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CHAPTER I 

 

 

INTRODUCTION 
  

 

 

Preterm Birth 

 In 2004, 12.5 percent of births in the United States were preterm, that is, born 

with less than 37 weeks of gestation (IOM 2007). Preterm birth and its effects 

constitute a major health problem in the United States as well as in other parts of the 

world, especially developing countries. It is known as one of the main contributors to 

the rising rates on infant mortality in the United States, as well as in developing 

countries (Ngoc, Merialdi et al. 2006). It has been estimated that the economical 

burden on society reaches $26 billion per year, which translates to about $51,600 per 

infant (IOM 2007). 

Preterm birth is caused by many factors which may include individual level 

behavioral and psychosocial factors, neighborhood characteristics, environmental 

exposures, medical conditions, infertility treatment, biological factors, and genetics 

(IOM 2007).  

Preterm birth can impact both children and adults. The United Nations 

Millennium Developmental Goals (UN-MDGs) include the mission to reduce by two 

thirds, between 1990 and 2015, the under-five mortality rate (UN 2010). Not only does 
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this rate measure infant mortality due to preterm birth, but it indicates the level of 

child health and developmental resources of a country.  

Infants born preterm have a higher risk of mortality and health complications 

compared to infants born at term. In addition, perinatal outcomes are important 

markers of future child and adult health. It is also important to recognize the impact 

that a preterm baby has on families that must deal with the emotional and economical 

distress.  

Air Pollution and Preterm Birth 

 Air pollution has a variety of natural and anthropological sources which 

include industrial emissions, motor vehicles, wood burning, and fugitive dust. Criteria 

air pollutants are some of the most common pollutants regulated by regulatory 

agencies using environmental and human health-based criteria. They include particle 

pollution, also called particulate matter (PM), carbon monoxide (CO), ground-level 

ozone (O3), sulfur dioxide (SO2), nitrogen dioxide (NO2), and lead (Pb). As the use of 

lead has been phased out of many countries, including the study location proposed in 

this research, discussion and analysis will be primarily devoted to the “major” criteria 

pollutants, but I will briefly discuss the effects that lead and its cumulative exposure 

has on preterm birth since aim 3 addresses this theme. 

 Air pollution has an enormous variety of effects on the health of individuals 

(Curtis, Rea et al. 2006). The following paragraphs will discuss the influence that has 

been found through epidemiological studies about air pollutants and their health 

effects related to perinatal health (i.e. preterm birth). For the ease of understanding the 
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effects of individual pollutants, research results will be discussed under each air 

pollutant type. 

Particulate Matter (PM) 

 Particulate matter comprises the most visible and obvious form of air pollution 

which could be liquid or solid. Particulate matter may be organic or inorganic and is 

commonly suspended in the air near sites of pollutant emissions such as industries, 

highways, or power plants. The different sources of particulate matter would differ in 

the size of particles that they form, something very relevant to health. 

 Toxic effects produced by particulate matter depend on their size, measured by 

aero-dynamic diameter, with particles less than 10µm (PM10) or 2.5 µm (PM 2.5) in 

aerodynamic diameter being categorized hazardous since they can easily be inhaled 

and reach the alveoli where gas-exchange processes occur. Different studies have 

examined the comparability of exposure measurement method and the characterization 

of particulate matter (Cicero-Fernandez, Torres et al. 2001; O'Neill, Loomis et al. 

2004; Pearce, Rathbun et al. 2009). Other researchers have studied the relationship that 

particulate matter (PM10, PM 2.5, or Total Suspended Particles (TSP)) has to mortality 

and morbidity associated with cardiovascular and respiratory health outcomes (Pope, 

Burnett et al. 2002; Künzli, Jerrett et al. 2005; Huynh, Woodruff et al. 2006). By 

contrast, relatively few studies have evaluated the relationship that particulate matter 

has with perinatal outcomes. Huynh et al. (2006) found PM2.5 exposure to be 

associated with a small effect on preterm birth after adjusting for maternal age, 

maternal race/ethnicity, maternal education, marital status and parity. First trimester 

exposures, as well as the last two weeks of pregnancy, are important critical windows 
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of exposure found in this study. There was no association between TSP exposure and 

low birth weight and prematurity. Another study found an association during the last 6 

weeks before birth with exposure to PM10 (Sagiv, Mendola et al. 2005). 

Other studies have reviewed the existing literature on particulate matter and 

preterm birth and have concluded the need for further research that would incorporate 

better exposure estimates based on plausible biological mechanisms, toxicological 

assessment, and identify vulnerable windows of susceptibility (Glinianaia, Rankin et 

al. 2004; Maisonet, Correa et al. 2004; Sram, Binkova et al. 2005; Slama, Darrow et 

al. 2008) 

Ozone (O3) 

 An important molecule that plays a vital role in the stratosphere by filtering 

and blocking harmful ultraviolet light, ozone has, in contrast, an adverse effect when 

exposure occurs at the tropospheric level. Ozone is a highly reactive gas and is a 

component of photochemical smog. Ozone is formed from nitrogen oxides (NOx), 

reactive hydrocarbons and sunlight. Thus, warmer and sunnier seasons will tend to 

produce higher levels of this contaminant. Exposure to high concentrations of this air 

pollutant results in severe irritation and headaches. It irritates the eyes, upper 

respiratory system, and lungs. Once this reacts with the human body, the synthesis and 

production of free radicals or reactive oxygen species occurs. These species can cause 

lipid peroxidation, oxidation of sulfhydryl groups (-SH), and relevant oxidative 

damage (Manahan 2005). 

 Studies that have looked at the relationship between ground-level ozone 

exposure and preterm birth have been largely inconclusive, but recent published data 
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have shown that there is a small association between exposure to ozone and preterm 

birth (Salam, Millstein et al. 2005; Davis, O'Neill et al. 2008). The inconclusive 

findings may in part be due to the high spatial variability that ozone exhibits in 

outdoor air, resulting in a greater degree of exposure measurement error and bias 

toward the null in epidemiologic analyses. 

Carbon Monoxide (CO) 

 A common cause of accidental poisoning, CO has other effects especially in 

the respiratory and cardiovascular systems. Exposure to CO will cause the gas to enter 

the blood through the alveoli. There it will react with the hemoglobin transporter and 

converts to oxyhemoglobin (O2Hb) to carboxyhemoglobin (COHb). COHb prevents 

oxygen from being carried out to body tissues where it is needed for aerobic cellular 

processes.  

 In one study, CO exposure, at any time during pregnancy, was not related to 

preterm delivery (Huynh, Woodruff et al. 2006). In another study, preterm birth was 

associated with exposure to CO during the last month of pregnancy (odds ratio (OR) 

of 1.08, 95% CI, (1.01-1.15)), for a 1.0 ppm increase in concentration (Liu, Krewski et 

al. 2003).   

.Sulfur Dioxide (SO2) and Nitrogen Dioxide (NO2) 

 Sulfur dioxide is produced by the burning of coal, vehicle and refinery 

emissions, and oil refineries. It is an irritant of the eyes, skin, mucous membranes, and 

respiratory tract. It is also a major precursor to acid rain, as the SO2 when mixed with 

water forms sulfurous acids, hydrogen sulfite ions, and sulfite ion. A study conducted 

in the Czech Republic reported that low birth weight and prematurity were associated 
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with SO2 exposure (Bobak 2000). Liu et al. (2003) found an association between 

preterm birth and exposure to SO2 (OR- 1.11, 95% CI (1.01-1.22) for a 5ppb increase) 

during the last month of pregnancy. Time series analysis performed by Liu et al. 

(2005) showed an association of preterm birth onset with exposure to SO2 during 6 

weeks before birth.  

 On the other hand, nitrogen dioxide is produced largely by industrial/vehicle 

combustion. It can also be formed in the atmosphere through photochemical processes 

that would cleave and produce different species of nitrogen oxides (NOx). A Korean 

study that used spatial and temporal modeling for estimating exposure and a birth 

cohort consisting of 52,113 singleton births found an association between exposure to 

NO2 during the first trimester and preterm birth (OR- 1.24) (Leem, Kaplan et al. 

2006). 

Lead and Preterm Birth 

 Researchers have concluded that the available epidemiologic data to date 

supports an adverse relationship between lead exposure and preterm birth (IOM 2007). 

Most developed countries and some developing countries have reduced the 

environmental sources of lead exposure of their populations. In Mexico City this 

process began when government started to phase out lead in gasoline in 1991, prior to 

recruitment of the cohorts evaluated in this study.  

 Research has shown that internal stores of lead could potentially be important 

biomarkers of cumulative exposure to lead, as well as serve as an important predictor 

of perinatal outcomes (Gonzalez-Cossio, Peterson et al. 1997; Gomaa, Hu et al. 2002; 

Hu, Shih et al. 2007). Several studies  have concluded that an adverse association 
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existed between high lead exposure and prematurity (Andrews, Savitz et al. 1994; 

Ettinger, Lamadrid-Figueroa et al. 2008; Cantonwine, Hu et al. 2010), Several studies 

have estimated the acute exposure of lead by measures in whole blood (plasma or 

whole blood, cord blood) (Torres-Sanchez, Berkowitz et al. 1999; Lamadrid-Figueroa, 

Tellez-Rojo et al. 2007).  Researchers have estimated a greater (threefold) risk for 

preterm birth (1.2-7.4 95%CI) for women with blood lead levels greater than 10µg/dL 

(Andrews, Savitz et al. 1994). 

 Chuang et al. (2001) have demonstrated that maternal blood lead is correlated 

to umbilical cord blood lead, thus serving as a valid predictor of fetal exposure. More 

recently, plasma lead has been shown to be a better measure of the amount of lead that 

is biologically available. Blood lead is a measure of the amount of lead in blood and 

plasma. Nonetheless, plasma lead accounts for about 3% of the total blood lead 

concentration and is thought of as the portion that is able to reach and cross the 

placenta causing harm to the fetus (Figure 1).  
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Figure I-1. Lead Exposure Biomarkers: Exogenous vs. Endogenous. (Chuang et al., 2001). 

Air Pollution Exposure Assessment 

 Much of the research pertaining to air pollution and perinatal outcomes is 

based on data sets that have been formed by combining data from birth registries and 

air pollution data obtained from outdoor air quality monitors. Because of the spatial 

variability of pollution within a geographic region that may not be captured when 

measured data from monitors is averaged, there has been a growing interest in creating 

spatial and temporal models that go beyond that averaging approach to predict 

exposure estimates for people without having to obtain personal exposure monitoring 

data.  

 Development of models to assess intraurban air pollution exposures is 

especially useful for assessing impact to health. Several ways to characterize air 

pollution exposures exist (Jerrett, Arain et al. 2004). In some cases, area-level average 

air pollution (e.g. city wide average) may be sufficient to represent individual 
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exposures. Other methods require modeling at a higher resolution due to the high 

spatial and temporal variability that certain air pollutants may show.  

 In many cases exposures are expected to decline with distance from source due 

to mixing and dilution effects. Distance can then be used as a proxy of exposure in 

order to examine differences between exposed and unexposed groups where no other 

sources of direct measures of exposure are available. This represents the most basic 

approach in differentiating air pollution exposures. Janssen et al. (2001) found a 

significant positive association between pollution concentration and decreasing 

distances of schools from major automotive routes. In another study, exposure was 

estimated using a traffic inventory which determined the amount of cars passing by per 

hour, matched to residence location (Wyler, Braun-Fahrländer et al. 2000). 

Gradually, geographical information systems (GIS) have gained a wide 

acceptance in the field of epidemiology and public health. GIS are useful tools for 

visualizing and exploring health outcomes and their relationship to geo-coded data, as 

well as for enhancing exposure assessments and modeling of disease clusters. Air 

pollution exposure has been modeled through the use of interpolation models, 

including kriging derived from geographical information systems (GIS) (Briggs, 

Collins et al. 1997; Leem, Kaplan et al. 2006; Kim, Sheppard et al. 2009). 

The study of geo-statistics deals with different techniques that help us 

understand and model spatial variability through prediction and simulation. It has as a 

primary goal to estimate the spatial relationships between sample values. This estimate 

is then used to predict unobserved values and provide an estimate of the variance of 

the predicted error.  
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Kriging is an interpolation technique used for predicting values at unsampled 

locations based on concentrations sampled spatially. It has been used for estimating air 

pollutant concentrations in ambient air and for mapping gradients in urban air quality 

(Briggs, Collins et al. 1997; Leem, Kaplan et al. 2006; Liao, Peuquet et al. 2006; Shad, 

Mesgari et al. 2009). 

One assumption is that kriging will improve the accuracy and robustness of the 

air pollution exposure estimates since it involves smoothing (interpolating) between 

monitors and is a more refined approach than simply assigning the exposure from the 

nearest monitor or assigning a citywide average. However, whether estimates of the 

effect of air pollution exposure on preterm birth differ substantially using kriging 

versus alternative exposure assessment approaches is of interest for interpreting and 

comparing studies, since not all published research has had available information on 

the mother’s residential location. 

Potential Mechanisms for Air Pollution’s Association with Preterm Birth 

Although the causes of preterm birth are multiple, there are just a few routes 

hypothesized to lead to preterm birth (Figure I-2). Important common pathways 

include stress, systemic or maternal genital tract infections, placental ischemia or 

vascular lesions, and uterine overdistension. These factors are not completely 

understood, but it is known they produce uterine contractions and lead to birth. 

Several hypotheses about the mechanism that triggers the development of 

preterm deliveries have been offered. Gravett et al. (1994) have shown evidence to 

suggest that infection provokes preterm births in monkeys whose amniotic fluid was 

injected into the amniotic fluid with group B streptococci. Infection prior to delivery 
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can trigger intrauterine inflammation which helps stimulate preterm labor. Moreover, 

other groups of researchers have speculated other pathways that involve: the 

periodontal status of the mother, which may trigger inflammatory mediators in the 

intrauterine environment; smoking status, which may influence the inflammatory 

pathway; and inflammation, which can lead to placental function deterioration and 

ultimately to preterm delivery (Petruzzelli, Celi et al. 1998; Klesges, Johnson et al. 

2001; Mcgaw 2002). 

 

Figure I-2. Biological Pathways for Preterm Birth. (IOM, 2007. p.178). 

 

Dissertation Overview 
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 This dissertation is composed of five chapters: the introduction (this chapter), 

three main chapters, and chapter five that summarizes the conclusion from the findings 

of the three main chapters. The overall aim of the dissertation is to develop and 

compare air pollution exposure metrics, and then link these metrics to geo-referenced 

women from the ELEMENT (Early Life Exposure in Mexico to Environmental 

Toxicants) mother-infant cohort in Mexico City for the purpose of evaluating 

environmental contributions to preterm birth risk. Overall, findings from this 

dissertation will be pertinent to air pollution exposure assessment methods that could 

be used to estimate individual exposure in an ongoing Mexican birth cohort titled: Air 

Pollution and Preterm Birth in Mexico City: A Mechanistic Study in Mexico City. 

Recent interest in, and the rise of prematurity rates has sparked new scientific 

research that aims to recognize possible risk factors. This research has helped to 

reiterate to governmental entities and the scientific community the importance of 

identifying and learning more about how environmental toxicants may influence 

preterm birth. Because of this interest, the Institute of Medicine (IOM) convened a 

committee, the Committee on Understanding Premature Birth and Assuring Healthy 

Outcomes, to assess the current state of the science on the causes and consequences of 

preterm birth. Similarly, researchers from around the world convened at a workshop in 

Mexico City (September, 2007) to identify differences in methodologies used among 

previous epidemiological studies of air pollution and perinatal outcomes. Four priority 

areas of interest for further research were agreed upon: (1) confounding and effect 

modification, (2) spatial and temporal exposure variations, (3) vulnerable windows of 

exposure and (4) multi-pollutant exposures (Woodruff, Parker et al. 2009).  
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The proposed dissertation will deal in part with some areas of interest found 

from these workshops, and thus will help to improve the state of knowledge on the 

subject of exposure assessment methods used in environmental epidemiology, preterm 

birth and air pollution’s influence, and possible interaction with biomarkers of lead 

exposure that may modify any associations discovered in susceptible populations such 

as pregnant women. 

In Chapter 2, four air pollution exposure assessment methods (spatial 

averaging, nearest monitor, inverse distance weighting, and ordinary kriging) to 

estimate daily air pollution concentrations are developed and compared for the 

pollutants PM10, PM2.5, O3, CO, NO2, and SO2 concentrations on an hourly basis. 

From this database, the four methods were constructed and evaluated for their 

performance in air pollution estimation.  

Using exposure assessment methods to estimate daily air pollution 

concentrations developed in Chapter 2, we will construct PM10 and O3 individual 

metrics for different windows in pregnancy (first, second, and third trimester averages, 

and entire pregnancy period). Chapter 3 assesses the differences between air pollution 

exposure assessment methods and how estimated metrics influence preterm risk effect 

estimates in Mexican women recruited in different hospital of Mexico City from 1994 

to 2004. This analysis benefits from existing socio-demographics data and covariates 

of interest that could confound the association between air pollution and preterm birth. 

Recent workshops, as well as inconsistent and inconclusive findings relating air 

pollution and preterm birth motivate this study. With especially high levels of air 
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pollution, Mexico City is a particularly useful site for this study  to add to the already 

existing scientific literature. 

Using the methods and analysis performed in Chapter 3, we will examine in 

Chapter 4 the effect-measure modification that chronic lead exposure (measured in 

bone:  tibia and patella) has on the association of air pollution with preterm birth. The 

advantage of having measured environmental exposures and biomarkers (air pollution 

and lead) in the Mexican birth cohort facilitates asking questions that are hard to 

investigate in other settings. This is the only study, to our knowledge, that seeks to 

determine if effect-measure modification is present when pregnant women with high 

and low bone lead exposure are exposed to air pollutants during relevant windows of 

exposure in pregnancy.  

Lastly, Chapter 5 will serve as a summary of the major findings in the main 

chapters of this dissertation. Also, it will serve as a place to discuss future directions 

and ideas that will help improve future studies pertaining to air pollution and 

reproductive outcomes. 
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CHAPTER II 

 

 

 

AIR POLLUTANT EXPOSURE METRICS FOR PERINATAL 

EPIDEMIOLOGY IN MEXICO CITY, MEXICO 

 

 

INTRODUCTION 

 

 High levels of air contaminants are encountered in major urban areas of 

developing countries where a large population of individuals is exposed, thus making 

air pollution a major public health issue. A growing number of urban residents in 

developing countries are living in areas with levels of air pollution that exceed the 

World Health Organization (WHO) air quality guidelines (Cohen, Ross Anderson et 

al. 2005). 

Previous studies on air pollution health risks have found associations between 

air pollution and mortality/morbidity (Borja-Aburto, Loomis et al. 1997; Brunekreef 

and Holgate 2002), cardiovascular disease (Künzli, Jerrett et al. 2005; Park, O'Neill et 

al. 2008), and adverse pregnancy outcomes (e.g. low birth weight, preterm birth, 

intrauterine growth retardation, and fetal health) (Glinianaia, Rankin et al. 2004; Sram, 

Binkova et al. 2005; IOM 2007; Slama, Darrow et al. 2008; Woodruff, Parker et al. 

2009). Many of these studies have examined commonly monitored air pollutants: 

(ozone (O3), particulate matter less than 10 and 2.5 micrometer in aerodynamic 
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diameter (PM10 and PM2.5), carbon monoxide (CO), nitrogen dioxide (NO2), and sulfur 

dioxide (SO2)). 

Several publications on outdoor air pollution and perinatal outcomes have 

relied on birth registry datasets to assess birth outcomes and air pollution data obtained 

from government-run air quality monitors to create estimates of personal exposure to 

these contaminants (Sagiv, Mendola et al. 2005; Bell, Ebisu et al. 2007; Chang, Reich 

et al. 2012). For the ultimate goal of estimating daily air pollution exposure at the 

individual level, several exposure assessment methods have been developed (Jerrett, 

Arain et al. 2004). Some studies have had the ability to use exposure assessment 

methods that account for the mother’s residential location (Nethery, Leckie et al. 

2008), proximity to traffic or other sources of emission (Wilhelm and Ritz 2003; 

Yorifuji, Naruse et al. 2011), land-use regression models (Slama, Morgenstern et al. 

2007; Brauer, Lencar et al. 2008), and even personal monitoring of mother's during 

pregnancy (Jedrychowski, Galas et al. 2005; Perera, Tang et al. 2005; Perera, Li et al. 

2009) to assess individual air pollution exposure. Other models have also been 

explored to reduce exposure measurement error, due to the high spatial and temporal 

variability that certain air pollutants may show (Zou, Wilson et al. 2009). 

In some cases, area-level or spatial averaging of air pollution (e.g. city-wide 

averaging) may be sufficient to represent individual exposures, especially for more 

spatially homogeneous pollutants and depending on the nature of the exposure (acute 

versus chronic) and/or health outcome under study. Previous studies have used spatial 

averaging to determine personal exposure to outdoor pollution (Brunekreef and 

Holgate 2002). 
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In many cases exposures are expected to decline with distance from a pollution 

source, such as a roadways or industrial facilities, due to mixing and dilution effects. 

Nearest monitor, inverse distance weighting, and ordinary kriging are methods that use 

distance to estimate exposure to outdoor air pollution in urban settings. If the location 

where the study participants lives or spends time is known, proximity to air pollution 

monitors, pollution sources, or features of land cover (e.g., buildings and vegetation) 

expected to reduce pollution concentrations can be used to enhance personal exposure 

models. Examples from epidemiologic studies that incorporated distance into their air 

pollution exposure metrics include: distance from schools from major automotive 

routes (Janssen, van Vliet et al. 2001), distance of mother's residence from highways 

(Brauer, Lencar et al. 2008), and number of vehicles passing by per hour matched to 

residential location (Wyler, Braun-Fahrländer et al. 2000). 

Other approaches for estimating exposure to air pollutants interpolate between 

points of known concentrations to create a continuous spatial surface, so that any 

given geographic location can be assigned a unique concentration. Kriging is an 

interpolation technique used for estimating values at unsampled locations based on 

concentrations sampled spatially (e.g. a network of monitors sited around an urban 

area) (Jerrett, Burnett et al. 2005). More specifically, kriging models the spatial 

dependence, or spatial autocorrelation, of the values measured at sampled locations to 

construct the prediction for the unsampled locations. It has been used for estimating air 

pollutant concentrations in ambient air; assigning exposures when participant locations 

are unknown, and for mapping gradients in urban air quality (Lefohn, Knudsen et al. 

1988; Briggs, Collins et al. 1997; Jerrett, Burnett et al. 2005; Leem, Kaplan et al. 
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2006; Liao, Peuquet et al. 2006; Iñiguez, Ballester et al. 2009; Shad, Mesgari et al. 

2009).  

One advantage of kriging is that it also allows calculation of uncertainty in the 

estimated values. However, kriging works best when a dense network of outdoor air 

monitors is available to capture spatial variability. Less dense networks will produce 

estimates with higher levels of uncertainty.  

In epidemiological studies, it is essential to quantify the potential bias caused 

by air pollution exposure misclassification (Marshall, Nethery et al. 2008; Gryparis, 

Paciorek et al. 2009; Woodruff, Parker et al. 2009). No published studies to date have 

implemented interpolation methods to estimate individual exposure to air pollutants in 

Mexico City. This method has the potential to reduce bias resulting from exposure 

misclassification, especially in a population with the high levels of exposure to air 

contaminants that exist in Mexico City. This paper uses 2008 daily air pollution data 

from metropolitan Mexico City to construct and compare different methods for 

exposure assessment for application in future perinatal epidemiology studies where 

mothers' residential location is known. The metrics to be compared include citywide 

average (CWA), nearest monitor (NM), inverse distance weighting (IDW), and 

ordinary kriging (OK). The differences among these metrics will be evaluated in a 

simulated population from various regions of metropolitan Mexico City. Exposure 

metrics produced from these methods will be used to assess the relationship that air 

pollution has with preterm birth in a mother-infant pair cohort recruited from (1994-

2005) in three hospitals and also for a future ongoing birth cohort in Mexico City. 
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METHODS: 

 

Study Location 

 

Mexico City's metropolitan area has an estimated population of 19 million 

(Brinkhoff 2006) and is located in a valley surrounded by mountain ranges that reach 

elevations of 2,240 meters above sea level. The metropolitan area is impacted by a 

diverse range of pollution sources that range from industrial refineries, to traffic 

emissions, to wind-blown dust from a dry lake basin. Traffic emissions are one of the 

principal sources of pollutants since nearly 3.5 million cars circulate in the 

metropolitan area (Secretaría del Medio Ambiente 2006). Although the metropolitan 

area often meets daily standards for six regulated 'criteria' pollutants (CO, PM10, PM2.5, 

O3, SO2, and NO2), it does not meet the annual standards (TableS-4) which regulate 

chronic exposure, with concentrations being almost double the levels for many 

pollutants. Consequently, Mexico City has notably high levels of PM10 and PM2.5, and 

O3 and standards are not met in certain geographical locations in the city (Zuk, 

Tzintzun Cervantes et al. 2007). 

Air Pollution Data 

 The air quality monitoring network in Mexico City (“Sistema de Monitoreo 

Atmosférico”), or SIMAT by its acronym in Spanish) provides data on the six criteria 

pollutants. The network consists of 36 stations that measure different pollutants 

throughout the metropolitan area. Of these 36 sites, 22 sample for ozone; 26 for SO2; 

18 for NO2; 18 for CO; 14 for PM10, and 9 for PM2.5 (Zuk, Tzintzun Cervantes et al. 

2007). The geo-referenced locations of these monitors and the pollutants they measure 

are shown in Figure II-1 and Table II-S5, respectively. 
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Data on these six air pollutants are publicly available at the SIMAT website 

(http://www.sma.df.gob.mx) maintained by the Mexico City government. We 

downloaded the data on December 9, 2009 for the whole calendar year of 2008. Prior 

to posting on the website, SIMAT staff cleaned and validated the data (Zuk, Tzintzun 

Cervantes et al. 2007; Retama-Hernandez 2011). PM10 and PM2.5 were reported in 

mass units of micrograms per cubic meter (µg/m
3
), whereas O3, CO, NO2, and SO2 

were reported in parts-per-million (ppm) in the downloaded data. O3, NO2, and SO2 

data were transformed from parts-per-million to parts-per-billion (ppb) to facilitate 

comparison of concentration levels with Mexico City air pollution standards which are 

reported in the units which we transformed. PM10, PM2.5, and CO retained the original 

units reported by SIMAT. Although data are available hourly for most of the 

pollutants, we summarized data as daily concentrations (24 hour averages) of 

particulates (PM10 and PM2.5), S02, and NO2, the daily 8 hour maximum moving 

average for CO, and the daily 8 hour maximum for ozone, from all available 

monitoring stations. These concentration averaging times were chosen to match the 

health-based regulatory standards in effect in Mexico City (Zuk, Tzintzun Cervantes et 

al. 2007). If more than 25% of the hourly values in a given day were missing, the daily 

concentration was coded as ‘missing’. Subsequently in this paper, we use short term 

'daily value' or 'pollutant concentration' to refer to these summaries.  

Simulated Population Location Data for Exposure Estimation 

Our goal is to construct and compare exposure metrics and eventually assign 

them to participants in a pregnancy cohort we are currently enrolling in Mexico City. 

To evaluate these metrics, we simulated a population of 1,000 pregnant women whose 

http://www.sma.df.gob.mx/
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residential locations are distributed across the metropolitan area. To restrict the area of 

simulated residences to a zone within which we can perform kriging, we created a 

polygon that surrounds the perimeter of the entire air monitoring network using 

ArcGIS 9.3.1 (ESRI, Redlands, CA) (Figure II-1). Then, we mapped the location of 

five monitoring stations that are sampling particulate matter for toxicological and 

compositional evaluation and comparison with the epidemiologic pregnancy cohort 

study. Thiessen polygons were then created to subdivide the exterior polygon into five 

zones surrounding these toxicological monitoring stations (Figure II-1). The ArcGIS 

Hawth's tools extension was then used to generate 200 random locations according to 

population density within each of the five polygons , omitting areas known to be 

uninhabited or where the study population is less likely to live (e.g., parks, industrial, 

non-residential areas). Population density, derived from Mexico City’s 2005 census 

data (http://www.inegi.org.mx/) was used to choose potential locations in which to 

simulate individuals. This simulation foreshadows our plans to achieve a geographic 

balance of participant residences during the pregnancy cohort recruitment throughout 

the whole air monitoring network. Because of this, we use ‘women’ as equivalent to 

the simulated locations. 

Exposure Assessment Methods 

Citywide Averaging (CWA) 

  City-wide or spatial averaging uses a simple average of a given pollutant 

across all monitors within an identified geographic region to estimate an individual’s 

exposure. Although straightforward to calculate, concentration estimates will not 

http://www.inegi.org.mx/
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reflect gradients of concentration or variability that may be present for certain air 

pollutants across a geographic location. 

Nearest Monitor (NM) 

The NM method determines the closest monitor to the study participant's 

location, and assigns the pollutant concentration at the monitoring site as the estimate 

of personal exposure. In the present study, distance was determined as the shortest 

straight line from the air quality monitor and the simulated residential location of the 

participants using ArcGIS 9.3.1 Hawth’s Tools (ESRI, Redlands, Ca). The NM 

method relied on the three closest neighboring monitors, in case the nearest monitor 

was missing data for any given day. In that scenario, the second or the third closest 

monitor would provide data for the estimate. 

Inverse Distance Weighting (IDW) 

IDW computes predicted concentrations at the individual’s location as a 

function of the inverse of the distance between the participant's location and the 

concentration at a subset of monitors (Shepard 1968). The higher the value of the 

power of the function applied to the distance (for example, 1/distance
5
 versus 

1/distance
2
) will emphasize the contribution of the nearest points to the location and 

will produce a less smooth surface of concentrations when applied to several points 

(locations) in a given area.  In contrast lower power values will give more importance 

to further points, creating a more smooth surface. The default square mathematical 

power value was selected to give more influence to surrounding points, which results 

in a smoother surface. Pollution values at the monitoring sites are averaged, with 

monitors closer to the individual’s location given greater weight in the calculation of 
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the estimate. For this study, at least five monitors closest to the residence location 

were used to calculate the IDW exposure estimates using a maximum of 12 monitors 

for each pollutant. 

Ordinary Kriging (OK) 

Several forms of kriging have been commonly used to estimate exposure to air 

pollutants (Wong, Yuan et al. 2004; Leem, Kaplan et al. 2006; Liao, Peuquet et al. 

2006; Brauer, Lencar et al. 2008). Similar to IDW, OK calculates a weighted average 

of concentrations at the monitoring stations to predict given participant’s exposure. 

However, OK employs a function of distance referred to as a variogram, which 

describes the degree of spatial dependence, to model the spatial autocorrelation and 

construct weights. A positive-definite model of the variogram is fitted to a plot of 

semivariance (a measure of deviation between pairs of sample points) and distance, 

calculated from observed data. OK assumes that the variogram model that described 

the spatial dependence is constant across the region being mapped. Weights on sample 

points are solved for each estimate location based on the variogram describing 

relationships between sampled and unsampled points, and the relationship between 

sampled points.  

The output of the OK operation is a continuous surface of estimated pollution 

concentrations within a defined geographical area, which can be mapped to grid cells. 

At any given location or grid cell, the value of the surface (i.e., a predicted 

concentration for the location) can be estimated, along with its estimation variance (or 

error). The error will be lower for points closer to the actual monitors. One of the 

advantages of OK over other interpolation methods is that the weights assigned to the 
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data are computed in a way that minimizes the variance of the standard error, whereas 

IDW uses an assignment of weights that is not informed by the sampled data. 

We expected that seasonal patterns in outdoor pollution variation in Mexico 

City, a relatively temperate climate, would fall into two categories, rainy (May through 

October) or dry season (November through April). The rainy and dry seasonal periods 

were used for calculating longer-term averages and comparing exposure metrics. 

Statistical Analysis 

Descriptive statistics for daily concentration in 2008 for each air pollutant were 

calculated, and Pearson correlation coefficients were calculated between pollutants. 

Additionally, for each pollutant, correlations were calculated daily across exposure 

assessment methods for each woman, both in the city as a whole and in five zones. 

The mean difference in exposure estimates for the 200 participants in each of the five 

Thiessen polygons or zones were also calculated to assess regional differences and 

method performance. 

In light of the participant burden of acquiring individual-level exposure in 

perinatal studies, our working hypothesis is that using estimates of air pollution 

exposure produced by kriging can reflect spatial variability and provide an improved 

proxy of individual-level exposure superior to the other three methods.  Thus, in 

subsequent comparisons we use the values and variances of the kriging estimates as 

the point of reference for comparing the performance of each method, in the absence 

of a true 'gold standard' (measured concentration at the location of the simulated 

participants' homes).  

Variogram Modeling 
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 The R package, gstat, contains a function that creates empirical and 

experimental variograms. Once the empirical variogram has been created, the 

variogram can be fitted by seeding initial parameter values for sill, model type, nugget, 

and range. Variogram models for this analysis did not include a nugget effect, so the 

parameter was not included in the model. Initial values were then seeded for each 

specific air pollutant. Sill and ranges selected were 170 and 12,000 for PM10; 0.17 and 

10,000 for O3; 0.16 and 8,000 for CO; 0.04 and 4,500 for NO2; and 0.40 and 12,000 

for SO2. The gstat package then fits the models using the optimal parameters selected 

by the weighted least square method from the seeded values. All models had a 

spherical fit. 

 

Model Evaluation 

We compare CWA, IDW, and NM methods to OK by computing the absolute 

value of the difference between each method and OK, and by comparing the variances 

of the estimated values from each method to the variance of the OK estimates. 

Furthermore, as detailed below, we use cross-validation to assess the 

performance of interpolation methods. Cross validation, commonly referred to as the 

“leave-one-out” approach, where a sampling site (in this case, one of the monitoring 

stations measuring the pollutant of interest) is removed from the dataset one site at a 

time, and the remaining data are used to predict the pollutant concentration at that 

particular site. The root mean squared error (RMSE) produced from the daily cross 

validations of different covariance models were used to compare method performance 

and precision in terms of predicting the monitored concentration. An RMSE of zero is 
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indicative of prediction of the parameter of interest (air pollution concentration) with 

great accuracy, although such values are practically impossible to achieve. 


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That is, RMSE compares the interpolation estimates in this paper
^

iz = the estimated 

pollutant concentration at location i; to iz = the air pollutant concentration at location i. 

The number of pollutant-specific monitoring sites is n, which varies depending on the 

pollutant. The gstat package in R was used in cross validation analysis for IDW and 

OK results (Pebesma 2004). 

Creating the Metrics 

Daily exposure estimates for calendar year 2008 were constructed for each 

location using the above described exposure metrics. We produced descriptive 

statistics on the resulting outdoor pollution estimates, overall, by season, and by 

region. For the OK estimates, only those residences that fall within each pollutant-

specific polygon can be assigned a concentration for a given pollutant, since outside 

these polygons, the method is essentially extrapolating and not interpolating, and 

standard errors are large. 

Air pollution exposure metrics were calculated for each individual day using 

all four exposure assessment methods and then averaged in order to calculate seasonal 

averages and construct trimester windows during pregnancy. 

The daily pollutant values at each monitoring site were converted into the 

CWA, NM, IDW, and OK metrics using ArcGIS (ESRI, Redlands, Ca.), Statistical 

Analysis System (SAS version 9.2; SAS Institute, Inc. Cary, NC) and R, Version 



30 

 

2.11.0, package 'gstat'. Because the CWA does not account for spatial variability, a 

single CWA was applied to all 1,000 women on each day. In contrast, up to 36 

different values (maximum number of monitors) of a given pollutant on a given date 

were assigned to the women according to the nearest monitor method; i.e., locations 

close to a given monitor received the same value as the monitor. A unique inverse 

distance weighted estimate for each woman was predicted depending on her residence 

location. Ordinary kriging was calculated using the gstat R package (Pebesma 2004) 

and the R 2.7.2 software (Team 2011) 

First, we assessed the data distribution by exploring histograms and quantile-

quantile plots. OK variogram parameters are affected by positive skewness in the air 

pollution data, so air pollution data were log-transformed to facilitate variogram 

parameter estimation. OK requires that variogram parameters (sill, nugget, range) be 

determined prior to obtaining the spatial surface of predicted air pollution 

concentrations. Thus, we examined three different models (Gaussian, exponential, and 

spherical), which assume different distributions of the input data and examined 

variogram parameters to determine optimal values for sequencing the process on a 

daily basis. The program then determines the best fit based on our initial input of the 

sill, range, and nugget by using ordinary least square regression of the variogram 

parameter in sequence for the whole year. These models were then tested and the root 

mean square error (RMSE) of the cross validation was used to test and compare spatial 

statistics among days in 2008.The model and variogram parameters with the closest 

RMSE to zero were used as the model that fits the variogram best. 
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RESULTS 

Table II-1 presents summary descriptive statistics for air pollutants using the 

available monitoring sites: 14 (PM10), 9 (PM2.5), 22 (O3), 18 (NO2), 17 (CO), and 26 

(SO2) during all of 2008 and within the dry and wet seasons. Overall, means and 

standard deviations for the different metrics were similar within each pollutant across 

the 2008 study period. Maximum daily averages determined by NM, IDW, and OK 

were higher when compared to the maximums computed by CWA. Maximum PM10 

concentrations were higher in the northern part of Mexico City. On the other hand,, 

PM2.5 concentrations were spatially homogenous throughout Mexico City. O3 

concentrations were higher in the southern region. All other pollutants follow a 

relative homogenous distribution across the area of study and across estimates 

produced for the overall study period. Examination of seasonal distribution of 

exposure metrics showed that days with the maximum concentrations occurred during 

the dry season for all exposure assessment methods. During the wet season, the ranges 

of estimates produced from spatially explicit  exposure assessment methods were 

higher than for the CWA metrics. Overall, the pollutants analyzed, with the exception 

of SO2 and CO, had concentration levels that surpass most air quality standards and 

guidelines established by U. S. regulatory agencies and international agencies (Table 

II-S4). 

 Table II-2 shows Pearson correlation coefficients among all air pollutants by 

exposure assessment method. In table II-3, as expected, the two most highly correlated 

methods were the IDW and OK which are both weighted averaging methods.  

Consistently, the correlations between all the pollutants was highest for CWA and 
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lowest for NM, which is what would be expected since no averaging is applied to the 

NM method, and the assumption is the person is exposed to the concentration of 

pollution measured at the single monitor nearest her residence.  The correlations for 

the interpolation methods were always lower between the NM and CWA for each of 

the pollutant pairs. 

Model evaluation 

Models were compared by examining correlation coefficients across exposure 

metrics constructed for each exposure assessment method. Table II-3 shows Pearson’s 

correlation coefficients for pairs of methods across all air pollutants. The correlation 

coefficients among exposure methods for all criteria pollutants were generally high 

(0.77 to 0.99). All pollutant estimates produced by OK, with the exception of SO2, 

were highly correlated with estimates produced by CWA. NM correlations with other 

methods were always the smallest, again because no averaging with data from other 

monitors is employed in that method compared to the three others. 

Pearson correlation coefficients were calculated between exposure assessment 

methods and each air pollutant for all five zones (Table II-4a-4f).  Zone 5 covers the 

north of Mexico City, where zone 1, 2, 3, and 4 cover the center, east, south, and west, 

respectively. Correlation coefficients were relatively high between methods for all 

pollutants, except for correlations between CWA and NM. When looking at all zones, 

except for the southern zone, CO showed high correlations between methods (r=0.77-

0.96). NO2 exhibited high correlations between methods for all zones, except for the 

correlations between CWA and NM. Correlation coefficients for O3 in the north and 

center zones showed lower correlations when compared to CWA and NM. PM10 and 
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PM2.5 had high correlations when all zones were examined, although for PM2.5 the 

southeast and west zones showed lower correlations when looking at associations 

between CWA, NM, and OK. Lastly, SO2 shows smaller correlation coefficients when 

looking at the southeast, south, west, and northwest zones than other pollutants, where 

IDW and CWA have higher correlation than CWA with NM and OK. 

We also examined the range of estimates across all pollutants and zones by 

computing the differences between the interpolated methods results (i.e., means and 

standard deviation) (Table II-5).  Using OK as the ‘gold standard’, in northern zone 

(Zone 5) of the city (high PM10), CWA and IDW underestimated PM10 on average by 

4.17 and underestimated by 1.80 µg/m
3
, respectively, and NM overestimated the 

exposure by 4.11 µg/m
3
 when compared to OK. In the south (Zone 3), CWA 

overestimated PM10 exposure by7.49 µg/m
3
, whereas NM and IDW underestimated 

the exposure by 3.09 µg/m
3
 and 7.21 µg/m

3
, respectively. IDW methodology was able 

to produce lower standard deviations of the mean difference for the north and south 

zones. The center and eastern zone (zone 1 and 2, respectively) of the Mexico City 

exhibit minimal differences in PM10 estimates for the four methods. For PM2.5, 

estimated metrics were relatively similar across methods and zones. In southern zone 

(high O3), CWA underestimated the exposure by 0.91and IDW by 3.29 ppb, whereas 

NM overestimated the exposure by 4.18 ppb. IDW estimates produced higher SD 

when looking at the mean difference between methods. All other pollutants, i.e., NO2, 

CO, and SO2, produced similar estimates when comparing among all three methods. 

Estimates produced by IDW showed higher standard deviations than other methods 

examined in this study. 
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When looking at individuals who were restricted by pollutant-specific 

polygons, standard errors were approximately equal in magnitude (Table II-6). 

Table II-7 reports ordinary kriging cross validation root means square errors 

(RMSE) for the different air pollutants. Mean RMSE values calculated were similar 

between air pollutants. This shows that OK performed about the same in estimating 

actual concentrations for all pollutant types during the study period. We conducted 

cross=validation for methods that showed spatial variation (interpolation methods) in 

the estimates produced for PM10 and O3. RMSEs for PM10 were 16.00 and 13.34 for 

NM and IDW, respectively. On the other hand, RMSEs for O3 were 14.08 and 10.08 

for NM and IDW respectively. OK RMSEs for PM10 and O3 were significantly lower 

than the ones estimated by NM and IDW.  

 Descriptive statistics for all pollutants and individuals who reside within 

pollutant-specific polygons are shown in Table II-8. Mean concentrations were 

relatively smaller than mean concentrations produced for all 1,000 individuals across 

Mexico City. When examining the range of concentrations produced for all methods 

and pollutants, maximum concentrations estimated by OK were lower, except for NO2 

and CO. PM10 and PM2.5 show significantly lower predicted concentrations, when 

compared to NM and IDW. This could be because the restriction to women within the 

polygons tends to disproportionately retain women living in lower pollution areas. 

DISCUSSION AND CONCLUSION 

Air pollution exposure assessments in epidemiological studies frequently rely 

on simple spatial averaging methods for the determination of possible individual 

exposure to airborne contaminants. GIS and geostatistical interpolation methods have 
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been used to predict exposures at unsampled locations (Liao, Peuquet et al. 2006; 

Brauer, Lencar et al. 2008; Son, Bell et al. 2010). The main aim of this study was to 

develop exposure assessment methods (CWA, NM, IDW, and OK) to estimate daily 

individual exposure for 1,000 simulated individuals in Mexico City during 2008 and 

evaluate differences in metrics produced and accuracy of prediction by descriptive 

statistics, correlations, and cross validation statistics. This aim was fulfilled by 

examining the range and correlations of concentrations produced by the different 

methods examined in this study. This wide range of exposure metrics ensures that for 

the simulated 1,000 individuals and future studies in Mexico City a gradient of 

temporal and spatial variation of air pollution exposures is allocated in the study 

design when recruiting participants. The power of an environmental epidemiology 

study to detect associations depends in part on having  an adequate gradient of 

exposure in the population of interest (Navidi, Thomas et al. 1999). 

The four exposure assessment methods yielded similar, but not identical, 

results for the air pollutants examined. The ranges of exposure metrics produced by 

the methods that incorporated geo-referenced location data of individuals were 

significantly higher in comparison to estimates produced by the CWA approach. A 

cohort study which produced exposure metrics for a Korean population utilized similar 

exposure assessment methods to our study and found that the exposure assessment 

produced similar estimates for different air pollutants and that the ranges of 

concentrations from methods which included geographical location were higher than 

those which were made by spatial averaging (Son, Bell et al. 2010). This shows the 

importance of spatial heterogeneity of the studied contaminants. In addition, 
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researchers have found that interpolation methods produce similar estimates to 

averaging methods when the monitor density was low, whereas in other places where 

monitor density is high the differences are much higher (Wong, Yuan et al. 2004). 

High correlation coefficients between OK and IDW suggest that these two 

interpolation methods were similarly able to predict spatial gradients in concentrations 

of air pollutants. 

The NM and IDW methods are much simpler in their calculation than OK.  Air 

pollution exposure estimation by OK offers its challenges. One of the challenges 

involves dealing with empirical and experimental variogram estimation. We found that 

in order to automate and optimize the daily estimation of variogram parameters (range, 

sill, and nugget), skewed air pollution data needed to be log-transformed (Liao, 

Peuquet et al. 2006). Also, to select the best-fitting model, based on cross validation 

exercises, variogram parameters needed to be determined by exploring their RMSE 

values under different covariance models (spherical, exponential, and Gaussian). For 

all air pollutants, the spherical covariance model showed the lowest RMSE. This 

finding is supported by other research which  experimented with model fit and settled 

on the spherical model (Son, Bell et al. 2010). Universal kriging, which accounts for 

spatial trends, was determined to produce cross validation results with higher RMSE 

than the OK method. Thus, we determined that ordinary kriging, which assumes a 

constant mean, would be a more conservative method. 

The development of different exposure assessment methodologies that use all 

available air pollution monitoring sites for estimating concentrations for georeferenced 

data from 1,000 simulated individuals in Mexico City’s metropolitan area are major 
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strengths of this study. Considering that Mexico City is a megacity, geocoding 

positional errors, which are more likely in rural settings, are of little concern in the 

population of study or in future geo-referenced data from the city (Ward, Nuckols et 

al. 2005). 

As far as we know this is the first study to examine differences in air pollution 

exposure metrics produced by commonly used exposure assessment methods in 

Mexico City. Advantages in this study include our ability to exploit both the temporal 

and spatial scale of the air pollution data derived from the monitoring network, the 

ability to compare different exposure assessment methodologies, the creation of future 

capacity for linking the metrics with an ongoing birth cohort, and, because of the use 

of methods to calculate daily exposures, the ability to calculate an indefinite number of 

windows of exposure during pregnancy, not limited to trimesters which may not 

capture the biologically relevant times of exposure.  

Some of the limitations include the fixed number of available monitors (e.g. 

PM2.5) which are essential to improve model performance, and lacking ‘true’ personal 

exposure measurements as a gold standard. Nevertheless, previous work suggests that 

outdoor monitor concentrations are well-correlated with indoor and personal measures 

of exposure to air pollution in Mexico City (Rojas-Bracho 1994; O'Neill, Ramirez-

Aguilar et al. 2003). The results of this study may not apply to all other geographical 

locations, since environmental and housing characteristics of different geographical 

settings may affect air pollution exposures. However, similar patterns could be seen in 

other megacities in temperate climates, where air conditioning and heating are not 

highly prevalent. 
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Examining the spatial variation in air pollution exposure, especially in a 

geographical setting like Mexico City with its “bowl-shape” geography, which 

promotes the accumulation of pollutants and the formation of gradients of some of the 

air pollutants, is important for epidemiological studies. Earlier studies examining 

particulate exposure have shown gradients of exposure that vary by size and chemical 

composition in Mexico City (Osornio-Vargas, Bonner et al. 2003). In this study 

period, we observed levels of air pollution exceeding Mexico City air quality 

standards, the United States Environmental Protection Agency (USEPA), and World 

Health Organization (WHO) (Table III-S4).   This suggests that air pollution is a 

continuing threat to the health of the population there; PM10 and O3 were the two 

pollutants most frequently exceeding these standards.  

Seasonal differences in air pollution are of critical interest for perinatal 

epidemiology due to the relation that season has with preterm birth and other 

covariates of interest. Air pollution exposure has been associated with the duration of 

pregnancy, so it has been recommended that researchers control for the season of 

conception instead of season of birth when assessing air pollution associations with 

birth outcomes (Slama, Darrow et al. 2008; Woodruff, Parker et al. 2009). In this case, 

season could be a potential confounder since preterm rates are higher in certain 

seasons, and air pollution exposures are also higher in certain seasons. 

The findings of our exercise in comparing air pollution exposure assessment 

metrics suggest that the power of perinatal epidemiology studies in Mexico City can 

be greatly enhanced by knowing the location where women spend their time, enabling 

the estimation of exposure with not only a temporal but a spatial gradient, and thus 
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maximizing exposure contrasts.  Second, our results suggest that OK and IDW are 

interpolation methods that yielded similar estimated exposures among the simulated 

women. Third, our results suggest that the zone of Mexico City in which women live 

can affect how well different exposure metrics correlate. This suggests that 

measurement error may have variable magnitude depending on zone, especially when 

using a method like CWA.  Further, factors that could be relevant to preterm risk could 

also differ by zone and thus disentangling the contribution of exposure measurement 

error from confounding by these other factors could present a challenge.   

In conclusion, geostatistical methods to estimate pollution exposure using data 

from an air monitoring network can be applied when information on spatial location 

and activity patterns from participants in epidemiology studies is gathered. These 

exposure estimation methods can be combined with biomarker data, personal exposure 

measures, and more complex modeling approaches such as land-use regression, to 

better understand how air pollution influences health and to set control and prevention 

priorities 
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Figure II-1. Location of simulated subjects’ residences, Thiessen polygons and air 

quality monitors in Mexico City. 
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Table II-1. Descriptive statistics for four exposure metrics calculated for 1,000 

simulated residents of Mexico City using daily concentrations of air pollutants during 

calendar year 2008. 

 

 
 

 
  

Air Pollutant

(n Monitors) Method Mean (S.D) Range Mean (S.D) Range Mean (S.D) Range

PM10 (µg/m3) CWA 53.20 (20.6) 14.4 - 109.7 67.8 (15.4) 20.7 -109.7 38.8 (13.9) 14.4 - 88.0

14 Sites NM 53.7 (25.4) 8.0 - 214.1 68.9 (23.8) 15.1 - 214.1 38.7 (16.6) 8.0 - 122.5

IDW 49.9 (21.7) 0.1 - 209.4 61.6 (20.7) 0.1 - 209.4 38.4 (15.6) 0.3 - 120.5

OK 52.9 (22.8) 8.4 - 206.7 67.8 (19.5) 15.7 - 206.7 38.1 (14.8) 8.4 - 113.2

PM2.5 (µg/m3) CWA 26.8 (10.1) 7.7 - 67.0 32.4 (8.3) 9.2 - 67.0 21.4 (8.7) 7.7 - 52.5

9 Sites NM 27.6 (13.0) 4.5 - 110.3 33.7 (12.5) 6.2 - 110.3 21.6 (10.5) 4.5 - 91.3

IDW 26.6 (11.6) 0.1 - 110.1 32.0 (10.9) 0.2 - 110.1 21.4 (9.6) 0.2 - 91.1

OK 26.3 (10.0) 5.6 - 102.4 31.6 (8.2) 6.5 - 102.4 21 (8.6) 5.6 - 82.6

O3 (ppb) CWA 58.0 (18.5) 12.7 - 113.3 61.6 (16.5) 22.7 - 98.3 54.4 (19.6) 12.7 - 113.3

22 Sites NM 56.8 (21.3) 3.5 - 160.3 60.5 (20) 3.5 - 127.4 53.1 (21.9) 4.0 - 160.3

IDW 53.9 (19.9) 0.1 - 151.5 56.4 (18.7) 0.5 - 127.3 51.4 (20.8) 0.1 - 151.5

OK 56.6 (19.0) 5.4 - 134.5 60.3 (17.1) 6.7 - 127.3 52.9 (20.0) 5.4 - 134.5

NO2 (ppb) CWA 30.6 (9.3) 10.7 - 62.4 35.6 (9.4) 16.1 - 62.4 25.7 (6.0) 10.7 - 48.8

18 Sites NM 30.3 (10.9) 3.2 - 79.2 35.0 (11.2) 3.5 - 79.2 25.7 (8.2) 3.2 - 70.7

IDW 29.7 (10.2) 0.1 - 78.6 33.2 (11.1) 0.1 - 78.6 26.2 (7.6) 0 - 69.0

OK 29.7 (10.0) 3.5 - 78.9 34.8 (9.9) 4.8 - 78.9 24.7 (7.0) 3.5 - 70.0

CO (ppm) CWA 1.5 (0.6) 0.4 - 3.5 1.9 (0.6) 0.5 - 3.5 1.2 (0.4) 0.4 - 2.3

17 Sites NM 1.6 (0.8) 0.1 - 5.5 1.9 (0.8) 0.1 - 5.5 1.2 (0.6) 0 - 3.6

IDW 1.4 (0.6) 0.01 - 5.4 1.7 (0.7) 0 - 5.4 1.2 (0.4) 0 - 3.5

OK 1.5 (0.6) 0.2 - 5.0 1.9 (0.6) 0.2 - 5.0 1.2 (0.4) 0.1 - 3.6

SO2 (ppb) CWA 6.7 (5.1) 2.3 - 33.9 8.0 (6.1) 2.5 - 33.9 5.4 (3.5) 2.3 - 22.1

26 Sites NM 6.4 (6.3) 1.0 - 164.3 7.5 (7.6) 1.0 - 164.3 5.3 (4.4) 1.0 - 49.1

IDW 5.8 (5.3) 0 - 162.7 6.7 (6.5) 0 - 162.7 4.8 (3.6) 1.0 - 49.1

OK 6.0 (5.3) 0.9 - 153.0 7.0 (6.3) 1.0 - 153.0 4.9 (3.7) 0.9 - 43.3
Footnote: 1Dry Season (November - April); 2Wet Season (M ay - October).  M exico City standards: PM 10 (Annual M ean - 50 μg/m3; Daily Average - 120 μg/m3 ); PM 2.5

(Annual M ean - 15 μg/m3; Daily Average - 65 μg/m3 );O3 (1-h average - 110 ppb;  8-hr average - 80 ppb); SO2 ( Annual M ean - 30 ppb; Daily Average -130 ppb); NO2 ( 1hr

Average - 210 ppb); CO ( 8- hr Average - 11 ppm). Abbreviations: CWA=Citywide average; NM = Nearest M onitor; IDW=Inverse DistanceWeighting; OK=Ordinary Kriging;

Std. Dev=Standard Deviation; min=M inimum; max=M aximum

         Entire year 2008                  Dry Season1                 Wet Season2
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Table II-2. Pearson correlation coefficients among air pollutants in Mexico City during 
2008 by method used to assign exposure to 1,000 simulated residents (n=366,000) 
 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

  

PM10 PM2.5 O3 NO2 SO2 PM10 PM2.5 O3 NO2 SO2

PM2.5 0.88 PM2.5 0.66

O3 0.54 0.65 O3 0.32 0.48

NO2 0.74 0.70 0.40 NO2 0.53 0.50 0.30

SO2 0.39 0.37 0.14 0.30 SO2 0.24 0.23 0.07 0.19

CO 0.70 0.63 0.23 0.85 0.15 CO 0.50 0.47 0.17 0.68 0.08

PM10 PM2.5 O3 NO2 SO2 PM10 PM2.5 O3 NO2 SO2

PM2.5 0.78 PM2.5 0.81

O3 0.43 0.57 O3 0.46 0.62

NO2 0.64 0.63 0.38 NO2 0.65 0.66 0.35

SO2 0.33 0.31 0.10 0.24 SO2 0.30 0.32 0.12 0.26

CO 0.62 0.56 0.21 0.79 0.11 CO 0.63 0.60 0.21 0.79 0.12

Al l  p-va lues  <0.0001

Citywide Average Method Nearest Monitor Method 

Ordinary Kriging MethodInverse Distance Weighting 
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Table II-3. Pearson correlation coefficients among four metrics estimating the 

exposure of 1,000 simulated women to six different air pollutants in Mexico City, 

2008. (n=366,000) 
 

  CWA (N) NM (N) 
IDW 
(N) 

  
 

PM10 
 NM 0.83 

  IDW 0.92 0.95 
 OK 0.92 0.94 0.98 

  
 

PM2.5 
 NM 0.83 

  IDW 0.93 0.95 
 OK 0.99 0.84 0.94 

  
 

O3 
 NM 0.85 

  IDW 0.94 0.95 
 OK 0.96 0.91 0.97 

  
 

NO2 
 NM 0.82 

  IDW 0.93 0.94 
 OK 0.93 0.91 0.97 

  
 

CO 
 NM 0.77 

  IDW 0.91 0.92 
 OK 0.94 0.85 0.96 

  
 

SO2 
 NM 0.77 

  IDW 0.88 0.95 
 OK 0.83 0.93 0.97 
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Table II-4a. Pearson correlation coefficients among exposure assessment methods 

stratified by zone for CO in 2008. 200 women in each zone, all p-values < 0.0001. 

(n=366,000) 
 

  CWA (N) NM (N) IDW (N) 

  
 

Zone 1   

NM 0.79 
 

  
IDW 0.94 0.90   
OK 0.93 0.86 0.98 

  
 

Zone 2   

NM 0.80 
 

  
IDW 0.95 0.90   
OK 0.97 0.83 0.96 
  

 
Zone 3   

NM 0.59 
 

  
IDW 0.84 0.84   
OK 0.91 0.71 0.92 
  

 
Zone 4   

NM 0.70 
 

  
IDW 0.89 0.89   
OK 0.93 0.81 0.96 
  

 
Zone 5   

NM 0.84 
 

  
IDW 0.93 0.96   
OK 0.95 0.91 0.97 
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Table II-4b. Pearson correlation coefficients among exposure assessment methods 

stratified by zone for NO2 in 2008. 200 women in each zone, all p-values < 0.0001. 

(n=366,000) 
 

  CWA (N) NM (N) IDW (N) 

  
 

Zone 1   

NM 0.84 
 

  
IDW 0.96 0.93   
OK 0.94 0.90 0.98 

  
 

Zone 2   

NM 0.85 
 

  
IDW 0.96 0.92   
OK 0.96 0.89 0.96 
  

 
Zone 3   

NM 0.77 
 

  
IDW 0.91 0.93   
OK 0.92 0.89 0.97 
  

 
Zone 4   

NM 0.91 
 

  
IDW 0.97 0.97   
OK 0.96 0.95 0.98 
  

 
Zone 5   

NM 0.81 
 

  
IDW 0.92 0.94   
OK 0.92 0.92 0.97 
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Table II-4c. Pearson correlation coefficients among exposure assessment methods 

stratified by zone for O3 in 2008. 200 women in each zone, all p-values < 0.0001. 

(n=366,000) 
 

  CWA (N) NM (N) IDW (N) 

  
 

Zone 1   

NM 0.88 
 

  
IDW 0.96 0.95   
OK 0.97 0.92 0.98 

  
 

Zone 2   

NM 0.84 
 

  
IDW 0.96 0.92   
OK 0.97 0.89 0.97 
  

 
Zone 3   

NM 0.90 
 

  
IDW 0.96 0.97   
OK 0.96 0.94 0.98 
  

 
Zone 4   

NM 0.92 
 

  
IDW 0.96 0.97   
OK 0.97 0.95 0.98 
  

 
Zone 5   

NM 0.83 
 

  
IDW 0.92 0.95   
OK 0.95 0.90 0.96 
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Table II- 4d. Pearson correlation coefficients among exposure assessment methods 

stratified by zone for PM10 in 2008. 200 women in each zone, all p-values < 0.0001. 

(n=366,000) 
 

  CWA (N) NM (N) IDW (N) 

  
 

Zone 1   

NM 0.92 
 

  
IDW 0.98 0.96   
OK 0.97 0.95 0.99 
  

 
Zone 2   

NM 0.91 
 

  
IDW 0.98 0.95   
OK 0.97 0.94 0.98 
  

 
Zone 3   

NM 0.90 
 

  
IDW 0.96 0.96   
OK 0.93 0.94 0.98 
  

 
Zone 4   

NM 0.87 
 

  
IDW 0.95 0.95   
OK 0.92 0.94 0.98 
  

 
Zone 5   

NM 0.84 
 

  
IDW 0.93 0.95   
OK 0.91 0.93 0.97 
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Table II-4e. Pearson correlation coefficients among exposure assessment methods 

stratified by zone for PM2.5 in 2008. 200 women in each zone, all p-values < 0.0001. 

(n=366,000) 
 

  CWA (N) NM (N) IDW (N) 

  
 

Zone 1   

NM 0.92 
 

  
IDW 0.97 0.97   
OK 0.99 0.93 0.97 
  

 
Zone 2   

NM 0.83 
 

  
IDW 0.92 0.94   
OK 0.99 0.83 0.92 
  

 
Zone 3   

NM 0.91 
 

  
IDW 0.96 0.97   
OK 0.99 0.92 0.97 
  

 
Zone 4   

NM 0.88 
 

  
IDW 0.97 0.95   
OK 0.99 0.88 0.98 
  

 
Zone 5   

NM 0.91 
 

  
IDW 0.96 0.98   
OK 0.99 0.92 0.97 
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Table II-4f. Pearson correlation coefficients among exposure assessment methods 

stratified by zone for SO2 in 2008. 200 women in each zone, all p-values < 0.0001. 

(n=366,000) 
 

  CWA (N) NM (N) IDW (N) 

  
 

Zone 1   

NM 0.86 
 

  
IDW 0.95 0.95   
OK 0.91 0.95 0.98 
  

 
Zone 2   

NM 0.80 
 

  
IDW 0.93 0.92   
OK 0.86 0.87 0.93 
  

 
Zone 3   

NM 0.82 
 

  
IDW 0.91 0.96   
OK 0.89 0.93 0.97 
  

 
Zone 4   

NM 0.80 
 

  
IDW 0.91 0.95   
OK 0.87 0.93 0.97 
  

 
Zone 5   

NM 0.77 
 

  
IDW 0.88 0.95   
OK 0.84 0.93 0.98 
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Table II-5. Mean difference and standard deviations (SD) of the differences in air 

pollution exposure estimates produced by three exposure assessment methodologies 

for 1,000 simulated women in Mexico City during 2008, with kriging as the reference 

method. 

 

 
  

 

 

 

 

 

 

 

  

      Mean Difference (SD)

Zone Model PM10 (µg/m3) PM2.5 (µg/m3) O3 (ppb) NO2 (ppb) CO (ppm) SO2 (ppb)

All Zones CWA 0.34 (9.03) 0.56 (1.04) 1.40 (5.43) 0.88 (3.61) -0.03 (0.20) 0.71 (3.03)

NM 0.84 (8.96) 1.36 (7.10) 0.20 (9.06) 0.59 (4.53) 0.02 (0.40) 0.42 (2.44)

IDW -2.3 (12.2) 0.38 (5.10) -2.68 (8.29) -0.07 (6.02) -0.10 (0.34) -0.18 (1.97)

1 CWA -1.14 (5.83) 0.61 (0.94) 1.94 (4.67 -1.53 (3.77) -0.11 (0.24) 0.59 (2.19)

NM 1.75 (7.37) 0.13 (3.57) -1.30 (8.17) 1.69 (5.07) 0.18 (0.40) 0.21 (2.02)

IDW -3.40 (10.8) -0.12 (3.11) -2.62 (5.85) 1.03 (3.42) 0.01 (0.22) -0.27 (1.75)

2 CWA 0.94 (5.52) 0.43 (1.48) 0.97 (4.68 1.05 (2.71) -0.01 (0.14) 1.57 (2.81)

NM 0.08 (7.99) 4.95 (10.23) 1.57 (9.25) 1.14 (4.54) 0.08 (0.40) 0.24 (2.15)

IDW -2.50 (9.83) 2.46 (7.52) -4.22 (8.71) 0.19 (6.54) -0.13 (0.36) -0.21 (1.71)

3 CWA 7.49 (7.47) 0.76 (0.90) -0.91 (5.82) 0.72 (3.67) 0.09 (0.24) 0.97 (2.37)

NM -3.09 (5.91) -2.78 (3.87) 4.18 (8.54) 0.94 (4.55) -0.20 (0.45) 0.41 (1.86)

IDW -7.21 (14.0) -2.31 (3.49) -3.29 (13.2) -2.40 (11.1) -0.30 (0.55) -0.64 (2.35)

4 CWA 7.26 (7.95) 0.65 (0.49) -0.23 (4.82) 1.18 (2.83) 0.03 (0.22) 0.18 (2.76)

NM -3.62 (6.31) -0.92 (4.69) 2.56 (7.64) 0.71 (3.28) 0.05 (0.40) 0.64 (2.24)

IDW -3.40 (5.57) -1.22 (2.96) 0.33 (6.4) 0.76 (3.04) -0.05 (0.26) 0.14 (1.75)

5 CWA -4.17 (10.5) 0.58 (0.71) 2.83 (6.03) 1.70 (4.02) 0.01 (0.19) 0.12 (3.55)

NM 4.11 (10.5) -0.59 (4.24) -2.39 (9.05) -0.54 (4.45) -0.05 (0.32) 0.59 (3.55)

IDW -1.80 (15.5) 0.01 (2.84) -2.30 (7.36) -0.50 (5.08) 0.10 (0.29) -0.12 (2.22)

Note: Zone 1=Center; Zone 2=East; Zone 3=South; Zone 4=West; Zone 5=North. Negative values reflects overestimation by the exposure

method being compared to ordinary kriging.
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Table II-6. Descriptive statistics of the standard errors (SE) among individuals residing 

inside pollutant specific polygons in 2008 in Mexico City. 

 

Pollutant  N  Mean SD Min Max 
 

PM10 (µg/m3) 189,222 9.58 4.85 0.48 64.9 
 PM2.5 (µg/m3) 154,452 38.2 15.0 3.35 100.0 
 O3 (ppb) 319,884 10.3 7.58 0.58 107.5 
 NO2 (ppb) 163,236 4.57 1.65 0.45 14.2 
 CO (ppm) 140,910 0.41 0.11 0.07 1.06 
 SO2 (ppb) 308,904 2.37 1.75 0.11 53.8 
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Table II-7. RMSEs reported by cross validation analysis during 2008 for each air 

pollutant using ordinary kriging estimates. 

 

 
  

Pollutant Mean (SD) Median Range (Min - Max)

PM10 1.25 (0.08) 1.23 1.08 - 1.59

PM2.5 1.26 (0.09) 1.25 1.09 - 1.70

O3 1.24 (0.13) 1.22 1.07 - 1.93

NO2 1.25 (0.095) 1.22 1.07 - 1.65

CO 1.64 (0.24) 1.60 1.22 - 2.72

Note: RMSE's produced daily for the period of 2008 by application of spherical ordinary kriging.

Abbreviations: SD=Standard Deviation; Min=Minimum; Max=Maximum
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Table II-8. Descriptive statistics for each pollutant for individuals living inside 

pollutant specific polygons in 2008 in Mexico City. 

 

Pollutant Method N  Mean SD Min Max 

PM10 
(µg/m3) CWA 189,222 53.2 20.6 14.4 109.7 
  NM 189,210 55.1 25.7 8.0 214.1 
  IDW 189,222 50.6 21.9 8.2 206.4 
  OK 189,222 53.6 22.8 8.4 194.4 
PM2.5 
(µg/m3) CWA 154,452 26.8 10.1 7.7 67.0 
  NM 154,452 27.0 12.0 4.5 110.3 
  IDW 154,452 26.2 10.8 4.6 108.8 
  OK 154,452 26.2 9.9 5.6 88.2 

O3 (ppb) CWA 319,884 58.0 18.5 12.7 113.3 
  NM 319,860 57.1 21.4 3.5 160.3 
  IDW 319,518 53.8 20.0 4.5 151.5 
  OK 319,884 56.7 19.0 5.4 134.5 

CO (ppm) CWA 140,910 1.54 0.58 0.44 3.45 
  NM 140,886 1.66 0.77 0.07 5.47 
  IDW 140,910 1.53 0.68 0.08 5.39 
  OK 140,910 1.58 0.64 0.19 4.99 

NO2 (ppb) CWA 163,236 30.6 9.3 10.7 62.4 
  NM 163,223 32.3 11.6 3.2 79.2 
  IDW 163,236 30.4 10.6 3.6 78.6 
  OK 163,236 31.0 10.4 3.5 78.9 

SO2 (ppb) CWA 308,904 6.67 5.12 2.29 33.89 

  NM 308,461 6.30 6.32 1.00 16.43 
  IDW 308,904 5.72 5.36 1.00 16.27 
  OK 308,904 5.92 5.28 0.09 15.30 

Note: These summary statistics are the averages for groups of individuals who lived inside pollutant specific polygons. 
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CHAPTER III 

 

 

 

ASSOCIATION OF AIR POLLUTION AND PRETERM BIRTH IN MEXICO 

CITY: IMPLICATIONS OF DIFFERENT EXPOSURE ASSESSMENT 

METHODOLOGIES 

 

 

 

 

INTRODUCTION 

 

The growing rate of preterm birth and its contribution to infant mortality and 

morbidity constitute a major health problem in the United States as well as in other 

parts of the world, especially developing countries (Martin, Kung et al. 2008). Recent 

studies have identified outdoor air pollution as a possible risk factor for reproductive 

disorders (e.g. preterm birth, intrauterine growth restriction (IUGR), and low birth 

weight (LBW)) (Glinianaia, Rankin et al. 2004; Maisonet, Correa et al. 2004; Sagiv, 

Mendola et al. 2005; Sram, Binkova et al. 2005; Wilhelm and Ritz 2005; Huynh, 

Woodruff et al. 2006; Ritz, Wilhelm et al. 2007; Ritz and Wilhelm 2008; Slama, 

Darrow et al. 2008; Stillerman, Mattison et al. 2008; Yorifuji, Naruse et al. 2011; Le, 

Batterman et al. 2012). Preterm births (births that occur at less than 37 weeks of 

gestation) have been associated with many factors including individual-level 

behavioral and psychosocial factors, neighborhood characteristics, environmental 

exposures, medical conditions, infertility treatment, biological factors, and genetics 

(Berkowitz and Papiernik 1993; Hoffman and Hatch 1996; Zeitlin, Saurel-Cubizolles 

et al. 2002; Da Silva, Simões et al. 2003; IOM 2007; Savitz and Murnane 2010).  
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Much research pertaining to air pollution and preterm birth outcomes has relied 

on combining data from large birth registries with air pollution concentrations 

obtained from outdoor air quality monitors to estimate individual exposure. Due to the 

high degree of spatial variability of different measured data from monitors, interest has 

grown in creating spatial and temporal models to predict exposure for people whose 

residential location is known without having to obtain personal exposure monitoring 

data (Woodruff, Parker et al. 2009). 

Recent interest in preterm birth has sparked new scientific research, as well as 

recognition from governmental entities and the scientific community on the 

importance of identifying and learning more about how environmental toxicants may 

influence preterm birth. Researchers around the world agree upon the need to identify 

differences in methodologies used among previous epidemiological studies of air 

pollution and perinatal health outcomes (Sram, Binkova et al. 2005; Slama, Darrow et 

al. 2008; Woodruff, Parker et al. 2009).  

Previous studies of the association between air pollutants and preterm birth 

have not found conclusive or consistent associations during different windows of 

exposure in pregnancy. Moreover, few studies have been able to explore different 

exposure assessment methods for estimating individual exposure to air pollutants, 

especially during pregnancy (Nethery, Leckie et al. 2008; Perera, Li et al. 2009). The 

purpose of this paper is to use three methods (citywide averaging, nearest monitor, and 

inverse distance weighting) to estimate daily individual exposure to outdoor air 

pollution during pregnancy among women who participated in a cohorts studies in 

Mexico City, to identify which windows of exposure might be more strongly 
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associated with preterm birth, and to assess whether these different exposure 

assessment methods produce different associations with preterm birth 

METHODS 

Study Population 

The study population was recruited at three different hospitals in Mexico City 

during 1994 to 2004 as part of the ELEMENT (Early Life Exposure in Mexico to 

Environmental Toxicants) study (http://sitemaker.umich.edu/merg/element) 

(Gonzalez-Cossio, Peterson et al. 1997; Tellez-Rojo, Hernandez-Avila et al. 2004; 

Lamadrid-Figueroa, Tellez-Rojo et al. 2007). This study is based on a population 

recruited for a series of epidemiological birth cohorts that had the overall purpose of 

study how  cumulative lead exposure relates to certain perinatal health outcomes and 

infant health.  

Participants attending these hospitals are from a low-to-moderate-income 

population, lived in Mexico City metropolitan area during the time of their 

participation in the study. 

Exclusion criteria for the main and subsequent cohorts included risk factors 

related to calcium metabolism, medical conditions that could cause low birth weight 

(<2500 grams), delivering premature (<37 weeks), a physician's diagnosis of multiple 

fetuses, preeclampsia, kidney, psychiatric or cardiac conditions, gestational diabetes, 

history of repeated urinary infections, and seizure conditions that would require 

medication (Tellez-Rojo, Hernandez-Avila et al. 2004; Hu, Tellez-Rojo et al. 2006; 

Lamadrid-Figueroa, Tellez-Rojo et al. 2007).  

http://sitemaker.umich.edu/merg/element
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All cohort participants signed an informed consent before enrolling in the 

study. The research protocols were approved by the Ethics and Research Committee or 

Institutional Review Boards (IRB) of the National Institute of Public Health 

(Cuernavaca, Mexico City), the Harvard School of Public Health, the Brigham and 

Women’s Hospital, the University of California, and participating hospitals.  The 

present analysis was approved by the University of Michigan IRB.  

For the present study, gestational age was determined by the mother’s recall of 

her last menstrual period (LMP) since ultrasound information was not collected at 

participating hospitals. Using the estimated gestational age and the infant’s date of 

birth, the infant’s date of conception was calculated. Preterm birth was defined as live 

births occurring before 38 weeks of gestation. Other variables determined a priori to 

be of interest as potential confounders of the preterm and air pollution association 

were derived from questionnaire data. These include mother’s age, smoking 

frequency, educational attainment, marital status, infant sex, and parity. These 

variables have been associated with preterm birth in previous studies. 

Additionally, calf circumference, measured approximately during the 10 month 

post-partum visit to the clinics, was used to estimate maternal nutritional status during 

pregnancy. Although other variables, such as body mass index, have been used for this 

purpose, calf circumference was the variable available for the majority of the cohort 

participants. 

Geo-coding of Study Participants 

 

Retrospectively, based on the street address recorded on study forms, 

participants were assigned a latitudinal and a longitudinal coordinate through the use 
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of "Guia Roji Global Positioning Atlas” mapping software 

(http://www.guiaroji.com.mx/). Geocoordinates were validated by project drivers who 

were familiar with Mexico City and the women’s residences, in some cases; these 

drivers also updated some of the recorded addresses which could not be coded due to 

lack of information. After the validation, the geo-coordinates were digitized into maps 

through the use of ArcGIS (version 9.3.1) (ESRI Inc., Redlands, CA).  

A total of 2098 participants had their residential addresses geo-referenced. 

Cohort 1 participants were excluded from the current analysis due to the  fact that 

having a preterm delivery was one of the exclusion criteria for that cohort.. The 

remainder of the women were included in the study after excluding participants who 

were missing infant’s date of birth or gestational age, smoking status during 

pregnancy, and post-partum calf circumference measurement.  

Air pollution Data and Exposure Assessment Methods 

The air quality monitoring network in Mexico City (“Sistema de Monitoreo 

Atmosférico”, or SIMAT by its acronym in Spanish) consists of 36 stations that 

measure different pollutants throughout the metropolitan area. Of these 36 sites, 22 

sample for ozone and 26 for PM10, (Zuk, Tzintzun Cervantes et al. 2007). We 

downloaded hourly data from the automated air monitoring network on December 9, 

2009 for the calendar years (1997-2005). Prior to posting on the website, SIMAT staff 

cleaned and validated the data (Zuk, Tzintzun Cervantes et al. 2007; Retama-

Hernandez 2011). PM10 was measured in units of micrograms per cubic meter (µg/m
3
), 

whereas O3, was measured in parts-per-million (ppm) when the data was downloaded 

from the governmental agency. O3, data was transformed from parts-per-million to 

http://www.guiaroji.com.mx/
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parts-per-billion (ppb) to be consistent with Mexico City air pollution standards. For 

PM10, we retained the original units reported by SIMAT. Although data are available 

hourly for most of the pollutants, we summarized data to match the averaging time of 

the Mexican standards:  daily concentrations (24 hour averages) of PM10 and the daily 

8 hour maximum for O3, from all available monitoring stations. If more than 25% of 

the hourly pollutant concentration in a given day were missing, the daily concentration 

was coded as ‘missing’. 

Geographical coordinates for the monitoring stations were provided by SIMAT 

and digitized into a layer of information in order to combine with the women’s 

residential locations using ArcGIS (version 9.3.1) (ESRI Inc., Redlands, CA). 

Daily citywide averages were calculated using all available reporting monitors 

for a specific day. For each of the women, nearest monitor averages were produced for 

each day, and for each air pollutant using the closest distance, determined by a straight 

line, from the participant’s residence to the monitor closest to the participant. In the 

case that the nearest monitor did not have reporting data, the next closest monitor 

would provide the concentration value for that particular day. Inverse distance squared 

interpolation averages were produced using a minimum of 5 monitors and a maximum 

of 12 monitors closest to the individual’s residential location. All metrics were 

produced using the Statistical Analysis System (SAS version 9.2; SAS Institute, Inc. 

Cary, NC). 

Exposure Window Calculation 

Air pollution concentration averages were created for the entire period of 

duration of pregnancy, and first, second, and third trimesters. First trimester averages 



66 

 

were determined from the date of conception until the 13
th

 week of gestation, second 

trimester from 14
th

 week to the 28
th

 week, and third trimester from the 29
th

 weeks until 

birth. Entire pregnancy averages were calculated by using the period of conception as 

a reference start point until the newborn’s delivery. All calculations and subsequent 

statistical analyses were performed using SAS version 9.2 (SAS Institute Inc., Cary 

NC, USA).  

Statistical Analysis 

Descriptive statistics and distributions were examined for the air pollution 

metrics and for the clinical and demographic variables. Excluded and included 

participants were compared to assess differences in population included in this study. 

Pearson correlation coefficients were calculated to assess the association between air 

pollution exposure windows, as well as within air pollutants. Metrics for the two air 

pollutants were used in separate logistic regression models to model the association 

with preterm birth. Logistic regression was used to estimate crude and adjusted odd 

ratios (ORs) and 95% confidence intervals (CIs) for the associations between preterm 

birth and each air pollutant estimated by all three exposure assessments methods for 

each of the four windows of interest (first, second, and third trimesters, as well for the 

entire pregnancy). Initially, single trimester exposure were included in the logistic 

regression models to describe the association between trimester-specific air pollution 

exposure metrics and preterm birth adjusted for covariates of interest. Potential 

confounders were chosen on the basis of biological plausibility (regardless of 

statistical significance).  
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Unadjusted models were fit to examine the air pollution metrics’ association 

with preterm birth. Models adjusted for maternal age, parity, and infant sex were 

performed in order to examine differences in associations found when only covariates 

typically available from birth registries were available. A full model was fit that 

included covariates of interest as available from our study: -marital status, maternal 

education (years of education), smoking frequency, parity, mother’s calf 

circumference, and infant sex. We also included an indicator variable for cohort in the 

model, to accommodate the different study aims and data collection protocols for each 

of the cohorts.  

Effect estimates were standardized by calculating interquartile ranges (IQR) of 

exposure for each pollutant and windows of interest, and presenting OR’s per IQR 

increase in each of the pollutants. Additionally, associations were examined across 

quartiles, using the lowest quartile as the reference concentration. 

RESULTS 

Figure III-1 shows the spatial distribution of study participants in the Mexico 

City Metropolitan Area and the monitors of the SIMAT air monitoring network. Of the 

2,098 pregnant women with georeferenced data, 891 (42,4%) had complete 

information on covariates of interest and estimated PM10 and O3 air pollution 

concentrations by different methods and windows (Table III-1). About 40% of the 

women in both the included and excluded groups were primiparous. 13.2% of the 

births were preterm in the included group compared with 53.2% in the excluded 

population. Women in the included population were similar in terms of marriage and 

education.  
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Average PM10 and O3 pollution levels estimated by different methods were relatively 

similar for the different windows in pregnancy (Table III-3). As expected, Pearson 

correlation coefficients between trimesters and between exposures were moderate 

(r=0.42 – 0.93, all p<0.001). Correlations were less strong when comparing between 

methods during different trimesters (data not shown). 

Relationships between air pollution metrics estimated by different exposure 

assessment and preterm birth were assessed using bivariate analysis, i.e., in unadjusted 

models (Tables III-4, III-5, and III-6). In most cases, the air pollution metrics were not 

significantly associated with preterm birth as individual predictors. In general, the vast 

majority of the trimester-specific and entire pregnancy air pollution exposures were 

not associated with preterm birth in the adjusted models. We next point out some of 

the associations that were observed in these regression analyses. 

PM10 levels at the second quartile of exposure (41-58 µg/m
3
) during the second 

trimester were associated with preterm birth when exposure was estimated by the 

citywide average method in the unadjusted model when compared against the 

reference category (OR=1.75, 95% CI: (1.00 – 3.05)) (Table III-4, Figure III-2). This 

association decreased when adjusting for covariates of interest. Also, the association 

was not present when examining other pollution exposure assessment methods. As 

higher quartiles of exposures were tested for the presence of associations, higher 

positive point estimates of effects were observed for the majority of the methods and 

pollutants. This was observed in adjusted models as well.  

 The second quartile of exposure to O3 (70-80 ppb) was associated with an 

increase in risk of preterm birth during the first trimester of pregnancy when 
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examining adjusted associations (OR=1.94, 95% CI: (1.04-3.58), when compared to 

the reference category (Table III-5, Figure III-3). Moreover, the second quartile of 

exposure to O3 during the entire pregnancy period had a statistically significant 

positive association (OR=1.76, 95% CI: (1.01 – 3.07)) when adjusted for the birth 

registry covariates, as well as when adjusting for full model covariates (OR=2.08, 95% 

CI: (1.07 – 4.08)), when compared to the reference category. Crude models did not 

reflect the same pattern as adjusted models. 

When pollution was modeled continuously, we did not find statistically 

significant associations for PM10 and O3. CWA models tended to have higher positive 

effect estimates than other interpolation methods. Adjusting for birth registry or full 

model covariates produced similar odds ratios to the other methods. Also, crude effect 

estimates for exposure during the entire pregnancy were attenuated and similar to the 

ones produced when adjusting for birth registry and full model covariates. 

DISCUSSION AND CONCLUSION 

This study describes the association between air pollution and preterm birth 

using several exposure assessment methods (citywide averaging, nearest monitor, and 

inverse distance weighting) to estimate individual level exposure in a Mexican cohort 

of pregnant women recruited from 1997 to 2004. Several researchers have studied the 

association that air pollutants have with preterm birth, but most of the evidence is 

insufficient and inconclusive as to whether the relationship exists (Sram, Binkova et 

al. 2005; Ritz and Wilhelm 2008; Woodruff, Parker et al. 2009). Our study adds to the 

body of research addressing this question. 
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We found that effect estimates during individual trimesters increased as the 

exposure assessment method incorporated spatial methods for PM10 exposure. 

Similarly, models that included full covariate information showed stronger effect 

estimates for the first, second, and third trimester of pregnancy. In our study, we found 

significant associations in the second quartile of PM10 exposure during the second 

trimester using the CWA method when compared with the reference category. This 

association was absent when the nearest monitor method was used to assess exposure, 

suggesting that limited local variation influenced by proximity to monitors does not 

produce the same effects as the other methods that use data from more sites in the 

available monitoring network. 

A study that compared different exposure assessment methods, and the 

relationship that NO2 has with birth weight, suggests that resulting exposure 

misclassification and bias introduced by methods that use all available air quality 

monitors may be prevented by incorporating proximity models or models that account 

for the area size (Lepeule, Caini et al. 2010). Moreover, temporally adjusted land-use-

regression (LUR) models are capable of producing narrower confidence intervals with 

more precise effect estimates, but not necessarily larger effect estimates than spatial 

averaging using all available monitoring stations (Brauer, Lencar et al. 2008).  

We did not find specific trends in exposure windows of major importance for 

preterm birth.  Our ability to assess trimester specific effects in models that 

simultaneously included all three trimesters was limited since ambient monitoring 

based exposures were highly correlated across pregnancy windows, causing variance 

inflation (data not shown). 
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The strengths of this study lie in the use of georeferenced data developed for 

this cohort, since the cohort lacked such information originally, having questionnaire 

data to assess potential confounders of interest not typically available from birth 

registries, and the use of temporal and spatial data to estimate daily individual 

pollution concentrations which allow for a wide array of windows of exposure to be 

studied. Because many different approaches to assess individual exposure to air 

pollutants have been used in perinatal epidemiology research,  heterogeneity in 

published findings has been attributed, in part, to this factor (Woodruff, Parker et al. 

2009).  Because we calculated several exposure metrics, from simple averages that do 

not require knowledge of participant residential location, to metrics that account for 

location, our results can be compared with a variety of published analyses. 

Limitations in our work include small number of preterm cases, which limit the 

power to detect associations. This can be observed by the wide confidence intervals in 

the upper quartiles of exposure (Table III-4). Also, the lack of personal air pollution 

exposure information does not allow the validation of our models. However, it has 

been shown that levels of outdoor air pollution reflect indoor exposure levels in 

Mexico City (Rojas-Bracho 1994). Also, ambient monitors do not capture the range of 

exposure that pertains to different activity patterns that occur indoor and outdoor. 

Residual confounding resulting from risk factors that we could not control for (season, 

stress, anti-oxidant intake, etc) could bias this study. 

Several mechanistic pathways have been proposed for how air pollutants such 

as PM10 and O3 might influence risk of preterm birth. Inflammatory pathways and 

oxidative stress have previously been linked to air pollution (Kelly 2003; Chuang, 
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Chan et al. 2007; Latzin, Frey et al. 2011; van den Hooven, de Kluizenaar et al. 2012). 

Moreover, polycyclic aromatic hydrocarbon (PAH) may increase mutagenesis in cells, 

produce antiestrogenic effects, and help in the creation of DNA adducts increasing the 

susceptibility of the developing fetus (Bui, Tran et al. 1986; Perera, Jedrychowski et 

al. 1999).  

In conclusion, this study provided evidence of an increase in risk for preterm 

birth among women exposed to ordinary levels of two key air pollutants in Mexico 

City. Overall, effect estimates showed null findings attributed to the exposure 

assessment challenges that individual estimation of air pollution from air monitoring 

data pose, and in part to the limited sample size of our population. It is also worth 

noting that classifying preterm birth dichotomously  and using logistic regression 

models, may limit the power of detecting an increase in the probability of developing a 

premature birth compared to modeling gestational age as a continuous variable. 

Previous studies have assessed the association that environmental toxicants have with 

gestational  instead of preterm birth  (Cantonwine, Hu et al. 2010). In this analysis, we 

had a 41% power to detect a 1.20 fold increase in the odds of preterm birth for every 

standard deviation increase in exposure, so very limited.  

Nonetheless, the significant findings that larger studies have had, and the 

mechanistic pathways by which air pollution influences health, suggest continuing to 

study the possibility of increased risk of preterm birth among women exposed to air 

pollution is an important endeavor that can yield knowledge relevant to prevention of 

preterm birth.  
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Figure III-1. Distribution of the air pollution monitoring network in Mexico City and 

residence location of women participants throughout Mexico City (1997-2004).
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Figure III-2: Crude and adjusted odds ratios (OR’s) and 95% confidence intervals 

(CI’s) for risk of preterm birth for the second quartile of exposure to PM10 estimated by 

the citywide average, nearest monitor, and inverse distance weighting methods during 

2nd trimester . 
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Figure III-3: Crude and adjusted odds ratios (OR’s) and 95% confidence intervals 

(CI’s) for risk of preterm birth for the second quartile of exposure to PM10 estimated by 

the citywide average, nearest monitor, and inverse distance weighting methods during 

the entire pregnancy period . 
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Table III-1. Characteristics of the study population of women in Mexico City (1997-

2004).  

 

 
  

Maternal Characteristics Included Excludeda p-value

n n

Total Population (%) 891 564

Infant Sex

Male (%) 450 49.5 202 36.8 0.15

Female(%) 441 50.5 166 29.4

Missing (%) 196 34.8

Age (years)

<18 (%) 29 3.3 13 2.3 0.58

18-34 (%) 795 89.2 507 89.9

>34 (%) 67 7.5 43 7.6

Parity

Nulliparous (%) 345 38.7 189 33.5 0.14

1-2 (%) 315 35.4 218 38.7

≥3 (%) 231 25.9 157 27.8

Marital Status

Married (%) 642 72.0 392 30.1 0.36

Not Married (%) 249 28.0 169 69.9

Education (years)

<12 (%) 464 52.1 315 55.9 0.12

≥12 (%) 427 47.9 246 43.6

Smoking

No (%) 854 95.9 520 92.2 0.19

Yes (%) 37 4.1 15 2.7

Missing 29 0.1

Preterm Birth

Yes (%) 118 86.8 264 46.8 <0.0001

No (%) 773 13.2 300 53.2

Calf Circumference (cm)

<32 (%) 166 18.6 46 8.2 0.65

32-34 (%) 211 23.7 65 11.5

>34-36 (%) 299 33.6 85 15.0

>36 (%) 215 24.1 48 8.5

Missing (%) 320 56.7

Calf Circumference (cm) Mean(STD) 34.3(3.1) 34.0(3.2) 0.59

Cohort

2-BL 343 38.5 118 20.9 <0.0001

2-PL 185 20.8 139 24.6

3-SF 363 40.7 307 54.4
aExcluded: Participants  with  miss ing data  (i .e., pol lution exposure metrics  and covariates  

of interest). Preterm birth defined as  bi rths  with <38 weeks  of gestation.
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 Table III-2.  Odds ratios (OR’s) and 95% confidence intervals (CI’s) for risk of 

preterm birth from bivariate analysis with covariates of interest. 

 

Maternal 
 Characteristics n PTB OR(95%CI) 

Infant Sex     
Female 449 REF 
Male  442 0.94(0.56,1.59) 

Maternal Age (yr)     
<18   29 REF 

18-34   806 1.81(0.24,13.6) 
>34   67 4.9(0.60,40.31) 

Continuous 902 1.02(0.97,1.07) 
Parity     

Nulliparous 351 REF 
1-2  319 0.95(0.50,1.79) 
≥3  232 1.33(0.71,2.52) 

Continuous 902 1.19(0.94,1.52) 
Marital Status     

Married  649 REF 
Not Married  253 1.20(0.69,2.12) 

Education 902   
<12  471 REF 

≥12 431 0.77(0.45,1.30) 
Continuous 902 0.94(0.86,1.03) 

Smoking     
No  865 REF 
Yes  37 1.26(0.30,5.36) 

Continuous 902 0.97(0.75,1.27) 

Calf Circumference 
(cm)     

<32  169 REF 
32-34  301 0.95(0.43,2.13) 

>34-36  214 1.11(0.48,2.57) 
>36 218 1.52(0.69,3.36) 

Continuous 902 1.05(0.96,1.14) 
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Table III-3. Descriptive statistics of air pollutant exposures during different periods of pregnancy for women in Mexico City (1997-

2005) 

 

 
 

 

  

Pollutant Mean(SD)a Mediana IQR Mean(SD)a Mediana IQR Mean(SD)a Mediana IQR Mean(SD)a Mediana IQR

PM10_CWA 57.4(17.4) 59.7 26.3 62.1(21.7) 61.7 30.1 59.8(16.3) 66.1 28.7 60.5(10.5) 58.8 21.0

PM10_NM 46.5(18.2) 44.0 26.0 50.5(21.0) 49.9 27.9 50.6(17.3) 54.1 25.0 50.0(12.3) 49.4 15.1

PM10_IDW 50.7(17.5) 49.6 24.6 55.1(21.2) 54.1 30.2 54.4(16.9) 58.0 29.9 54.3(11.6) 53.0 16.8

O3_CWA 78.1(12.1) 76.7 17.2 79.6(13.2) 81.3 25.3 79.4(13.7) 78.4 20.3 79.0(10.0) 77.3 17.5

O3_NM 87.4(18.3) 86.0 25.4 88.4(18.0) 88.1 28.0 87.5(17.0) 86.4 25.3 87.8(14.1) 87.4 21.6

O3_IDW 84.7(14.0) 83.7 19.9 86.1(15.0) 87.3 24.2 85.5(14.5) 84.8 20.9 85.4(11.5) 85.1 18.2
a Units  are in µg/m3 for PM10 and  ppb for O3. CWA=Citywide Average; NM=Nearest Monitor; IDW=Inverse Distance Weighting. SD=Standard deviation;

IQR= interquanti le range. N=902 for PM10; N=1474 for a l l  other pol lutants

1st Trimester 2nd Trimester 3rd Trimester Entire Pregnancy
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Table III-4. Crude and adjusted odds ratios (OR’s) and 95% confidence intervals (CI’s) for risk of preterm birth compared with the 

lowest exposure level of PM10 estimated by the citywide average, nearest monitor, and inverse distance weighting methods. 

 

 

Unadjusteda Adjustedb Adjustedc Unadjusteda Adjustedb Adjustedc Unadjusteda Adjustedb Adjustedc

Quartiles N  OR%95CI  OR%95CI  OR%95CI Quartiles N  OR%95CI  OR%95CI  OR%95CI Quartiles N  OR%95CI  OR%95CI  OR%95CI

First Trimester

<41 222 REF REF REF <32 224 REF REF REF <36 225 REF REF REF

41 - 59 222 1.46 (0.84, 2.51) 1.32 (0.76, 2.30) 1.31 (0.71, 2.43) 32 - 44 226 1.34 (0.78, 2.29) 1.31 (0.76, 2.26) 1.25 (0.68, 2.31) 36 - 49 225 1.46 (0.87, 2.45) 1.41 (0.83, 2.39) 1.28 (0.70, 2.32)

59 - 68 223 1.31 (0.75, 2.72) 1.07 (0.60, 1.89) 1.15 (0.59, 2.25) 44 - 58 216 1.36 (0.79, 2.35) 1.17 (0.68, 2.05) 1.10 (0.60, 2.06) 49 - 60 218 0.96 (0.55, 1.67) 0.85 (0.48, 1.52) 0.97 (0.51, 1.85)

>68 224 0.86 (0.47, 1.56) 0.74 (0.39, 1.38) 0.85 (0.44, 1.67) >58 225 0.79 (0.46, 1.44) 0.73 (0.40, 1.36) 0.72 (0.38, 1.39) >60 223 0.74 (0.41, 1.33) 0.64 (0.35, 1.22) 0.63 (0.33, 1.22)

Second Trimester Second Trimester Second Trimester

<41 225 REF REF REF <32 226 REF REF REF <35 226 REF REF REF

41 - 58 223 1.75 (1.00, 3.05) 1.70 (0.96, 2.98) 1.46 (0.77, 2.77) 32 -44 223 1.45 (0.83, 2.52) 1.34 (0.76, 2.35) 1.13 (0.60, 2.14) 35 - 49 219 1.36 (0.79, 2.33) 1.28 (0.74, 2.22) 1.21 (0.65, 2.26)

58-67 224 1.41 (0.79, 2.51) 1.24 (0.69, 2.23) 1.06 (0.55, 2.05) 44 - 59 219 1.53 (0.88, 2.65) 1.37 (0.78, 2.41) 1.02 (0.54, 1.93) 49 - 62 223 1.32 (0.77, 2.28) 1.11 (0.64, 1.95) 0.90 (0.47, 1.72)

>67 219 1.24 (0.69, 2.23) 1.07 (0.56, 2.00) 1.00 (0.51, 1.96) >59 223 0.97 (0.54, 1.76) 0.87 (0.46, 1.64) 0.78 (0.41, 1.51) >62 223 0.84 (0.47, 1.52) 0.73 (0.38, 1.38) 0.67 (0.34, 1.30)

Third Trimester Third Trimester Third Trimester

<39 221 REF REF REF <33 225 REF REF REF <35 224 REF REF REF

39 - 58 223 0.75 (0.43, 1.31) 0.66 (0.37, 1.16) 0.68 (0.35, 1.33) 33 - 44 224 0.72 (0.42, 1.23) 0.74 (0.43, 1.27) 0.63 (0.33, 1.20) 35 - 49 225 0.78 (0.45, 1.36) 0.77 (0.44, 1.35) 0.73 (0.38, 1.42)

58 - 69 224 0.81 (0.47, 1.40) 0.82 (0.47, 1.43) 0.89 (0.46, 1.70) 44 - 61 217 0.68 (0.40, 1.18) 0.75 (0.43, 1.32) 0.70 (0.37, 1.32) 49 - 66 220 1.02 (0.60, 1.73) 1.11 (0.64, 1.91) 1.08 (0.58, 2.01)

>69 223 1.06 (0.63, 1.79) 1.23 (0.69, 2.20) 1.21 (0.65, 2.24) >61 225 0.81 (0.48, 1.36) 0.99 (0.55, 1.80) 0.91 (0.48, 1.71) >66 222 0.87 (0.50, 1.49) 1.08 (0.58, 2.00) 1.01 (0.52, 1.95)

Entire Pregnancy Entire Pregnancy Entire Pregnancy

<49 226 REF REF REF <40 225 REF REF REF <43 225 REF REF REF

49 - 55 223 1.03 (0.64, 1.64) 0.96 (0.60, 1.54) 0.78 (0.45, 1.38) 40 - 45 225 0.73 (0.44, 1.23) 0.68 (0.37, 1.23) 0.34 (0.16, 0.72) 43 - 50 226 1.23 (0.73, 2.06) 1.24 (0.70, 2.19) 0.96 (0.46, 1.98)

55 - 60 224 0.77 (0.47, 1.28) 0.69 (0.39, 1.22) 0.66 (0.36, 1.22) 45 - 53 225 0.60 (0.35, 1.02) 0.46 (0.24, 0.90) 0.23 (0.10, 0.51) 50 - 56 223 0.83 (0.47, 1.44) 0.72 (0.36, 1.47) 0.53 (0.23, 1.22)

>60 218 1.56 (0.61, 4.05) 0.82 (0.28, 2.39) 0.86 (0.29, 2.55) >53 216 0.60 (0.35, 1.03) 0.45 (0.22, 0.93) 0.26 (0.11, 0.56) >56 217 0.78 (0.44, 1.38) 0.63 (0.29, 1.37) 0.49 (0.20, 1.18)
a Unadjusted model; b Model adjusted by infant sex, maternal age, parity, and cohort; c Model adjusted by infant sex, maternal age,  cohort, calf circumference, and smoking during pregnancy

Citywide Average Method Nearest Monitor Method Inverse Distance Weighting

First Trimester First Trimester
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Table III-5. Crude and adjusted odds ratios (OR’s) and 95% confidence intervals (CI’s)  for risk of preterm birth compared with the 

lowest exposure level of O3 estimated by the citywide average, nearest monitor, and inverse distance weighting method. 

 

Unadjusteda Adjustedb Adjustedc Unadjusteda Adjustedb Adjustedc Unadjusteda Adjustedb Adjustedc

Quartiles N  OR%95CI  OR%95CI  OR%95CI Quartiles N  OR%95CI  OR%95CI  OR%95CI Quartiles N  OR%95CI  OR%95CI  OR%95CI

First Trimester First Trimester First Trimester

<62 220 REF REF REF <70 222 REF REF REF <69 222 REF REF REF

62-72 225 0.94 (0.56,1.59) 0.84 (0.50, 1.44) 1.16 (0.63, 2.13) 70-80 223 1.38 (0.81, 2.34) 1.46 (0.84, 2.50) 1.94 (1.04, 3.58) 69-77 223 1.07 (0.63, 1.79) 1.09 (0.64, 1.83) 1.15 (0.63, 2.11)
72 -79 223 0.92 (0.54, 1.55) 0.80 (0.47, 1.38) 0.91 (0.49, 1.71) 80-90 224 0.83 (0.47, 1.49) 0.83 (0.46, 1.49) 0.93 (0.46, 1.88) 77-86 223 0.82 (0.48, 1.41) 0.82 (0.47, 1.42) 0.91 (0.49, 1.70)

>79 223 0.62 (0.35, 1.10) 0.57 (0.31, 1.04) 0.67 (0.34, 1.31) >90 222 1.04 (0.60, 1.82) 1.06 (0.60, 1.90) 1.16 (0.60, 2.24) >86 223 0.63 (0.35 1.11) 0.59 (0.32, 1.07) 0.66 (0.34, 1.26)

Second Trimester Second Trimester Second Trimester

<62 221 REF REF REF <70 222 REF REF REF <69 223 REF REF REF

62-72 224 1.19 (0.69, 2.02 1.08 (0.63, 1.86) 1.13 (0.61, 2.12) 70-80 224 1.07 (0.62, 1.84) 1.09 (0.62, 1.90) 1.34 (0.71, 2.54) 69-77 222 1.05 (0.60, 1.81) 1.03 (0.59, 1.81) 1.23 (0.65, 2.36)

72 -81 223 0.99 (0.57, 1.72) 0.84 (0.47, 1.51) 0.73 (0.37, 1.46) 80-90 222 1.08 (0.62, 1.87) 1.01 (0.57, 1.75) 1.12 (0.58, 2.17) 77-86 223 1.24 (0.73, 2.12) 1.08 (0.62, 1.89) 1.17 (0.61, 2.28)

>81 223 0.87 (0.49, 1.54) 0.77 (0.41, 1.42) 0.79 (0.39, 1.52) >90 223 0.92 (0.52, 1.60) 0.85 (0.46, 1.55) 0.92 (0.46, 1.82) >86 223 0.81 (0.45, 1.44) 0.76 (0.42, 1.42) 0.85 (0.42, 1.71)

Third Trimester Third Trimester Third Trimester

<62 222 REF REF REF <70 222 REF REF REF <69 222 REF REF REF

62-72 223 1.25 (0.72, 2.17) 1.41 (0.80, 2.47) 1.31 (0.66, 2.58) 70-80 223 0.74 (0.42, 1.31) 0.84 (0.46, 1.51) 0.92 (0.46, 1.83) 69-77 223 0.92 (0.59, 1.60) 1.01 (0.57, 1.81) 0.98 (0.49, 1.96)

72 -81 223 1.04 (0.59, 1.82) 1.19 (0.64, 2.19) 1.07 (0.53, 2.18) 80-90 225 1.10 (0.64, 1.85) 1.24 (0.70, 2.16) 1.36, (0.70, 2.64) 77-88 223 0.96 (0.55, 1.66) 1.15 (0.62, 2.11) 1.13 (0.55, 2.31)

>81 223 1.12 (0.64, 1.96) 1.53 (0.77, 3.06) 1.35 (0.64, 2.87) >90 221 0.93 (0.54, 1.61) 1.07 (0.57, 2.02) 1.11 (0.55, 2.25) >88 223 1.03 (0.60, 1.77) 1.32 (0.69, 2.55) 1.27 (0.60, 2.70)

Entire Pregnancy Entire Pregnancy Entire Pregnancy

<68 222 REF REF REF <72 223 REF REF REF <72 222 REF REF REF

68-72 223 1.11 (0.66, 1.86) 1.17 (0.64, 2.12) 1.11 (0.52, 2.38) 72-80 222 0.85 (0.48, 1.50) 0.87 (0.49, 1.53) 0.86 (0.44, 1.66) 72-77 223 1.67 (0.97, 2.86) 1.76 (1.01, 3.07 2.08 (1.07, 4.08)

72 -76 223 0.89 (0.52, 1.53) 0.74 (0.35, 1.59) 0.73 (0.29, 1.78) 80-88 223 1.28 (0.76, 2.16) 1.33 (0.77, 2.28) 1.33 (0.72, 2.46) 77-83 223 1.13 (0.64, 2.01) 1.18 (0.63, 2.22) 1.11 (0.52, 2.37)

>76 223 0.65 (0.37, 1.16) 0.46 (0.21, 1.05) 0.41 (0.16, 1.06) >88 223 0.81 (0.46, 1.43) 0.79 (0.42, 1.48) 0.71 (0.35, 1.41) >83 223 1.04 (0.58, 1.87) 0.97 (0.48, 1.93) 1.11 (0.51, 2.41) 
a Unadjusted model; b Model adjusted by infant sex, maternal age, parity, and cohort; c Model adjusted by infant sex, maternal age,  cohort, calf circumference, and smoking during pregnancy

Citywide Average Method Nearest Monitor Method Inverse Distance Weighting
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Table III-6. Odds ratios (OR’s) and 95% confidence intervals (CI’s) for risk of preterm 

birth per interquartile range increase in air pollution in Mexico City (1994-2004), 

using three different exposure metrics. 

 

 
 

  

        Model 1a           Model 2b           Model 3c

Pollutant Method IQR OR (95% CI) OR (95% CI) OR (95% CI)

PM10 (µg/m3) CWA 26.41 0.89 (0.65, 1.23) 0.79 (0.56, 1.12) 0.81 (0.56, 1.18)

NM 26.41 0.85 (0.62, 1.14) 0.79 (0.57, 1.09) 0.80 (0.57, 1.12)

IDW 24.69 0.85 (0.63, 1.15) 0.78 (0.56, 1.07) 0.79 (0.56, 1.11)

O3 (ppb) CWA 15.81 0.76 (0.55, 1.07) 0.73 (0.51, 1.04) 0.75 (0.51, 1.09)

NM 19.97 0.93 (0.72, 1.20) 0.91 (0.70, 1.19) 0.90 (0.68, 1.21)

IDW 16.11 0.81 (0.61, 1.07) 0.79 (0.59, 1.05) 0.82 (0.60, 1.12)

PM10 (µg/m3) CWA 25.92 1.10 (0.78, 1.54) 0.97 (0.67, 1.39) 0.94 (0.63, 1.40) 

NM 26.91 0.99 (0.72, 1.36) 0.93 (0.66, 1.31) 0.87 (0.60, 1.25)

IDW 26.40 0.98 (0.70, 1.37) 0.90 (0.62, 1.30) 0.85 (0.57, 1.26)

O3 (ppb) CWA 18.21 0.90 (0.64, 1.28) 0.82 (0.56, 1.22) 0.80 (0.52, 1.23)

NM 20.44 0.95 (0.73, 1.23) 0.90 (0.68, 1.19) 0.92 (0.68, 1.24)

IDW 17.88 0.92 (0.69, 1.23) 0.86 (0.63, 1.17) 0.88 (0.62, 1.24)

PM10 (µg/m3) CWA 30.12 1.11 (0.78, 1.58) 1.13 (0.79, 1.63) 1.16 (0.78, 1.72)

NM 27.96 0.92 (0.67, 1.27) 1.02 (0.71, 1.45) 0.98 (0.67, 1.43)

IDW 30.71 0.97 (0.68, 1.39) 1.07 (0.71, 1.60) 1.03 (0.67, 1.59)

O3 (ppb) CWA 18.37 1.05 (0.74, 1.49) 1.28 (0.82, 1.99) 1.18 (0.73, 1.91)

NM 19.97 0.96 (0.74, 1.25) 1.00 (0.74, 1.35) 0.98 (0.71, 1.32)

IDW 18.24 1.02 (0.76, 1.37) 1.12 (0.79, 1.61) 1.07 (0.73, 1.58)

PM10 (µg/m3) CWA 10.05 1.04 (0.81, 1.33) 0.91 (0.67, 1.22) 0.92 (0.67, 1.26)

NM 12.34 0.87 (0.67, 1.13) 0.83 (0.60, 1.13) 0.78 (0.54, 1.09)

IDW 12.93 0.87 (0.65, 1.17) 0.75 (0.50, 1.13) 0.70 (0.44, 1.09)

O3 (ppb) CWA 8.06 0.85 (0.65, 1.11) 0.75 (0.51, 1.48) 0.67 (0.42, 1.07)

NM 16.56 0.91 (0.68, 1.21) 0.91 (0.68, 1.21) 0.87 (0.61, 1.25)

IDW 11.25 0.87 (0.66, 1.14) 0.81 (0.58, 1.13) 0.81 (0.55, 1.17)
a Unadjusted model; b Model adjusted by infant sex, maternal age, parity, and cohort; c Model adjusted by infant sex, 

maternal age,  cohort, calf circumference, and smoking during pregnancy. CWA=Citiwide Average; NM=Nearest Monitor;

 IDW=Inverse Distance Weigihting

First Trimester

Second Trimester

Third Trimester

Entire Pregnancy
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CHAPTER IV 

 

 

 

AIR POLLUTION AND PRETERM BIRTH IN MEXICO CITY, MEXICO: 

EFFECT MODIFICATION BY BONE LEAD 

 

 

 

 

INTRODUCTION 

 

The rapid demographic and industrial growth that Mexico City has experienced 

in the last decades has been reflected in the environmental problems experienced in the 

metropolitan area. During 1985, the government began efforts to reduce lead in 

gasoline and ultimately by 1991 lead had been phased out of all the gasoline sold in 

the metropolitan area (Driscoll, Mushak et al. 1992). Other main sources of lead 

exposure include paints, glazed-ceramic pottery, and traces of lead that are present in 

air from industrial or other emission sources. Environmental lead exposure has been a 

problem for the general population in Mexico City, especially susceptible populations 

such as children, pregnant women, and the elderly (Romieu, Palazuelos et al. 1994). 

Moreover, lead exposure has been associated with female reproductive outcomes and 

certain susceptible windows in pregnancy that are crucial for the developing fetus have 

been implicated as the exposure periods of concern (Andrews, Savitz et al. 1994; 

Tellez-Rojo, Hernandez-Avila et al. 2004; Cantonwine, Hu et al. 2010). 

There are two main routes, inhalation and ingestion, through which individuals 

are exposed to lead,. Both routes aid on the absorption of the contaminant which is 
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sequestered primarily by red blood cells (Smith, Osterloh et al. 1996). The fraction of 

lead that has been thought to be biologically available to the developing fetus is 

present in blood plasma. Thus, the use of whole blood lead concentrations as a proxy 

for acute exposures may not represent exposures that may affect pregnancy due to its 

short half-life (Smith, Ilustre et al. 1998; Tellez-Rojo, Hernandez-Avila et al. 2004; 

Popovic, McNeill et al. 2005). During pregnancy, bone demineralization occurs at a 

more rapid rate allowing for the release of lead into circulation, thus contributing to 

the body burden of lead from bone reservoirs (Silbergeld 1991; Gulson, Jameson et al. 

1997; Riess and Halm 2007). Bone lead levels measurable in the patella and tibia 

represent accumulation over years to decades and thus represent a biomarker of a 

chronic exposure  that becomes more bio-available during pregnancy. This potential 

route of exposure and the presence of high levels of air pollutants simultaneously in 

Mexico City may present a risk for developing infants during critical stages in 

pregnancy. 

Outdoor air pollution and its constituents have been shown to be a problem for 

megacities in the developing world, especially Mexico City with its rapidly growing 

population. Outdoor air pollutants have been associated with different reproductive 

health outcomes such as intrauterine growth restriction (IUGR) (Maisonet, Correa et 

al. 2004; van den Hooven, Pierik et al. 2011), low birth weight (LBW) (Wilhelm and 

Ritz 2003; Salam, Millstein et al. 2005; Bell, Ebisu et al. 2007), and preterm birth 

(Huynh, Woodruff et al. 2006; Llop, Ballester et al. 2010; Chang, Reich et al. 2012; 

Le, Batterman et al. 2012).  
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Recent interest in perinatal health outcomes (e.g. preterm birth rates)  has 

sparked new scientific research, as well as recognition from governmental entities and 

the scientific community on the importance of identifying and learning more about 

how environmental toxicants may influence the onset of preterm birth. Although 

associations found between environmental exposures and preterm birth are not 

consistent in their findings, four areas of interest for further research have been agreed 

upon: (1) confounding and effect modification, (2) spatial and temporal exposure 

variations, (3) vulnerable windows of exposure, and (4) multiple pollutants (Woodruff, 

Parker et al. 2009). 

Outdoor air pollution and lead exposure have been found to independently 

affect preterm birth. Lead and air pollution exposures have been shown to activate 

oxidative  stress pathways that can increase biomarkers during pregnancy (Stohs and 

Bagchi 1995; Kelly 2003). If this mechanism is affected this could lead to the early 

onset of parturition causing a premature delivery. The objective of this study is to 

examine whether cumulative lead exposure, as measured in tibia and patella, modifies 

the association between two key air pollutants, particulate matter less than ten microns 

in aerodynamic diameter (PM10) and ozone (O3), and preterm birth. 

METHODS: 

Study Population 

The study population was recruited at three different hospitals in Mexico City 

during 1997 to 2005 as part of the ELEMENT (Early Life Exposure in Mexico to 

Environmental Toxicants) study (http://sitemaker.umich.edu/merg/element) 

(Gonzalez-Cossio, Peterson et al. 1997; Tellez-Rojo, Hernandez-Avila et al. 2004; 

http://sitemaker.umich.edu/merg/element
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Lamadrid-Figueroa, Tellez-Rojo et al. 2007). Participants attending these hospitals are 

from a low to moderate income population and lived in Mexico City metropolitan area 

during the time of their participation in the study. All cohort participants signed an 

informed consent before enrolling in the study. The research protocols were approved 

by the Ethics and Research Committee or Institutional Review Boards of the National 

Institute of Public Health (Cuernavaca, Mexico City), the Harvard School of Public 

Health, the Brigham and Women’s Hospital, the University of California, and 

participating hospitals.  The present analysis was approved by the University of 

Michigan. 

Exclusion criteria for the cohorts included risk factors related to calcium 

metabolism, medical conditions that could cause low birth weight (<2500g), a 

physician's diagnosis of multiple fetuses, preeclampsia, kidney, psychiatric or cardiac 

conditions, gestational diabetes, history of repeated urinary infections, and seizure 

conditions that would require medication (Tellez-Rojo, Hernandez-Avila et al. 2004; 

Hu, Tellez-Rojo et al. 2006; Lamadrid-Figueroa, Tellez-Rojo et al. 2007).  

For the present study, gestational age was determined by the mother’s recall of 

her last menstrual period (LMP) since ultrasound information was not collected at 

participating hospitals. Using the estimated gestational age and the infant’s date of 

birth, the infant’s date of conception was calculated. Preterm birth was defined as live 

births occurring before 38 weeks of gestation. Other variables determined a priori to 

be of interest as potential confounders of the preterm and air pollution association 

were derived from questionnaire data. These included maternal age, smoking 
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frequency, educational attainment, marital status, infant sex, and parity. These 

variables have been associated with preterm birth in previous studies  

Additionally, calf circumference, measured during the 10 month post-partum visit to 

the clinics, was used to estimate maternal nutritional status during pregnancy. 

Although other variables, such as body mass index, have been used for this purpose, 

calf circumference was the variable available for the majority of the cohort 

participants. The residences of the women included in this study all were assigned 

geographical coordinates using methods described previously (Chapter III), to enable 

estimation of air pollution exposure according to the assumption that women spend 

most of their time in the region of the city where they live. 

Air Pollution Exposure Metrics 

 

Hourly air pollution data (PM10 and O3) reported by the automated air pollution 

monitoring network in Mexico City were downloaded from 1994-2004. Although the 

network measures concentrations of three other gaseous pollutants, PM10 and O3 were 

chosen because they are the two pollutants that most frequently exceed health-based 

standards in Mexico City and because they exhibit strong spatial gradients across the 

metropolitan area, enhancing contrasts in estimated exposure when residence location 

is taken into consideration. Daily 24-hour averages for PM10 were calculated when at 

least 75% of the hourly data was reported for the contaminant. Daily averages for O3 

were produced by utilizing the 8-hour maximum running average, which corresponds 

to the regulatory standard, using the same rule for missing hours as for PM10. 

Three different exposure assessment methods were developed to estimate daily 

individual exposure to outdoor air pollution using the air monitoring network data: 1) 
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citywide average (CWA); 2) nearest monitor (NM); 3) inverse distance weighting 

(IDW). The CWA method utilizes data from all available reporting monitors to 

calculate a weighted average, the NM method utilizes the closest monitor, determined 

by distance, to the participant’s residence to assign individual exposure, and the IDW 

method bases its predictions on a weighted average in which weights are inversely 

proportional to the square of the distance from the mother’s residence to the air 

pollution monitor. Daily air pollution exposure metrics produced by each method were 

used to calculate concentrations during trimester-specific critical windows of exposure 

during pregnancy.  

Exposure Window Calculation 

Air pollution concentration averages were created for the entire period of 

pregnancy, and first, second, and third trimesters. First trimester periods were defined 

from the date of conception until the 13
th

 week of gestation, second trimester from 14
th

 

week to the 28
th

 week, and third trimester from the 29
th

 weeks until birth. Entire 

pregnancy averages were calculated by using the period of conception as a reference 

start point until the newborn’s delivery. All calculations and subsequent statistical 

analyses were performed using SAS version 9.2 (SAS Institute Inc., Cary NC, USA).  

Maternal Bone Lead Measurements 

 Participant’s bone lead levels were measured using a spot-source 
109

 Cd K-

XRF instrument, at two places in the bones, the mid-tibial shaft and the patella, during 

an approximately one-month postpartum visit to the clinic. Physical principles and 

method specifications have been described in detail elsewhere (Burger, 1990). 

Concentrations with uncertainty levels higher than 10 and 15 µg/g for tibia and patella 
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lead were excluded from the analysis, as it has been done in similar analysis using 

bone lead measurements (Park, O'Neill et al. 2008; Cantonwine, Hu et al. 2010). 

Statistical Analysis 

Descriptive statistics and distributions were examined for the lead biomarkers 

(lead concentrations in patella and tibia), air pollution metrics (PM10 and O3), and for 

the socio-demographic variables. Pearson correlation coefficients were calculated to 

compare the three exposure biomarkers. We used t-test and analysis of variance 

(ANOVA) to evaluate differences among socio-demographic variable categories and 

biomarker lead concentrations. For modeling purposes, separate data sets were created 

to include the individuals with air pollutant metrics by exposure assessment method 

and windows of interest, as well as having available data related to the covariates of 

interest. Four data sets were created for each pollutant/lead biomarker combination: 

(1) PM10 and patella lead levels; (2) PM10 and tibia lead levels; (3) O3 and patella lead 

levels; and lastly (4) O3 and tibia lead levels. To evaluate potential socio-demographic 

difference between excluded and included individuals, p-values were calculated using 

t-test or ANOVA. 

To examine effect measure-modification, two exposure categories (high and 

low exposure) were created for each biomarker. The medians were used to establish 

the cut points for lead concentrations in patella and tibia.  

Logistic regression models were used to evaluate the association between the 

PM10 and O3 exposure metrics and preterm birth by biomarker exposure category, with 

and without adjustment for covariates. Odds ratios from logistic models were 

determined per interquartile range (IQR) increase in air pollutants. Odds ratios were 
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produced for all three exposure assessments methods for each of the four windows of 

interest (first, second, and third trimesters, as well for the entire pregnancy).  

Then, datasets were stratified by the high and low levels of the biomarkers to 

yield stratum-specific OR’s and confidence intervals. Our qualitative criterion for the 

presence of effect-measure modification was that the confidence interval for the low 

stratum did not enclose the point estimate of the OR for the high stratum. Interaction 

terms were based on continuous measures of patella and tibia lead concentrations. 

Other possible interactions between individual covariates of interest and bone lead 

were assessed. 

The following covariates were included:  maternal age, parity, and infant sex. 

We also included an indicator variable for cohort in the model, to accommodate the 

different study aims and data collection protocols for each of the cohorts. Although we 

identified other covariates that were of interest for this study, in order to have 

statistical power, we limited the regression models to fewer covariates of interest.  

This follows a rule of thumb suggestion for logistic regression that no more than one 

independent variable be included per every ten preterm cases in the population 

(Wilson VanVoorhis and Morgan 2007).  However, because more covariates than we 

could use in the regression models were available for the study population, we present 

the descriptive statistics on those.  

RESULTS 

The initial sample available was 2,098 individuals. Our population consisted of 

856 (41%) pregnant women who had complete information on socio-demographic 

variables by different exposure methods, pregnancy windows, and bone lead 
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measurements, for PM10 and O3 exposure concentrations respectively (Table IV-1). 

Table IV-1 shows the included and excluded populations for the patella analysis. The 

included group had a higher preterm birth prevalence (9.1%) compared with 8.0% in 

the excluded population. Calf circumference in the included population were 

significantly higher than in the excluded population. Other socio-demographic 

characteristics were not different between groups.  

Table IV-2 shows median concentrations for each lead exposure biomarker by 

maternal socio-demographic characteristics. Overall, bone lead levels did not vary 

significantly by socio-demographic groups. Patella and tibia levels were significantly 

different when examining maternal age. Women with more than one child also had 

higher lead levels (p-0.06). Significant differences were observed for mother’s calf 

circumference categories. As expected, older women had higher levels of lead in 

patella and tibia, since exposure to airborne lead decreased after the 1997 gasoline 

phase-out.  

Air pollution metrics are shown in Table IV-3. Average PM10 concentrations 

were relatively similar among trimesters. Different exposure methods produced similar 

means and standard deviations for PM10. In contrast, O3 means reported by CWA for 

each trimester and the entire pregnancy period were significantly lower than those 

reported by NM and IDW.   The NM method produced higher exposures and standard 

deviations than the IDW method. 

Correlations between bone lead biomarkers show patella and tibia lead levels 

were moderately correlated (r=0.36) (Data not shown). Median bone lead levels for the 

were 8.1µg/g for patella and 7.7µg/g for tibia. We found no significant associations for 
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bone lead biomarkers, as a continuous or categorical predictor variable, in bivariate 

analyses with preterm birth (Table IV-4).  

The covariate-adjusted associations of air pollution with preterm birth across 

dichotomous categories of bone lead are presented in Table IV-5 and Table IV-6. 

Single multiplicative interaction term between bone lead and air pollution were 

assessed (Table IV-5 and Table IV-6). Neither patella nor tibia lead level significantly 

modified the associations of PM10 exposure and preterm birth, for all methods and 

windows. Similarly, bone lead levels did not modify the associations of O3 with 

preterm birth (Table IV-6). Although all associations with air pollution were not 

significant, the highest point estimates of the OR’s for preterm birth were generally 

seen for third-trimester air pollution exposures with the exception of the O3 exposure 

metrics. Second trimester exposures had effect estimates that were lower than those 

observed for other windows of susceptibility.  

DISCUSSION AND CONCLUSION 

Additionally, we did not find strong evidence of a variation in the risk of 

preterm birth associated with PM10 or O3 exposures when stratifying the population by 

lead concentration categories in patella or tibia. Of the total of three positive, 

significant associations between pollution (O3) and preterm birth in lead-exposure 

stratified analyses, two of these were among the women with lower tibia lead, and one 

among the women with high patella lead.  Although no particular trend was found 

among exposure methods or pregnancy windows, we noticed consistent increases in 

the point estimates for the OR’s for preterm birth across all exposure methods for 

third-trimester exposures. Before putting our findings in context of other related 
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research, we mention strengths and limitations of our work. This is the first perinatal 

epidemiology study that we know of in Mexico City using several different exposure 

assessment approaches for both air pollution and lead. 

 In the absence of quality-controlled and electronically available birth registry 

data from Mexico City, we combined data from three previously conducted studies to 

allow us to take a first look at how lead and air pollution together might impact birth 

outcomes in Mexico City. Because the aim of those previous studies was mainly to 

assess how lead exposure among pregnant women could impact the health and 

development of their babies, the population sample and number of preterm cases were 

low, restricting our power to look at the association of interest. Further, gestational age 

was not ultrasound confirmed.  However, among the strengths of this population, geo-

referencing of the women allowed us to evaluate spatial as well as temporal aspects of 

air pollution exposure. Also, the few findings that were significant associations were 

in the expected direction (that is, higher odds of preterm birth among women more 

highly exposed to pollution). 

Previous research on main effects of lead exposure and birth outcomes has had 

mixed results. Cantonwine et al. (2010) studied the relationship of lead biomarkers and 

gestational age and premature delivery in a subset population of the Mexican cohort 

and found negative associations between blood lead and preterm, but not with bone 

lead. Another study that related bone lead with birthweight found that tibia lead was 

the only biomarker related with birth weight (Gonzalez-Cossio, Peterson et al. 1997).   

Clearly the complex interaction between bone and blood lead and the uncertainties in 

exposure classification for an entire pregnancy when just one or a few blood samples 
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during pregnancy, and one bone-scan post-partum, are available, may play a role in 

these mixed results. 

  In terms of comparing associations across exposure metrics, here again 

sample size limits the ability to draw strong conclusions given the wide confidence 

intervals. In another study, employment of land-use-regression models (LUR) showed 

small confidence intervals when compared with area monitoring data and also showed 

smaller effect estimates considering the spatial resolution and possible reduction of 

exposure misclassification (Brauer, Lencar et al. 2008).    

In spite of the overall null findings of the present study, evaluating 

environmental co-exposures and how they may influence pregnancy outcomes remains 

of critical interest. Lead and air pollution in particular may act through a common 

mechanistic pathway to affect birth outcomes.  Evidence suggests that exposure to air 

pollutants such as PM10 and O3 can impact the production of inflammatory responses 

and oxidative stress (Gomaa, Hu et al. 2002; Kelly 2003; Perera, Tang et al. 2005; 

Alfaro-Moreno, Ponce-de-Leon et al. 2007). Similarly, chronic lead exposure has been 

linked to production of oxidative stress (Grassi, Tell et al. 2007). Increase in 

inflammatory cytokines has been suggested as a pathway for early labor onset. 

Moreover, generation of free radicals by activated inflammatory cells also contributes 

to oxidative stress which can affect the duration of pregnancy. Although there is a 

need for further clarification of the pathways involved, previous evidence that 

smoking increases preterm risk, and tobacco smoke has constituents in common with 

outdoor air pollution, strengthens the biological plausibility of the possible association. 
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This study provided some evidence that a mother’s cumulative lifetime 

exposure to lead may modify the association between O3 concentrations and risk of 

preterm birth, but because of sample size limitations in the present study and the 

paucity of similar research, definitive conclusions on the interaction of these 

environmental toxicants on birth outcomes are not possible at this time. The fact that 

effect estimates tended to be highest for pollution exposures occurring during third 

trimester of pregnancy, a stage of pregnancy when bone resorption is at its highest, 

suggests future research evaluating critical windows of exposure is warranted. 
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Table IV-1. Characteristics of the study population of women in Mexico City (1997-

2004). 

 

 
 

Maternal Characteristics Included % Excludeda % p-value

n n

Total Population (%) 856 100 599 100

Infant Sex 0.69

Male (%) 440 51.4 212 35.4

Female(%) 416 48.6 191 31.9

Missing (%) 196 32.7

Age (years) 0.23

<18 (%) 30 3.5 12 2.0

18-34 (%) 763 89.1 539 90.0

>34 (%) 63 7.4 47 7.8

Parity 0.21

Nulliparous (%) 330 38.6 204 34.0

1-2 (%) 303 35.4 230 38.4

≥3 (%) 223 26.0 165 27.6

Marital Status 0.45

Married (%) 616 72.0 418 69.8

Not Married (%) 240 28.0 178 29.7

Missing (%) 3

Education (years) 0.19

<12 (%) 446 52.2 333 55.6

≥12 (%) 408 47.8 265 44.2

Smoking

No (%) 802 95.7 572 95.4 0.1200

Yes (%) 36 4.3 16 2.7

Missing(%) 11 1.8

Preterm Birth <0.0001

Yes (%) 111 13.0 271 45.2

No (%) 745 87.0 328 54.8

                 Missing (%) 11 1.8

Calf Circumference (cm) 0.55

<32 (%) 168 19.6 44 7.3

32-34 (%) 207 24.2 69 11.5

>34-36 (%) 285 33.3 99 16.5

>36 (%) 196 22.9 67 11.2

Missing (%) 320 53.4

Calf Circumference (cm) Mean(STD) 34.2(3.2) 34.5(3.0) 0.24

Cohort <0.0001

2-BL 360 42.1 101 16.9

2-PL 181 21.1 143 23.9

3-SF 315 36.8 355 59.3
aExcluded: Participants  with miss ing data  (i .e., pol lution exposure metrics  and covariates  

of interest). Preterm birth defined as  bi rths  with <38 weeks  of gestation.
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Table IV-2. Median lead biomarkers by socio-demographic variables for women and 

their infants participating in Mexico City-based cohort studies, 1997-2004. 

 

 

Maternal

Characteristics n Patella (µg/g) p -value n Tibia (µg/g) p -value

Total 856 8.1 671 7.7

Infant Sex 0.1463 0.30

Male 440 7.9 335 7.4

Female  416 8.4 336 7.8

Missing  

Maternal Age (years) <0.0001 0.01

<18  30 0.87 22 1.4

18-34  769 8.0 600 7.7

>34  63 11.7 49 10.4

Parity <0.0001 0.06

Nulliparous 330 5.9 256 6.6

1-2 303 9.1 238 9.0

≥3 223 9.8 177 7.8

Marital Status 0.0854 0.67

Married 616 8.4 488 7.7

Not Married 240 7.4 183 7.6

Education (years) 0.9912 0.99

<12 446 8.1 353 7.6

≥12 408 8.1 316 7.7

Smoking 0.4868 0.13

No 802 8.2 33 7.5

Yes 36 8.9 623 10.5

Preterma 0.2034 0.22

Yes 111 9.1 82 8.0

No 745 8.0 589 7.7

Calf Circumference 

(cm)

<32 168 8.0 <0.0001 138 7.8 0.002

32-34 207 8.2 158 7.1

>34-36 285 8.3 230 8.2

>36 196 8.0 145 7.8

Cohort <0.0001 <0.0001

2-BL 360 7.9 349 7.7

2-PL 181 12.0 154 12.3

3-SF 315 6.2 168 5.2
aPreterm birth defined as  bi rths  with <38 weeks  of gestation.

P -va lue for the di fference among the socio-demographic variable categories .

Lead level biomarkers



  

100 

 

 

Table IV-3. Descriptive statistics of air pollutants exposures during different periods 

of pregnancy for women in Mexico City (1997-2004); n = 856 for PM10 and  O3. 

 

  

Pollutant Mean(SD)a Mediana IQR Mean(SD)a Mediana IQR Mean(SD)a Mediana IQR Mean(SD)a Mediana IQR

PM10_CWA 57.4(17.4) 59.7 26.3 62.1(21.7) 61.7 30.1 59.8(16.3) 66.1 28.7 60.5(10.5) 58.8 21.0

PM10_NM 46.5(18.2) 44.0 26.0 50.5(21.0) 49.9 27.9 50.6(17.3) 54.1 25.0 50.0(12.3) 49.4 15.1

PM10_IDW 50.7(17.5) 49.6 24.6 55.1(21.2) 54.1 30.2 54.4(16.9) 58.0 29.9 54.3(11.6) 53.0 16.8

O3_CWA 78.1(12.1) 76.7 17.2 79.6(13.2) 81.3 25.3 79.4(13.7) 78.4 20.3 79.0(10.0) 77.3 17.5

O3_NM 87.4(18.3) 86.0 25.4 88.4(18.0) 88.1 28.0 87.5(17.0) 86.4 25.3 87.8(14.1) 87.4 21.6

O3_IDW 84.7(14.0) 83.7 19.9 86.1(15.0) 87.3 24.2 85.5(14.5) 84.8 20.9 85.4(11.5) 85.1 18.2
a Units  are in µg/m3 for PM10 and  ppb for O3. CWA=Citywide Average; NM=Nearest Monitor; IDW=Inverse Distance Weighting. SD=Standard deviation;

IQR= interquanti le range. N=902 for PM10; N=1474 for a l l  other pol lutants

1st Trimester 2nd Trimester 3rd Trimester Entire Pregnancy
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Table IV-4. Bivariate analysis showing odds ratios (OR’s) and 95% confidence 

intervals (CI) of preterm birth by bone lead levels, for women in Mexico City, 1997-

2004. Associations with continuous bone lead are expressed per one unit increase in 

bone lead. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Lead Biomarkers n PTB OR (95%CI)

Patella Lead µg/g

≤10 831 REF

>10 831 0.96(0.64,1.43)

Continuous 1,662 1.00(0.98,1.02)

Tibia Lead µg/g

≤9 713 REF

>9 716 1.05(0.68,1.66)

Continuous 1,429 1.01(0.98,1.03)

PTB: Preterm is  defined as  any del ivery <37 weeks  of gestation
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Table IV-5.  Estimated odds ratios (OR’s) and 95% confidence intervals (CI’s) for preterm birth per interquartile range increase in 

PM10 by tibia and patella lead category. 

 

 
 

 

 

 

Method 

Window of 

Exposure

≤ Median 

(n=423)

> Median 

(n=423)

p-value for 

interaction

≤ Median 

(n=333)

> Median 

(n=333)

p-value for 

interaction

OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI)

1st Trimester 1.28 (0.62, 2.60) 0.74 (0.36, 1.53) 0.53 1.31(0.58,2.95) 0.55(0.23,1.36) 0.88

2nd Trimester 0.81 (0.36, 1.84) 0.54 (0.27, 1.08) 0.76 0.42(0.17,1.04) 0.65(0.27,1.54) 0.37

3rd Trimester 1.36 (0.58, 3.20) 1.19 (0.64, 2.22) 0.36 1.90(0.76,4.80) 1.73(0.82,3.65) 0.45

Entire Pregnancy 1.42 (0.68, 3.01) 0.71 (0.43, 1.18) 0.23 1.04(0.51,2.12) 0.82(0.44,1.54) 0.29

1st Trimester 1.10 (0.54, 2.26) 0.76 (0.41, 1.41) 0.67 0.94(0.42,2.10) 0.59(0.27,1.31) 0.61

2nd Trimester 0.63 (0.27, 1.48) 0.60 (0.31, 1.16) 0.90 0.33(0.13,0.86) 0.81(0.38,1.70) 0.15

3rd Trimester 1.08 (0.48, 2.41) 0.98 (0.52, 1.86) 0.42 1.20(0.51,2.84) 1.55(0.69,3.47) 0.81

Entire Pregnancy 0.88 (0.43, 1.80) 0.61 (0.33, 1.14) 0.36 0.44(0.17,1.14) 0.71(0.34,1.49) 0.16

1st Trimester 1.13 (0.56, 2.28) 0.69 (0.35, 1.33) 0.46 1.03(0.47,2.24) 0.53(0.23,1.23) 0.91

2nd Trimester 0.66 (0.27, 1.59) 0.55 (0.27, 1.14) 0.72 0.30(0.12,0.80) 0.77(0.33,1.80) 0.17

3rd Trimester 1.29 (0.49, 3.36) 1.16 (0.58, 2.29) 0.28 1.37(0.52,3.62) 1.99(0.83,4.77) 0.46

Entire Pregnancy 1.01 (0.38, 2.68) 0.54 (0.25, 1.13) 0.26 0.42(0.14,1.25) 0.74(0.31,1.75) 0.20

Al l  models  adjusted for maternal  age, pari ty, infant sex, and cohort. Medians  for patel la  and tibia  were 8.1 µg/g  and 7.7 µg/g, 

respectively. CWA=citywide average; NM= nearest monitor; IDW=inverse dis tance weighting

Patella Pb Tibia Pb

CWA

IDW

NM
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Table IV-6. Estimated odds ratios (OR’s) and 95% confidence intervals (CI’s) for preterm birth per interquartile range increase in O3 

by tibia and patella category. 

 

 
 

Method 

Window of 

Exposure

≤ Median 

(n=689)

> Median 

(n=688)

p-value for 

interaction

≤ Median 

(n=612)

> Median 

(n=612)

p-value for 

interaction

OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI)

1st Trimester 1.19 (0.59, 2.41) 0.85 (0.42, 1.74) 0.41 1.37(0.59,3.16) 0.60(0.24,1.47) 0.29

2nd Trimester 0.73 (0.32, 1.71) 0.55 (0.25, 1.21) 0.58 0.33(0.12,0.89) 0.40(0.14,1.10) 0.97

3rd Trimester 1.13 (0.45, 2.82) 1.70 (0.75, 3.85) 0.74 1.54(0.54,4.33) 1.90(0.67,5.44) 0.85

Entire Pregnancy 1.05 (0.46, 2.41) 0.68 (0.31, 1.50) 0.25 0.62(0.22,1.76) 0.28(0.08,0.92) 0.33

1st Trimester 1.00 (0.56, 1.78) 1.10 (0.66, 1.83) 0.56 1.47(0.77,2.80) 0.82(0.45,1.51) 0.24

2nd Trimester 0.64 (0.34, 1.22) 0.77 (0.47, 1.24) 0.40 0.57(0.30,1.09) 0.64(0.35,1.17) 0.92

3rd Trimester 0.98 (0.50, 1.95) 1.07 (0.61, 1.86) 0.99 1.20(0.57,2.52) 1.29(0.64,2.63) 0.80

Entire Pregnancy 0.77 (0.36, 1.64) 0.89 (0.49, 1.62) 0.58 0.96(0.42,2.20) 0.72(0.36,1.44) 0.48

1st Trimester 1.09 (0.58, 2.04) 1.05 (0.61, 1.80) 0.92 1.52(0.78,2.98) 0.76(0.39,1.47) 0.17

2nd Trimester 0.79 (0.38, 1.64) 0.68 (0.38, 1.21) 0.76 0.50(0.23,1.09) 0.54(0.26,1.13) 0.93

3rd Trimester 1.21 (0.56, 2.56) 1.25 (0.64, 2.41) 0.55 1.56(0.64,3.78) 1.58(0.68,3.70) 0.71

Entire Pregnancy 1.04 (0.47, 2.30) 0.84 (0.46, 1.54) 0.52 1.06(0.43,2.60) 0.62(0.29,1.34) 0.29

Al l  models  adjusted for maternal  age, pari ty, infant sex, and cohort. Medians  for patel la  and tibia  were 8.1 µg/g  and 7.7 µg/g, 

respectively. CWA=citywide average; NM= nearest monitor; IDW=inverse dis tance weighting

Patella Pb Tibia Pb

CWA

NM

IDW
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 CHAPTER V 

 

 

 

CONCLUSIONS 

 

 

This dissertation has developed and compared air pollution exposure 

assessment methods for estimating individual exposure to air pollutants in Mexico 

City during the calendar year of 2008 in 1,000 simulated individuals. It has used three 

of the exposure assessment methods to estimate exposure to air pollutants in a cohort 

of pregnant women recruited from 1994 to 2004 to investigate the association that 

preterm birth has with PM10 and O3. Lastly, making use of information regarding 

chronic exposure to lead, measured in tibia and patella, in the same population, we 

examined whether variation in levels of tibia and patella lead modify the association of 

air pollution and preterm birth. This chapter provides a summary of the findings, as 

well as recommendations and future research directions. 

CHAPTER II CONCLUSIONS 

In chapter two, we found that the four exposure assessment methods yielded 

similar, but not identical, results for the air pollutants examined. In addition, the ranges 

of exposure metrics produced by the methods that incorporated geo-referenced 

location data of individuals were significantly higher in comparison to estimates 

produced by the CWA approach. High correlation coefficients between OK and IDW 

suggest that these two interpolation methods were similarly able to predict spatial 

gradients in concentrations of air pollutants. As far as we know this is the first study to 
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examine differences in air pollution exposure metrics produced by commonly used 

exposure assessment methods in Mexico City. 

Overall, our findings suggest that residential location can enhance perinatal 

epidemiology studies by incorporating temporal and spatial components of air 

pollution that are not seen by more simple methods like spatial averaging. Also, 

ordinary kriging produced very similar exposure metrics when compared with inverse 

distance weighting.  

In order to improve exposure assessment in epidemiological studies looking at 

air pollution and preterm birth, geostatistical interpolation methods that use air 

pollution monitoring network data can be employed. Moreover, temporal and spatial 

data, as well as activity patterns of individuals will help to avoid exposure 

misclassification which could bias the studied association. Nevertheless, one must 

recognize that air pollution methods have their limitations, such as the need to evaluate 

exposure at the personal level.  

Future areas of research include the development of automated statistical 

packages that can help estimate daily variogram parameters with more ease. 

Variogram estimation is very complex, especially when all air pollution monitors do 

not report data at all times (Liao, Peuquet et al. 2006). Also, inclusion of methods that 

combined geographical information systems, meteorological data, and geostatistics 

could improve the estimates developed for individual estimation of air pollutants 

(Pearce, Rathbun et al. 2009).  
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CONCLUSIONS CHAPTER III 

 In chapter three we assessed the association between air pollution and preterm 

birth using several exposure assessment methods (citywide averaging, nearest monitor, 

and inverse distance weighting) to estimate individual level exposure. Overall, this 

study did not provide evidence of an increase in risk for preterm birth among women 

exposed to higher levels of two key pollutants in Mexico City.  We attribute these null 

findings in part to the exposure assessment challenges that individual estimation of air 

pollution from air monitoring data pose, and in part to the limited sample size of our 

population. We did find that effect estimates during individual trimesters increased as 

the exposure assessment method incorporated spatial methods for PM10 exposure. 

Also, we did not find specific trends in exposure windows of major importance for 

preterm birth.  

Future directions involve the identification of specific windows of exposure, 

establishment of longitudinal studies that can delineate the influence of different 

biological pathways in the development of premature labor, assessment of non-

linearity in associations with environmental toxicants, incorporation of time-activity 

patterns which could help in avoiding exposure misclassification of affected 

individuals, and the examination of the relationship that other criteria air pollutants 

may have with preterm birth (Huynh, Woodruff et al. 2006; Ritz, Wilhelm et al. 2007; 

Ritz and Wilhelm 2008). 

 

CONCLUSION CHAPTER IV 

 

 Among the metals, lead exposure has been extensively studied and associations 

have been found for different windows of pregnancy in relation to the onset of preterm 
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birth (Andrews, Savitz et al. 1994; Ettinger, Tellez-Rojo et al. 2004; Cantonwine, Hu 

et al. 2010). Our analysis did not find strong evidence of a variation in the risk of 

preterm birth associated with PM10 or O3 exposures, by lead concentration categories 

in patella or tibia.  

 Future research should be directed at studying different lead biomarkers that 

have been used in previous literature, such as plasma and whole blood lead, as well as 

designing studies that can confirm previous findings (Smith, Hernandez-Avila et al. 

2002; Lamadrid-Figueroa, Tellez-Rojo et al. 2006). This could lead to the 

development of strategies that can help prevent the mobilization of lead from bone 

during conditions of rapid bone turnover such as pregnancy and lactation (Ettinger, 

Tellez-Rojo et al. 2006). 

 Evaluating how multiple environmental toxicants can influence the 

development of a baby and his/her future life course is important because pregnant 

women are exposed to a mixture of contaminants in air, food, water and other media.  

Just as calcium supplementation of the mother can reduce exposure of a developing 

fetus to lead, intake of foods rich in anti-oxidant vitamins may also mitigate harmful 

effects of air pollution. However, the ultimate preventive strategy may be to reduce 

environmental contamination, and interventions such as phasing lead out of gasoline 

and seeking cleaner modes of transport and manufacturing can reduce the burden 

pollution places on our health. 
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