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ABSTRACT

Improving Software Configuration Troubleshooting with Causality Analysis

by

Mona Attariyan

Chair: Jason Flinn

Software misconfigurations are time-consuming and frustrating to troubleshoot. The fo-

cus of this thesis is to reduce the time and human effort needed to troubleshoot software

misconfigurations by automating the diagnosis process.

The core idea of this thesis is to automate misconfiguration diagnosis by using causality

analysis to determine specific inputs to an application thatcause that application to produce

an undesired output. This thesis shows that we can leverage these causal relationships to

determine the root cause of misconfigurations. Further, we demonstrate that it is feasible

to automatically infer such relations by analyzing the execution of the application and the

interactions between the application and the operating system. Based on the idea of causal-

ity analysis, we designed and developed three misconfiguration diagnosis tools: SigConf,

ConfAid, and X-ray.

SigConf uses coarse-grained causality analysis to diagnose problems. The focus of

SigConf is on misconfigurations that are known, i.e., the problem has been previously

reported to a misconfiguration database. This database can be maintained by the developers

or the users of an application. Thus, the problem of diagnosing an unknown bug on asick

computercan be reduced to identifying that the sick computer is in a state similar to a buggy
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state in the database. SigConf deduces the state of the sick computer by running predicates

that test system correctness and generating signatures based on the execution path of each

predicate. SigConf generates these signatures by recording the causal dependencies of the

predicate execution. For example, reading a file makes the execution causally dependent on

the content of the file. SigConf compares these signatures against the signatures recorded

in the database to diagnose the problem at hand.

Our second tool, ConfAid, uses a fine-grained causality analysis to diagnose miscon-

figurations. Compared to SigConf, ConfAid considers a narrower set of root causes, i.e.

tokens in the configuration files. However, it does not require outside help to diagnose

problems, and it can diagnose previously unknown misconfigurations. As the program

executes, ConfAid instruments the program binaries and uses dynamic information flow

analysis to extract causal dependencies introduced through data and control flow. It then

uses these dependencies to link an erroneous behavior to specific configuration tokens that

caused it.

While SigConf and ConfAid focus on problems that manifest asincorrect outputs, X-

ray, our final tool, tackles misconfigurations that lead to performance problems. The goal

of X-ray is to not only determinewhatevents happened during a performance anomaly, but

also inferwhy these events occurred. Similar to ConfAid, X-ray employs a fine-grained

causality analysis, and it considers root causes in software configuration files, as well as

input requests. X-ray introduces the technique ofperformance summarizationto diagnose

misconfigurations. Performance summarization first attributes performance costs to fine-

grained events, such as individual instructions and systemcalls. It then uses dynamic

information flow to determine the probable root causes for the execution of each event.

The cost of each event is assigned to root causes according tothe relative probability of the

causes leading to the execution of that event. Finally, the total cost for each root cause is

calculated by summing the per-cause costs of all events. Theroot cause with the highest

cost is the biggest contributor to the performance anomaly.
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CHAPTER I

Introduction

Complex software systems are difficult to configure and manage. When problems in-

evitably arise, operators spend considerable time troubleshooting those problems by iden-

tifying root causes and correcting them.

Many studies suggest that misconfigurations are often the dominant cause of problems

in deployed systems. For example, Jim Gray’s classic work [32] attributes 42% of system

outages to administration, while software, hardware, and environment failures account for

25%, 18%, and 14% of failures, respectively. Murphy and Gent[48] note that the per-

centage of failures attributable to system management is increasing over time, and that

management failures have come to dominate the combination of software and hardware

failures. A recent analysis of Yahoo’s mission-critical Zookeeper service [37] showed that

misconfigurations were accountable for the majority of all bugs exhibited. Another recent

study [77] analyzed problems reported by the customers of a commercial storage com-

pany. Similar to the previous studies, configuration-related issues were the dominant cause

of severe problems, causing about 31% of all failures. Otherstudies have shown similar

results [10, 11, 50, 54]. Further, while fault tolerance techniques such as modular redun-

dancy [45] or Byzantine fault tolerance [14] can mask some software and hardware faults,

they are unlikely to help solve configuration problems caused by human error since those

errors typically affect all replicas [32, 37].
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Not only are configuration problems prevalent in software systems, they also have high,

sometimes disastrous, impacts. For example, a recent outage in Facebook left the website

inaccessible to millions of users for about 2 hours. The problem was reported to be an

incorrect configuration value [36]. As another example, theentire .se domain of country

Sweden was unavailable for about 1 hour, due to a DNS misconfiguration problem. The

incident affected thousand of hosts and millions of users [63].

The cost of troubleshooting misconfigurations is also substantial. Technical support

contributes 17% of the total cost of ownership of today’s desktop computers [38], and

troubleshooting misconfigurations is a large part of technical support. For information

systems, administrative expenses, made up almost entirelyof people costs, represent 60–

80% of the total cost of ownership [23]. Even for casual computer users, troubleshooting

is often enormously frustrating.

This thesis focuses on developing methods and tools that automate the troubleshooting

process and thereby reduce the time to recovery (TTR) and require less manual effort by

users. Misconfigurations are problems in which the application code is correct, but the

software has been installed, configured, or updated incorrectly so that it does not behave

as desired. Such misconfigured software might crash, produce erroneous output, or simply

perform poorly.

The tools described in this thesis aim to help two types of users. End users, who may

be having problems with an application on their personal computers; and system adminis-

trators, who are responsible for maintaining production systems. These users are not the

developers of the application, and do not necessarily have access to the source code of the

application either. Even if the source code is available, e.g. for open-source applications,

inspecting the code is usually not a viable option for these users. End users may simply not

have the right expertise to understand the source code. Administrators may be more famil-

iar with the low-level code, but they usually deal with systems with various components

from different vendors. Investigating the code for all these components is exceedingly diffi-
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cult and time-consuming. The tools introduced in this thesis do not assume the availability

of the source code. Furthermore, the outputs of these tools are high-level enough for non-

developers to follow and understand. For example, our output does not contain function

names or values of variables in the code.

The process of troubleshooting can be divided into two steps: diagnosing the problem,

and then fixing it. Today, troubleshooting a problem is a highly manual task: First, the user

collects the symptoms of the problem by inspecting the system. For instance, she may run

some tests; or examine application and system logs. Expert users may be able to diagnose

the problem by looking at the symptoms. If the user cannot diagnose the problem, the next

step is to ask colleagues, or search online manuals, FAQ pages, and forums. The goal is

to find a reported misconfiguration case that is similar or close enough to the user’s case.

Using a trial and error process, the user reads the often-inaccurate descriptions of problems

and determines whether she is experiencing the same issue. If a solution is provided, she

carefully tries the solution, hoping that the solution won’t leave the system in a worst state.

If the solution is wrong, it needs to be rolled back and the search continues. This process

is extremely tedious and time consuming.

The goal of research in this thesis is to improve the troubleshooting process by automat-

ing it as much as possible. We specifically focus on automating diagnosis, the first task in

the troubleshooting process. We have developed three different tools that diagnose various

types of misconfiguration problems using different techniques. Although different, these

techniques all share the common theme of causality tracking. The next section explains the

idea of causality analysis and its role in improving misconfiguration troubleshooting.

1.1 Causality Analysis

Applications in today’s modern systems are extraordinarily complicated. Providing

sophisticated features, striving to be performant, and providing customizability and per-

sonalization are some of the factors that have added complexity to the internal logic of
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applications as well as the interactions between an application and the rest of the system.

While software bugs are mostly mistakes in the internal logic of an application, mis-

configurations are usually mismatches between what the userexpects and what the config-

urable features and system state observed by the application reflects. For example, the user

may expect Apache web server to serve a certain file when it receives a request; but since

the file permissions are not correctly set, Apache is not ableto access that file. In this ex-

ample, the state of the system, i.e. the permissions of that file, mismatches the expectation

of the user.

We argue that troubleshooting misconfigurations is difficult because users do not know

what configuration features and system elements are read by the application as configura-

tion inputs, and which ones are causing the application to produce an unexpected output.

In the example above, if the user knows that the permissions of that specific file are read

by Apache, and that input is causing Apache to deny the access, the misconfiguration is

basically diagnosed.

The core idea behind this thesis is to diagnose the root causeof misconfigurations by

using causality analysis to automatically infer the input elements that are causing the appli-

cation to produce an incorrect output. These inputs can be tracked at different granularity.

For instance, when an application reads from a file, the execution of the application be-

comes dependent on the content of the file. We can track this causal relationship coarsely

and conclude that the execution is dependent on the entire file. A finer-grained causality

analysis, on the other hand, may break the file and track smaller entities within the file, such

as individual lines or words. A coarse-grained analysis is usually cheaper and faster to per-

form compared to a fine-grained tracking. The later, however, is more precise and can link

a misconfiguration to fine-grained root causes, such as specific configuration parameters in

a large configuration file.

The following statement summarizes my thesis:
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Misconfiguration diagnosis is the process of determining what input elements are

causing an application to produce an incorrect output. It isfeasible to automatically

determine such causal relations by tracking the causal dependencies between the in-

puts and outputs within the application execution as well asbetween the application

and the environment. This analysis does not need the application source code, and

requires no modifications to the operating system or the application.

To validate this thesis, we designed and developed three successful misconfiguration

diagnosis tools. The first tool performs a coarse-grained analysis, while the other two tools

use a fine-grained analysis approach. The next three sections of this chapter explain these

tools in more details.

1.2 SigConf: Troubleshooting with coarse-grained causality analysis

The first part of this thesis introduces SigConf, a tool that uses coarse-grained causal-

ity analysis to diagnose a wide range of misconfiguration problems. SigConf considers

known misconfigurations. These are problems that other users have already diagnosed on

other machines, and have reported them to a reference computer. This computer can be

maintained by the developers or the users of an application.Therefore, the problem of di-

agnosing an unknown bug on asick computercan be reduced to identifying a state on the

reference computer that is similar to the state of the sick computer.

SigConf approach to deduce this state is to run a set of predicates on the sick machine

and compare the resulting execution to that generated by thesame predicates on a reference

computer. To effectively capture and compare the executions, SigConf generates signatures

that represent the execution of a predicate by recording thecausal dependencies of its exe-

cution. More specifically, SigConf records all the objects that the execution of the predicate

comes to causally depend on. These objects are files, directories entries, file metadatas, and

other objects read by the predicate as it runs.

SigConf causality analysis is coarse-grained and conservative. When the predicate
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reads a file, SigConf considers the execution to become dependent on the entire file. Sig-

Conf does not follow the execution more closely to investigate which parts of the file are ac-

tually affecting the output. The disadvantage of a coarse-grained and conservative causality

analysis approach is that it does not capture the details of the application behavior. There-

fore, misconfiguration problems that follow similar execution paths may generate the same

dependency set. This may adversely affect the accuracy of SigConf diagnosis. These mis-

configurations can be differentiated by adding more predicates that carefully capture the

difference between the two problems.

The advantage of this approach is that it creates simple and cheap signatures that are

robust across different platforms. The simplicity of this approach enables us to diagnose

a diverse set of misconfigurations, such as library incompatibilities, incorrect file system

permissions, and wrong configuration parameters. We evaluated SigConf on three different

applications: the CVS version control system, the gcc compiler suite, and the Apache Web

server. We compared the diagnosis accuracy of SigConf against an algorithm that compared

system states based solely on the success or failure of the predicates. SigConf significantly

outperformed this algorithm, uniquely identifying the correct bug in 86–100% of the cases.

Chapter II discusses design, implementation, and evaluation of SigConf in greater details.

1.3 ConfAid: Troubleshooting with fine-grained causality analysis

SigConf proved successful for misconfiguration problems that are known and are recorded

in a reference computer. However, for misconfigurations that are unique to customized

environments or applications for which a maintained reference machine does not exist,

SigConf will not achieve much success. This issue inspired the idea of a stand-alone trou-

bleshooting tool that does not require outside help for diagnosis.

The idea and approach of ConfAid was also influenced by our prior research project,

AutoBash [66]. AutoBash troubleshoots problems by tracking causality at process and file

granularity. Similar to SigConf, AutoBash treated the processes as black boxes, such that
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all the outputs of a process are considered to be dependent onall prior inputs. We found

AutoBash to be very successful in identifying the root causeof problems, but the success

was limited in that AutoBash would often identify a complex configuration file, such as

Apache’shttpd.conf, as the source of an error. When such files contain hundreds

of options, the root cause identification of the entire file may not be of great use. The

lessons that we learned from SigConf and AutoBash led us to use a white-box approach for

troubleshooting.

ConfAid dynamically tracks causality to identify the likely root causes of a configu-

ration problem. When a user or administrator wants to troubleshoot a problem, such as a

crash or incorrect output, she reproduces the problem whileConfAid modifies the executed

application binaries to track the causal dependencies between configuration inputs and pro-

gram behavior. ConfAid produces an ordered list of the configuration tokens most likely

to have caused the exhibited problem. ConfAid uses dynamic information flow analysis

to track causality at the level of instructions and bytes. Examining the flow of causality

within processes as they execute, ConfAid essentially opens up theblack-box of the appli-

cation. Further, since ConfAid tracks causality using binary instrumentation [44], it does

not require application source code to find misconfigurations.

Currently, ConfAid restricts the scope of information flow analysis to only track val-

ues that depend on data read from configuration files. ConfAidpropagates dependencies

by both data flow and control flow. If ConfAid determines that changing a configuration

parameter may change the application’s control flow such that it avoids the problem (and

does not exhibit a different problem), it reports that parameter as a possible root cause.

The fine-grained and low-level analysis of ConfAid is a high-overhead activity. It im-

poses orders of magnitude of slow down on applications. While end user applications

might be able to tolerate this slow down, it is certainly not affordable for online production

software. To address this problem, we leveraged prior work in deterministic record and re-

play to offload the heavyweight analysis from sensitive applications. A deterministic replay
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system provides a DVR-like functionality, in which an execution of a hardware or software

system is recorded so that an identical execution can later be replayed on demand. Using

a record and replay system, a misconfiguration can be recorded online with low overhead,

while the heavy analysis happens offline on the replayed execution. Our use of determin-

istic replay to troubleshoot misconfigurations raised several new challenges. For instance,

the fidelity of the replay must be strict enough to guarantee that the two executions are

identical at the granularity observed by ConfAid. However,because the replayed execution

includes analysis code that the recorded execution does not, the fidelity of the replay must

be loose enough to allow the replayed execution to diverge enough to run the analysis. We

show that all these goals can be achieved through careful co-design of the deterministic

replay and analysis systems. Chapter IV discusses the design and implementation of our

record and replay system.

We used ConfAid to troubleshoot misconfigurations in three applications: OpenSSH,

the Apache Web server, and the Postfix mail server. We used twomethodologies to collect

the configuration problems. In the first methodology, we collected 18 real-world misconfig-

urations that users reported in forums and online FAQ pages.We recreated these misconfig-

uration cases and ran ConfAid to see if it could correctly pinpoint the root cause. ConfAid

ranked the correct root cause first or second in all these cases. In the second methodology,

we used ConfErr [40] to randomly generate bugs in the application’s configuration file.

ConfAid was able to correctly rank the root cause first or second in 55 out of 60 cases.

Chapter III discusses the evaluation of ConfAid, as well as its design and implementation,

in more details.

1.4 X-ray: Troubleshooting performance problems

SigConf and ConfAid tackle misconfigurations that lead to incorrect outputs. The third

part of this thesis focuses on another important category ofproblems: misconfigurations

that lead to performance anomalies. These are problems for which the outcome is cor-
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rect, but the application is experiencing unusual latency or high usage of resources, such as

CPU or I/O. Troubleshooting performance problems is even more challenging than trou-

bleshooting problems with erroneous output for several reasons. First, the analysis tool

must incur very low overhead, otherwise it changes the performance characteristics of the

system. Further, performance problems are usually non-deterministic and transient, which

make them difficult to capture and analyze.

Users and administrators typically debug performance problems by using performance

monitoring tools, such as profilers and tracers. We argue that the most important reason

why troubleshooting performance is challenging is that these tools only solve half of the

problem. Troubleshooting a performance anomaly is essentially determiningwhy certain

events, such as high latency or resource usage, happened in asystem. Unfortunately, most

current analysis tools only determinewhatevents happened during a performance anomaly

— they leave the more challenging question of why those events happened unanswered.

Thus, users must manually infer why the events reported by such tools happened. This step

usually requires a lot of expertise and is highly tedious andtime-consuming.

The goal of X-ray is to not only determine what events happened during a perfor-

mance anomaly but also automatically infer why. To accomplish this, X-ray introduces

the technique ofperformance summarization. Performance summarization first attributes

performance costs, such as latency and I/O utilization, to fine-grained events (individual in-

structions and system calls). Then, it uses dynamic information flow analysis to associate

each such event with a set of probable root causes such as configuration settings or specific

data from input requests. The cost of each event is assigned to the potential root causes

weighted by the probability that the particular root cause led to the execution of that event.

Finally, the per-cause costs for all events in the program execution are summed together.

The end result is a list of root causes ordered by their performance costs. This output gives

the system troubleshooter a direct indication of how to fix the problem, without the need

for time-consuming manual analysis. X-ray also introducesdifferential performance sum-
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marization, which can be used to determine why the performance impact oftwo different

events differed.

Similar to ConfAid, X-ray performs its analysis on the replayed execution of the ap-

plication. X-ray splits its functionality among the recorded and replayed executions; for

example, timestamps are captured during recording becausethe heavyweight analysis sub-

stantially perturbs timing. Using the deterministic record and replay system, X-ray can

perform multiple rounds of analysis offline, with various scopes and metrics, on the same

recorded execution.

We evaluated X-ray using three applications: the Apache Webserver, the Postfix mail

server, and the PostgreSQL database. We reproduced and analyzed 14 performance issues

reported for these applications. In 12 of 14 cases, X-ray identified the correct root cause

as the largest contributor to the performance problem; in the remaining two cases, X-ray

identified the correct root cause as the third largest contributor. In chapter V, we discuss

X-ray in more details.

1.5 Roadmap

The rest of this dissertation consists of the following chapters.

Chapter II describes the design, implementation , and evaluation of SigConf. SigConf

uses the causal dependencies of predicate execution to detect similarities between a config-

uration state on a sick computer and another on a reference computer.

Chapter III describes the design, implementation, and evaluation of ConfAid. ConfAid

pinpoints specific tokens in configuration files that caused an application to produce an

erroneous behavior. Taking a white-box approach towards troubleshooting, ConfAid ana-

lyzes causalitywithin processes as they execute. It propagates causal dependencies among

multiple processes and outputs a ranked list of probable root causes.

Chapter IV discusses the design and implementation of our deterministic record and

replay system. Our replay system is instrumentation-aware: it allows the analysis code to
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run within the instrumented replayed execution by letting this execution diverge from the

recorded execution.

Chapter V discusses the design, implementation, and evaluation of X-ray. X-ray helps

users by identifying the root cause of observed performanceproblems. X-ray uses causal-

ity analysis to attribute the recorded performance information to root causes that include

configuration options and request inputs.

Chapter VI describes related work, and chapter VII summarizes the contributions and

future directions of this thesis.
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CHAPTER II

SigConf: Troubleshooting with Coarse-grained

Causality Analysis

2.1 Introduction

Software in modern computer systems is extraordinarily complex. Many applications

have a large number of configuration options that can customize their behavior. Further,

each application interacts with the other software on a computer through channels such

as shared libraries, registry entries, environment variables, and shared configuration files.

This flexibility has a cost: when something goes wrong, troubleshooting a configuration

problem can be both time-consuming and frustrating.

SigConf improves the troubleshooting task by automating problem diagnosis. SigConf

focuses on problems that are known, i.e., the problem has been previously reported to

a misconfiguration database or a reference computer. This computer can be maintained

by the software developers or the application users. Thus, the problem of diagnosing an

unknown bug on asick computercan be reduced to identifying that the sick computer is in

a state similar to a buggy state on the reference computer forwhich a solution is known.

To deduce similarity between states in the reference computer and sick computers, our

approach is to run a set ofpredicatesthat test the correctness of the computer system. In

previous work [66], we used the success or failure of predicates to deduce similarity. While
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this approach is intuitive, we observed several drawbacks.First, an expert, e.g., a software

developer or tester, must craft a predicate to cover each newbug. Second, a single predicate

may often detect many bugs, causing many states to appear similar. Finally, a test case that

is too finely crafted to the reference computer may inadvertently report an error due to a

benign difference between the environments of the sick and reference computers.

SigConf proposes a method for diagnosing bugs that uses signatures derived from the

set of objects upon which each predicate’s execution causally depends. We use system

call tracing tools such asstrace to record each predicate’sdependency set, i.e., the files,

devices, fifos, etc. read by the predicate. We compare the dependency sets generated on

the reference and sick computers to deduce similarity. Our results show that comparisons

based on dependency sets significantly outperform comparisons based on predicate success

or failure, uniquely identifying the correct bug 86–100% ofthe time. In the remaining

cases, the dependency set method identifies the correct bug as one of two equally likely

bugs.

2.2 Background

Our previous work in configuration management, titled AutoBash [66], used the pattern

of success and failure of known predicates to diagnose configuration errors. Using this

approach, AutoBash executes all predicates,{P0, P1, ..., Pn} on the sick machine and

aggregates their results as a binary vectorScurrent = {1, 0, ..., 1} (with 1 indicating success

and 0 failure). AutoBash then comparesScurrent with a set of system state vectorsSi from

{S0, S1, ...,Sm}, where each system state was generated by running the predicates on the

reference computer prior to fixing a known bug. Intuitively,each vector is a signature for

a system state that represents a particular bug. Thus, AutoBash chooses the system state

vector that is most similar toScurrent as the most likely diagnosis for the bug. According

to the diagnosis, AutoBash chooses a solution from its database and speculatively runs the

solution. Then, AutoBash tests the affected predicates to determine whether the problem
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is fixed or not. If the problem is fixed, AutoBash commits the solution; otherwise, the

solution is rolled back and AutoBash tries the next most likely diagnosis. The accuracy

of diagnosis determines how fast AutoBash can find a correct solution. As the AutoBash

diagnosis method uses the Hamming distance as a similarity metric, we will refer to this

method as theHamming distance method.

One advantage of the Hamming distance method is that it treats predicates as black

boxes. AutoBash does not need to understand what each predicate does; it only needs to

execute each predicate as a child process and check the return code to determine success or

failure. Another advantage is portability; since predicates are application-level test cases,

their success or failure should not be perturbed by irrelevant fluctuations in the application

environment such as variations in the operating system or installed software.

However, as Section 3.4 shows, the Hamming distance method suffers from ambiguity.

Since the similarity metric takes into account only the success or failure of predicates,

many different bugs may have identical state vectors. To allow correct diagnoses, a tester

or developer must painstakingly craft specific predicates that target each known bug. Easy-

to-create stress tests, which we refer to askitchen sink predicates, are useless because they

fail for most bugs. For example, a Linux kernel compile can trigger many possible compiler

configuration bugs, so its failure tells little about the underlying system state. On the other

hand, failure of a hand-crafted predicate that only checks aspecific kernel header reveals

much more about the bug. However, writing such predicates tocover all known bugs takes

a lot of effort.

Another drawback of the Hamming distance method is lack of granularity: many sys-

tem state vectors may lie at a Hamming distance of one or two from a given result vector,

even though each state causes a different set of predicates to fail.
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2.3 Design

Based on our observations, we tried to design a method that would retain the advantages

of the Hamming distance method while eliminating its disadvantages.

Looking more closely, we realized that although the successor failure of predicates may

be similar for many bugs, the execution paths of those predicates usually differ for each

bug. For example, if a predicate compiles and runs a program,any bug in the compilation,

linking or loading phases can cause the predicate to fail. However, bugs in each of the

three phases cause the predicate to take different execution paths. As another example, a

configure script takes different execution paths dependingupon the particular software that

is installed on a computer. Thus, if we can generate a signature that captures the execution

path of a predicate, we should be able to more precisely identify a configuration error.

Ideally, we would like to generate a signature that is precise enough to capture different

execution paths that are induced by different configurationbugs. However, the signature

should be robust enough so that executing a predicate on computers with the same bug

but different operating systems, installed software, and execution environments generates

similar signatures. For example, we could use all the systemcalls executed by a program

to generate a signature for the execution path [34, 80]. However, random permutations

caused by thread scheduling, interactions with other processes, and other sources of non-

determinism will cause the sequence of system calls to vary even when a predicate is exe-

cuted on the same platform. Further, this method would perform poorly for our purposes

because we run the same predicate on two computers with different software. For example,

the sequence of system calls will change with different versions of shared libraries such

as libc, with different versions of the same operating system, or with different operating

systems.

To generate a more robust signature, we decided to instead use the causal dependencies

of predicate execution as a signature. We define the dependency set of a process to be the set

of files, directory entries, file metadata, devices, fifos, and other objects read by the process
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and its descendants during their execution. This choice is based on the observation that the

layout of application files and directories shows only minorfluctuations across platforms.

Further, the concept of files and directories is common to most operating systems, while

specific system calls differ greatly. At the same time, the dependency set usually reflects

significant differences in the execution paths of a predicate in the presence of different

bugs. For instance, in the above compilation example, if thepredicate fails in compilation,

the predicate’s dependency set will not contain any objectsrelated to the linker or loader

simply because execution ended before those phases. Therefore, the dependency set can

capture the progress of predicate execution and generate different signatures for different

failures.

There are several possible approaches for generating dependency sets. We wished to

avoid intrusive monitoring methods that require the application under test or the host oper-

ating system to be modified. We also wanted to reuse existing tools as much as possible.

We observed that most operating systems have a system call tracing tool such as Linux’s

strace or FreeBSD’sktrace. We wrote parsing programs that take tracing tool out-

put and generate the corresponding dependency set. The onlydrawback of these tools is

that they can only trace the main process and its descendants. Activities of other processes

communicating with the main process and its descendants viashared memory, pipes or files

cannot be automatically traced with these tools. To addressthis issue, we could trace all

processes in the system. However, we judged that tracing allprocesses would incur a lot of

overhead while adding negligible accuracy.

2.4 Implementation

We usestrace andktrace to generate dependency sets on Linux and FreeBSD,

respectively. These tools intercept all system calls made by a process and its descendants

along with their parameters and return values. We trace eachpredicate and pipe the tool

output to a parser that calculates the predicate’s dependency set.
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The parser divides system calls into three categories. The first category consists of

system calls that do not affect the dependency set of the predicate. For example, thebrk,

mmap andmprotect system calls manage a process’s memory. The parser simply ignores

these system calls. The second category consists of system calls that do not directly affect

the dependency set but may change the objects that are added later. For example, the

fchdir system call changes the current directory to the file descriptor specified by its first

parameter. This system call does not change the dependency set, but it affects all following

file names with relative paths.

The third category consists of system calls that directly affect the dependency set. For

each system call, the parser adds appropriate dependency records to the process’s depen-

dency set. For example, thestat system call provides information about a specified file.

A successfulstat system call makes the process dependent on the directory entry and

metadata of the specified file, as well as the directory entries and metadata of all directories

in the file path. As another example, reading from a file makes aprocess dependent on the

content of the specified file, as well as its metadata.

Before processing the parameters of a system call, we check the return value and error

type. Without considering the return value, we are in dangerof adding wrong records to

the dependency set. For example,ENOENT as the return value of anaccess system call

indicates that the requested path does not exist or is a dangling symbolic link. Therefore,

we cannot simply generate dependency records for the entirepath. Instead, we determine

which part of the path exists and add appropriate dependencyrecords for only that part.

Usually, the main process creates child processes usingfork. Our parser tracks de-

pendency sets for the descendants of a traced process in order to generate a good signature.

For example, amake process forks children to compile and link objects; if thesechild pro-

cesses were omitted, the resulting dependency set would contain little useful information.

Initially, the parser sets the dependency set of a child process equal to the dependency

set of its parent. It adds new records to the child’s dependency set as the child executes. If
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the child communicates to its parent (e.g., by sending the parent a signal when it exits), the

parser sets the dependency set of the parent process to be theunion of the parent’s current

dependency set and the child’s dependency set. Thefork system call is usually followed

by anexec system call that replaces the memory image of the process with one from an

executable file. When this happens, the parser adds the executable file to the process’s

dependency set.

In our current implementation, the parser uses full path information for files and direc-

tories. We also considered using only the name of a file or directory instead of the whole

path. However, our experiments revealed that the former method was slightly superior,

mainly due to false matches between files with the same name but different paths. We

did find that using only the file name was especially useful forshared libraries, because

the location of libraries can vary widely across platforms.Therefore, our implementation

uses only the file name for shared libraries. Our parser has one further optimizations: if

an object being read is referred to by a symlink, the parser follows the symlink to also add

entries for the real path of the object.

To diagnose a configuration error on a sick computer, our toolruns each predicate,

traces its output, and generates its dependency set. It compares the dependency sets with

those generated on the reference computer for each known bug. To compare dependency

sets, the tool calculates the edit distance between the setsfor each predicate. For each

known bug, it sums the edit distances to calculate the similarity between the state of the

sick computer and the state of the reference computer. It identifies the bug with the lowest

total as the most likely diagnosis; in the case of ties, it reports all tied bugs as being equally

likely to be the root cause.

2.5 Evaluation

Our evaluation measures how effectively our proposed dependency set method diag-

noses configuration bugs using both targeted and “kitchen sink” predicates.
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2.5.1 Methodology

In previous work [66], we developed a benchmark consisting of three applications: the

CVS version control system, the gcc cross compiler and the Apache Web server. For each

application, the benchmark consists of 10 common configuration bugs. Table 2.1 describes

the bugs that we tested. The benchmark also contains 5–8 targeted predicates for each

application such that each bug causes at least one predicateto fail. These predicates are

shown in Table 2.2. In addition, for each application we created a single “kitchen sink”

predicate that detects all bugs.

In order to measure how sensitive our dependency set method is to variation across op-

erating systems and installed software, we ran our experiments on four computers running

different operating systems: Red Hat Enterprise Linux 3, Fedora core release 6, Ubuntu ver-

sion 7.04, and FreeBSD version 6.2. Although these platforms are fairly similar in overall

behavior, the execution signatures revealed a lot of subtledifferences. For instance, in our

Ubuntu platform libraries are located in “/lib/tls/i686”,while in other systems “/lib” con-

tains the libraries. As another example, FreeBSD uses “/etc/pwd.db” and “/etc/spwd.db”

for authentication, while other platforms use “/etc/passwd”. We installed the same version

of CVS and the gcc cross compiler on all machines. For Apache,we used version 2.0.50

for all machines, except for FreeBSD, which runs 2.0.59. Theversion of the PHP module

that we used is 4.4.6, except for Fedora, which runs 4.4.7.

We used the Red Hat machine as the reference computer. For each application, we

injected each bug. We then executed the targeted predicatesand recorded the success or

failure of each one, as well as its dependency set. We also executed the “kitchen sink”

predicate for each bug, recording its outcome and dependency set.

We emulated sick computers by injecting each bug into all four computers. For each

bug, we ran the targeted and “kitchen sink” predicates on each sick computer and used both

the Hamming distance and dependency set methods to diagnosethe bug. Each method

returns a set of bugs that are judged to be the root cause of theconfiguration problem.
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Bug CVS configuration problem description
1 Repository not properly initialized
2 User not added to CVS group
3 CVS performs unwanted keywords substitution
4 Setgid bit not set on repository, so group for new files is incorrect
5 $TMPDIR environment variable set incorrectly
6 $CVSROOT misconfigured for a CVS user
7 $CVSROOT not set for a different CVS user
8 $CVSROOT variable set but not exported correctly
9 Repository permissions allow global access
10 Repository created using wrong group

Bug Gcc cross-compiler problem description
1 Cross-compiler tools not in the default path
2 Cross-compiler setup overwrites default path instead of appending
3 Dangling libcrypt.so symlink does not point to correct library
4 Archive tool (ar) not in the default location
5 Kernel header module.h contains wrong content
6 Compiler cannot invoke linker due to bad location
7 Cross-compiler specs file does not contain XScale architecture definitions
8 Cross-compiler not configured to accept -pthread option
9 C compiler configured correctly, but C++ compiler is not
10 Cross-compiler not configured to pass the static link flag to the linker

Bug Apache HTTP server problem description
1 Apache cannot search a user’s home directory due to incorrect permissions
2 Apache cannot read CGI scripts due to incorrect permissions
3 Symlink used to point to CGI scripts in a user’s home directory, but Apache is

not configured to follow symlinks
4 Apache configuration does not allow CGI execution in user home directories
5 Misconfiguration treats CGI scripts as regular Web pages
6 Apache not configured to load PHP module
7 Handler not set for PHP pages
8 Apache not configured to use index.php as default
9 User has insufficient permission to use .htaccess authorization
10 File .htaccess in a user’s home directory configured incorrectly

Table 2.1: Description of injected bugs

Multiple bugs are returned by each method only in the case of ties, where each bug is

judged equally likely to be the root cause. Two bugs of the benchmark (CVS bug 4 and

Apache bug 4) were not applicable to FreeBSD platform due to differences in platform

default behavior and application versions, so we omitted these bugs from our results.

We evaluated our results using two metrics from the information retrieval literature:
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Predicate CVS predicate description
1 a user checks in a project and checks it out again
2 a user checks in a project, and a different user checks it out
3 same as predicate 1, but assumes a default repository is defined
4 same as predicate 3, but also checks that unauthorized userscannot access

repository
5 checks if CVS performs unwanted keyword substitutions

Predicate gcc cross-compiler predicate description
Note: For all predicates, we check that the compilation succeeds and the com-
piled executable is the right file format

1 take a “hello world” .c file, compile it with explicit path names
2 take a “hello world” .c file, compile it using default paths
3 take a kernel module .c file, compile it
4 take a .c file, compile it, link it to a shared cryptography library
5 take several .c files, compile them into object files, archivethe object files into

a static library, compile a program that links in the static library
6 take a .cc file, compile it with a c++ cross compiler
7 take a .c file, compile it, statically link in a math library, check if the com-

pilation succeeds and the compiled executable is statically linked to the math
library

8 take a multi-threaded .c file, compile it for the XScale architecture
Predicate Apache HTTP server predicate description

1 wget Apache’s default home page
2 wget a user’s default home page
3 wget the result of a CGI script from Apache’s default root directory and

diff the output with the expected output
4 wget the result of a CGI script from a user’s home directory anddiff the

output with the expected output
5 wget the result of a PHP test page
6 wget a PHP test page that is set to be the default page

Table 2.2: Description of predicates for each application

precision and recall. Precision, which is the percent of false positives, is calculated as

|R ∩ C|/|R|, whereR is the set of bugs returned by a method andC is the set of bugs that

are the correct root cause. Recall, which is the percent of false negatives, is calculated as

|R ∩ C|/|C|.

2.5.2 Results

Table 2.3 shows results for the targeted predicates. We onlyshow precision in the

table since both the Hamming distance and dependency set methods have a recall of 100%,
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i.e., there were no false negatives in our experiments. Because the Hamming distance

method only considers the success or failure of predicates,its results are the same on all

sick computers. Therefore, we only show its precision once in the third column of the

table. The remaining columns show the precision of the dependency set method on each

sick computer.

As the third column of Table 2.3 shows, the Hamming distance method performs fairly

well as long as an expert has taken the time to write targeted test cases. However, this

method only considers the success or failure of predicate execution. Therefore, it cannot

distinguish between situations with identical fail/pass patterns. Although our benchmark

consists of targeted predicates, the Hamming distance algorithm still generates many ties.

Across all bugs, its average precision is 57%.

As the remaining columns in the table show, the dependency set method has greater

precision. On the Red Hat platform, the sick computer is identical to the reference com-

puter. Thus, the dependency set method acts like an oracle, having precision of 100% for

all bugs. For the remaining platforms, the dependency set method has average precision of

93%.

Table 2.4 shows results for the “kitchen sink” predicates. As before, neither method

generates false negatives. However, the Hamming distance method has low precision for

all bugs. It does not provide any useful information becausekitchen sink predicates always

fail. In contrast, the dependency set method is able to diagnose bugs much more accu-

rately. The average precision of the dependency set method ranges from 93% to 100%,

compared to 10% for the Hamming distance method. These results show that the depen-

dency set method can still do an excellent job of diagnosing bugs without requiring the

time-consuming task of writing targeted predicates.

The overhead of generating dependency sets is very small. Onaverage, it takes less

than 0.2 seconds to generate a signature from each trace output. Overall, it takes less than

14 seconds for CVS, 11 seconds for gcc and 27 seconds for Apache to run all the predicates
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Hamming Dependency Dependency Dependency Dependency
Application Bug distance set (RHEL 3) set (Fedora) set (Ubuntu) set (FreeBSD)

1 100% 100% 100% 100% 100%
2 33% 100% 50% 50% 50%
3 100% 100% 100% 100% 100%
4 33% 100% 100% 100% N/A

CVS 5 100% 100% 100% 100% 100%
6 33% 100% 100% 100% 100%
7 33% 100% 50% 50% 50%
8 33% 100% 50% 50% 50%
9 100% 100% 100% 100% 100%
10 33% 100% 50% 50% 50%

1 50% 100% 100% 100% 100%
2 50% 100% 100% 100% 100%
3 100% 100% 100% 100% 100%
4 33% 100% 100% 100% 100%

gcc 5 33% 100% 100% 100% 100%
6 100% 100% 100% 100% 100%
7 50% 100% 100% 100% 100%
8 50% 100% 100% 100% 100%
9 100% 100% 100% 100% 100%
10 33% 100% 100% 100% 100%

1 100% 100% 100% 100% 100%
2 100% 100% 100% 100% 100%
3 20% 100% 100% 100% 100%
4 20% 100% 100% 100% N/A

Apache 5 20% 100% 100% 100% 100%
6 50% 100% 100% 100% 100%
7 50% 100% 100% 100% 100%
8 100% 100% 100% 100% 100%
9 20% 100% 100% 100% 100%
10 20% 100% 100% 100% 100%

Table 2.3: Precision of bug diagnoses for targeted predicates

understrace and generate a complete signature. In our experiments, the time required

to compare the complete signature of a sick computer againstthe reference computer is

less than 0.5 seconds. As the number of predicates and bugs inthe database increases, the

time required for generating the complete signature and comparing against the reference

machine increases as well.

The accuracy of our method is dependent on the distance between bugs rather than the
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Hamming Dependency Dependency Dependency Dependency
Application Bug distance set (RHEL 3) set (Fedora) set (Ubuntu) set (FreeBSD)

1 10% 100% 100% 100% 100%
2 10% 100% 100% 100% 50%
3 10% 100% 100% 100% 100%
4 10% 100% 100% 100% N/A

CVS 5 10% 100% 100% 100% 100%
6 10% 100% 100% 100% 100%
7 10% 100% 50% 50% 50%
8 10% 100% 50% 50% 50%
9 10% 100% 100% 100% 100%
10 10% 100% 50% 50% 50%

1 10% 100% 100% 100% 100%
2 10% 100% 100% 100% 100%
3 10% 100% 100% 100% 100%
4 10% 100% 100% 100% 100%

gcc 5 10% 100% 100% 100% 100%
6 10% 100% 100% 100% 100%
7 10% 100% 100% 100% 100%
8 10% 100% 100% 100% 100%
9 10% 100% 100% 100% 100%
10 10% 100% 100% 100% 100%

1 10% 100% 100% 100% 100%
2 10% 100% 100% 100% 100%
3 10% 100% 100% 100% 100%
4 10% 100% 100% 100% N/A

Apache 5 10% 100% 100% 100% 100%
6 10% 100% 100% 100% 100%
7 10% 100% 100% 100% 100%
8 10% 100% 100% 100% 100%
9 10% 100% 100% 100% 100%
10 10% 100% 100% 100% 100%

Table 2.4: Precision of bug diagnoses for kitchen sink predicates

size of bug database. In other words, our method cannot accurately distinguish between

bugs that are subtly different from each other and cause predicates to have similar execu-

tions. Although the chance of having such bugs increases as the database grows, the size

of the database does not solely determine the precision of our method.
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2.6 Conclusion

SigConf, the first part of this thesis, contributes a novel method for misconfiguration

diagnosis that uses the causal dependencies of predicate execution to detect similarities

between a configuration state on a sick computer and another on a reference computer.

We demonstrate that such information can be collected usingonly pre-existing system call

tracing tools and without requiring application or operating system modification. Our eval-

uation shows that signatures generated based on these information are cheap to create and

robust across different platforms.
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CHAPTER III

ConfAid: Troubleshooting with Dynamic

Information Flow Analysis

3.1 Introduction

The previous chapter discussed SigConf, a tool that uses causality analysis to diagnose

misconfiguration problems by comparing the state of a sick machine against a reference

machine. SigConf proved successful in diagnosing misconfigurations that are known and

are recorded in a reference computer. However, for misconfigurations that are unique to

customized environments, and for applications for which a maintained reference computer

does not exist, SigConf will not achieve much success. This issue inspired the idea of a

stand-alone troubleshooting tool that does not require outside help for diagnosis.

Our prior research project, AutoBash [66], also helped formthe idea and approach of

ConfAid. AutoBash troubleshoots problems by tracking causality at process and file gran-

ularity. Similar to SigConf, AutoBash treated the processes as black boxes, such that all

the outputs of a process are considered to become dependent on all prior inputs. We found

AutoBash to be very successful in identifying the root causeof problems, but the success

was limited in that AutoBash would often identify a complex configuration file, such as

Apache’shttpd.conf, as the source of an error. When such files contain hundreds of

options, the root cause identification of the entire file may not be of great use.
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The lessons that we learned from SigConf and AutoBash led us to use a white-box ap-

proach for troubleshooting. In this chapter, we show that the white-box approach achieved

via fine-grained information flow analysis is in fact an extremely successful approach to-

wards troubleshooting.

This chapter introduces ConfAid, a tool that uses dynamic information flow analysis

to identify the likely root causes of a configuration problem. ConfAid focuses on miscon-

figurations that manifest as crashes, assertion failures, or simply incorrect output. When a

user or administrator wishes to troubleshoot a problem, shereproduces the problem while

ConfAid modifies the executed application binaries to trackthe causal dependencies be-

tween configuration inputs and program behavior. ConfAid produces an ordered list of the

configuration tokens most likely to have caused the exhibited problem. While dynamic

analysis takes a few minutes for a complex application such as Apache, automated trou-

bleshooting is still considerably faster and less labor-intensive than manual debugging or

searching through FAQs and online forums.

ConfAid dynamically tracks causality (i.e., information flow) at a fine granularity,

namely at the level of instructions and bytes. While there isa large body of work in the

distributed systems community that tracks causality to understand and troubleshoot pro-

gram behavior [2, 5, 6, 15, 17, 18], these prior systems essentially treat application binaries

as black boxes, understanding causal relationships between processes by tracking network

messages and IPCs. Some gain more information by inserting probes into applications to

glean hints about their activity. ConfAid, however, “opensup the black-box” by examin-

ing the flow of causalitywithin processes as they execute. Further, since ConfAid tracks

causality using binary instrumentation [44], it does not require application source code to

find misconfigurations.

ConfAid restricts the scope of information flow analysis to only track values that de-

pend on data read from configuration files. ConfAid tracks dependencies introduced by

both data and control flow. If it determines that altering a configuration parameter may
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change the application’s control flow such that it avoids theproblem (and does not exhibit

a different problem), it reports that parameter as a possible root cause. It propagates depen-

dencies among multiple processes in a distributed system byannotating IPCs and network

communication.

Our results show that ConfAid identifies the correct root causes of most configuration

errors. We injected 18 real-world misconfigurations into OpenSSH, Apache, and the Postfix

email server. ConfAid identifies the correct root cause as the most likely source of the

misconfiguration in 13 cases; for the remaining 5 bugs, it lists the correct root cause as the

second most likely option. ConfAid analysis takes less than3 minutes, making the tool an

attractive alternative to manual troubleshooting.

3.2 Design principles

We next briefly describe ConfAid’s design principles.

3.2.1 Use white-box analysis

As mentioned before, the idea of ConfAid was partially originated from AutoBash. Our

take-away lessons from AutoBash were: (1) causality tracking is an effective tool for iden-

tifying root causes, and (2) causality should be tracked at afiner granularity than an entire

process to troubleshoot applications with complex configuration files. These observations

led us to use awhite boxapproach in ConfAid that tracks causality within each process at

byte granularity.

The granularity of the root causes reported to the user is also much finer. Instead of

reporting the entire configuration file as a root cause, ConfAid points its users to specific

tokens in the configuration file that it believes to be in error. This approach narrows down

root causes considerably for programs like Apache.

We define a token to be a sequence of characters in the configuration file that has a

specific meaning to the application. In other words, when theapplication recognizes this
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sequence, it executes special parts of the code. For instance, the application may set a spe-

cific variable upon recognition of a certain sequence. We treat each token as a potentially

discrete root cause, and we analyze its causal impacts on each byte in the process’s address

space as well as the process control flow.

Why did we choose a token as the smallest entity in the config file that we recognize as

a discrete potential root cause? We had several choices in the granularity spectrum. One

choice is the finest granularity in which each character of the config file can be a potential

root cause. The problem with this choice is that individual characters usually do not have

any semantic meaning to the application. For instance, the application cares about the con-

figuration optionport. Several lines of comments consisting of hundreds of characters

that precede this option have no meaning to the application.Treating each individual char-

acter as a potential root cause produces so many unimportantcausal relationships that the

meaningful root causes get buried and ConfAid becomes useless.

The second option is to choose a coarser granularity. For instance, each line can be a

discrete root cause. The problem with this approach is that for some applications such as

Apache, a line may include multiple words where each word controls a completely different

functionality and has little to do with the other words. For such configuration files, a line-

based approach is clearly too coarse, because it leaves the user wondering which of the

words needs to be modified.

The main problem with the above approaches is that they choose a strict granularity

regardless of the application and its config file style. As mentioned earlier, the application

may not care about individual characters or the line in whichan option is specified in.

In fact, the applications usually care about certain words or a sequence of words in the

config file. For instance, the wordProtocol has a certain meaning to OpenSSH server or

Apache HTTP server treats the sequence</Directory> in a special way. Our approach

is to identify such sequences, which we call tokens, as the application parses the config

file. We call this approach a token-based approach where, based on the application, the
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tokens could consist of single or multiple words. The key difference between token-based

approach and previous approaches is that instead of deciding the granularity ahead of time,

we choose the granularity at which the application itself parses the configuration file.

How do we identify the tokens in the config file? or how do we find out if the appli-

cation cares about a sequence? We have a simple heuristic to identify sequences that the

application is interested in. Applications usually compare strings read from the file against

predefined constant strings in the code to find out if a certainsequence of interest exists

in the config file. Whenever such comparisons happen, we conclude that the application

expects the read string to have a specific meaning. At this point, we create a new token

that represents that string from the file and the memory locations that contains that string

become dependent on the newly created token.

3.2.2 Operate on application binaries

We next considered whether ConfAid should require application source code for op-

eration. While using source code would make analysis easier, source code is unavailable

for many important applications, which would limit the applicability of our tool. Also, we

felt it likely that we would have to choose a subset of programming languages to support,

which would also limit the number of applications we could analyze.

For these reasons, we decided to design ConfAid to not require source code; ConfAid

instead operates on program binaries. ConfAid uses Pin [44]to dynamically insert instru-

mentation into binaries as applications run. It also uses IDA Pro [35] to statically generate

control flow graphs from binaries.

3.2.3 Embrace imprecise analysis

Our final design decision was to embrace an imprecise analysis of causality that relies

on heuristics rather than using a sound or complete analysisof information flow. Using

an early prototype of ConfAid, we found that for any reasonably complex configuration
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problem, a strict definition of causal dependencies led to our tool outputting almost all

configuration values as the root cause of the problem. Many registers and bytes in the

address space would come to depend on almost all configuration values. Our prototype

would identify the root cause as only one of many possible causes.

Thus, our current version of ConfAid uses several heuristics to limit the spread of causal

dependencies. For instance, ConfAid does not consider all dependencies to be equal. It

considers data flow dependencies to be more likely to lead to the root cause than control

flow dependencies. It also considers control flow dependencies introduced closer to the

error exhibition to be more likely to lead to the root cause than more distant ones. In some

cases, ConfAid’s heuristics can lead to false negatives andfalse positives. However, our

results show that in most cases, they are quite effective in narrowing the search for the root

cause and reducing execution time.

3.3 Design and implementation

3.3.1 Overview: How ConfAid runs

ConfAid is designed to be used by system administrators and end users when they

encounter a suspected misconfiguration that they do not knowhow to fix. ConfAid is

run offline, once erroneous behavior has been observed. A ConfAid user reproduces the

problem by executing the application while ConfAid attaches to the executing application

processes and monitors information flow within them.

To use ConfAid, a user specifies: (1) which binaries ConfAid should monitor, (2) the

sources of configuration data, and, as needed, (3) the erroneous external output of the ap-

plication. For simple applications, ConfAid may monitor only a single process. For more

complicated applications, ConfAid dynamically attaches to multiple specified processes

and monitors inter-process dependencies as described in Section 3.3.5. While ConfAid

could potentially monitorany process that receives input via IPC or a network message
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from a process already monitored by ConfAid, we decided to only monitor executables

specified by the user in order to limit the scope of analysis. Our prior experience with

AutoBash showed that many extraneous processes communicate with processes being de-

bugged via channels such as files, pipes, and signals, yet these processes are not needed to

determine the root cause.

Similarly, we could potentially treatany source of input to a program as a source of

configuration data. However, such an approach would dramatically slow the analysis since

most locations in the process address space would come to depend on one or more inputs. In

contrast, ConfAid only monitors input from designated configuration sources. This makes

ConfAid analysis more tractable than generic taint tracking or program slicing because the

number of locations with dependencies is small. Typically,the sources to monitor are self-

evident; e.g.,httpd.conf is the configuration source for Apache. Potentially, we could

automate this process by treating all inputs from specific locations (e.g., theetc directory)

or files with semantic keywords (such as “*.conf”) as configuration inputs.

Finally, a ConfAid user may designate specific error conditions. ConfAid automatically

treats assertion failures and exits with non-zero return codes as an erroneous terminations.

However, some misconfigurations lead not to program termination, but instead to the pro-

cess producing erroneous output. We therefore allow the user to specify a particular string

expression as erroneous. ConfAid monitors the system callsthat write to network, termi-

nal, and other external output channels. When it finds a matching output, it considers the

output an error.

ConfAid outputs an ordered list of probable root causes. Each entry in the list is a token

from a configuration source; our results show that ConfAid typically outputs the actual root

cause as the first or second entry in the list. This allows the ConfAid user to focus on one

or two specific configuration tokens when deciding how to fix the problem. By finding the

needle in the haystack, ConfAid dramatically improves the total time to recovery (TTR).
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3.3.2 Basic information flow analysis

In this section, we describe the basic information flow analysis used by ConfAid.

For simplicity of explanation, we defer discussing optimizations and heuristics until Sec-

tions 3.3.3 and 3.3.4. We also assume that ConfAid is tracking only a single process;

Section 3.3.5 describes how we extend ConfAid analysis to multiple cooperating processes

on one or more computers.

ConfAid dynamically monitors the information flow from configuration sources through

process memory and registers to the point in the program execution when erroneous behav-

ior is observed. It does so by using Pin [44] to add custom logic, referred to asinstru-

mentation, to the process binary. As described below, ConfAid instrumentation is executed

before or after most x86 instructions executed by a monitored application.

ConfAid uses taint tracking [52] to analyze information flow. It inserts instrumentation

into the application binary. The instrumentation monitorseach system call such asread

or pread that could potentially read data from a configuration source. If the source of the

data returned by a system call was specified as a configurationfile, ConfAid annotates the

registers and memory addresses modified by the system call with a marker that indicates

a dependency on a specific configuration token. Borrowing terminology from the taint

tracking literature, we refer to this marking as thetaint of the memory location. If an

address or register is tainted by a token, ConfAid believes that the value at that location

might be different if the value of the token in the original configuration source were to

change.

We use the notation,Tx to denote the taint set of variablex. Tx is a set of configuration

tokens; for instance, ifTx = { FOO, BAR }, ConfAid believes that the value of variable

x could change if the user were to modify either theFOO orBAR tokens in the configuration

file. In the basic information flow analysis, taints are binary (a location is either tainted by

a token or it is not); in Section 3.3.4, we attach a weight to each taint.

Taint is propagated via data flow and control flow dependencies. When a monitored
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if (c == 0) { /* c set to 0 in config file */
x = a; /* taken path */

} else {
y = b; /* alternate path */

}
z = d;
if (z) assert(); /* The erroneous behavior */

Figure 3.1: Example to illustrate causality tracking

process executes an instruction that modifies a memory address, register, or CPU flag, the

taint set of each modified location is set to the union of the taint sets of the values read by

the instruction. For example, given the instructionx = y + z where the taint sets of y and z

areTy andTz respectively, the taint set of x,Tx, becomesTy ∪Tz. Intuitively, the value of x

might change if a configuration token were to cause y or z to change prior to the execution

of this instruction. For example, ifTy = { FOO, BAR } andTz = { FOO, BAZ },

thenTx = { FOO, BAR, BAZ }.

In traditional taint tracking for security purposes, control flow dependencies are often

ignored to improve performance because they are harder for an attacker to exploit. With

ConfAid, however, we have found that tracking control flow dependencies is essential since

they propagate the majority of configuration-derived taint.

A naive approach to tracking control flow is to union the taintset of a branch conditional

with a running control flow dependency for the program. For example, on executing the

statementif (b), ConfAid could set the control flow taint set,Tcf , toTcf ∪Tb. However,

without mechanisms toremovetaint fromTcf , control flow taint grows without limit. This

causes too many false positives, i.e., ConfAid would identify most configuration tokens as

possible root causes.

A more precise approach takes into account the basic block structure of a program.

Consider the example in Figure 3.1. Assumea, b, c, andd were read from a configuration

file and have taint setsTa, Tb, Tc, andTd, respectively (i.e.,Ta is a set containing only

configuration token a). The value ofc does not affect whether the last two statements are
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executed, since they execute in all possible paths (and therefore for all values ofc). Thus,

Tc should be removed fromTcf before executingz = d. When the program asserts,Tcf

should only includeTd in the example, to correctly indicate that changing the value of d

might fix the problem.

ConfAid also tracks implicit control flow dependencies. In Figure 3.1, the values ofx

andy depend onc when the program asserts, since the occurrence of their assignments to

a andb depend on whether or not the branch is taken. Note thaty is still dependent onc

even though theelse path is not taken by the execution since the value ofy might change

if a configuration token is modified such that the condition evaluates differently.

When the program executes a branch with a tainted condition,ConfAid first determines

the merge point (the point where the branch paths converge) by consulting the control flow

graph. Prior to dynamic analysis, ConfAid obtains the graphby using IDA Pro to statically

analyze the executable and any libraries it uses (e.g.,libc andlibssl).

For each tainted branch, ConfAid next explores eachalternate paththat leads to the

merge point. We define an alternate path to be any path not taken by the actual program

execution that starts at a conditional branch instruction for which the branch condition

is tainted by one or more configuration values. ConfAid uses alternate path exploration to

learn which variables would have been assigned had the condition evaluated differently due

to a modified configuration value. The taint set of any variable assigned on an alternate path

is set to the union of its previous taint set, the taint set of the conditional, and the taint set

of the variables read by the assigning instruction. In the example,Ty = Ty ∪Tc∪{Tc∧Tb}.

In other words, a configuration token affecting the previousvalue ofy could change, or

c could change, causing the previous value ofy to be overwritten. Finally, it might be

necessary for bothc andb to change (as denoted by the term{Tc ∧ Tb}) sincec allows the

alternate assignment, andb may need to reflect a correct configuration value.

To evaluate an alternate path, ConfAid executes the programby switching the condition

outcome, similar to the predicate switching approach used by Zhang et al. [88] to explore
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implicit dependencies. ConfAid uses copy-on-write logging to checkpoint and roll back

application state. When a memory address is first altered along an alternate path, ConfAid

saves the previous value in an undo log. At the end of the execution, application state is re-

placed with the previous values from the log. ConfAid uses Pin mechanisms to checkpoint

and rollback the state of the processor, which includes the registers and CPU flags. Since

some alternate paths are quite long, ConfAid uses abounded horizon heuristicdescribed

in Section 3.3.3.1 to limit the number of instructions it explores along each alternate path.

Many branches need not be explored since their conditions are not tainted by any configu-

ration token.

After exploring the alternate paths, ConfAid performs a similar analysis for the path

actually taken by the program. This is the actual execution,so no undo log is needed. In

the example, analyzing the taken path would deriveTx = Ta ∪ Tc ∪ {Tc ∧ Tx}.

ConfAid also uses alternate path exploration to learn whichpaths avoid erroneous ap-

plication behavior. ConfAid considers an alternate path toavoid the erroneous behavior if

the path leads to a successful termination of the program or if the merge point of the branch

occurs after the occurrence of the erroneous behavior in theprogram (as determined by the

static control flow graph). ConfAid unions the taint sets of all conditions that led to such

alternate paths to derive its final result. This result is theset of all configuration tokens

which, if altered, could cause the program to avoid the erroneous behavior.

Figure 3.2 shows four examples that illustrate how ConfAid detects alternate paths

that avoid the erroneous behavior. In case (a), the error occurs after the merge point of

the conditional branch. ConfAid determines that the branchdoes not contribute to the

error, because both paths lead to the same erroneous behavior. In case (b), the alternate

path avoids the erroneous behavior because the merge point occurs after the error, and

the alternate path itself does not exhibit any other error. In this case, ConfAid considers

tokens in the taint set of the branch condition as possible root causes of the error, since if

the application had taken the alternate path, it could have avoided the error. In case (c),
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Figure 3.2: Examples illustrating ConfAid path analysis

the alternate path leads to a different error (an assertion). Therefore, ConfAid does not

consider the taint of the branch as a possible root cause because the alternate path would

not lead to a successful termination. In case (d), there are two alternate paths, one of which

leads to an assertion and one that reaches the merge point. Inthis case, since there exists

an alternate path that avoids the erroneous behavior, configuration tokens in the taint set of

the branch condition are possible root causes.

One limitation of evaluating an alternate path with predicate switching is that switch-

ing a predicate outcome, but not the underlying data values,may result in an “unnatural”

execution that leads to erroneous behaviors, such as a crashdue to a segmentation fault.

In such circumstances, ConfAid aborts exploration of the alternate path but conservatively

retains the taint of the conditional branch in the possible root causes. This conservative

behavior may lead to false positives if the alternate path would in fact lead to a real error

later in the execution. The early abort of the alternate pathmay also lead to false negatives

due to unexplored variable assignments.

37



3.3.2.1 Abstracting library functions and system calls

There are three cases where ConfAid does not dynamically analyze information flow.

The first case is when the application makes a system call. Since ConfAid does not track

taint inside the operating system, the information flow analysis stops at the system call en-

try. The second case is commonly executed standard library functions such asmalloc in

libc and cryptographic functions inlibssl. ConfAid uses a primitive static analysis for

these functions to improve analysis speed while still producing the identical effect on pro-

cess taint values that would have been produced by a fully-instrumented execution. Since

we abstract only functions in standard libraries, such taint abstractions are application-

independent. The final case is a small number of heavily optimizedlibc functions for

which IDA Pro does not produce a complete static analysis.

To handle these cases, ConfAid usestaint abstractionof the function (or system call).

A taint abstraction specifies how taint is propagated from the inputs of the functions to its

outputs (e.g., return values and modified location in the address space). When a process

calls one of these functions, ConfAid first executes the function without any instrumen-

tation and then uses the taint abstraction to modify the taints of the process memory and

registers.

3.3.3 Heuristics for performance

ConfAid uses two heuristics to simplify control flow analysis. These heuristics elim-

inate exploration of some alternate paths to concentrate onthe paths that are most likely

to be useful in identifying the root cause. The heuristics reduce analysis time but also

introduce false positives and negatives.

3.3.3.1 The bounded horizon heuristic

The first heuristic is thebounded horizonheuristic. ConfAid only executes each al-

ternate path for a fixed number of instructions. By default, ConfAid uses a limit of 80
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instructions. All addresses and registers modified within the limit are used to calculate in-

formation flow dependencies after the merge point. Locations modified after the limit do

not affect dependencies introduced at the merge point. If analternate path contains further

tainted conditional branches, ConfAid executes each path until the limit is reached. For

example, if the limit is 80 instructions and a tainted conditional branch occurs after exe-

cuting 50 instructions, both paths from the new branch are executed for an additional 30

instructions.

3.3.3.2 The single mistake heuristic

The second heuristic simplifies control flow analysis by assuming that the configuration

file contains only a limited number of erroneous tokens. By default, ConfAid assumes

that the configuration file contains a single error — we refer to this as thesingle mistake

heuristic.

To illustrate how this simplifies path exploration, consider again the example in Fig-

ure 3.1. Recall that at the time the assert statement is executed,Tx = Ta ∪ Tc ∪ {Tc ∧ Tx}.

The single mistake heuristic eliminates the last term sincethat term requires the values of

two tokens to change simultaneously. Similarly, ConfAid derives Ty = Ty ∪ Tc during

alternate path exploration. Note thatTy no longer depends uponTb. This seems counter-

intuitive, but for the assignmenty = b to occur in the program, a token inTc must change

to cause the alternate path to be taken. With the single mistake heuristic, a token inTb but

not inTc cannot be the root cause, since one token inTc already must change.

More importantly, restricting the number of configuration values that can change re-

duces the alternate paths that are explored, as shown in Figure 3.3. The nested condition,

c2, can change only if a single configuration value affects bothc1 andc2. If Tc1 ∩ Tc2 = ∅,

then the alternate path ofc2 need not be explored at all.

To implement this heuristic, we introduce a new variable,Talt, that is the set of con-

figuration options that, if changed, would cause the execution of the program to reach the
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if (c1 == 0) { /* c1 set to 0 in config file */
...

} else {
if (c2 == 0) { /* c2 set to 0 also */

x = a;
} else {

y = b;
}

}

Figure 3.3: Example to illustrate alternate path pruning

current instruction. Initially,Talt is the set of all configuration tokens. At each condition,

c, Talt does not change along the taken path, but we setTalt = Talt ∩ Tc along the alter-

nate path. In Figure 3.3,Talt = Tc1 ∩ Tc2 after the second condition. WhenTalt is ∅, the

alternate path is explored no further. When a variable is assigned along an alternate path,

its taint value is set to the union of its previous taint set and Talt. Thus,Tx = Tx ∪ Tc1 and

Ty = Ty ∪ (Tc1 ∩ Tc2).

The single mistake heuristic may lead to false negatives. InFigure 3.3, ifc1 andc2

are tainted by a disjoint set of tokens, ConfAid will not explore the path on whichy is

assigned tob, so it may miss the root cause if the program later asserts based on the value

of y. Potentially, if ConfAid cannot find a root cause, we can relax the single-mistake

assumption by allowing ConfAid to assume that two or more tokens are erroneous. In our

experiments to date, this heuristic has yet to trigger a false negative.

3.3.4 Heuristics for reducing false positives

We originally designed ConfAid to use only the basic taint tracking algorithm described

in Section 3.3.2 with the bounded horizon and single mistakeheuristics. However, our

initial experiments with this design met with only limited success. Typically, ConfAid

would include the root cause of a misconfiguration in its output set, yet the cardinality of

the output set would be very large. For many bugs, ConfAid would return a significant

fraction of the tokens in the configuration file.
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In analyzing our initial results, we realized that it was insufficient to track information

flow dependencies as binary values. In our design as described so far, two configuration

tokens are considered equal taint sources even if one has a direct causal relationship to

a location (e.g., the value in memory was read directly from the configuration file) and

another has a nebulous relationship (e.g., the taint was propagated along a long chain of

conditional assignments deep along alternate paths).

Another problem we noticed was that loops could cause a location to become a global

source and sink for taint. For instance, Apache reads its configuration values into a linked

list structure, and then traverses the list in a loop to find the value of a particular config-

uration token. During the traversal, the program control flow picks up taint from many

configuration options, and these taints are sometimes transferred to the configuration vari-

able that is the target of the search.

We realized that both of these problems were caused by the implicit assumption in our

design that all information flow relationships should be treated equally. Essentially, our

design had no shades of gray: it either considered a locationto be tainted by a token or it

did not. Based on this observation, we decided to modify our design to instead track taint

as a weight ranging in value between zero and one. For example, the taint ofx might be

represented as{ FOO:wfoo, BAR:wbar }. As before, this set indicates that modifying either

token FOO or BAR might change the value ofx. However, ifwfoo > wbar, FOO has a more

direct relationship tox, and hence is believed to be a better candidate for the root cause of

an error that depends onx.

We revised ConfAid to use heuristics to weight the dependencies introduced by infor-

mation flow differently, with those relationships that are more likely to lead to the root

cause given a higher weight than those less likely to lead to the root cause. We also mod-

ified ConfAid to order the set of tokens on which an erroneous behavior depends by their

respective weights before outputting them.

Our weights are based on two heuristics. First, data flow dependencies are assumed to
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x = a;
if (c1 == 0) { /* c1 set to 0 in config file */

y = a;
} else {

z = b;
}
if (c2 == 0) { /* c2 set to 0 in config file */
if (c3 == 0) { /* c3 also set to 0 */

w = a;
}

}

Figure 3.4: Example to illustrate the weighting heuristic

be more likely to lead to the root cause than control flow dependencies. Second, control

flow dependencies are assumed to be more likely to lead to the root cause if they occur later

in the execution (i.e., closer to the erroneous behavior).

Specifically, we assign taints introduced by control flow dependencies only half the

weight of taints introduced by data flow dependencies. Further, each nested conditional

branch reduces the weight of dependencies introduced by prior branches in the nest by one

half. We chose a weight of 0.5 for speed: it can be implementedefficiently with a vector

bit shift.

For example, in Figure 3.4, the assignmentx = a is a data flow dependency, soTx = Ta

(any dependencies froma are inherited at full weight). However,y inherits taint fromc1

through a control flow dependency. Thus,Ty = max(Ta,
Tc1

2
). That is, we weight any taint

from c1 by half, while taint inherited froma is given full weight. We use a specialmax

operator here rather than a simple union operator, since thevalues are now floating point

rather than binary. Specifically,max(Tx, Ty) produces a set that contains all tokens that

occur in eitherTx andTy. If a token appears in only one ofTx or Ty, its weight is set to its

weight in that set. If a token appears in bothTx andTy, its weight is set to the maximum of

its weight in either set.

Similarly, Tz = max(Tz ,
Tc1

2
) (recall that with binary values,Tz = Tz ∪ Tc1 due to

the single mistake heuristic). When ConfAid explores an alternate path, it replaces the
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intersection operator with a correspondingmin operator. Thus, in the prior example from

Figure 3.3,Ty = max(Ty , min(Tc1

4
, Tc2

2
)).

Figure 3.4 also shows two nested conditions. In calculatingthe taint ofw, condition

c3 is considered more influential than conditionc2 because it occurs later in the program

execution. ThereforeTw = max(Ta,
Tc3

2
, Tc2

4
). The same weighting applies to alternate

path execution; assignments on an alternate path starting at thec3 branch are given twice

the weight as those on an alternate path starting at thec2 branch.

ConfAid also weights alternate paths that avoid the erroneous behavior by their prox-

imity to the point in application execution where the behavior is exhibited. Paths starting

from the closest tainted conditional branch that avoids theerroneous behavior are given full

weight, those from the next closest branch are given half weight, and so on. Note that if a

configuration token has a much stronger weight on the condition of a distant branch than

any tokens for closer branches, ConfAid may still rank it as the most likely root cause.

Of course, when programs do not behave as expected, ConfAid’s heuristics may lead

to incorrect results. For example, an application could potentially execute a substantial

amount of code between the point where the erroneous behavior occurs and the point where

the program outputs some value that exhibits the error (e.g., an error message). If that code

contains a condition tainted by a configuration token other than the one that caused the

error and that condition changes the specific error message that is generated, ConfAid

might identify the wrong token as the most likely root cause.While such a scenario is

uncommon, we did observe a single Apache bug (described further in the evaluation) in

which ConfAid’s heuristic failed in this manner.

3.3.5 Multi-process causality tracking

The most difficult configuration errors to troubleshoot involve multiple interacting pro-

cesses. Such processes may be on a single computer, or they may reside on multiple com-

puters connected by a network. To troubleshoot such cases, ConfAid instruments multiple
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processes at the same time and propagates taint informationalong with the data sent when

the processes communicate.

ConfAid supports processes that communicate using socketsand files. The socket sup-

port includes Unix sockets and pipes, as well as UDP and TCP sockets. ConfAid in-

struments the system calls that create sockets and pipes. Itmarks these objects as taint

propagating channels if the destination is another instrumented process. Then, ConfAid in-

tercepts all sends and receives using those channels. When data is sent, ConfAid appends a

header that indicates whether or not the data is tainted and,when applicable, the exact taint

of the data. Taint information is propagated at per-byte granularity if the taints of different

bytes of the buffer are different. On the receiving side, ConfAid extracts the header from

the received data and assigns the indicated taints to the received data.

For files, ConfAid creates an auxiliary file with a special “.confaid” extension when an

instrumented process writes tainted data to a file. The auxiliary file records which bytes in

the corresponding file are tainted and the specific values of those taints. Like sockets, file

taint is recorded at granularities as small as one byte. For instance, the file “foo.confaid”

records the tainted bytes in file “foo”. When an instrumentedprocess reads data from a file

and a corresponding auxiliary file exists, ConfAid sets the taints of bytes read from the file

to the values specified in the auxiliary file.

Since these operations are performed by PIN instrumentation immediately before and

after system call execution, the taint propagation is hidden from the application. No oper-

ating system modifications are needed.

3.3.6 Limitations and future work

Since configuration troubleshooting is complex, ConfAid makes a number of assump-

tions to simplify its analysis. First, ConfAid only troubleshoots configuration problems

that originate from configuration files. This limitation is not fundamental. ConfAid can

be extended to track other root causes such as file system permissions and environment
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variables.

Second, like previous configuration troubleshooting systems [71, 72], ConfAid cur-

rently assumes that the configuration file contains only one erroneous token. If fixing a

particular error requires changing two tokens, then ConfAid’s alternate path analysis may

not identify both tokens, as described in Section 3.3.3.2. However, if a file contains two

incorrect tokens that represent independent mistakes, ConfAid can tackle the two errors

sequentially by first identifying the token that leads to themost immediate failure, and

then identifying the other token once the first error is corrected. The single mistake heuris-

tic improves ConfAid’s performance by reducing the set of possible taints tracked during

dynamic analysis. In the future, we plan to allow ConfAid to track sets of two or more

misconfigured tokens and measure the resulting performanceoverhead. Potentially, we

may use an expanding search technique in which ConfAid initially performs an analysis

assuming only a single mistake, and then performs a lengthier analysis allowing multiple

mistakes if the first analysis does not yield satisfactory results.

3.4 Evaluation

Our evaluation answers the following questions:

• How effective is ConfAid in identifying the root cause of configuration problems?

• How long does ConfAid take to find the root cause?

3.4.1 Experimental setup

We evaluated ConfAid on three applications: the OpenSSH server version 5.1, the

Apache HTTP server version 2.2.14, and the Postfix mail transfer agent version 2.7. All of

our experiments were run on a Dell OptiPlex 980 desktop computer with an Intel Core i5

Dual Core processor and 4 GB of memory. The machine runs Linuxkernel version 2.6.21.
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For Apache, ConfAid instruments a single process; for OpenSSH and Postfix, multiple

processes are instrumented.

To evaluate ConfAid, we manually injected errors into correct configuration files. Then,

we ran a test case that caused the error we injected to be exhibited. We used ConfAid to

instrument the process (or processes) for that application, and obtained the ordered list of

root causes found by ConfAid. We use two metrics to evaluate ConfAid’s effectiveness: the

ranking of the actual root cause, i.e., the injected mistake, in the list returned by ConfAid

and the time to execute the instrumented application.

We used two different methods to generate configuration errors. First, we injected

18 real-world configuration errors that were reported in online forums, FAQ pages, and

application documentation. Second, we used the ConfErr tool [40] to inject random errors

into the configuration files of the three applications.

3.4.2 Real-world misconfigurations

We searched forums, FAQ pages and configuration documents tofind actual configura-

tion problems that users have experienced with our target applications. In total, we chose

18 misconfigurations (5–7 for each application) that were caused by errors in the configura-

tion files. The 18 misconfigured values cover a range of data types, such as binary options,

enumerated types, numerical ranges, and text entries such as server names. Table 3.1 lists

these configuration errors for each application. The following section describes these errors

in more details.

3.4.2.1 Description of configuration bugs

OpenSSH server:

In the first misconfiguration, thePermitRootLoginoption is disabled in the OpenSSH

server configuration file. Therefore, when users try to loginas root, the server denies ac-

cess, although the root password is entered correctly.
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App Bug Description of misconfiguration

OpenSSH
Server

1
The PermitRootLogin option is disabled. Therefore, the user cannot ssh as root. The
server keeps denying permission although the password is entered correctly.

2
The server only has the PasswordAuthentication option enabled, while the user can
only authenticate via RSA keys.

3
The user does not have his public key in the directory specified in the SSH server
config file. Therefore, he cannot authenticate.

4
The user is not in the AllowUsers list in the SSH config file. Therefore, he cannot
connect to the server although he enters the password correctly.

5
The MaxAuthTries option in SSH server config is set too low. Therefore, the user is
disconnected if she enters her password incorrectly once.

6
The MaxStartups options is set to 1. Therefore, the server refuses to start a new
session, while another unauthenticated session is still inprogress.

7
The location of the server RSA key is not set correctly in the config file. Therefore,
the client fails to verify the host key.

Apache
HTTP
Server

1
The path specified in the DocumentRoot option does not have a corresponding
<Directory> section. Therefore, all accesses to this path are denied according to
the default policy.

2
The cgi-bin directory is ScriptAliased in the config file. This prevents the Directo-
ryIndex from working as expected. Therefore, the user cannot access the index file in
the directory.

3
The cgi-bin directory is aliased in the config file. However, the corresponding Di-
rectory section does not provide sufficient permissions. Therefore, accesses to this
directory are denied.

4

A virtual host with the same interface coverage is set for theHTTP server. This host
points to a different DocumentRoot which overwrites the default one. Therefore, the
user gets an index file with incorrect content upon accessingthe server Document-
Root.

5
The cgi-bin directory is aliased and a CGI Handler is activated in the config file.
However, the corresponding<Directory> section does not have the ExecCGI option
set. The user cannot access the executables in this directory.

6
A specific directory in DocumentRoot is also aliased to another directory outside
DocumentRoot. Therefore, accesses to files in the first directory are redirected to the
aliased directory, and the files are not found.

Postfix

1
The mydestination option is not set correctly in the Postfix config file. Therefore,
Postfix cannot deliver mail locally.

2
The myorigin option is set incorrectly in the Postfix config file. Therefore, the next
relay host bounces the mail sent from the user’s machine to the Internet.

3
The relayhost option is set incorrectly. Therefore, Postfixcannot forward the email
sent from the user’s machine to the Internet.

4
The type of aliasmaps option is not supported in the user’s machine. Therefore,
Postfix fails to send any mail locally or to the Internet.

5
The email address provided in luserrelay is not reachable. Therefore, Postfix cannot
redirect other mail with wrong recipient to the luserrelay.

Table 3.1: Description of real-world configuration bugs

In the second bug, the OpenSSH server is configured to only allow password authenti-

cation, while the client is configured to authenticate via RSA keys. In this bug, when the
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user tries to login, the password prompt does not appear, andthe user gets apermission

deniedmessage.

In the third bug, the user tries to authenticate via RSA keys,but he does not have his

public key in the directory specified in the OpenSSH server configuration file. Therefore,

when the user tries to login, he receives apermission deniedmessage.

In the fourth bug, the user is not listed in theAllowUsers list in the OpenSSH server

configuration file. Therefore, when he tries to login, the server denies access, even when

the user enters his password correctly.

TheMaxAuthTries option in the OpenSSH server configuration file is set to a low

number (1 in this bug) in the fifth bug. This option controls the number of incorrect au-

thentication trials. If the user enters her password incorrectly once, she gets disconnected

from the server.

For test case 6, theMaxStartups option is set to 1. This option controls the number

of concurrent unauthenticated sessions, mainly for security purposes. In this bug, the server

refuses to start a new session, because another unauthenticated session is still in progress.

In the last test case, the user cannot verify the host key of the server, because the loca-

tion of the server RSA key, specified by theHostKey option, is incorrect in the server’s

configuration file. This option enables users to verify the identity of the host server, and

prevents security attacks such as man-in-the-middle attack.

Apache Web server:

The Apache Web server allows users to specify configuration options for each di-

rectory, using a<Directory> header. In the first bug, theDocumentRoot option,

which specifies the default path of documents in Apache, doesnot have a corresponding

<Directory> section. Therefore, Apache uses the default<Directory> section,

which denies accesses by default.

In the second bug, the cgi-bin directory isScriptAliased in the Apache configura-

tion file. This setting implies that everything in this directory is executable. Therefore, the
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DirectoryIndex option in the corresponding<Directory> section will not work

as expected. Thus, an attempt to access the index file, by onlyspecifying the name of the

directory, leads to an error.

In test case 3, the cgi-bin directory is aliased in the Apacheconfiguration file. However,

the access permissions are not set correctly in the corresponding<Directory> section.

Therefore, all the accesses to this directory are denied.

A single Apache server can expose multiple interfaces (withdifferent IP addresses and

port numbers), using the<VirtualHost> directive. In the fourth bug , a virtual host

with the same interface coverage as the default coverage is set for HTTP server. However,

this host points to a differentDocumentRoot, which overwrites the default one. Thus,

the files that are served in theDocumentRoot path are not the files that the user expects.

In the fifth bug, the cgi-bin directory is correctly aliased in the Apache configuration

file. But, the corresponding<Directory> section does not have theExecCGI option,

which instructs Apache to executes the cgi files. Thus, userscannot access executables in

this directory.

In the final bug, a specific subdirectory ofDocumentRoot option is aliased to another

directory in the Apache configuration file. Accesses to that subdirectory are therefore redi-

rected to the specified alias. Thus, Apache cannot find the requested files, although the user

sees that they exist in the original subdirectory.

Postfix mail server:

In the first test case, Postfix cannot deliver email locally, because themydestination

option that specifies the domain name of the local machine is not set correctly.

In the second Postfix test case, the next relay host bounces the email, complaining that

the domain of the sender does not exist. The reason is that themyorigin option is not

set correctly in the Postfix configuration file. This option specifies the domain that locally-

posted mail appears to come from.

For the third bug, therelayhost option is set incorrectly in the Postfix configuration
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file. Therefore, the local SMTP process cannot forward the email from the sender to the

next hop.

Thealias maps option in the Postfix configuration file specifies the alias directory

that is used for local email delivery. In the fourth bug, the type ofalias maps option is

not supported in the user’s machine. Therefore, Postfix cannot deliver emails.

For an email with incorrect recipient addresses, Postfix tries to redirect the email to

the address specified in theluser relay option. In the fifth bug, theluser relay

address is set incorrectly. Therefore, Postfix cannot redirect the email successfully.

3.4.2.2 Results

ConfAid tracks dependencies among multiple processes for all OpenSSH and Postfix

bugs. For OpenSSH, it instruments two processes that communicate via Unix sockets. For

Postfix, it instruments between four and six processes that communicate via Unix sockets

and files; the number of instrumented processes depend on howmany processes are started

before a particular bug manifests. Multi-process causality tracking is necessary to diagnose

4 out of 5 Postfix and 3 out of 7 OpenSSH bugs. For Apache, ConfAid does not track

dependencies across processes since Apache starts only oneprocess.

As shown in Table 3.2, ConfAid is highly effective in pinpointing the root cause of

misconfigurations. ConfAid ranks the actual root cause firstin 13 cases, and second in the

other 5. Sometimes, when the actual root cause is ranked second, the token ranked first

provides a valuable clue to help debug the problem. For instance, in Apache the actual

error usually occurs nested inside a section or directive command in the config file. For

the two Apache errors where the root cause is ranked second, the top-ranked option is the

section or directive containing the error.

The performance of ConfAid is reasonable. The time to manifest the buggy behavior

varies among applications. Postfix and OpenSSH take less than 2 minutes, while Apache

takes 2–3 minutes to complete. The average execution time of1:32 minutes is much faster
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Application Bug
Total # of ConfAid rank of Execution # false positives
options the root cause time w/o weights

1 47 2nd(tied w/1) 1m 16s 6
2 47 1st(tied w/1) 1m 10s 1
3 48 2nd 51s 43

OpenSSH 4 49 2nd 48s 44
Server 5 47 1st 1m 13s 43

6 47 1st 9s 0
7 47 1st(tied w/1) 36s 43

1 88 2nd(tied w/1) 2m 46s 87
2 89 1st 2m 45s 87

Apache 3 89 2nd(tied w/1) 2m 45s 88
HTTP Server 4 93 1st 2m 59s 91

5 89 1st 2m 46s 88
6 89 1st(tied w/1) 2m 47s 86

1 27 1st 37s 4
2 27 1st 1m 10s 4

Postfix 3 29 1st 47s 4
4 29 1st 32s 2
5 29 1st 1m 38s 0

Table 3.2: Results for 18 real-world configuration bugs

and less frustrating than trying to fix such configuration errors by looking at the logs,

searching the Internet, and asking colleagues for potential clues. For instance, the 6th

Apache misconfiguration in Table 3.1 is taken from a thread inlinuxforums.org [42]. After

trying to fix the misconfiguration for quite a while, the user went to the trouble of post-

ing the question in the forum and waited two days for an answer. In contrast, ConfAid

identified the root cause in less than 3 minutes.

3.4.3 Effect of the weighting heuristic

We next examine the effect of the weighting heuristic introduced in Section 3.3.4. For

each of the 18 real-world misconfigurations, we disabled theheuristic and re-ran ConfAid.

With the heuristic disabled, ConfAid treats all sources of information flow equally. There-

fore, instead of producing a ranked list of possible root causes, ConfAid returns a single set

of tokens, each of which is considered equally likely to be the root cause.

The last column of Table 3.2 shows the number of false positives when the heuristic
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is disabled. In every case, ConfAid identifies the correct root cause as one of the returned

tokens. However, the number of other tokens returned variessubstantially. Without the

heuristic, there were only two misconfigurations (the 6th OpenSSH bug and the 5th Postfix

bug) for which ConfAid produces no false positives. For six other bugs, the number of

false positives is relatively low (less than 6). For the remaining 10 bugs, ConfAid returns

almost all options as possible root causes. Thus, without the weighting heuristic, ConfAid

is ineffective for 55% of the misconfigurations.

3.4.4 Effects of bounded horizon heuristic

We next investigated the effect of varying ConfAid’s limit on the number of instructions

executed along each alternate path (discussed in Section 3.3.3.1) from the default value of

80 instructions. As Figure 3.5 shows, varying the limit has substantially different effects

on execution time, depending on the application being instrumented. For OpenSSH (bug

#1), the execution time increases approximately linearly from 56 seconds with no alternate

path exploration to 2:29 minutes with a horizon of 1600 instructions. On the other hand,

Postfix (bug #1), shows an apparently exponential growth as the bound increases. The

execution time starts at 21 seconds with no alternate path exploration and increases to 7:10

minutes for a horizon of 800 instructions. With a horizon of 1600, ConfAid analysis did

not complete.

This difference in behavior derives from the nature of the applications. We found that

even with a limit of 80 instructions, more than 80% of the tainted conditional branches

in the OpenSSH bug reach their merge points for all alternatepaths. Increasing the hori-

zon only affects a small fraction of the branches since the rest are short enough to finish

within the limit. On the other hand, for Postfix, less than 50%of the branches reach their

merge point within the limit of 80 instructions. As we raise the limit, the percentage of the

completed branches increases slowly to 60%.

To summarize, we found that there is no single limit that works best for all applications.
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Figure 3.5: The effect of varying the horizon

Consequently, we envision that we could augment ConfAid to use an iterative search pro-

cess in which it would start with a small horizon to generate results quickly, then continue

to execute with larger horizons to refine the results.

3.4.5 Random fault injection

We next used ConfErr [40] to randomly generate configurationerrors. ConfErr uses

human error models rooted in psychology and linguistics to generate realistic configuration

mistakes. We used ConfErr to produce 20 errors for each application. We then injected the

errors one by one and measured the effectiveness and performance of ConfAid.

As shown in Table 3.3, ConfAid performs very well on these errors. The average time

to execute all three applications is lower than the average execution time for the real-world

errors used in the previous section. The main reason for thisdifference is that the real-world

errors are often more complex than the randomly-generated ones. Therefore, it takes more

time for the application to manifest the buggy behavior for real-world errors.

For the randomly generated errors, ConfAid instruments up to two processes for OpenSSH

and up to six processes for Postfix. However, many faults are exhibited before these appli-

cations start additional processes; in such cases, ConfAidonly instruments one process.

For OpenSSH, ConfAid successfully pinpointed the root cause (where we define suc-
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root causes
ranked first

root causes root causes root causes root causes Average
App. ranked first ranked ranked second ranked worse time

with one tie second with one tie than second to run
OpenSSH 17 (85%) 1 (5%) 1 (5%) 0 1 (5%) 7s

Apache 17 (85%) 1 (5%) 0 1 (5%) 1 (5%) 24s

Postfix 15 (75%) 0 2 (10%) 0 3 (15%) 38s

Table 3.3: Random fault injection results

cess as listing the actual root cause as one of the top two options) for 95% of the bugs. For

the last bug, ConfAid could not run to completion due to unsupported system calls used in

the code path. We could remedy this by abstracting more calls.

ConfAid also successfully diagnoses 95% of the Apache errors. For the remaining er-

ror, ConfAid ranks the root cause 9th. The configuration error is that the DirectoryIndex

file for the main document root is listed incorrectly in the Apache configuration file. The

DirectoryIndex file is the file that Apache serves if that directory is accessed without men-

tioning a specific file. For instance, accessinghttp://server.com/images/ will

return the DirectoryIndex file listed for theimages directory. However, theIndexes

option is also activated for the document root directory. This option allows Apache to send

the list of the files in the directory if no specific file in that directory is requested. The

combination of these two options causes Apache to serve the list of files in the main doc-

ument directory instead of the index file. ConfAid determines that the content sent to the

user is dependent on theIndexes and related options first and the DirectoryIndex option

next. Thus, the root cause gets ranked lower in the list. Thisordering is a direct result

of the heuristic discussed in Section 3.3.4 that considers branches closer to the erroneous

behavior to be more likely to lead to the root cause than thosefarther away.

For Postfix, ConfAid diagnoses 85% of the errors effectively. The remaining 3 errors

are due to missing configuration options. Currently, ConfAid only considers all tokens

present in the configuration file as possible sources of the root cause. If a default value can
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be overridden by a token not actually in the file, then ConfAidwill not detect the missing

token as a possible root cause. Based on these results, we plan to extend our alternate path

analysis to look for tokens that could be read from the config file along branches that are

not actually executed. We can taint variables modified alongthose branches with a value

that is dependent upon the branch conditions that led to thatpath.

Overall, ConfAid successfully diagnosed 55 out of 60 randomerrors by ranking the

actual root cause first or second. Out of the remaining 5 errors, we believe that 4 (the

OpenSSH server error and the three Postfix errors) can be diagnosed with further improve-

ments to the ConfAid implementation. The remaining error (the Apache error) is a direct

result of our weighting heuristic and seems hard for ConfAidto diagnose correctly.

3.5 Conclusion

Misconfigurations are costly, time-consuming, and frustrating to troubleshoot. ConfAid

makes troubleshooting easier by pinpointing the specific token in a configuration file that

led to an erroneous behavior. Compared to prior approaches,ConfAid distinguishes itself

by analyzing causalitywithin processes as they execute without the need for application

source code. It propagates causal dependencies among multiple processes and outputs a

ranked list of probable root causes. Our results show that ConfAid usually lists the actual

root cause as the first or second entry in this list. Thus, ConfAid can substantially reduce

total time to recovery and perhaps make configuration problems a little less frustrating.
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CHAPTER IV

Deterministic Record and Replay: Taking Control of

Overhead and Non-determinism

The dynamic information flow analysis that ConfAid performsis a high-overhead ac-

tivity. It imposes several orders of magnitude of slow down on applications. While this

slowdown may be tolerable for some desktop applications, itis certainly not affordable

for production environment. Another problem is that some misconfigurations are time-

sensitive, i.e. they manifest differently if the timing of the execution changes. It is diffi-

cult to correctly capture such problems with an analysis that highly perturbs the execution

timings. Furthermore, some misconfigurations, especiallyperformance-related issues dis-

cussed in the next chapter, are rare and difficult to reproduce. Therefore, the users may not

be able to easily recreate them for analysis.

To address these problems, we decided to augment ConfAid with a deterministic record

and replay system that offloads time-consuming analysis from the online, time-sensitive

execution. A deterministic record and replay system recreates an execution by recording

the initial state of the execution and logging all non-deterministic events that occur during

the execution [9, 27, 64, 68]. The replay system subsequently reproduces the execution on

demand by restarting execution from the initial state and supplying the previously-recorded

values for all non-deterministic events. In this chapter, we discuss the differences between

our system and the existing deterministic record and replaysystems.
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4.1 Design

While deterministic replay is a well-studied technique, weencountered several new

challenges in adapting the technique to work with ConfAid. In particular, we found that

we needed to carefully balance thefidelity of the record and replay, and that we needed to

co-designthe deterministic replay system to work with the dynamic instrumentation and

analysis employed by ConfAid.

We define the fidelity of the replay to be the degree to which thereplayed execution

is guaranteed to match the recorded execution. For the purposes of ConfAid, replay fi-

delity must be high enough to guarantee that the recording and replaying systems execute

the same application instructions and system calls in the same order. Since ConfAid ex-

tracts causal dependencies from the data flow and control flowof the execution, if the two

executions were allowed to differ, ConfAid could provide incorrect root cause diagnosis.

On the other hand, the fidelity of replay must be low enough so that ConfAid can

executebothapplication and dynamic instrumentation instructions andsystem calls during

replay. From the point of view of the replay system, the replayed execution will contain a

large number of additional events that were not present during recording.

Thus, the design of our record and replay system walks a fine line. The fidelity of deter-

ministic replay must guarantee that the sameapplicationinstructions and system calls are

executed in the same order in all executions, but also allow replays to execute additional

instrumentationinstructions and system calls. These requirements preclude off-the-shelf

use of any existing deterministic replay system. Some systems do not guarantee the same

sequence of application instructions [3, 56], while othersdo not allow recorded and re-

played executions to diverge sufficiently to run instrumentation code in one execution but

not the other [74] or have unacceptably high recording overhead [51, 57]. Since ConfAid

uses Pin binary instrumentation tool [44] for its analysis,we cannot use record and replay

systems such as Aftersight [20] that perform their analysisin the VMM layer.

Our approach to solving this dilemma is co-design: we make the deterministic replay
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systeminstrumentation-awareso that it compensates for the specific divergences in re-

played execution caused by the dynamic instrumentation. Our replay system is designed

to work with the Pin dynamic instrumentation tool. The replay code compensates for extra

system calls made by Pin and the modifications to recorded system calls due to instru-

mentation. It also preallocates resources such as memory regions and signal handlers to

avoid conflicts between the instrumentation and the replayed application. Instrumentation-

awareness enables our replay system to provide the exact fidelity required by ConfAid. We

describe the implementation details in the next section.

4.2 Implementation

Our deterministic record and replay system is implemented in the Linux kernel. The

unit of replay can be either a single process or a group of communicating processes. Thus,

our system records and replays one or more applications executing on the same computer.

Our system currently uses a standard design to record and replay processes. It take a

checkpoint (address space and registers) of the process or processes being recorded. For

each such process, our system logs the data returned by all system calls that the process

executes. The logged values include addresses modified by the kernel within the process’s

address space. We also record the value and timing of signalsdelivered to each process.

When recorded processes spawn child processes, we record the activities of the children —

this is useful for servers that use children to handle incoming requests.

To replay a recorded execution, our system restarts the application from the checkpoint.

When the application makes a system call, our kernel does notre-execute that call. Instead,

it supplies the recorded values from the log of non-deterministic events. The exception to

this rule is system calls such asmmap that change the address space of the application —

such calls are executed by the replaying kernel in a manner that ensures that they produce an

identical effect on the calling process’s address space that was produced during recording.

Our kernel also delivers the same signals to each process at the point the original signal
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was received in the recorded execution. This guarantees high fidelity replay; i.e., that the

recorded and replayed processes execute the same instructions and system calls in the same

sequential order.

ConfAid analysis tool uses Pin to monitor information flow. While Pin is designed to be

invisible to the application being instrumented, it isnotdesigned to be transparent to lower

layers of the system such as the operating system. For instance, Pin adds and modifies

system calls, modifies signal handlers, and reserves memoryaddresses in the application

address space.

ConfAid compensates for divergences in execution due to binary instrumentation. It

allocates memory for use as a communication channel betweenthe kernel replay system

and the analysis tools run by Pin. The analysis tool uses thisregion to inform the kernel

which system calls are initiated by the application (and hence should be replayed from the

log) and which are initiated by Pin or the analysis tool (and should be executed normally).

ConfAid intercepts all system calls issued by the application and sets a flag in this region

prior to issuing the system call; it clears the flag when the system call ends. Thus, when

the kernel sees a system call with the flag cleared, it knows that Pin or the analysis tool has

issued the system call.

ConfAid also compensates for interference between system calls made by the recorded

application and system calls made by Pin or the analysis tool. For instance, we observed

that Pin would sometimes ask the kernel tommap a free region of memory and the kernel

would return a region that would later be requested by the recorded application, leading to

a conflict. We compensated for this by scanning the log to identify all regions that will be

requested by the recorded application during the replay andreserving these regions so that

the kernel does not allocate them for Pin. We made similar modifications to compensate

for conflicting requests for signal handlers and other resources that could potentially be

requested by both the application and the dynamic instrumentation.

For inter-process communication, ConfAid originally transmitted taint values over the
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same channels that were used to send the tainted data betweenprocesses. However, these

channels do not exist during replay, since the kernel does not re-execute recorded system

calls for inter-process communication. To solve this problem, ConfAid modifies the appli-

cation binaries to establish and use specialside channels(replay-specific TCP connections)

for communicating taint values with each other. Since side channels are established by in-

strumentation and not by the application, the kernel executes side channel system calls

during replay. During replay, when the instrumentation sees that one recorded process

communicated with another, it uses the side channel to transmit the taint values from the

sending process to the process that received the data duringrecording. The receiving pro-

cess blocks until information is available on the side channel. This means that the replayed

processes obey the same causal order of execution that they followed during recording.

We are currently modifying ConfAid to support multi-threaded applications. The biggest

challenge has been supporting the needed fidelity of deterministic record and replay while

adding low overhead to the production system. Several recent deterministic replay systems

have lowered record overhead for multi-threaded processesrunning on multiprocessors by

searching either online [69] or offline [3, 56] for a replayedexecution that is equivalent

only in external output to the recorded system. Like these prior systems, we plan to record

system calls and user-level synchronization operations. During replay, we can enforce the

samehappens-beforeorder among these operations that was observed during recording. In

the absence of data races, this guarantees that the same sequence of instructions and system

calls is executed by each pair of corresponding record/replay threads.

To deal with data races, we plan to run a dynamic data race detector during offline

replay; we expect that the relative performance impact of this additional step will be small

because we already execute high-overhead dynamic instrumentation during replay. During

analysis, ConfAid will assign lower confidence to values accumulated from regions of code

in which the executing thread is racing with another thread.The range of the potential error

can be estimated by sampling different interleavings of racing instructions during replay.
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This figure compares server throughput with and without our deterministic record
system. Results are normalized to the number of requests per second without
our recording. Higher values are better. Each result is the mean of 10 trials; error
bars are 95% confidence intervals.

Figure 4.1: Overhead of deterministic recording

ConfAid users can either use the lower-confidence results, or they can add annotation or

synchronization to the application to eliminate the data races.

4.3 Evaluation

We used our deterministic record and replay system to recordthree applications: the

Apache Web server version 2.2.14, the Postfix mail server version 2.7 and the PostgreSQL

database version 9.0.4. We ran all experiments on a Dell OptiPlex 980 with a 3.47 GHz Intel

Core i5 Dual Core processor and 4 GB of memory, running a Linux2.6.26 kernel modified

to support deterministic record and replay. We measured online overhead by comparing

the throughput and the latency of these three applications when they are recorded by our

record system to the results of running the applications on the default Linux kernel without

recording.

Figure 4.1 shows that our recording adds a 1–7% throughput overhead for the three

applications. For Apache, we usedab to send 5000 requests for a 35 KB static Web page

with a concurrency of 50 requests at a time over an isolated network. Our recording reduced

throughput by 0.6%. Per-request latency increased by 0.6%.The recording log size for this
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experiment was 7 MB, containing 115K system calls.

For Postfix, we used thesmtp-source tool to send 10000 mail messages of size

1 KB from another machine on the isolated network. Postfix processing is asynchronous,

so there is no meaningful latency measure. Our recording reduced server throughput by

1.1%. The log size was 453 MB, containing 6 million system calls.

We benchmarked PostgreSQL usingpgbench. We measured the number of transac-

tions completed in 60 seconds with concurrency of 10 transactions sent at a time. Each

transaction involves oneSELECT, threeUPDATEs, and oneINSERT command. Our

recording reduced throughput by 7% and increased per-request latency by 7%. The log size

was 820 MB, containing 17 million system calls. We conjecture that the higher overhead

for PostgreSQL was mostly due to the increased log size and larger number of executed

system calls.
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CHAPTER V

X-ray: Troubleshooting Performance Anomalies with

Causality Analysis

5.1 Introduction

Understanding and troubleshooting performance problems in complex software sys-

tems is notoriously challenging. This challenge is compounded for software in production

for several reasons. To avoid slowing down production systems, analysis and troubleshoot-

ing must incur minimal overhead. Further, performance issues in production can be both

rare and non-deterministic, making the issues hard to reproduce.

However, we argue that the most important reason why troubleshooting performance in

production systems is challenging is that current tools only solve half the problem. Trou-

bleshooting a performance anomaly is essentially the process of determiningwhy certain

events, such as high latency or resource usage, happened in asystem. Unfortunately, most

current analysis tools, such as profilers and logging, only determinewhatevents happened

during a performance anomaly — they leave the more challenging question of why those

events happened unanswered. Administrators and developers must manually infer the root

cause of performance issue from the observed events based upon their expertise and knowl-

edge of the software. For instance, a logging tool may detectthat a certain low-level routine

is called often during periods of high request latency, but the user of the tool must then infer
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that the routine is called more often due to a specific configuration setting.

The final part of this thesis introduces the technique ofperformance summarization

which not only determines what events occurred during a performance anomaly, but also

determines why the anomaly occurred. Performance summarization first attributes perfor-

mance costs such as latency and I/O utilization to fine-grained events (individual instruc-

tions and system calls). Then, it uses fine-grained causality analysis, similar to ConfAid, to

associate each such event with a set of probable root causes such as configuration settings

or specific data from input requests. The cost of each event isassigned to potential root

causes weighted by the probability that the particular rootcause led to the execution of

that event. Finally, the per-cause costs for all events in the program execution are summed

together. The end result is a list of root causes ordered by their performance costs. In the

above example, the outcome of performance summarization would indicate that one spe-

cific configuration setting contributed the most to the performance slowdown. This output

gives the system troubleshooter a direct indication of how to fix the problem, without the

need for time-consuming manual analysis.

We also introducedifferential performance analysiswhich is used to determine why the

performance impact of two different events differed. For instance, differential performance

analysis can be used to understand why two requests to a Web server took different amounts

of time to complete. Differential performance analysis identifies branches where the exe-

cution paths of the two requests diverged. It assigns a performance cost to each path taken

from the branch, then uses dynamic information flow analysisto determine why the two

requests diverged at that point. It attributes the difference in performance costs between

the two paths to the identified root causes according to the likelihood that they caused the

branch condition to evaluate to different values during thetwo executions. The costs of all

such divergences during are summed. The output shows the system troubleshooter a set of

reasons why the performance costs of two requests differ, along with a specific performance

impact for each reason.
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We have built a tool called X-ray that implements performance summarization. X-ray

attributes latency, CPU utilization, file system usage, andnetwork utilization to specific

root causes. X-ray supports several different scopes of analysis: intervals of time, specific

requests, or a differential analysis of pairs of requests. Thus, X-ray can answer performance

questions such as:

• Why did a particular request take a long time to execute?

• Why is file system usage high during a specific time period?

• Why did request R take longer to execute than request S?

X-ray leverages the deterministic record and replay systemintroduced in chapter IV

to offload the heavy-weight root cause analysis from the production system. As explained

in chapter IV, a deterministic replay system provides DVR-like functionality, in which an

execution of a hardware or software system is recorded so that an identical execution can

later be replayed on demand. For the purpose of X-ray, we slightly modified our determin-

istic record system to capture all the performance-relatedinformation online, in addition to

other non-deterministic events. For example, X-ray collects the timing information during

recording, because the offline heavyweight analysis substantially perturbs timing. During

replay, X-ray determines the root causes of the execution ofeach event and associates the

collected performance costs to those root causes.

Thus, the contributions of this part of my thesis are the following:

• The technique of performance summarization, which attributes performance costs to

root causes.

• The technique of differential performance summarization for understanding why two

similar events have different performance.

• Development and evaluation of the X-ray tool, which implements these techniques.
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We evaluated X-ray using three applications: the Apache Webserver, the Postfix mail

server and the PostgreSQL database. We have reproduced and analyzed 14 performance

issues reported for these applications. In 12 of 14 cases, X-ray identifies a correct root

cause as the largest contributor to the performance problem; in the remaining two cases,

X-ray identifies a correct root cause as the third largest contributor.

5.2 X-ray overview

5.2.1 Troubleshooting with X-ray

X-ray pinpoints why performance anomalies, such as high request latencies or bottle-

necks in resources, occurred on a production system. Our current system targets servers,

though this is not fundamental to our design.

X-ray does not require application source code because its analysis operates entirely

on application binaries and modifications are made using dynamic binary instrumentation.

Thus, X-ray can be used on COTS (common off-the-shelf) applications, making the tool

appropriate for system administrators as well as for developers.

The first step in using X-ray is to record an interval of software execution on a produc-

tion system. X-ray uses our deterministic record and replaysystem, introduced in chap-

ter IV. As we showed earlier, our recording overhead is currently only 1–7%. Thus, a user

can choose to leave the record system running for long periods of time to capture rare and

hard-to-reproduce performance issues. Alternatively, the record system can be dynamically

enabled only when specific performance issues are exhibited.

X-ray performs its analysis offline on the replayed execution. An X-ray user chooses

which interval of execution to analyze. The user may select the entire execution, an inter-

val of time, or a specific input request. X-ray produces a performance summary for the

selected interval. The first two intervals are appropriate when the user notices degraded

throughput over a period of time, whereas the latter is best when one or more requests take
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Allow domain.name (line 164) : 603 usecs
ServerRoot (line 29) : 151 usecs
TypesConfig (line 298) : 151 usecs
<IfModule(line 231) : 75 usecs
alias\_module(line 231) : 75 usecs
<Directory(line 162) : 55 usecs
...

Figure 5.1: Example of X-ray output for Apache

an unexpected amount of time to execute. Alternatively, a user may select two requests to

compare, in which case X-ray does a differential performance summarization for the se-

lected requests. Typically, a user would select two similarrequests that differ substantially

in service time, though our results show that X-ray will provide useful information even

when the two selected requests are very dissimilar.

The X-ray user next selects the set of performance statistics to summarize. Typically,

we expect that a user will use basic performance analysis tools such astop andiostat

to identify the bottleneck resource. X-ray provides a flexible framework for analyzing ar-

bitrary statistics; our current implementation supports latency, CPU utilization, file system

usage, and network bandwidth.

Figure 5.1 shows an example of X-ray output for Apache. The output shows the inferred

root causes of a performance problem. X-ray associates a specific cost (in this case, latency)

to each root cause and orders the list by that metric. In the figure, all root causes are from the

httpd.conf configuration file. Based on X-ray output, users may identifyconfiguration

options that are inappropriate for their workload, they might choose a set of configuration

options that offer a different tradeoff between performance or functionality, or they may re-

provision their system to supply resources in quantities that match the features they desire.

The recorded executions can be replayed multiple times. Therefore, X-ray users can

perform many different analyses for the same recording. Forinstance, a user may change

the scope of execution analyzed, choose different metrics to summarize, or switch between

basic and differential performance summarization. This means that the X-ray user does
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Figure 5.2: Overview of X-ray

not need to decide what type of analysis will be useful beforea performance anomaly is

recorded.

5.2.2 Mechanics of X-ray

Figure 5.2 shows an overview of how X-ray runs. X-ray dividesits analysis between

the recorded and replayed executions. In the online phase, along with recording system

calls and other non-deterministic events, X-ray also records timing information and other

performance-specific data because the subsequent, offline analysis perturbs the execution

too much to accurately measure performance.

In its offline phase, X-ray performs two passes, each of whichis a deterministic replay

of the recorded execution. In the first pass, X-ray performsrequest extraction, in which it

determines the specific intervals of execution (i.e., the basic blocks executed) during which

each process is handling each input request to the recorded system. In the first pass, X-ray

also assigns the recorded performance costs to each instruction and system call. In the

second pass, X-ray completes performance summarization byusing dynamic information

flow to attribute events to root causes and by calculating thecost of each root cause. At

the end of the second pass, X-ray outputs a list of root causesordered by its user’s chosen

performance metric.
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Figure 5.3: Example of performance summarization

5.3 Performance summarization

Performance summarization is the heart of X-ray. The goal isto attribute specific per-

formance costs such as request latency, CPU usage, and I/O utilization to one or more root

causes. X-ray considers any configuration option or any datareceived from an input request

as a potential root cause.

5.3.1 Basic performance summarization

Performance summarization is akin to integration in calculus. X-ray individually an-

alyzes the per-cause performance cost and root cause of eachuser-level instruction and

system call (referred to as events in the discussion below),then adds together the per-event

costs to calculate how much each root cause has reflected the performance of the applica-

tion during the period of observation selected by the X-ray user.

Figure 5.3 shows an overview of how performance summarization works. In the first

step, X-ray attributes performance metrics to each event executed by one or more processes

comprising a server application; the figure assumes that theX-ray user has specified file

system usage as a metric. Some metrics such as file system utilization are associated only

with system calls, while others such as latency are attributed to both system calls and user-

level instructions.

69



In the next step, X-ray uses dynamic information flow analysis to derive a set of possi-

ble root causes for the execution of each event. Essentially, this step answers the question:

”how likely is it that changing a configuration option or receiving a different input would

have prevented this event from executing?” X-ray uses the same algorithms that we devel-

oped in ConfAid to perform this analysis. In the last step, X-ray multiplies the performance

metrics for each event by the per-cause taint values to derive the per-event performance cost

for each root cause. X-ray sums these costs over all events that executed during the period

selected by the user and outputs an ordered list of root causes.

5.3.2 Differential performance summarization

Differential performance summarization is a technique forcomparing any two execu-

tions of an application activity, such as the processing of two different request by a Web

server. Such activities have a common starting point (e.g.,the receipt of a request) and ter-

mination point (e.g., the sending of a response), but the execution paths for different events

may diverge due to differences in the input or specific configuration settings.

Figure 5.4 shows an example of differential performance summarization. X-ray com-

pares two activities by first identifying all points where the paths of the two executions

diverge. It then uses causality analysis to evaluate why each divergence occurred; this

reason is given by the taint of the branch conditional at the divergence point. For each

performance metric, X-ray calculates the cost of the divergence by subtracting the cost of

all events on the divergent path taken by the first execution from the cost of all events on

the path taken by the second execution. This cost is attributed to root causes by multiplying

the metric values by the taint weight. X-ray sums the per-cause costs of all divergences and

output a list of root causes ordered by the differential cost.

5.4 Implementation

We next describe the implementation of X-ray in detail.
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Figure 5.4: Example of differential performance summarization

5.4.1 Online phase

Since the online phase of X-ray analysis runs on a productionsystem, X-ray uses de-

terministic record and replay to move any activity with substantial performance overhead

to a subsequent, offline phase. The only two activities performed online are recording

non-deterministic inputs and gathering performance information.

5.4.1.1 Recording performance information

Since X-ray analysis imposes a runtime overhead of several orders of magnitude, timing

information gathered during an instrumented run is essentially useless for diagnosing most

performance problems. In contrast, timing information gathered during the recorded run

captures the exact performance experienced by the production system. X-ray therefore

gathers timing data during recoding and explains the timingdata by reasoning about the

instructions and system calls executed during replayed executions.

To capture timing information, for each system call executed by the application, the

kernel records the system time at kernel entry and exit. For simplicity, the kernel writes

the timing information for each system call to the same log that it uses to store non-
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deterministic events. Analysis tools read the log directlyto extract the timing informa-

tion during replay. Other performance information, such asthe number of bytes read or

written during I/O system calls are already captured as a result of recording sources of

non-determinism.

5.4.2 Offline phase

X-ray executes analysis in two passes. In the first pass, X-ray performs request extrac-

tion to determine when each application process is handlingeach request. It also identifies

which basic blocks are executed within the analysis scope chosen by the user and attributes

performance costs to those blocks. In the second pass, X-rayattributes basic block exe-

cution to specific root causes and summarizes the performance cost for each cause. Since

X-ray operates on a previously-recorded execution, it is trivial to replay the execution mul-

tiple times so that different parts of the analysis can be executed sequentially (much like a

multi-pass compiler).

5.4.2.1 Request extraction

During the request extraction phase, X-ray identifies the intervals of application exe-

cution during which each request was processed. For many types of analysis, X-ray must

understand how an application processes one or more particular requests such as particular

mail messages for the Postfix mail server or Web requests for Apache. Request extraction

traces the causal path of each request from the point when therequest is received by the ap-

plication to the point when the request terminates (e.g., when a server sends the response).

Often, requests traverse multiple processes, and different processes handle different re-

quests at the same time.

The notion of a request is application-dependent. Thus, X-ray requires a per-application

filter that specifies the boundaries of incoming requests. The filter is simply a regular

expression over incoming data. For instance, the Postfix filter looks for the stringHELO
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Figure 5.5: An example of X-ray request extraction. The intervals marked as1 or 2 in each
process correspond to the portions of process execution that X-ray associates with the first
and second requests, respectively.

to identify incoming mails. A filter only needs to be created once for each protocol (e.g.,

SMTP or HTTP).

Request extraction runs as a Pin tool. The tool examines values returned from all system

calls that provide external input such as those that receivedata from the network. When

the data returned from such system calls match the specified filter, X-ray tags the receiving

process with a unique request identifier to show that it is handling the request in question.

As shown in Figure 5.5, X-ray propagates request tags among processes as they com-

municate. It currently assumes that each process handles a single request at a time, but it

allows multiple processes to concurrently handle different requests (for instance, the dis-

patcher handles request 2 while a worker handles request 1 inthe figure). When a message

with a new tag is received by a process, X-ray assumes that it ceases to handle the old re-

quest and starts to handle the new one. This assumption is valid for the server applications

we use in the evaluation.

Note that since these processes are being replayed, the kernel does not actually send

and receive data when they execute system calls. Therefore,request extraction cannot use

73



existing communication channels to propagate request tags. We therefore create and use

side channels, as described in chapter IV, to communicate request tags between the sending

and receiving processes.

Although most popular servers such as Apache, Postfix or PostgreSQL handle a single

request per thread of execution, event-based servers may handle many requests simultane-

ously using a single thread. Since X-ray already tracks application data flow, we plan to

extend X-ray to handle such servers via fine-grained information flow analysis (i.e., taint

tracking). Essentially, we can identify the memory addresses associated with each request

and use that information to identify the code intervals in which a thread or process is han-

dling a particular request. Alternatively, we could use per-application schemas as is done

during Magpie request extraction [5].

As the replayed application processes execute, the requestextraction Pin tool tags each

basic block with a request identifier if it believes the process is handling a request at that

time. The final output of the request-extraction instrumentation is a per-request list of

<process,basic block> tuples in the order that the basic blocks were executed.

5.4.2.2 Identifying basic blocks

The first step in performance summarization is to map the scope of the analysis specified

by the user to a set of basic blocks. If the user specifies the scope as a time interval, X-

ray includes all basic blocks executed by any process withinthat interval. Identification

is somewhat imprecise because X-ray only records timestamps at the entry and exit of

system calls. The analyzed scope is from the exit of the last system call executed before the

specified interval to the entry of the first system call executed after the specified interval.

If the analysis scope is a time interval, X-ray omits requestextraction because it is not

needed.

If the user specifies a particular request as the scope of analysis, X-ray uses the request

extraction results that identify the set of basic blocks forthat request. If the user specifies
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two requests to compare using differential performance analysis, X-ray uses the request

extraction results for both requests.

5.4.2.3 Attributing performance costs

X-ray next attributes specific performance costs to events (application instructions and

system calls executed). As a performance optimization, X-ray considers all events in the

same basic block together since they have the same set of rootcauses (in other words, if

one event is executed, they all must be executed).

Currently, users may choose one or more of the following metrics: latency, CPU uti-

lization, file system usage, and network throughput. Duringrecording, X-ray records the

start and end time of every system call in the log of non-deterministic events. When it

encounters the same system call during replay, the Pin tool reads the log and subtracts the

two values to determine the system call latency. The latencyis then attributed to the basic

block that invoked the system call.

X-ray next considers latency not attributable to system calls. It currently uses a simple

method that attributes latency in proportion to the number of user-level instructions exe-

cuted. X-ray then takes the total process execution time, subtracts the time spent in system

calls, and divides the remaining time by the number of instructions. The result is the la-

tency per instruction. Multiplying this value by the numberof instructions in a basic block

and adding in any system call latency for that block gives theblock’s total latency.

To calculate CPU utilization, X-ray simply counts the number of instructions executed

by each basic block. To calculate file system and network usage, it inspects the replay log

as it is replayed to identify file descriptors associated with the resource being analyzed.

When a system call reads or writes data for these descriptors, X-ray attributes the total

number of bytes processed to the basic block that invoked thesystem call.

75



5.4.2.4 Information flow analysis

X-ray next determines why each basic block executed. X-ray uses ConfAid to generate

a set of probable root causes for each block. ConfAid assignsa unique taint identifier to

registers and memory addresses when data is read into the program from configuration files

and incoming request sockets. It identifies specific configuration tokens through a simple

form of symbolic execution. For instance, if data read from aknown configuration file is

compared to the string “FOO”, then ConfAid marks that data asassociated with tokenFOO.

As the program executes, ConfAid propagates taint identifiers to other locations in the

process’s address space according to dependencies introduced via data and control flow.

Rather than track taint as a binary value, it associates a weight with each taint identifier

that represents the strength of the causal relationship between the tainted value and the root

cause. X-ray builds on ConfAid by also assigning a weighted set of taint values to each

basic block that is executed; membership in this set indicates that the block’s execution

depends on the specified root cause, and the associated weight indicates the strength of the

dependency.

We modified ConfAid to better suit the needs of X-ray. Our firstmodification was to

broaden the source of tainted data. X-ray not only tracks data read from configuration

sources; it also tracks data read from input requests. X-rayuses the same filter that it uses

during request extraction to determine when the application is reading data from a request.

The taint identifier in this case indicates the particular request on which a memory address

or register depends.

We also modified how ConfAid uses taint values. The original ConfAid implementation

only outputs taint values when it encounters an applicationfailure. However, X-ray is

interested in the taint values of all instructions and system calls executed within the scope

of analysis. During execution, our modified version of ConfAid generates a taint set that

contains root causes and associated weights for every basicblock that has been marked as

being within the scope of analysis.
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As an example, our modified version of ConfAid might emit the following taint set

for a basic block:{FOO : 1.0, BAR : 0.5}. This represents the belief that the basic block

would definitely not have been executed if root causeFOO were different and the belief

that the block is 50% likely not to have been executed if root causeBAR were different.

Note that these are two independent probabilities: potentially changing either of the two

options might cause the basic block to not have been executed. Thus, the values in a taint

set need not sum to one.

5.4.2.5 Integration

Next, X-ray attributes the performance cost of executing each basic block according to

specific root causes. For each root cause in the block’s taintset, X-ray multiplies the per-

block cost by the weight associated with the root cause. Eachprocess maintains a running

sum of the costs associated with each root cause as it is replayed. The final cost for each

root cause is determined by adding together the sums from allreplayed processes. At the

end of analysis, X-ray prints out a list of root causes and shows the estimated performance

cost for each. X-ray can simultaneously analyze multiple performance metrics.

5.4.2.6 Differential performance summarization

X-ray uses a different method to compare the performance of two requests. It first iden-

tifies the points where the execution paths diverged from oneanother. It uses the results

of request extraction to output each path as a sequence of basic blocks executed by the

request. Each path may span multiple processes. X-ray then uses thediff tool to com-

pare the two paths and understand where they diverged from one another and where the

divergence ended as the paths merged back together.

X-ray then determines the root cause of each divergence. It attributes the cost of the

divergence to the conditional that immediately preceded the divergence. It calculates a per-

formance cost for the divergence by first summing the performance costs of all basic blocks
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along the divergent path for one request and then subtracting the sum of the performance

costs of all basic blocks along the divergent path for the other request. It attributes the

divergence to root causes by multiplying the cost of the divergence by the weights in the

taint set for the conditional that caused the divergence.

5.5 Evaluation

Our evaluation of X-ray answers the following questions:

• How accurately does X-ray identify the root cause of performance problems?

• How fast can X-ray troubleshoot a performance problem?

5.5.1 Experimental Setup

We used X-ray to diagnose performance problems in three applications: the Apache

Web server version 2.2.14, the Postfix mail server version 2.7 and the PostgreSQL database

version 9.0.4. In Apache, each request is handled by one process. Postfix has multiple

utility processes, each of which handles a certain part of a request. On average, a Postfix

request is handled by 5 different processes. In PostgreSQL,each request is handled by

one process. However, PostgreSQL has multiple time-based utility processes such as a

write-ahead log writer and an auto-vacuum that handle requests in batches. We ran all

experiments on a Dell OptiPlex 980 with a 3.47 GHz Intel Core i5 Dual Core processor and

4 GB of memory, running a Linux 2.6.26 kernel modified to support deterministic replay.

5.5.2 Root cause identification

We evaluated X-ray by recreating known performance issues reported in application

performance tuning and troubleshooting Web pages, forums,and blog posts. To recreate

each issue, we either modified configuration settings or senta problematic sequence of
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App # Description of performance test cases

1,2

Apache sets a threshold for the number of requests that are handled in one TCP
connection using the KeepAlive and MaxKeepAliveRequests setting. A low thresh-
old causes Apache to shut down and rebuild the connections too often, causing a
significant delay in handling some requests.

3
In Apache, access to various directories can be controlled in the config file based on
the domain name of the client sending the request. This setting causes extra DNS
calls for verifying the domains and leads to high latency in handling the requests.

Apache 4
Apache can be configured to log the host names of clients sending requests to spe-
cific directories for administrative purposes. This setting causes extra DNS calls
and leads to high latencies in handling requests for those directories.

5
Apache can be configured to require authentication for some directories. Authenti-
cation causes high CPU usage peaks.

6

Apache can be configured to generate content-MD5 headers calculated using the
message body. This header provides an end-to-end message integrity with high
confidence. However, for larger files, the calculation of thedigests causes high
CPU usage.

7
By default, Apache sends eTags in the header of HTTP responses. The eTags can
be used by the client in future requests for the same file to only receive the file if its
contents have changed.

1
Postfix can be enabled to log more information for a list of specific hosts, using
debugpeerlist option. The extra logging causes excessive disk activity.

Postfix 2

Postfix can be configured to examine the body of the messages against a list of
regular expressions known to be from spammers or viruses. This setting can signif-
icantly increase the CPU usage for handling a received message if there are many
expression patterns.

3

Postfix can be configured to reject requests that are sent fromblacklisted domains.
Postfix uses DNS mechanism to query blacklist operators to determine if the mes-
sage should be rejected. Based on the number of operators specified, Postfix per-
forms extra DNS calls, which significantly increases the latency of the handled mes-
sage.

1
PostgreSQL tries to identify the correct time zone of the system for displaying and
interpreting time stamps if the time zone is not specified in the configuration file.
This increases the startup time of PostgreSQL by 5x.

PostgreSQL 2
PostgreSQL can be configured to synchronously commit the write-ahead logs to
disk before sending the end of the transaction message to theclient. This setting
can cause extra delays in processing transactions if the system is under a large load.

3
The frequency of taking checkpoints from the write-ahead log can be configured
in the PostgreSQL configuration file. Having more frequent checkpoints decreases
crash recovery time but significantly increases disk activity for busy databases.

4
The delay between the activity rounds of the write-ahead logwrite process can
be configured in PostgreSQL configuration file. Setting this delay higher causes
potential loss of transactions. However, lower delays cause extra CPU usage.

Table 5.1: Description of the Apache, Postfix and PostgreSQL performance test cases

requests to the server. In total, we recreated the 14 problems described in Table 5.1 (7 for

Apache, 3 for Postfix, and 4 for PostgreSQL).
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For each test case, we recorded server execution while we sent several application re-

quests. We used standard lightweight performance monitoring tools such as top, iostat,

netstat and log files to identify the bottleneck resource andidentify requests during which

resource usage was high. Later, we executed X-ray offline analysis of the recorded runs to

explain the performance anomalies.

For each test case, Table 5.2 shows the scope and metric we used for X-ray analysis.

The next column shows the top three root causes identified by X-ray, along with X-ray’s

analysis of how much the cause contributed to the performance metric under observation.

The correct answers for each test case is shown in bold. The last column shows how long

X-ray offline analysis took.

5.5.2.1 Apache

In the first Apache test case, the threshold for the number of requests that can reuse the

same TCP connection is set too low. Re-establishing a connection causes some requests to

exhibit higher latency than others. To exhibit this problem, we sent 100 various requests

to the Apache server using theab Apache benchmarking tool. The requests used different

HTTP methods (GET and POST) and asked for files with differentsizes.

We first used X-ray to perform a differential performance summarization of two similar

requests (HTTP GETs of small files), one of which had a small latency and one of which

had a high latency. X-ray correctly identified theMaxKeepAliveRequests token as

the largest root cause.

Next, we explored how sensitive X-ray is to the similarity ofthe compared requests

(Apache test case 2). We compared two very dissimilar requests using differential perfor-

mance summarization: a small HTTP POST and a large HTTP GET. As would be expected,

X-ray reported that the largest cause of the divergence in processing time was due to the

input data from the requests. TheDocumentRoot parameter is also reported as a large

cause of the divergence because the root is appended to the input file name. However, X-ray
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still reported that theMaxKeepAliveRequests is a substantial reason for divergence.

Further, the estimated performance impact ofMaxKeepAliveRequests is not affected

much by the similarity of the requests.

This test case highlights the power of differential performance summarization. X-ray

does not require two requests to be substantially similar inorder to identify performance

anomalies. Because it analyzes program control flow, X-ray can correctly differentiate

performance differences due to diverging input from those due to other root causes such as

configuration options.

In the third test case, Apache is configured to use theAllow directive with a domain

name to control access to a certain directory. Apache performs two DNS calls to determine

the domain names of clients. These extra DNS calls increase the latency for requests that

access the directory with the domain-name access control. In this test case, we used X-ray

differential analysis to compare the latencies of two requests: one accessing a directory

with domain-name access control, and one accessing a directory with no access control.

X-ray correctly attributed the high latency to theAllow directive.

Apache can be configured to log the host names of clients that send requests to partic-

ular directories. This setting can be turned on using theHostNameLookups directive,

and is mostly used for administrative purposes. To determine the host names, Apache

performs extra DNS calls, which lead to high latencies when handling requests for direc-

tories with enabled logging option. In the fourth test case,we used X-ray to compare the

latencies of two requests: one accessing a directory with logging option, and one access-

ing a directory without any host name logging. X-ray was ableto correctly identify the

HostNameLookups On setting as the biggest contributor to the latency problem.

In the fifth test case, we configured Apache to require authentication for a certain di-

rectory. We used theAuthUserFile option to specify the file that contains the list of

allowed usernames along with their encrypted passwords. When a request accesses the

directory with enabled authentication, the system experiences a high CPU usage because
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Apache executes CPU-intensive encryption functions. We used X-ray to analyze the high

CPU usage for a request accessing that directory. X-ray correctly identified the authentica-

tion option as the biggest root cause of CPU usage.

Apache can be configured to calculate an MD5 message digest for a request. This digest

can be used as a fingerprint to verify end-to-end message integrity. However, the digest

calculation can cause high CPU usage for large files. In the sixth test case, we used X-ray

differential analysis to compare the CPU usage of two requests. The first request accesses

a directory for which Apache generates a message digest, while the second request does

not require one. X-ray identified theContentDigest option as the biggest contributor

to the difference between the CPU usage of the two requests.

In the last Apache test case, the root cause of high network usage is the client’s failure

to use the HTTP conditional eTag header. A recent study [60] found that many smartphone

HTTP libraries do not support this option, causing redundant network traffic. X-ray identi-

fies this problem via differential analysis, showing that itcan sometimes identify bad client

behavior via analysis of servers. We verified that correct eTag support substantially reduces

network load.

X-ray analysis time for the 7 test cases varies between 2 and 3minutes. This is very

reasonable considering that analysis is performed offline and does not affect the online

production software.

5.5.2.2 Postfix

The first Postfix test case reproduces a problem reported in a Postfix user’s blog [58].

The user noticed that emails with attachments sent from his account transferred very slowly,

while everything else, including the mail received by IMAP services, had no performance

issues.

The user employediotop to monitor the Postfix server, and observed that one child

process was generating a lot of file system activity. He poured through the server logs and

82



App # Scope & Metric Results : Expected contribution time

1 Diff, Latency
MaxKeepAliveRequests: 17.2 usecs.
KeepAlive On: 8.6 usecs.
Directory: 4.7 usecs.

2m 40s

2 Diff, Latency
User’s request: 311.6 usecs.
DocumentRoot: 311.5 usecs.
MaxKeepAliveRequests: 16.8 usecs.

2m 41s

3 Diff, Latency
Allow domain.com: 603 usecs.
ServerRoot: 151 usecs.
TypesConfig : 151uses

2m 14s

Apache 4 Diff, Latency
HostNameLookups On: 254 usecs.
Directory: 127 usecs.
HostNameLookups: 127 usecs.

2m 4s

5 Request, CPU
AuthUserFile: 9M instrs.
User’s request: 600K instrs.
Listen: 80K instrs.

2m 6s

6 Diff, CPU
ContentDigest On: 217K instrs.
ContentDigest: 108K instrs.
Directory: 108K instrs.

2m 6s

7 Diff, Network
User’s request: 35 KB
DocumentRoot: 35 KB
Listen: 4 KB

2m 4s

1 Request, File system
User’s request: 100 KB
debug peer list: 28 KB
queuedirectory: 5 KB

1m 18s

Postfix 2 Request, CPU
body checks: 1M instrs.
User’s request: 900K instrs.
myhostname: 300K instrs.

2m 49s

3 Request, Latency
reject rbl client: 3.5 secs.
reject rbl client: 1.9 secs.
smtpd client restrictions: 0.9 secs.

1m 24s

1 Time int., CPU
timezone: 28M instrs.
default text searchconfig: 11M instrs.
datestyle: 11M instrs.

15+m

PostgreSQL 2 Request, Latency
sharedbuffers: 0.42 secs.
max connections: 0.26 secs.
wal sync method: 0.26 secs.

2m 50s

3 Time int., File system
checkpoint timeout: 16 KB
sharedbuffers: 11 KB
max connections: 11 KB

4m 48s

4 Time int., CPU
sharedbuffers: 2.6M instrs.
max connections: 2M instrs.
wal writer delay: 1.4M instrs.

5m 27s

Table 5.2: The results for our performance test cases.

realized that the child process was logging large amounts ofdata. Finally, he ran through his

configuration file, and eventually found out that thedebug peer list, which specifies
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a list of hosts that triggered the logging, included his own IP address.

Our results show that X-ray can make this diagnosis automatically. We simply ana-

lyzed a specific request that was associated with a period of high file system usage. X-ray

identifies both the request (since it contains the IP addressthat caused excessive logging)

and the erroneous parameter as the top two root causes, pinpointing the specific reasons for

the high file system activity. Note that we did not have to identify which child process was

responsible for the logging, nor did we have to read any log files. Since X-ray produced

these results in a little over a minute, our tool could have saved the blogger considerable

time.

In the second test case, Postfix is configured to perform spam filtering by comparing the

body of the email message against a list of regular expressions known to be from spammers

or viruses. If there are many patterns, the regular expression matching can significantly

increase the CPU usage, when Postfix is handling an incoming email. In this test case, we

used X-ray to analyze the CPU utilization of a single request. X-ray was able to correctly

identify thebody checks option as the root cause of high CPU usage.

In the last test case, we configured Postfix to identify and reject requests that come from

blacklisted domains. Postfix uses DNS mechanism to query blacklist operators and deter-

mine whether a request has come from a bad source. These DNS calls significantly increase

the latency of request handling. In this test case, X-ray identifies thereject rbl -

client and thesmtpd client restrictions options as the dominant sources of

the latency.

As shown in Table 5.2, X-ray identifies the correct root causefor each Postfix problem

in only a few minutes.

5.5.2.3 PostgreSQL

The first PostgreSQL case study is based on our own experience. Our evaluation started

and stopped PostgreSQL many times. We noticed that our scripts were running slowly due
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to application start-up delay, and decided to try to use X-ray to improve performance. Since

top showed 100% CPU usage, we performed a X-ray CPU analysis during the interval

before PostgreSQL received the first request.

Unexpectedly, X-ray identified thetimezone configuration option as the top root

cause. In the configuration file, we had set thetimezone option tounknown. This

caused PostgreSQL to expend a surprising amount of effort toattempt to identify the correct

time zone. We updated the configuration to specify our time zone, and were pleased to see

that the application startup time decreased by over 80%. While this problem is admittedly

esoteric since most PostgreSQL users will not start and stopthe application several times

in succession, we were happy to see that X-ray could help identify performance issues that

we did not specifically inject into the application.

PostgreSQL can be configured to synchronously commit transactions to disk before

sending the end of the transaction message to the client. This option increases the latency

of handling transactions, but it provides stronger guaranteers to the client by ensuring that

the transaction is safely written to disk. In the second testcase, we configured PostgreSQL

with this option, and analyzed the latency of a single request. X-ray identified the correct

configuration option as the third biggest contributor to thelatency of the request. The

shared buffers andmax connections parameters appear to taint many branches

during PostgreSQL execution causing them to rank as the firstand second causes of latency.

Since PostgreSQL utility processes are mostly asynchronous (they sleep for a while and

then wake up to perform tasks such as flushing write-ahead logto disk, taking checkpoints,

or vacuuming the database) time interval analysis is a greatfit for this application. In

the third test case, we configured PostgreSQL to take checkpoints from the write-ahead

log more frequently. This setting decreases crash recoverytime, but increases file system

activities. In this test case, we reduced the value ofcheckpoint timeout option to

increase the frequency of checkpoints, and used X-ray to analyze the file system activities

over a time interval. X-ray was able to correctly associate the high file system activities to
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thecheckpoint timeout option.

In the fourth PostgreSQL test case, we configured the activity rounds of the write-ahead

log write process using thewal writer delay option. Choosing high writer delays

increases the risk of losing transactions, and choosing lowdelays increases the CPU usage

due to extra activities of the writer process. The fourth PostgreSQL test case analyzes

the effects of this option by using X-ray time-interval analysis for CPU utilization. X-ray

ranks the correct root cause third for this test case, after the shared buffer and the

max connections options.

X-ray analysis time is currently capped at 15 minutes; analysis of the first test case hit

this limit but still returned meaningful results since the analysis executed almost all the code

used during startup. The remaining PostgreSQL issues required 2–5 minutes to analyze.

We have not yet put much effort into optimizing X-ray analysis performance, since these

times are still substantially faster than manual performance debugging.

5.6 Conclusion

Diagnosing performance problems in production systems is challenging. X-ray helps

system administrators by identifying the root cause of observed performance problems.

X-ray first records the execution of the production system and collects performance infor-

mation. In an offline phase, X-ray deterministically replays the recorded execution and

performs heavyweight causality analysis. X-ray uses dynamic information flow analysis

to attribute the recorded performance information to root causes that include configuration

options and request inputs. Our results show that X-ray accurately identifies the root cause

of several real-world performance problems, while imposing only 1–7% overhead on a

production system.
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CHAPTER VI

Related Work

Several prior research efforts have applied different techniques to the problem of con-

figuration troubleshooting.

PeerPressure [71] and its predecessor Strider [72] use statistical methods to compare

configuration state in the Windows registry on different machines. When a value on a

machine exhibiting erroneous behavior differs from the value usually chosen by other ma-

chines, PeerPressure flags the value as a potential error.

Similar to SigConf, PeerPressure and Strider employ a black-box approach towards

troubleshooting and leverage the help of other execution states. However, PeerPressure

and Strider benefit from the known schema of the registry and cannot detect configuration

errors that lie outside the registry. The SigConf approach is more general and holds promise

for dealing with errors that lie outside the registry and on other operating systems such as

Unix variants. SigConf, however, assumes that the bug is already known and recorded in

the reference computer, but PeerPressure and Strider do nothave this assumption.

The downside of the black-box approach of PeerPressure and Strider is that it works

well as long as the majority configuration is appropriate forthe target machine; however,

these systems cannot separate custom configuration variables from erroneous ones since

they do not observe how applications actually use those values. In contrast, ConfAid can

differentiate these cases by observing how the values are used inside the application bi-
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nary. Unlike X-ray, PeerPressure and Strider are not suitable for diagnosing performance

problems, because they analyze the static state rather thanobserve applications execute.

Chronus [73] also compares multiple configuration states. Instead of comparing states

across computers, it uses virtual machine checkpoint and rollback to “time travel” through

states on the same machine, looking for the instance in whichthe program behavior on a

particular test case switched from correct to incorrect. Unlike Chronus, the tools introduced

in this thesis do not require a prior state where the application worked correctly. Therefore,

we can troubleshoot configuration of new applications and new features in already-existing

applications.

AutoBash [66] uses causality analysis inside the OS kernel to improve misconfigura-

tion troubleshooting. SigConf improves the black-box approach of AutoBash by capturing

more information about predicate executions than a simple success/failure state. ConfAid

can identify finer-grained root causes compared to AutoBash, but unlike AutoBash, Con-

fAid only focuses on root causes in configuration files. AutoBash did not handle miscon-

figurations that lead to performance problems.

Another approach to improve configuration management is to proactively detect situ-

ations that may lead to configuration errors in the future. For example, CODE [82] is a

tool that uses machine learning algorithms to learn correctsequences of Windows registry

accesses and raise a warning when an access violates a correct sequence. Similar to other

machine learning approaches, CODE needs to observe a sequence several times before it

can classify that sequence. Therefore, CODE may falsely flagrare but correct accesses as

wrong accesses, and it cannot judge new sequences.

As another example of proactive detection, Barricade [53] is a system that tries to detect

and confine mistakes in large systems. Barricade employs a combination of testing, error

detection, cost analysis, and confinement to achieve this goal. However, Barricade only

works for frequently performed configuration tasks, and it heavily relies on expert users to

provide task descriptions and test units. In general, the approach of systems like CODE and
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Barricade is orthogonal to our solutions, and they can be combined to provide a stronger

configuration management system.

The most common way to troubleshoot software problems is to analyze log messages

and error reports generated by the application. Unfortunately, error and log messages are

usually too cryptic to lead the user to the root cause of the problem. LogEnhancer [83] en-

hances the application log messages by adding debugging data, such as values of relevant

variables. The target audience of this tool is developers, who can benefit from low-level,

code-related debugging information. Clarify [33] improves error reporting by generating

signatures using program features such as function call counts, call sites, and stack dumps.

It then classifies the signatures using machine learning techniques. While these tools im-

prove the quality of log messages, the user still needs to manually infer the root cause of

the problem. The goal of our tools is to close this circle for configuration root causes.

Xu et. al. [75] and Lou et. al. [43] used machine learning techniques to analyze console

log messages to detect problems in large systems. Our tools currently rely on the user to

detect a problem. We can combine our tools with these detection tools to provide both

detection and diagnosis.

Many other systems trace causality for purposes other than troubleshooting. For ex-

ample, taint tracking [52] monitors data flow dependencies to determine when input data

is used in an insecure manner. RedFlag [24] uses data flow analysis to reduce the leaks

of sensitive information by personal machines. Resin [78] uses application-level data flow

assertions to improve the security of applications. Decentralized information flow [49, 85]

monitors both control flow and data flow dependencies to determine if a code component

leaks information that it is not authorized to divulge. PASS[47] uses causality to annotate

files with provenance that describes their causal inputs. BackTracker [41] traces causal in-

teractions to determine what state has been changed during an intrusion. Asbestos [28] and

HiStar [86] monitor causality in the OS to prevent inadvertent disclosure of private data.

Symbolic execution is another type of causality analysis, where the inputs of the system
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are propagated in an abstract form to enable exploration of more paths in the application

code [12, 19, 76]. While our tools leverage the general idea of causality analysis, the focus

of symbolic execution systems is usually very different from our tools. Our tools start from

a specific undesired execution and try to explain the reason it happened; whereas symbolic

execution tools usually start from an abstract input and explore multiple paths to infer the

impacts of different concrete inputs.

The next three sections discuss prior works that are closelyrelated to each one of our

diagnosis tools.

6.1 SigConf

Similar to SigConf, Chronus uses user-defined predicates totest the behavior of the

system. Chronus tries to find the point in time where a system ceased to operate correctly

by testing a predicate against different virtual machine snapshots. The success or failure

of the predicate is assumed to precisely diagnose the bug. Wemust avoid this assumption

in order to eliminate having an expert write a targeted predicate for each new bug. Since

Chronus compares the system against itself, it is able to diagnose unknown bugs. SigConf,

however, cannot diagnose bugs that do not exist in the reference computer database.

Su et. al. [67] propose a system that automatically generates predicates by observing

human actions trying to solve a configuration problem. Such systems can be leveraged to

generate predicates that are later used by SigConf for diagnosing a configuration problem.

Similar to our method, Yuanet al. [80] leverage system call information to diagnose

configuration bugs. They correlate system call traces to problem root causes using ma-

chine learning techniques. To reduce system call variations, they use cross-time and cross-

machine noise filtering techniques. Our method generates robust signatures by extracting

dependency sets from system call traces. The dependency setmethod does not need cross-

time filtration and is accurate across variations of Unix operating systems.

Bodik et. al. [8] use statistical metrics to generate signatures for the performance of
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datacenters. These signatures are compared against signatures of previously solved cases

to quickly troubleshoot a known performance problem. The work of Bodik et. al. and

SigConf both use the approach of troubleshooting via signature comparison. However,

SigConf uses causality analysis to generate signatures that capture the interactions between

the application and the operating system; whereas the tool introduced by Bodik et. al.

captures the performance characteristics of systems.

6.2 ConfAid

Dytan [21] proposes a generic dynamic taint analysis framework to ease the implemen-

tation of various taint-based techniques. ConfAid enhances the basic dynamic taint analysis

with essential heuristics and applies it to configuration troubleshooting problem.

Some systems leverage white box analysis to help developersreplicate a problem ex-

perienced in the field. SherLog [81], ESD [84], and the work ofCrameri et. al. [25] use

static analysis and symbolic execution to infer the execution path of the application. Sher-

Log uses log messages, and ESD and Crameri et. al. leverage the bug report generated by

the application to constrain the execution path. These systems can replicate an execution

path that derives from a misconfiguration. However, they make different design decisions

than ConfAid, driven by their different use case. They require application source code,

and SherLog also may require guidance from developers aboutwhich functions should be

symbolically executed. This is appropriate for a tool used by software experts, but less so

for one like ConfAid that is targeted at administrators and users.

Program slicing [1, 88, 87], intended to aid in debugging, isa more general approach

that determines which statements could affect the value of avariable using a backward or

forward computations. ConfAid applies similar data and control flow analysis techniques

to a new problem, namely determining the root causes of misconfigurations.

ConfAid uses deterministic record and replay. While many prior software systems pro-

vide this functionality [3, 27, 31, 56, 64, 69, 64], ConfAid introduces new constraints that
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prior systems cannot satisfy. The fidelity of replay must be high enough to exactly repro-

duce application instructions and system calls, while still being loose enough to execution

instrumentation during the replayed execution but not during the recorded execution. Con-

fAid modified the replay system to compensate for the instrumentation code in order to

achieve the needed fidelity.

Aftersight [20] also decouples program execution from analysis. However, it performs

the record and replay tasks, as well as the analysis task, in the VMM layer. Our determinis-

tic record and replay system is specifically designed to workwith Pin, since both ConfAid

and X-ray use Pin to perform their analysis.

6.3 X-ray

Profilers such as OProfile [55], VTune [70], Fay [29], DTrace [13], SystemTap [59],

ETW [46], Debox [61], and Chopstix [7] allow the troubleshooter to instrument applica-

tions and/or the operating system and collect performance data. These tools revealwhat

events (e.g., functions) incur substantial performance costs. However, their users must

manually inferwhy those events executed. In contrast, X-ray automatically identifies root

causes.

Other tracing systems follow activities across multiple components or protocol layers,

and use the causal relationships they observe to propagate and merge performance data. X-

trace [30] observes network activities across protocols and layers in a distributed system.

SNAP [79] profiles TCP-statistics and socket-call logs and correlates data across a data

center. Aguileraet al. [2] use statistical analysis to infer causal paths betweenapplication

components and attribute delays to specific nodes. Pinpoint[18] traces communication

between middleware components to infer which components are responsible for causing

faults. Follow-on work [17] adds the abstraction of causalpathsthat link black-box com-

ponents. Like these tools, X-ray uses causality to propagate data across components when

processes communicate (although propagation is currentlylimited to a single node by its
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replay system). Unlike these tools, X-ray analyzes causality within application components

using dynamic binary instrumentation, so it can determine the specific relationship between

component inputs and outputs.

Other performance troubleshooting tools build or use a model of application perfor-

mance. Magpie [5] accurately extracts the control flow and resource consumption of each

request to build a workload model that can be used for performance prediction. Magpie’s

per-request profiling can help troubleshooters diagnose potential performance problems.

Even though Magpie provides detailed performance information that can be used to manu-

ally infer root causes, it still does not automatically diagnosewhythe observed performance

anomalies occur. Magpie uses schemas to determine which requests are being executed by

various components; X-ray currently uses a simpler method and thus could benefit from

using Magpie’s schemas for complicated request patterns.

Stewartet al. [65] extract resource usage from multi-component servicesto generate

performance models for capacity planning and cost-effectiveness analysis. Urgaonkaret

al. [4] use resource usage profiling to guide application placement in shared hosting plat-

forms. Cohenet al. [22] use statistical learning techniques to automaticallybuild system

models. They identify a combination of system-level metrics and threshold values that cor-

relate with high-level performance states. In contrast to X-ray, none of these systems tie

performance to specific root causes such as configuration options.

Many research projects tune performance [26, 16, 89] by injecting artificial traffic and

using machine learning to correlate performance with specific configuration options. Un-

like X-ray, these tools limit the set of configuration options analyzed, and they must see

controlled traffic in order to learn good configuration values.

Spectroscope [62] diagnoses performance changes by comparing request flows between

two executions of the same workload. Kasicket al. [39] compare similar requests to di-

agnose performance bugs in parallel file systems. Unlike X-ray, these tools must see very

similar requests in order to diagnose performance problems. In contrast, our results show
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that X-ray can correctly identify root causes even when requests are very dissimilar because

it analyzes the control path of each request.

As mentioned in section 6.1, Bodik et. al. [8] use statistical metrics to diagnose per-

formance problems that have happened before in datacenters. Unlike this tool, X-ray can

be used to troubleshoot problems that have not previously happened. X-ray only consid-

ers root causes from configuration files and user input, but this tool can diagnose known

problems with other root causes.
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CHAPTER VII

Conclusion

This chapter describes our plans to extend our work in configuration troubleshooting

and summarizes the contributions of this thesis.

7.1 Future directions

In this thesis, we focused on diagnosing misconfiguration problems. Before the diag-

nosis begins, we rely on the end user or the administrator to detect the problem. Then,

we automatically diagnose the root cause of the problem specified by the user, and report

the diagnosis results. The user then needs to determine whatactions must be taken to ac-

tually fix that problem. As future research directions, we would like to also automate the

detection and fixing tasks.

7.1.1 Detecting anomalies

Detecting anomalies is challenging in complex systems. This problem is exacerbated

for production environments. The reason is that productionsoftware usually does not col-

lect much diagnosis information to maximize performance. With little debugging infor-

mation available, detecting anomalies becomes very challenging for these systems. We

would like to explore the possibility of overcoming this difficult tradeoff by automatically

detecting anomalies online with low overhead.
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Anomalies may manifest as failures, crashes, incorrect behavior, or simply poor per-

formance. We plan to start by considering anomalies in whichthe application execution

path is different from a normal run, e.g. a problem that causes the application to perform

extra network activities, which result in an abnormally high latency. Thus, executing an

uncommon path can be an indication of an anomalous behavior.The problem of anomaly

detection is well-studied in the security community. We have successfully borrowed tech-

niques from the security community in the past for the ConfAid project. Our initial idea

for solving this problem is also to investigate whether these anomaly detection techniques

can be re-purposed for our problem, and can be altered to incur less overhead.

7.1.2 Fixing configuration problems

Diagnosing the root cause of a misconfiguration usually simplifies the fixing process.

However, automatically determining correct actions that solve a misconfiguration and do

not cause other problems is still challenging. As a future research direction, we plan to

further explore this problem.

We plan to tackle this challenge by first considering misconfiguration problems that can

be solved by modifying the values of configuration parameters in configuration files. We

first use a tool like ConfAid to determine which configurationparameters are most likely

the root causes of the problem. Proposing a correct value fora misconfigured parameter

raises two challenges. First, we need to automatically and efficiently find potential values

for the parameter. While this issue is trivial for binary values, e.g.yesor no parameters,

it is quite difficult for values that involve paths or numbers. We plan to explore techniques

such as symbolic execution to narrow down the possibilities.

Once we propose a new value for a parameter, we need to determine whether the mod-

ification actually solves the problem. Thus, the second challenge is to automatically de-

termine whether an execution is resulting in a failure or success. Some symptoms such

as crashes or assertion failures are obvious signs of failing execution; however, many ex-
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ecutions do not manifest such evident symptoms. We plan to leverage a history-based

user-assisted approach to deduce the success or failure of an execution.

7.2 Contributions

This thesis demonstrates that we can automate misconfiguration diagnosis by analyz-

ing the causal relationships between the inputs of an application and its output. We showed

that these causal dependencies can be captured and analyzedat various granularities, with-

out using the source code of the application. We built three misconfiguration diagnosis

tools, SigConf, ConfAid, and X-ray, that leverage these causal relationships to pinpoint

root causes of misconfiguration problems.

This thesis presents the details of design and implementation of these tools. In particu-

lar, we used coarse-grained causality analysis to create simple, cheap, and robust signatures

that capture the state of a computer. SigConf uses these signatures to determine whether

the current problem is similar to already known misconfigurations. We designed and im-

plemented a fine-grained information flow analysis engine for x86 binaries that propagates

information via data flow, control flow, and implicit controlflow. ConfAid uses this en-

gine to track configuration tokens as the application runs and link an incorrect output to

the configuration parameters that caused it. We also introduced and implemented the idea

of performance summarization and differential performance summarization in X-ray to di-

agnose performance misconfigurations. ConfAid and X-ray use our deterministic record

and replay system to offload heavy-weight analysis from applications. Our replay system

is instrumentation-aware, i.e., it allows the replayed execution to diverge from the recorded

execution by running analysis code.

Our evaluation of SigConf, ConfAid, and X-ray on a variety ofcomplex applications

demonstrate that the idea of causality analysis can significantly improve misconfiguration

diagnosis. We plan to provide the tools and infrastructuresthat we built to the wider re-

search community.
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