per-
centage of failures attributable to system managementcieasing over time, and that
management failures have come to dominate the combinatienftware and hardware
failures. A recent analysis of Yahoo’s mission-criticakokeeper service [37] showed that
misconfigurations were accountable for the majority of atj®exhibited. Another recent
study [77] analyzed problems reported by the customers anantercial storage com-
pany. Similar to the previous studies, configuration-ezlassues were the dominant cause
of severe problems, causing about 31% of all failures. Oshgies have shown similar
results [10, 11, 50, 54]. Further, while fault toleranceht@ques such as modular redun-
dancy [45] or Byzantine fault tolerance [14] can mask sonievsme and hardware faults,
they are unlikely to help solve configuration problems cdusghuman error since those

errors typically affect all replicas [32, 37].

Not only are configuration problems prevalent in softwartems, they also have high,
sometimes disastrous, impacts. For example, a recenteirtdpacebook left the website
inaccessible to millions of users for about 2 hours. The lgrmbwas reported to be an
incorrect configuration value [36]. As another example,ghgre .se domain of country
Sweden was unavailable for about 1 hour, due to a DNS misagafign problem. The
incident affected thousand of hosts and millions of uses$ [6

The cost of troubleshooting misconfigurations is also aui&l. Technical support
contributes 17% of the total cost of ownership of today’sktigs computers [38], and
troubleshooting misconfigurations is a large part of techinsupport. For information
systems, administrative expenses, made up almost entifggople costs, represent 60—
80% of the total cost of ownership [23]. Even for casual cotapusers, troubleshooting
is often enormously frustrating.

This thesis focuses on developing methods and tools thatreté the troubleshooting
process and thereby reduce the time to recovery (TTR) andreekpss manual effort by
users. Misconfigurations are problems in which the appticatode is correct, but the
software has been installed, configured, or updated incityreo that it does not behave
as desired. Such misconfigured software might crash, peoelwoneous output, or simply
perform poorly.

The tools described in this thesis aim to help two types ofsusénd users, who may
be having problems with an application on their personalmaters; and system adminis-
trators, who are responsible for maintaining productiostesys. These users are not the
developers of the application, and do not necessarily hesesa to the source code of the
application either. Even if the source code is availablg, &or open-source applications,
inspecting the code is usually not a viable option for thessgsl End users may simply not
have the right expertise to understand the source code. Mshmaitors may be more famil-
iar with the low-level code, but they usually deal with sysgewith various components

from different vendors. Investigating the code for all taeemponents is exceedingly diffi-

cult and time-consuming. The tools introduced in this thelsi not assume the availability
of the source code. Furthermore, the outputs of these toelksigh-level enough for non-
developers to follow and understand. For example, our dawtpas not contain function
names or values of variables in the code.

The process of troubleshooting can be divided into two stéjagnosing the problem,
and then fixing it. Today, troubleshooting a problem is a lyighanual task: First, the user
collects the symptoms of the problem by inspecting the syskor instance, she may run
some tests; or examine application and system logs. Expersunay be able to diagnose
the problem by looking at the symptoms. If the user canngrthae the problem, the next
step is to ask colleagues, or search online manuals, FAQspagd forums. The goal is
to find a reported misconfiguration case that is similar os&lenough to the user’s case.
Using a trial and error process, the user reads the oftercimate descriptions of problems
and determines whether she is experiencing the same idsasolution is provided, she
carefully tries the solution, hoping that the solution wdeave the system in a worst state.
If the solution is wrong, it needs to be rolled back and thedeaontinues. This process
is extremely tedious and time consuming.

The goal of research in this thesis is to improve the trodtlesng process by automat-
ing it as much as possible. We specifically focus on autorgatiagnosis, the first task in
the troubleshooting process. We have developed threedtféools that diagnose various
types of misconfiguration problems using different techei& Although different, these
techniques all share the common theme of causality tracKihg next section explains the

idea of causality analysis and its role in improving miscgufation troubleshooting.

1.1 Causality Analysis

Applications in today’s modern systems are extraordipardmplicated. Providing
sophisticated features, striving to be performant, andighog customizability and per-

sonalization are some of the factors that have added cormplexthe internal logic of

applications as well as the interactions between an apiglicand the rest of the system.

While software bugs are mostly mistakes in the internaldaxjian application, mis-
configurations are usually mismatches between what theeupercts and what the config-
urable features and system state observed by the appticafiects. For example, the user
may expect Apache web server to serve a certain file whenetwes a request; but since
the file permissions are not correctly set, Apache is not @béecess that file. In this ex-
ample, the state of the system, i.e. the permissions of teahfismatches the expectation
of the user.

We argue that troubleshooting misconfigurations is diffibelcause users do not know
what configuration features and system elements are redtkelpplication as configura-
tion inputs, and which ones are causing the applicationadyre an unexpected output.
In the example above, if the user knows that the permissibtisab specific file are read
by Apache, and that input is causing Apache to deny the actltessnisconfiguration is
basically diagnosed.

The core idea behind this thesis is to diagnose the root aausésconfigurations by
using causality analysis to automatically infer the indabeents that are causing the appli-
cation to produce an incorrect output. These inputs canao&ed at different granularity.
For instance, when an application reads from a file, the ai@tof the application be-
comes dependent on the content of the file. We can track thsateelationship coarsely
and conclude that the execution is dependent on the engreAilfiner-grained causality
analysis, on the other hand, may break the file and track snattities within the file, such
as individual lines or words. A coarse-grained analysisiglly cheaper and faster to per-
form compared to a fine-grained tracking. The later, howeaseanore precise and can link
a misconfiguration to fine-grained root causes, such asfgpeenfiguration parameters in
a large configuration file.

The following statement summarizes my thesis:

Misconfiguration diagnosis is the process of determining wéit input elements are
causing an application to produce an incorrect output. It isfeasible to automatically
determine such causal relations by tracking the causal depelencies between the in-
puts and outputs within the application execution as well abetween the application
and the environment. This analysis does not need the applitan source code, and
requires no modifications to the operating system or the apjptation.

To validate this thesis, we designed and developed thremessitl misconfiguration
diagnosis tools. The first tool performs a coarse-grainediyais, while the other two tools
use a fine-grained analysis approach. The next three seafdhis chapter explain these

tools in more details.

1.2 SigConf: Troubleshooting with coarse-grained causaly analysis

The first part of this thesis introduces SigConf, a tool treesucoarse-grained causal-
ity analysis to diagnose a wide range of misconfiguratiorbl@ms. SigConf considers
known misconfigurations. These are problems that othesus®re already diagnosed on
other machines, and have reported them to a reference cempittis computer can be
maintained by the developers or the users of an applicalibarefore, the problem of di-
agnosing an unknown bug onsi&ck computecan be reduced to identifying a state on the
reference computer that is similar to the state of the sickpder.

SigConf approach to deduce this state is to run a set of @edion the sick machine
and compare the resulting execution to that generated satihe predicates on a reference
computer. To effectively capture and compare the execsitidigConf generates signatures
that represent the execution of a predicate by recordingabsal dependencies of its exe-
cution. More specifically, SigConf records all the objeb&ttthe execution of the predicate
comes to causally depend on. These objects are files, diescemtries, file metadatas, and
other objects read by the predicate as it runs.

SigConf causality analysis is coarse-grained and consesvaWhen the predicate

reads a file, SigConf considers the execution to become depéeon the entire file. Sig-
Conf does not follow the execution more closely to invesagehich parts of the file are ac-
tually affecting the output. The disadvantage of a coars@igd and conservative causality
analysis approach is that it does not capture the detailsecdpplication behavior. There-
fore, misconfiguration problems that follow similar exaontpaths may generate the same
dependency set. This may adversely affect the accuracyg&fddif diagnosis. These mis-
configurations can be differentiated by adding more preégthat carefully capture the
difference between the two problems.

The advantage of this approach is that it creates simple eapcsignatures that are
robust across different platforms. The simplicity of thpgeoach enables us to diagnose
a diverse set of misconfigurations, such as library incoibhities, incorrect file system
permissions, and wrong configuration parameters. We el &gConf on three different
applications: the CVS version control system, the gcc ctenpuite, and the Apache Web
server. We compared the diagnosis accuracy of SigConf sigairalgorithm that compared
system states based solely on the success or failure ofedecptes. SigConf significantly
outperformed this algorithm, uniquely identifying the i@t bug in 86—100% of the cases.

Chapter Il discusses design, implementation, and evaluafi SigConf in greater details.

1.3 ConfAid: Troubleshooting with fine-grained causality analysis

SigConf proved successful for misconfiguration problerasdne known and are recorded
in a reference computer. However, for misconfigurations #ina unique to customized
environments or applications for which a maintained refeeemachine does not exist,
SigConf will not achieve much success. This issue inspineddea of a stand-alone trou-
bleshooting tool that does not require outside help for rabegs.

The idea and approach of ConfAid was also influenced by owr peisearch project,
AutoBash [66]. AutoBash troubleshoots problems by tragkiausality at process and file

granularity. Similar to SigConf, AutoBash treated the gsses as black boxes, such that

all the outputs of a process are considered to be dependeaik pmor inputs. We found
AutoBash to be very successful in identifying the root canfsgroblems, but the success
was limited in that AutoBash would often identify a compleonéiguration file, such as
Apache’sht t pd. conf, as the source of an error. When such files contain hundreds
of options, the root cause identification of the entire fileymat be of great use. The
lessons that we learned from SigConf and AutoBash led ussta uwghite-box approach for
troubleshooting.

ConfAid dynamically tracks causality to identify the liketoot causes of a configu-
ration problem. When a user or administrator wants to treshibot a problem, such as a
crash or incorrect output, she reproduces the problem \@igAid modifies the executed
application binaries to track the causal dependenciesdsgtwonfiguration inputs and pro-
gram behavior. ConfAid produces an ordered list of the coméition tokens most likely
to have caused the exhibited problem. ConfAid uses dynamhicrmation flow analysis
to track causality at the level of instructions and bytesaring the flow of causality
within processes as they execute, ConfAid essentially opens upabtle-box of the appli-
cation. Further, since ConfAid tracks causality using byriastrumentation [44], it does
not require application source code to find misconfiguration

Currently, ConfAid restricts the scope of information flowadysis to only track val-
ues that depend on data read from configuration files. Conpfappagates dependencies
by both data flow and control flow. If ConfAid determines thhanging a configuration
parameter may change the application’s control flow suchitl@aoids the problem (and
does not exhibit a different problem), it reports that pagtenas a possible root cause.

The fine-grained and low-level analysis of ConfAid is a higrerhead activity. It im-
poses orders of magnitude of slow down on applications. &éild user applications
might be able to tolerate this slow down, it is certainly niddable for online production
software. To address this problem, we leveraged prior wodeterministic record and re-

play to offload the heavyweight analysis from sensitive @ggibns. A deterministic replay

system provides a DVR-like functionality, in which an exeon of a hardware or software
system is recorded so that an identical execution can lateefflayed on demand. Using
a record and replay system, a misconfiguration can be re¢amee with low overhead,
while the heavy analysis happens offline on the replayedutiser Our use of determin-
istic replay to troubleshoot misconfigurations raised sdveew challenges. For instance,
the fidelity of the replay must be strict enough to guarante the two executions are
identical at the granularity observed by ConfAid. Howebegause the replayed execution
includes analysis code that the recorded execution doeshedidelity of the replay must
be loose enough to allow the replayed execution to divergagmto run the analysis. We
show that all these goals can be achieved through carefdesimn of the deterministic
replay and analysis systems. Chapter IV discusses therdasajimplementation of our
record and replay system.

We used ConfAid to troubleshoot misconfigurations in thnegliaations: OpenSSH,
the Apache Web server, and the Postfix mail server. We usedhitioodologies to collect
the configuration problems. In the first methodology, weestitd 18 real-world misconfig-
urations that users reported in forums and online FAQ palyesecreated these misconfig-
uration cases and ran ConfAid to see if it could correctlyppint the root cause. ConfAid
ranked the correct root cause first or second in all thesesclséhe second methodology,
we used ConfErr [40] to randomly generate bugs in the apjbica configuration file.
ConfAid was able to correctly rank the root cause first or sdcdo 55 out of 60 cases.
Chapter Il discusses the evaluation of ConfAid, as weltasglésign and implementation,

in more details.

1.4 X-ray: Troubleshooting performance problems

SigConf and ConfAid tackle misconfigurations that lead twimect outputs. The third
part of this thesis focuses on another important categogyrablems: misconfigurations

that lead to performance anomalies. These are problemsHmhwhe outcome is cor-

rect, but the application is experiencing unusual latemdyigh usage of resources, such as
CPU or I/0. Troubleshooting performance problems is everengballenging than trou-
bleshooting problems with erroneous output for severadales. First, the analysis tool
must incur very low overhead, otherwise it changes the padiace characteristics of the
system. Further, performance problems are usually nogrud@tistic and transient, which
make them difficult to capture and analyze.

Users and administrators typically debug performancelprob by using performance
monitoring tools, such as profilers and tracers. We arguetiigamost important reason
why troubleshooting performance is challenging is thasé¢hmols only solve half of the
problem. Troubleshooting a performance anomaly is essntieterminingwhy certain
events, such as high latency or resource usage, happenagstean. Unfortunately, most
current analysis tools only determimdatevents happened during a performance anomaly
— they leave the more challenging question of why those evieappened unanswered.
Thus, users must manually infer why the events reported tly &ols happened. This step
usually requires a lot of expertise and is highly tedious tamé-consuming.

The goal of X-ray is to not only determine what events hapgeth&ing a perfor-
mance anomaly but also automatically infer why. To accoshpthis, X-ray introduces
the technique operformance summarizatiorPerformance summarization first attributes
performance costs, such as latency and 1/O utilizationne@rained events (individual in-
structions and system calls). Then, it uses dynamic infaondlow analysis to associate
each such event with a set of probable root causes such agumatiton settings or specific
data from input requests. The cost of each event is assignét tpotential root causes
weighted by the probability that the particular root causktb the execution of that event.
Finally, the per-cause costs for all events in the prograetetion are summed together.
The end result is a list of root causes ordered by their pedioce costs. This output gives
the system troubleshooter a direct indication of how to fix pihoblem, without the need

for time-consuming manual analysis. X-ray also introdwtifferential performance sum-

marization which can be used to determine why the performance impaetmtifferent
events differed.

Similar to ConfAid, X-ray performs its analysis on the repd execution of the ap-
plication. X-ray splits its functionality among the recerdand replayed executions; for
example, timestamps are captured during recording betheseavyweight analysis sub-
stantially perturbs timing. Using the deterministic ret@nd replay system, X-ray can
perform multiple rounds of analysis offline, with variou®pes and metrics, on the same
recorded execution.

We evaluated X-ray using three applications: the Apache §eeber, the Postfix malil
server, and the PostgreSQL database. We reproduced aydetha¥ performance issues
reported for these applications. In 12 of 14 cases, X-ragtifled the correct root cause
as the largest contributor to the performance problem; énrémaining two cases, X-ray
identified the correct root cause as the third largest dauttor. In chapter V, we discuss

X-ray in more details.

1.5 Roadmap

The rest of this dissertation consists of the following dkegp

Chapter Il describes the design, implementation , and atialuof SigConf. SigConf
uses the causal dependencies of predicate execution td dietélarities between a config-
uration state on a sick computer and another on a referemsputer.

Chapter Il describes the design, implementation, anduet@n of ConfAid. ConfAid
pinpoints specific tokens in configuration files that causedyjaplication to produce an
erroneous behavior. Taking a white-box approach towaaigteshooting, ConfAid ana-
lyzes causalityvithin processes as they execute. It propagates causal depersiammng
multiple processes and outputs a ranked list of probabliecagses.

Chapter IV discusses the design and implementation of ow@rméistic record and

replay system. Our replay system is instrumentation-awaetlows the analysis code to

10

run within the instrumented replayed execution by lettimg £xecution diverge from the
recorded execution.

Chapter V discusses the design, implementation, and ei@iuat X-ray. X-ray helps
users by identifying the root cause of observed performanaelems. X-ray uses causal-
ity analysis to attribute the recorded performance infaromato root causes that include
configuration options and request inputs.

Chapter VI describes related work, and chapter VII sumrearthe contributions and

future directions of this thesis.

11

CHAPTERII

SigConf: Troubleshooting with Coarse-grained

Causality Analysis

2.1 Introduction

Software in modern computer systems is extraordinarilyemn Many applications
have a large number of configuration options that can cug®mhieir behavior. Further,
each application interacts with the other software on a aderpthrough channels such
as shared libraries, registry entries, environment viegtand shared configuration files.
This flexibility has a cost: when something goes wrong, ttestiooting a configuration
problem can be both time-consuming and frustrating.

SigConf improves the troubleshooting task by automatimdpl@m diagnosis. SigConf
focuses on problems that are known, i.e., the problem has pesviously reported to
a misconfiguration database or a reference computer. Thiputer can be maintained
by the software developers or the application users. Tlmagsptoblem of diagnosing an
unknown bug on aick computecan be reduced to identifying that the sick computer is in
a state similar to a buggy state on the reference computartfwh a solution is known.

To deduce similarity between states in the reference coenpund sick computers, our
approach is to run a set pfedicateghat test the correctness of the computer system. In

previous work [66], we used the success or failure of pred&ct deduce similarity. While

12

this approach is intuitive, we observed several drawbagkst, an expert, e.g., a software
developer or tester, must craft a predicate to cover eactbngwSecond, a single predicate
may often detect many bugs, causing many states to appakarsigmally, a test case that
is too finely crafted to the reference computer may inaduégteeport an error due to a
benign difference between the environments of the sick afedence computers.

SigConf proposes a method for diagnosing bugs that useatsigs derived from the
set of objects upon which each predicate’s execution clgudapends. We use system
call tracing tools such ast r ace to record each predicatedependency sete., the files,
devices, fifos, etc. read by the predicate. We compare thendigmcy sets generated on
the reference and sick computers to deduce similarity. €sults show that comparisons
based on dependency sets significantly outperform congrerisased on predicate success
or failure, uniquely identifying the correct bug 86—-100%tbé time. In the remaining
cases, the dependency set method identifies the correctsbogeaof two equally likely

bugs.

2.2 Background

Our previous work in configuration management, titled AwasB [66], used the pattern
of success and failure of known predicates to diagnose amatign errors. Using this
approach, AutoBash executes all predicatg’,, Pi, ..., P,} on the sick machine and
aggregates their results as a binary veétqf,.... = {1, 0, ..., I (with 1 indicating success
and 0 failure). AutoBash then compargs,....; with a set of system state vectd¥sfrom
{So, S1, ..., S}, where each system state was generated by running the gesimn the
reference computer prior to fixing a known bug. Intuitivedgch vector is a signature for
a system state that represents a particular bug. Thus, AstoBhooses the system state
vector that is most similar t8.......; as the most likely diagnosis for the bug. According
to the diagnosis, AutoBash chooses a solution from its dahnd speculatively runs the

solution. Then, AutoBash tests the affected predicategterchine whether the problem

13

is fixed or not. If the problem is fixed, AutoBash commits théuson; otherwise, the
solution is rolled back and AutoBash tries the next mostlyikbagnosis. The accuracy
of diagnosis determines how fast AutoBash can find a cormdatisn. As the AutoBash
diagnosis method uses the Hamming distance as a similagtsianwe will refer to this
method as thélamming distance method

One advantage of the Hamming distance method is that itstgg&tdicates as black
boxes. AutoBash does not need to understand what each steedioes; it only needs to
execute each predicate as a child process and check the cetie to determine success or
failure. Another advantage is portability; since predésatre application-level test cases,
their success or failure should not be perturbed by irrglefractuations in the application
environment such as variations in the operating systemstalied software.

However, as Section 3.4 shows, the Hamming distance mettfetsfrom ambiguity.
Since the similarity metric takes into account only the ssscor failure of predicates,
many different bugs may have identical state vectors. Tawadlorrect diagnoses, a tester
or developer must painstakingly craft specific predicdtastiarget each known bug. Easy-
to-create stress tests, which we refer t&iéchen sink predicatesre useless because they
fail for most bugs. For example, a Linux kernel compile cagoter many possible compiler
configuration bugs, so its failure tells little about the ariging system state. On the other
hand, failure of a hand-crafted predicate that only checégeific kernel header reveals
much more about the bug. However, writing such predicatesver all known bugs takes
a lot of effort.

Another drawback of the Hamming distance method is lack ahglarity: many sys-
tem state vectors may lie at a Hamming distance of one or tara & given result vector,

even though each state causes a different set of prediceftak t

14

2.3 Design

Based on our observations, we tried to design a method thdtiwetain the advantages
of the Hamming distance method while eliminating its disatages.

Looking more closely, we realized that although the sucoe&slure of predicates may
be similar for many bugs, the execution paths of those patelscusually differ for each
bug. For example, if a predicate compiles and runs a progaagnbug in the compilation,
linking or loading phases can cause the predicate to failwedver, bugs in each of the
three phases cause the predicate to take different exequdihs. As another example, a
configure script takes different execution paths dependipa the particular software that
is installed on a computer. Thus, if we can generate a sign#tat captures the execution
path of a predicate, we should be able to more preciselyifgentonfiguration error.

Ideally, we would like to generate a signature that is pesersough to capture different
execution paths that are induced by different configurabiogs. However, the signature
should be robust enough so that executing a predicate onutemnspwith the same bug
but different operating systems, installed software, atetetion environments generates
similar signatures. For example, we could use all the systia executed by a program
to generate a signature for the execution path [34, 80]. Wewe&andom permutations
caused by thread scheduling, interactions with other mseEs® and other sources of non-
determinism will cause the sequence of system calls to waay hen a predicate is exe-
cuted on the same platform. Further, this method would perfgoorly for our purposes
because we run the same predicate on two computers withadiffsoftware. For example,
the sequence of system calls will change with differentiees of shared libraries such
as libc, with different versions of the same operating syster with different operating
systems.

To generate a more robust signature, we decided to insteati@sausal dependencies
of predicate execution as a signature. We define the depeyndenof a process to be the set

of files, directory entries, file metadata, devices, fifos] atiher objects read by the process

15

and its descendants during their execution. This choicassdbon the observation that the
layout of application files and directories shows only mifioctuations across platforms.
Further, the concept of files and directories is common totrapsrating systems, while
specific system calls differ greatly. At the same time, theethelency set usually reflects
significant differences in the execution paths of a predi¢atthe presence of different
bugs. For instance, in the above compilation example, iptiedicate fails in compilation,
the predicate’s dependency set will not contain any objextéded to the linker or loader
simply because execution ended before those phases. dtegrédfe dependency set can
capture the progress of predicate execution and geneffédeedt signatures for different
failures.

There are several possible approaches for generating depensets. We wished to
avoid intrusive monitoring methods that require the aggian under test or the host oper-
ating system to be modified. We also wanted to reuse existiolg s much as possible.
We observed that most operating systems have a systemamafigrtool such as Linux’s
st race or FreeBSD’skt r ace. We wrote parsing programs that take tracing tool out-
put and generate the corresponding dependency set. Thel@vipack of these tools is
that they can only trace the main process and its descendentigities of other processes
communicating with the main process and its descendansheaieed memory, pipes or files
cannot be automatically traced with these tools. To addfessssue, we could trace all
processes in the system. However, we judged that tracipgadesses would incur a lot of

overhead while adding negligible accuracy.

2.4 Implementation

We usest r ace andkt r ace to generate dependency sets on Linux and FreeBSD,
respectively. These tools intercept all system calls made process and its descendants
along with their parameters and return values. We trace peadicate and pipe the tool

output to a parser that calculates the predicate’s depegpcen.

16

The parser divides system calls into three categories. Thiecttegory consists of
system calls that do not affect the dependency set of thegated For example, thier k,
nmrap andnpr ot ect system calls manage a process’s memory. The parser sinmalseig
these system calls. The second category consists of systentiat do not directly affect
the dependency set but may change the objects that are aateéed For example, the
f chdi r system call changes the current directory to the file detsergpecified by its first
parameter. This system call does not change the dependetnbysit affects all following
file names with relative paths.

The third category consists of system calls that directigcitthe dependency set. For
each system call, the parser adds appropriate dependarwrygsdo the process’s depen-
dency set. For example, tis¢ at system call provides information about a specified file.
A successfukt at system call makes the process dependent on the directany ard
metadata of the specified file, as well as the directory enamel metadata of all directories
in the file path. As another example, reading from a file mak@®eess dependent on the
content of the specified file, as well as its metadata.

Before processing the parameters of a system call, we chedleturn value and error
type. Without considering the return value, we are in damjerdding wrong records to
the dependency set. For exam@®OENT as the return value of aaccess system call
indicates that the requested path does not exist or is aidgrgymbolic link. Therefore,
we cannot simply generate dependency records for the graire Instead, we determine
which part of the path exists and add appropriate dependecoyds for only that part.

Usually, the main process creates child processes tigingg. Our parser tracks de-
pendency sets for the descendants of a traced process moginerate a good signature.
For example, aake process forks children to compile and link objects; if thelsigd pro-
cesses were omitted, the resulting dependency set woutdindittle useful information.

Initially, the parser sets the dependency set of a childggeequal to the dependency

set of its parent. It adds new records to the child’s deperydset as the child executes. If

17

the child communicates to its parent (e.g., by sending thenpa signal when it exits), the
parser sets the dependency set of the parent process to ln@dheof the parent’s current
dependency set and the child’s dependency set.f Diné system call is usually followed
by anexec system call that replaces the memory image of the processong from an
executable file. When this happens, the parser adds thetakéetdile to the process’s
dependency set.

In our current implementation, the parser uses full patbrmftion for files and direc-
tories. We also considered using only the name of a file octtirg instead of the whole
path. However, our experiments revealed that the formehadetvas slightly superior,
mainly due to false matches between files with the same narndifferent paths. We
did find that using only the file name was especially usefulstwared libraries, because
the location of libraries can vary widely across platforiiberefore, our implementation
uses only the file name for shared libraries. Our parser hadwther optimizations: if
an object being read is referred to by a symlink, the pardkEwis the symlink to also add
entries for the real path of the object.

To diagnose a configuration error on a sick computer, our taa$ each predicate,
traces its output, and generates its dependency set. ltavesithe dependency sets with
those generated on the reference computer for each knownTeugompare dependency
sets, the tool calculates the edit distance between thdaegmach predicate. For each
known bug, it sums the edit distances to calculate the giityilaetween the state of the
sick computer and the state of the reference computer. ritifggs the bug with the lowest
total as the most likely diagnosis; in the case of ties, ibrepall tied bugs as being equally

likely to be the root cause.

2.5 Evaluation

Our evaluation measures how effectively our proposed dig®y set method diag-

noses configuration bugs using both targeted and “kitcheki predicates.

18

2.5.1 Methodology

In previous work [66], we developed a benchmark consistirthree applications: the
CVS version control system, the gcc cross compiler and trecAg@ Web server. For each
application, the benchmark consists of 10 common configurdiugs. Table 2.1 describes
the bugs that we tested. The benchmark also contains 5-&edrgredicates for each
application such that each bug causes at least one pretlicit®. These predicates are
shown in Table 2.2. In addition, for each application we tzdaa single “kitchen sink”
predicate that detects all bugs.

In order to measure how sensitive our dependency set methiodvariation across op-
erating systems and installed software, we ran our expetsran four computers running
different operating systems: Red Hat Enterprise Linux 8df& core release 6, Ubuntu ver-
sion 7.04, and FreeBSD version 6.2. Although these plagara fairly similar in overall
behavior, the execution signatures revealed a lot of sdlftlerences. For instance, in our
Ubuntu platform libraries are located in “/lib/tls/i686Khile in other systems “/lib” con-
tains the libraries. As another example, FreeBSD uses/piettdb” and “/etc/spwd.db”
for authentication, while other platforms use “/etc/pagswWVe installed the same version
of CVS and the gcc cross compiler on all machines. For Apagskeajsed version 2.0.50
for all machines, except for FreeBSD, which runs 2.0.59. vVdrsion of the PHP module
that we used is 4.4.6, except for Fedora, which runs 4.4.7.

We used the Red Hat machine as the reference computer. Homapatication, we
injected each bug. We then executed the targeted predi@atesecorded the success or
failure of each one, as well as its dependency set. We alstutedthe “kitchen sink”
predicate for each bug, recording its outcome and depegpdEtc

We emulated sick computers by injecting each bug into alt fmmputers. For each
bug, we ran the targeted and “kitchen sink” predicates oh s@& computer and used both
the Hamming distance and dependency set methods to diagmo$eig. Each method

returns a set of bugs that are judged to be the root cause atifeguration problem.

19

Bug | CVS configuration problem description

Repository not properly initialized

User not added to CVS group

CVS performs unwanted keywords substitution

Setgid bit not set on repository, so group for new files is irext
$TMPDIR environment variable set incorrectly

$CVSROOT misconfigured for a CVS user

$CVSROOQT not set for a different CVS user

$CVSROOT variable set but not exported correctly

Repository permissions allow global access

Repository created using wrong group

Gcc cross-compiler problem description

Cross-compiler tools not in the default path

Cross-compiler setup overwrites default path instead péaging
Dangling libcrypt.so symlink does not point to correct &by

Archive tool (ar) not in the default location

Kernel header module.h contains wrong content

Compiler cannot invoke linker due to bad location

Cross-compiler specs file does not contain XScale architectefinitions
Cross-compiler not configured to accept -pthread option

C compiler configured correctly, but C++ compiler is not
Cross-compiler not configured to pass the static link fladnédlinker
Apache HTTP server problem description

Apache cannot search a user’s home directory due to in¢gregmissions
Apache cannot read CGI scripts due to incorrect permissions
Symlink used to point to CGI scripts in a user's home dirggtbut Apache is
not configured to follow symlinks

Apache configuration does not allow CGI execution in userédirectories
Misconfiguration treats CGl scripts as regular Web pages

Apache not configured to load PHP module

Handler not set for PHP pages

Apache not configured to use index.php as default

User has insufficient permission to use .htaccess authioriza

10 | File .htaccess in a user's home directory configured inctiyre

oy}
'SQOOO\ICDU'I-b(AJNI—‘C'S(OOJ\JCDLﬂ-bOONI—‘
«Q

w
c
«Q

wWN P

© 0o ~NO O A~

Table 2.1: Description of injected bugs

Multiple bugs are returned by each method only in the caséesf there each bug is
judged equally likely to be the root cause. Two bugs of thecherark (CVS bug 4 and
Apache bug 4) were not applicable to FreeBSD platform dueifferdnces in platform

default behavior and application versions, so we omittedetbugs from our results.

We evaluated our results using two metrics from the inforomatetrieval literature:

20

Predicate| CVS predicate description
1 a user checks in a project and checks it out again
2 a user checks in a project, and a different user checks it out
3 same as predicate 1, but assumes a default repository iedefin
4 same as predicate 3, but also checks that unauthorized ceremst access
repository
5 checks if CVS performs unwanted keyword substitutions
Predicate| gcc cross-compiler predicate description
Note: For all predicates, we check that the compilation sects and the com-
piled executable is the right file format
1 take a “hello world” .c file, compile it with explicit path nas
2 take a “hello world” .c file, compile it using default paths
3 take a kernel module .c file, compile it
4 take a .c file, compile it, link it to a shared cryptographydity
5 take several .c files, compile them into object files, arctingeobject files into
a static library, compile a program that links in the staticdry
6 take a .cc file, compile it with a c++ cross compiler
7 take a .c file, compile it, statically link in a math libraryheck if the com-
pilation succeeds and the compiled executable is statitiaked to the math
library
8 take a multi-threaded .c file, compile it for the XScale atetture
Predicate| Apache HTTP server predicate description
1 wget Apache’s default home page
2 wget a user’s default home page
3 wget the result of a CGI script from Apache’s default root diregtand
di f f the output with the expected output
4 wget the result of a CGI script from a user’'s home directory dind f the
output with the expected output
5 wget the result of a PHP test page
6 wget a PHP test page that is set to be the default page

Table 2.2: Description of predicates for each application

precision and recall. Precision, which is the percent adefgositives, is calculated as

|IRNC|/|R

, WhereR is the set of bugs returned by a method &hi the set of bugs that
are the correct root cause. Recall, which is the percentled faegatives, is calculated as
|IRNC/|C].

2.5.2 Results

Table 2.3 shows results for the targeted predicates. We simdyv precision in the

table since both the Hamming distance and dependency sebdsdhave a recall of 100%,

21

i.e., there were no false negatives in our experiments. UBecshe Hamming distance
method only considers the success or failure of predicétesgsults are the same on all
sick computers. Therefore, we only show its precision omcthée third column of the
table. The remaining columns show the precision of the degrecy set method on each
sick computer.

As the third column of Table 2.3 shows, the Hamming distanethod performs fairly
well as long as an expert has taken the time to write targetsidchses. However, this
method only considers the success or failure of predicatewgion. Therefore, it cannot
distinguish between situations with identical fail/pasgt@rns. Although our benchmark
consists of targeted predicates, the Hamming distanceitgostill generates many ties.
Across all bugs, its average precision is 57%.

As the remaining columns in the table show, the dependertcgnethod has greater
precision. On the Red Hat platform, the sick computer istidahto the reference com-
puter. Thus, the dependency set method acts like an oramlaghprecision of 100% for
all bugs. For the remaining platforms, the dependency s#tadéhas average precision of
93%.

Table 2.4 shows results for the “kitchen sink” predicates b&fore, neither method
generates false negatives. However, the Hamming distaeteoch has low precision for
all bugs. It does not provide any useful information becaiteden sink predicates always
fail. In contrast, the dependency set method is able to disgugs much more accu-
rately. The average precision of the dependency set metrages from 93% to 100%,
compared to 10% for the Hamming distance method. Thesetseshubw that the depen-
dency set method can still do an excellent job of diagnosimgshwithout requiring the
time-consuming task of writing targeted predicates.

The overhead of generating dependency sets is very smallavenage, it takes less
than 0.2 seconds to generate a signature from each tracat.oQerall, it takes less than

14 seconds for CVS, 11 seconds for gcc and 27 seconds for Apactn all the predicates

22

Hamming Dependency Dependency Dependency Dependency
Application | Bug | distance set(RHEL 3) set(Fedora) set(Ubuntu) set(FreeBSD
1 100% 100% 100% 100% 100%
2 33% 100% 50% 50% 50%
3 100% 100% 100% 100% 100%
4 33% 100% 100% 100% N/A
CvVvs 5 100% 100% 100% 100% 100%
6 33% 100% 100% 100% 100%
7 33% 100% 50% 50% 50%
8 33% 100% 50% 50% 50%
9 100% 100% 100% 100% 100%
10 33% 100% 50% 50% 50%
1 50% 100% 100% 100% 100%
2 50% 100% 100% 100% 100%
3 100% 100% 100% 100% 100%
4 33% 100% 100% 100% 100%
gcc 5 33% 100% 100% 100% 100%
6 100% 100% 100% 100% 100%
7 50% 100% 100% 100% 100%
8 50% 100% 100% 100% 100%
9 100% 100% 100% 100% 100%
10 33% 100% 100% 100% 100%
1 100% 100% 100% 100% 100%
2 100% 100% 100% 100% 100%
3 20% 100% 100% 100% 100%
4 20% 100% 100% 100% N/A
Apache 5 20% 100% 100% 100% 100%
6 50% 100% 100% 100% 100%
7 50% 100% 100% 100% 100%
8 100% 100% 100% 100% 100%
9 20% 100% 100% 100% 100%
10 20% 100% 100% 100% 100%

Table 2.3: Precision of bug diagnoses for targeted predicates

underst r ace and generate a complete signature. In our experimentsinieeréquired
to compare the complete signature of a sick computer agtiasteference computer is
less than 0.5 seconds. As the number of predicates and btlys database increases, the
time required for generating the complete signature andpeoimg against the reference
machine increases as well.

The accuracy of our method is dependent on the distance éetingys rather than the

23

Hamming Dependency Dependency Dependency Dependency
Application | Bug | distance set(RHEL 3) set(Fedora) set(Ubuntu) set(FreeBSD
1 10% 100% 100% 100% 100%
2 10% 100% 100% 100% 50%
3 10% 100% 100% 100% 100%
4 10% 100% 100% 100% N/A
CvVvs 5 10% 100% 100% 100% 100%
6 10% 100% 100% 100% 100%
7 10% 100% 50% 50% 50%
8 10% 100% 50% 50% 50%
9 10% 100% 100% 100% 100%
10 10% 100% 50% 50% 50%
1 10% 100% 100% 100% 100%
2 10% 100% 100% 100% 100%
3 10% 100% 100% 100% 100%
4 10% 100% 100% 100% 100%
gcc 5 10% 100% 100% 100% 100%
6 10% 100% 100% 100% 100%
7 10% 100% 100% 100% 100%
8 10% 100% 100% 100% 100%
9 10% 100% 100% 100% 100%
10 10% 100% 100% 100% 100%
1 10% 100% 100% 100% 100%
2 10% 100% 100% 100% 100%
3 10% 100% 100% 100% 100%
4 10% 100% 100% 100% N/A
Apache 5 10% 100% 100% 100% 100%
6 10% 100% 100% 100% 100%
7 10% 100% 100% 100% 100%
8 10% 100% 100% 100% 100%
9 10% 100% 100% 100% 100%
10 10% 100% 100% 100% 100%

Table 2.4: Precision of bug diagnoses for kitchen sink predicates

size of bug database. In other words, our method cannot atetyidistinguish between
bugs that are subtly different from each other and causeqated to have similar execu-
tions. Although the chance of having such bugs increasdseaddtabase grows, the size

of the database does not solely determine the precisionrahethod.

24

2.6 Conclusion

SigConf, the first part of this thesis, contributes a novethod for misconfiguration
diagnosis that uses the causal dependencies of predicatatin to detect similarities
between a configuration state on a sick computer and anotharreference computer.
We demonstrate that such information can be collected wshgpre-existing system call
tracing tools and without requiring application or opargtsystem modification. Our eval-
uation shows that signatures generated based on thesmation are cheap to create and

robust across different platforms.

25

CHAPTER Il

ConfAid: Troubleshooting with Dynamic

Information Flow Analysis

3.1 Introduction

The previous chapter discussed SigConf, a tool that useslityuanalysis to diagnose
misconfiguration problems by comparing the state of a sickhm& against a reference
machine. SigConf proved successful in diagnosing miscordtgons that are known and
are recorded in a reference computer. However, for misaarafigpns that are unique to
customized environments, and for applications for whicheantained reference computer
does not exist, SigConf will not achieve much success. w84 inspired the idea of a
stand-alone troubleshooting tool that does not requirsidehelp for diagnosis.

Our prior research project, AutoBash [66], also helped ftimidea and approach of
ConfAid. AutoBash troubleshoots problems by tracking aditysat process and file gran-
ularity. Similar to SigConf, AutoBash treated the procssag black boxes, such that all
the outputs of a process are considered to become dependalhpoor inputs. We found
AutoBash to be very successful in identifying the root canfsgroblems, but the success
was limited in that AutoBash would often identify a compleonéiguration file, such as
Apache’sht t pd. conf, as the source of an error. When such files contain hundreds of

options, the root cause identification of the entire file matlre of great use.

26

The lessons that we learned from SigConf and AutoBash led usd a white-box ap-
proach for troubleshooting. In this chapter, we show thatwthite-box approach achieved
via fine-grained information flow analysis is in fact an erigdy successful approach to-
wards troubleshooting.

This chapter introduces ConfAid, a tool that uses dynamfierimation flow analysis
to identify the likely root causes of a configuration proble@onfAid focuses on miscon-
figurations that manifest as crashes, assertion failuresmply incorrect output. When a
user or administrator wishes to troubleshoot a problemyeeduces the problem while
ConfAid modifies the executed application binaries to trek causal dependencies be-
tween configuration inputs and program behavior. ConfA@tpices an ordered list of the
configuration tokens most likely to have caused the exhdhpeblem. While dynamic
analysis takes a few minutes for a complex application sscAmache, automated trou-
bleshooting is still considerably faster and less labtefisive than manual debugging or
searching through FAQs and online forums.

ConfAid dynamically tracks causality (i.e., informatiorol) at a fine granularity,
namely at the level of instructions and bytes. While thera large body of work in the
distributed systems community that tracks causality toenstdnd and troubleshoot pro-
gram behavior [2, 5, 6, 15, 17, 18], these prior systems #igdigrireat application binaries
as black boxes, understanding causal relationships betpreeesses by tracking network
messages and IPCs. Some gain more information by insentoigep into applications to
glean hints about their activity. ConfAid, however, “opansthe black-box” by examin-
ing the flow of causalityithin processes as they execute. Further, since ConfAid tracks
causality using binary instrumentation [44], it does nafuiee application source code to
find misconfigurations.

ConfAid restricts the scope of information flow analysis tdyotrack values that de-
pend on data read from configuration files. ConfAid tracksedelencies introduced by

both data and control flow. If it determines that altering afiguration parameter may

27

change the application’s control flow such that it avoidsgrablem (and does not exhibit
a different problem), it reports that parameter as a possiat cause. It propagates depen-
dencies among multiple processes in a distributed systeambgtating IPCs and network
communication.

Our results show that ConfAid identifies the correct rootsemuof most configuration
errors. We injected 18 real-world misconfigurations int@@pSH, Apache, and the Postfix
email server. ConfAid identifies the correct root cause asntiost likely source of the
misconfiguration in 13 cases; for the remaining 5 bugs, s lise correct root cause as the
second most likely option. ConfAid analysis takes less Bamnutes, making the tool an

attractive alternative to manual troubleshooting.

3.2 Design principles

We next briefly describe ConfAid’s design principles.

3.2.1 Use white-box analysis

As mentioned before, the idea of ConfAid was partially argged from AutoBash. Our
take-away lessons from AutoBash were: (1) causality traglg an effective tool for iden-
tifying root causes, and (2) causality should be trackedfimiea granularity than an entire
process to troubleshoot applications with complex conéigon files. These observations
led us to use avhite boxapproach in ConfAid that tracks causality within each psscat
byte granularity.

The granularity of the root causes reported to the user ralsch finer. Instead of
reporting the entire configuration file as a root cause, Cmhfdints its users to specific
tokens in the configuration file that it believes to be in eriidris approach narrows down
root causes considerably for programs like Apache.

We define a token to be a sequence of characters in the cotiigufée that has a

specific meaning to the application. In other words, whenaiy@ication recognizes this

28

sequence, it executes special parts of the code. For irgstdrgcapplication may set a spe-
cific variable upon recognition of a certain sequence. Wat teach token as a potentially
discrete root cause, and we analyze its causal impacts brbgéein the process’s address
space as well as the process control flow.

Why did we choose a token as the smallest entity in the condéigHdt we recognize as
a discrete potential root cause? We had several choiceg igrémularity spectrum. One
choice is the finest granularity in which each character efcbnfig file can be a potential
root cause. The problem with this choice is that individdaracters usually do not have
any semantic meaning to the application. For instance,gpkcation cares about the con-
figuration optionport. Several lines of comments consisting of hundreds of clersc
that precede this option have no meaning to the applicaliceating each individual char-
acter as a potential root cause produces so many unimpcogasal relationships that the
meaningful root causes get buried and ConfAid becomessssele

The second option is to choose a coarser granularity. Ftarine, each line can be a
discrete root cause. The problem with this approach is tiratdme applications such as
Apache, a line may include multiple words where each wordrotshia completely different
functionality and has little to do with the other words. Faclk configuration files, a line-
based approach is clearly too coarse, because it leaveséhevondering which of the
words needs to be modified.

The main problem with the above approaches is that they ehaadrict granularity
regardless of the application and its config file style. As tiomed earlier, the application
may not care about individual characters or the line in wtaohoption is specified in.
In fact, the applications usually care about certain wonda sequence of words in the
config file. For instance, the woRt ot ocol has a certain meaning to OpenSSH server or
Apache HTTP server treats the sequeac®i r ect or y> in a special way. Our approach
is to identify such sequences, which we call tokens, as tipdcgpion parses the config

file. We call this approach a token-based approach wheredoas the application, the

29

tokens could consist of single or multiple words. The keyedénce between token-based
approach and previous approaches is that instead of dgdltrgranularity ahead of time,
we choose the granularity at which the application itset6pa the configuration file.

How do we identify the tokens in the config file? or how do we find ib the appli-
cation cares about a sequence? We have a simple heuristierttify sequences that the
application is interested in. Applications usually congpsirings read from the file against
predefined constant strings in the code to find out if a cegaguence of interest exists
in the config file. Whenever such comparisons happen, we edadhat the application
expects the read string to have a specific meaning. At thistpeie create a new token
that represents that string from the file and the memory imesathat contains that string

become dependent on the newly created token.

3.2.2 Operate on application binaries

We next considered whether ConfAid should require appboasource code for op-
eration. While using source code would make analysis easierce code is unavailable
for many important applications, which would limit the ajgpbility of our tool. Also, we
felt it likely that we would have to choose a subset of prograng languages to support,
which would also limit the number of applications we couldbze.

For these reasons, we decided to design ConfAid to not regoirce code; ConfAid
instead operates on program binaries. ConfAid uses Pintpddynamically insert instru-
mentation into binaries as applications run. It also usésmo [35] to statically generate

control flow graphs from binaries.

3.2.3 Embrace imprecise analysis

Our final design decision was to embrace an imprecise asabysiausality that relies
on heuristics rather than using a sound or complete anadysigormation flow. Using

an early prototype of ConfAid, we found that for any reasdnaomplex configuration

30

problem, a strict definition of causal dependencies led totool outputting almost all
configuration values as the root cause of the problem. Magigtexs and bytes in the
address space would come to depend on almost all configuneioes. Our prototype
would identify the root cause as only one of many possiblsesu

Thus, our current version of ConfAid uses several heugstidimit the spread of causal
dependencies. For instance, ConfAid does not considereakrndencies to be equal. It
considers data flow dependencies to be more likely to leadet@dot cause than control
flow dependencies. It also considers control flow dependsrioiroduced closer to the
error exhibition to be more likely to lead to the root causantmore distant ones. In some
cases, ConfAid’s heuristics can lead to false negativedfasd positives. However, our
results show that in most cases, they are quite effectivarrowing the search for the root

cause and reducing execution time.

3.3 Design and implementation

3.3.1 Overview: How ConfAid runs

ConfAid is designed to be used by system administrators addusers when they
encounter a suspected misconfiguration that they do not krawto fix. ConfAid is
run offline, once erroneous behavior has been observed. AAbuser reproduces the
problem by executing the application while ConfAid attash®the executing application
processes and monitors information flow within them.

To use ConfAid, a user specifies: (1) which binaries ConfAidudd monitor, (2) the
sources of configuration data, and, as needed, (3) the eusrexternal output of the ap-
plication. For simple applications, ConfAid may monitordya single process. For more
complicated applications, ConfAid dynamically attachesrtultiple specified processes
and monitors inter-process dependencies as describedctini®8.3.5. While ConfAid

could potentially monitorany process that receives input via IPC or a network message

31

from a process already monitored by ConfAid, we decided tg aronitor executables
specified by the user in order to limit the scope of analysisir @ior experience with
AutoBash showed that many extraneous processes commneinithtprocesses being de-
bugged via channels such as files, pipes, and signals, e fitecesses are not needed to
determine the root cause.

Similarly, we could potentially treadny source of input to a program as a source of
configuration data. However, such an approach would draaibtislow the analysis since
most locations in the process address space would comegodiep one or more inputs. In
contrast, ConfAid only monitors input from designated cgafation sources. This makes
ConfAid analysis more tractable than generic taint tragkinprogram slicing because the
number of locations with dependencies is small. Typic#tig,sources to monitor are self-
evident; e.g.ht t pd. conf is the configuration source for Apache. Potentially, we doul
automate this process by treating all inputs from specitiations (e.g., thet c directory)
or files with semantic keywords (such as.‘conf ”) as configuration inputs.

Finally, a ConfAid user may designate specific error conddi ConfAid automatically
treats assertion failures and exits with non-zero retudes@s an erroneous terminations.
However, some misconfigurations lead not to program tenminabut instead to the pro-
cess producing erroneous output. We therefore allow thetaspecify a particular string
expression as erroneous. ConfAid monitors the system ttedtswrite to network, termi-
nal, and other external output channels. When it finds a nmgjabutput, it considers the
output an error.

ConfAid outputs an ordered list of probable root causeshleatry in the list is a token
from a configuration source; our results show that ConfApddstlly outputs the actual root
cause as the first or second entry in the list. This allows thef&ld user to focus on one
or two specific configuration tokens when deciding how to fex pinoblem. By finding the

needle in the haystack, ConfAid dramatically improves ttalttime to recovery (TTR).

32

3.3.2 Basic information flow analysis

In this section, we describe the basic information flow asiglyused by ConfAid.
For simplicity of explanation, we defer discussing optiatians and heuristics until Sec-
tions 3.3.3 and 3.3.4. We also assume that ConfAid is trackimy a single process;
Section 3.3.5 describes how we extend ConfAid analysis ttipleicooperating processes
on one or more computers.

ConfAid dynamically monitors the information flow from cogéiration sources through
process memory and registers to the point in the progranuérecvhen erroneous behav-
ior is observed. It does so by using Pin [44] to add customclogiferred to agnstru-
mentationto the process binary. As described below, ConfAid insentation is executed
before or after most x86 instructions executed by a mordtapgplication.

ConfAid uses taint tracking [52] to analyze information fldninserts instrumentation
into the application binary. The instrumentation moniteash system call such agad
or pr ead that could potentially read data from a configuration soulicde source of the
data returned by a system call was specified as a configufdg@p@onfAid annotates the
registers and memory addresses modified by the system ¢hlawnarker that indicates
a dependency on a specific configuration token. Borrowinguiteslogy from the taint
tracking literature, we refer to this marking as ttaént of the memory location. If an
address or register is tainted by a token, ConfAid beliekas the value at that location
might be different if the value of the token in the originainfiguration source were to
change.

We use the notatiorf;, to denote the taint set of variabte T, is a set of configuration
tokens; for instance, if,, = { FOO, BAR }, ConfAid believes that the value of variable
x could change if the user were to modify either B@or BARtokens in the configuration
file. In the basic information flow analysis, taints are byng location is either tainted by
a token or it is not); in Section 3.3.4, we attach a weight whdaint.

Taint is propagated via data flow and control flow dependenci@hen a monitored

33

if (c==10) { / c set to 0 in config file =/

X = a; [+ taken path */
} else {

y = b; [+ alternate path */
}
z = d;

if (z) assert(); /+ The erroneous behavior =/
Figure 3.1: Example to illustrate causality tracking

process executes an instruction that modifies a memory ssldegister, or CPU flag, the
taint set of each modified location is set to the union of tl &ets of the values read by
the instruction. For example, given the instructioa: y + = where the taint sets of y and z
areT, and7’, respectively, the taint set of X;,, becomeqd’, UT.. Intuitively, the value of x
might change if a configuration token were to cause y or z togéarior to the execution
of this instruction. For example, if;, = { FOO, BAR } and7, = { FOO, BAZ },
thenT, = { FOO, BAR, BAZ }.

In traditional taint tracking for security purposes, cohfiow dependencies are often
ignored to improve performance because they are hardenfattacker to exploit. With
ConfAid, however, we have found that tracking control floypeedencies is essential since
they propagate the majority of configuration-derived taint

A naive approach to tracking control flow is to union the taettof a branch conditional
with a running control flow dependency for the program. Faregle, on executing the
statement f ('b), ConfAid could set the control flow taint séf,;, to 7., UT;. However,
without mechanisms teemovetaint from7;;, control flow taint grows without limit. This
causes too many false positives, i.e., ConfAid would idgmtiost configuration tokens as
possible root causes.

A more precise approach takes into account the basic blogktste of a program.
Consider the example in Figure 3.1. Assumé, ¢, andd were read from a configuration
file and have taint set$,, T;, T., andT,, respectively (i.e.[, is a set containing only

configuration token a). The value ofdoes not affect whether the last two statements are

34

executed, since they execute in all possible paths (andftirerfor all values of). Thus,
T. should be removed fror;; before executing = d. When the program assertg,;
should only includ€l; in the example, to correctly indicate that changing the ealfid
might fix the problem.

ConfAid also tracks implicit control flow dependencies. ligure 3.1, the values af
andy depend orr when the program asserts, since the occurrence of thegrassits to
a andb depend on whether or not the branch is taken. Notegthsitstill dependent om
even though thel se path is not taken by the execution since the valug wiight change
if a configuration token is modified such that the conditioaleates differently.

When the program executes a branch with a tainted cond@onfAid first determines
the merge point (the point where the branch paths conveggedisulting the control flow
graph. Prior to dynamic analysis, ConfAid obtains the grhaphsing IDA Pro to statically
analyze the executable and any libraries it uses (eido¢c andl i bssl).

For each tainted branch, ConfAid next explores ealtbrnate paththat leads to the
merge point. We define an alternate path to be any path nat tak¢he actual program
execution that starts at a conditional branch instructmmwhich the branch condition
is tainted by one or more configuration values. ConfAid ustesraate path exploration to
learn which variables would have been assigned had thettmmdvaluated differently due
to a modified configuration value. The taint set of any vagatssigned on an alternate path
is set to the union of its previous taint set, the taint sehefdonditional, and the taint set
of the variables read by the assigning instruction. In theeeple, 7, = 7, UT, U{T. AT, }.

In other words, a configuration token affecting the previeakie ofy could change, or
¢ could change, causing the previous valueydb be overwritten. Finally, it might be
necessary for bothandb to change (as denoted by the tefffi A 7;,}) sincec allows the
alternate assignment, ahdnay need to reflect a correct configuration value.

To evaluate an alternate path, ConfAid executes the progyeswitching the condition

outcome, similar to the predicate switching approach ugednang et al. [88] to explore

35

implicit dependencies. ConfAid uses copy-on-write loggio checkpoint and roll back
application state. When a memory address is first alterewyaa alternate path, ConfAid
saves the previous value in an undo log. At the end of the éxeg@pplication state is re-
placed with the previous values from the log. ConfAid usesr®echanisms to checkpoint
and rollback the state of the processor, which includesdbisters and CPU flags. Since
some alternate paths are quite long, ConfAid usbsunded horizon heuristidescribed
in Section 3.3.3.1 to limit the number of instructions it Bxps along each alternate path.
Many branches need not be explored since their conditieeartainted by any configu-
ration token.

After exploring the alternate paths, ConfAid performs aikimanalysis for the path
actually taken by the program. This is the actual execusomo undo log is needed. In
the example, analyzing the taken path would de¥ive- T, UT. U {T. A T, }.

ConfAid also uses alternate path exploration to learn wbiatins avoid erroneous ap-
plication behavior. ConfAid considers an alternate patavimd the erroneous behavior if
the path leads to a successful termination of the prograifrtioe merge point of the branch
occurs after the occurrence of the erroneous behavior iprtbgram (as determined by the
static control flow graph). ConfAid unions the taint sets lbicanditions that led to such
alternate paths to derive its final result. This result isgbaeof all configuration tokens
which, if altered, could cause the program to avoid the exoois behavior.

Figure 3.2 shows four examples that illustrate how ConfAédedts alternate paths
that avoid the erroneous behavior. In case (a), the errarreafter the merge point of
the conditional branch. ConfAid determines that the bragcbls not contribute to the
error, because both paths lead to the same erroneous behawviase (b), the alternate
path avoids the erroneous behavior because the merge pmatsoafter the error, and
the alternate path itself does not exhibit any other errorthis case, ConfAid considers
tokens in the taint set of the branch condition as possilWecauses of the error, since if

the application had taken the alternate path, it could hswalad the error. In case (c),

36

(c)

alternate taken path

alternate taken path
path path error

assert

The alternate path leads to

error ;
another erroneous behavior

Error happens after

the merge point (d)
alternate
(b) path taken path
taken path
alternate
path error sert
error
Error happens in taken path One of the alternate
before the merge point paths avoids errors

Figure 3.2: Examples illustrating ConfAid path analysis

the alternate path leads to a different error (an assertidhgrefore, ConfAid does not
consider the taint of the branch as a possible root causeibethe alternate path would
not lead to a successful termination. In case (d), thereraralternate paths, one of which
leads to an assertion and one that reaches the merge pothis kkase, since there exists
an alternate path that avoids the erroneous behavior, coafign tokens in the taint set of
the branch condition are possible root causes.

One limitation of evaluating an alternate path with pretbcawitching is that switch-
ing a predicate outcome, but not the underlying data valmay, result in an “unnatural”
execution that leads to erroneous behaviors, such as a duasto a segmentation fault.
In such circumstances, ConfAid aborts exploration of tieraate path but conservatively
retains the taint of the conditional branch in the possiblat causes. This conservative
behavior may lead to false positives if the alternate pathlevin fact lead to a real error
later in the execution. The early abort of the alternate padky also lead to false negatives

due to unexplored variable assignments.

37

3.3.2.1 Abstracting library functions and system calls

There are three cases where ConfAid does not dynamicallyznaformation flow.
The first case is when the application makes a system calteShonfAid does not track
taint inside the operating system, the information flow gsialstops at the system call en-
try. The second case is commonly executed standard libuagtibns such asal | oc in
I i bc and cryptographic functions ini bssl . ConfAid uses a primitive static analysis for
these functions to improve analysis speed while still poialy the identical effect on pro-
cess taint values that would have been produced by a fuslytimented execution. Since
we abstract only functions in standard libraries, suchttabstractions are application-
independent. The final case is a small number of heavily opéidi i bc functions for
which IDA Pro does not produce a complete static analysis.

To handle these cases, ConfAid usast abstractionof the function (or system call).
A taint abstraction specifies how taint is propagated froenitiputs of the functions to its
outputs (e.g., return values and modified location in theesikispace). When a process
calls one of these functions, ConfAid first executes the tioncwithout any instrumen-
tation and then uses the taint abstraction to modify thagaihthe process memory and

registers.

3.3.3 Heuiristics for performance

ConfAid uses two heuristics to simplify control flow analkysiThese heuristics elim-
inate exploration of some alternate paths to concentrath@mpaths that are most likely
to be useful in identifying the root cause. The heuristicduoe analysis time but also

introduce false positives and negatives.

3.3.3.1 The bounded horizon heuristic

The first heuristic is thdounded horizorneuristic. ConfAid only executes each al-

ternate path for a fixed number of instructions. By defaulinfdid uses a limit of 80

38

instructions. All addresses and registers modified withelimit are used to calculate in-
formation flow dependencies after the merge point. Locatimodified after the limit do
not affect dependencies introduced at the merge point. ditannate path contains further
tainted conditional branches, ConfAid executes each patih the limit is reached. For
example, if the limit is 80 instructions and a tainted coiogial branch occurs after exe-
cuting 50 instructions, both paths from the new branch aez@ed for an additional 30

instructions.

3.3.3.2 The single mistake heuristic

The second heuristic simplifies control flow analysis by agag that the configuration
file contains only a limited number of erroneous tokens. Bfadk, ConfAid assumes
that the configuration file contains a single error — we refethis as thesingle mistake
heuristic.

To illustrate how this simplifies path exploration, considgain the example in Fig-
ure 3.1. Recall that at the time the assert statementis ®edy = 7, UT. U {T. AT, }.
The single mistake heuristic eliminates the last term sthaeterm requires the values of
two tokens to change simultaneously. Similarly, ConfAidiees 7, = 7, U T, during
alternate path exploration. Note thHgf no longer depends updfi. This seems counter-
intuitive, but for the assignment= b to occur in the program, a token i) must change
to cause the alternate path to be taken. With the single kai$tauristic, a token ifi;, but
not inT, cannot be the root cause, since one tokenh.ialready must change.

More importantly, restricting the number of configuraticalues that can change re-
duces the alternate paths that are explored, as shown ineR3g8. The nested condition,
c2, can change only if a single configuration value affects botandc2. If 7., N T., = 0,
then the alternate path 62 need not be explored at all.

To implement this heuristic, we introduce a new varialilg,, that is the set of con-

figuration options that, if changed, would cause the exenoutf the program to reach the

39

if (cl1==0) { /+x clset to O in config file =/

} el se {

if (c2==0) { /~ c2 set to 0 also */
X = a;
} else {
y = b;
}
}

Figure 3.3: Example to illustrate alternate path pruning

current instruction. Initially;/,;; is the set of all configuration tokens. At each condition,
¢, T,; does not change along the taken path, but wel'set= T,;; N T, along the alter-
nate path. In Figure 3.3,,;, = T.; N T, after the second condition. Whé#,, is (), the
alternate path is explored no further. When a variable igasd along an alternate path,
its taint value is set to the union of its previous taint set @p,. Thus, 7, = T, UT,; and

T, =T, (TaNTey).

The single mistake heuristic may lead to false negativesigare 3.3, ifcl and 2
are tainted by a disjoint set of tokens, ConfAid will not exy@ the path on whicly is
assigned t@, so it may miss the root cause if the program later assereslbas the value
of y. Potentially, if ConfAid cannot find a root cause, we canxdlae single-mistake
assumption by allowing ConfAid to assume that two or morehskare erroneous. In our

experiments to date, this heuristic has yet to trigger &faégyative.

3.3.4 Heuristics for reducing false positives

We originally designed ConfAid to use only the basic taiatking algorithm described
in Section 3.3.2 with the bounded horizon and single mistakeristics. However, our
initial experiments with this design met with only limitedccess. Typically, ConfAid
would include the root cause of a misconfiguration in its atuget, yet the cardinality of
the output set would be very large. For many bugs, ConfAidldioeturn a significant

fraction of the tokens in the configuration file.

40

In analyzing our initial results, we realized that it wasufigient to track information
flow dependencies as binary values. In our design as dedcsibéar, two configuration
tokens are considered equal taint sources even if one haga@ dausal relationship to
a location (e.g., the value in memory was read directly frtva ¢onfiguration file) and
another has a nebulous relationship (e.g., the taint wagsageaded along a long chain of
conditional assignments deep along alternate paths).

Another problem we noticed was that loops could cause aitottd become a global
source and sink for taint. For instance, Apache reads itBgigation values into a linked
list structure, and then traverses the list in a loop to firelwalue of a particular config-
uration token. During the traversal, the program controkffocks up taint from many
configuration options, and these taints are sometimesfénaied to the configuration vari-
able that is the target of the search.

We realized that both of these problems were caused by thecitgssumption in our
design that all information flow relationships should beateel equally. Essentially, our
design had no shades of gray: it either considered a loctiibe tainted by a token or it
did not. Based on this observation, we decided to modify @sigh to instead track taint
as a weight ranging in value between zero and one. For exathgl¢aint ofz might be
represented aSFOOuw ,,, BAR:wy,, }. As before, this set indicates that modifying either
token FOO or BAR might change the valuerofHowever, ifw,, > w,,., FOO has a more
direct relationship ta;, and hence is believed to be a better candidate for the roseaaf
an error that depends an

We revised ConfAid to use heuristics to weight the depenidsrntroduced by infor-
mation flow differently, with those relationships that arerm likely to lead to the root
cause given a higher weight than those less likely to leabddadot cause. We also mod-
ified ConfAid to order the set of tokens on which an erronealsalior depends by their
respective weights before outputting them.

Our weights are based on two heuristics. First, data flow ridg@cies are assumed to

41

X = a;
if (c1==0) { /+x clset to O in configf file =/

y = 4
} else {
zZ = b;

}
if (c2==0) { /~ c2set to 0O in config file «/
if (c3==0) { /+ c3 also set to 0 =/
w = a;
}
}

Figure 3.4: Example to illustrate the weighting heuristic

be more likely to lead to the root cause than control flow ddpanies. Second, control
flow dependencies are assumed to be more likely to lead totteause if they occur later
in the execution (i.e., closer to the erroneous behavior).

Specifically, we assign taints introduced by control flow elggencies only half the
weight of taints introduced by data flow dependencies. leurtbach nested conditional
branch reduces the weight of dependencies introduced bylmanches in the nest by one
half. We chose a weight of 0.5 for speed: it can be implemeeticlently with a vector
bit shift.

For example, in Figure 3.4, the assignment « is a data flow dependency, $p = T,
(any dependencies fromare inherited at full weight). Howevey, inherits taint fromcl

through a control flow dependency. Thi§,= max(7,, Tgl). That is, we weight any taint

from c1 by half, while taint inherited froma is given full weight. We use a specialax
operator here rather than a simple union operator, sincealues are now floating point
rather than binary. Specificallypaxz(T,,T,) produces a set that contains all tokens that
occur in eithefl;, andT,,. If a token appears in only one @}, or 7, its weight is set to its
weight in that set. If a token appears in bdthandT,,, its weight is set to the maximum of

its weight in either set.

Similarly, T, = maz (T, Tgl) (recall that with binary values], = T, U T,; due to

the single mistake heuristic). When ConfAid explores apratte path, it replaces the

42

intersection operator with a correspondingn operator. Thus, in the prior example from
Figure 3.3, = max(T,, min(%L, 12)).
Figure 3.4 also shows two nested conditions. In calculatiegtaint ofw, condition

3 is considered more influential than conditighbecause it occurs later in the program

execution. Therefor&,, = max(T,, Tg’, Tf). The same weighting applies to alternate
path execution; assignments on an alternate path stattihg &3 branch are given twice
the weight as those on an alternate path starting atxheanch.

ConfAid also weights alternate paths that avoid the erroadxehavior by their prox-
imity to the point in application execution where the bebavs exhibited. Paths starting
from the closest tainted conditional branch that avoidetheneous behavior are given full
weight, those from the next closest branch are given haljlteand so on. Note that if a
configuration token has a much stronger weight on the camddf a distant branch than
any tokens for closer branches, ConfAid may still rank itresrmost likely root cause.

Of course, when programs do not behave as expected, CoafAdéadiristics may lead
to incorrect results. For example, an application coulceptially execute a substantial
amount of code between the point where the erroneous belwdors and the point where
the program outputs some value that exhibits the error, @ngerror message). If that code
contains a condition tainted by a configuration token othantthe one that caused the
error and that condition changes the specific error message that isrgtenl, ConfAid
might identify the wrong token as the most likely root caus®hile such a scenario is

uncommon, we did observe a single Apache bug (describelefuim the evaluation) in

which ConfAid’s heuristic failed in this manner.

3.3.5 Multi-process causality tracking

The most difficult configuration errors to troubleshoot ilmeomultiple interacting pro-
cesses. Such processes may be on a single computer, or thegsitee on multiple com-

puters connected by a network. To troubleshoot such case$Ald instruments multiple

43

processes at the same time and propagates taint infornadting with the data sent when
the processes communicate.

ConfAid supports processes that communicate using soakeltfiles. The socket sup-
port includes Unix sockets and pipes, as well as UDP and TCRetaa ConfAid in-
struments the system calls that create sockets and pipesarks these objects as taint
propagating channels if the destination is another instnted process. Then, ConfAid in-
tercepts all sends and receives using those channels. Vdteisdent, ConfAid appends a
header that indicates whether or not the data is taintedvemeh) applicable, the exact taint
of the data. Taint information is propagated at per-bytegiaity if the taints of different
bytes of the buffer are different. On the receiving side, lBahextracts the header from
the received data and assigns the indicated taints to teevegcdata.

For files, ConfAid creates an auxiliary file with a specialbh€aid” extension when an
instrumented process writes tainted data to a file. Theiauxilile records which bytes in
the corresponding file are tainted and the specific valuelsasfet taints. Like sockets, file
taint is recorded at granularities as small as one byte. iistaimce, the file “foo.confaid”
records the tainted bytes in file “foo”. When an instrumergestess reads data from a file
and a corresponding auxiliary file exists, ConfAid sets thets of bytes read from the file
to the values specified in the auxiliary file.

Since these operations are performed by PIN instrumentatimediately before and
after system call execution, the taint propagation is hididem the application. No oper-

ating system modifications are needed.

3.3.6 Limitations and future work

Since configuration troubleshooting is complex, ConfAickesga number of assump-
tions to simplify its analysis. First, ConfAid only troulsleoots configuration problems
that originate from configuration files. This limitation istrfundamental. ConfAid can

be extended to track other root causes such as file systemsg@ans and environment

44

variables.

Second, like previous configuration troubleshooting syst¢71, 72], ConfAid cur-
rently assumes that the configuration file contains only oneneous token. If fixing a
particular error requires changing two tokens, then CadifAalternate path analysis may
not identify both tokens, as described in Section 3.3.3.@8weVer, if a file contains two
incorrect tokens that represent independent mistakesfA@boan tackle the two errors
sequentially by first identifying the token that leads to thest immediate failure, and
then identifying the other token once the first error is ated. The single mistake heuris-
tic improves ConfAid’s performance by reducing the set adgible taints tracked during
dynamic analysis. In the future, we plan to allow ConfAid tack sets of two or more
misconfigured tokens and measure the resulting performanedhead. Potentially, we
may use an expanding search technique in which ConfAidaihjitperforms an analysis
assuming only a single mistake, and then performs a lengthiglysis allowing multiple

mistakes if the first analysis does not yield satisfactosylts.

3.4 Evaluation

Our evaluation answers the following questions:

e How effective is ConfAid in identifying the root cause of diguration problems?

e How long does ConfAid take to find the root cause?

3.4.1 Experimental setup

We evaluated ConfAid on three applications: the OpenSSMeserersion 5.1, the
Apache HTTP server version 2.2.14, and the Postfix mail teamgent version 2.7. All of
our experiments were run on a Dell OptiPlex 980 desktop caenrputh an Intel Core i5

Dual Core processor and 4 GB of memory. The machine runs Lliewmel version 2.6.21.

45

For Apache, ConfAid instruments a single process; for Of#h@nd Postfix, multiple
processes are instrumented.

To evaluate ConfAid, we manually injected errors into cormnfiguration files. Then,
we ran a test case that caused the error we injected to beitexhibVe used ConfAid to
instrument the process (or processes) for that applicadioth obtained the ordered list of
root causes found by ConfAid. We use two metrics to evaluaté&id’s effectiveness: the
ranking of the actual root cause, i.e., the injected mistakthe list returned by ConfAid
and the time to execute the instrumented application.

We used two different methods to generate configurationrerréirst, we injected
18 real-world configuration errors that were reported inr@forums, FAQ pages, and
application documentation. Second, we used the ConfEh{46pto inject random errors

into the configuration files of the three applications.

3.4.2 Real-world misconfigurations

We searched forums, FAQ pages and configuration documefitsitactual configura-
tion problems that users have experienced with our targaicapions. In total, we chose
18 misconfigurations (5—7 for each application) that wetesed by errors in the configura-
tion files. The 18 misconfigured values cover a range of dgtastysuch as binary options,
enumerated types, numerical ranges, and text entries susdreer names. Table 3.1 lists
these configuration errors for each application. The falhgygection describes these errors

in more details.

3.4.2.1 Description of configuration bugs

OpenSSH server:
In the first misconfiguration, theer m t Root Logi n option is disabled in the OpenSSH
server configuration file. Therefore, when users try to lagmroot, the server denies ac-

cess, although the root password is entered correctly.

46

App

Bug

Description of misconfiguration

OpenSSH
Server

The PermitRootLogin option is disabled. Therefore, the aaenot ssh as root. The
server keeps denying permission although the passwordaseehcorrectly.

The server only has the PasswordAuthentication optionledafwhile the user can
only authenticate via RSA keys.

The user does not have his public key in the directory specifighe SSH server
config file. Therefore, he cannot authenticate.

The user is not in the AllowUsers list in the SSH config file. fidfere, he cannot
connect to the server although he enters the password tgrrec

The MaxAuthTries option in SSH server config is set too lowergfore, the user is
disconnected if she enters her password incorrectly once.

The MaxStartups options is set to 1. Therefore, the sernfases to start a new
session, while another unauthenticated session is sfilidgress.

The location of the server RSA key is not set correctly in thefig file. Therefore,
the client fails to verify the host key.

Apache
HTTP
Server

The path specified in the DocumentRoot option does not haveri@sponding
<Directory> section. Therefore, all accesses to this path are deniatding to
the default policy.

The cgi-bin directory is ScriptAliased in the config file. $hprevents the Directo-
rylndex from working as expected. Therefore, the user ceacaess the index file in
the directory.

The cgi-bin directory is aliased in the config file. Howevéie torresponding Di-
rectory section does not provide sufficient permissionser&fore, accesses to this
directory are denied.

A virtual host with the same interface coverage is set foHfi@ P server. This host
points to a different DocumentRoot which overwrites theadétfone. Therefore, the
user gets an index file with incorrect content upon accessiagerver Document-
Root.

The cgi-bin directory is aliased and a CGI Handler is actidain the config file.
However, the correspondingDirectory> section does not have the ExecCGl option
set. The user cannot access the executables in this director

A specific directory in DocumentRoot is also aliased to aeotiirectory outside
DocumentRoot. Therefore, accesses to files in the firsttdingare redirected to the
aliased directory, and the files are not found.

Postfix

The mydestination option is not set correctly in the Postfirfig file. Therefore,
Postfix cannot deliver mail locally.

The myorigin option is set incorrectly in the Postfix configfilTherefore, the next
relay host bounces the mail sent from the user's machinestintiernet.

The relayhost option is set incorrectly. Therefore, Postéirnot forward the email
sent from the user’s machine to the Internet.

The type of aliasnaps option is not supported in the user's machine. Thexefor
Postfix fails to send any mail locally or to the Internet.

The email address provided in luselay is not reachable. Therefore, Postfix cannot
redirect other mail with wrong recipient to the lusetay.

Table 3.1: Description of real-world configuration bugs

In the second bug, the OpenSSH server is configured to omiy glassword authenti-

cation, while the client is configured to authenticate viaAR&ys. In this bug, when the

a7

user tries to login, the password prompt does not appearthendser gets aermission
deniedmessage.

In the third bug, the user tries to authenticate via RSA kbys he does not have his
public key in the directory specified in the OpenSSH servaffigaration file. Therefore,
when the user tries to login, he receivegeamission deniethessage.

In the fourth bug, the user is not listed in thel owUser s list in the OpenSSH server
configuration file. Therefore, when he tries to login, theseedenies access, even when
the user enters his password correctly.

The MaxAut hTri es option in the OpenSSH server configuration file is set to a low
number (1 in this bug) in the fifth bug. This option controle thumber of incorrect au-
thentication trials. If the user enters her password ireaily once, she gets disconnected
from the server.

For test case 6, theéax St ar t ups option is set to 1. This option controls the number
of concurrent unauthenticated sessions, mainly for sgquurposes. In this bug, the server
refuses to start a new session, because another unaustedtsession is still in progress.

In the last test case, the user cannot verify the host keyeo$dinver, because the loca-
tion of the server RSA key, specified by thest Key option, is incorrect in the server’s
configuration file. This option enables users to verify thentity of the host server, and
prevents security attacks such as man-in-the-middlelattac

Apache Web server:

The Apache Web server allows users to specify configuratiions for each di-
rectory, using a<Di r ect or y> header. In the first bug, thBocunent Root option,
which specifies the default path of documents in Apache, doesave a corresponding
<Di rect ory> section. Therefore, Apache uses the defaili r ect or y> section,
which denies accesses by default.

In the second bug, the cgi-bin directorySsr i pt Al i ased in the Apache configura-

tion file. This setting implies that everything in this ditexy is executable. Therefore, the

48

Di rect or yl ndex option in the correspondingDi r ect or y > section will not work
as expected. Thus, an attempt to access the index file, byspehifying the name of the
directory, leads to an error.

In test case 3, the cgi-bin directory is aliased in the Apardiguration file. However,
the access permissions are not set correctly in the comdgpp<Di r ect or y > section.
Therefore, all the accesses to this directory are denied.

A single Apache server can expose multiple interfaces (different IP addresses and
port numbers), using theVi r t ual Host > directive. In the fourth bug , a virtual host
with the same interface coverage as the default coverage isrsHTTP server. However,
this host points to a differedocunent Root , which overwrites the default one. Thus,
the files that are served in tilcunent Root path are not the files that the user expects.

In the fifth bug, the cgi-bin directory is correctly aliasedthe Apache configuration
file. But, the correspondingDi r ect or y> section does not have tliexecCGE option,
which instructs Apache to executes the cgi files. Thus, usmraot access executables in
this directory.

In the final bug, a specific subdirectoryddcunent Root option is aliased to another
directory in the Apache configuration file. Accesses to thhtigectory are therefore redi-
rected to the specified alias. Thus, Apache cannot find theested files, although the user
sees that they exist in the original subdirectory.

Postfix mail server:

In the first test case, Postfix cannot deliver email localgduse theydest i nati on
option that specifies the domain name of the local machinetiset correctly.

In the second Postfix test case, the next relay host bouneesrthil, complaining that
the domain of the sender does not exist. The reason is thatythei gi n option is not
set correctly in the Postfix configuration file. This optioresifies the domain that locally-
posted mail appears to come from.

For the third bug, theel ayhost option is set incorrectly in the Postfix configuration

49

file. Therefore, the local SMTP process cannot forward thaikeffrom the sender to the
next hop.

Theal i as_maps option in the Postfix configuration file specifies the aliagchory
that is used for local email delivery. In the fourth bug, tipe ofal i as_maps option is
not supported in the user's machine. Therefore, Postfixataseliver emails.

For an email with incorrect recipient addresses, Postfestto redirect the email to
the address specified in theiser _r el ay option. In the fifth bug, thé user _r el ay

address is set incorrectly. Therefore, Postfix cannoteetithe email successfully.

3.4.2.2 Results

ConfAid tracks dependencies among multiple processedIf@p@enSSH and Postfix
bugs. For OpenSSH, it instruments two processes that comatarvia Unix sockets. For
Postfix, it instruments between four and six processes tiratrwinicate via Unix sockets
and files; the number of instrumented processes depend omlaow processes are started
before a particular bug manifests. Multi-process cauystbicking is necessary to diagnose
4 out of 5 Postfix and 3 out of 7 OpenSSH bugs. For Apache, Cdnfides not track
dependencies across processes since Apache starts oniyooess.

As shown in Table 3.2, ConfAid is highly effective in pinptimgy the root cause of
misconfigurations. ConfAid ranks the actual root causeifirdB cases, and second in the
other 5. Sometimes, when the actual root cause is rankeadettee token ranked first
provides a valuable clue to help debug the problem. Formastain Apache the actual
error usually occurs nested inside a section or directivernand in the config file. For
the two Apache errors where the root cause is ranked sedmmthp-ranked option is the
section or directive containing the error.

The performance of ConfAid is reasonable. The time to mahifee buggy behavior
varies among applications. Postfix and OpenSSH take lesg2th@nutes, while Apache

takes 2—3 minutes to complete. The average execution tirhBafminutes is much faster

50

. Total # of ConfAid rank of Execution # false positives
Application | Bug . . ;
options the root cause time w/o weights
1 47 2"d(tied w/1) 1m 16s 6
2 47 15t (tied w/l) 1m 10s 1
3 48 2ud 51s 43
OpenSSH | 4 49 2 48s 44
Server 5 47 15t 1m 13s 43
6 47 15t 9s 0
7 47 15t (tied w/l) 36s 43
1 88 2v(tied w/l) 2m 46s 87
2 89 1t 2m 45s 87
Apache 3 89 2d(tied w/1) 2m 45s 88
HTTP Server| 4 93 1t 2m 59s 91
5 89 15t 2m 46s 88
6 89 15t (tied w/l) 2m47s 86
1 27 1 37s 4
2 27 1t 1m 10s 4
Postfix 3 29 15t 47s 4
4 29 15t 32s 2
5 29 1t 1m 38s 0

Table 3.2: Results for 18 real-world configuration bugs

and less frustrating than trying to fix such configuratioroesrby looking at the logs,
searching the Internet, and asking colleagues for poteritias. For instance, the 6th
Apache misconfiguration in Table 3.1 is taken from a thredohixforums.org [42]. After
trying to fix the misconfiguration for quite a while, the useenw to the trouble of post-
ing the question in the forum and waited two days for an answercontrast, ConfAid

identified the root cause in less than 3 minutes.

3.4.3 Effect of the weighting heuristic

We next examine the effect of the weighting heuristic introed in Section 3.3.4. For
each of the 18 real-world misconfigurations, we disabledhthgistic and re-ran ConfAid.
With the heuristic disabled, ConfAid treats all sourcesddrmation flow equally. There-
fore, instead of producing a ranked list of possible roosegyConfAid returns a single set
of tokens, each of which is considered equally likely to bertot cause.

The last column of Table 3.2 shows the number of false pesitvhen the heuristic

51

is disabled. In every case, ConfAid identifies the correot mause as one of the returned
tokens. However, the number of other tokens returned varbstantially. Without the
heuristic, there were only two misconfigurations (the 6tle@®SH bug and the 5th Postfix
bug) for which ConfAid produces no false positives. For diltes bugs, the number of
false positives is relatively low (less than 6). For the remmay 10 bugs, ConfAid returns
almost all options as possible root causes. Thus, with@mighting heuristic, ConfAid

is ineffective for 55% of the misconfigurations.

3.4.4 Effects of bounded horizon heuristic

We next investigated the effect of varying ConfAid’s limit the number of instructions
executed along each alternate path (discussed in Sec8dh13.from the default value of
80 instructions. As Figure 3.5 shows, varying the limit habstantially different effects
on execution time, depending on the application being unsénted. For OpenSSH (bug
#1), the execution time increases approximately lineadynf56 seconds with no alternate
path exploration to 2:29 minutes with a horizon of 1600 instions. On the other hand,
Postfix (bug #1), shows an apparently exponential growtthasbbund increases. The
execution time starts at 21 seconds with no alternate patlortion and increases to 7:10
minutes for a horizon of 800 instructions. With a horizon 600, ConfAid analysis did
not complete.

This difference in behavior derives from the nature of theliaptions. We found that
even with a limit of 80 instructions, more than 80% of the tathconditional branches
in the OpenSSH bug reach their merge points for all alterpatbs. Increasing the hori-
zon only affects a small fraction of the branches since tkeare short enough to finish
within the limit. On the other hand, for Postfix, less than 56Pthe branches reach their
merge point within the limit of 80 instructions. As we rai$e timit, the percentage of the
completed branches increases slowly to 60%.

To summarize, we found that there is no single limit that vedykst for all applications.

52

500 T T T T T T T T

OpenSSH Server——
Postfix —x«—

400

300

200

Execution time (seconds)

100

O Il Il Il Il Il Il Il Il
0 200 400 600 800 1000 1200 1400 1600 1800

Maximum # of explored instructions

Figure 3.5: The effect of varying the horizon

Consequently, we envision that we could augment ConfAids®an iterative search pro-
cess in which it would start with a small horizon to generatuits quickly, then continue

to execute with larger horizons to refine the results.

3.4.5 Random fault injection

We next used ConfErr [40] to randomly generate configuragionrs. ConfErr uses
human error models rooted in psychology and linguisticstegate realistic configuration
mistakes. We used ConfErr to produce 20 errors for eachcgtjgn. We then injected the
errors one by one and measured the effectiveness and parfoenof ConfAid.

As shown in Table 3.3, ConfAid performs very well on thes®@esr The average time
to execute all three applications is lower than the averageugion time for the real-world
errors used in the previous section. The main reason fodiffésence is that the real-world
errors are often more complex than the randomly-generated. d herefore, it takes more

time for the application to manifest the buggy behavior &al+world errors.

For the randomly generated errors, ConfAid instrument®yyo processes for OpenSSH

and up to six processes for Postfix. However, many faultsxridied before these appli-
cations start additional processes; in such cases, Coniflidinstruments one process.

For OpenSSH, ConfAid successfully pinpointed the root egusere we define suc-

53

100t CAUSES root causes root causes root causes root causes Average
App.) ranked first ranked ranked second ranked worse time
ranked first .)) :
with one tie second with one tie than second to run
OpenSSH| 17 (85%) 1 (5%) 1 (5%) 0 1 (5%) 7s
Apache 17 (85%) 1 (5%) 0 1 (5%) 1 (5%) 24s
Postfix 15 (75%) 0 2 (10%) 0 3 (15%) 38s

Table 3.3: Random fault injection results

cess as listing the actual root cause as one of the top twong)tior 95% of the bugs. For
the last bug, ConfAid could not run to completion due to umsurfed system calls used in
the code path. We could remedy this by abstracting more. calls

ConfAid also successfully diagnoses 95% of the Apache rieor the remaining er-
ror, ConfAid ranks the root cause 9th. The configurationregdhat the Directorylndex
file for the main document root is listed incorrectly in theakhe configuration file. The
DirectorylIndex file is the file that Apache serves if that dioey is accessed without men-
tioning a specific file. For instance, accessiig p: // server. cont i mages/ will
return the Directorylndex file listed for themages directory. However, thé ndexes
option is also activated for the document root directoryisTption allows Apache to send
the list of the files in the directory if no specific file in thatettory is requested. The
combination of these two options causes Apache to servesthef ffiles in the main doc-
ument directory instead of the index file. ConfAid deternsitigat the content sent to the
user is dependent on thendexes and related options first and the Directorylndex option
next. Thus, the root cause gets ranked lower in the list. dhdering is a direct result
of the heuristic discussed in Section 3.3.4 that considensdhes closer to the erroneous
behavior to be more likely to lead to the root cause than tFertleer away.

For Postfix, ConfAid diagnoses 85% of the errors effectivdlige remaining 3 errors
are due to missing configuration options. Currently, CodfAnly considers all tokens

present in the configuration file as possible sources of thiecause. If a default value can

54

be overridden by a token not actually in the file, then Conf&itl not detect the missing
token as a possible root cause. Based on these results, nvio@atend our alternate path
analysis to look for tokens that could be read from the conliggdiong branches that are
not actually executed. We can taint variables modified atbioge branches with a value
that is dependent upon the branch conditions that led tqottht

Overall, ConfAid successfully diagnosed 55 out of 60 randamors by ranking the
actual root cause first or second. Out of the remaining 5 €rwe believe that 4 (the
OpenSSH server error and the three Postfix errors) can beatiad with further improve-
ments to the ConfAid implementation. The remaining errbe (Apache error) is a direct

result of our weighting heuristic and seems hard for Confaidiagnose correctly.

3.5 Conclusion

Misconfigurations are costly, time-consuming, and frustggto troubleshoot. ConfAid
makes troubleshooting easier by pinpointing the speciikerian a configuration file that
led to an erroneous behavior. Compared to prior approaftm¥Aid distinguishes itself
by analyzing causalityvithin processes as they execute without the need for application
source code. It propagates causal dependencies amonglmpltbcesses and outputs a
ranked list of probable root causes. Our results show thatAid usually lists the actual
root cause as the first or second entry in this list. Thus, Sidnfan substantially reduce

total time to recovery and perhaps make configuration probie little less frustrating.

55

CHAPTER IV

Deterministic Record and Replay: Taking Control of

Overhead and Non-determinism

The dynamic information flow analysis that ConfAid perfories high-overhead ac-
tivity. It imposes several orders of magnitude of slow downapplications. While this
slowdown may be tolerable for some desktop applications, dertainly not affordable
for production environment. Another problem is that somsaonfigurations are time-
sensitive, i.e. they manifest differently if the timing dfet execution changes. It is diffi-
cult to correctly capture such problems with an analysis highly perturbs the execution
timings. Furthermore, some misconfigurations, especpdtyormance-related issues dis-
cussed in the next chapter, are rare and difficult to repredtiberefore, the users may not
be able to easily recreate them for analysis.

To address these problems, we decided to augment ConfAachvdieterministic record
and replay system that offloads time-consuming analysis ffee online, time-sensitive
execution. A deterministic record and replay system reéesean execution by recording
the initial state of the execution and logging all non-deti@istic events that occur during
the execution [9, 27, 64, 68]. The replay system subsequesptoduces the execution on
demand by restarting execution from the initial state anmbhiing the previously-recorded
values for all non-deterministic events. In this chaptes,discuss the differences between

our system and the existing deterministic record and repfatems.

56

4.1 Design

While deterministic replay is a well-studied technique, @mrecountered several new
challenges in adapting the technique to work with ConfAid.particular, we found that
we needed to carefully balance thidelity of the record and replay, and that we needed to
co-designthe deterministic replay system to work with the dynamidrimmentation and
analysis employed by ConfAid.

We define the fidelity of the replay to be the degree to whichrépayed execution
is guaranteed to match the recorded execution. For the pespaf ConfAid, replay fi-
delity must be high enough to guarantee that the recordidgeplaying systems execute
the same application instructions and system calls in theesarder. Since ConfAid ex-
tracts causal dependencies from the data flow and controldildiae execution, if the two
executions were allowed to differ, ConfAid could provideanrect root cause diagnosis.

On the other hand, the fidelity of replay must be low enoughhsd €onfAid can
executebothapplication and dynamic instrumentation instructions system calls during
replay. From the point of view of the replay system, the rgptbexecution will contain a
large number of additional events that were not presenhdugcording.

Thus, the design of our record and replay system walks a fiee Tihe fidelity of deter-
ministic replay must guarantee that the saapelicationinstructions and system calls are
executed in the same order in all executions, but also aléplays to execute additional
instrumentationinstructions and system calls. These requirements preaffethe-shelf
use of any existing deterministic replay system. Some systo not guarantee the same
sequence of application instructions [3, 56], while othéwosnot allow recorded and re-
played executions to diverge sufficiently to run instrunaéioh code in one execution but
not the other [74] or have unacceptably high recording eead{51, 57]. Since ConfAid
uses Pin binary instrumentation tool [44] for its analysis,cannot use record and replay
systems such as Aftersight [20] that perform their analystee VMM layer.

Our approach to solving this dilemma is co-design: we makedterministic replay

57

systeminstrumentation-awareo that it compensates for the specific divergences in re-
played execution caused by the dynamic instrumentatiorr.r€play system is designed
to work with the Pin dynamic instrumentation tool. The rgptade compensates for extra
system calls made by Pin and the modifications to recorde@raysalls due to instru-
mentation. It also preallocates resources such as memgignseand signal handlers to
avoid conflicts between the instrumentation and the replaypplication. Instrumentation-
awareness enables our replay system to provide the exddyfréguired by ConfAid. We

describe the implementation details in the next section.

4.2 Implementation

Our deterministic record and replay system is implementeithié Linux kernel. The
unit of replay can be either a single process or a group of canicating processes. Thus,
our system records and replays one or more applicationsigrg®n the same computer.

Our system currently uses a standard design to record atai/nepcesses. It take a
checkpoint (address space and registers) of the processa@gses being recorded. For
each such process, our system logs the data returned bystdhsyalls that the process
executes. The logged values include addresses modifiecliethel within the process’s
address space. We also record the value and timing of sigehi®red to each process.
When recorded processes spawn child processes, we reeadtiVities of the children —
this is useful for servers that use children to handle incgmnequests.

To replay a recorded execution, our system restarts thécagiph from the checkpoint.
When the application makes a system call, our kernel doeeretecute that call. Instead,
it supplies the recorded values from the log of non-deteistimevents. The exception to
this rule is system calls such asap that change the address space of the application —
such calls are executed by the replaying kernel in a manaeettsures that they produce an
identical effect on the calling process’s address spademas produced during recording.

Our kernel also delivers the same signals to each procebe aioint the original signal

58

was received in the recorded execution. This guaranteésfidiglity replay; i.e., that the
recorded and replayed processes execute the same irsteugtid system calls in the same
sequential order.

ConfAid analysis tool uses Pin to monitor information flowhilé Pin is designed to be
invisible to the application being instrumented, ihst designed to be transparent to lower
layers of the system such as the operating system. For gest&in adds and modifies
system calls, modifies signal handlers, and reserves meatuahgsses in the application
address space.

ConfAid compensates for divergences in execution due tarpimstrumentation. It
allocates memory for use as a communication channel bettheekernel replay system
and the analysis tools run by Pin. The analysis tool usegegi®n to inform the kernel
which system calls are initiated by the application (andckeeshould be replayed from the
log) and which are initiated by Pin or the analysis tool (andudd be executed normally).
ConfAid intercepts all system calls issued by the applwcatnd sets a flag in this region
prior to issuing the system call; it clears the flag when thetesy call ends. Thus, when
the kernel sees a system call with the flag cleared, it knoatsRim or the analysis tool has
issued the system call.

ConfAid also compensates for interference between sysééiswnade by the recorded
application and system calls made by Pin or the analysis téml instance, we observed
that Pin would sometimes ask the kernehtoap a free region of memory and the kernel
would return a region that would later be requested by therdex application, leading to
a conflict. We compensated for this by scanning the log totifyeall regions that will be
requested by the recorded application during the replayesetving these regions so that
the kernel does not allocate them for Pin. We made similarifications to compensate
for conflicting requests for signal handlers and other resesithat could potentially be
requested by both the application and the dynamic instrtaien.

For inter-process communication, ConfAid originally tsamtted taint values over the

59

same channels that were used to send the tainted data bgiveeesses. However, these
channels do not exist during replay, since the kernel doeserexecute recorded system
calls for inter-process communication. To solve this peall ConfAid modifies the appli-
cation binaries to establish and use spesid channeléreplay-specific TCP connections)
for communicating taint values with each other. Since shtinoels are established by in-
strumentation and not by the application, the kernel execaide channel system calls
during replay. During replay, when the instrumentationssiémat one recorded process
communicated with another, it uses the side channel tortrérike taint values from the
sending process to the process that received the data dedagling. The receiving pro-
cess blocks until information is available on the side clehnfhis means that the replayed
processes obey the same causal order of execution thaifl@ydd during recording.

We are currently modifying ConfAid to support multi-thresttapplications. The biggest
challenge has been supporting the needed fidelity of detéstiai record and replay while
adding low overhead to the production system. Several telsgarministic replay systems
have lowered record overhead for multi-threaded processesgng on multiprocessors by
searching either online [69] or offline [3, 56] for a replayexkecution that is equivalent
only in external output to the recorded system. Like thes® gystems, we plan to record
system calls and user-level synchronization operationsing replay, we can enforce the
samehappens-beforerder among these operations that was observed duringdiegoin
the absence of data races, this guarantees that the sanease@dfiinstructions and system
calls is executed by each pair of corresponding recordyegbireads.

To deal with data races, we plan to run a dynamic data racetdetduring offline
replay; we expect that the relative performance impactisfatiditional step will be small
because we already execute high-overhead dynamic ingtitatres during replay. During
analysis, ConfAid will assign lower confidence to valuesuisalated from regions of code
in which the executing thread is racing with another thr@dd range of the potential error

can be estimated by sampling different interleavings ofhigmstructions during replay.

60

1.0+

mm Without Recording
0.5 — With Recording

Normalized Throughput

0.0- —
Apache Postfix PostgreSQL

This figure compares server throughput with and without our deterministic record
system. Results are normalized to the number of requests per second without
our recording. Higher values are better. Each result is the mean of 10 trials; error
bars are 95% confidence intervals.

Figure 4.1: Overhead of deterministic recording

ConfAid users can either use the lower-confidence result8jay can add annotation or

synchronization to the application to eliminate the dat@sa

4.3 Evaluation

We used our deterministic record and replay system to retwest applications: the
Apache Web server version 2.2.14, the Postfix mail servesiove?.7 and the PostgreSQL
database version 9.0.4. We ran all experiments on a DelP@ptP80 with a 3.47 GHz Intel
Core i5 Dual Core processor and 4 GB of memory, running a Lih6x26 kernel modified
to support deterministic record and replay. We measured@mverhead by comparing
the throughput and the latency of these three applicatidrenvthey are recorded by our
record system to the results of running the applicationderdefault Linux kernel without
recording.

Figure 4.1 shows that our recording adds a 1-7% throughperhead for the three
applications. For Apache, we usall to send 5000 requests for a 35 KB static Web page
with a concurrency of 50 requests at a time over an isolatedank. Our recording reduced

throughput by 0.6%. Per-request latency increased by O recording log size for this

61

experiment was 7 MB, containing 115K system calls.

For Postfix, we used themt p- sour ce tool to send 10000 mail messages of size
1 KB from another machine on the isolated network. Postfix@ssing is asynchronous,
so there is no meaningful latency measure. Our recordingcestiserver throughput by
1.1%. The log size was 453 MB, containing 6 million systentscal

We benchmarked PostgreSQL usipgbench. We measured the number of transac-
tions completed in 60 seconds with concurrency of 10 tramsascsent at a time. Each
transaction involves on8ELECT, three UPDATEs, and ond NSERT command. Our
recording reduced throughput by 7% and increased per-setiency by 7%. The log size
was 820 MB, containing 17 million system calls. We conjeettirat the higher overhead
for PostgreSQL was mostly due to the increased log size agdrlaumber of executed

system calls.

62

CHAPTER YV

X-ray: Troubleshooting Performance Anomalies with

Causality Analysis

5.1 Introduction

Understanding and troubleshooting performance problenmplex software sys-
tems is notoriously challenging. This challenge is compulmahfor software in production
for several reasons. To avoid slowing down production sgste@nalysis and troubleshoot-
ing must incur minimal overhead. Further, performancedssa production can be both
rare and non-deterministic, making the issues hard to dejoe

However, we argue that the most important reason why trghblating performance in
production systems is challenging is that current tooly splve half the problem. Trou-
bleshooting a performance anomaly is essentially the ggooédeterminingvhy certain
events, such as high latency or resource usage, happenagstean. Unfortunately, most
current analysis tools, such as profilers and logging, oatgmninewhatevents happened
during a performance anomaly — they leave the more chalbgngiiestion of why those
events happened unanswered. Administrators and developet manually infer the root
cause of performance issue from the observed events basadhgr expertise and knowl-
edge of the software. For instance, a logging tool may détett certain low-level routine

is called often during periods of high request latency, batser of the tool must then infer

63

that the routine is called more often due to a specific cordigom setting.

The final part of this thesis introduces the techniqug@efformance summarization
which not only determines what events occurred during aopednce anomaly, but also
determines why the anomaly occurred. Performance sumatiarizfirst attributes perfor-
mance costs such as latency and I/O utilization to fine-gchgvents (individual instruc-
tions and system calls). Then, it uses fine-grained caysaddlysis, similar to ConfAid, to
associate each such event with a set of probable root causless configuration settings
or specific data from input requests. The cost of each eveadsgned to potential root
causes weighted by the probability that the particular czatse led to the execution of
that event. Finally, the per-cause costs for all eventsarptiogram execution are summed
together. The end result is a list of root causes ordered diy plerformance costs. In the
above example, the outcome of performance summarizatiadwiodicate that one spe-
cific configuration setting contributed the most to the peniance slowdown. This output
gives the system troubleshooter a direct indication of hmixtthe problem, without the
need for time-consuming manual analysis.

We also introducéifferential performance analyswhich is used to determine why the
performance impact of two different events differed. Fatamce, differential performance
analysis can be used to understand why two requests to a \Wedp tmok different amounts
of time to complete. Differential performance analysisiiifgees branches where the exe-
cution paths of the two requests diverged. It assigns a pedioce cost to each path taken
from the branch, then uses dynamic information flow analisidetermine why the two
requests diverged at that point. It attributes the diffeeeim performance costs between
the two paths to the identified root causes according to kiediiood that they caused the
branch condition to evaluate to different values duringtihe executions. The costs of all
such divergences during are summed. The output shows ttesy®ubleshooter a set of
reasons why the performance costs of two requests diftargadith a specific performance

impact for each reason.

64

We have built a tool called X-ray that implements perfornreasgmmarization. X-ray
attributes latency, CPU utilization, file system usage, aetvork utilization to specific
root causes. X-ray supports several different scopes dysinaintervals of time, specific
requests, or a differential analysis of pairs of requedtsisTX-ray can answer performance

guestions such as:
e Why did a particular request take a long time to execute?
e Why is file system usage high during a specific time period?
e Why did request R take longer to execute than request S?

X-ray leverages the deterministic record and replay systeraduced in chapter 1V
to offload the heavy-weight root cause analysis from the yortidn system. As explained
in chapter IV, a deterministic replay system provides DW&-functionality, in which an
execution of a hardware or software system is recorded s$@tha@entical execution can
later be replayed on demand. For the purpose of X-ray, whtslighodified our determin-
istic record system to capture all the performance-relatiedmation online, in addition to
other non-deterministic events. For example, X-ray ctdléize timing information during
recording, because the offline heavyweight analysis sobaliy perturbs timing. During
replay, X-ray determines the root causes of the executi@ach event and associates the
collected performance costs to those root causes.

Thus, the contributions of this part of my thesis are theofeihg:

e The technique of performance summarization, which atiieperformance costs to

root causes.

e The technique of differential performance summarizat@ruhderstanding why two

similar events have different performance.

e Development and evaluation of the X-ray tool, which impletsehese techniques.

65

We evaluated X-ray using three applications: the Apache §¥éeber, the Postfix malil
server and the PostgreSQL database. We have reproducecda@ydeal 14 performance
issues reported for these applications. In 12 of 14 casasyXdentifies a correct root
cause as the largest contributor to the performance prghtethe remaining two cases,

X-ray identifies a correct root cause as the third largestritmrior.

5.2 X-ray overview

5.2.1 Troubleshooting with X-ray

X-ray pinpoints why performance anomalies, such as highesglatencies or bottle-
necks in resources, occurred on a production system. Otgrdusystem targets servers,
though this is not fundamental to our design.

X-ray does not require application source code becausedlysis operates entirely
on application binaries and modifications are made usinguaiym binary instrumentation.
Thus, X-ray can be used on COTS (common off-the-shelf) apptins, making the tool
appropriate for system administrators as well as for dper

The first step in using X-ray is to record an interval of sofvexecution on a produc-
tion system. X-ray uses our deterministic record and replesgem, introduced in chap-
ter IV. As we showed earlier, our recording overhead is aulyenly 1-7%. Thus, a user
can choose to leave the record system running for long peobtime to capture rare and
hard-to-reproduce performance issues. Alternativetyréicord system can be dynamically
enabled only when specific performance issues are exhibited

X-ray performs its analysis offline on the replayed execautidn X-ray user chooses
which interval of execution to analyze. The user may seleeEntire execution, an inter-
val of time, or a specific input request. X-ray produces aqrerthnce summary for the
selected interval. The first two intervals are appropriakenvthe user notices degraded

throughput over a period of time, whereas the latter is béstnwone or more requests take

66

Al |l ow domai n. nane (line 164) : 603 usecs

ServerRoot (line 29) : 151 usecs
TypesConfig (line 298) : 151 usecs
<I f Modul e(li ne 231) . 75 usecs
al i as\ _nodul e(line 231) . 75 usecs
<Directory(line 162) : 55 usecs

Figure 5.1: Example of X-ray output for Apache

an unexpected amount of time to execute. Alternativelyea osy select two requests to
compare, in which case X-ray does a differential perforreasiemmarization for the se-
lected requests. Typically, a user would select two sinndguests that differ substantially
in service time, though our results show that X-ray will go®/useful information even

when the two selected requests are very dissimilar.

The X-ray user next selects the set of performance staigiisummarize. Typically,
we expect that a user will use basic performance analysis soch ag op andi ost at
to identify the bottleneck resource. X-ray provides a fléxiipamework for analyzing ar-
bitrary statistics; our current implementation suppaxtetcy, CPU utilization, file system
usage, and network bandwidth.

Figure 5.1 shows an example of X-ray output for Apache. Thpushows the inferred
root causes of a performance problem. X-ray associatesdisp®st (in this case, latency)
to each root cause and orders the list by that metric. In thiedjall root causes are from the
ht t pd. conf configuration file. Based on X-ray output, users may idemifgfiguration
options that are inappropriate for their workload, they Imighoose a set of configuration
options that offer a different tradeoff between performeocfunctionality, or they may re-
provision their system to supply resources in quantitias tiiatch the features they desire.

The recorded executions can be replayed multiple timesreftre, X-ray users can
perform many different analyses for the same recording.ifistance, a user may change
the scope of execution analyzed, choose different metsisainmarize, or switch between

basic and differential performance summarization. Thigamsethat the X-ray user does

67

Online Phase Offline Phase

Recorded Request Root Cause
Execution Extraction Extraction

Figure 5.2: Overview of X-ray

not need to decide what type of analysis will be useful befoperformance anomaly is

recorded.

5.2.2 Mechanics of X-ray

Figure 5.2 shows an overview of how X-ray runs. X-ray diviitesanalysis between
the recorded and replayed executions. In the online phéseg avith recording system
calls and other non-deterministic events, X-ray also m@&diming information and other
performance-specific data because the subsequent, offlalgsés perturbs the execution
too much to accurately measure performance.

In its offline phase, X-ray performs two passes, each of wisichdeterministic replay
of the recorded execution. In the first pass, X-ray perfomqgsiest extractionin which it
determines the specific intervals of execution (i.e., treddalocks executed) during which
each process is handling each input request to the recoydezhs In the first pass, X-ray
also assigns the recorded performance costs to each itstrand system call. In the
second pass, X-ray completes performance summarizatioising dynamic information
flow to attribute events to root causes and by calculatingctist of each root cause. At
the end of the second pass, X-ray outputs a list of root causkesed by its user’'s chosen

performance metric.

68

Step 1: Cost Attribution Step 2: Root Cause Analysis Step 3: Summarization

.)
Time If (X){
// Execution depends on option1 costs
// option1 & option2 with 0.5 * 100 = 50 bytes
A write 100 bytes A . // probabilities 9.5 &0.2 option2 costs
. write (100) ;
Disk cost: 100 } 0.2 * 100 = 20 bytes
If(Y){
// Execution depends on option2 costs
// option2 with 0.2 * 200 = 40 bytes
i robability 0.2
B w.r|te 200 bytes B > {,/rpl 2 iy option2 costs 60 bytes
Disk cost: 200 te (200) ;
¥ ' a optionl costs 50 bytes

Figure 5.3: Example of performance summarization
5.3 Performance summarization

Performance summarization is the heart of X-ray. The gotl &ttribute specific per-
formance costs such as request latency, CPU usage, andliz@tiain to one or more root
causes. X-ray considers any configuration option or anyréatived from an input request

as a potential root cause.

5.3.1 Basic performance summarization

Performance summarization is akin to integration in caisulX-ray individually an-
alyzes the per-cause performance cost and root cause ofusactevel instruction and
system call (referred to as events in the discussion betbem), adds together the per-event
costs to calculate how much each root cause has reflecte@tfuemance of the applica-
tion during the period of observation selected by the X-regru

Figure 5.3 shows an overview of how performance summaozatiorks. In the first
step, X-ray attributes performance metrics to each evestidrd by one or more processes
comprising a server application; the figure assumes thaXtreey user has specified file
system usage as a metric. Some metrics such as file systezatidil are associated only
with system calls, while others such as latency are ate&ibtd both system calls and user-

level instructions.

69

In the next step, X-ray uses dynamic information flow analysiderive a set of possi-
ble root causes for the execution of each event. Essentiailtystep answers the question:
"how likely is it that changing a configuration option or redeg a different input would
have prevented this event from executing?” X-ray uses threesdgorithms that we devel-
oped in ConfAid to perform this analysis. In the last stega¥-multiplies the performance
metrics for each event by the per-cause taint values toeltresper-event performance cost
for each root cause. X-ray sums these costs over all evaaitexkcuted during the period

selected by the user and outputs an ordered list of root sause

5.3.2 Differential performance summarization

Differential performance summarization is a techniquecmmparing any two execu-
tions of an application activity, such as the processingwaf different request by a Web
server. Such activities have a common starting point (&hg.receipt of a request) and ter-
mination point (e.g., the sending of a response), but theudgdan paths for different events
may diverge due to differences in the input or specific coméijan settings.

Figure 5.4 shows an example of differential performancersanzation. X-ray com-
pares two activities by first identifying all points whereetpaths of the two executions
diverge. It then uses causality analysis to evaluate whi eacrgence occurred; this
reason is given by the taint of the branch conditional at tlrerdence point. For each
performance metric, X-ray calculates the cost of the dieeog by subtracting the cost of
all events on the divergent path taken by the first executiom fthe cost of all events on
the path taken by the second execution. This cost is at#uhtiotroot causes by multiplying
the metric values by the taint weight. X-ray sums the peseawsts of all divergences and

output a list of root causes ordered by the differential .cost

5.4 Implementation
We next describe the implementation of X-ray in detail.

70

Conditional depends on
optionl & option2 with
probabilities 0.5 & 0.2

Cost:2 1
option1 costs:
Cost: 6 *1 =
Cost: 3 0‘5, 1=05
option2 costs:
02*1=0.2

Conditional depends
on option2 with
probability 0.2

Cost: 2 ' option2 costs:

Cost: 8
02*6=1.2
Cost of Divergence D1: (6 -5) =1 option2 costs 0.2+1.2 =1.4
Cost of Divergence D2: (8 -2) =6 option1 costs 0.5

Figure 5.4: Example of differential performance summarization

5.4.1 Online phase

Since the online phase of X-ray analysis runs on a produslystem, X-ray uses de-
terministic record and replay to move any activity with dalnsial performance overhead
to a subsequent, offline phase. The only two activities peréal online are recording

non-deterministic inputs and gathering performance métdron.

5.4.1.1 Recording performance information

Since X-ray analysis imposes a runtime overhead of sevatat®of magnitude, timing
information gathered during an instrumented run is esakintiseless for diagnosing most
performance problems. In contrast, timing informationhga¢d during the recorded run
captures the exact performance experienced by the produsyistem. X-ray therefore
gathers timing data during recoding and explains the tindata by reasoning about the
instructions and system calls executed during replayedugions.

To capture timing information, for each system call exeduig the application, the
kernel records the system time at kernel entry and exit. Foplgity, the kernel writes

the timing information for each system call to the same logt ih uses to store non-

71

deterministic events. Analysis tools read the log direttlyextract the timing informa-
tion during replay. Other performance information, suchhesnumber of bytes read or
written during 1/0 system calls are already captured as altre$ recording sources of

non-determinism.

5.4.2 Offline phase

X-ray executes analysis in two passes. In the first passyX@gorms request extrac-
tion to determine when each application process is haneéfed request. It also identifies
which basic blocks are executed within the analysis scopsarhby the user and attributes
performance costs to those blocks. In the second pass, Attidlyutes basic block exe-
cution to specific root causes and summarizes the perfornaost for each cause. Since
X-ray operates on a previously-recorded execution, iivgdrto replay the execution mul-
tiple times so that different parts of the analysis can bewesl sequentially (much like a

multi-pass compiler).

5.4.2.1 Request extraction

During the request extraction phase, X-ray identifies theruals of application exe-
cution during which each request was processed. For maes typanalysis, X-ray must
understand how an application processes one or more gartieguests such as particular
mail messages for the Postfix mail server or Web requestsgacke. Request extraction
traces the causal path of each request from the point wheedhest is received by the ap-
plication to the point when the request terminates (e.gemdnserver sends the response).
Often, requests traverse multiple processes, and diffgn@tesses handle different re-
guests at the same time.

The notion of a request is application-dependent. Thusy¢equires a per-application
filter that specifies the boundaries of incoming requestse fliter is simply a regular

expression over incoming data. For instance, the Postfex fittoks for the strindHELO

72

Time Dispatcher Worker Utility

Request 1
1
Request 2 \1\
1
2 1
1
2
2|, 11
Request 2 &
handled 1
Request 1
v handled

Figure 5.5: An example of X-ray request extraction. The intervals mdr&el or 2 in each
process correspond to the portions of process executiviXthey associates with the first
and second requests, respectively.

to identify incoming mails. A filter only needs to be creatette for each protocol (e.qg.,
SMTP or HTTP).

Request extraction runs as a Pin tool. The tool examinegssa&iurned from all system
calls that provide external input such as those that rectava from the network. When
the data returned from such system calls match the specifiexi X-ray tags the receiving
process with a unique request identifier to show that it islhag the request in question.

As shown in Figure 5.5, X-ray propagates request tags ammuggses as they com-
municate. It currently assumes that each process handiagla eequest at a time, but it
allows multiple processes to concurrently handle differequests (for instance, the dis-
patcher handles request 2 while a worker handles requeshé figure). When a message
with a new tag is received by a process, X-ray assumes thaages to handle the old re-
guest and starts to handle the new one. This assumptiondsfeathe server applications
we use in the evaluation.

Note that since these processes are being replayed, thel kieres not actually send

and receive data when they execute system calls. Thereopgest extraction cannot use

73

existing communication channels to propagate request tafgstherefore create and use
side channels, as described in chapter IV, to communicgteest tags between the sending
and receiving processes.

Although most popular servers such as Apache, Postfix ogREQL handle a single
request per thread of execution, event-based servers majelrmany requests simultane-
ously using a single thread. Since X-ray already tracksiegpbn data flow, we plan to
extend X-ray to handle such servers via fine-grained infiondlow analysis (i.e., taint
tracking). Essentially, we can identify the memory addeessssociated with each request
and use that information to identify the code intervals inchira thread or process is han-
dling a particular request. Alternatively, we could use-ggplication schemas as is done
during Magpie request extraction [5].

As the replayed application processes execute, the reexieattion Pin tool tags each
basic block with a request identifier if it believes the psxés handling a request at that
time. The final output of the request-extraction instrura@ah is a per-request list of

<process,basic blocktuples in the order that the basic blocks were executed.

5.4.2.2 Identifying basic blocks

The first step in performance summarization is to map theesobthe analysis specified
by the user to a set of basic blocks. If the user specifies thgesas a time interval, X-
ray includes all basic blocks executed by any process witiah interval. Identification
is somewhat imprecise because X-ray only records timesahphe entry and exit of
system calls. The analyzed scope is from the exit of the yas&m call executed before the
specified interval to the entry of the first system call exedufter the specified interval.
If the analysis scope is a time interval, X-ray omits requedtaction because it is not
needed.

If the user specifies a particular request as the scope ofsasaK-ray uses the request

extraction results that identify the set of basic blockstfat request. If the user specifies

74

two requests to compare using differential performancdyaisa X-ray uses the request

extraction results for both requests.

5.4.2.3 Attributing performance costs

X-ray next attributes specific performance costs to evegplication instructions and
system calls executed). As a performance optimizatioray)Xeonsiders all events in the
same basic block together since they have the same set afaosés (in other words, if
one event is executed, they all must be executed).

Currently, users may choose one or more of the following icetiatency, CPU uti-
lization, file system usage, and network throughput. Duraggprding, X-ray records the
start and end time of every system call in the log of non-deitgstic events. When it
encounters the same system call during replay, the Pin¢aolsrthe log and subtracts the
two values to determine the system call latency. The lat&tlyen attributed to the basic
block that invoked the system call.

X-ray next considers latency not attributable to systertsc#lcurrently uses a simple
method that attributes latency in proportion to the numbarser-level instructions exe-
cuted. X-ray then takes the total process execution tintsracts the time spent in system
calls, and divides the remaining time by the number of irdtoms. The result is the la-
tency per instruction. Multiplying this value by the numlo¢instructions in a basic block
and adding in any system call latency for that block givedillbek’s total latency.

To calculate CPU utilization, X-ray simply counts the numbkginstructions executed
by each basic block. To calculate file system and networkeaysamspects the replay log
as it is replayed to identify file descriptors associatechwiite resource being analyzed.
When a system call reads or writes data for these descrjpXeray attributes the total

number of bytes processed to the basic block that invokesgytsiem call.

75

5.4.2.4 Information flow analysis

X-ray next determines why each basic block executed. X-s@g ConfAid to generate
a set of probable root causes for each block. ConfAid assigmsique taint identifier to
registers and memory addresses when data is read into th@prdérom configuration files
and incoming request sockets. It identifies specific condijom tokens through a simple
form of symbolic execution. For instance, if data read froknmawn configuration file is
compared to the string “FOQO”, then ConfAid marks that datass®ciated with tokelROO.

As the program executes, ConfAid propagates taint iderdife@other locations in the
process’s address space according to dependencies icdbdia data and control flow.
Rather than track taint as a binary value, it associates ghwveiith each taint identifier
that represents the strength of the causal relationshigeeet the tainted value and the root
cause. X-ray builds on ConfAid by also assignhing a weightgdo$ taint values to each
basic block that is executed; membership in this set indgc#tat the block’s execution
depends on the specified root cause, and the associated weligates the strength of the
dependency.

We modified ConfAid to better suit the needs of X-ray. Our firgidification was to
broaden the source of tainted data. X-ray not only tracka de&d from configuration
sources; it also tracks data read from input requests. Xisag the same filter that it uses
during request extraction to determine when the applinatioeading data from a request.
The taint identifier in this case indicates the particulguest on which a memory address
or register depends.

We also modified how ConfAid uses taint values. The origiraf@id implementation
only outputs taint values when it encounters an applicatadnre. However, X-ray is
interested in the taint values of all instructions and systalls executed within the scope
of analysis. During execution, our modified version of Codf§enerates a taint set that
contains root causes and associated weights for every lbasi that has been marked as

being within the scope of analysis.

76

As an example, our modified version of ConfAid might emit tlddwing taint set
for a basic block:{F00 : 1.0, BAR : 0.5}. This represents the belief that the basic block
would definitely not have been executed if root caB€® were different and the belief
that the block is 50% likely not to have been executed if raatseBAR were different.
Note that these are two independent probabilities: pakytthanging either of the two
options might cause the basic block to not have been execlited, the values in a taint

set need not sum to one.

5.4.2.5 Integration

Next, X-ray attributes the performance cost of executirghdzsic block according to
specific root causes. For each root cause in the block’sgaintX-ray multiplies the per-
block cost by the weight associated with the root cause. Remtess maintains a running
sum of the costs associated with each root cause as it isyeghl& he final cost for each
root cause is determined by adding together the sums frore@tyed processes. At the
end of analysis, X-ray prints out a list of root causes andvsithe estimated performance

cost for each. X-ray can simultaneously analyze multiplégomance metrics.

5.4.2.6 Differential performance summarization

X-ray uses a different method to compare the performancsofeéquests. It first iden-
tifies the points where the execution paths diverged fromaorgher. It uses the results
of request extraction to output each path as a sequence iof llasks executed by the
request. Each path may span multiple processes. X-ray sesthedi f f tool to com-
pare the two paths and understand where they diverged fr@raoother and where the
divergence ended as the paths merged back together.

X-ray then determines the root cause of each divergencdtritiides the cost of the
divergence to the conditional that immediately precededlitrergence. It calculates a per-

formance cost for the divergence by first summing the perémee costs of all basic blocks

77

along the divergent path for one request and then subtgattiteasum of the performance
costs of all basic blocks along the divergent path for theeotequest. It attributes the
divergence to root causes by multiplying the cost of the rdeace by the weights in the

taint set for the conditional that caused the divergence.

5.5 Evaluation

Our evaluation of X-ray answers the following questions:

e How accurately does X-ray identify the root cause of perfamoe problems?

e How fast can X-ray troubleshoot a performance problem?

5.5.1 Experimental Setup

We used X-ray to diagnose performance problems in thredcapipins: the Apache
Web server version 2.2.14, the Postfix mail server versiomd the PostgreSQL database
version 9.0.4. In Apache, each request is handled by oneegsodPostfix has multiple
utility processes, each of which handles a certain part efjaest. On average, a Postfix
request is handled by 5 different processes. In Postgre®dth request is handled by
one process. However, PostgreSQL has multiple time-baskg processes such as a
write-ahead log writer and an auto-vacuum that handle @gqua batches. We ran all
experiments on a Dell OptiPlex 980 with a 3.47 GHz Intel CérBual Core processor and

4 GB of memory, running a Linux 2.6.26 kernel modified to suppeterministic replay.

5.5.2 Root cause identification

We evaluated X-ray by recreating known performance issepsrted in application
performance tuning and troubleshooting Web pages, forams blog posts. To recreate

each issue, we either modified configuration settings or agmbblematic sequence of

78

App

Description of performance test cases

Apache

1,2

Apache sets a threshold for the number of requests that aididthin one TCP
connection using the KeepAlive and MaxKeepAliveRequesttig. A low thresh-
old causes Apache to shut down and rebuild the connecti@nsften, causing a
significant delay in handling some requests.

In Apache, access to various directories can be contraildtk config file based on
the domain name of the client sending the request. ThisigetAuses extra DNS
calls for verifying the domains and leads to high latencyandiing the requests.

Apache can be configured to log the host names of clientsisgmeguests to spe-
cific directories for administrative purposes. This setttauses extra DNS calls
and leads to high latencies in handling requests for thasetdiries.

Apache can be configured to require authentication for sdreetdries. Authenti-
cation causes high CPU usage peaks.

Apache can be configured to generate content-MD5 heademslat@d using the
message body. This header provides an end-to-end mesgagatynwith high
confidence. However, for larger files, the calculation of tigests causes high
CPU usage.

By default, Apache sends eTags in the header of HTTP respoii$®e eTags can
be used by the client in future requests for the same file tp r@aeive the file if its
contents have changed.

Postfix

Postfix can be enabled to log more information for a list ofc#fizehosts, using
debugpeerlist option. The extra logging causes excessive disk dgtivi

Postfix can be configured to examine the body of the messagéssag list of

regular expressions known to be from spammers or virusas.s€kting can signif-
icantly increase the CPU usage for handling a received rgeséthere are many
expression patterns.

Postfix can be configured to reject requests that are senttftacklisted domains.

Postfix uses DNS mechanism to query blacklist operatorstermiéne if the mes-

sage should be rejected. Based on the number of operataifieghePostfix per-

forms extra DNS calls, which significantly increases theray of the handled mes-
sage.

PostgreSQL

PostgreSQL tries to identify the correct time zone of thaeysfor displaying and
interpreting time stamps if the time zone is not specifiechim ¢onfiguration file.
This increases the startup time of PostgreSQL by 5x.

PostgreSQL can be configured to synchronously commit theeaahiead logs to
disk before sending the end of the transaction message tdiémt. This setting
can cause extra delays in processing transactions if tensys under a large load.

The frequency of taking checkpoints from the write-aheagdan be configured
in the PostgreSQL configuration file. Having more frequemoiipoints decreases
crash recovery time but significantly increases disk agtiar busy databases.

The delay between the activity rounds of the write-aheadwoite process can
be configured in PostgreSQL configuration file. Setting tlikag higher causes
potential loss of transactions. However, lower delays eaxsra CPU usage.

Table 5.1: Description of the Apache, Postfix and PostgreSQL perfooaaest cases

requests to the server. In total, we recreated the 14 prabiiscribed in Table 5.1 (7 for

Apache, 3 for Postfix, and 4 for PostgreSQL).

79

For each test case, we recorded server execution while weeegral application re-
guests. We used standard lightweight performance mongdools such as top, iostat,
netstat and log files to identify the bottleneck resourceidadtify requests during which
resource usage was high. Later, we executed X-ray offlinkysisaf the recorded runs to
explain the performance anomalies.

For each test case, Table 5.2 shows the scope and metric ddausé-ray analysis.
The next column shows the top three root causes identified-bgyXalong with X-ray’s
analysis of how much the cause contributed to the performametric under observation.
The correct answers for each test case is shown in bold. Shedaumn shows how long

X-ray offline analysis took.

5.5.2.1 Apache

In the first Apache test case, the threshold for the numbexapfests that can reuse the
same TCP connection is set too low. Re-establishing a coipnerauses some requests to
exhibit higher latency than others. To exhibit this probjleme sent 100 various requests
to the Apache server using thé Apache benchmarking tool. The requests used different
HTTP methods (GET and POST) and asked for files with diffeserds.

We first used X-ray to perform a differential performance marization of two similar
requests (HTTP GETs of small files), one of which had a smthlegy and one of which
had a high latency. X-ray correctly identified tMaxKeepAl i veRequest s token as
the largest root cause.

Next, we explored how sensitive X-ray is to the similaritytbé compared requests
(Apache test case 2). We compared two very dissimilar reguessng differential perfor-
mance summarization: asmallHTTP POST and a large HTTP GEWAlld be expected,
X-ray reported that the largest cause of the divergencedngssing time was due to the
input data from the requests. TBecunent Root parameter is also reported as a large

cause of the divergence because the root is appended tgtlidiia name. However, X-ray

80

still reported that thévaxKeepAl i veRequest s is a substantial reason for divergence.
Further, the estimated performance impadvakKeepAl i veRequest s is not affected
much by the similarity of the requests.

This test case highlights the power of differential perfanoe summarization. X-ray
does not require two requests to be substantially similarder to identify performance
anomalies. Because it analyzes program control flow, X-@y @orrectly differentiate
performance differences due to diverging input from thaset other root causes such as
configuration options.

In the third test case, Apache is configured to useAhleow directive with a domain
name to control access to a certain directory. Apache pagdwo DNS calls to determine
the domain names of clients. These extra DNS calls incréeskatency for requests that
access the directory with the domain-name access contrtiid test case, we used X-ray
differential analysis to compare the latencies of two ratgieone accessing a directory
with domain-name access control, and one accessing adatiyestth no access control.
X-ray correctly attributed the high latency to tAel owdirective.

Apache can be configured to log the host names of clients ¢nak equests to partic-
ular directories. This setting can be turned on usingHbst NanmeLookups directive,
and is mostly used for administrative purposes. To detezrtiie host names, Apache
performs extra DNS calls, which lead to high latencies whamdting requests for direc-
tories with enabled logging option. In the fourth test cage,used X-ray to compare the
latencies of two requests: one accessing a directory wipitg option, and one access-
ing a directory without any host name logging. X-ray was dbleorrectly identify the
Host NanmeLookups On setting as the biggest contributor to the latency problem.

In the fifth test case, we configured Apache to require auitegian for a certain di-
rectory. We used th@ut hUser Fi | e option to specify the file that contains the list of
allowed usernames along with their encrypted passwordserVhrequest accesses the

directory with enabled authentication, the system expegs a high CPU usage because

81

Apache executes CPU-intensive encryption functions. Ve b&ray to analyze the high
CPU usage for a request accessing that directory. X-ragciyridentified the authentica-
tion option as the biggest root cause of CPU usage.

Apache can be configured to calculate an MD5 message digestdquest. This digest
can be used as a fingerprint to verify end-to-end messaggriityteHowever, the digest
calculation can cause high CPU usage for large files. In ttth t@st case, we used X-ray
differential analysis to compare the CPU usage of two reigudde first request accesses
a directory for which Apache generates a message digede tha second request does
not require one. X-ray identified théont ent Di gest option as the biggest contributor
to the difference between the CPU usage of the two requests.

In the last Apache test case, the root cause of high netweadeuis the client’s failure
to use the HTTP conditional eTag header. A recent study @d that many smartphone
HTTP libraries do not support this option, causing redundatwork traffic. X-ray identi-
fies this problem via differential analysis, showing thataih sometimes identify bad client
behavior via analysis of servers. We verified that correagesupport substantially reduces
network load.

X-ray analysis time for the 7 test cases varies between 2 anth@tes. This is very
reasonable considering that analysis is performed offlivee does not affect the online

production software.

5.5.2.2 Postfix

The first Postfix test case reproduces a problem reported astiXuser’s blog [58].
The user noticed that emails with attachments sent frondesunt transferred very slowly,
while everything else, including the mail received by IMAEhdces, had no performance
issues.

The user employedot op to monitor the Postfix server, and observed that one child

process was generating a lot of file system activity. He pbthreough the server logs and

82

App

Scope & Metric

Results : Expected contribution

time

Diff, Latency

MaxKeepAliveRequests 17.2 usecs.
KeepAlive On: 8.6 usecs.
Directory: 4.7 usecs.

2m 40s

Diff, Latency

User’s request 311.6 usecs.
DocumentRoot 311.5 usecs.
MaxKeepAliveRequests 16.8 usecs.

2m4ls

Diff, Latency

Allow domain.com: 603 usecs.
ServerRoot: 151 usecs.
TypesConfig : 151uses

2m 14s

Apache

Diff, Latency

HostNamelLookups On 254 usecs.
Directory: 127 usecs.
HostNamelLookups 127 usecs.

2m4s

Request, CPU

AuthUserFile: 9M instrs.
User's request: 600K instrs.
Listen: 80K instrs.

2m 6s

Diff, CPU

ContentDigest On 217K instrs.
ContentDigest 108K instrs.
Directory: 108K instrs.

2m 6s

Diff, Network

User’s request 35 KB
DocumentRoot 35 KB
Listen: 4KB

2m4s

Request, File system

User's request 100 KB
debug peer.list: 28 KB
queuedirectory: 5KB

1m 18s

Postfix

Request, CPU

body_checks 1M instrs.
User’s request 900K instrs.
myhostname: 300K instrs.

2m 49s

Request, Latency

reject_rbl _client: 3.5 secs.
reject_rbl _client: 1.9 secs.
smtpd_client_restrictions: 0.9 secs.

1m 24s

Time int., CPU

timezone 28M instrs.

defaulttext searchconfig: 11M instrs.

datestyle: 11M instrs.

15+m

PostgreSQL|

Request, Latency

sharedbuffers: 0.42 secs.
max.connections: 0.26 secs.
wal_sync.method: 0.26 secs.

2m 50s

Time int., File system

checkpointtimeout: 16 KB
sharedbuffers: 11 KB
max.connections: 11 KB

4m 48s

Time int., CPU

sharedbuffers: 2.6M instrs.
max.connections: 2M instrs.
wal_writer _delay. 1.4M instrs.

5m 27s

Table 5.2: The results for our performance test cases.

realized that the child process was logging large amourdataf. Finally, he ran through his

configuration file, and eventually found out that thebug_peer _| i st , which specifies

83

a list of hosts that triggered the logging, included his oRratldress.

Our results show that X-ray can make this diagnosis autaalfti We simply ana-
lyzed a specific request that was associated with a perioabffile system usage. X-ray
identifies both the request (since it contains the IP addhegscaused excessive logging)
and the erroneous parameter as the top two root causesirgingahe specific reasons for
the high file system activity. Note that we did not have to tdgnvhich child process was
responsible for the logging, nor did we have to read any l&s filSince X-ray produced
these results in a little over a minute, our tool could hawedahe blogger considerable
time.

In the second test case, Postfix is configured to perform sptanirfg by comparing the
body of the email message against a list of regular expnes&mown to be from spammers
or viruses. If there are many patterns, the regular expressiatching can significantly
increase the CPU usage, when Postfix is handling an incomirgg.eln this test case, we
used X-ray to analyze the CPU utilization of a single requ¥stay was able to correctly
identify thebody _checks option as the root cause of high CPU usage.

In the last test case, we configured Postfix to identify arettepquests that come from
blacklisted domains. Postfix uses DNS mechanism to queckldaoperators and deter-
mine whether a request has come from a bad source. These DisISgaificantly increase
the latency of request handling. In this test case, X-rayntifles ther ej ect _r bl _-
client and thesnt pd_client restricti ons options as the dominant sources of
the latency.

As shown in Table 5.2, X-ray identifies the correct root caoseach Postfix problem

in only a few minutes.

5.5.2.3 PostgreSQL

The first PostgreSQL case study is based on our own experi®uwevaluation started

and stopped PostgreSQL many times. We noticed that outsevgre running slowly due

84

to application start-up delay, and decided to try to useytwamprove performance. Since
t op showed 100% CPU usage, we performed a X-ray CPU analysisgltire interval
before PostgreSQL received the first request.

Unexpectedly, X-ray identified thei mezone configuration option as the top root
cause. In the configuration file, we had set themezone option tounknown. This
caused PostgreSQL to expend a surprising amount of effattempt to identify the correct
time zone. We updated the configuration to specify our tinmeezand were pleased to see
that the application startup time decreased by over 80%Ilethis problem is admittedly
esoteric since most PostgreSQL users will not start andte®ppplication several times
in succession, we were happy to see that X-ray could helgifggrerformance issues that
we did not specifically inject into the application.

PostgreSQL can be configured to synchronously commit tcéioss to disk before
sending the end of the transaction message to the cliens.oftion increases the latency
of handling transactions, but it provides stronger gua@nst to the client by ensuring that
the transaction is safely written to disk. In the seconddase, we configured PostgreSQL
with this option, and analyzed the latency of a single regué¢sgay identified the correct
configuration option as the third biggest contributor to Euency of the request. The
shar ed_buf f er s andmax_connect i ons parameters appear to taint many branches
during PostgreSQL execution causing them to rank as thaficssecond causes of latency.

Since PostgreSQL utility processes are mostly asynchoibay sleep for a while and
then wake up to perform tasks such as flushing write-aheatbldigk, taking checkpoints,
or vacuuming the database) time interval analysis is a dietdr this application. In
the third test case, we configured PostgreSQL to take chedkpmom the write-ahead
log more frequently. This setting decreases crash recdirag; but increases file system
activities. In this test case, we reduced the valueléckpoi nt _t i neout option to
increase the frequency of checkpoints, and used X-ray tlyzm¢he file system activities

over a time interval. X-ray was able to correctly associagehigh file system activities to

85

thecheckpoi nt _t i meout option.

In the fourth PostgreSQL test case, we configured the actimitnds of the write-ahead
log write process using theal writer _del ay option. Choosing high writer delays
increases the risk of losing transactions, and choosinglllays increases the CPU usage
due to extra activities of the writer process. The fourtht®@SQL test case analyzes
the effects of this option by using X-ray time-interval ayga$ for CPU utilization. X-ray
ranks the correct root cause third for this test case, dfteshar ed _buf f er and the
max_connect i ons options.

X-ray analysis time is currently capped at 15 minutes; asialgf the first test case hit
this limit but still returned meaningful results since tmalysis executed almost all the code
used during startup. The remaining PostgreSQL issuesresh@+5 minutes to analyze.
We have not yet put much effort into optimizing X-ray anasyperformance, since these

times are still substantially faster than manual perforceastebugging.

5.6 Conclusion

Diagnosing performance problems in production systembadlenging. X-ray helps
system administrators by identifying the root cause of olesk performance problems.
X-ray first records the execution of the production systenh@silects performance infor-
mation. In an offline phase, X-ray deterministically re@aire recorded execution and
performs heavyweight causality analysis. X-ray uses dyaamformation flow analysis
to attribute the recorded performance information to r@aises that include configuration
options and request inputs. Our results show that X-rayrately identifies the root cause
of several real-world performance problems, while impgsamly 1-7% overhead on a

production system.

86

CHAPTER VI

Related Work

Several prior research efforts have applied differentriapies to the problem of con-
figuration troubleshooting.

PeerPressure [71] and its predecessor Strider [72] ugstis@tmethods to compare
configuration state in the Windows registry on different hiaes. When a value on a
machine exhibiting erroneous behavior differs from theigalsually chosen by other ma-
chines, PeerPressure flags the value as a potential error.

Similar to SigConf, PeerPressure and Strider employ a Haskapproach towards
troubleshooting and leverage the help of other executiatest However, PeerPressure
and Strider benefit from the known schema of the registry amthat detect configuration
errors that lie outside the registry. The SigConf approachare general and holds promise
for dealing with errors that lie outside the registry and ¢imeo operating systems such as
Unix variants. SigConf, however, assumes that the bug eadir known and recorded in
the reference computer, but PeerPressure and Strider ¢th@vethis assumption.

The downside of the black-box approach of PeerPressure taigerSs that it works
well as long as the majority configuration is appropriatetha target machine; however,
these systems cannot separate custom configuration egiftbim erroneous ones since
they do not observe how applications actually use thoseesalln contrast, ConfAid can

differentiate these cases by observing how the values & inside the application bi-

87

nary. Unlike X-ray, PeerPressure and Strider are not deifal diagnosing performance
problems, because they analyze the static state ratheobis@nve applications execute.

Chronus [73] also compares multiple configuration statestebd of comparing states
across computers, it uses virtual machine checkpoint diwhok to “time travel” through
states on the same machine, looking for the instance in wthielprogram behavior on a
particular test case switched from correct to incorrectikérChronus, the tools introduced
in this thesis do not require a prior state where the apptioatorked correctly. Therefore,
we can troubleshoot configuration of new applications andfeatures in already-existing
applications.

AutoBash [66] uses causality analysis inside the OS kem#&hprove misconfigura-
tion troubleshooting. SigConf improves the black-box aggh of AutoBash by capturing
more information about predicate executions than a simpteess/failure state. ConfAid
can identify finer-grained root causes compared to AutoBlashunlike AutoBash, Con-
fAid only focuses on root causes in configuration files. AweB did not handle miscon-
figurations that lead to performance problems.

Another approach to improve configuration management igsdaqtively detect situ-
ations that may lead to configuration errors in the futurer é@ample, CODE [82] is a
tool that uses machine learning algorithms to learn cogegtiences of Windows registry
accesses and raise a warning when an access violates & seqaence. Similar to other
machine learning approaches, CODE needs to observe a segsmreral times before it
can classify that sequence. Therefore, CODE may falsely$lagbut correct accesses as
wrong accesses, and it cannot judge new sequences.

As another example of proactive detection, Barricade [3]system that tries to detect
and confine mistakes in large systems. Barricade employsaioation of testing, error
detection, cost analysis, and confinement to achieve trak géowever, Barricade only
works for frequently performed configuration tasks, anceavily relies on expert users to

provide task descriptions and test units. In general, tpecgeh of systems like CODE and

88

Barricade is orthogonal to our solutions, and they can bebioead to provide a stronger
configuration management system.

The most common way to troubleshoot software problems isi#yae log messages
and error reports generated by the application. Unforaipagrror and log messages are
usually too cryptic to lead the user to the root cause of tbblpm. LogEnhancer [83] en-
hances the application log messages by adding debuggiagsieth as values of relevant
variables. The target audience of this tool is developehsy an benefit from low-level,
code-related debugging information. Clarify [33] imprewveror reporting by generating
signatures using program features such as function catitspaall sites, and stack dumps.
It then classifies the signatures using machine learnirfgniques. While these tools im-
prove the quality of log messages, the user still needs taialgninfer the root cause of
the problem. The goal of our tools is to close this circle fonfiguration root causes.

Xu et. al. [75] and Lou et. al. [43] used machine learning teghes to analyze console
log messages to detect problems in large systems. Our towkntly rely on the user to
detect a problem. We can combine our tools with these detettiols to provide both
detection and diagnosis.

Many other systems trace causality for purposes other tlaleshooting. For ex-
ample, taint tracking [52] monitors data flow dependenaieddtermine when input data
is used in an insecure manner. RedFlag [24] uses data flowsas&b reduce the leaks
of sensitive information by personal machines. Resin [&&suapplication-level data flow
assertions to improve the security of applications. Deadined information flow [49, 85]
monitors both control flow and data flow dependencies to deter if a code component
leaks information that it is not authorized to divulge. PA83] uses causality to annotate
files with provenance that describes their causal inputskBacker [41] traces causal in-
teractions to determine what state has been changed duringrasion. Asbestos [28] and
HiStar [86] monitor causality in the OS to prevent inadvetisclosure of private data.

Symbolic execution is another type of causality analysisen the inputs of the system

89

are propagated in an abstract form to enable explorationosérpaths in the application
code [12, 19, 76]. While our tools leverage the general ideaosality analysis, the focus
of symbolic execution systems is usually very differentrirour tools. Our tools start from
a specific undesired execution and try to explain the reddwppened; whereas symbolic
execution tools usually start from an abstract input andeegpmultiple paths to infer the
impacts of different concrete inputs.

The next three sections discuss prior works that are closédyed to each one of our

diagnosis tools.

6.1 SigConf

Similar to SigConf, Chronus uses user-defined predicatésstothe behavior of the
system. Chronus tries to find the point in time where a systmsed to operate correctly
by testing a predicate against different virtual machingpshots. The success or failure
of the predicate is assumed to precisely diagnose the bugn¥geavoid this assumption
in order to eliminate having an expert write a targeted wasei for each new bug. Since
Chronus compares the system against itself, it is able tgndse unknown bugs. SigConf,
however, cannot diagnose bugs that do not exist in the refereomputer database.

Su et. al. [67] propose a system that automatically gereatdicates by observing
human actions trying to solve a configuration problem. Syshesns can be leveraged to
generate predicates that are later used by SigConf for dgagg a configuration problem.

Similar to our method, Yuaet al. [80] leverage system call information to diagnose
configuration bugs. They correlate system call traces tblpno root causes using ma-
chine learning techniques. To reduce system call varigfithrey use cross-time and cross-
machine noise filtering techniques. Our method generatasstsignatures by extracting
dependency sets from system call traces. The dependentetatd does not need cross-
time filtration and is accurate across variations of Unixrapag systems.

Bodik et. al. [8] use statistical metrics to generate sigrest for the performance of

90

datacenters. These signatures are compared againstsamat previously solved cases
to quickly troubleshoot a known performance problem. Thekwaf Bodik et. al. and
SigConf both use the approach of troubleshooting via sigeatomparison. However,
SigConf uses causality analysis to generate signaturesapture the interactions between
the application and the operating system; whereas the mdbaduced by Bodik et. al.

captures the performance characteristics of systems.

6.2 ConfAid

Dytan [21] proposes a generic dynamic taint analysis fraomnkw ease the implemen-
tation of various taint-based techniques. ConfAid enhatite basic dynamic taint analysis
with essential heuristics and applies it to configurationtieshooting problem.

Some systems leverage white box analysis to help developglisate a problem ex-
perienced in the field. SherLog [81], ESD [84], and the worlCa@meri et. al. [25] use
static analysis and symbolic execution to infer the execupiath of the application. Sher-
Log uses log messages, and ESD and Crameri et. al. levemapeghreport generated by
the application to constrain the execution path. Theseesystan replicate an execution
path that derives from a misconfiguration. However, they endikerent design decisions
than ConfAid, driven by their different use case. They regaipplication source code,
and SherLog also may require guidance from developers attuah functions should be
symbolically executed. This is appropriate for a tool usgddftware experts, but less so
for one like ConfAid that is targeted at administrators ardrs.

Program slicing [1, 88, 87], intended to aid in debugging more general approach
that determines which statements could affect the valuevafiable using a backward or
forward computations. ConfAid applies similar data andtoarflow analysis techniques
to a new problem, namely determining the root causes of mfgparations.

ConfAid uses deterministic record and replay. While mangrmsoftware systems pro-

vide this functionality [3, 27, 31, 56, 64, 69, 64], ConfAittioduces new constraints that

91

prior systems cannot satisfy. The fidelity of replay must lggnlenough to exactly repro-
duce application instructions and system calls, whilé Iséiing loose enough to execution
instrumentation during the replayed execution but notrdytine recorded execution. Con-
fAid modified the replay system to compensate for the insantation code in order to
achieve the needed fidelity.

Aftersight [20] also decouples program execution from gsial However, it performs
the record and replay tasks, as well as the analysis tadke MMM layer. Our determinis-
tic record and replay system is specifically designed to watk Pin, since both ConfAid

and X-ray use Pin to perform their analysis.

6.3 X-ray

Profilers such as OProfile [55], VTune [70], Fay [29], DTrai&8]| SystemTap [59],
ETW [46], Debox [61], and Chopstix [7] allow the troublesheoto instrument applica-
tions and/or the operating system and collect performaat®. dThese tools revealhat
events (e.g., functions) incur substantial performancgscoHowever, their users must
manually inferwhythose events executed. In contrast, X-ray automaticadigtifles root
causes.

Other tracing systems follow activities across multiplenp@nents or protocol layers,
and use the causal relationships they observe to propagateerge performance data. X-
trace [30] observes network activities across protocotklayers in a distributed system.
SNAP [79] profiles TCP-statistics and socket-call logs aodatates data across a data
center. Aguileraet al. [2] use statistical analysis to infer causal paths betvagmgatication
components and attribute delays to specific nodes. Pinpb#jttraces communication
between middleware components to infer which componemtsesponsible for causing
faults. Follow-on work [17] adds the abstraction of caysathsthat link black-box com-
ponents. Like these tools, X-ray uses causality to progedgiia across components when

processes communicate (although propagation is currkmtied to a single node by its

92

replay system). Unlike these tools, X-ray analyzes catysalthin application components
using dynamic binary instrumentation, so it can deterntieespecific relationship between
component inputs and outputs.

Other performance troubleshooting tools build or use a roflapplication perfor-
mance. Magpie [5] accurately extracts the control flow astduece consumption of each
request to build a workload model that can be used for pedon® prediction. Magpie’s
per-request profiling can help troubleshooters diagnosenpial performance problems.
Even though Magpie provides detailed performance infolonahat can be used to manu-
ally infer root causes, it still does not automatically diagewhythe observed performance
anomalies occur. Magpie uses schemas to determine whiabstgare being executed by
various components; X-ray currently uses a simpler metmobthus could benefit from
using Magpie’s schemas for complicated request patterns.

Stewartet al. [65] extract resource usage from multi-component serviocagenerate
performance models for capacity planning and cost-effen@iss analysis. Urgaonker
al. [4] use resource usage profiling to guide application plaggrm shared hosting plat-
forms. Coheret al.[22] use statistical learning techniques to automatidaillijd system
models. They identify a combination of system-level mateand threshold values that cor-
relate with high-level performance states. In contrast #my none of these systems tie
performance to specific root causes such as configuratieonspt

Many research projects tune performance [26, 16, 89] byfimg artificial traffic and
using machine learning to correlate performance with $igemonfiguration options. Un-
like X-ray, these tools limit the set of configuration optsoanalyzed, and they must see
controlled traffic in order to learn good configuration vaue

Spectroscope [62] diagnoses performance changes by commppaguest flows between
two executions of the same workload. Kasitkal [39] compare similar requests to di-
agnose performance bugs in parallel file systems. Unlikay{these tools must see very

similar requests in order to diagnose performance problémsontrast, our results show

93

that X-ray can correctly identify root causes even whenestgiare very dissimilar because
it analyzes the control path of each request.

As mentioned in section 6.1, Bodik et. al. [8] use stati$tinatrics to diagnose per-
formance problems that have happened before in datacehigli&e this tool, X-ray can
be used to troubleshoot problems that have not previouglpdraed. X-ray only consid-
ers root causes from configuration files and user input, bstttiol can diagnose known

problems with other root causes.

94

CHAPTER VI

Conclusion

This chapter describes our plans to extend our work in cordtgan troubleshooting

and summarizes the contributions of this thesis.

7.1 Future directions

In this thesis, we focused on diagnosing misconfiguratiati@ms. Before the diag-
nosis begins, we rely on the end user or the administratoetectl the problem. Then,
we automatically diagnose the root cause of the problemifsgeby the user, and report
the diagnosis results. The user then needs to determineastiahs must be taken to ac-
tually fix that problem. As future research directions, waulddike to also automate the

detection and fixing tasks.

7.1.1 Detecting anomalies

Detecting anomalies is challenging in complex systemss phoblem is exacerbated
for production environments. The reason is that producaftware usually does not col-
lect much diagnosis information to maximize performancethWttle debugging infor-
mation available, detecting anomalies becomes very caigitlg for these systems. We
would like to explore the possibility of overcoming thisfiitilt tradeoff by automatically

detecting anomalies online with low overhead.

95

Anomalies may manifest as failures, crashes, incorreca\aeh or simply poor per-
formance. We plan to start by considering anomalies in wkiehapplication execution
path is different from a normal run, e.g. a problem that cadlke application to perform
extra network activities, which result in an abnormallythigtency. Thus, executing an
uncommon path can be an indication of an anomalous behawerproblem of anomaly
detection is well-studied in the security community. Wedauccessfully borrowed tech-
niques from the security community in the past for the Codfpioject. Our initial idea
for solving this problem is also to investigate whether éhasomaly detection techniques

can be re-purposed for our problem, and can be altered to liessioverhead.

7.1.2 Fixing configuration problems

Diagnosing the root cause of a misconfiguration usually Bfiep the fixing process.
However, automatically determining correct actions tludtes a misconfiguration and do
not cause other problems is still challenging. As a futuseagch direction, we plan to
further explore this problem.

We plan to tackle this challenge by first considering misgurhtion problems that can
be solved by modifying the values of configuration paranseteiconfiguration files. We
first use a tool like ConfAid to determine which configuratjperameters are most likely
the root causes of the problem. Proposing a correct valua foisconfigured parameter
raises two challenges. First, we need to automatically #alemtly find potential values
for the parameter. While this issue is trivial for binary wes, e.g.yesor no parameters,
it is quite difficult for values that involve paths or numbevge plan to explore techniques
such as symbolic execution to narrow down the possibilities

Once we propose a new value for a parameter, we need to detewhiether the mod-
ification actually solves the problem. Thus, the secondlehge is to automatically de-
termine whether an execution is resulting in a failure orcegs. Some symptoms such

as crashes or assertion failures are obvious signs ofdagkecution; however, many ex-

96

ecutions do not manifest such evident symptoms. We planvierdge a history-based

user-assisted approach to deduce the success or failuneegkaution.

7.2 Contributions

This thesis demonstrates that we can automate misconiguidiagnosis by analyz-
ing the causal relationships between the inputs of an agpit and its output. We showed
that these causal dependencies can be captured and aratlyzedus granularities, with-
out using the source code of the application. We built thréscamfiguration diagnosis
tools, SigConf, ConfAid, and X-ray, that leverage theseseauelationships to pinpoint
root causes of misconfiguration problems.

This thesis presents the details of design and implementafithese tools. In particu-
lar, we used coarse-grained causality analysis to creaf@esi cheap, and robust signatures
that capture the state of a computer. SigConf uses thesatsigs to determine whether
the current problem is similar to already known misconfigjores. We designed and im-
plemented a fine-grained information flow analysis engime®® binaries that propagates
information via data flow, control flow, and implicit contrdow. ConfAid uses this en-
gine to track configuration tokens as the application rurtslark an incorrect output to
the configuration parameters that caused it. We also intextiland implemented the idea
of performance summarization and differential perforneasiemmarization in X-ray to di-
agnose performance misconfigurations. ConfAid and X-rayaig deterministic record
and replay system to offload heavy-weight analysis fromiaggbns. Our replay system
is instrumentation-aware, i.e., it allows the replayedcexien to diverge from the recorded
execution by running analysis code.

Our evaluation of SigConf, ConfAid, and X-ray on a varietycoimplex applications
demonstrate that the idea of causality analysis can significimprove misconfiguration
diagnosis. We plan to provide the tools and infrastructtinas we built to the wider re-

search community.

97

BIBLIOGRAPHY

98

BIBLIOGRAPHY

[1] H. Agrawal and J. R. Horgan. Dynamic program slicing AGM SIGPLAN Confer-
ence on Programming Language Design and Implementgbages 246—-256, 1990.

[2] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds, aAd Muthitacharoen.
Performance debugging for distributed systems of blackeboxnProceedings of
the 19th ACM Symposium on Operating Systems Pringiplages 74—89, Bolton
Landing, NY, October 2003.

[3] G. Altekar and I. Stoica. ODR: Output-deterministic lapfor multicore debugging.
In Proceedings of the 22nd ACM Symposium on Operating Systencgies, pages
193-206, October 2009.

[4] P.S. B. Urgaonkar and T. Roscoe. Resource overbookid@pplication profiling in
shared hosting platforms. Proceedings of the 5th Symposium on Operating Systems
Design and Implementatippages 239-254, Boston, MA, December 2002.

[5] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier. Usingdyie for request extrac-
tion and workload modelling. IfProceedings of the 6th Symposium on Operating
Systems Design and Implementatipages 259-272, San Francisco, CA, December
2004.

[6] P. Barham, R. Isaacs, R. Mortier, and D. Narayanan. Magpnline modelling and
performance-aware systems. Pmoceedings of the 9th Workshop on Hot Topics in
Operating System&ihue, HI, May 2003.

[7] S.Bhatia, A. Kumar, M. E. Fiuczynski, and L. Petersonghtiweight, high-resolution
monitoring for troubleshooting production systemsPhoceedings of the 8th Sympo-
sium on Operating Systems Design and Implementapiages 103-116, San Diego,
CA, December 2008.

[8] P. Bodik, M. Goldszmidt, A. Fox, D. B. Woodard, and H. Amgen. Fingerprinting
the datacenter: Automated classification of performanisgsciin Proceedings of the
5th European Conference on Computer SystétusoSys '10, pages 111-124, 2010.

[9] T. C. Bressoud and F. B. Schneider. Hypervisor-baseld tialerance ACM Transac-
tions on Computer Systenist(1):80-107, February 1996.

[10] A. B. Brown and D. A. Patterson. To err is human.D8N Workshop on Evaluating
and Architecting System Dependabili§oteborg, Sweden, July 2001.

99

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

A. B. Brown and D. A. Patterson. Undo for operators: Hinb an undoable e-mail
store. InProceedings of the 2003 USENIX Technical ConfereBa@ Antonio, TX,
June 2003.

C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassistedamdmatic generation of
high-coverage tests for complex systems programgJsenix Symposium on Oper-
ating System Design and Implementation (OSpd)ges 209-224, December 2008.

B. M. Cantrill, M. W. Shapiro, and A. H. Leventhal. Dyna&rinstrumentation of
production systems. IRroceedings of the USENIX Annual Technical Confergence
pages 15-28, Boston, MA, June 2004.

M. Castro and B. Liskov. Proactive recovery in a Byzaatfault-tolerant system. In
Proceedings of the 4th Symposium on Operating Systemsrasigmplementatign
San Diego, CA, October 2000.

A. Chanda, K. Elmeleegy, A. L. Cox, and W. Zwaenepoel.us&avay: Operating
system support for controlling and analyzing the executibdistributed programs.
In Proceedings of the 10th Workshop on Hot Topics in Operatysge®ns (HotOS-X)
Santa Fe, NM, June 2005.

H. Chen, G. Jiang, H. Zhang, and K. Yoshihira. Boosting performance of com-
puting systems through adaptive configuration tuning.Ptaceedings of the 2009
ACM symposium on Applied Computjpgges 1045-1049, Honolulu, Hawalii, March
2009.

M. Y. Chen, A. Accardi, E. Kiciman, J. Lloyd, D. PatterscA. Fox, and E. Brewer.
Path-based failure and evolution management.Pioceedings of the 1st Sympo-
sium on Networked Systems Design and Implementation (NS&1)Francisco, CA,
March 2004.

M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. BrewePRinpoint. Problem
determination in large, dynamic Internet servicesPiaceedings of the International
Conference on Dependable Systems and Networks ([pahgs 595-604, Bethesda,
MD, June 2002.

V. Chipounov, V. Kuznetsov, and G. Candea. S2e: A pfatffor in vivo multi-path
analysis of software systems. ASPLOSMarch 2011.

J. Chow, T. Garfinkel, and P. M. Chen. Decoupling dynaprimgram analysis from
execution in virtual environments. IRroceedings of the 2008 USENIX Technical
Conferencepages 1-14, June 2008.

J. Clause, W. Li, and A. Orso. Dytan: A generic dynamiattanalysis framework.
In In Proceedings of the International Symposium on Softwastiig and Analysjs
pages 196—-206, July 2007.

100

[22] 1. Cohen, M. Goldszmidt, T. Kelly, J. Symons, and J. GhaSorrelating instrumen-
tation data to system states: A building block for automaiadnosis and control. In
Proceedings of the 6th Symposium on Operating Systemsrasigmplementatign
pages 231-244, San Francisco, CA, December 2004.

[23] Computing Research Association. Final report of theAGRnference on grand re-
search challenges in information systems. Technical tefeptember 2003.

[24] L. P. Cox and P. Gilbert. RedFlag: Reducing inadvertaaks by personal machines.
Technical Report MSR-TR-2009-02, Duke University, 2009.

[25] O. Crameri, R. Bianchini, and W. Zwaenepoel. Strikingeav balance between pro-
gram instrumentation and debugging time Pimceedings of the 6th European Con-
ference on Computer SystersiroSys '11, pages 199-214, 2011.

[26] Y. Diao, J. L. Hellerstein, S. Parekh, and J. P. Bigus.nit@ing Web Server Perfor-
mance with AutoTune AgentBM Systems Journad2(1):136—-149, January 2003.

[27] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and P. MhéD. ReVirt: Enabling
intrusion analysis through virtual-machine logging angag. InProceedings of the
5th Symposium on Operating Systems Design and Implenmmtpéiges 211-224,
Boston, MA, December 2002.

[28] P. Efstathopoulos, M. Krohn, S. VanDeBogart, C. Frey, dkegler, E. Kohler,
D. Mazieres, F. Kaashoek, and R. Morris. Labels and everdgsses in the As-
bestos operating system. Rroceedings of the 20th ACM Symposium on Operating
Systems Principle8righton, United Kingdom, October 2005.

[29] U. Erlingsson, M. Peinado, S. Peter, and M. Budiu. FaxteBRsible distributed trac-
ing from kernels to clusters. IRroceedings of the 23rd ACM Symposium on Operat-
ing Systems Principlepages 311-326, October 2011.

[30] R. Fonseca, G. Porter, R. H. Katz, S. Shenker, and Ic&toK-trace: A pervasive
network tracing framework. IProceedings of the 4th NSDpages 271-284, Cam-
bridge, MA, April 2007.

[31] D. Geels, G. Altekar, S. Shenker, and |. Stoica. Replaegugging for distributed
applications. InProceedings of the USENIX 2006 Annual Technical Conference
Boston, MA, June 2006.

[32] J. Gray. Why do computer stop and what can be done ab®uilgchnical Report
85.7, Tandem Corp., June 1985.

[33] J.Ha, C. J. Rossbach, J. V. Davis, |. Roy, H. E. Ramadahg, Porter, D. L. Chen, and
E. Witchel. Improved error reporting for software that ubésck-box components.
In Proceedings of the Conference on Programming LanguagegDesid Implemen-
tation 2007 pages 101-111, San Diego, CA, 2007.

101

[34] S. A. Hofmeyr, S. Forrest, and A. Somayaji. Intrusioted#ion using sequences of
system callsJournal of Computer Securit$(3):151-180, 1998.

[35] IDA Pro disassembler. http://www.hex-rays.com/idap

[36] R. Johnson. More details on today’s outage.
http://www.facebook.com/notes/facebook-engineenmagk-details-on-todays-
outage/431441338919.

[37] F. Junqueira, Y. J. Song, and B. Reed. BFT for the skeptitACM Symposium on
Operating Systems Principles: Work in Progress Ses$atober 2009.

[38] A. Kapoor. Web-to-host: Reducing total cost of owngpsh Technical Report
200503, The Tolly Group, May 2000.

[39] M. P. Kasick, J. Tan, R. Gandhi, and P. Narasimhan. Blawk problem diagnosis
in parallel file systems. lProceedings of the 8th USENIX Conference on File and
Storage TechnologieSan Jose, CA, February 2010.

[40] L. Keller, P. Upadhyaya, and G. Candea. ConfErr: A tavldssessing resilience to
human configuration errors. Proceedings of the International Conference on De-
pendable Systems and Networks (DSidpes 157-166, Anchorage, AK, June 2008.

[41] S. T.King and P. M. Chen. Backtracking intrusions Piroceedings of the 19th ACM
Symposium on Operating Systems Princippeges 223-236, Bolton Landing, NY,
October 2003.

[42] http://www.linuxforums.org/forum/servers/125838lved-apache-wont-follow-
symlinks.html.

[43] J.-G. Lou, Q. Fu, S. Yang, Y. Xu, and J. Li. Mining invamia from console logs for
system problem detection. Proceedings of the USENIX Annual Technical Confer-
ence pages 24-24, Boston, MA, June 2010.

[44] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Loewy, S. Wallace, V. J.
Reddi, and K. Hazelwood. Pin: Building customized programalgsis tools with
dynamic instrumentation. IRrogramming Language Design and Implementation
pages 190-200, Chicago, IL, June 2005.

[45] R. E. Lyons and W. Vanderkulk. The use of triple-modukagundancy to improve
computer reliability. IBM Journal of Research and Developmef{2):200-209,
1962.

[46] http://msdn.microsoft.com/en-us/library/bb96880-VS.85).aspx.

[47] K.-K. Muniswamy-Reddy, D. A. Holland, U. Braun, and Mel&er. Provenance-
aware storage systems. Proceedings of the 2006 USENIX Annual Technical Con-
ference pages 43-56, Boston, MA, May/June 2006.

102

[48] B. Murphy and T. Gent. Measuring system and softwarialéity using an auto-
mated data collection procesQuality and Reliability Engineering International
11(5), 1995.

[49] A. C. Myers. JFlow: Practical mostly-static informatiflow control. InProceedings
of the Annual Symposium on Principles of Programming Lagggaages 228-241,
San Antonio, TX, January 1999.

[50] K. Nagaraja, F. Oliveria, R. Bianchini, R. P. Martin,caif. Nguyen. Understand-
ing and dealing with operator mistakes in Internet servicesProceedings of the
6th Symposium on Operating Systems Design and Implen@niagiges 61-76, San
Francisco, CA, December 2004.

[51] S. Narayanasamy, Z. Wang, J. Tigani, A. Edwards, and &8d€2. Automatically
classifying benign and harmful data races using replayyaisal In Proceedings of
the ACM SIGPLAN 2007 Conference on Programming LanguaggB®esd Imple-
mentation San Diego, CA, June 2007.

[52] J. Newsome and D. Song. Dynamic taint analysis: Autarmkgtection, analysis, and
signature generation of exploit attacks on commodity saxfew Inln Proceedings of
the 12th Network and Distributed Systems Security SymmpBebruary 2005.

[53] F. Oliveria, A. Tjang, R. Bianchini, R. P. Martin, and ID. Nguyen. Barricade:
Defending systems against operator mistakesProceedings of the 5th European
Conference on Computer SystetaroSys '10, pages 83-96, 2010.

[54] D. Oppenheimer, A. Ganapathi, and D. A. Patterson. Wihyntiernet services fail,
and what can be done about it? Pnoceedings of the 4th USENIX Symposium on
Internet Technologies and Systems (US| NM&rch 2003.

[55] http://oprofile.sourceforge.net/.

[56] S. Park, Y. Zhou, W. Xiong, Z. Yin, R. Kaushik, K. H. Leen&S. Lu. PRES:
Probabilistic replay with execution sketching on multipeesors. IProceedings of
the 22nd SOSPages 177-191, October 2009.

[57] H. Patil, C. Pereira, M. Stallcup, G. Lueck, and J. CavnPinPlay: A framework
for determinisrtic replay and reproducible analysis ofgflat programs. IProceed-
ings of the 8th Annual IEEE/ACM International Symposium odé€Generation and
Optimization March 2010.

[58] http://www.karoltomala.com/blog/?p=576.

[59] V. Prasad, W. Cohen, F. C. Eigler, M. Hunt, J. Kenistong 8. Chen. Locating
system problems using dynamic instrumentationPtaceedings of the Linux Sym-
posium pages 49-64, Ottawa, ON, Canada, July 2005.

103

[60] F. Qian, K. S. Quah, J. Huang, J. Erman, A. Gerber, Z. MoOM8&. Sen, and
O. Spatscheck. Web caching on smartphones: Ideal vsyrdaliProceedings of the
10th International Conference on Mobile Systems, Appboatand Serviced.ow
Wood Bay, United Kingdom, June 2012.

[61] Y. Ruan and V. Pai. Making the "box” transparent: Systeafi performance as a
first-class result. IfProceedings of the USENIX Annual Technical Conferepages
1-14, Boston, MA, June 2004.

[62] R. R. Sambasivan, A. X. Zheng, M. D. Rosa, E. Krevat, Sitivan, M. Stroucken,
W. Wang, L. Xu, and G. R. Ganger. Diagnosing performance géaiy comparing
request flows. IProceedings of the 8th NSDpages 43-56, Boston, MA, March
2011.

[63] Circleid, misconfiguration brings down entire .se ddmain sweden.
http://www.circleid.com/posts/misconfiguratidgmings down.entire sedomain-
in_sweden.

[64] S. Srinivasan, C. Andrews, S. Kandula, and Y. Zhou. libask: A light-weight ex-
tension for rollback and deterministic replay for softwdebugging. IrProceedings
of the 2004 USENIX Technical Conferenpages 29-44, Boston, MA, June 2004.

[65] C. Stewart and K. Shen. Performance modeling and systamagement for multi-
component online services. Rroceedings of the Second Symposium on Networked
Systems Design and Implementation (NSBston, MA, May 2005.

[66] Y.-Y. Su, M. Attariyan, and J. Flinn. AutoBash: Improg configuration manage-
ment with operating system causality analysisPtaceedings of the 21st ACM Sym-
posium on Operating Systems Principleages 237-250, Stevenson, WA, October
2007.

[67] Y.-Y. Su and J. Flinn. Automatically generating presties and solutions for con-
figuration troubleshooting. I®Proceedings of the 2009 USENIX Annual Technical
ConferenceSan Diego, CA, June 2009.

[68] K. Veeraraghavan, J. Flinn, E. B. Nightingale, and BbMo quFiles: The right file
at the right time. InProceedings of the 8th USENIX Conference on File and Storage
Technologiespages 1-14, San Jose, CA, February 2010.

[69] K. Veeraraghavan, D. Lee, B. Wester, J. Ouyang, P. M.nChk Flinn, and
S. Narayanasamy. DoublePlay: Parallelizing sequentigitgy and replay. IdPro-
ceedings of the 16th International Conference on ArchitedtSupport for Program-
ming Languages and Operating Systehwng Beach, CA, March 2011.

[70] http://software.intel.com/en-us/articles/intelsne-amplifier-xe/.

[71] H. J. Wang, J. C. Platt, Y. Chen, R. Zhang, and Y.-M. WaAgtomatic misconfig-
uration troubleshooting with PeerPressure Phoceedings of the 6th Symposium on

104

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

Operating Systems Design and Implementatpages 245-257, San Francisco, CA,
December 2004.

Y.-M. Wang, C. Verbowski, J. Dunagan, Y. Chen, H. J. WagYuan, and Z. Zhang.
STRIDER: A black-box, state-based approach to change amfthcoation manage-
ment and support. IRroceedings of the USENIX Large Installation Systems Admin
istration Conferencgpages 159-172, October 2003.

A. Whitaker, R. S. Cox, and S. D. Gribble. Configuratiebdgging as search: Find-
ing the needle in the haystack. Rroceedings of the 6th Symposium on Operating
Systems Design and Implementatipages 77-90, San Francisco, CA, December
2004.

M. Xu, V. Malyugin, J. Sheldon, G. Venkitachalam, andBeissman. ReTrace: Col-
lecting execution trace with virtual machine determimisgplay. InProceedings of
the 2007 Workshop on Modeling, Benchmarking and SimuléktmBS) June 2007.

W. Xu, L. Huang, A. Fox, D. Patterson, and M. Jordani. €xing large-scale system
problems by mining console logs. Froceedings of the 22nd ACM Symposium on
Operating Systems Principle®ctober 2009.

J. Yang, C. Sar, and D. Engler. eXplode: a lightweigleneral system for finding
serious storage system errors. Rroceedings of the 7th Symposium on Operating
Systems Design and Implementatipages 131-146, Seattle, WA, November 2006.

Z.Yin, X. Ma, J. Zheng, Y. Zhou, L. Bairavasundaram, é&dPasupathy. An em-
prirical study on configuration errors in commerical and rogeurce systems. In
Proceedings of the 23rd ACM Symposium on Operating Systamstes Cascais,
Portugal, October 2011.

A.Yip, X. Wang, N. Zeldovich, and M. F. Kaashoek. Imphog application security
with data flow assertions. IRroceedings of the 22nd ACM Symposium on Operating
Systems Principlepages 291-304, October 2009.

M. Yu, A. Greenberg, D. Maltz, J. Rexford, L. Yuan, S. Kama, and C. Kim. Pro-
filing network performance for multi-tier data center apptions. InProceedings of
the 8th NSDJ|pages 57-70, Boston, MA, March 2011.

C. Yuan, N. Lao, J.-R. Wen, J. Li, Z. Zhang, Y.-M. Wang,daw.-Y. Ma. Auto-
mated known problem diagnosis with event tracesPioceedings of the European
Conference on Computer Systetsuven, Belgium, 2006.

D. Yuan, H. Mai, W. Xiong, L. Tan, Y. Zhou, and S. PasupatiSherLog: Error
diagnosis by connecting clues from run-time logs. Pimceedings of the Fifteenth
International Conference on Architectural Support for Bramming Languages and
Operating Systempages 143—-154, Pittsburgh, PA, March 2010.

105

[82] D. Yuan, Y. Xie, R. Panigrahi, J. Yang, C. Verbowski, ahdKumar. Context-based
online configuration error detection. Rroceedings of the USENIX Annual Technical
Conferencepages 28-28, Portland, OR, June 2011.

[83] D. Yuan, J. Zheng, S. Park, Y. Zhou, and S. Savage. Impgosoftware diagnos-
ability via log enhancement. IRroceedings of the 16th International Conference
on Architectural Support for Programming Languages and 1@peg Systemsages
3-14, NewportBeach, CA, March 2011.

[84] C. Zamfir and G. Candea. Execution synthesis: A techenfiquautomated software
debugging. IfProceedings of the European Conference on Computer Sygtages
321-334, April 2010.

[85] S. Zdancewic, L. Zheng, N. Nystrom, and A. C. Myers. Wsted hosts and confi-
dentiality: Secure program partitioning. Rroceedings of the 18th ACM Symposium
on Operating Systems Principlgsges 1-14, Banff, Canada, October 2001.

[86] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mams. Making information
flow explicit in HiStar. InProceedings of the 7th Symposium on Operating Systems
Design and Implementatippages 263—-278, Seattle, WA, November 2006.

[87] X. Zhang, N. Gupta, and R. Gupta. Pruning dynamic sligik confidence. IrPro-
ceedings of the ACM SIGPLAN 2006 Conference on Programnainguage Design
and Implementatiorpages 169-180, June 2006.

[88] X. Zhang, S. Tallam, N. Gupta, and R. Gupta. Towardstiageexecution omission
errors. InProceedings of the ACM SIGPLAN 2007 Conference on Progragmi
Language Design and Implementatigges 415-424, June 2007.

[89] W. Zheng, R. Bianchini, and T. D. Nguyen. Automatic cguafiation of Internet
services. InProceedings of the European Conference on Computer Syspages
219-229, Lisbon, Portugal, March 2007.

106

