

Probabilistic Analysis for Modeling and Simulating Digital Circuits

by

Chien-Chih Yu

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

(Electrical Engineering)

in The University of Michigan

2012

Doctoral Committee:

 Professor John P. Hayes, Chair

Professor Todd M. Austin

 Professor Marios C. Papaefthymiou

 Assistant Professor Mariel Lavieri-Rodriguez

© Chien-Chih Yu

All rights reserved

2012

ii

To Mom and My Sister

iii

ACKNOWLEDGEMENTS

I wish to thank all the people who helped me with my research and life at the

University of Michigan. I would like to thank my academic advisor Professor John Hayes

not only for his advice on research but also for his firm and continuous financial support.

I would also like to thank Professor Lavieri for her feedback on my research, and

Professors Austin and Papaefthymiou for serving on my Thesis Committee.

I am grateful to Dr. Kenneth Zick for providing a unique opportunity to participate a

satellite circuit design project at the USC Information Science Institute. I also thank

Armin Alaghi with whom I collaborated. I could not have finished my last research task

without his brilliant observations and ideas. I would like to thank people who helped to

improve my writing skill including Professors Rod Johnson and Elizabeth Hildinger, and

Jin Hu. I would like to thank Stella Hu who gave great help when I was looking for jobs.

I am also grateful to the National Science Foundation for supporting my Ph. D.

studies.

I would like to acknowledge my classmates and friends including Kai-hui Chang,

Smita Krishnaswamy, Sungsoon Cho, Ramashis Das, Dae Young Lee, MingChi Hsu,

Andrea Pellegrini, Cheng Zhuo, Po-Chun Hsu, Rita Tsai, Wei-Ling Chiang, Cheng Zhuo,

Te-Hsuan Chen, Ada Lin, Emily Yeh, and many others in America and in Taiwan.

Finally, I would thank my mom and sister. I could not have completed the entire

doctoral program without their encouragement and support.

iv

TABLE OF CONTENTS

DEDICATION .. ii

ACKNOWLEDGEMENTS ... iii

LIST OF FIGURES ... vi

LIST OF TABLES ... ix

PREFACE ... x

CHAPTER 1 Introduction ... 1

1.1 Background .. 2

1.2 Signal Probability Analysis ... 14

1.3 Soft Error Modeling and Analysis ... 19

1.4 Probabilistic Transfer Matrices ... 23

1.5 Thesis Outline .. 27

CHAPTER 2 Circuit Sampling for Signal Probability Calculation 29

2.1 Background .. 29

2.2 Prior Work ... 31

2.3 Signal Redundancy .. 34

2.4 Sampling Concepts .. 38

2.5 Variable Ordering .. 41

2.6 Sample Space Reduction ... 44

2.7 Implementation Issues ... 48

2.8 Experimental Results ... 51

2.9 Case Study ... 56

2.10 Summary ... 57

CHAPTER 3 Trigonometry-based Probability Modeling ... 59

3.1 Background .. 60

3.2 Unconditional Error Representation .. 64

3.3 Trigonometric Representation of Probability 66

3.3.1 Trigonometric Signal Probability .. 66

3.3.2 Trigonometric Error Model .. 67

v

3.4 Probabilistic Calculation Algorithm .. 71

3.4.1 Correlation Handling ... 71

3.4.2 Signal Probability Estimation .. 73

3.5 Simulation Results ... 75

3.6 Summary .. 78

CHAPTER 4 Soft-Error Estimation in Sequential Circuits .. 80

4.1 Prior Work ... 81

4.2 SER Measurement in Sequential Circuits ... 83

4.3 PTM-Based Analysis ... 85

4.4 Circuit Partitioning .. 91

4.5 Fault Simulation-based PTM construction .. 93

4.6 Probabilistic Calculation Method .. 95

4.7 SER Estimation.. 97

4.8 Summary .. 100

CHAPTER 5 Conclusions and Future Work .. 102

5.1 Summary of Contributions .. 103

5.2 Future Work ... 105

5.2.1 Sampling with Implication ... 105

5.2.2 Soft-Error Estimation Using Sampling 107

5.2.3 PTM Construction Using Learning 109

BIBLIOGRAPHY ... 112

vi

LIST OF FIGURES

Figure 1.1. (a) Structure of a transistor; L and W denote the length and width of

the gate, (b) pMOS symbol and (c) nMOS symbol. 3

Figure 1.2. Transistor schematic, circuit symbol, and truth table of (a) an inverter,

(b) a two-input NAND gate, and (c) a two-input NOR gate. 5

Figure 1.3. Switching activities caused by different input sequence orders; signal

transitions are underlined. .. 7

Figure 1.4 Impact of the LER and RDF phenomena on a transistor. 8

Figure 1.5. Threshold voltage variation of the IBM 65-nm silicon-on-isolator

process; results are measured among 8,000 devices [4]. 8

Figure 1.6. Delay profiles for three different 65-nm 80-core microprocessor chips

[24]. .. 9

Figure 1.7. (a) Gate delay distribution. (b) Illustration of statistical timing analysis;

the delay of each gate gi is modeled by a random variable Di. 10

Figure 1.8 A soft error in a transistor caused by a high-energy particle. 12

Figure 1.9. Bit error rates for different voltage overscaling levels in a 16-bit

ripple-carry-adder using IBM 130 nm-process parameters; normal

supply voltage is 1.35v [60]. .. 13

Figure 1.10 Signal probability estimation via exhaustive simulation. 15

Figure 1.11. Circuit symbol and truth table of (a) a two-input AND and (b) a two-

input OR gates. ... 16

Figure 1.12. Signal probability estimation for a five-input circuit via (a) MC

sampling and (b) probabilistic analysis. ... 17

Figure 1.13 Two circuits with fanout-reconvergence structures marked with red

bold lines. ... 18

Figure 1.14 (a) Two-input AND gate, and its behavior with (b) a conditional gate

error model, and (c) an unconditional gate error model. 19

Figure 1.15 Illustration of three masking effects: (a) logical, (b) electrical, and (c)

temporal. ... 22

Figure 1.16. (a) Two-input AND gate, and (b) its PTM representation with a

conditional error model. ... 24

Figure 1.17. (a) Two-input AND gate, (b) its gate PTM with unconditional error

perr, and (c) its ADD representation. ... 25

vii

Figure 1.18. (a) Three-input circuit, (b) its circuit PTM for perr = 0.1, and (c) the

corresponding ADD. ... 26

Figure 2.1. Four-input circuit (copy of Figure 1.13(b)). ... 32

Figure 2.2. Circuit illustrating signal probability estimation via sampling; (copy of

Figure 1.10). ... 35

Figure 2.3. Ten-input, two-output circuit; a multiplexer-like structure formed by

g6, g7 and g8 is highlighted. .. 36

Figure 2.4. Accuracy comparison between ROMC and a typical MC calculation

of the average output signal probability for the circuit in Figure 2.3. 37

Figure 2.5. Variable ordering; a and b are more observable than c and d. 44

Figure 2.6. Five-input circuit obtained from Figure 2.3 by connecting compatible

primary inputs; the supergates of z2 are marked by dotted lines. 47

Figure 2.7. Pseudo-code for the ROMC simulation algorithm. .. 49

Figure 2.8. Conflict graph for the circuit in Figure 2.3; primary inputs with the

same color labels are compatible and can share samples. 51

Figure 2.9. Speed-up of ROMC over MC for the benchmark circuits at five

accuracy levels defined by standard error. ... 52

Figure 2.10. Comparison between MC and ROMC for C1196. 54

Figure 2.11. Comparison between MC and ROMC for C499. ... 55

Figure 2.12. Power consumption of the five-input circuit in Figure 2.6. 57

Figure 3.1. Illustration of the FE method; an on-path is denoted by red bold lines. 63

Figure 3.2. (a) Two-input AND gate, and (b) its behavior with an unconditional

error model. .. 65

Figure 3.3. (a) Two-input AND gate with unconditional error e; (b) Using a two-

input XOR gate to model the error. .. 66

Figure 3.4. (a) Two-input AND gate with an unconditional error; (b) its

trigonometric probability representation. ... 68

Figure 3.5. Computational inaccuracy inacc(p(z
e
)) for p(z) = 10

-4
 to 5×10

-3
 with

gate-error probability perr = 10
-5

. .. 70

Figure 3.6. Single-output circuit with n inputs. .. 71

Figure 3.7. TPC probability estimation algorithm. ... 75

Figure 3.8. Average computational error of the TPC method for various gate-error

probabilities. ... 77

Figure 4.1. Illustration of the time-frame expansion technique: (a) original

sequential circuit and (b) expanded circuit with three time frames. 82

Figure 4.2. Circuit error probabilities for the S298 benchmark assuming a gate-

error probability of 10
-7

. ... 85

viii

Figure 4.3. (a) Two-input OR gate, (b) its ITM, and (c) a PTM with various error

probabilities for each input vector. ... 86

Figure 4.4. Circuit C demonstrating PTM construction; dashed lines enclose

fanout gates. .. 87

Figure 4.5. Gate PTMs of (a) a single wire, (b) a fanout node, (c) a two-input

AND, (d) a two-input NAND, and (e) a two-input NOR gate. 88

Figure 4.6. The circuit of Figure 4.4 with its two supergates marked by dashed

lines. .. 91

Figure 4.7. (a) Original circuit consisting of a single supergate; (b-c) the two sub-

circuits resulting from cone clustering with rmax = 4. 92

Figure 4.8. Supergate of g6 with input vector (0, 1, 0) and critical gates g4 and g6. 95

Figure 4.9. Probabilistic estimation procedure for n + 1 cycles; note that the same

circuit PTMs are used for every cycle. ... 96

Figure 4.10. Probability estimation algorithm used in SAMPLE. 96

Figure 4.11. Circuit error probabilities for the S1238 benchmark assuming a gate-

error probability of 10
-7

. ... 99

Figure 5.1. Four-input circuit. ... 106

Figure 5.2. XOR-extended circuit for a two-input AND gate. 108

Figure 5.3. (a) Four-input circuit; (b) its XOR-extended circuit for simulating soft

errors occurring at g3 and g4. .. 109

Figure 5.4. Four-input circuit; its two supergates are marked with dashed lines. 110

ix

LIST OF TABLES

Table 1.1. Technology trends in CMOS manufacturing [65]. .. 4

Table 2.1 Signal probability calculation rules for an n-input elementary gate z(x1,

x2, …, xn) with independent inputs. .. 31

Table 2.2. Performance of compatibility and observability determination for

selected benchmark circuits including the largest benchmark circuits. 53

Table 3.1. Performance of TPC and MC for gate-error probability 10-8 with

selected ISCAS-85 benchmarks (including the largest ones). 76

Table 3.2. Runtime comparison between the TPC and SP methods for reliability

estimation. .. 78

Table 4.1. Performance results for the ISCAS-89 benchmark circuits (including

the largest circuits). .. 98

x

PREFACE

Due to the rapid progress of their manufacturing technologies, integrated circuit (ICs)

can now contain billions of transistors and operate at gigahertz frequencies. This great

complexity has forced engineers to rely on electronic design automation (EDA) software

tools to design, verify and test new ICs. Traditional EDA tools are deterministic in nature

and try to explicitly address all a circuit’s operating modes by examining very large input

signal sets and computing their output responses. However, beyond some point, such

methods must be replaced by random sampling of the inputs, an approach that is

inherently probabilistic. Manufacturing process variations and soft errors caused by

environmental disturbances also call for statistical approaches to gauge their impact.

Hence, there is an increasing need for probabilistic characterizations of IC behavior that

can be easily incorporated into EDA tools, and can be used in situations where traditional

deterministic approaches are ineffective.

The goal of this dissertation is to develop ways to significantly improve the quality

of the probabilistic analysis techniques required for EDA. The accuracy and scalability of

these techniques is greatly affected by several factors, including the probability models

employed and the handling of correlations among signals. To address such issues, we

develop novel and efficient ways to sample logic circuit behavior, model the impact of

soft errors, and estimate circuit reliability. First, we present a methodology for sampling

input signals that improves accuracy and runtime by prioritizing the sample variables and

compressing the sample space. Then, we introduce a trigonometry-based technique for

xi

efficiently analyzing soft errors by mapping signal probabilities into angles. Finally, a

reliability estimation method is described that uses probabilistic transfer matrices to

calculate signal and error probability distributions in sequential circuits. Unlike previous

techniques, its memory usage grows slowly even when simulating very large circuits over

many clock cycles. Extensive simulation studies are presented in support of all the

foregoing results.

The contributions of this dissertation identify features of probabilistic, error-inducing

phenomena that can lead to significant improvements in circuit quality. They also reduce

the computational overhead for probabilistic calculations which are essential for many

EDA tasks.

.

1

CHAPTER 1

Introduction

In the semiconductor industry, the cost of designing and manufacturing integrated

circuits (ICs), including financial investment, time-to-market, and human resources

heavily depends heavily on the effectiveness of electronic design automation (EDA)

tools. EDA refers to the use of software-implemented techniques for accelerating the

design and manufacturing processes, and for improving the quality of IC-based products.

EDA tools have been widely adopted for implementing routine design steps, for

validating circuit functionality, for analyzing performance features such as delay and

power consumption, for generating layout data, and for testing product quality.

Traditional EDA methods employ deterministic approaches, which assume that the

circuit’s entire structure and behavior are definite and fully predictable. However, IC

complexity has reached a point where circuits contain billions of transistors and can

perform billions of calculations per second. This complexity poses some new challenges

for EDA. For example, random sampling is increasingly necessary to estimate important

aspects of IC behavior. Furthermore, ICs are becoming sensitive to non-deterministic

effects such as imperfect manufacturing processes and environmental disturbances.

Hence, conventional deterministic approaches are becoming less effective for many EDA

tasks.

2

Unlike deterministic approaches, probabilistic analysis views a circuit from a

statistical perspective, and provides a natural way both to describe and simulate non-

deterministic effects. It models the properties of devices and signals in terms of

probabilities, and measures their characteristics using statistical techniques such as

sampling and averaging. Probabilistic analysis has been applied to several areas of EDA,

such as the estimation of reliability [61], testability [46], and power [47]. Recently,

probabilistic analysis has also been used for measuring the impact of manufacturing

variations in ICs [21][38][41], and for analyzing the vulnerability of ICs to soft errors

resulting from decreasing noise margins [19][67].

In this chapter, we provide an overview of the role of probabilistic analysis in EDA.

We review the basic concepts of probabilistic analysis, study several existing probability-

based applications, and address the problems and limitations of existing methods. We

then summarize the major contributions of this dissertation.

1.1 Background

Integrated circuit (IC) technology was invented in the late 1950s [42]. After 50 years

of steady development, ICs now are widely used in personal computers, mobile phones,

cars, and so on. Not only are they deeply integrated into our daily life, but they also have

changed the way modern society operates. For instance, supercomputers containing vast

numbers of ICs are used for weather and environmental forecasting, geological surveys in

the energy industry, and structure analyses of proteins in the pharmaceutical industry [55].

3

Virtually all ICs are manufactured with complementary metal-oxide-semiconductor

(CMOS) process technology, where the fundamental components are switching devices

called transistors. The structure of a typical transistor is shown in Figure 1.1(a). There are

four parts to a transistor: the gate, the substrate, and two terminals called the source and

drain. The length L of a transistor’s gate is a key parameter that is often referred to as the

“feature size” of a particular CMOS manufacturing technology “node” in the industry.

For instance, a 0.25-m (0.25 10
6

 meter) CMOS manufacturing technology indicates

one that is capable of producing transistors whose gate lengths are around 0.25 m.

Gate

Source Drain

Substrate

pMOS

Gate

Source Drain

Substrate

nMOS

(c)(b)

(a)

W

L
Substrate

So
urc

e
Dra

inGat
e

Figure 1.1. (a) Structure of a transistor; L and W denote the length and width of the gate,

(b) pMOS symbol and (c) nMOS symbol.

4

In 1965, Gordon Moore of Intel predicted that the number of transistors in an IC

would double about every 24 months, an insightful observation now referred to as

Moore’s Law [42]. Continuing developments in CMOS process technology suggest that

Moore’s Law will extend into the next decade [30][65], as shown in Table 1.1.

Table 1.1. Technology trends in CMOS manufacturing [65].

Year 2006 2008 2010 2012 2014

Feature size (nm) 65 45 32 22 16

Supply voltage 1.2 1.0 0.9 0.8 0.7

Gate count (109) 4 8 16 32 64

With modern process technologies, engineers can design ICs that are much more

complex in terms of transistor count and operation speed than ever before. In 1997, for

instance, Intel’s Pentium II microprocessors were manufactured with a 0.25-m CMOS

technology; they contained 7.5 million transistors, and operated at 200 MHz. In 2012,

Intel’s Core i7 microprocessors manufactured with a 28-nm technology, contain over 1.7

billion transistors, and operate at 3 GHz. This represents an improvement of about three

orders of magnitude in transistor density and computational capacity.

Two types of transistors are used in logic circuits, namely are n-type and p-type

metal-oxide-silicon (MOS) transistors, i.e., nMOS and pMOS transistors, as shown in

Figures 1.1(b) and (c). A transistor’s current in a conducting channel between the source

and drain is controlled by the voltage applied to the transistor’s gate terminal. An

important electrical parameter that characterizes a transistor’s behavior is its threshold

voltage Vt. For an nMOS (pMOS) transistor, if the voltage between its gate and source

Vgs is higher (lower) than its threshold voltage, i.e., Vgs > Vtn (Vgs < Vtp), then the

channel between the source and drain begins to conduct. We say a transistor is ON if its

5

channel is conducting; otherwise, it is OFF. Clearly, transistors can be used as switches,

and their ON and OFF states are usually referred to as 1 and 0 in logic circuits.

In addition, pMOS and nMOS transistors can be used for forming the basic

components (gates) used in logic circuits. There are five types of elementary gates,

namely inverter, NAND, NOR, AND and OR gates, each of which implements a specific

Boolean function. Figure 1.2 shows the circuit structures, graphic symbols, and the

functions of an inverter, and two-input NAND and NOR gates. AND and OR gates are

typically formed by combining NAND or NOR gates with inverters.

VDD

GND

x z x z

VDD

GND

x1

x2 x1

x2
z

Input

x1

Output

z

0 1

1 0

Input

x1x2

Output

z

00 1

01 1

10 1

11 0

VDD

GND

x1

x2

x1

x2
z

Input

x1x2

Output

z

00 1

01 0

10 0

11 0

(a)

(b)

(c)

z

z

Figure 1.2. Transistor schematic, circuit symbol, and truth table of (a) an inverter, (b) a

two-input NAND gate, and (c) a two-input NOR gate.

6

Integrated circuits can be viewed at several levels of abstraction such as the transistor,

logic, register-transfer, and system levels [62], We will generally only consider the logic

level, where the IC is modeled as a large set of interconnected gates that process the logic

signals 0 and 1. This level has the advantage of being relatively independent of electrical

and other physical details. However, it may entail special (indirect or non-deterministic)

methods to analyze properties of interest such as power consumption.

Consider, for example, the task of analyzing a circuit’s power consumption. A

CMOS gate’s maximum power consumption occurs when a signal at the gate changes

from 0 to 1 or from 1 to 0. In general, a gate’s dynamic power consumption is

proportional to its switching activity, which indicates how frequently the gate’s output

signal changes value [22][47][58].

Figures 1.3(a) and (b) show a circuit assigned two different but similar four-bit input

sequences: the number of 1s and 0s in the corresponding sequences are the same.

However, the total numbers of transitions at g1, g2, and g3 in Figures 1.3(a) and (b) are 6

and 4, respectively, and hence the power consumption in Figure 1.3(a) is higher by about

33% than that in Figure 1.3(b), assuming all gates have the same power consumption

characteristics. Hence, the order of the applied inputs needs to be taken into consideration

for accurately measuring the circuit power consumption with deterministic simulations.

The total number of possible cases that exists in this small circuit is 16! = 2.09 × 10
13

. As

can be seen, measuring the power consumption by explicitly enumerating all possible

cases is infeasible.

7

g1

g2

g3

0111

0110

0010

1010

0110 0110

1010

g1

g2

g3

0111

0011

0001

1001

0011
0011

1001

(a) (b)

x1

x2

x3

x4

x1

x2

x3

x4

z2

z1

z2

z1

Figure 1.3. Switching activities caused by different input sequence orders; signal

transitions are underlined.

Instead of exhaustively simulating circuits with all possible input sequences, Wu et

al. [64] show that a circuit’s power consumption can be accurately calculated by

randomly sampling the switching activities of its individual gates. We will show in detail

in Chapter 2 how to estimate a circuit’s power consumption by probabilistic analysis of

switching activities.

Deterministic approaches are inadequate for simulating the non-deterministic effects

caused by process variations. These are phenomena where semiconductor fabrication

processes are unable to produce identical transistors when a transistor’s size shrinks

below the scale of a few hundreds atoms. Performance features, such as delay and power

consumption can vary from transistor to transistor, even in the same chip.

For instance, when CMOS technology is scaled to below 65 nm, precisely

controlling the shape and doping concentrations of transistors during manufacture

becomes difficult. The resulting process variations not only reduce manufacturing yield,

but also affect circuit characteristics such as leakage current, threshold voltage, and

power consumption. For instance, a major problem of 65-nm manufacturing technology

8

is random dopant fluctuation (RDF) where the number of dopant atoms is unevenly

implanted in a transistor [6]. Another source of process variation is line-edge roughness

(LER), resulting from imperfect etching processes. In 65-nm CMOS technology, forming

uniform shapes for individual transistors by etching is very difficult, because the etching

process cannot be precisely controlled [44]. A consequence of the LER problem is an

increase in the variance of channel length among transistors.

Figure 1.4 Impact of the LER and RDF phenomena on a transistor.

Figure 1.5. Threshold voltage variation of the IBM 65-nm silicon-on-isolator process;

results are measured among 8,000 devices [4].

9

Figure 1.4 illustrates the impact of RDF and LER on a single transistor. Such

manufacturing problems make the threshold voltages and leakage currents of individual

transistors different from each other. This, in turn, affects the electrical characteristics

such as threshold voltage of logic gates. Figure 1.5 shows threshold voltages of

transistors in the same wafer spread across 120 mV, which is a broad range. As the result,

individual chips can have unique electrical characteristics that affect their delay

characteristics and power consumption. Figure 1.6 illustrates the differences in gate delay

caused by process variations among three individual Intel microprocessor chips.

Figure 1.6. Delay profiles for three different 65-nm 80-core microprocessor chips [24].

Identifying the longest paths in an IC and evaluating their delays are important tasks

for circuit design and testing [43][50]. Traditional timing analysis methods determine the

longest delays from a circuit’s structure, and they assume the delays of each gate type are

the same. However, these deterministic methods are increasingly unable to capture the

complete timing behavior of paths and gates caused by process variations.

10

A technique called statistical timing analysis [21][38][41] has been developed to deal

with the aforementioned problems. Unlike static timing analysis methods, which model

gate delays as constants, the statistical approach treats gate delays as random variables.

The effects of process variations on delay are described in terms of the variances of the

random variables. For a path of interest, its delay may be estimated by propagating delay

variables along the path, as depicted in Figure 1.7. Probability-based timing analysis is

being gradually adopted by industry [17][63].

z

x1

x2

x3

g1

g2

g3 g4

Picosecond

P
ro

b
a

b
ili

ty

D1

D2

D3 D4

(a)

(b)

Figure 1.7. (a) Gate delay distribution. (b) Illustration of statistical timing analysis; the

delay of each gate gi is modeled by a random variable Di.

11

Recently, concern about soft errors has been increasing. Probabilistic analysis of soft

errors raises issues and problems different from those mentioned so far. When transistors

are manufactured at the nanometer scale, they are very sensitive to any manufacturing or

electrical fluctuations, such as small process defects and unexpected voltage drops, and

devices can temporarily malfunction. In other words, the behavior of a circuit is no longer

fully predictable even if it has no manufacturing defects. Thus, circuit behavior is

characterized by some degree of uncertainty because of the unpredictable occurrence of

soft errors.

There are three major sources of soft errors: high-energy particles due to cosmic

radiation, process variation, and voltage overscaling. Cosmic rays are composed of

various subatomic particles such as neutrons originating from outer space [36]. The

energy density of cosmic rays increases with altitude. For instance, the energy density at

30,000 feet, a typical flight altitude for commercial airplanes, is two orders of magnitude

higher than the energy density at sea level [71].

When a high-energy particle hits a transistor, the state of the transistor may be

temporarily changed. Such particle strikes are called single-event upsets (SEUs), see

Figure 1.8. SEUs may lead to (soft) errors in circuits, or even to catastrophic system

failures if they are successfully propagated to primary outputs or are stored by memory

elements. For example, in 2008, a Qantas A330 airplane suddenly went out of control,

and plunged downwards resulting in serious injuries to a flight attendant and several

passengers. After examining the flight recorder, the Australian Transport Safety Bureau

concluded the accident resulted from high energy neutron strikes to the aircraft’s control

computers [9].

12

Figure 1.8 A soft error in a transistor caused by a high-energy particle.

Even though the energy density of cosmic rays at ground level is relatively low, the

threshold energy for generating SEUs on a transistor has been decreasing with falling

supply voltage and transistor size. Therefore, the impact SEUs on ICs can no longer be

ignored [23]. Ando et al. [6] designed a series of experiments to test the susceptibility of

65-nm SPARC microprocessors to soft errors. Their experimental results show that

without adequate hardware protection mechanisms, e.g., error-correcting codes (ECCs), a

system failure caused by soft errors will be observed every two and a half months. This

failure rate is unacceptable, particularly for systems designed for critical applications,

such as data centers and vehicle control.

Process variations are another source of soft errors because the threshold voltages of

gates can be spread across a broad range, as shown in Figure 1.5. For instance, if a circuit

is operated at a fixed supply voltage, then gates with high threshold voltages may not

fully turn on, or work more slowly than expected. If such gates lie along critical paths,

then incorrect results can easily be produced.

13

Finally, if a circuit’s supply voltage is lower than a critical value, say the threshold

voltage, the circuit can malfunction because some transistors no longer switch on or off

correctly. Problems of this kind caused by insufficient supply voltages are called voltage

overscaling. If circuits work at minimal voltage levels, noise margins cannot compensate

for even slight voltage fluctuations, and voltage-overscaling problems result [12]. ICs

designed for portable devices, such as mobile phones and laptops are especially prone to

this issue. Their error rates (error probabilities) can grow dramatically with small

decreases in supply voltage, as shown in Figure 1.9 [60].

Figure 1.9. Bit error rates for different voltage overscaling levels in a 16-bit ripple-carry-

adder using IBM 130 nm-process parameters; normal supply voltage is 1.35v [60].

We have illustrated several limitations of deterministic approaches for simulating

typical EDA tasks and newly-arising non-deterministic effects. Unlike deterministic

approaches, probabilistic analysis deals with these issues by modeling a circuit’s

characteristics with probabilities, and analyzing the circuit’s statistical behavior.

14

Probabilistic analysis usually provides average results based on statistical estimates. Such

results can be treated as a circuit’s representative behavior, which is very useful for

designers. Exact probability calculation methods [48] also suffer from high

computational complexity, but many heuristics have been proposed for mitigating the

computational overhead, while making the calculation inaccuracies manageable.

Our work aims at improving the applicability of probabilistic analysis in two areas:

signal probability calculation and soft error analysis. We propose three novel and

powerful methods for improving accuracy as well as efficiency for general circuit

sampling, signal probability representation, and reliability estimation in sequential

circuits.

1.2 Signal Probability Analysis

In this section, we define signal probability for logic circuits, discuss its basic

calculation rules, and explain signal correlation, which is an important factor affecting

calculation efficiency and accuracy.

The signal probability p(s) of a logic signal s indicates the likelihood that 1 rather

than 0 can be observed on s. Signal probability is determined experimentally by applying

N input vectors to an n-input circuit, either physically or by simulation, and counting the

number k of 1s produced on s, in which case, p(s) = k/N. If the applied vectors are

randomly generated, such simulation procedures for obtaining signal probabilities are

referred to as Monte Carlo (MC) sampling, and the total number of applied samples

(input vectors) is called the sample size. The number p(s) is considered to be exact if it

equals p
*
(s), where p

*
(s) is defined as the signal probability obtained when N = 2

n
, and

15

the applied vectors are all different, i.e., when the simulation is exhaustive. Clearly, p
*
(s)

is the fraction of 1s in the truth table for s. Consider the four-input circuit of Figure 1.10.

If it is simulated with all 16 different input vectors as shown, then we obtain z’s exact

signal probability p
*
(z) = 0.5.

g1

g2

g3

g4

x1
x2

x3

x4

0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1
0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1

0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1

0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1

z0,0,0,0,1,1,1,1,0,0,1,1,0,0,1,1

p*(z) =
Number of 1s

Total number of output bits

 = 8/16

Figure 1.10 Signal probability estimation via exhaustive simulation.

Another approach for obtaining signal probabilities is probabilistic analysis.

Consider the two-input AND gate gand as shown in Figure 1.11(a) with inputs x1 and x2.

Its exact output signal probability can be expressed as p
*
(gand) = p

*
(x1) × p

*
(x2) = 0.25

because the probability of the AND gate being 1 is the probability of all its two inputs

being 1. Similarly, for a two-input OR gate gor in Figure 1.11(b), its probability of

outputting 0 is the probability of all its inputs being 0, which can be expressed as 1

p
*
(gor) = (1 p

*
(x1)) × (1 p

*
(x2)). Hence, this OR gate’s exact output signal probability

is given by p
*
(gor) = 1 (1 p

*
(x1)) × (1 p

*
(x2)) = 0.75.

16

x1

x2
z

Input

x1x2

Output

z

00 0

01 0

10 0

11 1

x1

x2
z

Input

x1x2

Output

z

00 0

01 1

10 1

11 1

(a)

(b)

Figure 1.11. Circuit symbol and truth table of (a) a two-input AND and (b) a two-input

OR gates.

Figure 1.12 illustrates how to calculate signal probabilities via two different

approaches. In Figure 1.12(a), the circuit output signal probability p(z) is estimated by

MC sampling. The circuit is simulated with eight input vectors selected randomly from

32 possibilities, and p(z) is calculated as the fraction of 1s in z’s output sequence, which

is 7/8. If p(z) in is evaluated by the first four samples shown, then p(z) becomes 3/4,

which is less accurate than the estimated result from eight samples. In the MC method,

higher accuracy is achieved by applying more samples (input vectors). To be effective,

however, MC must achieve a proper balance between computational effort and accuracy.

Too few samples provide insufficient accuracy, while too many lead to excessive

runtimes.

17

x1

x2

x3

x4

1,0,1,0,0,1,0,1

0,1,0,0,1,1,0,1
1,0,0,1,0,0,1,1

0,1,1,0,1,0,0,1

0,0,1,1,1,0,1,0

x5

1,0,1,1,1,1,1,1
z

p(z) =7/8 p*(z) = 25/32

(a)

p*(z) =1–(1–p*(x1))(1–p*(x2))(1–p*(g1)) = 25/32

(b)

g1

g2

p*(g1) =p*(x3)p*(x4)p*(g5) = 1/8

Figure 1.12. Signal probability estimation for a five-input circuit via (a) MC sampling

and (b) probabilistic analysis.

Figure 1.12(b) shows how p(z) is evaluated using probabilistic analysis. Here the

circuit is traversed from primary inputs to primary output, and the signal probabilities of

the individual gates are calculated. For instance, p
*
(g1) is first calculated from the signal

probabilities of its input signals, p
*
(x3), p

*
(x4), and p

*
(x5). Then, p

*
(z) = p

*
(g2) is obtained

from p
*
(x1), p

*
(x2), and p

*
(g1). In this case, the exact output signal probabilities can be

obtained using probabilistic analysis because the structure of this circuit is relatively

simple. In general, the computational overhead and accuracy of probabilistic analysis is

strongly affected by circuit structure.

If a gate’s inputs that are controlled by one or more common primary inputs, then

these inputs should not be treated as separate independent signals. Instead, they should be

considered together to avoid calculation inaccuracy. Such dependency among signals is

called correlation. A major challenge of probabilistic analysis is how to handle

correlation among signal probabilities. We next discuss what signal correlation is and

how it affects probabilistic calculations.

18

Consider the two-input AND gate depicted in Figure 1.13(a) whose two input signals

are tied together. The exact output signal probability, p
*
(g) = p

*
(x1) = 0.5 p

*
(x1)

p
*
(x1). This is because in this case the two input signals originate from the same source,

and the probability that g has two different input values is zero. Now consider another

case depicted in Figure 1.13(b). Here, p
*
(y3) cannot be directly calculated from its local

inputs; i.e. p
*
(y3) ≠ p

*
(y1) p

*
(y2) because both y1 and y2 are controlled by x4. Signal

correlation problems of this kind are caused by fanout-reconvergence structures, which

are shown with bold lines in Figure 1.13. From a statistical viewpoint, exact signal

probabilities are signal probabilities where all correlations are accurately accounted for.

This requires global calculations that encompass all fanout structures. However, the

complexity of analyzing these structures in a circuit is exponential in circuit size [51],

which implies that determination of exact signal probabilities tends to be intractable.

A key advantage of using MC sampling for calculating signal probabilities is that all

signal correlations associated with the applied samples are automatically accounted for.

By increasing the number of samples, the calculated probabilities can be made as close to

the exact values as desired.

x1

x2

x3

x4

g
y2

y1
y3

(a) (b)

z

p*(z) = p*(x1)

p*(y3) ≠ p*(y1)p*(y2)

x1

Figure 1.13 Two circuits with fanout-reconvergence structures marked with red bold lines.

19

1.3 Soft Error Modeling and Analysis

The effect of soft errors on a logic gate is generally described in terms of its gate-

error probability, which indicates how likely an incorrect value will be generated by the

gate due to soft errors. Such error probabilities are typically very small. Several studies

indicate that the probabilities of an erroneous bit in one month of operation for 90-nm

FPGAs and 65-nm DRAMs are 1.38×10
-10

and 8.25×10
-10

, respectively [30] [37].

Two error types, which we refer to as conditional and unconditional, have been used

in probabilistic methods to model the soft-error behavior of gates or other components.

These have not always been clearly distinguished in the past. A conditional error model

allows the error probability to vary with respect to different input vectors, while an

unconditional error model requires the error probability to be constant, and therefore

independent of the input vectors. Thus, unconditional models ignore correlations among a

gate’s inputs.

Input

x1x2

Output probabilities

z = 0 z = 1

00 1 p1 p1

01 1 p2 p2

10 1 p3 p3

11 p4 1 p4

x1

x2
z

Input

x1x2

Output probabilities

z = 0 z = 1

00 1 perr perr

01 1 perr perr

10 1 perr perr

11 perr 1 perr

(a) (b) (c)

Figure 1.14 (a) Two-input AND gate, and its behavior with (b) a conditional gate error

model, and (c) an unconditional gate error model.

20

Figure 1.14 illustrates the two error models for a two-input AND gate. The table in

Figure 1.14(b) shows an example of a conditional error. For a gate g with output z, the

conditional output probability of z associated with a particular input vector v is denoted

by p(z|v). For example, p(z|x1x2) = p(z|01) = p1 in Figure 1.14(b). Figure 1.14(c) defines

an unconditional error model for the two-input AND gate. In this case, the error

probabilities associated with all input vectors are the same, namely perr. In general, a

conditional error model for an n-input gate g can employ up to 2
n
 distinct probability

values to simulate a soft error. On the other hand, the unconditional model needs only

one error probability value perr. A conditional error model can simulate more complicated

situations, while an unconditional one has much better scalability.

The parameter perr is the probability that g outputs an incorrect value, which may be

0 or 1. The corresponding signal probability, denoted by p(g
e
) is the probability of g

outputting 1 when it is subject to errors. In the other words, p(g) and p(g
e
) represent g’s

signal probabilities in the error-free and erroneous cases, respectively. For the two-input

AND gate of Figure 1.14

p(g
e
) = 0.25(perr + perr + perr + (1 perr)) = 0.25(1 + 2perr)

So, if perr = 0.1, then p(g
e
) = 0.3. We will show how to calculate the erroneous signal

probabilities of individual gates later in Chapters 3 and 4.

We now explain how soft-error effects are measured. The soft-error rate (SER) is

typically used for this purpose, and is defined in terms of gate vulnerability and circuit

reliability. The vulnerability of a particular gate g represents how easily an erroneous

value can be produced by g and can be propagated to the primary outputs. The reliability

21

of a circuit C indicates how likely an incorrect output caused by g will be observed at the

primary outputs.

Whether or not an incorrect value (an error) can propagate to the primary outputs is

determined by three masking effects: logic, electrical and temporal [45].

 Logic masking: all possible propagation paths of an erroneous signal to

primary outputs are blocked by the circuit’s connectivity, functionality or a

combination of both.

 Electrical masking: the strength (voltage amplitude) of an erroneous signal

gradually attenuates as the erroneous signal propagates, and the error

eventually disappears before reaching a primary output.

 Temporal masking: An error signal is not stored by a memory element because

the erroneous signal fails to satisfy the timing constraints, e.g., the setup or

hold times, of the memory element.

Figure 1.15 illustrates the three masking effects mentioned above. Suppose x1x2x3x4 =

0001, making y1y2 = 00. If the value of y1 is flipped to 1 by a soft error, then y1’s

erroneous value will be blocked by y2, as shown in Figure 1.15(a). In addition, observe

that x3 is a redundant signal because y3 = x1x2x4. Therefore, no erroneous value generated

at x3 can propagate to the primary output. In Figure 1.15(b) an error successfully

propagates to the primary output because no other signal can block the erroneous signal

in this case. However, the erroneous signal’s strength is decreasing as it propagates from

y1 to y3. If the signal strength falls below a threshold voltage, then an error cannot be

captured and stored by the flip-flop (memory element). Finally, Figure 1.15(c) shows

how an error fails to be stored by the flip-flop when it does not meet the flip-flop’s timing

22

constraints, even though its signal strength does not greatly attenuate before it reaches the

flip-flop. To be captured by the flip-flop an error should arrive before the setup time, and

keep its logic value stable over the duration of the setup and hold times.

x1

x2

x3

x4 y2

y1

y3

Clock

Particle strike

0

0

0

1

0 0

0

Flip-flip

D Q

Q

Logical masking

x1

x2

x3

x4 y2

y1

y3

Clock

Particle strike

0

1

1

0

Flip-flip

D Q

Q

Electrical masking

x1

x2

x3

x4 y2

y1

y3

Clock

Particle strike

0

1

1

0

Flip-flip

D Q

Q

Setup

time

Hold

time

Temporal masking

(a)

(b)

(c)

Figure 1.15 Illustration of three masking effects: (a) logical, (b) electrical, and (c)

temporal.

23

Since our research focuses on evaluating SERs at the logic level, we only consider

the logical masking effect because the electrical and temporal masking effects must

generally be simulated at the transistor level with considerable computational effort, and

are difficult to handle at the logic level.

We next introduce probabilistic transfer matrices (PTMs), which can efficiently

represent a circuit’s probabilistic behavior described by either conditional or

unconditional error models.

1.4 Probabilistic Transfer Matrices

Many probabilistic techniques have been developed for representing and estimating

the SERs in logic circuits, such as the PTM approach [34], Bayesian networks (BNs) [48],

and probabilistic decision diagrams (PDDs) [1]. We use the PTM approach because not

only is it capable of simulating circuits with many different error models, but it also can

provide accurate SER results due to the way it handles correlations. We will review and

compare these probabilistic techniques later in Chapter 3.

Krishnaswamy et al. were the first to propose PTMs for circuit reliability analysis

[34]. PTMs can explicitly include the probability of every input-output combination

associated with a logic gate or a combinational circuit. Hence, they provide a general way

to represent conditional errors. Figure 1.16 shows the gate PTM for a two-input AND

gate whose probabilistic behavior is described in Figure 1.14(b).

24

x1

x2
z

(a) (b)

x1x2

00

01

10

11

Figure 1.16. (a) Two-input AND gate, and (b) its PTM representation with a conditional

error model.

Each PTM entry is a conditional probability associated with a corresponding input

vector. For example in Figure 1.16(b), the probabilities of z being 1 associated with

inputs x1x2 = 01 and 10 are p(z|x1x2) = p2 and p(z|x1x2) = p3, respectively. To reduce

memory usage, matrices can be stored in the form of algebraic decision diagrams (ADDs)

[10]. Like reduced ordered binary decision diagrams (ROBDDs) [16], ADDs have

multiple terminal nodes to represent signal probability values, and provide a compact and

canonical way to represent the probabilistic behavior associated with individual input

vectors for a gate or an entire circuit.

Again, we use a two-input AND gate to illustrate the use of ADDs to reduce memory

needs. Suppose the AND gate’s error behavior is described by the unconditional error

probability perr. Figure 1.17(c) shows an ADD representation of the AND gate’s PTM. A

path from node x1 to a terminal node represents a complete or partial input assignment u,

and the linked terminal indicates the output probability of being 1 associated with u. For

instance, the path between node x1 and terminal perr indicates p(z|x1) = perr, without

considering x2’s value. If x1 = 1, the ADD needs to use x2’s value to determine the output

probability. The path between nodes x1, x2 and terminal 1 perr represents p(z|x1x2) = 1

perr.

25

x1

x2
z

(a)

(b) (c)

x1x2

00

01

10

11 1perrperr

x1

x2

1

1

0

0

Figure 1.17. (a) Two-input AND gate, (b) its gate PTM with unconditional error perr, and

(c) its ADD representation.

For a combinational circuit C, the basic PTM construction algorithm first generates a

level PTM for each circuit level, and then merges level PTMs to form a circuit PTM. The

signal probabilities of the primary outputs can then be obtained from the circuit PTM by

matrix operations. All correlations among signals are implicitly accounted for when

generating the circuit PTM. Hence, the SER of a circuit can be accurately computed from

the circuit PTM by comparing the differences between the error-free and erroneous

versions of the circuit’s output signal probabilities.

Figure 1.18 shows a three-input circuit, its PTM, and the corresponding ADD,

assuming an unconditional gate-error probability perr = 0.1. Like a gate PTM, the circuit

PTM represents z’s signal probabilities associated with all possible input vectors. This

ADD form is more compact because it has only seven nodes, whereas the PTM contains

16 entries.

26

(b) (c)

x1x2x3

000

001

010

011

100

101

110

111

x1

x2

x3

z

(a)

x1

x3
x3

.244 .756 .705 .295

0

0 0

1

1 1

Figure 1.18. (a) Three-input circuit, (b) its circuit PTM for perr = 0.1, and (c) the

corresponding ADD.

Although the basic PTM algorithm handles the general conditional error model and

accounts for all signal correlations, its practical use is limited to relatively small circuits,

as the effort of accurately handling and preserving signal correlations can be huge. In

addition, since circuit PTMs only store the conditional probabilities of primary outputs

with respect to primary inputs, evaluating signal probabilities for individual gates of a

circuit can be difficult. Like ROBDDs [16], the size of the ADDs representing PTMs

highly depends on the variable ordering, and determining the best order is an NP-hard

problem [34]. In Chapter 4, we develop a novel way to simplify the PTM construction

process by combining circuit partitioning with a fast fault simulation technique.

27

1.5 Thesis Outline

We have illustrated the need for probabilistic analysis in various EDA areas, and

have discussed the challenges to applying this approach. This dissertation focuses on two

particular issues: (1) providing a general circuit sampling methodology that can generate

more accurate signal probabilities than Monte Carlo sampling, and (2) establishing a

framework for efficiently and accurately evaluating soft-error effects in logic circuits.

As discussed above, MC plays an important role in probabilistic analysis. It can

estimate signal probabilities and provide a gold reference for validating the effectiveness

of EDA heuristics. However, MC requires many samples to achieve high accuracy,

particularly in large circuits. In Chapter 2, we propose the use of partial signal

redundancy and observability to solve this scalability problem. We examine the degree of

redundancy in individual signals by analyzing a circuit’s structure. This helps to identify

unnecessary samples and arrange sample sequences effectively.

Chapter 3 introduces a novel trigonometric model that unifies the representation of

signal and unconditional error probabilities in combinational circuits. This unification

reduces the computational complexity by mapping multiplications in probabilistic

calculations into angular rotations (additions) within trigonometric operations.

In Chapter 4, we develop a PTM-based probabilistic calculation method for SER that

is able to simulate a sequential circuit without excessive circuit duplication. We partition

the circuit in a way that guarantees that the size of the resultant PTMs is manageable, and

apply a fault simulation technique that accounts for signal correlation and masking

effects. Since the time-frame expansion technique is not used, our method requires no

additional memory when simulating sequential circuits. This property makes our

28

approach capable of tracing the accumulated error effects in a sequential circuit over

many simulation cycles.

Finally, we summarize our key contributions and discuss several possible research

topics as extensions of this work.

29

CHAPTER 2

Circuit Sampling for Signal Probability Calculation

In this chapter, we introduce a new circuit sampling methodology for calculating

signal probability in error-free combinational circuits. As stated in Chapter 1, MC (Monte

Carlo) sampling is a general method of signal probability estimation; however, it has the

disadvantage that the sample size grows rapidly with increasing accuracy levels. To

improve the scalability of MC, we apply the concept of signal redundancy to circuit

sampling. We prioritize primary inputs, and compress the sample space by analyzing the

degree of redundancy and observability of individual signals. Our simulation results show

that the proposed sampling method can improve the simulation efficiency by from one to

three orders of magnitude, even in large benchmark circuits. A paper based on this work

has been accepted for presentation at the 2012 International Conference on Computer-

Aided Design [69].

2.1 Background

As noted in the preceding chapter, signal probabilities are basic to non-deterministic

analysis, and MC is a natural way to calculate signal probabilities in logic circuits. In fact,

MC is a widely-used technique in EDA that serves several purposes. It is used as an

evaluation method when analytical approaches are infeasible, and it often serves to

30

validate heuristic problem-solving techniques. For example, Sauer et al. present a SAT-

based timing analysis technique whose results are “validated by comparison to an exact

(Monte Carlo) simulation approach” [52]. Other EDA tasks commonly validated by MC

include testability and power estimation [58], circuit synthesis [18], and design

verification [57]. In some cases, MC is central to the main solution methodology [70].

However, conventional MC suffers from high simulation complexity particularly in

large circuits due to the many samples that need to be applied. In statistics, the simulation

efficiency of MC for specific functions can sometimes be enhanced by using the

properties of the target functions [27]. Recently, several sampling methods for analog

circuits have been proposed [31][56] for improving sample accuracy. For instance,

Singhee and Rutenbar apply a quasi-Monte Carlo (QMC) technique [56] for simulating

the process variation effects. However, these algorithms cannot be directly applied to

digital circuits, because analog circuits are modeled by continuous functions, while

digital circuits are described by Boolean functions with discrete binary values.

In this chapter, we will introduce a general sampling methodology aimed at signal

probability analysis for logic circuits. Prior work on logic circuit sampling just generates

random samples without considering the functionality and connectivity of the target

circuit. Our proposed method can provide more accurate results by removing unnecessary

samples, and by arranging the samples based on the degree of importance of the input

signals.

In the next section, we briefly review several representative probability calculation

methods to clarify the advantages and limitations of prior work, and the need for

developing new probability calculation techniques, such as sampling in logic circuits.

31

2.2 Prior Work

As mentioned in Chapter 1, Parker and McCluskey proposed a method [46] that can

calculate exact signal probabilities for logic circuits. Given a circuit C, the Parker-

McCluskey method traverses C from primary inputs to primary outputs, and calculates

the signal probabilities of C’s individual gates using the rules shown in Table 2.1.

Table 2.1 Signal probability calculation rules for an n-input elementary gate

z(x1, x2, …, xn) with independent inputs.

Gate type Probability calculation rule

Primary input xi p
*
(xi) = 0.5

NOT

AND ∏

NAND ∏

OR ∏

NOR ∏

If a gate g’s inputs are not independently controllable from the primary inputs of C,

then the signal probability of g’s output cannot be directly calculated from g’s inputs

alone. To account for correlations, the Parker-McCluskey method calculates g’s signal

probability in terms of the signal probabilities of C’s primary inputs. In other words, if

g’s Boolean function is f(g) = f(x1, x2, …, xm), then p(g) is expressed in terms of p(x1),

p(x2), …, p(xm), and correlations among gate g can be accounted for when p(g) is

accurately expressed with p(xi).

Consider the circuit in Figure 1.13(b), which is copied in Figure 2.1. The exact

output signal probability p(y3) is expressed as

p
*
(y3) = (1 (1 p

*
(x1)p

*
(x2))(1 p

*
(x3)p

*
(x4)))(1 p

*
(x4))

32

which can be simplified to

p
*
(y3) = p

*
(x1)p

*
(x2)(1 p

*
(x4)) = 0.125

It is worth noting that in this case, x3 is a redundant signal because the Boolean function

y3 = x1x2x4 is independent of x3. Hence p
*
(x3) is irrelevant to p

*
(y3).

y2

y1
y3

x1

x2

x3

x4

Figure 2.1. Four-input circuit (copy of Figure 1.13(b)).

Although the Parker-McCluskey method can compute exact signal probabilities, the

complexity of completely accounting for all signal correlations makes it exponential in

circuit size [46], and therefore impractical for large circuits.

Several heuristic approaches have been developed to reduce the complexity of

handling signal correlations. We review three representative heuristic calculation

approaches, namely the controllability/observability program (COP) [14], the correlation

coefficient method (CCM) [25], and the Boolean approximation method (BAM) [58].

These address the signal-correlation problem by only considering correlations at

individual topological levels, or by ignoring cases considered to have insignificant

impact. We discuss these three heuristics because they have been adopted in several

different application areas, including testability [14], switching activity [59], and

reliability analysis [19][68]. Their accuracy is measured by comparing their signal

probability results to the results generated by MC simulation [14][25][58].

33

Brglez developed a fast probability calculation method COP [14] that ignores

correlation. COP therefore assumes all gate inputs in a circuit are independent, which can

lead to huge calculation inaccuracy [25]. Again, taking the circuit in Figure 2.1 as an

example, y3’s exact signal probability and its signal probability from the COP method are

0.125 and 0.21875, respectively, making the calculation inaccuracy 75%.

Ercolani et al. [25] developed the CCM method, which calculates signal probabilities

by only considering correlations within a single topological level. Given a circuit C,

CCM first levelizes C, and then accounts for signal correlations among each pair of

signals at the same level. This method reduces the computational complexity of handling

correlation from exponential to quadratic. In the case of Figure 2.1, the total number of

correlation cases that need to be enumerated is (

) (

) . CCM is exact for circuits

with simple structures, such as the circuit in Figure 2.1, even though it does not account

for all possible correlations.

The complexity of the signal correlation problem can be further reduced by carefully

analyzing circuit structure. In Figure 2.1, for example, x4 is the only cause of this problem

because its signal probability can propagate to the primary output along different paths.

Uchino et al. [58] have proposed another approach called BAM that estimates a gate’s

correlations associated with individual primary inputs. In the Figure 2.1 case, while CCM

accounts for the correlations of every pair of signals at each level, BAM recognizes x4 is

the only signal with multiple branches, and then only considers correlation when

evaluating p(y3). This is because y3 is the only signal affected by x4 via multiple paths. In

this case, like CCM, BAM yields the exact signal probabilities. It is worth noting that

unlike COP and CCM, Uchino et al. [58] not only derive the complexity of BAM, but

34

also provide an analytical upper bound of its calculation inaccuracy. Such information is

crucial when we need to make a fair comparison among multiple heuristic approaches.

Although the foregoing heuristics provide fast signal probability estimation, their

calculation accuracy varies from circuit to circuit. In addition, some methods [14][25] are

not based on well-defined mathematical models, but are just ad-hoc solutions. Hence,

measuring the quality of these methods e.g., identifying analytical bounds on their

calculation inaccuracy, is difficult or even impossible.

Unlike the aforementioned heuristic approaches, MC sampling is a well-studied

statistical technique whose simulation accuracy is manageable and is fully determined by

the number of applied samples. Since MC can provide highly accurate results if necessary,

it is suitable for validating the performance of heuristics. In the next section, we study the

use of signal redundancy for simplifying the sampling complexity in logic circuits.

2.3 Signal Redundancy

We now propose ways to exploit a circuit’s redundancy properties to speed up signal

probability estimation. To illustrate, consider the circuit in Figure 1.10, which is copied

in Figure 2.2, and realizes z(x1,x2,x3,x4) = x1x2 + x1x3. Input x4 is redundant in the usual

sense that z is independent of x4, a fact that can be exploited to reduce sampling effort.

While exhaustive simulation of a four-input circuit requires 16 samples, the full

redundancy of x4 reduces the circuit to a three-input one that can be exhaustively

simulated with only 8 samples. The sample input vectors shown on the figure apply all

possible combinations to the non-redundant inputs x1, x2 and x3, so the simulated value of

p(z) is exact.

35

g1

g3

g4

x1

x2

x3

x4

0,1,1,1,0,1,0,0
0,1,0,0,1,1,0,1

1,1,0,1,0,0,0,1

0,1,1,0,1,0,0,1

z0,1,0,1,1,0,0,1g2

p(z) = p*(z) = 4/8

Figure 2.2. Circuit illustrating signal probability estimation via sampling; (copy of Figure

1.10).

Of course, fully redundant inputs such as x4 in the above example rarely occur in

practice. We address a new type of partial redundancy where independence on input

variables is conditional on specific values applied to other variables. For instance, z in

Figure 2.2 becomes independent of x2 and x3, when x1 = 1 and 0, respectively. Hence, x2

and x3 can be considered partially redundant with respect to x1. Most of a circuit’s

primary inputs are partially redundant; however, the degree of their redundancy varies

widely. Some inputs become redundant much more often than others. We will show how

such partial redundancies can be exploited to speed up simulation.

We propose an extension to the MC approach we call Reduced-Ordered Monte

Carlo (ROMC), which has better performance than conventional MC. It incorporates two

main techniques to improve the quality of circuit simulation. The first technique orders

and prioritizes the primary inputs according to their observability. For instance, consider

the problem of estimating the signal probability of z1 in Figure 2.3. Some primary inputs

such as x10 are more observable at z1 than others, and some, such as x2, are difficult to

observe. Low-observability primary inputs tend to become partially redundant due to

36

other primary input assignments, while high-observability primary inputs are unlikely to

become redundant. The concepts of observability and redundancy discussed here are

loosely related to the influence property of Boolean functions [33], and observability as

used in the testing context [15]. We employ the SCOAP testability measurement heuristic

[15] to quickly find the most observable primary inputs.

x1
x2

x3

x10

z1

x4

x5
x6

x7

x8

z2

x9

g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11

Figure 2.3. Ten-input, two-output circuit; a multiplexer-like structure formed by g6, g7

and g8 is highlighted.

The second technique involves finding compatible primary inputs, which have the

property that only one of the primary inputs can affect certain primary outputs at any

time. This relation among input variables can also be interpreted as a kind of partial

redundancy. For example, x4 and x5 in Figure 2.3 are compatible primary inputs with

respect to primary output z1. If x3 = 1 (0), then z1 becomes independent of x4 (x5). So both

x4 and x5 are partially redundant primary inputs associated with x3, and they do not affect

37

output z1 at the same time. Such behavior resembles that of a multiplexer, whose control

(select) signals ensure that only one data input Di is connected to the multiplexer’s output

at a time; the others are effectively masked. The data inputs {Di} are viewed here as

compatible. More generally, we find compatibility relations among the inputs of

multiplexer-like structures. One such structure is marked by dashed lines in Figure 2.3,

where x1 and x8 are compatible with respect to x2, x5 and x6. We will show that

compatible primary inputs can share resources, such as input samples or randomness

sources that drive the samples. This can lead to large efficiency gains in signal

probability estimation.

Figure 2.4. Accuracy comparison between ROMC and a typical MC calculation of the

average output signal probability for the circuit in Figure 2.3.

Figure 2.4 illustrates the accuracy improvement from applying ROMC to the circuit

in Figure 2.3. Here, accuracy is measured in terms of standard error [27], and refers to the

difference between the exact probability p
*
(z) and the probability p(z) estimated by the

38

simulation for various sample sizes; the errors are averaged over the two outputs z1

and z2. For a given accuracy level, ROMC is significantly faster than MC because it

achieves the required accuracy with fewer samples. Furthermore, in this case, ROMC can

produce exact signal probabilities with only 32 samples.

2.4 Sampling Concepts

This section reviews some basic concepts that are needed later. First, we formalize

the signal probability estimation problem introduced in the previous section, and then

discuss some basic properties of MC simulation. Lastly, we review the Boole-Shannon

expansion.

We formulate signal probability computation in general terms, so that it applies to

many different EDA situations. The signal probability estimation problem may be stated

as follows. Given a combinational circuit C (including the pseudo-combinational

equivalent of a sequential circuit) with n primary input and m primary output signals, as

well as a set of N sample input sequences, calculate the (average) signal probabilities of

the primary outputs. Figure 2.2 illustrates this for n = 4, m = 1 and N = 8. We make the

usual assumption [25][58] that each primary input xi has signal probability p(xi) = 0.5 and

is independent of all other primary inputs. This means that their joint probability

distribution is the product of their individual distributions, and captures the informal

notion of “random” sampling.

Consider a n-input, single-output circuit C that implements the Boolean function

z(x1,x2,…,xn), where the primary inputs have the same signal probability p(xi) = 0.5 and

are all independent. The signal probability estimation problem for C is to determine p
*
(z).

39

Since it is usually not feasible to find the exact value of p
*
(z) if C is large, we aim to find

an estimator probability p(z) that provides a good estimate of p
*
(z). For a given estimator

p(z), a bias β and a variance var[p(z)] are defined as follows [27]:

β = E[p(z) p
*
(z)] (2.1)

var[p(z)] = E[(p(z) p
*
(z) β)

2
] (2.2)

where E[X] denotes the expected value of X. The square root of the variance of an

estimator is its standard error. It is usually desirable for an estimator to have β = 0, in

which case it is called unbiased, and to have a small variance [27]. An unbiased estimator

with variance zero is exact, that is, p(z) = p
*
(z).

MC is a method of estimating p
*
(z) by applying N uniform and independent random

samples to the primary inputs and collecting N samples at the output z. Let z(i) denote the

i
th

 value of z associated with the i
th

 sample. The estimator p(z) can be defined as

p(z) = (1/N)∑i z(i)

It can be shown that p(z) in this case is unbiased [27] and that the variance of the

estimation is

var[p(z)] = (1/N)p
*
(z) (1 p

*
(z)) (2.3)

So the variance and the standard error of an MC simulation can be reduced by increasing

the sample size N. However, reducing the standard error by a factor of k requires the

sample size to be increased by factor of k
2
 making it impractical if the desired error level

is low. Consequently, many techniques for variance reduction without increasing N have

been proposed [27][49]. The method proposed in this dissertation can be seen as another

variance reduction technique.

Although the input samples for MC are usually assumed to be independent, which

allows samples to be repeated, it is also possible to use MC with non-repeating samples

40

[49]. We call the former MC with sample replacement (MCW) and the latter MC without

sample replacement (MCWO). Like MCW, MCWO is an unbiased estimation method,

but its variance follows that of a hypergeometric distribution [49]. For an MCWO

estimator p(z)

E[p(z)] = p
*
(z)

var[p(z)] = (1/N)p
*
(z)(1 p

*
(z)) (2

n
 N)/(2

n
 1)

Recall that n denotes the number of the primary inputs in C. For a fixed sample size

N, if the number of primary inputs n is reduced by some number, then the variance will

definitely become smaller. The change can be significant if N is comparable to 2
n
. This is

not true in the case of MCW since its variance is independent of n. This fact turns out to

be important in our proposed method since we aim at reducing the sample space of the

MC, and can benefit from it only if we use non-repeating samples.

Finally, we summarize the Boole-Shannon expansion and provide a compact version

for later use. An n-variable Boolean function F(X) can be expanded around any variable

xi according to the following formula [26]

F(x1, x2,.., xi,.., xn) = xi Fxi + xi .Fxi

where Fxi = F(x1, x2,..,0,..,xn) and Fxi = F(x1, x2,..,1,..,xn) denote the negative and positive

cofactors of F, respectively, with respect to xi.

For example, consider the function generated by g8 in Figure 2.3. It can be expanded

around x3 thus:

g8(x1,x2,x3,x4,x5,x6) = x3((x1x2) + x4) + x3(x5x6)

41

The negative and positive cofactors are (x1x2) + x4 and (x5x6), respectively. The variable

x4 (x5) does not appear in the positive (negative) cofactor due to partial redundancy; the

value of x3 always blocks the propagation path from x4 (x5) to g8.

As this example suggests, Boole-Shannon expansions and cofactors provide a tool

for describing signal compatibility. We can also express signal probabilities in terms of

cofactors:

∑

 (2.4)

It is also useful to define the Boole-Shannon expansion with respect to a product of k

variables Xk X. In this case, we are dealing with cube cofactors [26] such as Fx1x2…xk

and Fx1x2…xk. With this notation, cofactors are awkward to write, so we denote Fx1x2…xk

by F0, Fx1x2…xk by F1, and Fx1x2…xk by F2
k1. The cube expansion around Xk can then be

expressed compactly as

F(X) = x1x2…xkF0 + x1x2…xkF1 +… + x1x2…xk F2
k1 (2.5)

2.5 Variable Ordering

As discussed in Section 2.3, fully redundant primary inputs can be exploited to

reduce the sample size for simulation, simply by not wasting samples on them. Similarly,

the partially redundant, or less observable, primary inputs that become redundant

frequently can be ignored in favor of more observable ones. (Of course, we cannot ignore

them completely like redundant primary inputs.)

Accordingly, we propose the following sampling approach. Suppose we want to use

N = 2
k
 samples to estimate the signal probability p(F) of function F with an n-member

input set X. Select k variables Xk = x1, x2,..., xk X that are more observable than the

42

others. Generate N samples that include every possible value of Xk exactly once, and

assign random values to the remaining n k variables. The following samples illustrate

this for k = 3 and n = 9

x1 x2 x3 x4 x5 x6 x7 x8 x9

0 0 0 0 1 0 1 1 0

0 0 1 1 0 1 1 0 1

0 1 0 0 1 0 1 1 1

0 1 1 0 1 1 1 0 0

1 0 0 1 1 1 0 1 0

1 0 1 1 0 1 1 1 0

1 1 0 1 0 0 1 0 1

1 1 1 1 1 0 1 0 0

The Boole-Shannon expansion (2.5) enables us to express the above sampling

scheme in the following way. Estimate the signal probability of each of the cofactors F0,

F1,…, FN-1 with one sample and average the estimates. In practice, estimating the

cofactors with one sample is sufficient. For instance, with a good variable ordering, the

cofactors will be close to 1 or 0, so a single sample provides a very good estimate.

p(F) = (1/N)(p(F0) + p(F1) + + p(FN-1)) (2.6)

The average estimate p(F) is unbiased. Its variance is therefore

var[p(F)] = (1/N
 2

)(var[p(F0)]+ var[p(F1)]+ ... + var[p(FN-1)]) (2.7)

The variance of each cofactor estimate p(Fi) is that of conventional MC with one sample,

so

var[p(Fi)] = p
*
(Fi)(1 p

*
(Fi))

43

Now consider two exemplary cases. First, suppose that

p
*
(Fi) = 0.5 for i = 0, 1, 2,..., N 1; then var[p(Fi)] = 1/4. In this case, according to (2.7)

we have var[p(F)] = 1/4N, which means that the proposed approach is no better than

conventional MC. Next, suppose that p
*
(Fi) = 0 for i = 0, 1, 2,..., (N/2) 1 and p

*
(Fi) = 1

for i = N/2, (N/2) + 1, (N/2) + 2,... , N 1. This time var[p(Fi)] = 0, so var[p(F)] = 0; in

other words, the estimate in this case is exact. The difference between the two cases

sketched above is that in the first one, x1, x2,..., xk have high redundancy and low

observability at the output F. This is why the corresponding cofactor has probability 0.5.

In the second case, however, x1, x2,…, xk have high observability at F, and after assigning

a value to them, completely determine the value of F.

Thus, for a given function F, we need to look for k variables that minimize var[p(F)].

This means we have to consider the possible choices, calculate the probability of the

corresponding cofactors, and calculate var[p(F)]. If all choices must be considered, this

problem is more difficult than exhaustive simulation, and hence is not feasible in practice.

We therefore use heuristic observability evaluation methods to find the most observable

variables.

Consider the circuit in Figure 2.5. The output z has exact probability p
*
(z) = 0.5. If

we try to estimate this value with a four-sample simulation, the MC method yields a

variance of 1/16 = 0.063 according to (2.3). Now apply the proposed technique to this

example. Since we have a total of four samples, we need to find the two most observable

variables, which are obviously a and b. The variance of the estimation is given by (2.7)

thus:

var[p(F)] = (1/16)(var[p(Fa’b’)] + var[p(Fa’b)] + var[p(Fab’)] +var[p(Fab)])

44

 = (1/16)(var[p(cd)] + var[p(1)] + var[p(c+d)] + var[p(0)]) = 0.023

which implies that this technique yields a better estimate.

g3
a

b

c
d

z

g2

g1

Figure 2.5. Variable ordering; a and b are more observable than c and d.

2.6 Sample Space Reduction

Next, we introduce a technique to shrink a circuit’s sample space by converting it to

another circuit with fewer primary inputs but the same output probabilities. As discussed

in Section 2.4, this sample space reduction results in better signal probability estimates

without the need to increase the sample size.

Consider again the function z(x1,x2,x3,x4) = x1x2 + x1x3x4 + x1x3x4 of Figure 2.2 The

redundant primary input x4 allows the sample space to be reduced from 16 to 8. Such

redundant primary inputs can be identified by their Boolean difference. The Boolean

difference of z(x1, x2,, xi, , xn) with respect to input xi is defined as

where denotes XOR. As stated first by Akers [5], it follows immediately that xi is

redundant if and only if

45

We want to show that partially redundant primary inputs also reduce the sample size,

and can be detected in a similar way. Consider again the partially redundant inputs in

Figure 2.2. Input x2 (x3) becomes redundant if x1 = 1 (0), so at least one of them is always

redundant in the sense that x2 and x3 do not affect the output at the same time. Knowing

this, we can further reduce z’s sample space by tying x2 and x3 together to form a single

primary input for simulation purposes. This reduces the number of samples for

exhaustive simulation from eight to four, namely, x1x2x3x4 = 0000, 0110, 1000, 1110,

while z’s signal probability remains unchanged. So just by obtaining the output values for

these few samples, we can determine the exact signal probability p
*
(z).

In general, two partially redundant inputs xi and xj of a function z that never affect z

together have the following property in terms of the Boolean difference:

We call such inputs compatible. For example, inputs x2 and x3 of z(x1,x2,x3,x4) = x1x2 +

x1x3x4 + x1x3x4 are compatible because

Theorem 2.1: If two inputs xi and xj of an n-input function f(x1,x2,.., xi,..,xj,..,xn) are

compatible, then the (n 1)-input function g = f(x1,x2,.., xi,..,xi,..,xn) obtained by equating

xj and xi in f has the same signal probability as f, that is, p
*
(g) = p

*
(f)

Proof: Equation (2.9) implies that for all the possible values of the variables other than xi

and xj, we have either

 or

 . Hence,

 or
. Applying

46

Boole-Shannon expansion to these equations yields

 and
, or

 and
. Therefore,

 (
) () (

) (
)

Also, according to (2.4) we have

[() (

) (
)

]

[()

]

Since g is the same as f with xi and xj connected, we can write

 and

 . Consequently,

[(

) (
)]

[()

] (2.10)

So tying together a pair of compatible primary inputs yields a circuit with fewer

inputs but the same signal probability. More generally, an input set of a function forms

a compatible set, if all xi-xj pairs in are compatible. All the members of can be tied

together without altering signal probabilities. This is an instance of a general

compatibility relation [26], and so is reflexive, symmetric but not necessarily transitive. It

can be shown that the ten primary inputs of Figure 2.3 include 18 compatible pairs and

four compatible triples, but no larger ones.

Determining compatible sets with special properties is a difficult task that arises

often in EDA, for example, in state minimization for finite-state machines, and resource

scheduling for high-level synthesis [26][39]. These problems can be modeled by

compatibility graphs, or their complements, conflict graphs. The problem of interest here

is finding a minimal number of compatible sets to cover all primary inputs and minimize

the relevant sample space, where the chosen sets must form a disjoint cover (partition) of

47

the primary inputs. This problem is related to the clique partitioning problem in graph

theory [39].

There is usually more than one optimum solution to our primary input partitioning

problem, and they all reduce the sample space equally. However, some partitions provide

better simulation accuracy due to differences in their observability properties. For the

circuit of Figure 2.3, our proposed method ROMC selects the compatible sets {x1, x5},{x2,

x8},{x3, x7},{x4, x6},{x9, x10}, which leads to a five-input circuit with the same output

signal probabilities as the 10-input original; see Figure 2.6. Other nearly equivalent

solutions exist such as: {x1,x5}, {x2,x6,x8}, {x3,x7}, {x4, x9}, {x10}.

z1

z2

g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11

x1

x2

x3

x4

x5

0.75

0.88

0.13

0.06

0.81

0.41

0.88 0.44

0.13

0.5

0.56

Figure 2.6. Five-input circuit obtained from Figure 2.3 by connecting compatible primary

inputs; the supergates of z2 are marked by dotted lines.

48

2.7 Implementation Issues

This section presents our circuit sampling algorithm Reduced-Ordered Monte Carlo

(ROMC), which incorporates the variance and sample-space reduction techniques

introduced in Sections 2.5 and 2.6. Figure 2.7 shows the pseudo-code for ROMC, as well

as some of its main procedures.

Given an n-input m-output circuit C and a sample size N = 2
k
, ROMC first finds an

observability value for each primary input via a modified SCOAP algorithm [15]. The

modifications arise from differences between observability in the testing context and

ROMC’s. First, a fanout stem’s SCOAP observability is the minimum value among its

fanout branches; this is replaced by the average value of the branches’ observability. For

testing purposes, observing a signal at one primary output is enough, but for ROMC, a

good observable signal is one that is observable at many primary outputs. A second

modification is that SCOAP calculates the worst-case observability for both the 0 and 1

values of a signal, whereas ROMC computes the average of these values.

Next, ROMC determines all compatibility relations among the primary inputs and

constructs a primary input compatibility graph. The Partition_to_Supergates procedure

searches for multiplexer-like structures in order to detect compatible primary inputs.

These structures are relatively easy to recognize, and are naturally confined to the given

circuit C’s supergates, which are sub-circuits that encapsulate maximal fanout-

reconvergence structures. Of course, it is possible that the entire original circuit is a

supergate, in which case no simplification results from supergate partitioning. The

Compatible_Pair_Detection procedure partitions C into supergates and recursively

searches them for compatible signals. For instance, there are three supergates for primary

49

output z2 in Figure 2.6, namely: SG(g11) = {g11}, SG(g9) = (g9, g7, g6), and SG(g4) = {g4}.

SG(g9) is actually a multiplexer, so some of its inputs are compatible. These compatibility

relations are propagated toward the primary inputs and lead to the conclusion that x8 is

compatible with x5 and x6.

Figure 2.7. Pseudo-code for the ROMC simulation algorithm.

ROMC(Circuit C, primary inputs X, Sample size N = 2k) {
 // Returns estimated signal probabilities of the primary outputs
 Observability Values Xobs. = Observability_Evaluation(C, X)
 Edge List E = Compatible_Pair_Detection(C, X)
 Graph G = G(X, E) // G is the compatibility graph of C;
 vertices are primary inputs, edges connect compatible primary inputs

 Reduced primary input Set 𝑋 = Clique_Partitioning(G)

 Observability Values 𝑋 𝑜𝑏𝑠 = Add Xobs. of connected primary inputs in 𝑋
 Ordered List L = Sort primary inputs in 𝑋 by their observability 𝑋 𝑜𝑏𝑠
 Sample Set S = All combinations of first k primary inputs in L,

 with random values assigned to remaining primary inputs
 return Monte_Carlo(C, S) // Returns signal probabilities generated by
 applying Monte-Carlo simulation to C with sample set S

}

Observability_Evaluation(Circuit C, primary inputs X){
 // Returns observability value of each primary input
 return Modified_SCOAP(C, X)
}

Compatible_Pair_Detection (Circuit C, primary input X){
 // Returns list of compatible primary input pairs
 Supergate Partition SGP = Partition_to_Supergates(C)
 // Partitions C into fanout-free network of subcircuits

 if (SGP = C) then // Identify the compatible signals in C’s primary inputs
 for each primary input pair (xi, xj) in X

 if (xi and xj are compatible) then
 add (xi, xj) to list L
 return L
 else //Recursively identify the compatible signals in C’s supergates

 for each subcircuit C in SGP

 Li = Compatible_Pair_Detection(C, X)
 // Recursive call to supergate subcircuits

 for each pair (xi, xj) in Li
 propagate the relation to the primary inputs

 add compatible primary inputs to list L
 // Combine recursive results
 return L
}

50

After constructing the compatibility graph G for the original primary input set X,

ROMC performs clique partitioning on G to find a reduced set of ̂ < n primary inputs

that form a primary input cover. Equivalently, one could construct the primary input’s

conflict graph ̅, and solve the coloring problem for ̅, i.e., find the minimum number of

vertex colors such that all adjacent vertices have different colors [39]. There are many

fast heuristic algorithms to solve this well-studied problem [13]. Figure 2.8 shows the

conflict graph of the circuit in Figure 2.3 and its coloring solution. The primary inputs

(vertices) with the same color label are those that are tied together in Figure 2.6.

Next, ROMC sorts the primary inputs according to their observability. The

observability value of each newly formed primary input ̂ is the sum of the observability

values of the corresponding original primary inputs. For instance, in Figure 2.6, x9 and x10

are replaced by a new primary input ̂ , hence ̂ ’s observability is the sum of those of x9

and x10. The new primary inputs are then ordered by observability; in the case of Figure

2.6, the ordering is ̂ ̂ ̂ ̂ ̂ .

At this point, ROMC generates samples based on its compatibility and observability

figures. For the example (Figure 2.6), if the sample size N = 8, then primary inputs ̂ , ̂

and ̂ are chosen as the most observable. ROMC applies all 8 combinations 000,

001,...,111 to these three primary inputs, and assigns random bit sequences to ̂ and ̂ .

It simulates the circuit with the resulting 8 samples.

51

Figure 2.8. Conflict graph for the circuit in Figure 2.3; primary inputs with the same color

labels are compatible and can share samples.

2.8 Experimental Results

To gauge the efficiency and accuracy of our approach, we applied ROMC to signal

probability estimation for representative ISCAS-85 and LGSyn-93 benchmark circuits [3].

Accuracy was measured in the following way: For an n-input m-output circuit C,

reference (gold) signal probabilities were generated for all m primary outputs using

conventional MC. If n ≤ 31, then C was exhaustively simulated; otherwise, C was

simulated with 2
31

 random samples. This sample size 2
31

 produces results that are

accurate enough for verifying ROMC’s performance considering the relatively small size

of the benchmark circuits. Then, for a fixed sample size N = 2
k
, ROMC and MC simulate

C 100 times. The accuracy for N = 2
k
 is measured in terms of the average standard errors

of the estimated results [27].

Each circuit was simulated with sample sizes ranging from 2
7
 to 2

24
. We found that

ROMC can identify compatible primary inputs and determine each primary input’s

52

observability quickly, even in fairly large circuits such as misex3, which contains over

3,600 gates. The runtime overhead for compatible signal identification and observability

estimation was less than 2 seconds on an Intel Quad-Core 2.35GHz, 64-bit PC with 4G

RAM, which was used for all benchmarks.

Figure 2.9. Speed-up of ROMC over MC for the benchmark circuits at five accuracy

levels defined by standard error.

Figure 2.9 shows the runtime improvements for the representative benchmark

circuits. The improvement at each accuracy level is measured by the ratio between the

MC and ROMC sample sizes needed to achieve the required accuracy. From the figure,

we see that ROMC can reduce runtimes by from one to three orders of magnitude. The

average runtime improvement for an estimated error of 10
-4

 is nearly three orders of

magnitude. In addition, these simulation results also show that ROMC’s runtime

improvement grows with increasing accuracy levels. In other words, ROMC can produce

very accurate results with far fewer samples than MC. This suggests that ROMC is well-

suited to applications that require highly accurate signal probabilities, such as power

estimation [58].

53

We would like to emphasize that a variance reduction method might produce much

worse results than the ones produced by MC if it is not designed carefully [27], and

developing a variance-reduction technique suitable for all kinds of circuits is a challenge.

ROMC, however, produces no sample variance higher (worse) than the variances

generated by MC, which suggests that it is a very broadly applicable method. As the

results show, it is effective for various types of circuits such as the arithmetic and error

detection circuits found in the ISCAS-85 [28] and LGSyn-92 [3] benchmark sets.

Table 2.2. Performance of compatibility and observability determination for selected

benchmark circuits including the largest benchmark circuits.

Circuit
No. of
gates

No. of
primary
inputs

No. of inputs removed
by compatibility

analysis

Runtime (s) for
compatibility and

observability analysis

misex3 3624 14 0 0.923

seq 2875 41 1 0.430

apex5 2418 115 0 0.176

c5315 2307 178 20 2.902

i10 2195 257 1 5.947

des 2007 256 1 0.279

c3540 1669 50 1 4.718

apex3 1038 54 7 0.248

c1196 529 31 2 0.130

c1238 508 31 3 0.131

cm150a 96 21 14 0.006

i2 36 201 65 0.222

As Table 2.2 indicates, ROMC can identify compatible PIs and determine the

observability of each primary input efficiently. The runtimes for compatible signal

identification and observability determination in all cases were less than six seconds.

Most of the benchmarks contain no more than two or three compatible primary inputs,

because of the design effort usually devoted to logic minimization and, implicitly, to

54

redundancy removal. In a few cases, however, such as i2 and C5315, ROMC discovers

many compatible primary inputs. In C5315, for instance, no PO is associated with more

than 67 different primary inputs. This means that without the proposed compatible input

identification technique, a lower bound on sample size for exhaustive simulation is 2
67

.

After compatible signals are identified, this lower bound can be reduced by a factor of 2
20

to 2
47

. In the case of i2, the size of the sample set for exhaustive simulation is reduced by

2
65

, a huge reduction. Although this technique does not work well for all types of circuits,

it is still effective for realistic circuits such as C5315, which is a nine-bit arithmetic logic

unit [28].

Figure 2.10. Comparison between MC and ROMC for C1196.

Figure 2.10 compares MC and ROMC for the C1196 circuit where the standard error

of ROMC falls dramatically with increasing sample size. The big accuracy improvement

from N = 18 to N = 20 results from a combination of the compatibility and MCWO

55

features of ROMC. The sample space of C1196 is reduced from 2
23

 to 2
21

 due to the

presence two compatible primary input pairs. MCWO can reduce the sample variance

exponentially when the sample size is close to that of the entire sample space, which is

2
21

 in this case.

Figure 2.11. Comparison between MC and ROMC for C499.

Although ROMC does not produce negative results in any of the selected

benchmarks, there are a few cases where ROMC produces insignificant runtime

improvement. Figure 2.11 shows the runtime comparison for C499, which is an error-

correction circuit [28]. The small improvement is due to the fact that all primary inputs of

this circuit tend to be equally important (of the same low redundancy) for all primary

outputs.

56

2.9 Case Study

Finally, we use a typical EDA task, power consumption estimation, to demonstrate

how the proposed ROMC method can be applied to other EDA areas.

As mentioned in Chapter 1, a gate’s power consumption is proportional to its

switching activity. This can be accurately estimated from the equation

Pdyn = 1/2CLV
2
fα

where CL, V, f and α are the gate’s output capacitance, applied voltage, working

frequency, and switching activity, respectively [47][58][64]. Of these, the switching

activity α is the most difficult to determine. Suppose, however, that all inputs are

independent and G’s output signal is s. We can then use the variance of p(s), which is

p(s)(1 p(s)), to represent α, and hence calculate Pdyn [47][58][64].

Consider again the circuit of Figure 2.6, which is reproduced in Figure 2.12. By

computing the signal probability of the intermediate lines, we can evaluate the circuit’s

overall switching activity, and hence its power consumption. In Figure 2.12, gate output

lines are marked with the dynamic power consumption of individual gates in microwatts,

assuming an IBM 130-nm process with a 1.2 volt supply and a 1 GHz clock frequency. It

is worth noting that ROMC estimates the power values with less than 1% error via only

16 samples, while MC has a 12% error with the same number of samples.

57

z1

z2

g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11

x1

x2

x3

x4

x5

0.51

0.37

0.45

0.14

 0.36

0.96

0.3 1.21

 0.45

1.28
0.83

Figure 2.12. Power consumption of the five-input circuit in Figure 2.6.

2.10 Summary

We have proposed an MC-based algorithm ROMC for signal probability estimation

in logic circuits. As discussed in Chapter 1, accurate signal probabilities are important to

EDA applications based on probabilistic analysis. Existing probabilistic methods for

signal probability calculation are confined to small circuits if they attempt to account for

all signal correlations, even those having insignificant impact on calculation accuracy, or

else provide highly inaccurate results due to inadequate handling of signal correlations.

MC sampling, on the contrary, can precisely control its calculation accuracy by the

number of applied samples, unlike probabilistic methods such as CCM and BAM. ROMC,

like MC methods, preserves this computational property, but is faster than conventional

MC, because it exploits two redundancy properties of logic signals (compatibility and

observability) in novel ways to remove unnecessary samples and reduce sample variance.

58

We have presented experimental results showing that the proposed approach reduces

simulation time by as much as three orders of magnitude on a representative set of

benchmark circuits. In addition, it can reduce signal probability estimation errors for a

given runtime budget. These two nice properties make ROMC particularly suitable for

EDA tasks such as measuring power consumption.

59

CHAPTER 3

Trigonometry-based Probability Modeling

In Chapter 1, we discussed how soft errors have become a major concern of circuit

design because of the decreasing noise margins of ICs. This chapter presents a novel

probabilistic algorithm, Trigonometry-based Probability Calculation (TPC), aimed at

logic circuits employing the unconditional error model. TPC formulates signal

probability in terms of trigonometric functions controlled by angles. Gate-error

probability is modeled in TPC by a small angular deviation, and is treated as a parameter

of signal probability. Consequently, a gate’s error-free signal probability and error

probability are fully integrated. With the proposed trigonometric representation, typical

(Taylor) expansion techniques can be applied to simplify probabilistic calculations. The

overall efficiency and accuracy can be managed by the number of expansion terms used.

Our experimental results show that TPC scales well to circuits with tens of thousands of

gates, and its average accuracy, even with error probabilities as small as 10
-8

, is over

96%. This work was presented at the DATE (Design, Automation, and Test in Europe)

conference in 2011 [68].

60

3.1 Background

The gates of modern ICs are very sensitive to non-deterministic effects caused by

high energy particles, process variations, and voltage overscaling. A key characteristic of

gate-error probabilities is that they are usually very low, e.g., 10
-8

 to 10
-10

 [30][37]. In

practice, analyzing such non-deterministic phenomena by physical simulation methods

like radiation testing is expensive [29]. Monte Carlo (MC) sampling is also widely used

for this purpose [11][70]. However, MC sampling can be very time-consuming,

especially when the occurrence probabilities of the error phenomena of interest are so

low. As we discussed in Chapter 2, large sample sets are necessary for accurately

capturing such rare events.

Recently, several methods have been proposed for evaluating the soft-error rate

(SER) [1][7][20][34][48] based on various probabilistic theories. The main differences

between these techniques lie in their error models, the way they simulate masking effects,

the completeness of their correlation analysis, and their ability to simulate situations

where several errors occur in the same clock cycle.

In Chapter 1, we briefly introduced the probabilistic transfer matrix (PTM) approach

[34]. Now we review and compare the other major probabilistic techniques for SER

estimation for combinational circuits: Bayesian networks (BNs) [48], probabilistic

decision diagrams (PDDs) [1], the Four-Event (FE) method [7], and the Single-Pass (SP)

method [20].

The BN method uses conditional error models, while the PDD, FE, and SP methods

employ unconditional ones. Like the PTM approach, the BN and PDD methods preserve

complete information about signal correlations by mapping circuits into certain data

61

structures, namely junction trees and decision diagrams, all of which can be very

complex. The PTM, BN, and PDD methods are therefore limited to relatively small

circuits, since the complexity of analyzing and storing correlation information using their

various data structures is huge. On the other hand, the FE and SP methods do not account

for all correlations among erroneous and error-free signals. Therefore, these two

approaches are more scalable but much less accurate than the others.

Rejimon and Bhanja presented a method of estimating circuit reliability using

Bayesian networks [48]. Like the PTM approach, the BN technique uses a conditional

error model. Given an error-free circuit C, this method first creates an erroneous circuit

model C
e
 from C. Then each primary output of C is connected to the corresponding

output of C
e
 by an XOR gate. To evaluate circuit reliability, a junction tree for a new

circuit comprising C, C
e
 and XOR gates is constructed. A node of the junction tree may

contain several gates that are highly correlated. An important property of junction trees is

that the path from one junction-tree node to another is unique [34]. After the junction tree

construction, the signal probabilities can be evaluated, but the evaluation complexity is

exponential in the maximum number of gates at a junction-tree node. The BN method is

practical only for small circuits due to its use of the conditional error model and

exhaustive correlation estimation.

Probabilistic decision diagrams (PDDs) [1] are single-terminal, weighted and

directed acyclic graphs (DAGs). They form the basis of a signal probability and

reliability calculation algorithm for combinational circuits. Unlike the PTM and BN

methods, the PDD approach describes error behavior with the simpler unconditional error

model. A circuit’s PDD is constructed as follows. First, for each gate, generate its PDD

62

based on its error probability. Second, recursively merge the gate PDDs from inputs to

outputs. Like ROBDDs and ADDs, PDDs are canonical for circuits with the same

functions and error probabilities [1]. To guarantee canonicity, all redundant sub-graphs

and unnecessary nodes must be eliminated from a PDD. The size of the final PDD is

determined not only by the correlation properties of the circuit, but also by the variable

order. Like the PTM method, this method is unsuited to calculating the probabilistic

behavior of individual gates in a single PDD.

To deal with the complexity of handling correlation information, Asadi and Tahoori

developed a soft-error reliability estimation method, called Four-Event (FE), which also

employs unconditional error models [7]. The FE method describes signal behavior by

means of four different states: 1, 0, e and e, where e and e represent an erroneous value

and its negation, respectively. It calculates the probability that an erroneous value

originating from a particular gate g will be observed at a primary output. For a faulty gate

g, FE first assigns e to g, and then simulates the circuit. The error probability associated

with g is equivalent to the probability that e or e is observed at the primary outputs. Paths

between g and the primary outputs are called on-paths, while the others are off-paths. A

major advantage of this method is that all correlations among on-paths (the correlations

of e and e) are accounted for. However, the off-path correlations are ignored, which can

dramatically affect accuracy. For instance, in Figure 3.1 the propagation probabilities of

the induced error to the primary output using the FE and exact methods are 0.375 and 0.5,

respectively, so the computational error of FE can be as high as 25%.

63

y3

x1

x2

x3

x4

Particle strike

on-path

Figure 3.1. Illustration of the FE method; an on-path is denoted by red bold lines.

The SP method [19][20] only examines the correlations between consecutive levels

of the target circuit. It first employs CCM to calculate signal probabilities for error-free

versions of individual gates, and then evaluates reliability or error susceptibility based on

the error-free probabilities. Such calculations implicitly assume that the occurrence of

errors does not affect the signal probabilities. As a result, the accumulated effects of

multiple soft errors are underestimated, and the overall accuracy diminishes significantly

with very small error probabilities. For instance, in [19] the average computational

inaccuracy for error probabilities of 0.3 and 0.05 are reported as 0.46% and 5.63%,

respectively, which suggests that the inaccuracy grows rapidly with decreasing error

probabilities. This makes the SP approach unsuitable for estimating soft-error effects

because, in practice, soft error probabilities are very low, e.g., 10
-9

.

We have shown that the existing methods of soft-error analysis are either confined to

small circuits because of their inefficient handling of correlation, or else provide fast but

inaccurate simulation results. This makes it difficult for these methods to perform

accurate SER simulation when used with realistic error models. In the next section, we

introduce a trigonometry-based probability model that can integrate error-free and error

64

probabilities efficiently. We will show later that the proposed TPC method is particularly

suitable for dealing with low error probabilities, which are an important feature of soft-

error models.

3.2 Unconditional Error Representation

We first derive a mathematical expression for unconditional errors, and introduce

some basic properties of unconditional models. We then briefly discuss an error

representation technique using exclusive-or (XOR) gates, which has been adopted in

many error-estimation methods. We explain why this approach can dramatically increase

complexity, making it impractical for large circuits.

Consider a two-input AND gate with the unconditional error model shown in Figure

3.2. This is compared with a conditional gate-error model in Figure 1.14. Let the signal

probabilities associated with four different input vectors be p(x1x2), p(x1x2), p(x1x2), and

p(x1x2), respectively. Since the four probabilities are mutually exclusive, z’s erroneous

signal probability p(z
e
) can be expressed as

p(z
e
) = p(x1x2)perr + p(x1x2)perr + p(x1x2)perr + p(x1x2)(1 perr)

which reduces to

p(z
e
) = p(z)(1 perr) + (1 p(z))perr (3.1)

65

x1

x2
z

Input

x1x2

Output probabilities

z = 0 z = 1

00 1 perr perr

01 1 perr perr

10 1 perr perr

11 perr 1 perr

(a) (b)

Figure 3.2. (a) Two-input AND gate, and (b) its behavior with an unconditional error

model.

Equation (3.1) shows that for a particular gate, the erroneous version of its signal (output)

probability p(z
e
) can be obtained from its error-free signal probability p(z) and the gate-

error probability perr. The maximum and the minimum values of p(z
e
) p(z) are perr and

perr when p(z) = 0 and 1, respectively. Thus for an arbitrary p(z), p(z
e
) is closer to 0.5

than p(z). In other words, the presence of errors increases the degree of “uncertainty”.

Moreover, it is worth noting that p(z
e
) p(z) = 0 when p(z) = 0.5, which means, from the

statistical point of view, errors have no significant impact on signals whose signal

probabilities are very close to 0.5.

We now sketch a widely-used method for error representation in simulation

algorithms. Equation (3.1) can be interpreted as defining the signal probability expression

for a two-input XOR gate, as illustrated in Figure 3.3(b). This XOR gate has two

uncorrelated input signals z and x
e
, where x

e
 serves as a random variable whose

probability of being 1 is perr. The values of x
e
 form a stochastic binary sequence, whose

bits are temporarily uncorrelated. Hence, the overall error effect of a circuit can be

modeled by connecting each gate in the circuit to a new primary input via an XOR gate,

as in Figure 3.3(b). Several error estimation algorithms [1] explicitly or implicitly employ

66

this technique in their evaluation procedures. Clearly, this error representation method

will double the number of gates and primary inputs in a circuit, so the complexity of

processing a XOR-extended circuit can be much higher than that of the original version.

x1

x2

z

x
e

z
ex1

x2

z z
e

e

(a) (b)

Figure 3.3. (a) Two-input AND gate with unconditional error e; (b) Using a two-input

XOR gate to model the error.

3.3 Trigonometric Representation of Probability

We show next how signal probabilities can be efficiently described by a

trigonometric approach, where signal probabilities are represented by angles. We also

introduce a corresponding representation for error probabilities, the trigonometric error

model (TEM), which models a gate’s error probability as a small positive or negative

addition to its signal probability angle. Consequently, TEM calculations avoid both the

insertion of XOR gates and the multiplication steps required by (3.1).

3.3.1 Trigonometric Signal Probability

Let s be a signal in a logic circuit. For any input probability distribution of s,

 and . For a given pair and there exists

an angle , where ⁄ , such that and , a

67

consequence of the fundamental trigonometric identity . This implies

that a signal probability can be fully described in terms of certain trigonometric functions

controlled by a single angle we call the signal probability angle (SPA). The SPA of s

can be expressed as

 √ or √ (3.2)

For example, the SPA for is /3.

3.3.2 Trigonometric Error Model

Unlike the XOR-based approach of (3.1), TEM formulates a gate’s error probability

as a linear rotation associated with its (error-free) signal probability angle by combining

the trigonometric representation and the Taylor expansion technique. TEM is more

scalable because it maps probabilistic calculations into rotations without inserting extra

gates or signals.

Recall that for a particular signal s, if , then ; otherwise, if

 , then This property means if an error-free SPA is less (greater)

than /4, then its erroneous SPA is greater (less) than the error-free version. Such small

rotations reflect signal errors, which we call error probability angles (EPAs). Given a

gate’s error-free signal and error probabilities, the EPA is first calculated, and then the

overall signal probability is obtained by adding or subtracting the EPA from the error-

free SPA.

68

x1

x2 perr(z)

p(z) p(z
e
)

(a) (b)

x

y

 +

Figure 3.4. (a) Two-input AND gate with an unconditional error; (b) its trigonometric

probability representation.

Figure 3.4 illustrates how an EPA can be calculated from the corresponding error-free

SPA and gate-error probability. Assume that p(z) ≤ 0.5, and p(z) perr. Then

 () (3.3)

where and are the SPA and EPA of z, respectively. This equation can be re-

written as

 ()

If perr is very small, then is also very small, so and can be approximated by

 ⁄ and the initial terms of their respective Taylor series expansions. By

definition, cos
2 = p(z) and sin

2 = 1 p(z), so

() √ () ()

This has the solution

69

√ () ()

 √ ()

(Note that the other solution is invalid because .) We can replace (3.4) by its Taylor

series expansion at perr = 0:

()

 √ ()

 √()

Since perr is very small, we can approximate by the first term of its Taylor series. Thus,

 can be re-stated as

 (√ ⁄) (3.5)

By combining Equations (3.3) and (3.5), we get p(z
e
) cos

2
(+ cot(2)perr), where

 √ and p(z) ≤ perr ≤ 0. If p(z) ≤ perr, then z’s EPA can be calculated in a

similar way, which yields (√ ⁄) Note that if p(z) ≤ perr,

there is no need to evaluate signal correlation on z later, since z’s signal behavior is not

controlled by its input signals, but is mainly determined by “random noise”. As can be

seen from (3.5), given a gate’s error-free SPA, the resulting EPA is a small rotation that

is linear in the gate-error probability. The rotation operations in (3.5) can be easily

realized by additions. The XOR-based technique discussed in Section 3.2 models an

unconditional error probability with multiplications and additions, while only additions

are required with TEM. With its trigonometric representation, TEM is computationally

much simpler than the XOR-based technique.

70

Figure 3.5. Computational inaccuracy inacc(p(z
e
)) for p(z) = 10

-4
 to 5×10

-3
 with gate-

error probability perr = 10
-5

.

Next, we examine the computational inaccuracy of (3.5) with respect to p(z). Given a

gate-error probability perr, this inaccuracy can be measured by the differences in signal

probabilities between the exact and approximated cases, which is given by Eq. (3.1)

Eq. (3.3), where in (3.3) is replaced by (3.5), namely, ()

 ⁄ The worst case happens at p(z) = perr and the

maximum of inacc(p(z
e
)) is less than 0.25perr. Figure 3.5 shows a plot of inacc(p(z

e
)) for

perr = 10
-5

. As can be seen, the computational inaccuracy decreases sharply from 2.510
-7

to 4.810
-9

 when p(z) just slightly increases from 10
-4

 to 5×10
-3

. Suppose that p(z) is a

uniformly-distributed random variable. The average inaccuracy of (3.5) is

 (
) ∫

 ()

 0

 5e-08

 1e-07

 1.5e-07

 2e-07

 2.5e-07

 0 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004 0.0045 0.005

in
a
c
c(

p
(z

))

p(z)

71

The average inaccuracies for perr = 10
-5

 and 10
-6

 are 4.56 10
-10

 and 5.7110
-12

,

respectively. Thus the average inaccuracy is quadratic in the given gate-error probability.

As a result, the accuracy increases rapidly with decreasing error probabilities, making

TEM particularly suitable for estimating practical non-deterministic phenomena.

3.4 Probabilistic Calculation Algorithm

We now present the TPC algorithm for calculating signal probabilities in circuits

with errors. TPC combines the TEM error representation and the efficient BAM heuristic

[58] for signal probability estimation. A useful feature of TPC is that its efficiency and

accuracy can be controlled by carefully selecting the terms that make a significant

contribution to the results, and deleting other terms.

Figure 3.6. Single-output circuit with n inputs.

3.4.1 Correlation Handling

TPC incorporates BAM to account for correlation among signals because BAM can

handle correlation more accurately and efficiently than other published methods. As

discussed in Chapter 2, BAM was developed by Uchino et al. [58] to estimate switching

activity in error-free combinational circuits. Without losing generality, we again use a

two-input AND gate to illustrate the basic concepts of BAM. In Figure 3.6, z is the output

72

of an AND gate whose inputs are y1 and y2, and x1, x2, ,xn are the circuit’s primary

inputs, assuming the circuit is error-free. The Boole-Shannon expansion of z with respect

to xi is

 where
and

 are the cofactors with respect to xi. The exact

signal probability of z can be written as

Suppose that xi is the only primary input shared between y1 and y2, then

 and

 The exact

signal probability of z can then be expressed as

 ((

) (
)) ((

) (
)) (3.6)

The second term in (3.6) is the product of y1 and y2’s signal probabilities without

considering correlation, while the first term “compensates” for the signal correlation

caused by the common input shared between y1 and y2. The general form of (3.6) for n

shared primary inputs can be approximated by

 ∑
 ((

) (
)) ((

) (
))

 (3.7)

which, for brevity, we write as p(y1)@p(y2). Equation (3.7) only accounts for correlation

of n major cases caused by individual primary inputs, whereas exact correlation

calculation would require explicitly enumerating 2
n
 cases. In addition, z’s cofactor

probabilities associated with xi are

 (
) (

) (
) and (

) (
) (

) (3.8)

The complexity of BAM is O(nN) where n and N are the numbers of inputs and gates in

the circuit, respectively. Generally, n N
0.5

, so BAM’s complexity is about O(N
1.5

) [58].

73

Other heuristics besides BAM could be used for the correlation analysis, such as

CCM, mentioned in Chapter 2 for this purpose [19][20]. However, unlike BAM, which

only analyzes gates with common primary inputs, CCM only accounts for the

correlations between any two gates at the same level, even if they have no common

predecessor gates. This tends to make CCM’s complexity quadratic in the size of the

circuit. The simulation results in [58] show that BAM and CCM achieve similar

accuracy, but BAM is generally faster by an order of magnitude.

3.4.2 Signal Probability Estimation

We use the two-input AND in Figure 3.4 to explain how the signal probability of a

gate with errors is calculated with TEM and BAM. Assume that y1 and y2 are

uncorrelated. Let i be the SPA of p(yi), and let perr(yi) be the gate-error probability

associated with yi. From (3.5), z’s error-free signal probability is

 ∏ ()

 (3.9)

In fully expanded form, expression (3.9) contains 12 terms. Of these terms, some are

higher-order terms in perr(yi) e.g., sin
21sin

22sin
2
(cot(21)perr(y1))sin

2
(cot(22)perr(y2)),

which is bounded above by p
2

err(y1)p
2

err(y2). Such higher-order terms make an

insignificant contribution to the overall result when perr(y1) and perr(y2) are very small. In

that case, p(z) estimated by removing perr(y1) and perr(y2)’s higher-order terms remains

very accurate. If we calculate p(z) only using terms containing p
i
err(y1) p

j
err(y2) where i + j

≤ 2, we get:

74

 ∏

 ∑

 ∑

 ∑
()

 ∏

 (3.10)

 ∑

 ∏

The maximum computational inaccuracy of (3.10) is p
2

err(y1) p
2
err(y2). If each perr(yi) =

10
-8

, this inaccuracy is less than 10
-32

 If we need to reduce computational overhead

further, we can just drop terms containing p
i
err(y1) p

j
err(y2) where i + j ≥ 2, so (3.10) is

further simplified to

 ∏

 (∑

 ∑

) (3.11)

The maximum inaccuracy of (3.11) is perr(y1) perr(y2). Again, if perr(yi) = 10
-8

, this is less

than 10
-16

, which from the practical viewpoint is still good enough for most applications.

Equations (3.10) and (3.11) can be easily extended to other gate types. The cofactor

probabilities can be estimated in a similar way. For instance, z’s positive cofactor

probability associated with xi is

 ([]) ∏ ([])

 (∑

 ∑

 ([])

)

Now we explain how the signal correlation is estimated. A gate’s unconditional error

probability is independent of its inputs and indeed, of all circuit signals. In this case,

perr(y1) and perr(y2) are uncorrelated with y1 and y2 and any preceding gates of y1 and y2.

Therefore, in (3.10) and (3.11) there is no need to consider signal correlation for any term

in p(yi) and perr(yi). The term ∏

 is the only one requiring

correlation analysis because it implicitly assumes y1 and y2 are uncorrelated. If y1 and y2

can be represented as functions of n primary inputs as shown in Figure 3.6, the operation

75

of p(y1)p(y2) in (3.10) and (3.11) is replaced by p(y1)@p(y2) using BAM. For instance,

(3.11) becomes

 (∑

 ∑

)

Figure 3.7. TPC probability estimation algorithm.

The overall computational complexity of TPC is O(nN), where n and N are the

numbers of inputs and gates in the circuit, so TPC has near-linear runtime complexity in

the general case.

3.5 Simulation Results

To evaluate the performance of the proposed TPC method, and to check its accuracy,

we used it to calculate signal probabilities for various benchmark circuits with three

representative gate-error probabilities perr = 10
-3

, 10
-4

 and 10
-8

 applied to all gates. All

TPC_algorithm(combinational circuit CC, gate-error probability
configuration ge_conf, primary input signal probabilities pi_sp)

Levelize CC

Initialize all primary input pi_sp and gate-error probabilities gp_conf

For each topological level l (from primary inputs)

 For each gate z at the lth level
 Use TEM to model the error probabilities as rotations

 Calculate z’s output probability using Eq.(3.10) or Eq.(3.11)
 (Correlation is handled using BAM)

 For each primary input x
 Calculate z’s cofactor probabilities associated with x

76

primary input signal probabilities are assumed to be 0.5. The selection of benchmarks is

constrained by the published, and often incomplete, data available. Note that our TPC

program is quite general and places no a priori restriction on the error probability values.

The experiments were performed on an Intel Quad-Core, 2.35 GHz, 64-bit PC, with 4GB

RAM, and running under Linux.

Runtime, memory usage and accuracy data for gate-error probability 10
-8

 appear in

Table 3.1. To measure the accuracy for such low error probabilities, we also used MC

sampling to estimate signal probabilities with 320 million random input vectors. The

inaccuracy figures were determined by comparing the TPC and MC results, where the

MC results are assumed to be accurate.

Table 3.1. Performance of TPC and MC for gate-error probability 10-8 with selected

ISCAS-85 benchmarks (including the largest ones).

Circuit

Runtime (s) TPC memory
usage (MB)

Inaccuracy
(%) TPC MC

C1196 0.054 3508 1.03 6.038

C1238 0.071 3348 1.04 6.154

C1355 0.174 3612 2.23 0.189

C1908 0.462 5619 2.75 5.235

C2670 0.459 8609 3.49 6.090

C3540 1.454 11063 5.53 7.614

C5315 2.319 15283 6.39 7.989

C6288 11.290 15186 6.81 3.559

C7552 5.911 23096 10.06 7.507

The maximum runtime, memory usage, and computational inaccuracy of our TPC

program for gate-error probability perr = 10
-8

 are 11.29 sec. (for C6288), 10 MB (for

C7552), and 7.98% (for C5315), respectively. Figure 3.8 shows the inaccuracy defined

by comparing the results of TPC and MC sampling for the ISCAS-85 benchmarks and

77

several values of perr The average computational error with perr = 10
-3

 is about 9.27%, but

it drops to 5.4% with error probability perr = 10
-4

. The runtime and accuracy data in Table

3.1 and Figure 3.8 indicate that the TPC method can efficiently produce accurate results

in cases with gate-error probabilities of 10
-4

 or less. These simulation results also suggest

that, unlike the FE method [7], TPC is capable of handling circuits where errors

simultaneously occur at multiple gates, which makes TPC more general than FE.

Moreover, unlike the SP method, the accuracy of the TPC approach grows with

decreasing gate-error probabilities. As a result, TPC may provide less accurate results for

high error probabilities like 10
-3

; however, as discussed in Section 3.3, such high

probabilities are rarely encountered in real applications. More importantly, its accuracy

with very low error probabilities makes it particularly suitable for soft-error estimation.

Figure 3.8. Average computational error of the TPC method for various gate-error

probabilities.

 0

 2

 4

 6

 8

 10

 12

 14

c432 c499 c880 c1196 c1238 c1355 c1908 c2670 c3540 c5315 c6288 c7552

In
ac

cu
ra

cy
 (

%
)

Circuit

Perr = 1E-4
Perr = 1E-6
Perr = 1E-8

78

Table 3.2 compares the TPC and signal probability methods for evaluating circuit

reliability. The SP data is taken from [20]. These results show that TPC is faster than SP

by one or two orders of magnitude, mainly due to the differences between their respective

use of BAM and CCM for handling signal correlation. Generally, the TPC method is

efficient and accurate for practical applications like transient-error estimation, whereas

the SP method is more suitable for applications with very high error probabilities.

Table 3.2. Runtime comparison between the TPC and SP methods for reliability

estimation.

Circuit No. of gates

Runtime (sec.)

TPC SP [20]

C499 650 0.080 15.40

C1355 653 0.417 14.70

C1908 699 0.892 30.06

C2670 756 0.901 1.11

frg2 1024 4.000 0.30

C3540 1466 2.97 234.63

i10 2643 19.473 145.35

3.6 Summary

We have presented a new trigonometric framework TPC for probabilistic

calculations intended to handle very-low-probability soft errors of the type usually found

in practice. Prior methods for soft-error estimation are typically limited by error modeling

and signal correlation considerations to relatively small circuits or to relatively inaccurate

analysis of large circuits. The TPC approach, on the other hand, is able to produce

accurate results, even in the case of large circuits, because of its novel use of

trigonometric operations and its improved heuristics for handling correlation. An

interesting feature of TPC is that its computational inaccuracy falls as gate-error

79

probabilities are reduced to levels that better reflect the actual frequency of soft errors in

ICs.

80

CHAPTER 4

Soft-Error Estimation in Sequential Circuits

In the previous chapter, we introduced a method that can estimate soft-error effects

in combinational circuits using unconditional error models. In this chapter, we propose a

SER estimation method, SAMPLE (Scalable and Accurate Matrix-based Probabilistic

Algorithm for Logic Signal Estimation) for sequential circuits based on probabilistic

transfer matrices (PTMs). PTMs can accurately represent the probabilistic behavior for a

gate or even for an entire circuit with conditional error models, and they can be used for

calculating signal and error probabilities in sequential circuits. However, a key challenge

of applying PTMs to probabilistic calculation is to reduce the computational overhead of

constructing the PTMs and to control the size of resulting matrices.

SAMPLE dramatically reduces the complexity of PTM calculations and makes the

PTM size manageable by circuit partitioning and by avoiding massive matrix

multiplications. In addition, unlike existing methods that can only simulate small

sequential circuits for just a few simulation cycles, SAMPLE is capable of simulating

large sequential circuits, such as circuits containing 20,000 gates over hundreds of cycles

without significantly increasing memory usage. This work was presented at the VLSI

Test Symposium in 2010 [67].

81

4.1 Prior Work

Chapter 3 introduced several probabilistic techniques for simulating soft errors in

combinational circuits. In this chapter, we propose an SER estimation method for

sequential circuits. Simulating the soft-error effect in sequential circuits is more

challenging than in combinational circuits, because the computational complexity is

affected not only by issues such as error modeling, masking effects, and signal

correlation, but also by two new issues: (1) the inefficiency of existing methods for

simulating sequential circuits over many cycles, and (2) the fact that several soft errors

can occur in the same simulation run.

A commonly-used technique for tracing the behavior of a sequential circuit from the

first simulation cycle to an arbitrary simulation cycle is time-frame expansion [15][40].

To simulate a circuit SC over w cycles, the time-frame expansion technique first

replicates the combinational parts of SC w 1 times, and then connects the secondary

outputs of replica i to the corresponding secondary inputs of replica i 1. The “expanded”

circuit becomes a pseudo-combinational circuit, and SER methods developed for

handling combinational circuits can be directly applied to it. Figure 4.1 shows an

example with w = 3. The size and the total number of primary inputs of the expanded

circuit are w times larger than the original version. This can consume large amounts of

memory space, which may make the time-frame expansion technique unsuitable for

processing large circuits over many simulation cycles.

82

x1

x2
Q

Q
SET

CLR

D

x1

x2

x3

x4

x5

x6

Flip-

Flop

x0

Cycle 1 Cycle 2 Cycle 3

(a)

(b)

Figure 4.1. Illustration of the time-frame expansion technique: (a) original sequential

circuit and (b) expanded circuit with three time frames.

Another major modeling issue is that most soft-error estimation methods for

sequential circuits assume that an error occurs only in the first clock cycle of a w-cycle

simulation with no new errors occurring in subsequent cycles. This assumption reduces

computational overhead as well as memory usage [8][40]. Although the after-effects of

the initial error may linger, the simulated environment is implicitly assumed to be error-

free in cycles 2 through w. However, this assumption is unrealistic, and often

underestimates the effect of soft errors. An accurate sequential soft-error analysis method

should allow a soft error to occur in any clock cycle, and be capable of simulating the

interactions among errors occurring in different cycles.

One representative SER estimation method for sequential circuits is MARSS [40],

which is capable of simulating all three masking effects at the gate level, as shown in

83

Figure 1.15. MARSS defines SER in terms of the mean error susceptibility (MES), the

density of high energy particles per unit area. For a signal s in a sequential circuit, the

MES of s is the probability that an erroneous value is observed on s in a particular cycle.

It is calculated at the electrical (transistor) level in terms of the duty cycle, signal

amplitude (voltage), and gate-error probabilities.

However, MARSS has difficulty simulating circuits over many cycles because of the

way it employs the time-frame technique. As discussed above, the circuit size and the

number of primary inputs and outputs grow linearly with the number of simulated cycles,

and memory usage becomes unmanageable after a few simulated cycles. Take S298, a

small 86-gate ISCAS-89 benchmark circuit, as an example. MARSS requires 6,900

seconds to evaluate soft-error effects in S298 for a 10-cycle simulation, whereas the

runtime for the proposed SAMPLE method under the same conditions is less than 0.4

seconds. Yet another source of inaccuracy in MARSS is that it assumes an error occurs

only in the first clock cycle of a w-cycle simulation, and no new errors arrive in

subsequent cycles.

4.2 SER Measurement in Sequential Circuits

We defined signal probability for combinational circuits in Chapter 1, and we now

extend this definition to sequential circuits. Consider a sequential circuit SC that is being

analyzed or simulated over w clock cycles. Let v(k) denote the input vector applied to SC

in cycle k, where 1 k w, and w is the maximum number of simulation cycles. The

input vectors are characterized by some probability distribution, which determines the

probabilities of all signals appearing in SC at any time. The probability of a particular

84

gate g in SC outputting a 1 in clock cycle k is its signal probability, and is denoted by

p(g(k)).

Computing signal probabilities in a sequential circuit is more difficult than in a

combinational circuit because feedback loops in the sequential circuits can change the

signal probabilities of the secondary inputs in every simulation cycle. This significantly

complicates the simulation process in runtime as well as in memory usage.

The occurrence of one or more errors e at gate g during the first clock cycles of

circuit operation can change p(g(k)) to p(g
e
(k)). Thus, the difference in signal

probabilities between the error-free and erroneous cases | p(g(k)) p(g
e
(k)) | indicates the

overall impact of e on signal s in cycle k. Given a sequential circuit SC, we define the

circuit error probability (CEP) in the k
th

 cycle, denoted CEP(k), as the average difference

in signal probabilities between the error-free and erroneous cases over all m primary

outputs Z of SC.

CEP(k) = (∑zZ | p(z(k)) p(z
e
(k)) |)/m

CEP represents how likely an incorrect signal is to be observed at a typical primary

output z in a particular cycle. The SER of a sequential circuit in each cycle will be

measured here by the corresponding CEP. We also introduce a general sequential soft-

error model denoted SE(k), which allows errors to occur in the first k clock cycles, where

1 ≤ k ≤ w and w is the number of simulation cycles. The SE(w) error model thus allows

soft errors to occur in any cycle during the entire simulation period. Most existing error

models, on the other hand, are of the SE(1) type.

85

Figure 4.2. Circuit error probabilities for the S298 benchmark assuming a gate-error

probability of 10
-7

.

Figure 4.2 demonstrates that the chosen value of in SE(k) can have a dramatic

impact on SER calculations, even for small sequential circuits. It shows the soft-error

effect for the ISCAS-89 benchmark S298 under typical and identical simulation

conditions with k = 1 (the standard model) [40] and k = 20. Observe that the two

predicted behaviors are qualitatively as well as quantitatively different. In this case, the

CEP for the SE(1) type decreases with increasing clock cycles because no soft errors will

occur between the 2
nd

 and w
th

 cycles, whereas the CEP for the SE(w) type increases with

time reflecting the interaction among soft errors arriving in different cycles.

4.3 PTM-Based Analysis

We discussed the basic concepts of PTMs and their use for modeling a gate or a

circuit’s error behavior in Chapter 1 without providing the calculation details. We now

 0

 1e-08

 2e-08

 3e-08

 4e-08

 5e-08

 6e-08

 7e-08

 0 2 4 6 8 10 12 14 16 18 20

C
E

P
(k

)

Cycle k

SE(w) error model
SE(1) error model

86

introduce the basic operations of PTMs and show how PTMs are typically used in

probabilistic calculations [34]. A PTM for an n-input m-output component is a 2
n
 × 2

m

matrix M whose (i, j)
th

 element is the probability of output occurring in response to

input i. The PTM of a fault-free component is called its ideal transfer matrix (ITM) and

the probability of every correct output value in the ITM is 1. Figure 4.3 shows a two-

input OR gate, its ITM, and a general PTM. In this gate PTM, p1, p2, p3 and p4 are

conditional gate-error probabilities associated with the corresponding input vectors

(rows). Recall that the error probability with respect to input vector v is denoted by

perr(z|v); for example, perr(z|x1x2 = 01) and perr(z|x1x2 = 10) are p2 and p3, respectively.

x1

x2
z

(a) (b) (c)

x1x2

00

01

10

11

Figure 4.3. (a) Two-input OR gate, (b) its ITM, and (c) a PTM with various error

probabilities for each input vector.

PTM algorithms involve several types of matrix operations, one of which is the

tensor or Kronecker product. Given an a × b matrix A and a c × d matrix B, their tensor

product TP = A B is an ac × bd matrix whose elements are:

TP(i0…in+p-1, j0…jm+q-1) = A(i0…in-1, i0…jm-1)×B(in…in+p-1…jm+q-1) (4.1)

For example,

87

[

] [

] = [

] (4.2)

Next we describe how the PTM of an l-level combinational circuit can be

constructed from the PTMs of its component gates and wires. First, derive ITMs or PTMs

for all components individually. Then for each topological level i containing h

component PTMs {Mij}, form the level PTM Mi = Mi1 Mi2 Mih by repeatedly

applying the tensor product. Finally, using ordinary matrix multiplication, multiply all l

level PTMs together to form the circuit PTM M = M1M2 Ml.

x1

x2

x3

x4

x5

g1

g2

g3

g4

g5

g6

L1 L2 L3 L4 L5 L6

z

Figure 4.4. Circuit C demonstrating PTM construction; dashed lines enclose fanout gates.

The six-level circuit C in Figure 4.4 shows how a circuit PTM is constructed. First,

insert explicit wiring and fanout “gates” into C as needed. It requires six different types

of gate PTMs to construct C’s circuit PTM including wire gates. The PTM of a two-input

OR gate is shown in Figure 4.3(c), and the others appear in Figure 4.5. Assuming all

88

wires in C are error-free, the wiring and fanout gate PTMs here are identical to their

ITMs; see Figures 4.5(a) and (b).

x1

x2
z

x1x2

00

01

10

11

(c)

x1

x2
z

x1x2

00

01

10

11

(d)

x1

x2
z

x1x2

00

01

10

11

(e)

y1

y2

x

(b)

yx

(a)

x

0

1

y y

C1 C2 C3 C4x

0

1

z
0 1

z
0 1

z
0 1

y
0 1

00 01 10 11

y1y2

Figure 4.5. Gate PTMs of (a) a single wire, (b) a fanout node, (c) a two-input AND, (d) a

two-input NAND, and (e) a two-input NOR gate.

89

After all wiring and fanout gate PTMs are inserted, construct level PTMs M1 to M6

for each level of logic. The PTMs of a gate g, a single wire and a j-branch fanout gate are

denoted by G, the identity matrix I2, and Fj, respectively. The level PTMs are

M1 = I2 I2 F2 I2 I2

 M2 = I2 G1 G2 I2 I2

 M3 = I2 G3 I2 I2

 M4 = I2 F2 I2

 M5 = G4 G5

 M6 = G6

The final circuit PTM is

 M = M1 M2 M3 M4 M5 M6

which is a 32 × 2 matrix.

Once the overall PTM is known, the joint output signal probabilities J can be

calculated very easily by multiplying the input signal probability distribution, denoted by

a (row) vector V, by the circuit PTM M thus:

J = VM (4.3)

For example, if all gates in C have the same gate output error probability perr = 0.1

associated with any input vector v, then C’s joint output signal probabilities are

J = [0.03125 0.03125 … 0.03125]M = [0.81, 0.19]

since C is a single-output circuit, J[0, 1] is z’s erroneous signal probability p(z
e
).

The circuit PTM M of a single-output circuit with r primary inputs is a 2
n
 × 2

1

matrix. For such two-column PTMs, one entry associated with the input vector v (in the

v
th

 row) is the probability that the circuit produces the correct result, while the other entry

90

is the error probability with respect to v. For a circuit (or a sub-circuit) PTM M, the error

probability associated with a particular input vector v is denoted by perr(M|v). Like the

gate-error probability, the error probability of a circuit is also the conditional probability

of one particular input vector. For a single-output combinational circuit C whose ITM

and PTM are I and M, respectively, if the input probability distribution is V, C’s joint

output signal probabilities JITM and JPTM can be obtained using (4.3). The CEP of C is

given by

| JITM[0, 1] JPTM[0, 1] |

Although Krishnaswamy et al. [34] proposed using algebraic decision diagrams

(ADDs) and developed several heuristics to reduce the computational overhead of large

matrix operations as mentioned in Chapter 1, their modified PTM calculations are

restricted to small combinational circuits because they still construct the circuit PTM

from large level PTMs using many large matrix multiplications and tensor operations.

The PTM construction approach presented above has the advantage of correctly

accounting for all a circuit’s signal probabilities, even when the signals are highly

correlated due to fanout and subsequent reconvergence. In other words, all logical

masking effects are implicitly accounted for. However, this accuracy comes at

considerable computational cost [34]. To reduce this cost, we developed a new PTM

construction algorithm that combines a new partitioning method and fault simulation

technique. Our algorithm can accurately generate a circuit PTM, even with very small

probability values without using any explicit matrix multiplication or tensor operations.

91

4.4 Circuit Partitioning

To estimate signal probability efficiently in sequential circuits, we introduce two

new concepts: circuit partitioning and multi-cycle probability calculation. We first

partition the combinational part of a sequential circuit into its supergates, and derive the

circuit PTM. The gate signal probabilities for each cycle can be obtained by directly

multiplying the circuit PTMs by the corresponding input probability distributions.

A major challenge in signal probability computation is to estimate the output

probability of a fanout-reconvergent structure quickly, while maintaining high accuracy.

Several methods have been developed for this purpose [25][58]. We again apply the

supergate partitioning method presented in Chapter 2. Recall that a supergate typically

encloses one or more fanout-reconvergence structures associated with its output. As

shown Figure 4.6, the circuit in Figure 4.4 can be partitioned into two supergates, namely,

SG(g6) = {g4, g5, g6} and SG(g3) = {g1, g2, g3}.

g1

g2

g3

g4

g5

g6

x1

x2

x3

x4

x5

Figure 4.6. The circuit of Figure 4.4 with its two supergates marked by dashed lines.

92

Some supergates may have many inputs, e.g., r 32, and generating circuit PTMs

for such cases may be infeasible. To guarantee that the size of all circuit PTMs is

manageable, we apply a heuristic called “cone clustering” to each supergate for which r ≤

rmax, where rmax is the maximum number of primary inputs in a cluster. The cone-

clustering heuristic traverses a supergate SG from output to inputs. The initial cone C

consists of the output gate g of SG. Gates connected to the inputs of g are added level by

level to C until the number of primary inputs reaches rmax. The final inputs of C become

the outputs of new cones, which are similarly formed. The heuristic is executed

recursively until all gates of SG belong to at least one cone. An example is shown in

Figure 4.7.

x1

x3

x4

x5

g4

g1

g2

g3

x3

x4

x5

g4

g3

g1 x1 g1

x3

(a)

(b) (c)

x2

x2

g2

Figure 4.7. (a) Original circuit consisting of a single supergate; (b-c) the two sub-circuits

resulting from cone clustering with rmax = 4.

Some internal clustered cones may contain incomplete fanout-reconvergence

structures, which can lead to inaccurate probability calculations. In practice, however,

very few supergates need to be reduced by cone-clustering. For example, in the case of

93

the ISCAS-89 benchmarks, only 0.9% of supergates have r ≥ 10. To determine the value

of rmax that makes the best trade-off between accuracy and efficiency, we carried out

simulation experiments with various rmax = 8, 10, 12, and 16 values, and measured their

accuracy by comparing the results with signal probabilities obtained by MC sampling.

According to these experiments, 10 inputs are accurate enough for most cases compared

with rmax = 16 because the average inaccuracy of rmax = 10 is only 0.64% higher than that

of rmax = 16. Our simulation data also show that, in most cases, we can maintain 98%

accuracy over 100 simulated cycles.

4.5 Fault Simulation-based PTM construction

After supergate partitioning and (if necessary) cone clustering, we generate the PTM

of each circuit partition. The basic PTM algorithm used in [34] provides a way to

generate circuit PTMs by constructing and merging level PTMs, which preserves

complete accuracy. Generally, the supergates are much smaller than the original circuit,

thus making the basic construction procedure more efficient due to the fact that fewer

level PTMs need to be calculated and merged in a supergate. However, many large

matrix operations may be required for the construction process, and the computational

complexity in terms of runtime and memory usage may be exponential in the circuit size.

As a result, the basic PTM construction algorithm is still limited to relatively small

circuits, even when the circuits are partitioned into supergates, so a speedup heuristic is

needed to enhance the efficiency of matrix construction.

Since supergates and cones are single-output sub-circuits, their PTMs are two-

column matrices. Constructing a two-column PTM is equivalent to calculating the circuit

94

output error probabilities associated with all input vectors. In addition, recall that soft

errors have very low occurrence probability, so we can assume that any observable circuit

error is caused by a single erroneous gate, e.g., a gate that receives a particle strike. In

other words, the circuit error is often caused by a single erroneous gate at any time, so

ignoring the probability of multiple errors has no significant impact on accuracy.

Finding all gates whose incorrect output values can flip the primary output is

equivalent to identifying gates whose stuck-at-faults can propagate to the primary output.

These may be called “critical” gates, where a gate is critical if their value change can be

observed at primary outputs. For a given input vector, only some stuck-at-faults can

propagate errors to the primary output, while others are blocked by logic masking effects.

One method for identifying critical gates is critical-path tracing (CPT) proposed by

Abramovici et al. [2], which tries to identify gates made critical by a given input vector.

Here, we introduce a CPT-based matrix construction heuristic called CPT-MC,

which can efficiently generate circuit PTMs for cases with low gate-error probability. Let

 be the PTM of a circuit partition. CPT-MC first identifies critical gates associated with

each input vector by means of the CPT method. Then for each input vector v, the circuit

output error probability perr(M|v) of M is computed as

perr(M|v) = ∑i perr(gi|vi) (j, j≠i(1 perr(gj|vj))) (4.4)

where Ω is the current set of critical gates, while perr(gi|vi) and perr(gj|vj) are the gate-error

probabilities of gi and gj associated with the current input vectors vi and vj, respectively.

For instance, the critical gates associated with the input vector v = 010 of the circuit in

Figure 4.8 are g4 and g6, and the corresponding circuit output error probability is

perr(M|v) = perr(g4|v4)(1 perr(g6|v6)) + perr(g6|v6)(1 perr(g4|v4)) = 1.52 10
-6

95

CPT-MC is recursively applied until the circuit output error probabilities associated with

all input vectors are obtained.

x1

x5

g4

g5

g6

1
1

1

0

0

0

0

1

0 1 7.610-71 – 7.610-7

g4 = 0 g4 = 1 g6 = 0 g6 = 1

6.110-7 1 – 6.110-70 1

g3

0 1
g6

0 1
g4

Figure 4.8. Supergate of g6 with input vector (0, 1, 0) and critical gates g4 and g6.

4.6 Probabilistic Calculation Method

After calculating a circuit’s PTM, its output signal probabilities are obtained by

SAMPLE from the initial distribution of input signal probabilities and the PTMs of the

partitioned circuit. SAMPLE first applies a given probability to each primary input. After

the first cycle, the signal probabilities stored in flip-flops are updated to the

corresponding secondary inputs at the beginning of the next cycle. Within each cycle,

SAMPLE estimates the primary and secondary output signal probabilities of each sub-

circuit in topological order by multiplying its input distribution vector by the circuit PTM

according to (4.3). Finally, the signal probabilities of secondary outputs are stored in the

corresponding flip-flops at the end of the cycle. Pseudo-code for the resulting probability

estimation algorithm is shown in Figure 4.10.

Since a circuit PTM contains the output signal probability associated with each input

combination, and SAMPLE preserves the probability of each flip-flop in every cycle, the

96

circuit’s probabilistic behavior can be fully expressed in terms of its PTMs and the

corresponding input distributions. In other words, the behavior of the target circuit’s

transition function can be completely represented by the circuit PTMs, and all temporal

correlations are implicitly examined by this estimation procedure.

Figure 4.9. Probabilistic estimation procedure for n + 1 cycles; note that the same circuit

PTMs are used for every cycle.

Figure 4.10. Probability estimation algorithm used in SAMPLE.

SAMPLE(sequential circuit SC, no. of simulation cycles n, gate PTM
configuration GP_conf, max. no. of inputs rmax of a supergate)

SG_List = Supergate_Partitioning(combinational part of SC)

for each sg in SG_List

if (no. of inputs >rmax)
 Rcone_List = Rcone_Clustering(sg)
 SG_List = SG_List – sg + Rcone_List

PTM_List = CPT-MC(SG_List, GP_conf, rmax)

Initialize input probability distribution

for i= 1 to n
 for each PTM M in PTM_List in topological order
 Construct input distribution vector V of M
 Output signal probability J = V∙M

 Update flip-flop values at the corresponding secondary inputs

END SAMPLE

97

4.7 SER Estimation

To evaluate the efficiency and accuracy of the proposed algorithm, we applied

SAMPLE to the calculation of CEP for all the ISCAS-89 benchmark circuits. We believe

that this is the first soft-error estimation algorithm capable of simulating all the ISCAS-

89 circuits over 100 cycles.

Accurately calculating the impact of a soft error for all feedback loops of a circuit

over several cycles is difficult. Prior work on this problem uses the SE(1) model and

various other heuristic simplifications to reduce the computational complexity. As

discussed in Section 4.2, we measure the SER of a sequential circuit by its CEP, which

can be directly obtained from its output error-free and erroneous signal probabilities.

SAMPLE can efficiently calculate the signal probability even for very large sequential

circuits. Moreover, SAMPLE is able to simulate any SE(k) error model, and all logical

masking effects are automatically and implicitly included in the calculations.

To evaluate the SER of the ISCAS-89 circuits using SAMPLE, we assigned two

representative gate-error probabilities to the every input vector v, perr = 10
-3

 and 10
-7

, and

simulated w = 100 cycles. The first case demonstrates that SAMPLE can maintain high

accuracy even with high gate-error probability. The second case simulates the situation

where, due to soft errors, a gate has a very small probability 10
-7

 of producing an

erroneous value in every cycle. The experiments were performed on an Intel Quad-Core,

2.35 GHz, 64-bit PC, with 4GB RAM. They produced the accuracy, runtime and memory

data appearing in Table 4.1. In order to validate the accuracy of the SER evaluation

results, we independently estimated the circuit error probabilities of all circuits by MC

98

sampling, and compared the results with those of SAMPLE. For each circuit, we

repeatedly apply randomly-generated input vectors with input signal probabilities of 0.5,

and simulate the circuit until the output signal probabilities stabilize to fixed values.

Column 5 of Table 4.1 indicates that the maximum and average errors of the SER

analysis with the SE(w) model over w = 100 cycles are 6.71% (S953) and 2.16%

respectively. The maximum runtime and memory usage are 0.69 hours and 510 MB

(S15850) for 100-cycle simulation.

Table 4.1. Performance results for the ISCAS-89 benchmark circuits (including the

largest circuits).

 Circuit

PTM runtime (s) Memory
usage(MB)

Error(%)

Construction Evaluation

S298 0.21 <0.01 0.02 1.42

S510 3.79 0.04 0.06 1.09

S713 2.79 0.06 1.28 1.09

S838 0.62 0.02 0.44 1.83

S953 2.07 0.05 0.37 2.14

S953 2.06 0.02 0.65 6.71

S5378 6.59 0.16 5.24 0.43

S1423 18.22 0.20 7.82 0.53

S1238 37.57 0.05 2.03 0.93

S9234 1,075.16 0.74 24.70 4.71

S13207 138.24 2.82 115.26 2.31

S15850 614.92 10.70 510.86 4.31

S35932 987.80 4.42 7.43 2.63

S38417 1,796.79 83.57 55.40 2.97

S38584 2,155.85 352.87 171.04 3.72

Figures 4.2 and 4.11 show four examples of SER behavior for the SE(1) and SE(w)

error models in representative sequential circuits, assuming primary input signal

probabilities of 0.5 in every cycle. These two sets of results serve to illustrate two

99

probabilistic behaviors of a sequential circuit with different boundary conditions. As

Figure 4.2 shows, the SER with the SE(1) model decreases dramatically in the first few

cycles, which implies that most soft errors have a high chance of quickly escaping from

the circuit. The SER with the SE(w) error model in Figure 4.2 rises in the first few cycles

and grows much more slowly thereafter. Furthermore, the stable value (steady-state) with

SE(w) is almost an order of magnitude higher than that with SE(1). This suggests that, in

certain cases, the accumulated effect of soft errors has great impact, and should not be

ignored. In other words, the SE(1) model may underestimate the SER after just a few

cycles, and lead to unrealistic prediction of overall soft-error behavior.

Figure 4.11. Circuit error probabilities for the S1238 benchmark assuming a gate-error

probability of 10
-7

.

Some pipeline-structured circuits such as S1238 contain no global feedback loops

and so have different SER behavior from most other sequential circuits. SER results for

 0

 5e-08

 1e-07

 1.5e-07

 2e-07

 2.5e-07

 3e-07

 0 2 4 6 8 10 12 14 16 18 20

C
E

P
(k

)

Cycle k

SE(w)
SE(1) error model

error model

100

S1238 with the SE(1) and SE(w) models are shown in Figure 4.11. The SER with the

SE(1) drops sharply to zero at the second cycle because no captured soft error can

propagate to any secondary input in the next cycle. Therefore, any soft error that appears

in a particular cycle will disappear in the next cycle. Similarly, since no global feedback

is present in these circuits, the SER with the SE(w) model remains constant in each cycle.

In other words, the SER behavior of such pipeline-structured circuits is similar to that of

a combinational circuit.

4.8 Summary

We have presented a new probabilistic calculation tool for sequential circuits,

SAMPLE, which can be used for accurate modeling of non-deterministic effects, and

scales well to very large circuits. Prior work on this issue tends to be inaccurate and does

not scale well. Unlike some prior methods, SAMPLE is capable of simulating fairly

realistic error situations, and also provides a fast and accurate estimation of SER by

combining supergate partitioning, critical-path tracing, and the PTM technique.

As shown in Chapter 1 and this chapter, the basic PTM method is powerful in the

sense that it can accurately handle correlations associated with probabilistic calculations

and logical masking effects. However, this method does not scale well to very large

circuits even with the help of the ADD and other techniques, because it requires a single

circuit PTM for the given circuit, and the problem of generating the circuit PTM may be

intractable. SAMPLE solves this scalability problem by partitioning a circuit into smaller

sub-circuits, and by generating PTMs for the sub-circuits. Therefore, it dramatically

reduces the complexity of circuit PTM construction, and makes PTM size much more

101

manageable. Moreover, SAMPLE can analyze a sequential circuit over hundreds of

cycles without increasing memory usage significantly, which is useful for applications

require long-term circuit simulation.

102

CHAPTER 5

Conclusions and Future Work

Due to the massive complexity of modern ICs, traditional deterministic EDA

methods used to solve circuit design problems are no longer sufficient. Probabilistic

approaches are needed that can account for complex process variations and soft-error

effects. The quality of a probabilistic method largely depends on how error behavior and

masking are modeled, and how signal correlations are handled. Our analysis of signal

probability and soft errors has shown that existing probabilistic methods are limited to

small circuits or tend to provide inaccurate results, usually because their models are

oversimplified or their assumptions are unrealistic.

To deal with these issues, we have proposed some novel approaches to the following

three problems: circuit sampling, probability modeling, and soft-error estimation for

sequential circuits. First, we have proposed a way to use redundant signals for fast and

accurate sampling-based calculation of signal probabilities. Second, we have applied

trigonometric functions and Taylor expansions to obtain an accurate probability

representation method that integrates signal and error probabilities. Finally, we have

combined circuit partitioning, fault simulation, and matrix operations to create an

efficient method for tracing soft errors in sequential circuits over many cycles.

103

The reminder of this chapter discusses our major contributions, and explores

promising directions for future research.

5.1 Summary of Contributions

The main contributions of this thesis are as follows:

 An accurate circuit simulation methodology for signal probability calculation

that is useful for validating EDA heuristics. Experimental results show that

this technique is one to three orders of magnitude faster than conventional

Monte Carlo (MC) methods, while maintaining the same accuracy level.

 A novel probability representation based on trigonometric functions and

Taylor expansions whose calculation accuracy and efficiency can be fully

controlled by setting the number of expansion terms.

 A method for improving the applicability of probabilistic transfer matrices

(PTMs) to large combinational circuits by reducing the overhead of

constructing circuit PTMs based on circuit partitioning and a fault simulation

technique.

 A PTM-based and scalable simulation technique for estimating accumulated

soft-error effects in sequential circuits, which can easily simulate the error

behavior over many cycles without increasing the memory usage

significantly.

Chapter 2 introduced an efficient and accurate sampling methodology, Reduced-

Ordered Monte Carlo (ROMC), for signal probability calculation in logic circuits. ROMC

104

reduces the sample variance by analyzing and exploiting partial redundancy among input

signals. Based on redundancy analysis, ROMC (1) removes unnecessary sample

sequences by identifying multiplexer-like structures, and (2) it prioritizes input signals

based on their observability (influence). Our simulation results suggest that ROMC is

robust because it always requires fewer samples than conventional MC methods for the

same accuracy levels in all the benchmark circuits we considered.

In Chapter 3, we developed a probability calculation method, Trigonometric

Probability Calculation (TPC), for modeling and analyzing unconditional errors in

combinational circuits. TPC can accurately and efficiently estimate circuit reliability and

gate susceptibility to soft errors. TPC is accurate because it simulates the impact of

multiple soft errors; in contrast, existing methods only simulate circuits for the single-

error cases. TPC is efficient because it employs trigonometric techniques to model the

signal probabilities of gates as angles. This enables it to simulate the effect of a gate’s

error probability by a small rotation, which converts multiplications to additions.

In Chapter 4, we proposed a powerful probabilistic methodology, Scalable and

Accurate Matrix-based Probabilistic Algorithm for Logic Signal Estimation (SAMPLE),

for dealing with conditional error models in sequential circuits. Unlike the commonly-

used unconditional error models, the error probabilities of conditional models can vary

with respect to the input vectors, and are therefore more general. SAMPLE can simulate

situations where soft errors occur at logic gates in one or more cycles by using PTMs to

describe conditional errors. We have successfully improved the scalability of PTM-based

calculations, which were previously confined to relatively small circuits. In particular, we

applied supergate partitioning and CPT fault simulation methods to generate small PTMs

105

that can account for most signal correlations, and can accurately model soft errors. Unlike

prior work, SAMPLE is capable of simulating cases when soft errors can occur in any

simulation cycle, and can trace the accumulated effects of errors through multiple cycles.

In addition, it accounts for structural and temporal correlations, and therefore can process

very large circuits over many cycles while maintaining relatively high accuracy.

5.2 Future Work

In this section, we discuss several potential extensions of our work. We first propose

to use implications for further improving ROMC’s simulation efficiency. Next, we

propose to apply ROMC to SER estimation in circuits with unconditional error models.

Finally, we propose to employ learning techniques to reduce the complexity of PTM

construction.

5.2.1 Sampling with Implication

Although ROMC generally achieves high simulation accuracy with few samples,

there are cases where its efficiency can be improved by identifying unnecessary samples

using implications. An implication is present in a circuit when a partial or complete

assignment u leads to a known output r; this is denoted by (u r). Consider the circuit C

of Figure 2.5, which is reproduced in Figure 5.1. If inputs ab = 11, z immediately

becomes 0, regardless of inputs c and d’s values. In other words, ab = 11 implies z = 0.

Another example in C is (ab = 01 z = 1).

106

g3
a

b

c
d

z

g2

g1

Figure 5.1. Four-input circuit.

Now we show how implication can discover unnecessary samples. If C’s sample size

is 2
2
 = 4, ROMC will create a prioritized input order = a, b, c, d, and generate the four

samples ab = 00, 01, 10, 11. However, the two implications, (ab = 11 z = 0) and (ab =

01 z = 1) show that inputs c and d are redundant with respect to z for the inputs ab = 01

and ab = 11. Hence, we can remove the two samples associated with ab = 01 and 11

without affecting the simulation accuracy.

Incorporating such implications effectively, however, remains a challenge because

not all implications are useful for circuit sampling, e.g., (abcd = 0010 z = 0).

Identifying all useful implications may require an exhaustive search [15], which is

impractical in large circuits.

Next, we suggest a way to discover many useful implications for circuit sampling.

Given a circuit C with a sample size = 2
k
, first determine the k most observable inputs.

Then, recursively apply implication to identify cases where the output signals are fully

determined by any one, two, …,k inputs, for the k most observable inputs. In Figure 5.1,

since the two most observable inputs are a and b, this implication technique would first

check if z’s value is determined by a or b alone. Since g3 is an XOR gate, no single input

107

can determine g3’s value. It would then deduce that output z is fully determined by ab =

01 or 11.

However, a problem with this method is that the number of cases that need to be

examined for the k most observable inputs is 2
k
 1, which grows exponentially with k.

Therefore, how to reduce the complexity of discovering valuable implications is a key

challenge in this area.

5.2.2 Soft-Error Estimation Using Sampling

Chapter 3 introduced a way to represent unconditional error probabilities by inserting

additional XOR gates and input signals. This method simulates soft-error effects by

converting a circuit C into an XOR-extended circuit C
e
. This suggests that it should be

possible to apply ROMC to evaluate soft-error effects in combinational logic. Although

C
e
 is about twice the size of C, ROMC should be capable of handling C

e
 because it is

several orders of magnitude faster than MC.

ROMC benefits from the use of signal redundancy and observability for reducing the

size of the sample space and prioritizing inputs. However, since the signal probabilities of

the inputs inserted into C
e
 and connected to XOR gates are not 0.5, ROMC cannot be

directly applied to C
e
 without suitable modifications. This is because compatible inputs

can share common sample sequences only if all their signal probabilities are 0.5 (as

shown in Section 2.6), and observability estimation results can be inaccurate when input

probabilities are not 0.5. When ROMC evaluates a signal s’s observability, it implicitly

assumes all input probabilities are 0.5, and calculates the chances of observing s and s at

primary output. Consider the circuit of Figure 5.2. If p(x
e
) = 0.5, the probabilities of

108

observing y and y at z are equal; however, when p(x
e
) = 10

-9
, the probabilities of

observing z = y and y are 1 10
-9

 and 10
-9

, respectively. This shows that y’s

observability at z is highly affected by x
e
’s input probability.

x1

x2
z

x
e

y

Figure 5.2. XOR-extended circuit for a two-input AND gate.

Jeavons et al. [32] propose a technique for converting arbitrary input signal

probabilities to 0.5 in a circuit without affecting the circuit’s output signal probabilities

by using linear feedback shift registers (LFSRs). This suggests a way to enable ROMC to

identify compatible signals, and accurately resolve signal observability in XOR-extended

circuits. However, the size of the LFSRs grows linearly with decreasing probability

values. Since gate-error probabilities are generally very small, how to reduce the size of

inserted LFSRs without affecting accuracy significantly is a problem for future research.

There are other circuit properties that might be exploited to reduce simulation

complexity without affecting accuracy significantly. For instance, if all gate-error

probabilities are 10
-9

, then the chance of having three errors is 10
-27

, which is very

unlikely. In addition, we can only consider situations where soft errors are highly

observable. Figure 5.3(b) shows one such case where g3 and g4 are more observable than

g1 and g2 in Figure 5.3(a). Therefore, developing a method to determine locations where

109

errors have the most significant impact on circuit may be an interesting task for future

research.

z

x1

x2

x3

x4

g1

g2

g3 g4

(a)

z

x1

x2

x3

x4

g1

g2

g3

g4

x6
e

x5
e

g5
e

g6
e

(b)

Figure 5.3. (a) Four-input circuit; (b) its XOR-extended circuit for simulating soft errors

occurring at g3 and g4.

5.2.3 PTM Construction Using Learning

In this section, we consider how learning can be used to further speed up the PTM

construction procedure discussed in Chapter 4. Learning is often an effective way to

avoid unnecessary computation by continuously storing “valuable” intermediate results

that can be frequently reused [35][53].

Consider the circuit C of Figure 5.4. C can be fully partitioned into two supergates,

SG(g1) = {x1, x2, g2, g3, g4} and SG(g4) = {x3, x4, g1}. After circuit partitioning, the

critical-path-tracing (CPT) heuristic introduced in Section 4.5 can be used to examine the

110

critical gates for individual input vectors of SG(g1) and SG(g4). For example, to evaluate

the error probability associated with input vector x1x2g1 = 000 of SG(g4), a typical circuit

simulation is first applied to SG(g4), and g4 is identified as its only critical gate. The next

step is to evaluate the error probability associated with input vector x1x2g1 = 001. Since

these two input vectors x1x2g1 = 000 and 001 differ in one bit g1, only gates along g1’s

propagation paths need to be “learned”. Moreover, if all g1’s propagation paths are

blocked due to logic masking, the simulation procedure can be terminated immediately.

In this case, only g2’s simulation result needs to be learned since g2 is the only gate at

the first level in g1’s propagation path. In the case of x1x2g1 = 001, g1 is blocked by g2

because x2 = 0. Therefore, the simulation procedure stops at the first level, and the values

of the rest of the gates (g2, g3 and g4) remain unchanged. This suggests that the simulation

result associated with x1x2g1 = 000 is worth learning because it can be reused when the

SG(g4) is simulated with x1x2g1 = 001.

g3

g2

g4
x1

x2

x3
x4 g1

Figure 5.4. Four-input circuit; its two supergates are marked with dashed lines.

Now we suggest a possible way to apply learning to critical-gate identification for a

set of input vectors. Suppose we are given a circuit and two input vectors vi1 and vi, that

only differ in primary input bit xj. If the simulation result associated with vi1 is known, vi

111

can be simulated by the following two steps. First, store the simulation result associated

with vi1, and then identify the propagation paths of xj. Second, re-examine the gates

along with propagation paths level by level from the primary inputs to primary outputs. If

all xj’s propagation paths are blocked at a particular level, the simulation procedure is

terminated.

However, identifying simulation results that are useful for other simulation cases is

not easy. Another challenge is to identify learned results that are no longer useful for

cases not yet simulated. If k simulation results (associated with k different input vectors)

are learned and stored in memory, any new simulation needs to compare its outcome to

all k learned results, which can significantly affect the simulation efficiency if k is large.

Therefore, developing a method that can identify and store reusable results, and

automatically delete information that is no longer needed for better simulation efficiency

and memory management is key to the success of applying the learning technique to

PTM construction.

In closing, we have presented a set of methods for efficiently calculating signal

probabilities and analyzing soft-error effects in logic circuits. Our research aims to

characterize these circuits’ statistical behavior and their vulnerabilities to various non-

deterministic phenomena. We hope that this work proves useful for improving the

performance and reliability of new ICs.

112

BIBLIOGRAPHY

[1] A. Abdollahi: “Probabilistic decision diagrams for exact probabilistic analysis,” Proc.

Intl. Conf. Comput.-Aided Design, pp. 266-272, 2007.

[2] M. Abramovici et al.: "Critical path tracing: an alternative to fault simulation," Proc.

Design Automation Conf., pp. 214-220, 1983

[3] ACM/SIGDA: Benchmarks newsletter,

http://www.cbl.ncsu.edu/benchmarks/PDWorkshop93/, 1993.

[4] K. Agarwal et al.: “Fast Characterization of threshold voltage fluctuation in MOS

devices,” IEEE Trans. Semicond. Manuf., vol. 21, pp. 526-533, 2008.

[5] S. B. Akers Jr.: “On a theory of Boolean functions,” Jour. SIAM, vol. 7, pp. 487-498,

1959.

[6] H. Ando et al.: "Validation of hardware error recovery mechanisms for the signal

probability SARC64 V microprocessor," Proc. Intl. Conf. Dependable Syst. &

Networks, pp. 62-69, 2008.

[7] G. Asadi and M. B. Tahoori: “An analytical approach for soft error rate estimation in

digital circuits,” Proc. Intl. Symp. Circuits & Syst., pp. 2991-2994, 2005.

[8] H. Asadi and M. B. Tahoori: "Soft error rating computation in sequential circuits,"

Proc. Intl. Conf. Comput.-Aided Design, pp. 497-501, 2006.

[9] Australian Transport Safety Bureau: Aviation safety investigation & report,

http://www.atsb.com.au/publications/investigation_reports/2008/AAIR/ao-2008-

070.aspx, 2008.

[10] R. I. Bahar et al.: “Algebraic decision diagrams and their applications,” Proc. Intl.

Conf. Comput.-Aided Design, pp. 188-191, 1993.

[11] N. Battezzati et al.: “Monte Carlo analysis of the effects of soft error accumulation in

SRAM-based FPGAs,” IEEE Trans. Nucl. Sci., vol. 55, pp. 3381-3387, 2008.

[12] A. Bhanu et al.: “A more precise model of noise based PCMOS errors,” Proc. Intl.

Symp. Electron. Design, Test & Applicat., pp. 99-102, 2010

[13] D. Brelaz: “New methods to color the vertices of a graph,” ACM Communications,

vol. 22, pp. 251-256, 1979.

[14] F. Brglez: "On testability analysis of combinational networks," Proc. Intl. Symp.

Circuits & Syst., pp. 221-225, 1984.

[15] M. L. Bushnell and V.D. Agrawal: Essentials of Electronic Testing for Digital,

Memory and Mixed-Signal VLSI Circuits, Kluwer, 2000.

113

[16] R. E. Byrant: “Graph-based algorithms for Boolean function manipulation,” IEEE

Trans. Comput., vol. C-35, pp. 677-691, 1986.

[17] T. Chawla et al.: “Impact of intra-die random variations on clock tree,” Proc.

Physical Design & Rel. Issues in Nanoscale Analog CMOS Technologies, pp. 1-4,

2009.

[18] C. H. Chen et al.: “Efficient approach for Monte Carlo simulation experiments and its

applications to circuit systems design,” Proc. Simulation Symp., pp. 65-71, 2011.

[19] M. R. Choudhury and K. Mohanram: “Accurate and scalable reliability analysis of

logic circuits,” Proc. Design, Automation & Test in Europe, pp. 1 - 6, 2007.

[20] M. R. Choudhury and K. Mohanram: “Reliability analysis of logic circuits,” IEEE

Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 28, pp. 392-405, 2009.

[21] J. Chung et al.: “Path criticality computation in parameterized statistical timing

analysis using a novel operator,” IEEE Trans. Comput.-Aided Design Integr. Circuits

Syst., vol. 31, pp. 497-508, 2012

[22] M. A. Cirit: “Estimating dynamic power consumption of CMOS circuits,” Proc. Intl.

Conf. Comput.-Aided Design, pp. 534-537, 1987.

[23] C. Constantinescu: “Trends and challenges in VLSI circuit reliability,” IEEE Micro,

vol. 23, pp. 14-19, 2003.

[24] S. Dighe et al., “Within-die variation-aware dynamic-voltage-frequency scaling core

mapping and thread hopping for an 80-core processor,” Proc. Intl. Solid-State

Circuits Conf., pp. 174-175, 2010.

[25] S. Ercolani et al.: "Estimate of signal probability in combinational logic networks,"

Proc. European Test Symp., pp. 132-138, 1989.

[26] G. D. Hachtel and F. Somenzi: Logic Synthesis and Verification Algorithms, Kluwer,

1996.

[27] J. M. Hammersley and D. C. Handscomb: Monte Carlo Methods, Methuen, 1964.

[28] M. C. Hansen et al.: “Unveiling the ISCAS-85 bench-marks: a case study in reverse

engineering,” IEEE Design Test Comput., vol. 16, pp.72-80, 1999.

[29] T. Heijmen and A. Nieuwland: “Soft-error rate testing of deep-submicron integrated

circuits,” Proc. European Test Symp., pp. 247-252, 2006.

[30] International Technology Roadmap for Semiconductors: ITRS 2009 edition,

http://www.itrs.net/Links/2009ITRS/Home2009.htm, 2009.

[31] J. Jaffari and M. Anis: “Timing yield estimation of digital circuits using a control

variate technique,” Proc. Intl. Symp. Quality Electron. Design, pp. 382-287, 2009.

[32] P. Jeavons et al.: “Generating binary sequences for stochastic computing,” IEEE

Trans. Info. Theory, vol. 40, pp. 716-720, 1994.

[33] J. Kahn et al.: “The influence of variables on Boolean functions,” Proc. Symp. Found.

Comput. Sci., pp. 68-80, 1988.

114

[34] S. Krishnaswamy et al.: "Probabilistic transfer matrices in symbolic reliability

analysis of logic circuits," ACM Trans. Design Autom. Electron. Syst., vol. 13, Article

No. 8, 2008.

[35] W. Kunz and D. K. Pradhan: “Recursive learning: a new implication technique for

efficient solutions to CAD problemstest, verification, and optimization,” IEEE

Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 13, pp. 1143-1158, 1994.

[36] J. L. Leray et al.: “Atmospheric neutron effects in advanced microelectronics,

standards and applications,” Proc. Intl. Conf. Integrated Circuit Design &

Technology, pp. 311-321, 2004.

[37] A. Lesea et al.: “The Rosetta experiment: atmospheric soft error rate testing in

differing technology FPGAs,” IEEE Trans. Device and Mater. Rel., vol. 5, pp. 317-

328, 2005.

[38] J. J. Liou et al.: “False-path-aware statistical timing analysis and efficient path

selection for delay testing and timing validation,” Proc. Design Automation Conf., pp.

566-569, 2002.

[39] G. De Micheli: Synthesis and Optimization of Digital Circuits, McGraw-Hill, 1994.

[40] N. Miskov-Zivanov and D. Marculescu: "Modeling and optimization for soft-error

reliability of sequential circuits," IEEE Trans. Comput.-Aided Design Integr. Circuits

Syst., vol. 27, pp. 803-816, 2008.

[41] A. Mondal et al.: “Statistical static timing analysis using symbolic event

propagation,” IET Circuits, Devices & Syst., vol. 1, pp. 283-291, 2007.

[42] G. E. Moore: “Cramming more components onto integrated circuits,” Electronics, vol.

38, pp. 8-11, 1965.

[43] F. N. Najm: “On the need for statistical timing analysis,” Proc. Design Automation

Conf., pp. 764-765, 2005.

[44] S. Nassif et al.: “High performance CMOS variability in the 65nm regime and

beyond,” Proc. Intl. Electron Devices Meeting, pp. 569-571, 2007.

[45] M. Omana et al.: “A model for transient fault propagation in combinatorial logic,”

Proc. Intl. On-Line Testing Symp., pp. 111-115, 2003.

[46] K. P. Parker and E. J. McCluskey: "Probabilistic treatment of general combinational

networks," IEEE Trans. Comput., vol. C-24, pp. 668-670, 1975.

[47] M. Pedram: “Power estimation and optimization at the logic level,” Jour. High Speed

Electron. Syst. vol. 5, pp. 179–202, 1994.

[48] T. Rejimon and S. Bhanja: “Scalable probabilistic computing models using Bayesian

networks,” Proc. Midwest Symp. Circuits & Syst., pp. 712-715, 2005.

[49] S. M. Ross: A Course in Simulation, Prentice Hall, 1990.

[50] K. Roy et al.: “Test consideration for nanometer-scale CMOS circuits,” IEEE Trans.

Design Test Comput., vol. 23, pp. 128-136, 2006.

[51] S. J. Russell and P. Norvig: Artificial Intelligence, Prentice-Hall, 2001.

115

[52] M. Sauer et al.: “Estimation of component criticality in early design steps,” Proc. Intl.

On-Line Testing Symp. pp. 104–110, 2011.

[53] M. H. Schulz and E. Auth: “Improved deterministic test pattern generation with

applications to redundancy identification,” IEEE Trans. Comput.-Aided Design Integr.

Circuits Syst., vol. 8, pp. 811–816, 1989.

[54] S. C. Seth and V. D. Agrawal: “A new model for computation of probabilistic

testability in combinational circuits,” Jour. VLSI Circuits, vol. 7, pp. 49-75, 1989.

[55] SGI: The SGI Solutions for Enterprises, http://www.sgi.com/solutions/, 2012.

[56] A. Singhee and R. A. Rutenbar: “Why Quasi-Monte Carlo is better than Monte Carlo

or Latin Hypercube sampling for statistical circuit analysis,” IEEE Trans. Comput.-

Aided Design Integr. Circuits Syst., vol. 29, pp. 1763-1776, 2010.

[57] S. Tasiran et al.: “A functional validation technique: biased-random simulation

guided by observability-based coverage,” Proc. Intl. Conf. Comput.-Aided Design,

pp. 82-88, 2011.

[58] T. Uchino et al.: "Switching activity analysis using Boolean approximation method,"

Proc. Intl. Conf. Comput.-Aided Design, pp.20-25, 1995.

[59] T. Uchino et al.: "Switching activity analysis for sequential circuits using Boolean

approximation method," Proc. Intl. Symp. Low Power Electron. & Design, pp. 79-84,

1996.

[60] G. V. Varatkar et al.: “Stochastic networked computation,” IEEE Trans. VLSI Syst.,

pp. 1421-1432, 2010.

[61] J. Von Neumann: “Probabilistic logics and synthesis of reliable organisms from

unreliable components,” Automata Studies, pp. 43-98, Princeton University Press,

1956.

[62] N. H. E. Weste and D. M. Harris: CMOS VLSI design: A Circuits and Systems

Perspective, Addison-Wesley, 2011.

[63] V. K. Wong and S. K. Teng: “Variation aware guard -banding for SOC static timing

analysis,” Proc. Intl. Symp. Quality Electron. Design, pp.428-431, 2010.

[64] Q. Wu et al.: “A note on the relationship between signal probability and switching

activity,” Proc. Design Automation Conf., pp. 117-120, 1997.

[65] Y. Ye et al.: “Random variability modeling and its impact on scaled CMOS circuit,”

ACM J. of Comput. Electron., vol. 9, pp. 108-113, 2010.

[66] M. Yoshimi et al.: “FPGA implementation of a data-driven stochastic biochemical

simulator with the next reaction method,” Proc. Field Programmable Logic &

Applicat., pp. 254-259, 2007.

[67] C. C. Yu and J. P. Hayes: “Scalable and accurate estimation of probabilistic behavior

in sequential circuits,” Proc. VLSI Test Symp., pp. 165-170, 2010.

[68] C. C. Yu and J. P. Hayes: “Trigonometric method to handle realistic error

probabilities in logic circuits,” Proc. Design, Automation & Test in Europe, pp. 1-6,

2011.

116

[69] C. C. Yu et al.: “Scalable sampling methodology for logic simulation: reduced-

ordered Monte Carlo,” Proc. Intl. Conf. Comput.-Aided Design, 2012, to appear.

[70] K. M. Zick and J. P. Hayes: "High-level vulnerability over space and time to

insidious soft errors," Proc. High Level Design Validation & Test Workshop, pp. 161-

168, 2008.

[71] J. F. Ziegler et al.: “IBM experiments in soft fails in computer electronics (1978-

1994),” IBM Jour. Res. & Develop., pp. 3-18, 1996.

	Probabilistic Analysis for Modeling and Simulating Digital Circuits
	by
	Chien-Chih Yu
	A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Electrical Engineering) in The University of Michigan 2012
	Doctoral Committee:
	Professor John P. Hayes, Chair
	Professor Todd M. Austin
	Professor Marios C. Papaefthymiou
	Assistant Professor Mariel Lavieri-Rodriguez
	© Chien-Chih Yu
	All rights reserved
	2012
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	PREFACE
	CHAPTER 1 Introduction
	1.1 Background
	1.2 Signal Probability Analysis
	1.3 Soft Error Modeling and Analysis
	1.4 Probabilistic Transfer Matrices
	1.5 Thesis Outline

	CHAPTER 2 Circuit Sampling for Signal Probability Calculation
	2.1 Background
	2.2 Prior Work
	2.3 Signal Redundancy
	2.4 Sampling Concepts
	2.5 Variable Ordering
	2.6 Sample Space Reduction
	2.7 Implementation Issues
	2.8 Experimental Results
	2.9 Case Study
	2.10 Summary

	CHAPTER 3 Trigonometry-based Probability Modeling
	3.1 Background
	3.2 Unconditional Error Representation
	3.3 Trigonometric Representation of Probability
	3.3.1 Trigonometric Signal Probability
	3.3.2 Trigonometric Error Model

	3.4 Probabilistic Calculation Algorithm
	3.4.1 Correlation Handling
	3.4.2 Signal Probability Estimation

	3.5 Simulation Results
	3.6 Summary

	CHAPTER 4 Soft-Error Estimation in Sequential Circuits
	4.1 Prior Work
	4.2 SER Measurement in Sequential Circuits
	4.3 PTM-Based Analysis
	4.4 Circuit Partitioning
	4.5 Fault Simulation-based PTM construction
	4.6 Probabilistic Calculation Method
	4.7 SER Estimation
	4.8 Summary

	CHAPTER 5 Conclusions and Future Work
	5.1 Summary of Contributions
	5.2 Future Work
	5.2.1 Sampling with Implication
	5.2.2 Soft-Error Estimation Using Sampling
	5.2.3 PTM Construction Using Learning

	BIBLIOGRAPHY

