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CHAPTER I

Introduction

1.1 History

Complex dynamics is the study of iteration of a holomorphic function. The history

of complex dynamics goes back to E. Schröder’s study of Newton’s method in one

complex variable (see [1]). It is an algorithm to approach a zero of f(z) = 0 for some

holomorphic function f over C in terms of a sequence. Instead of finding such a root,

we look at the sequence defined by zn+1 = N(zn) with an initial value, where

N(z) = z − f(z)

f ′(z)

on a neighborhood of a root of the function f(z). For a good choice of our initial

point z0, the iteratively defined sequence {zn} approximates the solution of f(z) = 0.

Through this approximating sequence, even when we cannot algebraically solve the

equation, we can still get information on the zeros of f(z) = 0. The study of it-

eration is not just limited to the study of the equation of the form f(z) = 0. For

example, we can apply it to the study of differential equations. The Hénon mapping

first appeared in that context.

The Hénon mapping was first considered in an attempt to describe the weather.

In 1969, Hénon studied a polynomial mapping of C2 of the form f : (x, y) →

1
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(x2 + c − ay, x) as a simplified model of a Poincaré section of the Lorenz differ-

ential equation (see [19], [20]). Hénon mappings are simply defined but have a rich

dynamical properties. For example, they show chaotic behavior and if we restrict

our attention to the real case, a strange attractor is observed.

In addition to the perspective from physics, they are important in their own right.

According to Friedland and Milnor (see [17]), every polynomial automorphism of C2

is conjugate by a polynomial automorphism to an affine map, an elementary map

or a finite composition of generalized Hénon mappings. Affine maps and elementary

maps are dynamically non-interesting in the sense that their dynamical degree is 1.

So, it is the finite compositions of generalized Hénon mappings that are dynamically

interesting.

For these reasons, Hénon mappings are the most studied mappings in complex

dynamics. Since there has been an immense amount of work done for Hénon map-

pings, it is impossible to list all of them. We list some of them. In the real case, for

example, see Benedicks and Carleson ( [10]), Holmes ( [21]), Holmes and Whitley

( [22]), and Holmes and Williams ( [23]). In the complex case, for example, see Bed-

ford, Lyubich, and Smillie ( [3], [4], [5], [2], [6], [7], [8], and [9]), Fornæss and Sibony

( [16]), Friedland and Milnor ( [17]), and Hubbard and Oberste-Vorth ( [24] and [25]).

We review some relevant results to this paper, focusing on foliation structure. In [3],

they considered a hyperbolic case. They used the Stable Manifold Theorem to show

that stable manifolds foliate the boundary of the set of forward non-escaping points.

Also, they showed that the stable manifolds are biholomorphic to C using the subad-

ditivity of modulus and that each leaf is dense. In [2], they removed the condition on
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hyperbolicity on the polynomial. Instead, they used the hyperbolicity of the Green

current and ergodicity to draw a similar conclusion to [3]. In [16], the mappings of

the form (z, w)→ (z2 + c− aw, az), which are conjugate to Hénon mappings of the

form (z, w)→ (z2 + c− a2w, z) are considered. They are regarded as perturbations

of a single variable map Pc(z) = z2 + c. Under some conditions on the polynomial

Pc(z) and a, they showed that the set of forward non-escaping points has a foliation

structure and that the set of backward non-escaping points with finite exceptional

points removed has a foliation structure by biholomorphic images of C. In both

foliations, each leaf is dense. In [24], they focused on the set of forward escaping

points. They used the scattering theory method to find a good coordinate chart

in the sense that the Green function (see Chapter II) has a simple representation.

Using this function, they showed that each level set of the Green function has a

foliation structure. They verified that each leaf is a biholomorphic image of C using

the subadditivity of modulus and that each leaf is dense.

1.2 Presentation of Results

In this paper, we study the generalized Hénon mapping. It is a holomorphic

polynomial automorphism f of C2 defined by

f : (z, w)→ (p(z)− aw, z),

where p is a monic polynomial of degree d ≥ 2 and a 6= 0. For the dynamical study

of f , we also consider the Green function g associated to f , which will be precisely

defined in Chapter II.

Our focus lies on the set of forward escaping points, that is, the set of points of

forward unbounded orbit. We first look into their behavior as we approach the line
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at ∞. Since the forward escaping points are characterized by g > 0, we consider

the set Cc := {g = c} for some c > 0 near infinity. For this purpose, it is natural

to consider C2 as a subset of P2. Especially, we take the Fubini-Study metric of P2

instead of the standard C2 hermitian metric. Accordingly, we extend our map f to

a meromorphic function F defined over P2 such that F |C2 = f . As a meromorphic

map of P2, the map F has a point of indeterminancy, say I+. Since f has an inverse

over C2, we can define F−1 and I−. We let Kc := {g ≤ c}. The behavior of Cc can be

stated in terms of Kc. Note that the set Kc = Kc ∪ I+ in P2 for c > 0 (for example,

see III). We prove the following:

Theorem I.1. There is no non-trivial holomorphic curve, which passes through I+,

and is supported in Kc ⊆ P2 for c > 0.

Observe that Kc = Kc ∪ I+ in P2 for c > 0 implies that the closure of Cc for c > 0

in P2 is in Cc ∪ I+. Then, the theorem implies that all holomorphic curves in the

closure of Cc in P2 are actually in Cc ⊆ C2. The proof is based on the property that g

is unbounded as we approach I− and the property that I− is a superattracting fixed

point for f . Also, we use the covering space C3 \ {0} of P2 for transitions among the

local affine charts of P2.

Next, we move to the foliation structure of Cc for c > 0. According to [24], Cc

is foliated by biholomorphic images of C and each leaf is dense. Our main result

answers the following question: ”What kind of Riemann surface is each leaf?” It is a

further study of the foliation structure. In order to better understand the meaning

of our main result, we give the definition of a Brody curve and some explanation

about it.
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Definition I.2 (Brody Curve). Let M be a complex manifold with a smooth metric

ds. Let ψ : C→M be a non-constant holomorphic map of θ ∈ C to M .

The map ψ is said to be Brody if supθ∈C ds(ψ(θ), dψ( d
dθ

)) < C for some constant

C > 0. We call the image ψ(C) a Brody curve in M . The curve ψ(C) is said to be

injective Brody if the parametrization ψ is injective.

Especially, we consider an injective Brody curve. For injective Brody curves,

the parametrization is unique in the sense that if φ1, φ2 : C → M are two injective

parametrizations of an injective Brody curve B, then there exist a, b ∈ C with a 6= 0,

φ2(z) = φ1(az+b) (see Chapter VI). So, whenever we biholomorphically parametrize

an injective Brody curve by C, it has a uniformly bounded speed of expansion with

respect to the smooth metric ds of M . In some sense, we can compare injective Brody

curves to holomorphic curves parametrized by the unit disc in C. The Kobayashi

metric is a natural metric for hyperbolic spaces. Due to its distance decreasing

property under a holomorphic mapping, any holomorphic curve over a unit disc

shows some kind of tame behavior with respect to the Kobayashi metric. On the

contrary, in general, C does not have such a metric with decreasing property, the

behavior of holomorphic curve of C can be very wild. Indeed, the existence of the

map ϕ : C→ C defined by ϕ(z) = 2z confirms that there is no such metric. However,

as pointed out, injective Brody curves have a uniformly bounded expansion speed,

which implies that they do not fluctuate too much. Thus, the following theorem

implies that even though every leaf of Cc for c > 0 seems to be very complicated in

the sense that each leaf is dense (see Chapter V and [24]), but actually, it is not too

wild. Our main result is the following:

Theorem I.3. Every leaf of Cc viewed as a subset of P2 is an injective Brody curve.

As an consequence of the theorem, we find a short C2 domain with real analytic
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boundary and its boundary is foliated by injective Brody curves.

The main ingredient for the existence of a Brody curve in each leaf is to modify

Brody’s proof in such a way that the family of parametrizations has a fixed point.

The classical Brody’s proof does not provide us with the location of limit maps, and

so, we need to modify it. We also use Theorem I.1 to use the compactness property

of P2. The intuition behind this part is that over a small neighborhood of I−, Cc is

more like a strap stretching in the w-direction. Also, the action of f−1 preserves the

structure. In result, the ratio of the maximum modulus of derivative to the minimum

of a parametrization is uniformly bounded over the entire family of parametrizations.

So, this fact makes it possible to reparametrize the family such that the family of

parametrizations shares a fixed point and Brody’s technique is still valid to the fam-

ily. The major factor for the injectivity part is Hurwitz’s theorem.

On the way to the proof of our main theorem, we consider a family of parametriza-

tions. Using the family of parametrizations, we re-prove the result in [24] that each

leaf of Cc for c > 0 is a biholomorphic image of C in a more analytic way. Namely,

we compute the Kobayashi-Royden pseudometric of each leaf (see Chapter V).

We close this section by briefly explaining each chapter. In Chapter II, we in-

troduce the basic dynamics terminology related to generalized Hénon mappings. In

Chapter III, we investigate the tendency of the value of g near the line at ∞ and

prove our first theorem. In Chapter IV, we discuss the work of [24]. Also, we intro-

duce a compact exhaustion of a leaf of Cc, a family of the parametrizations of the

compact subsets and related properties. In Chapter V, we introduce the Kobayashi-
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Royden pseudometric, compute it for a specific leaf, and re-prove that each leaf is

biholomorphic to C. In Chapter VI, we introduce the notion of a Brody curve, pro-

vide various examples of Brody curves and explore their properties. Then we prove

our main theorem. In the last chapter, we discuss short C2 domains.

1.3 Notations

In this last section, we introduce the notations that we are going to use in this

paper.

Let ∆ denote the unit disc in C and ∆α the disc centered at the origin and of radius

α > 0 in C. We use ∆,∆α to mean their closures in C respectively. Throughout this

paper, we express p(z) =
∑d

i=0 aiz
i with ad = 1. We let q(z) := p(z)−zd =

∑d′

i=0 aiz
i

with d′ ≤ d − 1. We may assume that d′ ≥ 2 because it is not hard to see that

when d′ ≤ 1 or even q(z) = 0, we have better estimate and therefore, it does not

affect the result at all. Given a polynomial H(z) =
∑dH

i=0 hiz
i, |H| (x) means the

real polynomial |H| (x) :=
∑dH

i=0 |hi|xi. The z-coordinate and the w-coordinate of

fn(z, w) are denoted by fn1 (z, w) and fn2 (z, w). Up to Section 6.2, (zi, wi) refers to

f i(z, w). When we want to emphasize that it is the image of (zK , wK) under f i, we

will rather use ((zK)i, (wK)i). The standard norms on C2 and C3 are denoted by

‖·‖C2 and ‖·‖C3 , respectively.



CHAPTER II

Preliminaries

We are going to study the generalized Hénon mapping from a dynamical perspec-

tive in this paper. The generalized Hénon mapping is a holomorphic polynomial

automorphism f of C2 defined by

f(z, w) = (p(z)− aw, z) for (z, w) ∈ C2,

where p(z) is a monic polynomial of z with degree d ≥ 2 and a 6= 0. Indeed, f

is a holomorphic polynomial automorphism; since it is a polynomial mapping, it is

holomorphic and since the map f−1 : (z, w) → (w, p(w)−z
a

) is its inverse, it is an

automorphism of C2.

We can also view f : C2 → C2 as a restriction of a meromorphic endomorphism

F : P2 → P2 to C2. We projectivise f to recover the meromorphic endomorphism

F . In the homogeneous coordinate system [z : w : t] ∈ P2, it can be written as

F ([z : w : t]) = [tdp( z
t
) − awtd−1 : ztd−1 : td]. Then, F has a point of indetermi-

nancy I+ := [0 : 1 : 0]. Since f is an automorphism over C2, f−1 exists and is

defined over C2. Then, in the same way, we can find the meromorphic endomor-

phism F−1 : P2 → P2 for f−1 : C2 → C2. In the homogeneous coordinate system

[z : w : t] ∈ P2, it can be written as F−1([z : w : t]) = [wtd−1 : 1
a
(tdp(w

t
)− ztd−1) : td],

8
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and F−1 also has a point of indeterminancy I− := [1 : 0 : 0]. Note that F and F−1

are not inverse to each other in P2.

In this chapter, we introduce terminology and properties related to f , f−1, F , and

F−1. From now on, we are going to use (z, w) for the standard Euclidean coordinate

system of C2 and [z : w : t] for the standard homogeneous coordinate system of P2,

unless otherwise stated.

2.1 Choice of a Large Number R

In our mapping f(z, w) = (p(z) − aw, z), p(z) is the only non-linear term. So,

this can be thought of as the source of the complicated behaviors of the orbits for f .

However, near |z| = ∞, p(z) shows somewhat tame behavior. Also, if the effect of

w is small in the action of f , for example, under the condition that |w| ≤ |z|, then

f can be approximated by simpler maps of the form (z, w)→ (azd, z) for some con-

stant a. In some sense, this is reflected in the property that f has a super-attracting

fixed point at I−. In other words, we want to find a neighborhood of I− of the form

{|z| > R, |z| ≥ |w|} where f shows somewhat regular behavior. At the same time,

for later applications, we are expecting some more properties related to p′(z) and so

on. We want to find such an R with the above mentioned properties.

Recall our notations p(z) =
∑d

i=0 aiz
i with ad = 1 and q(z) = p(z) − zd =∑d′

i=0 aiz
i with ad′ 6= 0 and d′ ≤ d − 1. Note that q(z) may be 0 if no such

ad′ exists. Given a polynomial H(z) =
∑dH

i=0 hiz
i, we define a real polynomial

|H| (x) :=
∑dH

i=0 |hi|xi.
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We can choose R > 2 with the properties listed below:

1. R is ≥ the largest absolute value of the roots of the real polynomial equation

5
4
xd− |p| (x)− (|a|+ 2)x = 0. Indeed, this condition implies that for any z with

|z| > R, 3
4
|z|d ≤ |p(z)| − (|a|+ 2) |z| ≤ |p(z)| ≤ |p(z)|+ (|a|+ 2) |z| ≤ 5

4
|z|d.

2. If d′ > 1, R is ≥ the largest absolute value of the roots of the real polynomial

equation 3
2
|ad′|xd

′ − |q| (x) − |a|x = 0. Indeed, this condition implies that

1
2
|ad′ | |z|d

′
≤
∣∣p(z)− zd

∣∣ − |az| ≤ ∣∣p(z)− zd
∣∣ ≤ ∣∣p(z)− zd

∣∣ + |az| ≤ 3
2
|ad′| |z|d

′
.

If d′ ≤ 1, we disregard this condition.

3. R is ≥ the largest absolute value of the roots of the real polynomial equation

5
4
dxd−1 − |p′| (x) − 1 = 0. Indeed, this condition implies that for any z with

|z| > R, 3
4
d |z|d−1 ≤ |p′(z)| − 1 ≤ |p′(z)| ≤ |p′(z)|+ 1 ≤ 5

4
d |z|d−1.

4. For z with |z| > R,
∣∣∣∣∣∣p′(z)zp(z)

∣∣∣− d∣∣∣ ≤ 1
d
.

5.
3(|ad′ |+|a|)

2R
< 1

4
.

6. For z with |z| > R,

∣∣∣∣ 2a

p′(z)

∣∣∣∣ ≤ 2 |a|
3
4
d |z|d−1

≤ 8 |a|
3dR

≤ 1

2
√
R

.

7.

∣∣∣∣ 9

320a

∣∣∣∣R > 1.

2.2 Sets of Escaping Points and Non-escaping Points

In this section, we introduce the concepts that we use to describe the dynamics of

f and their relationships. First, we define the sets K± ⊂ C2 of points of a bounded

forward and backward orbit under f , respectively. K+ := {(z, w) ∈ C2 : ‖fn(z, w)‖C2 < C for some C > 0 for all n ∈ N}

K− := {(z, w) ∈ C2 : ‖f−n(z, w)‖C2 < C for some C > 0 for all n ∈ N} .
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We define the set U± of points of unbounded forward orbit and backward orbit as

U± = C2 \K±, respectively.

In order to better study the behaviors of K±, U± and f near line at infinity and

to use the compactness property of P2, we projectivise the space C2 to P2. Recall

the definitions of F , F−1, I+, and I−.

Proposition II.1 (See [29]). K±, U±, I±, and F satisfy the following properties:

1. I− and I+ are the super-attracting fixed points of F and F−1, respectively.

2. Any compact subset K of U± uniformly converges to I∓, respectively.

3. F ({t = 0} \ I+) = I− and F−1({t = 0} \ I−) = I+.

4. K+ = K+ ∪ I+ and K− = K− ∪ I−.

For the proof of the first and second statements, see Proposition 2.2.10 in [29], for

the third one, see Proposition 2.5.3 in [29], and for the last one, see Corollary 2.5.6

in [29].

Recall our choice of R. We define a filtration:

V + :=
{

(z, w) ∈ C2 : |z| ≥ |w| , |z| ≥ R
}

V − :=
{

(z, w) ∈ C2 : |z| ≤ |w| , |w| ≥ R
}

W :=
{

(z, w) ∈ C2 : |z| , |w| < R
}
.

The following are two properties related to this filtration that we are going to use

later. For the proofs and details about this filtration, see [3], [24] and [29]. Here, we

give short proofs.
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Proposition II.2.

1. f(V +) ⊆ V + and f−1(V −) ⊆ V −.

2. U+ = ∪∞i=0f
−i(V +) and U− = ∪∞i=0f

i(V −).

Proof. In order to prove the first statement, it suffices to check |z| ≤ |p(z)− aw| for

(z, w) ∈ V +. It is clear by Condition 1 on R.

We consider the second statement. We let U := C2 \ [∪∞i=0f
−i(V +)]. Then U ⊆

W ∪ V − since f(V +) ⊆ V +. Let U1 = U ∩ W and U2 = U ∩ V −. Note that

f(W ) ∩ V − = ∅ from the definition of f . So, f i(U1) ⊆ W , for every i = 0, 1, ....

If (z, w) ∈ U2, then the absolute value of the w coordinate decreases under f or

f(z, w) ∈ U1, which is easy to see from the definition of f . Since |z| ≤ |w| for

(z, w) ∈ U2, {‖f i(z, w)‖C2}∞i=0 is bounded for (z, w) ∈ U . So, U ⊆ K+. The other

direction is obvious. So, U+ = ∪∞i=0f
−i(V +). The case of U− = ∪∞i=0f

i(V −) is

similar.

2.3 Green Function

In this section, we define two Green functions G and g associated to F and f ,

respectively and look into their properties. Our focus lies on the relationship between

G and g. Actually, it implies the behavior of g near the line at ∞.

With F viewed as a meromorphic mapping over P2, we can associate to F the

Green function G : C3 → R∪{−∞}, which is a pluri-subharmonic function. For the

details about pluri-subharmonic functions, see [27], or Appendix in [29]. Let F̃ be a

lifting of F to C3 \ {0} such that sup‖(z,w,t)‖C3=1

∥∥∥F̃ (z, w, t)
∥∥∥
C3

= 1. In terms of the
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coordinates (z, w, t) ∈ C3 \ {0}, F̃ (z, w, t) = aF (tdp( z
t
)− awtd−1, ztd−1, td) for a con-

stant aF 6= 0 satisfying sup‖(z,w,t)‖C3=1

∥∥∥F̃ (z, w, t)
∥∥∥
C3

= 1. We can holomorphically

extend F̃ over {0}. We replace F̃ by the extension. Then, G is defined by

G(z, w, t) = lim
n→∞

1

dn
log
∥∥∥F̃ n(z, w, t)

∥∥∥
C3
.

The existence of G is well-known. For example, see Theorem 1.6.1 in [29]. It is not

hard to see from the definition that G satisfies G(λz, λw, λt) = log |λ|+G(z, w, t)

G(F̃ (z, w, t)) = d ·G(z, w, t),

where λ ∈ C \ {0} is a constant. By Theorem 1.6.5 in [29], G is continuous over

C3 \ π−1({I+}).

We turn our attention back to C2. We identify {(z, w, 1)} ∈ C3 with C2. Thus, we

can think of G(z, w, 1) as the restriction of G in C2. Since π−1({I+})∩(C2×{1}) = ∅,

G(z, w, 1) is well-defined as a continuous map over the entire C2.

We define g(z, w) := G(z, w, 1). We want to express g in terms of f . Before that,

we need the following simple proposition.

Proposition II.3. Let {an} , {bn} ⊆ R be sequences such that 0 ≤ bn ≤ an and let

{cn} ⊆ R be a sequence such that limn→∞ cn = ∞. Assume that limn→∞ a
1/cn
n and

limn→∞(an + bn)1/cn exist. Then limn→∞ a
1/cn
n = limn→∞(an + bn)1/cn

Proof. The inequality an ≤ (an + bn) ≤ 2an implies the proposition.

Then, from the definition of G in the above, we have

g(z, w) = G(z, w, 1) = lim
n→∞

1

dn
log
∥∥∥F̃ n(z, w, 1)

∥∥∥
C3
.
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Next, due to Proposition II.3, we have

lim
n→∞

1

dn
log
∥∥∥F̃ n(z, w, 1)

∥∥∥
C3

= lim
n→∞

1

dn
log

√
‖fn(z, w)‖2

C2 + 1

= lim
n→∞

1

dn
log+ ‖fn(z, w)‖C2 .

In short, we can define the Green function g associated to f in C2 by

Definition II.4.

g(z, w) := G(z, w, 1) = lim
n→∞

1

dn
log+ ‖fn(z, w)‖C2 ,

where log+ = max {0, log}.

Then, g inherits the properties of G; g is continuous in the entire C2, g is pluri-

subharmonic and g satisfies g(f(z, w)) = d · g(z, w). From the definition, it is clear

that g ≥ 0 on C2. We have K+ = {g = 0} (see Proposition 2.2.6 in [29]). The

continuity of g implies that K+ is closed in C2. In U+ = C2 \ K+, g > 0 and g is

pluri-harmonic (see Proposition 2.2.10 in [29]).

We end this section with the following remark describing a useful relationship

between g and G.

Remark II.5. Let (ζ, ω, t) ∈ C3 \ {0}. Then, for t 6= 0, by the homogeneity and

regularity of F̃ , we have

G(ζ, ω, t) = lim
n→∞

1

dn
log
∥∥∥F̃ n(ζ, ω, t)

∥∥∥
C3

= lim
n→∞

1

dn
(

log
∣∣tdn∣∣+ log

∥∥∥∥F̃ n(
ζ

t
,
ω

t
, 1)

∥∥∥∥
C3

)
= log |t|+G(

ζ

t
,
ω

t
, 1)(2.1)

= log |t|+ g(
ζ

t
,
ω

t
)(2.2)



CHAPTER III

The Behavior of the Level Sets at Infinity

3.1 The Closure of the Level Set Cc

For the rest of this paper, we denote Cc := {g = c}. For the study of Cc for c > 0,

we first consider the following definition. Similarly to K+, we define

Definition III.1. For c > 0, Kc := {g ≤ c}.

The following lemma describes the behavior of the Green function g near I−; g

diverges to ∞ near I−.

Lemma III.2. For any M > 0, there exists a bidisc-shaped neighborhood UM ⊆ P2

of I− such that g > M in UM ∩C2. Indeed, UM = {[1 : w : t] ∈ P2 : |w| < ε1, |t| < ε2}

for some sufficiently small ε1, ε2 > 0.

Proof. Let M > 0 be arbitrarily given. Since the statement is local near I−, we fix

the affine coordinate chart centered at I−, which is of the form {(1, w, t) : w, t ∈ C} =

{1} × C2 ⊆ C3 \ {0}. We consider Equality 2.2 on this coordinate system. Recall

that by Theorem 1.6.5 in [29], we know that G is continuous over C3 \ π−1({I+}) =

C3 \ {0} × C × {0}. Since ({1} × C2) ∩ ({0} × C × {0}) = ∅, G restricted to the

coordinate system {1} × C2 is continuous. Take a neighborhood U ⊆ {1} × C2

of the origin (1, 0, 0) ∈ {1} × C2 (which corresponds to I−) with compact closure

15
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in the coordinate chart {(1, w, t) : w, t ∈ C}. Then, G is bounded over U . Let m

be the bound. We take ε2 small enough so that − log |ε2| −m > M . Take ε1 small

enough to satisfy {(1, w, t) : |w| < ε1 and |t| < ε2} ⊆ U . Call this neighborhood Ũ =

{(1, w, t) : |w| < ε1 and |t| < ε2} and let UM = {[1 : w : t] : |w| < ε1 and |t| < ε2} be

the corresponding neighborhood of I− to Ũ in P2. We have
∣∣log |t|+ g(1

t
, w
t
)
∣∣ =

|G(1, w, t)| < m over UM ∩ C2 from Equality 2.2. By the choice of ε1, ε2 > 0, we

have g(1
t
, w
t
) > − log |t| −m > M over UM ∩ C2. So, the set UM ⊆ P2 is the desired

neighborhood of I−.

The following proposition implies that the level set Cc with c > 0 can only accu-

mulate at I+ near line at ∞.

Proposition III.3.

Kc = Kc ∪ I+

Proof. Since K+ ⊆ Kc, I+ is in the closure of Kc by Proposition II.1. It suffices

to show that for a sequence {xn} ⊆ Kc with ‖xn‖C2 → ∞ as n → ∞, xn → I+

in P2. Since f is an automorphism over C2, we can consider the inverse images

{f−1(xn)} of {xn} under f . Consider the sequence {f−1(xn)} in P2. Then, since P2 is

compact, there exists a convergent subsequence in P2. By replacing by the convergent

subsequence, we may assume that f−1(xn) → L for some L ∈ P2. F |C2 = f in C2,

so, if L ∈ C2, then xn → f(L) ∈ C2 and this contradicts ‖xn‖C2 → ∞. Therefore,

L ∈ {t = 0}. From Proposition II.1, we have F ({t = 0} \ I+) = I−. Thus, we

conclude that {xn} should converge either to I+ or I−. However, by Lemma III.2,

g is unbounded near I−, so I− cannot be a limit point of Kc. This proves the

statement.



17

3.2 Non-existence of Holomorphic Curves through I+ in the Closure of
Cc

In this section, we prove Theorem I.1. We paraphrase the statement as follows:

Theorem III.4. Let ϕ : ∆ → P2 be a holomorphic mapping such that ϕ(∆) ⊆ Kc

and ϕ(0) = I+. Then ϕ is a constant map.

Proof. We prove this proposition by contradiction. Suppose that there exists such

a non-constant holomorphic mapping ϕ : ∆ → P2 as in the statement. Then,

ϕ(∆) ⊆ Kc. We parametrize the mapping ϕ by ϕ(θ) = [z(θ) : 1 : t(θ)] where z, t

are holomorphic functions of θ with z(0) = t(0) = 0. We will handle the cases where

either of z(θ) or t(θ) is identically zero separately. So, we first assume that none of

z(θ) and t(θ) are identically zero. Since z, t are non-zero holomorphic functions, by

taking a sufficiently small neighborhood V ⊆ ∆ of 0, we may assume that z, t have

0 only at θ = 0. Since z, t are holomorphic functions of θ in a small neighborhood

V ⊆ ∆ of 0, we can write

z(θ) = θαP (θ)

t(θ) = θβQ(θ)

where α, β ≥ 1, and P,Q are holomorphic functions of θ in V and P (θ), Q(θ) 6= 0 in

V .

We denote by F the extension of f in P2. For θ ∈ V \ {0}, z(θ), t(θ) do not

vanish, so the forward image of [z(θ) : 1 : t(θ)] under F is well defined and is equal

to [t(θ)dp( z(θ)
t(θ)

) − at(θ)d−1 : z(θ)t(θ)d−1 : t(θ)d]. Since t(θ)dp( z(θ)
t(θ)

) − at(θ)d−1 is a

holomorphic function of θ, by the identity theorem in one complex variable, there

are two cases:
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I) t(θ)dp( z(θ)
t(θ)

)− at(θ)d−1 has discrete zeros in V or

II) it is identically zero.

Recall the open neighborhood UM of I− in Lemma III.2. For the proof, we take

M = 2dc and denote the corresponding UM by U2dc. The same applies to U2d2c.

We use the notations ε1, ε2 > 0 for the two positive numbers associated to U2dc in

Lemma III.2. We will keep the notations ε1, ε2 for U2d2c if there is no confusion.

I) By shrinking V if necessary, we may assume that t(θ)dp( z(θ)
t(θ)

)−at(θ)d−1 6= 0 for

all θ ∈ V \ {0}. We consider the forward image [t(θ)dp( z(θ)
t(θ)

)− at(θ)d−1 : z(θ)t(θ)d−1 :

t(θ)d] of [z : 1 : t] under f with respect to the affine coordinate chart of the form

(1, w, t) ∈ {1} × C2 ⊆ C3 \ {0}. Then, the coordinate of the forward image for

θ ∈ V \ {0} is (1, z(θ)t(θ)d−1

t(θ)dp(
z(θ)
t(θ)

)−at(θ)d−1
, t(θ)d

t(θ)dp(
z(θ)
t(θ)

)−at(θ)d−1
). Notice that t(θ)d 6= 0 for

θ ∈ V \ {0} and therefore, the forward image under f is well-defined. Indeed, it

should be well-defined since F restricted to C2 is f .

We want to find a sufficiently small non-zero θ such that f(ϕ(θ)) lies inside U2dc

in this coordinate system, which implies dg( z(θ)
t(θ)

, 1
t(θ)

) = g(f( z(θ)
t(θ)

, 1
t(θ)

)) > 2dc. This

is a contradiction to ϕ(∆) ⊆ Kc, which therefore proves the statement. If this

strategy fails, then our plan B is to find θ such that f 2(ϕ(θ)) ∈ U2d2c for the same

reasoning. In order to find such θ, we compute and compare the vanishing order

of t(θ)dp( z(θ)
t(θ)

) − at(θ)d−1, z(θ)t(θ)d−1, and t(θ)d at θ = 0 in z(θ)t(θ)d−1

t(θ)dp(
z(θ)
t(θ)

)−at(θ)d−1
and

t(θ)d

t(θ)dp(
z(θ)
t(θ)

)−at(θ)d−1
. Keep in mind that a 6= 0.

In this comparison, we have two cases: i) α ≥ β or ii) α < β.
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i) α ≥ β. Let α = β + γ with γ ≥ 0. We consider z(θ)t(θ)d−1

t(θ)dp(
z(θ)
t(θ)

)−at(θ)d−1
first. The

vanishing order of the numerator is simply α+ β(d− 1) = βd+ γ. The denominator

becomes t(θ)dp( z(θ)
t(θ)

)− at(θ)d−1 = [
∑d

i=0 aiP (θ)iQ(θ)d−iθαi+β(d−i)]− aQ(θ)d−1θβ(d−1).

Since for every i, αi + β(d − i) = dβ + γi > β(d − 1), the vanishing order of the

denominator is β(d−1). Comparing the vanishing orders, we have βd+γ > β(d−1)

and therefore, we can find a small positive real number δ1 such that for every θ with

|θ| < δ1,

∣∣∣∣ z(θ)t(θ)d−1

t(θ)dp(
z(θ)
t(θ)

)−at(θ)d−1

∣∣∣∣ < ε1 is true. In the same way, we can find another

small positive real number δ2 for

∣∣∣∣ t(θ)d

t(θ)dp(
z(θ)
t(θ)

)−at(θ)d−1

∣∣∣∣ < ε2. Then, we take θ with

|θ| < min {δ1, δ2}.

ii) α < β. Let β = α + γ with γ > 0. We have two subcases:

a) the case where there is no cancellation of the lowest term of t(θ)dp( z(θ)
t(θ)

) by at(θ)d−1

in t(θ)dp( z(θ)
t(θ)

)− at(θ)d−1, and

b) the case where there is cancellation of the lowest term of t(θ)dp( z(θ)
t(θ)

) by at(θ)d−1

in t(θ)dp( z(θ)
t(θ)

)− at(θ)d−1.

a) We do z(θ)t(θ)d−1

t(θ)dp(
z(θ)
t(θ)

)−at(θ)d−1
first. Using the same argument for the denominator as

in i), we obtain the vanishing order of the denominator = min {αd, β(d− 1)} since

there is no cancellation. We compare it to βd−γ, the vanishing order of the numerator

at θ = 0. Since αd < αd+ γ(d− 1) = βd− γ and β(d− 1) < β(d− 1) + α = βd− γ,

we can find a small positive real number δ1 such that for every θ with |θ| < δ1,∣∣∣∣ z(θ)t(θ)d−1

t(θ)dp(
z(θ)
t(θ)

)−at(θ)d−1

∣∣∣∣ < ε1 is true as in i). Again, in the same way, we can find another

small positive real number δ2 for

∣∣∣∣ t(θ)d

t(θ)dp(
z(θ)
t(θ)

)−at(θ)d−1

∣∣∣∣ < ε2. Then, we take θ with

|θ| < min {δ1, δ2}.



20

b) In this case, we have αd = β(d− 1).

1. The case where the vanishing order of t(θ)dp( z(θ)
t(θ)

) − at(θ)d−1 is at most αd +

γ(d− 2). We do z(θ)t(θ)d−1

t(θ)dp(
z(θ)
t(θ)

)−at(θ)d−1
first. Since αd+ γ(d− 2) < αd+ γ(d− 1) =

βd− γ, we can pick a small positive real number δ1 such that for every θ with

|θ| < δ1,

∣∣∣∣ z(θ)t(θ)d−1

t(θ)dp(
z(θ)
t(θ)

)−at(θ)d−1

∣∣∣∣ < ε1 is true as in i). For t(θ)d

t(θ)dp(
z(θ)
t(θ)

)−at(θ)d−1
, since

αd + γ(d − 2) < αd + γd = βd, we can also choose another small positive real

number δ2 such that for every θ with |θ| < δ2,

∣∣∣∣ t(θ)d

t(θ)dp(
z(θ)
t(θ)

)−at(θ)d−1

∣∣∣∣ < ε2 is true

as in i). Then, we take θ with |θ| < min {δ1, δ2}.

2. The case where the vanishing order of t(θ)dp( z(θ)
t(θ)

) − at(θ)d−1 is αd + γ(d − 1).

For θ ∈ V \ {0}, f sends [z : 1 : t] to [θβd−γA1(θ) : θβd−γA2(θ) : θβdA3(θ)] =

[A1(θ) : A2(θ) : θγA3(θ)], where A1(θ), A2(θ), and A3(θ) are holomorphic func-

tions and do not vanish in a neighborhood of θ = 0. By shrinking V if nec-

essary, we may assume that A1, A2, and A3 are bounded away from 0 in V .

Therefore, the point should be in the usual C2 for θ ∈ V \ {0}, and we can

take one more iteration by f . Then, f sends [A1(θ) : A2(θ) : θγA3(θ)] →

[(θγA3(θ))dp( A1(θ)
θγA3(θ)

) − aA2(θ)(θγA3(θ))d−1 : A1(θ)(θγA3(θ))d−1 : (θγA3(θ))d].

Observe that the first component has A1(θ)d as its leading term. Since A1(θ)

is bounded away from 0 in V , the first component is bounded away from 0

while the second and the third component can be shrunken as small as we want

by letting θ → 0. Thus, we can find a θ such that f 2([z(θ) : 1 : t(θ)]) ∈ U2d2c.

This is a contradiction to ϕ(∆) ⊆ Kc for d2g( z(θ)
t(θ)

, 1
t(θ)

) = g(f 2( z(θ)
t(θ)

, 1
t(θ)

)) > 2d2c.



21

3. The case where the vanishing order of t(θ)dp( z(θ)
t(θ)

) − at(θ)d−1 is αd + γd = βd.

In this case, a0 6= 0 since t(θ)dp( z(θ)
t(θ)

) − at(θ)d−1 is not identically 0. This

case is almost the same as the previous case. The only difference is that f

sends [z : 1 : t] → [a0t(θ)
d : z(θ)t(θ)d−1 : t(θ)d] = [a0t(θ) : z(θ) : t(θ)] →

[t(θ)dp(a0)− az(θ)t(θ)d−1 : a0t(θ)
d : t(θ)d]. Observe that a 6= 0.

II) t(θ)dp( z(θ)
t(θ)

)− at(θ)d−1 is identically 0. Then, for all θ ∈ V \ {0}, p( z(θ)
t(θ)

) = a
t(θ)

.

Notice that since a 6= 0,
∣∣∣ a
t(θ)

∣∣∣ → ∞ as θ → 0. Since p(x) is a polynomial,

the only way to make
∣∣∣p( z(θ)t(θ)

)
∣∣∣ → ∞ is that t(θ) has a higher vanishing order

than z(θ) does at θ = 0. Since t(θ)d is not 0 in V \ {0}, the forward image

lies in the usual C2. We apply f one more time as previously. Then f sends

f([z : 1 : t]) = [0 : z(θ) : t(θ)] → f 2([z : 1 : t]) = [a0t(θ)
d − az(θ)t(θ)d−1 : 0 : t(θ)d]

with a0 is the constant term of p(x). Observe that a 6= 0. Considering the vanishing

order of z(θ), t(θ), the vanishing order of t(θ)d is greater than a0t(θ)
d− az(θ)t(θ)d−1.

So, we can find a θ such that f 2([z(θ) : 1 : t(θ)]) ∈ U2d2c and use the same argument

used as in b).

Now, we consider the case where either of z(θ), t(θ) is identically 0. Since ϕ is not

a constant mapping, exactly one of them should be identically 0. If t(θ) is identically

0, then since the only intersection between Kc and {t = 0} is I+, the mapping ϕ must

be a constant mapping ϕ(θ) = I+, which is a contradiction. If z(θ) is identically 0,

we have [0 : 1 : t(θ)] → [a0t(θ)
d − at(θ)d−1 : 0 : t(θ)d]. Use the same argument used

in II) to draw the conclusion.

These cases prove the statement.



CHAPTER IV

Family of Parametrizations

In this chapter, we introduce a useful family of parametrizations.

4.1 Coordinate Functions

In this section, we will find a local coordinate system, on which g is represented

in a simple way. Indeed, for our f , the z-coordinate determines the function g. So,

we will find a coordinate chart where the action of f on the z-coordinate is simple.

We follow Hubbard and Oberste-Vorth’s work in [24].

Proposition IV.1 (See Proposition 5.2 in [24]). There exist analytic functions ϕ± :

V± → C \∆ such that

ϕ+(f(z, w)) = (ϕ+(z, w))d and ϕ−(f−1(z, w)) = (ϕ−(z, w))d,

lim
‖(z,w)‖→∞

∣∣∣∣ϕ+(z, w)

z

∣∣∣∣ = 1 in V + and lim
‖(z,w)‖→∞

∣∣∣∣ϕ−(z, w)

Aw

∣∣∣∣ = 1 in V −,

where A is a non-zero constant only depending on a in f .

Proof. We only prove the statements for f and ϕ+. Those for f−1 and ϕ− are

analogous. limn→∞ z
1/dn

n may be the first natural candidate for ϕ+(z, w), but it has a

well-definedness problem. Alternatively, we define ϕ+ to be the following telescoping

22
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infinite product, which is similar to limn→∞ z
1/dn

n :

ϕ+(z, w) = z ·
(z1

zd
)1/d · ... ·

(zn+1

zdn

)1/dn+1

· ...

We show the existence and the analyticity of the limit function. Firstly, we check

the definition of dn+1-st root in each factor
(
zn+1

zdn

)1/dn+1

of the infinite product. We

have (
zn+1

zdn

)1/dn+1

=

(
p(zn)− awn

zdn

)1/dn+1

=

(
1 +

∑d′

i=0 aiz
i
n − awn
zdn

)1/dn+1

.

By Proposition II.2, we have for (zn, wn) ∈ V +, (zn+1, wn+1) ∈ V +. By the triangle

inequality, Condition 1 on R, and the fact that |zn| ≥ |wn|, we have

∣∣∣∣∑d′
i=0 aiz

i
n−awn

zdn

∣∣∣∣ ≤
1
4

for all z ∈ V +. So, the angle of zn+1

zdn
∈ (− arctan 1

4
, arctan 1

4
) ⊆ (−π, π) for all

n > 0 and all (z, w) ∈ V +. Thus, we can take the principle branch of the dn+1-st

root in each factor so that each factor is well-defined and holomorphic in V +.

Now we will check the convergence of the infinite product z·
(
z1
zd

)1/d·...·
(
zn+1

zdn

)1/dn+1

·

... of holomorphic functions

{(
zn+1

zdn

)1/dn+1
}

of V +. We rely on the following theorem

from the function theory of one complex variable.

Theorem IV.2 (See Theorem 8.1.9 in [18]). Let U ⊆ C be open. Suppose hj : U → C

are holomorphic and that
∑∞

j=1 |hj| converges uniformly on compact sets. Then the

sequence of partial products

HN(z) =
N∏
j=1

(1 + hj(z))

converges uniformly on compact sets. In particular, the limit of these partial products

defines a holomorphic function H on U .
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We estimate
∣∣∣ zn+1

zdn

∣∣∣1/dn+1

. From the argument about the validity of the dn+1-st

root, we have∣∣∣∣1 +
1

4

∣∣∣∣1/dn+1

≥

∣∣∣∣∣1 +

∣∣∣∣∣
∑d′

i=0 aiz
i
n − awn
zdn

∣∣∣∣∣
∣∣∣∣∣
1/dn+1

≥
∣∣∣∣zn+1

zdn

∣∣∣∣1/dn+1

(4.1)

≥

∣∣∣∣∣1−
∣∣∣∣∣
∑d′

i=0 aiz
i
n − awn
zdn

∣∣∣∣∣
∣∣∣∣∣
1/dn+1

≥
∣∣∣∣1− 1

4

∣∣∣∣1/dn+1

.

We use this estimate to show the uniform convergence of the following series.

∞∑
i=0

∣∣∣∣∣
∣∣∣∣zn+1

zdn

∣∣∣∣1/dn+1

− 1

∣∣∣∣∣ .
We compare each term in the sum to that of a geometric series.∣∣∣∣∣

∣∣∣∣zn+1

zdn

∣∣∣∣1/dn+1

− 1

∣∣∣∣∣ ≤
∣∣∣∣∣∣ zn+1

zdn

∣∣∣− 1
∣∣∣∑dn+1−1

i=0

∣∣∣ zn+1

zdn

∣∣∣i/dn+1 ≤
1
4

dn+1 · 3
4

=
1

3dn+1
.

The second inequality comes from Inequality 4.1. This inequality proves that the

series converges uniformly. Theorem IV.2 proves the existence and the analyticity of

ϕ+. If we apply the same argument to the reciprocal of the infinite product, we can

prove that it converges to a non-zero constant.

The property ϕ+(f(z, w)) = (ϕ+(z, w))d is clear from the definition.

We prove the last property. Assume that d′ ≥ 2. From our choice of R, in a

similar way to Inequality 4.1, we have

∣∣∣∣1 +

∣∣∣∣ 3ad′

2Rd−d′

∣∣∣∣∣∣∣∣1/dn+1

≥

∣∣∣∣∣∣1 +

∣∣ad′zd′∣∣+
∣∣∣∑d′−1

i=0 aiz
i
n − awn

∣∣∣
|zdn|

∣∣∣∣∣∣
1/dn+1

≥
∣∣∣∣zn+1

zdn

∣∣∣∣1/dn+1

≥

∣∣∣∣∣∣1−
∣∣ad′zd′∣∣+

∣∣∣∑d′−1
i=0 aiz

i
n − awn

∣∣∣
|zdn|

∣∣∣∣∣∣
1/dn+1

≥
∣∣∣∣1− ∣∣∣∣ 3ad′

2Rd−d′

∣∣∣∣∣∣∣∣1/dn+1

.
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So, we can estimate the difference between ϕ+(z, w) and z for |z| > R:(
1−

∣∣∣∣ 3ad′

2 ·Rd−d′

∣∣∣∣ )1/(d−1)

≤
∣∣∣∣ϕ+(z, w)

z

∣∣∣∣ ≤ (1 +

∣∣∣∣ 3ad′

2 ·Rd−d′

∣∣∣∣ )1/(d−1)

.(4.2)

We have just proved the convergence of ϕ+ to z in magnitude. We need to show

the angle of ϕ+(z,w)
z

converges to 0 as ‖(z, w)‖ → ∞.

The angle of
(
zn+1

zdn

)1/dn+1

is between −
sin−1(

∣∣∣ 3ad′
2Rd−d′

∣∣∣)
dn+1 and

sin−1(
∣∣∣ 3ad′
2Rd−d′

∣∣∣)
dn+1 , where we

take the branch of sin−1 to be [−π
2
, π

2
]. Since

∞∑
i=0

1

dn+1
sin−1(

∣∣∣∣ 3ad′

2Rd−d′

∣∣∣∣) =
1

d− 1
sin−1(

∣∣∣∣ 3ad′

2Rd−d′

∣∣∣∣) ∼ 1

d− 1

∣∣∣∣ 3ad′

2Rd−d′

∣∣∣∣ ,
the angle of ϕ+(z,w)

z
is between − 2

d−1

∣∣∣ 3ad′

2Rd−d′

∣∣∣ and 2
d−1

∣∣∣ 3ad′

2Rd−d′

∣∣∣. Thus, as R→∞, this

angle also shrinks to 0.

These two approximations prove the last property about the asymptotic behavior

of ϕ+. Note that from Inequality 4.2, we know that ϕ+(V +) ⊆ C \∆.

In case of d′ ≤ 1, we can apply the same argument with a better bound.

Remark IV.3. Additionally, we can estimate the error between ϕ+(z, w) and z from

the magnitude and angle estimates in the proof.

We follow Hubbard and Oberste-Vorth’s idea to find a useful local coordinate

chart near I− using the function ϕ+. This appears in the proof of Proposition 6.2

in [24]. Because this is a crucial step in our work, we provide proofs in detail.

We consider two complex numbers z, y. Let |y| ≤ 1. Define ϕy(z) := ϕ+(z, yz).

Then, from the previous proposition, ϕy is well-defined and analytic for |z| > R.

From the last property of Proposition IV.1, we know that ϕy has a simple pole at

infinity. In order to get the coordinate function, we need the following lemma.
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Lemma IV.4. Let r1, r2 > 0. Let F = the space of analytic functions f : ∆r1 → ∆r2

such that f(0) = 0 and f ′(0) = 1. Then F is compact with respect to the compact-

open topology. In particular, there exist r3, r4 > 0 independent of f ∈ F such that

every f ∈ F is injective in ∆r3 and ∆r4 ⊆ f(∆r3).

Proof. Montel’s theorem and the analyticity of holomorphic functions prove the first

part. We prove the second part. By replacing the domain of the definition by

a smaller 0 < r′1 < r1 if necessary, we may assume that all f ∈ F are holo-

morphic on ∆r1 . Let f ∈ F . Since f(0) = 0, f ′(0) = 1, and f is holomor-

phic near D, we have f(z) = z + z2Qf (z) with Qf (z) holomorphic near ∆r1 . Let

Mf := maxz∈∆r1

{
|Qf (z)| ,

∣∣Q′f (z)
∣∣}. Take rf < 1 small enough so that 3rfMf < 1.

Then, for z1, z2 with |z1| , |z2| < rf ,

0 = |f(z1)− f(z2)| =
∣∣z1 − z2 + z2

1Qf (z1)− z2
2Qf (z2)

∣∣
≥ |z1 − z2| −

∣∣z2
1Qj(z1)− z2

1Qj(z2)
∣∣− ∣∣z2

1 − z2
2

∣∣ |Qj(z2)|

≥ |z1 − z2| (1− r2
fMf − 2rfMf ) ≤ (1− 3rfMf ) |z1 − z2|

By our choice of rf , we have the injectivity of f over ∆rf .

We find a universal upper bound for Mf ’s to prove the second statement. We use

the compactness property as follows:

sup
f∈F

max
z∈∆r1

|Qf | = sup
f∈F

max
z∈∂∆r1

∣∣∣∣f − zz2

∣∣∣∣ ≤ sup
f∈F

max
z∈∂∆r1

|f |+ |z|
|z2|

.

The first equality comes from the maximum principle. The last term is finite since

F is compact. Let mF denote the last bound supf∈F maxz∈∂∆r1

|f |+|z|
|z2| .
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Concerning supf∈F maxz∈D |Q′|, we consider the following:

sup
f∈F

max
z∈∆ 1

3 r1

∣∣Q′f ∣∣ = sup
f∈F

max
z∈∆ 1

3 r1

∣∣∣∣∣ 1

2π

∫
ζ∈∂∆r1

f(ζ)

(ζ − z)2
dζ

∣∣∣∣∣
≤ mf

2π
max
z∈∆ 1

3 r1

∫
ζ∈∂∆r1

1

|ζ − z|2
d |ζ| ≤ 9mF

4r1

Thus, we take the universal bound Mf to be max
{
mF ,

9mF

4r1

}
. Let rF > 0 be

such that 3rFMF < 1. Then r3 = min
{
rF ,

1
3
r1

}
. This proves the universal injective

radius statement. For the remaining part, simply apply Koebe’s 1
4

theorem.

We consider a function hy(Z) := 1
ϕ+(1/Z,y/Z)

of Z with |y| ≤ 1 and 0 < |Z| < 1/R.

Then hy has a bounded singularity at Z = 0. By the Riemann removable singularity

theorem, hy extends to a map of ∆1/R. We redefine hy to be the extension. Let H :=

{hy : |y| ≤ 1}. Obviously, we have hy(0) = 0 for all hy ∈ H . From Inequality 4.2,

h′y(0) = 1 for all hy ∈ H . Thus H ⊆ F with r1 = 1
R
, r2 = 1. By Lemma IV.4, if

|x| ≥ 1
r4

and |y| ≤ 1, then there exists a unique (z, w) with |z| ≥ 1
r3

and |w| ≤ |z|

such that { 1
x

= 1
ϕ+(z,w)

y = w
z

From Inequality 4.2, if z is sufficiently large, then the corresponding x satisfies

|x| ≥ 1
r4

. Let Rφ > 0 such that Rφ > 2
r4

, Rφ > 1
r3

, and Rφ > R. We can find

a biholomorphism Ψ+ of DΨ+ := {|z| ≥ Rφ, |w| ≤ |z|} ⊆ C2 mapping (z, w) ∈ DΨ+

to the corresponding (x, y) ∈ C2. In other words, {|z| ≥ Rφ, |w| ≤ |z|} has a nice co-

ordinate chart for the action of f . For notational convenience, we will use the names,

the ZW-coordinate chart and XY-coordinate chart, for (z, w) and (x, y) respectively.

Notice that {|z| ≥ Rφ, |w| ≤ |z|} ⊆ C2 is a neighborhood of I−.
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We compute our map f in the XY-coordinate system. To avoid a possible con-

fusion, we use fXY for the representation of f with respect to the XY-coordinate

system. Let (x, y) ∈ Ψ+(DΨ+). Then

(x, y)
Ψ−1

+→ (z(x, y), yz(x, y))

↓ f

(xd, z(x,y)
p(z(x,y))−ayz(x,y)

)
Ψ+← (p(z(x, y))− ayz(x, y), z(x, y))

Thus, fXY sends (x, y) ∈ Ψ+(DΨ+) to (xd, z(x,y)
p(z(x,y))−ayz(x,y)

).

We show that the XY coordinate chart is stable under the action of f . We want

to check f(DΨ+) ⊆ DΨ+ . By Condition 1 on R, we have Rφ ≤ |z| ≤ f1(z, w) for

(z, w) ∈ DΨ+ ⊆ V +. This proves the z-coordinate part and the invariance of V + for

f proves the w-coordinate part.

We also compute the Green function g in the XY-coordinate system. Let gXY

denote the representation of the Green function g with respect to the XY-coordinate

chart, that is, gXY (x, y) = g(z, w). Since (z, w) ∈ V +, we have

gXY (x, y) = g(z, w) = lim
n→∞

1

dn
log+

√
|zn|2 + |wn|2 = lim

n→∞

1

dn
log

√
|zn|2 + |wn|2

= lim
n→∞

1

dn
(log |zn|+O(1)) = lim

n→∞

1

dn
log |zn|

Thanks to the last property of Proposition IV.1 and |zn| → ∞ as n → ∞, we

have

lim
n→∞

1

dn
log |zn| = lim

n→∞

1

dn
log |ϕ+(zn, wn)| = lim

n→∞

1

dn
log |ϕ+(z, w)|d

n

= log |ϕ+(z, w)| = log |x| .
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Summarizing the above, we have that for (z, w) ∈ DΨ+ ,

(4.3) gXY (x, y) = g(z, w) = log |ϕ+(z, w)| = log |x| .

4.2 Choice of Another Large Number c in Cc

In V + and V −, f and f−1 show tame behavior, respectively. So, we want to avoid

the set W during our study of Cc. Also, we want to use the XY-coordinate chart and

require some more conditions listed below. Indeed, for a sufficiently large c > 0, all

properties listed below are satisfied. Note that since g(f(z, w)) = d ·g(z, w), we have

fn(Cc) = Cdnc, and since c > 0, we have dnc → ∞ as n → ∞. Also, the properties

that we will consider for Cc are analytic and they are preserved by biholomorphisms

f and f−1 of C2. Thus, we want to find such a sufficiently large c > 0 with good

computational properties and to first verify the properties to be proved for the such

large c > 0. Next, we generalize the result.

For notational convenience we will use r such that r := ec > 1 instead of c in the

following list of conditions.

1. r
2
≥ [max|w|≤R |p(w)|] + |a|R. Indeed, this condition implies that Cc ∩W = ∅.

Explanation will be given in Remark IV.8.

2. r > 2Rφ, where Rφ is in the previous section. This is for the XY-coordinate

chart. See Proposition IV.1 (or Inequality 6.1).

3. R <
∣∣ r

5

∣∣ 1
d

4. 48 · 9 |a|4 ≤ r2

128 · 152

5. r > 2R
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From now on, we assume that r = ec satisfies the above conditions unless stated

otherwise. If we are referring to general c > 0, we will make it clear by stating the

quantifier “for all c > 0”. When we are refering to this list of conditions, we will

alternatively use “Condition on r”, “Condition on c”, or “Condition on s”. Here,

the number s is a complex number such that |s| = r and will appear in Section 4.4.

4.3 Smooth Manifold Cc and Dense Foliation Structure

Recall the notation r := ec > 1. We denote U+(r) := g−1(log r) and V +(r) :=

{(z, w) ∈ V + : g(z, w) = log r}. From the property that U+ = ∪∞i=0f
−i(V +) in Propo-

sition II.2, we have

(4.4) U+(r) = V +(r) ∪ f−1(V +(rd)) ∪ f−2(V +(rd
2

)) ∪ · · · .

Here, the union in Expression 4.4 is increasing. Indeed, from f(V +) ⊆ V + and

g(f(z, w)) = d · g(z, w), it is clear that f(V +(r)) ⊆ V +(rd) and that V +(r) ⊆

f−1(f(V +(r))) ⊆ f−1(V +(rd)).

Proposition IV.5 (See [24]). For all c > 0, ∇g 6= 0 over Cc. In particular, Cc is a

smooth manifold.

Proof. We first consider sufficiently large c as in Section 4.2. For any (z, w) ∈ Cc,

take a small neighborhood U(z,w) of (z, w) with compact closure. Recall the coor-

dinate change map Ψ+ between the ZW- and XY- coordinate systems. Since ev-

ery compact subset of U+ converges uniformly to I− under iteration of f , we have

fN(U(z,w)) ⊆ DΨ+ for sufficiently large N ∈ N. The fibration of Ψ+(DΨ+) by gXY in

the XY-coordinate system is simply a trivial fibration. The coordinate change map

Ψ+ is a biholomorphism and f is a biholomorphic automorphism of C2. Therefore,
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∇g does not vanish at (z, w) ∈ Cc. Since (z, w) is arbitrary, the statement is proved.

In particular, Cc is a smooth manifold.

We now consider the general case. This property is preserved by the biholomor-

phisms f and f−1. Thus, the general case is obtained by considering the statement

for fM(Cc) for sufficiently large M ∈ N.

From Proposition 2.2.10 in [29], we know that g is pluri-harmonic in U+. Thus,

Cc is Levi-flat for all c > 0. This implies that Cc has a natural unique foliation

structure by complex curves. This will be elaborated in the proof of Lemma VI.13.

We will show that each leaf is a biholomorphic image of C later in Section 5.2. In

the following, we prove that every leaf of Cc is dense.

Proposition IV.6 (See [24]). For all c > 0, each leaf is dense in Cc.

Proof. At the moment, we assume that c is sufficiently large as in Section 4.2 and

the general case will be considered later. First, we look at the foliation structure of

V +(r). Recall the relationship g = log |ϕ+|. Since ∇g does not vanish over Cc ∩ V +,

the same is true for ∇ϕ+ in Cc ∩ V +. This implies that {ϕ+ = s} ∩ V + is a smooth

complex manifold in Cc for any s ∈ C with |s| = r. By the uniqueness of the foliation

structure and Expression 4.4, a leaf of the fiber {g = log r} is of the following form:

(4.5) Φs = (ϕ−1
+ (s) ∩ V +) ∪ f−1(ϕ−1

+ (sd) ∩ V +) ∪ f−2(ϕ−2
+ (sd

2

) ∩ V +) ∪ · · ·

for an s ∈ C with |s| = r. Since f−1(ϕ−1
+ (sd)) = ∪{ωd=1}ϕ

−1
+ (ωs) in the neighborhood

V + of I−, we have

{ϕ+ = s} ∩ V + = lim
n→∞

∪{ωdn=1}ϕ
−1
+ (ωs) in the neighborhood V + of I−.
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Since the union of the dn-th roots of unity is dense in S1, {ϕ+ = s} ∩ V + = V +(r),

which proves that V +(r) has a dense foliation structure.

Since f is a biholomorphic automorphism of C2, every f−n(V +(rd
n
)) also has a

dense foliation structure. Expression 4.4 is increasing. Due to the uniqueness of the

foliation structure, the increasing foliation structure is consistent. This proves the

statement for large c > 0.

We now consider the general case. This property is preserved by the biholomor-

phisms f and f−1. Thus, the general case is obtained by considering the statement

for fM(Cc) for sufficiently large M ∈ N.

Remark IV.7. For all c > 0, there is no algebraic leaf since each leaf is dense in Cc.

4.4 Family of Parametrizations

From now on, we will consider a specific leaf. We consider s ∈ C such that |s| = r

and Φs, where r is as in Section 4.2 and Φs denotes the leaf corresponding to the

parameter s. From the previous section,

Φs = (ϕ−1
+ (s) ∩ V +) ∪ f−1(ϕ−1

+ (sd) ∩ V +) ∪ f−2(ϕ−1
+ (sd

2

) ∩ V +) ∪ · · ·

We define Φn
s := f−n(ϕ−1

+ (sd
n
) ∩ V +) for n = 0, 1, 2, · · · . Recall Condition 2

on r. We use the XY-coordinate system and the fact that f is a biholomorphic

automorphism of C2 to find a parametrization Ψn
s : ∆ → Φn

s of the curve Φn
s for

n = 0, 1, 2, · · · . Indeed, for a given n, we can find a one-to-one correspondence
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between θ ∈ ∆ and (z, w) ∈ Φn
s by

{ ϕ+(fn(z, w)) = sd
n

wn
zn

= θ for |θ| ≤ 1.

We denote the n-th parametrization in the ZW-coordinate by Ψn
s = ((Ψn

s )1, (Ψ
n
s )2).

Observe that Expression 4.5 is increasing. Since f is an automorphism of C2

and
∣∣∣sdi∣∣∣ ≥ |s|, it suffices to prove the inclusion ϕ−1

+ (s) ∩ V + ⊆ f−1(ϕ−1
+ (sd) ∩ V +).

From the parametrization, it suffices to prove that for every (z, w) ∈ V + such that

ϕ+(z, w) = s,
∣∣w
z

∣∣ ≤ 1, the following is true:

{ ϕ+(f(z, w)) = sd

|z| ≤ |p(z)− aw|

For our (z, w), the first condition is the same as ϕ+(z, w) = s. The second condition

is proved from the following inequality:

∣∣∣∣ z

p(z)− aw

∣∣∣∣ ≤ |z|
|p(z)| − |a| |w|

≤ |z|
|p(z)| − |a| |z|

≤ |z|
3/4 |zd|

< 1

The last two inequalities are from Condition 1 on R. This shows that the union is

increasing. In particular, Φn
s ⊆ Φn+1

s .

We introduce some more notations and some properties of the parametrizations.

For the parametrization Ψn
s , we define Ψn,i

s := f i(Ψn
s ). Then, we have

1. Ψn,0
s = Ψn

s ,

2. f i(Φs) = Φsdi ,

3. f i(Ψn,j
s (θ)) = Ψn,i+j

s (θ) ∈ Φsd
i+j for θ ∈ ∆,
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4. Φn
s is biholomorphic to ∆,

5. Φ0
s ⊆ Φs ∩ V +, and

6. {Φn
s} forms a compact exhaustion of Φs.

Note that in the 5-th statement, the equality may not hold.

We will denote the derivatives of Ψn
s , (Ψn

s )1, (Ψn
s )2, Ψn,i

s , (Ψn,i
s )1, and (Ψn,i

s )2

with respect to θ by (Ψn
s )′, (Ψn

s )′1, (Ψn
s )′2, (Ψn,i

s )′, (Ψn,i
s )′1, and (Ψn,i

s )′2, where Ψn
s =

((Ψn
s )1, (Ψ

n
s )2) and Ψn,i

s = ((Ψn,i
s )1, (Ψ

n,i
s )2).

For the parametrization Ψn
s , we define the set of θ’s Θn,i

s := {|θ| ≤ 1 : (zj, wj) ∈

V +, for all j such that i ≤ j ≤ n} for 0 ≤ i ≤ n. Clearly, Θn,i
s ⊆ Θn,i+1

s and

Θn,n
s = {|θ| ≤ 1}.

Remark IV.8. We consider Condition 1 on r in Section 4.2. Let (z, w) ∈ ϕ−1
+ (s)∩V +

such that |s| = r with r chosen as in Section 4.2. Then,∣∣∣∣p(w)− z
a

∣∣∣∣ ≥ |z| − |p(w)|
|a|

>
1

|a|
(
|s|
2
− [max
|w|≤R

|p(w)|]) ≥ R,

which implies f−1(z, w) ∈ V − or f−1(z, w) ∈ V + and so, f−1(z, w) /∈ W . Using

this, we verify Φn
s ∩W = ∅ for our choice of s. Note that Ψn,i

s (∆) = f i(Φn
s ) ⊆ Φsdi

and
∣∣∣sdi∣∣∣ > |s| for i = 1, ..., n. So, we can apply the above inequality to all (z, w) ∈

f i(Φn
s ) ∩ V + to get f−1(z, w) ∈ V − or f−1(z, w) ∈ V + for such (z, w). Due to the

invariance of V − under f−1, we conclude that Φn
s ∩W = ∅. This argument is true

for any n. Since Φs = ∪nΦn
s , Φs does not intersect W . Also, the above argument is

true for all s with |s| = r. This implies that Cc does not intersect W .



CHAPTER V

Non-hyperbolicity of Leaves of Cc

In this chapter, we re-prove the theorem that Φs is biholomorphic to C. In Hub-

bard and Oberste-Vorth, they used the subadditivity of the modulus and showed

that the modulus of an annulus diverges. Here, however, we instead compute the

Kobayashi-Royden pseudometric using the parametrizations found in Section 4.4.

We start by introducing the Kobayashi-Royden pseudometric.

5.1 Kobayashi-Royden Pseudometric

For an analytic study, we introduce the notion of the Kobayashi-Royden pseudo-

metric. It is the infinitesimal version of the Kobayashi pseudometric. The original

definition can be found in [28]. Here, however, we adapt an equivalent definition

found in [14]. Let M be a complex manifold. Let (p, ξ) be an element in a tangent

bundle over M . We define the Kobayashi-Royden pseudometric as follows:

Definition V.1 (See [14], [28]). The Kobayashi-Royden pseudometric ds at (p, ξ) is

defined by ds(p, ξ) := inf
f

{
1

|cf |

}
, where the infimum is taken over all f ’s such that

f is a holomorphic map of the unit disc ∆ to M with f(0) = p and f ′∗(
∂
∂z

) = cfξ,

and cf is taken from the last condition.

Regarding this notion, we must point out an important property, which we are

35
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going to use.

Theorem V.2 (See [28]). The Kobayashi-Royden pseudometric ds is a metric if and

only if M is hyperbolic.

The meaning of ds being a metric is that ds is non-degenerate. That is, for

each p ∈ M , ds(p, ξ) > 0 for ξ 6= 0. This theorem together with the uniformization

theorem for the Riemann surfaces will be used to distinguish the holomorphic images

of ∆ and the holomorphic images of C. For notational convenience, we will call the

Kobayashi-Royden pseudometric the KR-pseudometric.

5.2 Non-hyperbolicity of Leaf in Cc

This section essentially proves that Cc is foliated by holomorphic images of C.

The precise statement is the following:

Theorem V.3 (See [24]). For any complex number s with |s| > 1, the KR-pseudometric

at every point of Φs is 0. Φs is simply connected. In particular, Φs is a biholomorphic

image of C.

We start by discussing the simple connectedness of Φs.

Proposition V.4. For any complex number s with |s| > 1, Φs is simply connected.

Proof. We first assume that |s| is sufficiently large as in Section 4.2. We focus on

a topological property of Φn
s . fn is a biholomorphic automorphism and the set

fn(Φn
s ) = ϕ−1

+ (sd
n
) ∩ V + is a copy of the unit closed disc in the XY-coordinate

system. So, Φn
s is simply connected. Since Φs is an increasing union of simply

connected complex curves, Φs is simply connected. So, we have proved the simple

connectedness for sufficiently large |s|. The general case is obtained by considering
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fN(Φs) = ΦsdN since the simple connectedness is preserved by the biholomorphisms

f and f−1.

We discuss the non-hyperbolicity of Φs. We will first prove that the Kobayashi-

Royden pseudometric at (zK , wK) ∈ Φ0
s ⊆ Φs ∩ V + is 0, and extend the proof over

all Φs at the end of the proof. So, assume (zK , wK) ∈ Φ0
s ⊆ Φs ∩ V +. The sequence

{Φn
s} is a compact exhaustion of Φs. Then, (zK , wK) ∈ Φn

s for all n. Recall that

the sequence of parametrizations {Ψn
s} of {Φn

s} is a sequence of mappings of ∆ into

Φs. Note that since Φs is of complex dimension 1, all tangent vectors at (zK , wK)

are parallel to one another. Thus, in order to verify that the Kobayashi-Royden

pseudometric at (zK , wK) is 0, it suffices to show that
∣∣∣d(Ψns )2

dθ

∣∣∣ (= |(Ψn
s )′2|) evaluated

at (zK , wK) diverges to ∞ as n→∞.

Proposition V.5. For (z, w) ∈ V + and all n ≥ 0, |zn| ≥ |z|n.

Proof. The proof is by induction. The cases n = 0 and n = 1 are obvious. Indeed,

|z0| = |z| > R > 2 and |z1| = |p(z)− aw| ≥ 3
4
|z|d > |z| from Condition 1 on R.

Similarly, when n = 2, we have |z2| ≥ 3
4
|z1|d ≥ 3

4
|z1|2 ≥ 3

4
(3

4
|z|d)2 ≥ 27

64
|z|4 ≥ |z|2.

Suppose that the inequality is true for n = k ≥ 2. Then,

|zk+1| ≥ |p(zk)− awk| ≥
3

4
|zk|d ≥

3

4
|z|dk ≥ 3

4
|z| · |z|2k−1 ≥ |z|k+1 ,

by |zk| > |z| > R and Condition 1 on R. So, it is proved.

We estimate the following infinite product.

Lemma V.6. For some r0 > 0 and sufficiently large r > 1 such that r0
r
< 1,∑∞

n=1 log(1 + r0
rn

) ≤ r0
r−1

.

Proof. We consider the function h(x) = log |1 + x| of real numbers over a closed

interval [−r0/r, r0/r]. Elementary calculus tells us that for all n > 0, log(1+ r0
rn

) ≤ r0
rn

.
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This inequality proves the statement.

We consider the sequence of matrices defined by:
∂zn+1

∂z
∂zn+1

∂w

∂wn+1

∂z
∂wn+1

∂w

 =


p′(zn) −a

1 0




∂zn
∂z

∂zn
∂w

∂wn
∂z

∂wn
∂w


with the initial value 

∂z1
∂z

∂z1
∂w

∂w1

∂z
∂w1

∂w

 =


p′(z) −a

1 0

 .

Lemma V.7. For (z, w) ∈ V + and all n ≥ 0,∣∣∣∣∣ ∂wn+1

∂z
∂zn+1

∂z

∣∣∣∣∣ ≤ 2

d |zn|

Here z0 means z.

Proof. The proof is by induction. We consider the initial case n = 0 first. If n = 0,

then by Condition 3 on R > 0,∣∣∣∣∣ ∂w1

∂z
∂z1
∂z

∣∣∣∣∣ =

∣∣∣∣ 1

p′(z)

∣∣∣∣ ≤ 4

3d |z|
.

Suppose that the statement is true for n = k − 1. By Condition 3 on R > 0,∣∣∣∣∣
∂wk+1

∂z
∂zk+1

∂z

∣∣∣∣∣ =

∣∣∣∣∣ ∂zk
∂z

∂zk
∂z
p′(zk)− a∂wk∂z

∣∣∣∣∣ ≤ 1

|p′(zk)| − |a|
∣∣∣∣ ∂wk∂z∂zk
∂z

∣∣∣∣
≤ 1

3d
4
|zk| − 2|a|

d|zk−1|

≤ 2

d |zk|
.

The last inequality is from Condition 7 on R.

Lemma V.8. For (z, w) ∈ V + and all n ≥ 0,∣∣∣∣∣ ∂wn+1

∂w
∂zn+1

∂w

∣∣∣∣∣ ≤ 2

d |zn|
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Proof. The proof is the same as for Lemma V.7 except that the induction step starts

at n = 1 instead of n = 0. The cases n = 0, 1 are easy to check. Here we consider

non-zero divided by 0 to be ∞.

Lemma V.9.∣∣∣∣∣ ∂zn∂w∂zn
∂z

∣∣∣∣∣ ≤
n−1∏
i=1

(
1 +

8 |a|
d |z|2i

) ∣∣∣∣ a

p′(z)

∣∣∣∣ for (z, w) ∈ V + and all n > 0

Proof. ∣∣∣∣∣ ∂zn+1

∂w
∂zn+1

∂z

∣∣∣∣∣ =

∣∣∣∣∣p′(zn)∂zn
∂w
− a∂wn

∂w

p′(zn)∂zn
∂z
− a∂wn

∂z

∣∣∣∣∣ ≤
∣∣p′(zn)∂zn

∂w

∣∣+ |a|
∣∣∂wn
∂w

∣∣∣∣p′(zn)∂zn
∂z

∣∣− |a| ∣∣∂wn
∂z

∣∣
≤

1 +
∣∣∣ a
p′(zn)

∣∣∣ · ∣∣∣ ∂wn∂w∂zn
∂w

∣∣∣
1−

∣∣∣ a
p′(zn)

∣∣∣ · ∣∣∣ ∂wn∂z∂zn
∂z

∣∣∣
∣∣∣∣∣ ∂zn∂w∂zn
∂z

∣∣∣∣∣
=

1 +
∣∣∣ a
p′(zn)

∣∣∣ · ∣∣∣ 2
d|zn|

∣∣∣
1−

∣∣∣ a
p′(zn)

∣∣∣ · ∣∣∣ 2
d|zn|

∣∣∣
∣∣∣∣∣ ∂zn∂w∂zn
∂z

∣∣∣∣∣
≤

(
1 +

8 |a|
d |p′(zn)| |zn|

) ∣∣∣∣∣ ∂zn∂w∂zn
∂z

∣∣∣∣∣ ≤
(

1 +
8 |a|
d |zn|2

) ∣∣∣∣∣ ∂zn∂w∂zn
∂z

∣∣∣∣∣ .
In the third and last line, Lemma V.8, Lemma V.7, and Condition 3 and 7 on R

are used. The initial value

∣∣∣∣ ∂z1∂w
∂z1
∂z

∣∣∣∣ is easy to compute; we differentiate p(z)− aw with

respect to z and w and take the ratio. Proposition V.5 completes the proof of the

lemma.

We estimate
∂ϕ+
∂w
∂ϕ+
∂z

. Recall the definition of ϕ+.

ϕ+(z, w) = z ·
(z1

zd
)1/d · ... ·

(zn+1

zdn

)1/dn+1

· ...

Note that our definition is not ϕ+ = limn→∞ z
1/dn

n for (z, w) ∈ V +. We define a

sequence {(ϕ+)n}∞n=1 of partial products of ϕ+ by

(ϕ+)n(z, w) = z ·
n−1∏
i=0

(zi+1

zdi

)1/di+1

,
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where i = 0 corresponds to (z, w). We know that (ϕ+)n → ϕ+ locally uniformly.

Observe that [(ϕ+)n]d
n

= zn. Taking a partial derivative with respect to z, we have

dn[(ϕ+)n]d
n−1 ∂(ϕ+)n

∂z
= ∂zn

∂z
. The same is true for differentiation with respect to w.

Thus, we have
∂ϕ+

∂w
∂ϕ+

∂z

= lim
n→∞

∂(ϕ+)n
∂w

∂(ϕ+)n
∂z

= lim
n→∞

∂zn
∂w
∂zn
∂z

.

The limit is bounded as follows:∣∣∣∣∣ ∂ϕ+

∂w
∂ϕ+

∂z

∣∣∣∣∣ ≤ lim
n→∞

n∏
i=1

(
1 +

8 |a|
d |z|2i

) ∣∣∣∣ a

p′(z)

∣∣∣∣ ≤ lim
n→∞

n∏
i=1

(
1 +

∣∣∣∣ z2

10

∣∣∣∣ · 1

|z|2i
) ∣∣∣∣ a

p′(z)

∣∣∣∣
≤ e0.25

∣∣∣∣ a

p′(z)

∣∣∣∣ ≤ 2

∣∣∣∣ a

p′(z)

∣∣∣∣ for (z, w) ∈ V +

The first inequality is from Lemma V.9, the second one from Condition 7 on R, and

the third one from Lemma V.6. We have just proved the following lemma.

Lemma V.10.

∣∣∣∣ ∂ϕ+
∂w
∂ϕ+
∂z

∣∣∣∣ ≤ 2
∣∣∣ a
p′(z)

∣∣∣ for (z, w) ∈ V +.

Now, we are ready to prove the Kobayashi-Royden pseudometric at some fixed

point (zK , wK) ∈ Φ0
s ⊆ Φs ∩ V + is 0.

The proof of Theorem V.3. We first assume that |s| is large enough as in Section 4.2.

We pick an arbitrary point (zK , wK) in the interior of Φ0
s. Then, since Φn

s ⊆ Φn+1
s

for all n, (zK , wK) ∈ Φn
s for all n. Let θn ∈ ∆ denote the complex time such

that Ψn
s (θn) = (zK , wK). We estimate the ratio

|(Ψn+1
s )′2(θn+1)|
|(Ψns )′2(θn)| and compare the ratio

to a divergent geometric sequence so as to prove the divergence of the sequence

{|(Ψn
s )′2(θn)|} to ∞. We use the chain rule as follows:
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dΨn
s

dθ
|θ=θn = df−n|fn(zK ,wK) ·

d

dθ
(fn(Ψn

s ))|θ=θn(5.1)

= df−n|fn(zK ,wK) ·
d

dθ
(Ψ0

sdn )|θ=θn
dΨn+1

s

dθ
|θ=θn+1 = df−n|fn(zK ,wK) ·

d

dθ
(fn(Ψn+1

s ))|θ=θn+1(5.2)

= df−n|fn(zK ,wK) ·
d

dθ
(Ψ1

sd
n )|θ=θn+1 .

The last equalities are valid since our parametrization satisfies f j(Ψi
s) = Ψi−j

sd
j for all

0 ≤ j ≤ i.

Our computation consists of 2 parts:

Part A Comparison of d
dθ

(Ψ0
sdn

)|θ=θn and d
dθ

(Ψ1
sdn

)|θ=θn+1

Part B Computation of the matrix df−n|fn(zK ,wK).

[Part A] We consider Ψi
s for i = 0, 1 first. Since Ψi

s for i = 0, 1 satisfy ϕ+(Ψi
s) = s

near θi, the derivatives dΨis
dθ
|θ=θi for i = 0, 1 obviously satisfy ∂ϕ+

∂z
|(zK ,wK) · (Ψi

s)
′
1(θi) +

∂ϕ+

∂w
|(zK ,wK) · (Ψi

s)
′
2(θi) = 0 for i = 0, 1. Since Φs is a smooth manifold in V +, one

of ∂ϕ+

∂z
|(zK ,wK) or ∂ϕ+

∂w
|(zK ,wK) must not equal to 0. From Lemma V.10, we know

that ∂ϕ+

∂z
|(zK ,wK) 6= 0. We denote by µ(zK ,wK) := −

∂ϕ+
∂w
|(zK,wK )

∂ϕ+
∂z
|(zK,wK )

. Then, (Ψi
s)
′
1(θi) =

µ(zK ,wK)(Ψ
i
s)
′
2(θi) for i = 0, 1 and from Lemma V.10,

∣∣µ(zK ,wK)

∣∣ ≤ ∣∣∣ 2a
p′(zK)

∣∣∣. For nota-

tional convenience, we will simply use µ for µ(zK ,wK). When we emphasize the point

(zK , wK), we will use µ(zK ,wK).

From the other parametrizing equations of Ψ0
s and Ψ1

s, we have (Ψ0
s)2 = θ(Ψ0

s)1

near θ0 for i = 0 and (Ψ1
s)1 = θ[p((Ψ1

s)1)− a(Ψ1
s)2] near θ1 for i = 1, respectively.
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For i = 0, differentiating with respect to θ at θ = θ0, we have (Ψ0
s)
′
2(θ0) =

zK + θ0(Ψ0
s)
′
1(θ0). Since θ0 = wK

zK
at (zK , wK), we have

{ (Ψ0
s)
′
1(θ0) =

µz2
K

zK−µwK

(Ψ0
s)
′
2(θ0) =

z2
K

zK−µwK
.

For i = 1, similarly, we differentiate with respect to θ at θ = θ1 = zK
p(zK)−awK

.

Then, { (Ψ1
s)
′
1(θ1) = µ(p(zK)−awK)2

azK+µ(p(zK)−awK)−µzKp′(zK)

(Ψ1
s)
′
2(θ1) = (p(zK)−awK)2

azK+µ(p(zK)−awK)−µzKp′(zK)

The two vectors dΨ0
s

dθ
|θ=θ0 ,

dΨ1
s

dθ
|θ=θ1 are not zero because Ψi

s is a biholomorphism

of ∆ for all i. Since the Φs is of complex dimension 1, we know that dΨ1
s

dθ
|θ=θ1 is

a complex scalar multiple of dΨ0
s

dθ
|θ=θ0 . It suffices to find the lower bound just for∣∣∣ (Ψ1

s)
′
2(θ1)

(Ψ0
s)
′
2(θ0)

∣∣∣.
Since zK > R > 0, we have |µ| ≤

∣∣∣ 2a
p′(zK)

∣∣∣ ≤ ∣∣∣ 8a

3dzd−1
K

∣∣∣, ∣∣34zdK∣∣ ≤ |p(zK)− awK | ≤∣∣5
4
zdK
∣∣, and

∣∣3
4
dzdK

∣∣ ≤ |p′(zK)| ≤
∣∣5

4
dzdK

∣∣ by our choice of R. So, we have the following:

1.

∣∣∣∣(p(zK)− awK)2

azK

∣∣∣∣ ≥ ∣∣∣∣(3
4
zdK)2

azK

∣∣∣∣ =

∣∣∣∣ 9

16a
z2d−1
K

∣∣∣∣.

2.

∣∣∣∣ (p(zK)− awK)2

µ(p(zK)− awK)

∣∣∣∣ =

∣∣∣∣p(zK)− awK
µ

∣∣∣∣ ≥ ∣∣∣∣ 9d

32a
z2d−1
K

∣∣∣∣
3.

∣∣∣∣(p(zK)− awK)2

µzKp′(zK)

∣∣∣∣ ≥
∣∣∣∣∣ (3

4
zdK)2

µzK · 5
4
dzd−1

K

∣∣∣∣∣ ≥
∣∣∣∣ 27

160a
z2d−1
K

∣∣∣∣
We use the following inequality. The proof is quite straightforward.

Proposition V.11. For {Ai}ni=1 with Ai 6= 0 for all i,

1

|
∑n

i=1 Ai|
≥ 1∑n

i=1 |Ai|
≥ 1

n
· min

1≤i≤n

{
1

|Ai|

}
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From Proposition V.11 and the above computations (1), (2), and (3), we have

(5.3)
∣∣(Ψ1

s)
′
2(θ1)

∣∣ ≥ ∣∣∣∣ 9

160a
z2d−1
K

∣∣∣∣
On the other hand, from Lemma V.10 and Condition 7 on R, we have |µ| ≤∣∣∣ 2a

p′(zK)

∣∣∣� 1. Then, |zK | − |µwK | ≥ 1/2 |zK |, and therefore,

(5.4)
∣∣(Ψ0

s)
′
2(θ0)

∣∣ =

∣∣∣∣ z2
K

zK − µwK

∣∣∣∣ ≤ |z2
K |

1/2 |zK |
= 2 |zK | .

From the Inequalities 5.3 and 5.4, we have the following:∣∣∣∣(Ψ1
s)
′
2(θ1)

(Ψ0
s)
′
2(θ0)

∣∣∣∣ ≥ ∣∣∣∣ 9

320a
z2d−2
K

∣∣∣∣ .
If (zK , wK) ∈ Φs ∩ V +, then ((zK)n, (wK)n) ∈ Φsdn ∩ V + and (zK)n

(wK)n
= θn from

our settings. Thus, we can use the above argument to Ψi
sdn

for i = 0, 1 in exactly

the same way by replacing (zK , wK) by ((zK)n, (wK)n), θ0, θ1 by θn, θn+1, and s by

sd
n
. Note that we use µ(zK ,wK) := −

∂ϕ+
∂w
|(zK,wK )

∂ϕ+
∂z
|(zK,wK )

for

∣∣∣∣ (Ψ1
sd
n )′1(θn+1)

(Ψ0
sd
n )′1(θn)

∣∣∣∣, which is the same

as before. Hence, we obtain

Lemma V.12. ∣∣∣∣(Ψ1
sdn

)′2(θn+1)

(Ψ0
sdn

)′2(θn)

∣∣∣∣ ≥ ∣∣∣∣ 9

320a
(zK)2d−2

n

∣∣∣∣ .
[Part B] df−n|fn = (dfn)−1. So,

df−n|fn =
1

an


∂wn
∂w

−∂zn
∂w

−∂wn
∂z

∂zn
∂z


We combine the results from Part A) & B), Lemma V.7, Lemma V.10, and

Lemma V.12 to compute the lower bound of
|(Ψn+1

s )′2(θn+1)|
|(Ψns )′2(θn)| . By Chain Rule 5.1 and 5.2,
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we have the following: For n ≥ 2,

|(Ψn+1
s )′2(θn+1)|
|(Ψn

s )′2(θn)|
=

∣∣∣∣∣−∂wn
∂z

(Ψ1
sdn

)′1(θn+1) + ∂zn
∂z

(Ψ1
sdn

)′2(θn+1)

−∂wn
∂z

(Ψ0
sdn

)′1(θn) + ∂zn
∂z

(Ψ0
sdn

)′2(θn)

∣∣∣∣∣
≥

∣∣∂zn
∂z

∣∣ ∣∣(Ψ1
sdn

)′2(θn+1)
∣∣− ∣∣∂wn

∂z

∣∣ ∣∣(Ψ1
sdn

)′1(θn+1)
∣∣∣∣∂zn

∂z

∣∣ ∣∣(Ψ0
sdn

)′2(θn)
∣∣+
∣∣∂wn
∂z

∣∣ ∣∣(Ψ0
sdn

)′1(θn)
∣∣

≥

∣∣(Ψ1
sdn

)′2(θn+1)
∣∣− 2

d|(zK)n−1|

∣∣(Ψ1
sdn

)′1(θn+1)
∣∣∣∣(Ψ0

sdn
)′2(θn)

∣∣+ 2
d|(zK)n−1|

∣∣(Ψ0
sdn

)′1(θn)
∣∣

≥

(
1− 4|a|

d|(zK)n−1||p′(zK)|

1 + 4|a|
d|(zK)n−1||p′(zK)|

)∣∣∣∣(Ψ1
sdn

)′2(θn+1)

(Ψ0
sdn

)′2(θn)

∣∣∣∣
≥

(
1− 4|a|

d|(zK)n−1||p′(zK)|

1 + 4|a|
d|(zK)n−1||p′(zK)|

)∣∣∣∣ 9

320a
(zK)2d−2

n

∣∣∣∣

≥
1− 4|a|

dR 3
4
dRd−1

1 + 4|a|
dR 3

4
dRd−1

∣∣∣∣ 9

320a

∣∣∣∣Rn(2d−2) due to Proposition V.5

=
1− 16|a|

3d2Rd

1 + 16|a|
3d2Rd

∣∣∣∣ 9

320a

∣∣∣∣Rn(2d−2)

≥ 19

21
R2n−1 from our choice of R.

The third line is due to Lemma V.7, the fourth line is due to Lemma V.10, and the

fifth line is due to Lemma V.12. We know that for every n, |(Ψn
s )′2(θn)| > 0. As

shown above, for n ≥ 2, the sequence increases faster than a divergent geometric

series with its common ratio R > 1. By the comparison test, we have proved that

|(Ψn
s )′2(θn)| → ∞ as n→∞ as desired, which means the KR-pseudometric of Φs at

(zK , wK) is 0.

So far, we have proved the vanishing of the KR-pseudometric at (zK , wK) ∈ Φ0
s ⊆

Φs ∩ V +. We do the general case. For any (zK , wK) ∈ Φs, we can find NK ∈ N such

that (zK , wK) is in the interior of ΦNK
s . Then, we can apply the same argument to

fNK (zK , wK) with s replaced by sd
NK since fNK (ΦNK

s ) = Φ0

sd
NK

. Thus, the general
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case is proved.

Together with Proposition V.4, by the uniformization theorem, we just proved

Theorem V.3.



CHAPTER VI

Brody Leaves of Cc

In this chapter, we introduce the notion of the Brody curve, provide examples,

discuss their properties, and finally prove the main theorem.

6.1 Brody Curves

Brody curves first appeared in Brody’s proof that every compact non-Kobayashi

hyperbolic manifold contains a non-trivial holomorphic image of C (see [12]). Recall

the definition of the Brody curve defined in the Introduction.

Definition VI.1 (Brody Curve). Let M be a complex manifold with a smooth

metric ds. Let ψ : C→M be a non-constant holomorphic map of θ ∈ C to M .

The map ψ is said to be Brody if supθ∈C ds(ψ(θ), dψ( d
dθ

)) < C for some constant

C > 0. We call the image ψ(C) a Brody curve in M . The curve ψ(C) is said to be

injective Brody if the parametrization ψ is injective.

Note that the Brodyness heavily depends on the choice of the smooth metric. For

example, z → (z, z2) is a Brody curve with respect to the Fubini-Study metric of P2

while it is not with respect to the standard hermitian metric of C2. Thus, it is clear

that the Brodyness is not biholomorphic invariant.

Example VI.2 (Brodyness in C1). We use the standard hermitian metric for the

46
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space. Then, all injective holomorphic maps are linear maps, and therefore, Brody.

However, if they are not injective, then they are not Brody.

Example VI.3 (Brodyness in P1). We use the standard Fubini-Study metric for the

space. Then, all injective maps are of the form z → [az + b : cz + d]. Thus, they

are all Brody. If we remove the injectivity condition, then we can find a non-Brody

curve. Consider a map z → sin z2. Then, over the real line, the derivative goes to∞

while the point stays bounded. The function of the form z → p(z)ez is Brody, where

p(z) is a polynomial of one complex variable.

Example VI.4 (Brodyness in C2). Again, we use the standard hermitian metric for

the space. Liouville’s theorem tells us that a Brody curve in C2 is of the form z →

(a1z + b1, a2z + b2) for some constants a1, a2, b1, b2. Indeed, the standard hermitian

metric of C2 for the map f(z) = (f1(z), f2(z)) is of the from
√
|f ′1(z)|2 + |f ′2(z)|2.

So, if a curve is Brody, that implies that f ′1 and f ′2 are bounded over C. Liouville’s

theorem about the mapping of C into a compact set implies the constant derivative

of f1, f2.

Now, we discuss the Brody curves in P2. We use the Fubini-Study metric. Then, it

might be a natural question to ask how big the collection of Brody curves is. Indeed,

there are plenty of Brody curves. In the following proposition, ds(f, f ′) denotes the

Fubini-Study metric of f ′ in P2.

Proposition VI.5. Let α be a complex constant, p, q are polynomials of one complex

variable z of degree d, d′ respectively. Then, all curves of the form (p(z)ez, q(z)eαz)

are Brody.

Proof. Let α = a + ib, z = x + iy, and f(z) = (p(z)ez, q(z)eαz). Without loss of
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generality, we may assume that |z| = R > 0. Then,

ds(f, f ′) =
|(p+ p′)ez|2 + |(αq + q′)eαz|2 +

∣∣(pq′ + (α− 1)pq − qp′)e(α+1)z
∣∣2

(1 + |pez|2 + |qeαz|2)2
.

Since there is no chance for the denominator being 0, the only way for the Fubini-

Study metric of f ′ to blow off to ∞ is the growth rate of the numerator overwhelms

that of the denominator as R→∞.

There are two cases: whether α is real or not. First, we consider the upper-

bound of ds(f, f ′) when α is not real. We consider ds(f, f ′) over a line Lθ :=

{Rθ ∈ C : R ∈ R} in C, where θ ∈ C and |θ| = 1. Notice that max {|ez| , |eαz|}

is not bounded above over Lθ for every θ. We fix a θ. Since exponential growth

dominates any polynomial growth, we first compare the growth rate of
∣∣e2(α+1)z

∣∣ and

max {|e4z| , |e4αz|}. The real part of 2(α + 1)z is an arithmetic average of the real

parts of 4z and 4αz. So,
∣∣e2(α+1)z

∣∣ is bounded by max {|e4z| , |e4αz|}. If
∣∣e2(α+1)z

∣∣ is

strictly smaller than max {|e4z| , |e4αz|}, ds(f, f ′) is bounded above. If they are equal

to each other, the fact that |pq|2 is dominated by |p|4 + |q|4 proves that ds(f, f ′) is

bounded above over Lθ. This is true for every θ ∈ C with |θ| = 1. The statement is

proved.

We consider the case where α is real. Again, we consider ds(f, f ′) over a line

Lθ := {Rθ ∈ C : R ∈ R} in C, where θ ∈ C and |θ| = 1. We have two sub-cases:

whether θ = ±i or not. When θ is not a pure imaginary number, then, we can

apply the same argument as the case where α is not real. So, we only consider the

case where θ = ±i. Then, notice that max {|ez| , |eαz|} is bounded above over Lθ,

and automatically, the numerator is dominated by a polynomial of degree at most

2(d + d′) while the degree of the dominating polynomial of the denominator is at
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least 4 max {d, d′}. Thus, there is no chance for the metric to be unbounded.

Thus, the statement is proved.

However, not all holomorphic curves from C to C2 are Brody. The mapping

z → (ez, eiz
2
) is not Brody. Take z = bi for real b and let b to ∞. Even if we require

them to be injective, not all injective curves from C to C2 are Brody. The following

gives us some examples of injective non-Brody curves.

Proposition VI.6. The map fn : z → (z, ez
n
) is not Brody in C2 ⊂ P2 for n ≥ 3.

In particular, not all holomorphic images of C in P2 are Brody.

Proof. It is obvious that fn is an holomorphic injective mapping to C2 ⊂ P2. In

order to prove that it is not Brody, we consider a line z = αt where α is one of the

n-th root of i and t is real. Then, we have

ds(fn, f
′
n) =

1 +
∣∣nzn−1ez

n
∣∣2 +

∣∣z · nzn−1ez
n − 1 · ezn

∣∣2
(1 + |z|2 + |ezn|2)2

≥
∣∣(nzn − 1)ez

n
∣∣2

(1 + |z|2 + |ezn|2)2

≥ (n2 |t|2n − 2n |t|n)

(2 + |t|2)2

Since n ≥ 3, the Fubini-Study metric is unbounded as |t| → ∞.

Thus, not all holomorphic images of C are Brody. As explained in the Introduc-

tion, in the sense that the derivative is bounded with respect to the Fubini-Study

metric, Brodyness implies that the curve does not fluctuate too much.

We close this section by pointing out a property of the uniqueness of parametriza-

tion of injective Brody curves.
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Proposition VI.7. Let C be an biholomorphic image of C. Let φ1, φ2 : C → C be

two biholomorphic parametrizations of C . Then φ1(z) = φ2(az + b) for constants

a, b ∈ C with a 6= 0.

Proof. The composition φ−1
2 ◦ φ1 : C→ C is a biholomorphism of C on C. From the

theorem of one complex variable, φ−1
2 ◦ φ1(z) = az + b for constants a, b ∈ C with

a 6= 0.

Corollary VI.8. Every Brody curve has a unique parametrization up to the inside

composition with a linear map.

6.2 Brody Leaves of Cc

In this section, we prove our main theorem (Theorem I.3). Our space is P2.

We use the standard Fubini-Study metric as a smooth Hermitian metric ds on P2.

For notational convenience, we also use ‖ψ′(θ0)‖ to mean ds(ψ(θ0), dψ( d
dθ
|θ=θ0)), the

Fubini-Study metric for a holomorphic mapping ψ : C→ P2 of θ ∈ C at θ = θ0.

Let c > 0. We consider the level set Cc ⊆ C2 as a subset of P2. From Chapter IV,

we know that Cc has a foliation structure by complex curves and each leaf is dense.

Every leaf is biholomorphic to C by Theorem V.3. We will show that the foliation

of Cc enjoys more structural properties as stated below. Recall our notations for the

parametrizations in Chapter IV.

Theorem VI.9. For any c > 0, every leaf of Cc viewed as a subset of P2 is an

injective Brody curve.

Proof. First, we assume that our c is sufficiently large as in Section 4.2. We will

prove the following two parts later:
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Part 1 We will first show that each leaf Φs contains a Brody curve Bs ⊆ P2.

Part 2 Next, we show that Bs is an injective Brody curve.

Once we prove the two parts, then, Bs in Φs is a biholomorphic image of C.

By Theorem V.3, each Φs is a biholomorphic image of C. Suppose that Bs 6= Φs.

Then, we can find a biholomoprhic mapping from C onto a proper subset of C.

This is a contradiction since there is no such mapping in one complex dimensional

case. Hence, the Brody curve Bs should be all of the leaf Φs. The theorem is proved.

So far, we have proved the theorem for sufficiently large c. General case is obtained

by making c in Cc large enough by applying f sufficiently many times so that we

can apply the above argument. Then, Lemma VI.17 implies that the image of a

Brody curve under f−N is still a Brody curve for a finite N . This proves the general

case.

For the rest of this paper, |s| or equivalently c is assumed to be large enough as

in Section 4.2.

[Part 1] We prove the following Proposition.

Proposition VI.10. There exists a Brody curve Bs in Φs.

We prove this theorem modifying the Brody reparametrization lemma. For the

detail of the Brody reparametrization lemma, we refer the readers to [14], [26]. We

modify the lemma so that the mappings in the family of the lemma have a fixed point

and the mappings still form a normal family. Then, we apply the same technique as

in the lemma. The limit mapping in the conclusion defines a Brody curve Bs in Φs

as desired. We start by 3 lemmas. Lemma VI.12 will be proved later.
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Lemma VI.11. Consider a point (zK , 0) ∈ Φs ∩ V +. Let θn ∈ ∆ be such that

Ψn
s (θn) = (zK , 0) for each n. Then ds((zK , 0), dΨn

s ( d
dθ
|θ=θ0)) → ∞ as n → ∞. In a

different notation, ‖(Ψn
s )′(θn)‖ → ∞ as n→∞.

Proof. We are considering the Fubini-Study metric at a fixed point (zK , 0) and

(zK , 0) ∈ V +. Thus, by Lemma VI.15, it suffices to show that |(Ψn
s )′2(θn)| → ∞

as n→∞. In the proof of Theorem V.3, we proved the uniform divergence to ∞.

Lemma VI.12. The sequence

{
sup|θ|<1 ds(Ψ

n
s (θ), dΨn

s ( d
dθ

))

ds((zK , 0), dΨn
s ( d

dθ
))

}
of the ratios as a se-

quence of n is bounded above. We call this bound Ms.

Lemma VI.13. Let ξ : C → Cc be a holomorphic mapping. Then, the image ξ(C)

should be inside a single leaf of the foliation of Cc.

Proof. Suppose, to the contrary, that the image does not lie inside a single leaf.

Then, we can find an open subset U ⊆ C with compact closure such that ξ(U) is

not contained in a single leaf. Since ξ(U) has compact closure and ξ(U) ⊆ Cc ⊆ U+,

we can find a sufficiently large number n such that fn(ξ(U)) ⊆ V +. Note that

fn(ξ(U)) does not still sit inside a single leaf. We consider a holomorphic function

ϕ+ ◦fn ◦ξ : U → C, where ϕ+ is a holomorphic function defined over V + obtained in

Proposition IV.1. Since fn(ξ(U)) does not belong to a single leaf, ϕ+◦fn◦ξ : U → C

is a non-constant holomorphic function over the open subset U ⊆ C. So, the Open

Mapping theorem implies that ϕ+◦fn◦ξ(U) should be open in C. However, ξ(U) ⊆ Cc

means that log |ϕ+ ◦ fn ◦ ξ(U)| = dnc, and therefore, ϕ+ ◦ fn ◦ ξ(U) is a subset of a

circle |z| = ed
nc. This is a contradiction. Thus, Lemma VI.13 is proved.
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The proof of Proposition VI.10. We modify the Brody reparametrization lemma. A

brief description of the difference is that instead of moving a point of the maxi-

mum derivative modulus to θ = 0 in the Brody reparametrization lemma, we will

move a given fixed point to θ = 0. However, by Lemma VI.12, we still have a com-

pact family with respect to the compact-open topology, and moreover, we do have a

fixed point. A precise argument comes below. We will follow the computation in [14].

Recall our parametrizations {Ψn
s}
∞
n=0 of Φn

s ⊆ Φs for n = 0, 1, 2, .... By rescaling

θ → (1 − ε)θ for a very small ε > 0, we may assume that our parametrizations are

holomorphic over ∆.

Let Hn : ∆ → R+ be defined by Hn(θ) = ‖(Ψn
s )′(θ)‖ (1 − |θ|2). As defined

above, let θn ∈ ∆ be a point such that Ψn
s (θn) = (zK , 0) for a prescribed fixed

point (zK , 0) ∈ Φ0
s ⊆ Φs ∩ V +. We define a sequence of Möbius transformation

µn(ω) = ω+θn
1+θnω

. Consider a sequence {gn} of mappings gn : ∆ → Cc defined by

gn = Ψn
s ◦ µn. Then,

‖g′n(ω)‖ (1− |ω|2) = ‖(Ψn
s )′(θ)‖ |µ′n(ω)| (1− |ω|2) = ‖(Φn

s )′(θ)‖ (1− |θ|2).

By Lemma VI.12, we have

‖g′n(ω)‖ ≤ Ms ‖g′n(0)‖
1− |ω|2

,

where Ms denotes a bound for the sequence in Lemma VI.12.

Let Rn = ‖g′n(0)‖. By the definition of our parametrization Ψn
s in Section 4.4,

θn ∈ ∆ such that Ψn
s (θn) = (zK , 0) is the same as θn =

fn2 (z+,0)

fn1 (z+,0)
. Since fn(z+, 0)

converges to I−, θn converges to 0. Then, |µ′n| converges to 1 and so, Lemma VI.11
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implies Rn →∞. We define kn(θ) := gn( θ
Rn

).

Then, over ∆Rn/2, we have

‖k′n(θ)‖ =
‖g′n(θ/Rn)‖

Rn

≤ Ms ‖g′n(0)‖
Rn

· 1

1− |θ/Rn|2
≤ 2Ms

Thus, the set {k′n(θ)} of derivatives is uniformly bounded and kn(θ) has a fixed

point, and therefore, {kn(θ)} is a normal family. Moreover, ‖k′n(0)‖ = 1. Thus, the

limit maps of {kn(θ)} are non-constant Brody maps.

We denote a limit map by Ψs and its image by Bs. Notice that Bs is a holomorphic

curve and passes through the fixed point (zK , 0). We have Bs ⊆ Φs ⊆ Cc ∪ I+

by Proposition III.3. By Theorem III.4, we have Bs ⊆ Cc. So, we can apply

Lemma VI.13. Hence, the limit map should sit in one single leaf Φs′ for some s′.

However, the fixed point implies the image of the limit map should sit inside Φs.

This proves the lemma.

[Part 2] We prove the injectivity of the limit map. Let Ψs : C→ Φs be the limit map

obtained through the Brody technique as in Part 1. Without loss of generality, we

may assume that kn → Ψs, where {kn} is a convergent subsequence of the sequence

in Part 1. It suffices to prove that for θa, θb ∈ C, Ψs(θa) 6= Ψs(θb).

Let r > 0 be such that θa, θb ∈ ∆r ⊆ C. Let U∆r denote an open subset of C2 with

compact closure with respect to the standard C2 topology such that Ψs(∆r) ⊆ U∆r .

Since I− is a super-attracting point, there exist a large number N ∈ N such that

fN(U∆r) ⊆ V +. θ = 0 is the fixed point for the sequence of the functions {kn(θ)}

and therefore, we can find another large number N ′ ∈ N such that for all n ≥ N ′,
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kn → Ψs is uniform over ∆r and kn(∆ 3
2
r) ⊆ U∆r .

Note that fN(Ψs(∆r)) ⊆ V + ∩ ΦsdN from Proposition VI.10 and fN(kn(∆r)) ⊆

V +∩ΦsdN . Recall the biholomorphism Ψ+ between the ZW-coordinate chart and the

XY-coordinate chart in Chapter IV. Since fN(Ψs(∆2r)) lives in V + ∩
{
ϕ+ = sd

N
}

,

it suffices to show the injectivity of
fN2 (Ψs(θ))

fN1 (Ψs(θ))
. From the locally uniform convergence

of {kn} to Φs, we have that

fN2 (kn(θ))

fN1 (kn(θ))
→ fN2 (Ψs(θ))

fN1 (Ψs(θ))

is uniform for n ≥ N ′. The functions
{
fN2 (kn(θ))

fN1 (kn(θ))

}
in the sequence are a priori injective

over ∆r from our definition of parametrizations. The limit map is not constant.

Hence, with Hurwitz’s theorem, we have just proved that
fN2 (Ψs(θ))

fN1 (Ψs(θ))
is injective over

∆r. This proves the injectivity of Ψs.

6.3 Range of z in Terms of the Parameter s

We revise the proof of Inequality 4.2 to obtain a sharper range of z ∈ V + ∩Φs in

terms of s. Recall that the leaf Φs satisfies {ϕ+(z, w) = s} ∩ V + = Φs ∩ V +. Over

Φs ∩ V +, we have

(
1− c1

Rc2

)1/(d−1)

≤
∣∣∣s
z

∣∣∣ ≤ (1 +
c1

Rc2

)1/(d−1)

where c1, c2 > 0 are the corresponding constants to Inequality 4.2. Note that c1, c2

are independent of R, s, and z. Then, we obtain the range of z as follows:

|s|
(1 + c1

Rc2
)1/(d−1)

≤ |z| ≤ |s|
(1− c1

Rc2
)1/(d−1)

.

By Condition 5 on R and Condition 5 on s,
|s|

(1 + c1
Rc2

)1/(d−1)
> R. So, we can use
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|s|
(1 + α

Rβ
)1/(d−1)

as our new R. Then,

(
1−

c1(1 + c1
Rc2

)c2/(d−1)

|s|c2

)1/(d−1)

≤
∣∣∣s
z

∣∣∣ ≤ (1 +
c1(1 + c1

Rc2
)c2/(d−1)

|s|c2

)1/(d−1)

.

Here, c1, c2, R are independent of s, z but only dependent of p(z), a. Thus, we can

redefine c1, c2 > 0 to write the above inequality in a simpler form:

(1− c1

|s|c2
)1/(d−1) ≤

∣∣∣s
z

∣∣∣ ≤ (1 +
c1

|s|c2
)1/(d−1).(6.1)

6.4 The Proof of Lemma VI.12

We will actually prove a more general statement as follows:

Lemma VI.14.
sup|θ|<1‖(Ψn,is )′(θ)‖
inf

θ∈Θ
n,i
s
‖(Ψn,is )′(θ)‖ is uniformly bounded for any i, n with 0 ≤ i ≤ n.

For the definition of the set Θn,i
s , see Section 4.4. Observe that the case where

i = 0 implies Lemma VI.12. The main idea is the following. Since fn(Φn
s ) ⊆ V +, the

behavior of the map Ψn,n
s is quite regular and Θn,n

s = {|θ| < 1}. So, it is not difficult

to find a bound of the ratio
sup|θ|<1‖(Ψn,ns )′(θ)‖
inf|θ|<1‖(Ψn,ns )′(θ)‖ . Then, we investigate the change of the

quantity under the iteration of f−1. The detail follows below.

By Condition 1 on s that Φs ∩W = ∅, f−1 acts on f i(Φn
s ) for i with 1 ≤ i ≤ n

in only three ways: i) sending a point in V + to a point in V +, ii) sending a point in

V + to a point in V −, and iii) sending a point in V − to a point in V −. So, if a point

escapes from V + during the n-times iteration of f−1, the point moves from V + to

V − exactly only once during the n-times iteration and after that the point stays in

V − for the rest of the iteration. Thus, we want to show that

Statement 1 for the action of f−1 on f i(Φn
s ), the maximum increasing rate of the Fubini-

Study metric in the case V − → V − is slower than the minimum increasing rate
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of the Fubini Study metric in the case V + → V +, and

Statement 2 the maximum increasing rate of the Fubini-Study metric of the case V + → V −

is bounded by a constant multiple of the case V + → V +, where the increasing

rate of the Fubini-Study metric means the numerical quantity
‖(f−1(Ψn,is ))′(θ)‖
‖(Ψn,is )′(θ)‖ .

The constant in Statement 2 is independent of the parametrization, n, and the

number of actions of f−1, i. We denote the constant in the Statement 2 by Cs.

Then, once the above two statements are proved, we have

sup|θ|<1 ‖(Ψn,i
s )′(θ)‖

infθ∈Θn,is

∥∥(Ψn,i
s )′(θ)

∥∥ ≤ Cs
supθ∈Θn,is

‖(Ψn,i
s )′(θ)‖

infθ∈Θn,is

∥∥(Ψn,i
s )′(θ)

∥∥ .
Then, it only remains to prove that

Statement 3
supθ∈Θn,is

‖(Ψn,i
s )′(θ)‖

infθ∈Θn,is

∥∥(Ψn,i
s )′(θ)

∥∥ is uniformly bounded.

Hence, these three statements prove Lemma VI.12.

We move on to the proofs of the statements. Before proving the statements, we

prepare some useful lemmas.

Lemma VI.15. Let |s| be a sufficiently large number as chosen previously, and i, n

arbitrary numbers such that 1 ≤ i ≤ n. Let (z(θ), w(θ)) denote f i(Ψn
s (θ)). Then, for

any θ ∈ Θn,i
s , we have |w′| � |z′| and

|w′|2

2(1 + |z|2 + |w|2)
≤ |z

′|2 + |w′|2 + |z′w − zw′|2

(1 + |z|2 + |w|2)2
≤ 3 |w′|2

1 + |z|2 + |w|2
(6.2)

Proof. Note that (z(θ), w(θ)) ∈ V +, |w| ≤ |z| and from Lemma V.10 and Condition

6 on R, |w′| � |z′| in V +. Then,

|z′|2 + |w′|2 + |z′w − zw′|2

(1 + |z|2 + |w|2)2
≥
|w′|2 + 1

2
|zw′|2

(1 + |z|2 + |w|2)2
≥ |w′|2

2(1 + |z|2 + |w|2)
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On the other hand,

|z′|2 + |w′|2 + |z′w − zw′|2

(1 + |z|2 + |w|2)2
≤ |z

′|2 + |w′|2 + 2(|z′w|2 + |zw′|2)

(1 + |z|2 + |w|2)2

≤ 2
|z′|2 + |w′|2

1 + |z|2 + |w|2
≤ 3 |w′|2

1 + |z|2 + |w|2

The following proposition estimates a lower bound of the increasing ratio of the

Fubini-Study metric in the case V + → V +.

Proposition VI.16. For θ ∈ Θn,i−1
s , the infimum of the increasing ratio

infθ∈Θn,i−1
s

‖(f−1Ψn,is )′(θ)‖
‖(Ψn,is )′(θ)‖ is bounded below by d2

128·152|a|2

∣∣∣sdi∣∣∣4−4/d

.

Proof. We compute infθ∈Θn,i−1
s

‖(f−1Ψn,is )′(θ)‖
‖(Ψn,is )′(θ)‖ in terms of i. Let θ ∈ Θn,i−1

s . For a

simpler computation, we use (z, w) for Ψn,i
s (θ), (z′, w′) for (Ψn,i

s )′(θ), and (z∗, w∗)

for f−1(Ψn,i
s (θ)). Then, (z, w) ∈ f i(Φs) = Φsdi , |w| ≤ |z|, |z| > R, |z′| � |w′| and

(z, w), (z∗, w∗) ∈ V +.

Since (z∗, w∗) ∈ V +, |w| ≥ 1
a
|p(w)− z|. Then |p(w)|+ |aw| ≥ |z| ≥ |p(w)| − |aw|,

which gives the approximation of w in terms of s together with Inequality 6.1 and

our choice of R > 0 as follows:

3

2

∣∣∣sdi∣∣∣ ≥ |z| ≥ |p(w)| − |aw| ≥ 3

4
|w|d

5

4
|w|d ≥ |p(w)|+ |aw| ≥ |z| ≥ 2

3

∣∣∣sdi∣∣∣
Thus, we have

∣∣∣2sdi∣∣∣ 1
d ≥ |w| ≥

∣∣∣∣∣8sd
i

15

∣∣∣∣∣
1
d

.

With this range of w, we compute a lower bound of the increasing rate of the
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Fubini-Study metric in terms of the parameter s.

∥∥(Ψn,i
s )′(θ)

∥∥ =
|z|2 + |w|2 + |z′w − zw′|2

(1 + |z|2 + |w|2)2
≤ |z

′|2 + |w′|2 + 2(|z′w|2 + |zw′|2)

(1 + |z|2 + |w|2)2

≤ 2
|z′|2 + |w′|2

1 + |z|2 + |w|2
≤ 3 |w′|2

|z|2
.

By Lemma VI.15, we have

∥∥(f−1Ψn,i
s )′(θ)

∥∥ =
|w′|2 +

∣∣∣− 1
a
z′ + p′(w)

a
w′
∣∣∣2 +

∣∣∣ 1
a
(p(w)− z)w′ − w(− 1

a
z′ + p′(w)

a
w′)
∣∣∣2

(1 + |w|2 +
∣∣ 1
a
(p(w)− z)

∣∣2)2

≥

∣∣∣− 1
a
z′ + p′(w)

a
w′
∣∣∣2

6 |w|2
=
|p′(w)w′|2

12 |a|2 |w|2

infθ∈Θn,i−1
s

‖(f−1Ψn,is )′(θ)‖
‖(Ψn,is )′(θ)‖ is bounded by

|p′(w)|2 |z|2

36 |a|2 |w|2
. So, by Inequality 6.1 and the

range of w,

|p′(w)|2 |z|2

36 |a|2 |w|2
≥

∣∣∣3d4 |w|d−1
∣∣∣2 |z|2

36 |a|2 |w|2
=

d2

64 |a|2
|w|2d−4 |z|2

≥ d2

128 |a|2

∣∣∣∣∣8sd
i

15

∣∣∣∣∣
2−4/d ∣∣∣sdi∣∣∣2 ≥ d2

128 · 152 |a|2
∣∣∣sdi∣∣∣4−4/d

.

[Statement 1] We will be proving the following:

Proposition VI.17. For 1 ≤ i ≤ n, consider θ− ∈ ∆ such that Ψn,i
s (θ−) ∈ V −. The

ratio
‖(f−1Ψn,i

s )′(θ−)‖∥∥(Ψn,i
s )′(θ−)

∥∥ is uniformly bounded by 2 |a|2
(

20

9

)2

(1 + d+
1

d
)2 (1 + 2R2)2

|R|2d
.

Proof. To such θ−, Ψn,i
s assigns a point Ψn,i

s (θ−) = f i(Ψn
s (θ−)) ∈ V −. We have

|(Ψn,i
s )1(θ−)| ≤ |(Ψn,i

s )2(θ−)| and |(Ψn,i
s )2(θ−)| > R. For the simplicity of the cal-

culation, we will use (z, w) for Ψn,i
s (θ−) and (z′, w′) for (Ψn,i

s )′(θ−). Then, we have

|z| ≤ |w| and |w| ≥ R.
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We want to find the ratio
‖(f−1Ψn,i

s )′(θ−)‖∥∥(Ψn,i
s )′(θ−)

∥∥ .

∥∥(Ψn,i
s )′(θ−)

∥∥ =
|z′|2 + |w′|2 + |z′w − zw′|2

(1 + |z|2 + |w|2)2
≥ |z

′|2 + |w′|2

(1 + 2 |w|2)2

On the other hand, by our choice of R > 0,

∥∥(f−1Ψn,i
s )′(θ−)

∥∥ =
|w′|2 +

∣∣∣ z′a − p′(w)w′

a

∣∣∣2 +
∣∣∣w(− z′

a
+ p′(w)w′

a
)− p(w)−z

a
w′
∣∣∣2

(1 + |w|2 +
∣∣ 1
a
(p(w)− z)

∣∣2)2

≤ |a|2 |aw
′|2 + (|z′|+ |p′(w)w′|)2 + [|wz′|+ (|p′(w)w|+ |p(w)|+ |w|) |w′|]2

(|a|2 + |aw|2 + |p(w)− z|2)2

≤ |a|2 |a|
2 + 2 |p′(w)|2 + (|w|+ |p′(w)w|+ |p(w)|+ |w|)2

(|a|2 + |aw|2 + |p(w)− z|2)2
max {|z′| , |w′|}2

≤ 2 |a|2
[(1 + d+ 1

d
) |p(w)|+ 2 |w|]2

(3
4
|w|d)4

max {|z′| , |w′|}2

≤ 2 |a|2 (1 + d+
1

d
)2 (5

4
|w|d)2

(3
4
|w|d)4

max {|z′| , |w′|}2

The second last inequality is due to Condition 1, Condition 4, and Condition 7 on R,

and the last inequality is due to the Condition 1 on R. Thus, the ratio is bounded

by 2 |a|2
(

20

9

)2

(1 + d+
1

d
)2 (1 + 2R2)2

|R|2d
.

By Condition 4 on s, this quantity is bounded by the increasing rate of the Fubini-

Study metric of the case V + → V +.

[Statement 2] For θ ∈ Θn,i
s \ Θn,i−1

s , we have Ψn,i
s (θ) ∈ V + but f i−1(Ψn

s (θ)) =

f−1(Ψn,i
s (θ)) ∈ V −. Indeed, Θn,i

s \Θn,i−1
s is the set of points which just escaped out of

V + to V − at the i-th iteration. A more precise statement to prove is the following:

Proposition VI.18. For all i, n such that 1 ≤ i ≤ n, there exists a constant Cs > 0

independent of i, n such that

sup
θ∈Θn,is \Θn,i−1

s

‖(f−1Ψn,i
s )′(θ)‖∥∥(Ψn,i

s )′(θ)
∥∥ ≤ Cs inf

θ∈Θn,i−1
s

‖(f−1Ψn,i
s )′(θ)‖∥∥(Ψn,i

s )′(θ)
∥∥ .
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Proof. Let θ ∈ Θn,i
s \Θn,i−1

s . Then, Ψn,i
s (θ) ∈ V + but f−1(Ψn,i

s )(θ) ∈ V −. For a sim-

pler computation, we substitute the notations (z, w) for Ψn,i
s (θ), (z′, w′) for (Ψn,i

s )′(θ),

(z∗, w∗) for f−1(Ψn,i
s (θ)), and (z′∗, w

′
∗) for (f−1(Ψn,i

s )′(θ)). Since Ψn,i
s (θ) ∈ V +, we have

|w| ≤ |z|, |z′| � |w′|, and (z, w) ∈ Φsdi . Since f−1(Ψn,i
s ) = Ψn,i−1

s ∈ V −, we have

|w| ≤
∣∣∣p(z)−wa

∣∣∣.
Recall that  z′∗

w′∗

 =

 0 1

− 1
a

p′(w)
a


 z′

w′

 .

∥∥(f−1Ψn,i
s )′(θ)

∥∥ =
|w′|2 +

∣∣∣− 1
a
z′ + p′(w)

a
w′
∣∣∣2 +

∣∣∣ 1
a
(p(w)− z)w′ − w(− 1

a
z′ + p′(w)

a
w′)
∣∣∣2

(1 + |w|2 +
∣∣ 1
a
(p(w)− z)

∣∣2)2

≤
|w′|2 + (

∣∣− 1
a
z′
∣∣+
∣∣∣p′(w)

a
w′
∣∣∣)2 + (

∣∣∣ 1
a
(p(w)− z)w′ − p′(w)w

a
w′
∣∣∣+
∣∣w
a
z′
∣∣)2

(1 + |w|2 +
∣∣ 1
a
(p(w)− z)

∣∣2)2

≤ 2 ·
|w′|2 +

∣∣− 1
a
z′
∣∣2 +

∣∣∣p′(w)
a
w′
∣∣∣2 +

∣∣∣ 1
a
(p(w)− z)w′ − p′(w)w

a
w′
∣∣∣2 +

∣∣w
a
z′
∣∣2

(1 + |w|2 +
∣∣ 1
a
(p(w)− z)

∣∣2)2

≤ 2 ·
(2 + 2

∣∣∣p′(w)
a

∣∣∣2 +
∣∣∣ 1
a
(p(w)− z)− p′(w)w

a

∣∣∣2) |w′|2

(1 + |w|2 +
∣∣ 1
a
(p(w)− z)

∣∣2)2

≤ 2 ·
(2 + 2

∣∣∣p′(w)
a

∣∣∣2 + 2
∣∣ 1
a
(p(w)− z)

∣∣2 + 2
∣∣∣p′(w)

a
w
∣∣∣2) |w′|2

(1 + |w|2 +
∣∣ 1
a
(p(w)− z)

∣∣2)2

≤ 4 ·
((1 + |w|2 +

∣∣ 1
a
(p(w)− z)

∣∣2) + (− |w|2 +
∣∣∣p′(w)

a

∣∣∣2 +
∣∣∣p′(w)

a
w
∣∣∣2)) |w′|2

(1 + |w|2 +
∣∣ 1
a
(p(w)− z)

∣∣2)2

≤ 4 |w′|2

1 + |w|2 +
∣∣ 1
a
(p(w)− z)

∣∣2 + 4 ·
− |w|2 +

∣∣∣p′(w)
a

∣∣∣2 +
∣∣∣p′(w)

a
w
∣∣∣2

(1 + |w|2 +
∣∣ 1
a
(p(w)− z)

∣∣2)2
|w′|2 .

From Lemma VI.15, we have

∥∥(Ψn,i
s )′(θ)

∥∥ ≥ |w′|2

2(1 + |z|2 + |w|2)
≥ |w

′|2

6 |z|2
.
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Thus, the ratio
‖(f−1Ψn,is )′(θ)‖
‖(Ψn,is )′(θ)‖ is bounded above by

24 |z|2

1 + |w|2 +
∣∣ 1
a
(p(w)− z)

∣∣2 + 24 ·
(− |w|2 +

∣∣∣p′(w)
a

∣∣∣2 +
∣∣∣p′(w)

a
w
∣∣∣2) |z|2

(1 + |w|2 +
∣∣ 1
a
(p(w)− z)

∣∣2)2
.(6.3)

Note that due to Condition 3 on r, we have R <
∣∣∣ sdi5

∣∣∣ 1
d

. We compute the upper

bound of Quantity 6.3 in 4 cases:

Case 1 |w| < R,

Case 2 R ≤ |w| <
∣∣∣ sdi5

∣∣∣ 1
d

,

Case 3
∣∣∣ sdi5

∣∣∣ 1
d ≤ |w| <

∣∣∣10sd
i

3

∣∣∣ 1
d

, and

Case 4
∣∣∣10sd

i

3

∣∣∣ 1
d ≤ |w|.

[Case 1] Let MR = max|w|≤R

{
− |w|2 +

∣∣∣p′(w)
a

∣∣∣2 +
∣∣∣p′(w)w

a

∣∣∣2}. From Condition 1 on

s and Inequality 6.1, |z| − |p(w)| ≥
∣∣∣ sdi4

∣∣∣. Then, Quantity 6.3 is bounded above by

[ 6.3] ≤ 24 |z|2∣∣ 1
a
(|z| − |p(w)|)

∣∣2 +
24 |z|2MR∣∣ 1

a
(|z| − |p(w)|)

∣∣4 ≤ 48
∣∣∣sdi∣∣∣2∣∣∣ sdi4a

∣∣∣2 +
48
∣∣∣sdi∣∣∣2MR∣∣∣ sdi4a

∣∣∣4 ,

due to Inequality 6.1 and |z| − |p(w)| ≥
∣∣∣ sdi4

∣∣∣. The last quantity is bounded for all i.

[Case 2] From R ≤ |w| <
∣∣∣ sdi5

∣∣∣ 1
d

and Inequality 6.1, we have |p(w)| + 2 |aw| ≤

5
4
|w|d ≤

∣∣∣ sdi4

∣∣∣ ≤ 1
2
|z|, which means |z| − |p(w)| ≥

∣∣∣ sdi4

∣∣∣.
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Then, the bound 6.3 satisfies

[ 6.3] ≤ 24 |z|2∣∣ 1
a
(|z| − |p(w)|)

∣∣2 +
24 |z|2 (− |w|2 +

∣∣∣p′(w)
a

∣∣∣2 +
∣∣∣p′(w)

a
w
∣∣∣2)∣∣ 1

a
(|z| − |p(w)|)

∣∣4
≤ 24 |a|2 |z|2

(|z| − |p(w)|)2
+

24 |a|2 |z|2 (5
4
d |w|d−1)2(1 + |w|2)

(|z| − |p(w)|)4

≤
48 |a|2

∣∣∣sdi∣∣∣2∣∣∣ sdi4

∣∣∣2 +
6d2 |a|2

∣∣∣sdi∣∣∣4∣∣∣ sdi4

∣∣∣4 = 42 · 48 |a|2 + 44 · 6d2 |a|2 ,

due to Condition 3 on R, Inequality 6.1, R ≤ |w| <
∣∣∣ sdi5

∣∣∣ 1
d

, and |z| − |p(w)| ≥
∣∣∣ sdi4

∣∣∣.
[Case 4] From

∣∣∣10sd
i

3

∣∣∣ 1
d ≤ |w| and Inequality 6.1, we have |p(w)| − 2 |aw| ≥ 3

4
|w|d ≥

5
2

∣∣∣sdi∣∣∣ ≥ 2 |z|, which means |p(w)| − |z| ≥
∣∣∣ sdi2

∣∣∣
Then, the bound 6.3 satisfies

[ 6.3] ≤ 24 |z|2∣∣ 1
a
(|p(w)| − |z|)

∣∣2 +
24 |z|2 (− |w|2 +

∣∣∣p′(w)
a

∣∣∣2 +
∣∣∣p′(w)

a
w
∣∣∣2)∣∣ 1

a
(|p(w)| − |z|)

∣∣4
≤ 24 |a|2 |z|2

(|p(w)| − |z|)2
+

24 |a|2 |z|2 (5
4
d |w|d−1)2(1 + |w|2)

(|p(w)| − |z|)4

≤
48 |a|2

∣∣∣sdi∣∣∣2∣∣∣ sdi2

∣∣∣2 +
12 |a|2 (3

4
|w|d)2(5

4
d |w|d)2

(1
2
|p(w)|)4

.

The denominator and the numerator of the very last term have the same order of

w and the denominator is not 0 for |w| ≥
∣∣∣10sd

i

3

∣∣∣ 1
d

. This means that Quantity 6.3 is

bounded by a constant.
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[Case 3] If
∣∣∣ sdi5

∣∣∣ 1
d ≤ |w| <

∣∣∣10sd
i

3

∣∣∣ 1
d

, then

[ 6.3] ≤ 24 |z|2

|w|2
+

24 |z|2 (− |w|2 +
∣∣∣p′(w)

a

∣∣∣2 +
∣∣∣p′(w)

a
w
∣∣∣2)

|w|4

≤ 24 |z|2

|w|2
+

24 |z|2 (5
4
d |w|d−1)2(1 + |w|2)

|a|2 |w|4

≤ 48 · 5
2
d

∣∣∣sdi∣∣∣2− 2
d

+
15000d2 · 5 4

d

∣∣∣sdi∣∣∣4− 4
d

9 |a|2

due to Inequality 6.1.

We compare the bounds of Quantity 6.3 obtained from the 4 cases to the infimum

of the increasing rate from Lemma VI.16. Since the bounds of Quantity 6.3 obtained

from the 4 cases have the same or less order of sd
i

than the infimum of the increasing

rate from Lemma VI.16. The number from Lemma VI.16 is not 0. Thus, we can find

the maximum ratio of the bounds of Quantity 6.3 to the infimum of the increasing

rate from Lemma VI.16. This maximum ratio is the desired constant. So, the

Statement is proved. Independence is clear from the proof.

[Statement 3] We will prove the following:

Proposition VI.19.
sup

θ∈Θ
n,i
s
‖(Ψn,is )′(θ)‖

inf
θ∈Θ

n,i
s
‖(Ψn,is )′(θ)‖ is uniformly bounded for 0 ≤ i ≤ n.

We first prove that
sup

θ∈Θ
n,i
s
|(Ψn,is )′2(θ)|

inf
θ∈Θ

n,i
s
|(Ψn,is )′2(θ)| is uniformly bounded for 0 ≤ i ≤ n and

prove Proposition VI.19 using Inequality 6.1 and Lemma VI.15.

Proposition VI.20. For all n ∈ N,

supθ∈Θn,ns
|(Ψn,n

s )′2(θ)|
infθ∈Θn,ns |(Ψ

n,n
s )′2(θ)|

≤

(
1 + c1

|s|c2

1− c1
|s|c2

)1/(d−1)
R + 1

R− 1
.

Proof. Recall the definition of our parametrization. Note that Ψn,n
s (θ) ∈ Φsd

n ∩ V +

for θ ∈ ∆. For simplicity, we denote Ψn,n
s (θ) by (z, w) or (z(θ), w(θ)) for θ ∈ ∆. We
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have { (ϕ+)z · z′ + (ϕ+)w · w′ = 0

w = zt

Differentiating and solving this system for w′ in z, w, we have w′ =
z2

z − µw
, where

µ is very small as in Lemma V.10.

|z|
1 + |µ|

=
|z|2

|z|+ |µz|
≤ |w′| ≤ |z|2

|z| − |µz|
=

|z|
1− |µ|

From Inequality 6.1, we have

sup|θ|<1 |w′|
inf |θ|<1 |w′|

≤

1 + c1

|sdn|c2

1− c1

|sdn|c2

1/(d−1)

1 + |µ|
1− |µ|

≤

(
1 + c1

|s|c2

1− c1
|s|c2

)1/(d−1)
R + 1

R− 1
,

and therefore it is bounded independently of n.

Lemma VI.21. There exists a fixed constant C > 0 such that
supΘn,is

|(Ψn,i
s )′2|

infΘn,is

∣∣(Ψn,i
s )′2

∣∣ ≤
C

supΘn,ns
|(Ψn,n

s )′2|
infΘn,ns

∣∣(Ψn,i
s )′2

∣∣ for i, n with 0 ≤ i ≤ n− 1. C is independent of i, n.

For the proof of Lemma VI.21, we need the following lemma.

Lemma VI.22. For all θ ∈ Θn,i
s and i ≤ j ≤ n− 1,

|p′((Ψn,j
s )1)| − 1

|a|
∣∣(Ψn,j+1

s )′2
∣∣ ≤ ∣∣(Ψn,j

s )′2
∣∣ ≤ |p′((Ψn,j

s )1)|+ 1

|a|
∣∣(Ψn,j+1

s )′2
∣∣ .

Proof. It is a direct result from our choice of R > 0 and

df−1|Ψn,j+1
s (θ) =

 p′((Ψn,j
s )1) −a

1 0


−1

=

 0 1

− 1
a

p′((Ψn,js )1)
a

 .

Note that |(Ψn,j+1
s )′1| � |(Ψn,j+1

s )′2| for θ ∈ Θn,i
s by Lemma V.10.

The proof of Lemma VI.21. For the simplicity of the proof, we use (z, w) for Ψn
s (θ),

(zi, wi) for Ψn,i
s (θ), (z′, w′) for Ψn

s (θ)′, and (z′i, w
′
i) for Ψn,i

s (θ)′. Then (z, w) ∈ Φs and
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(zi, wi) ∈ Φsdi . From the previous lemma, we have

maxΘn,js

∣∣w′j∣∣
minΘn,js

∣∣w′j∣∣ ≤ maxΘn,js
|p′(zj)|+ 1

minΘn,js
|p′(zj)| − 1

·
maxΘn,j+1

s

∣∣w′j+1

∣∣
minΘn,j+1

s

∣∣w′j+1

∣∣ .
Multiple use of this inequality gives us

(6.4)
maxΘn,is

|w′i|
minΘn,is

|w′i|
≤

maxΘn,ns |w′n|
minΘn,ns |w′n|

n−1∏
j=i+1

maxΘn,js
|p′(zj)|+ 1

minΘn,js
|p′(zj)| − 1

.

Consider i, n such that 0 ≤ i ≤ n. For any θa, θb ∈ Θn,i
s and za, zb with za =

Ψn,i
s (θa) ∈ Φsdi , zb = Ψn,i

s (θb) ∈ Φsdi respectively, by Inequality 6.1, we have

1− c1

|sdi |c2

1 + c1

|sdi |c2
≤

(1− c1

|sdi |c2 )1/(d−1)

(1 + c1

|sdi |c2 )1/(d−1)
≤ |za|
|zb|
≤

(1 + c1

|sdi |c2 )1/(d−1)

(1− c1

|sdi |c2 )1/(d−1)
≤

1 + c1

|sdi |c2

1− c1

|sdi |c2
.

Note that this inequality is independent of n, i.

We want to express the ε > 0 such that
∣∣∣ za−zbzb

∣∣∣2 < ε.

|za − zb|2 = |za|2 + |zb|2 − 2za · zb

≤

∣∣∣∣∣|za|2 + |zb|2 − 2 |za| |zb|
√

1−
( 2c1

(d− 1)
∣∣sdi∣∣c2

)2

∣∣∣∣∣
≤ (|za| − |zb|)2 + 2 |za| |zb|

(
2c1

(d− 1)
∣∣sdi∣∣c2

)
.

Note that in the computation of za · zb, we used the computation of the bound of the

angle in Proposition IV.1 and the fact that sinx ≤ x for small positive x.

Thus, ∣∣∣∣za − zbzb

∣∣∣∣2 ≤ (∣∣∣∣zazb
∣∣∣∣− 1

)2

+ 4

(
c1

(d− 1)
∣∣sdi∣∣c2

)∣∣∣∣zazb
∣∣∣∣

≤

1 + c1

|sdi |c2

1− c1

|sdi |c2
− 1

2

+ 8

(
c1

(d− 1)
∣∣sdi∣∣c2

)

≤ Cab∣∣sdi∣∣c2 = ε,
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where Cab ≥ 0 is a constant independent of za, zb, i, n.

Let p′(z) = dzd−1 + q′(z) according to our notation. Let Mq′ be defined by

Mq′ = max1/2≤x≤3/2 |q′| (x) <∞. Then,

|p′(za)|+ 1

|p′(zb)| − 1
=
|(p′(za)− p′(zb)) + p′(zb)|+ 1

|p′(zb)| − 1
≤ |p

′(za)− p′(zb)|+ 2

|p′(zb)| − 1
+ 1

By Condition 3 on R and |zb| > R, we have |p′(zb)| − 1 ≥ 3
4
d |zb|d−1. So,

|p′(za)− p′(zb)|+ 2

|p′(zb)| − 1
+ 1 ≤ 4

3

∣∣d(zd−1
a − zd−1

b ) + (q′(za)− q′(zb))
∣∣+ 2

d |zb|d−1
+ 1

≤ 4

3

∣∣∣∣(zazb
)d−1

− 1

∣∣∣∣+
4

3

Mq′ + 2

d |zb|
+ 1

≤ 4

3
((
√
ε+ 1)d−1 − 1) +

8

3

Mq′ + 2

d
∣∣sdi∣∣ + 1

≤ C∣∣sdi∣∣max{ 1
2
c2,1} + 1,

where C is a constant independent of za, zb, i, n. Considering the same argument for

the reciprocal, we know that
∣∣∣∣∣∣ |p′(za)|+1
|p′(zb)|−1

∣∣∣− 1
∣∣∣ is o(

∣∣∣sdi∣∣∣−max{ 1
2
c2,1}

). Since
∑∞

i=1
1

(sdi )
max{ 1

2 c2,1}
converges, we have the convergence of Infinite Product 6.4 to a finite number by The-

orem IV.2. From the setting, we know that this finite number ≥ 1.

This completes the proof of Lemma VI.21.

The proof of Proposition VI.19. So far, in Lemmas VI.20 and VI.21, we have proved

that
sup

θ∈Θ
n,i
s
|(Ψn,is )′2(θ)|

inf
θ∈Θ

n,i
s
|(Ψn,is )′2(θ)| is uniformly bounded for 0 ≤ i ≤ n.

By Lemma VI.15,

supθ∈Θn,is
‖(Ψn,i

s )′(θ)‖
infθ∈Θn,is

∥∥(Ψn,i
s )′(θ)

∥∥ ≤ 9
supθ∈Θn,is

|(Ψn,i
s )1|

infθ∈Θn,is

∣∣(Ψn,i
s )1

∣∣ · supθ∈Θn,is
|(Ψn,i

s )′2(θ)|
infθ∈Θn,is

∣∣(Ψn,i
s )′2(θ)

∣∣
Finally, Inequality 6.1 implies the desired boundedness.



CHAPTER VII

Short C2

Due to the Riemann Mapping Theorem, we know that there is no proper bi-

holomoprhic image of C in C. However, this is no longer true in higher dimension.

Fatou and Bieberbach found such example in [11] and [13]. One of the methods to

construct such a domain is using complex dynamics; for example, Fatou-Bieberbach

domains can be obtained as basins of attraction for Hénon mappings. In these cases,

the boundary behavior can be very nasty. In [3], Beford and Smillie proved that the

boundary is not a topological manifold anywhere if a Hénon mapping has at least

three attracting fixed points. However, if we are not using Hénon mappings, then

we can obtain much better boundary regularity. in [30], Stensønes used a sequence

of shear maps to construct a Fatou-Bieberbach domain with smooth boundary. A

natural question to ask is the existence of a Fatou-Bieberbach domain with real an-

alytic boundary. Also, in Stensønes’s example, the boundary is foliated by Riemann

surfaces. What kind of Riemann surface would they be?

In Stensønes’s construction and the construction using a basin of attraction for

Hénon mappings, the resulting Fatou-Bieberbach domains are unions of holomorphic

balls and their Kobayashi pseudometric is identically 0. It was an interesting ques-
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tion what an increasing union of holomorphic balls with Kobayashi metric identically

0 would be. In [15], it turned out that it may not be biholomorphic to Ck. Such

domains are called short Ck.

It is interesting to think of the same boundary regularity questions for short Ck’s

as for Fatou-Bieberbach domains. We consider the boundary behavior of short C2

domains. Can they have real analytic boundary? Can they be foliated by complex

curves? If so, what kind of Riemann surfaces can the leaves be? Indeed, according

to Theorem 1.12 in [15], the set Kc = {g < c} for c > 0 is a short C2. Since g is

pluri-harmonic in U+, the boundary ∂Kc = Cc is real analytic. Moreover, due to

our main result, we know that the boundary is foliated by injective Brody curves.

Summarizing the results, we have proved that

Corollary VII.1. Kc with c > 0 is a short C2 with real analytic boundary. The

boundary is foliated by injective Brody curves.



CHAPTER VIII

Conclusion and Further Directions

Recall the definitions and notations for our Hénon mapping f , the Green function

g associated to f , and the level set Cc = {g = c}. In previous chapters, we first

studied the shape of the level set Cc for c > 0 of the Green function g in P2, looking

at its behavior at the line at ∞. We recalled that the closure of Cc in P2 is Cc ∪ I+,

where I+ is the set of indeterminancy when f is projectivised. Then, we showed that

there is no holomorphic curve in P2 which passes through I+ at the line at ∞ and

which is supported in Cc. Roughly speaking, in some sense, it implies that near I+,

Cc is so narrow that Cc in P2 cannot contain any holomorphic curves of the form

zα = wβ for α, β ∈ Z with respect to the local affine coordinate chart centered at I+.

Next, we reviewed the foliation structure of the level set Cc in C2 for c > 0 of the

Green function g; it known that Cc is foliated by Riemann surfaces biholomorphic

to C and each leaf is dense in the level set. Then, our second theorem answers the

question what kind of Riemann surface the leaves would be: injective Brody curves.

The meaning of our theorem can be understood as follows. In the sense that the leaf

is not algebraic and is dense in the level set, one might expect that the shape of the

curve is very complicated. Actually, however, it is not too complicated in the follow-
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ing respect. Whenever we biholomorphically parametrize an injective Brody curve, it

has a uniformly bounded speed of expansion with respect to the Fubini-Study metric.

For better understanding, one may consider a holomorphic curve parametrized by

the unit disc in C and its natural metric, the Kobayashi metric. Then, due to the dis-

tance decreasing property, we see that every such curve parametrized by the unit disc

in C shows tame behavior with respect to the Kobayashi metric. On the contrary, we

do not have such metric with the distance decreasing property for Riemann surfaces

biholomorphic to C. In this aspect, injective Brody curves can be understood as Rie-

mann surfaces biholomorphic to C with tame behavior with respect to a given metric.

Also, as a consequence of our theorem, we found an example of the short C2 domains

with real analytic boundary and with its boundary foliated by injective Brody curves.

For further study, we look at the intuition behind the computation. Recall our

filtration and note that in this paragraph, when we are talking about the Fubini-

Study metric at a point, we consider a local holomorphic curve through that point

and its parametrization and mean the Fubini-Study metric of the derivative of the

parametrization at that point. The essential parts in the computation are the fol-

lowing three: the vertical shape of each leaf of Cc in V + for sufficiently large c (see

Statement 3 in Chapter VI), the property that when f moves a point from V + to

V −, the increase of the Fubini-Study metric at that point by f is not too much

(see Statement 2 in Chapter VI), and the property that the Fubini-Study metric

increases by a very small amount or sometimes even decreases in V − under f (see

Statement 1 in Chapter VI). These three properties contribute to generating a fixed

point for a family of parametrizations, keeping the normal family property. Note

that f decreases the Fubini-Study metric near I+. The reason why we can use the
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above three properties to reparametrize a given family of holomorphic curves so that

the modified family shares a fixed point seems to be that we do not have recurrence

in U+; once a point has escaped V +, then, after a finite time, the point reaches V −,

escapes to I+, and never comes back to W nor V +.

As a further direction, we can ask the same question about Brody foliation or injec-

tive Brody foliation in another situation. It is known that the boundary J+ = ∂K+

of non-escaping points also has foliation structure and its leaf is biholomorphic to C.

In [3], [2], and [16], they approached it in two different ways; in [3] and [2], Bedford,

Lyubich, and Smillie approached using hyperbolicity and in [16], Fornæss and Sibony

considered a certain type of Hénon mapping of the form (z, w)→ (z2 + c−a2w, z) as

a perturbation of a logistic map (z, w)→ (z2+c, 0). The set J = ∂K+∩∂K− ⊆ J+ is

invariant under f and f−1, and therefore, we have recurrence. So, it is an interesting

question whether such foliation in J+ is also Brody folation or even injective Brody

foliation. Namely, it is a question whether recurrence affects the foliation structure.

Concerning Brody foliation, we know that there is a Brody curve in J+ and that

it intersects with J . Indeed, by the Stable Manifold theorem, we know that there

exists a biholomorphic image of C in J+. Due to the non-Kobayashi hyperbolic-

ity, one can find a sequence of holomorphic curves parametrized by the unit disc in

C and a sequence of its parametrizations, the sequence of whose derivative is not

bounded with respect to the Fubini-Study metric. Apply the Brody reparametriza-

tion lemma. Then, a limit curve exists in the closure of the stable manifold which

is J+ ∪ I+. Due to Theorem III.4, it should stay inside the J+. Now, we prove

that the limit curve should intersect J . Since the limit curve does not lie in a level
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set of g−, where g− is the Green function associated to f−1, the limit curve always

intersect the set K−. Indeed, let ϕ : C → J+ be the parametrization of the limit

curve, not necessarily injective. Then, g− ◦ ϕ is a non-constant harmonic function.

Then, it is a non-constant linear function, and therefore, g− ◦ ϕ should have zero.

This is a contradiction. In this perspective, recurrence may not be an obstacle to

the existence of a Brody curve. However, at the moment, we still do not have any

information about injectivity, its location, or whether it is the entire stable manifold.

Recurrence seems to be an obstacle to getting the information about the location of

a Brody curve.

As another further step, one can think of Fatou-Bieberbach domains. Since it is

biholomorphic to C2, it contains a copy of C. Then, we can ask the question whether

such a Riemann surface is also Brody or even injective Brody.
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