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ABSTRACT

Morphological Inference from Bitext for Resource-Poor Languages

by

Terrence D. Szymanski

Chair: Steven P. Abney

The development of rich, multi-lingual corpora is essential for enabling new types of

large-scale inquiry into the nature of language (Abney and Bird, 2010; Lewis and Xia,

2010). However, significant digital resources currently exist for only a handful of the

world’s languages. The present dissertation addresses this issue by introducing new

techniques for creating rich corpora by enriching existing resources via automated

processing.

As a way of leveraging existing resources, this dissertation describes an automated

method for extracting bitext (text accompanied by a translation) from bilingual doc-

uments. Digitized copies of printed books are mined for foreign-language material,

using statistical methods for language identification and word alignment to identify

instances of English-foreign bitext. After parsing the English text and transferring

this analysis via the word alignments, the foreign word tokens are tagged with English

glosses and morphosyntactic features.

Tagged tokens such as these constitute the input to a new algorithm, presented in

this dissertation, for performing morphology induction. Drawing on previous work on

unsupervised morphology induction which uses the principle of minimum description

xiv



length to drive the analysis (Goldsmith, 2001), the present algorithm uses a greedy

hill-climbing search to minimize the size of a paradigm-based morphological descrip-

tion of the language. The algorithm simultaneously segments wordforms into their

component morphemes and organizes stems and affixes into a paradigmatic struc-

ture. Because tagged tokens are used as input, the morphemes produced by this

induction method are paired with meaningful morphosyntactic features, an improve-

ment over algorithms for unsupervised morphology based on monolingual text, which

treat morphemes purely as strings of letters.

Combined, these methods for collecting and analyzing bitext data offer a pathway

for the automatic creation of richly-annotated corpora for resource-poor languages,

requiring minimal amounts of data and minimal manual analysis.
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CHAPTER 1

Introduction

1.1 Introduction

For many speakers of English, and to a lesser extent, speakers of a handful of

other major global languages, it would be difficult to imagine a life without language

technology. No search engines, no text-message autocorrect, no annoying automated

telephone help lines. Yet for the vast majority of the world’s languages, even some-

thing as basic as a spell-checker is out of reach. There are estimated to be more than

6,000 languages spoken on Earth today, yet language processing software exists for

less than 1% of these languages. Electronic data, but not software, is available for a

slightly larger number of languages, but the vast majority of languages on earth can

be categorized as resource poor: they lack any significant digital presence. This is

a concern not only to speakers of those languages; indeed, many of these languages

have very few speakers, if any, still living. This is a concern to everyone, particularly

linguists, because every language which has ever been spoken by human beings has

something unique to offer to the science of linguistics.

In this dissertation, I address some of the challenges associated with collecting

and processing language data from resource-poor languages (RPLs). Research in

natural language processing (NLP) and computational linguistics (CL), which has

enabled a variety of new language technologies, has primarily focused on English and
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a relatively small number of other widely-used languages. Much of this technology

relies on large quantities of annotated data, such as million-word tagged corpora and

syntactic treebanks, in order to be successful. These types of resources are expensive

to produce, and that cost is part of the reason why NLP research is limited to the

few languages for which such corpora have been created.

To make advances in language processing for resource-poor languages, there are

two separate but related subproblems that must be addressed. The first problem is

that digital data for these languages is either extremely scarce or non-existent, and

therefore it is essential that whatever data does exist is collected and organized in a

digital format that is suitable for machine processing. The second problem is that the

standard statistical NLP techniques do not perform well on small data sets. Therefore,

it is necessary to explore new ways to get the most out of the data that is available.

In this dissertation, I address both of these problems. First, in chapter 3, I investigate

whether existing language resources, such as printed grammars, can be automatically

converted to a structured, electronic, machine-readable format. Scanned books are

plentiful, but the challenge lies in extracting usable information from them, first by

performing optical character recognition (OCR) on the scanned page images, then

by identifying the structure of the material to extract, for instance, words and their

glosses. In chapters 4 and 5, I address the second problem, exploring how these small

collections of bitext can be enriched and analyzed, using a combination of existing

NLP methods and a new algorithm for automatic morphological inference.

It is possible to view these different processing steps as stages in a larger system for

creating rich corpora for RPLs. In the following section, I describe the structure of this

overall system and how the different stages fit together with one another. However,

in the dissertation each chapter addresses its subject more or less independently of

the others. For evaluation purposes, I often use data sources from languages that do

not qualify as RPLs; the reason for this is relatively self-evident: the only languages

2



for which I can obtain suitable data sets are by definition not RPLs!

1.2 Multi-Stage Processing of Electronic Linguistics Texts

The processing steps described in this dissertation can be thought of as compo-

nents in an end-to-end system to collect and analyze linguistic data for resource-poor

languages. At a high level, this system takes bilingual documents as input, and pro-

duces morphological analyses as output. Figure 1.1 illustrates the overall process

and the principle processing stages, showing examples of the types of data that are

involved at each stage. Below is a brief description of these stages.

Stage 1: Document Collection

Output : A document containing instances of bitext

The first step for any type of processing is to collect a data set. In chapter 3, I

discuss how keyword searches can be used to identify relevant books in the University

of Michigan Library’s Digital General Collection. These books include grammars of

foreign languages which have been scanned and have undergone an optical character

recognition process, resulting in an electronic text that is primarily in English, but

contains words and sentences from the foreign language as well.

Stage 2: Bitext Extraction

Input : A document containing instances of bitext

Output : A list of bitext sentences

The optical character recognition process which detects the letters on the page

does not distinguish English text from foreign text. This stage of processing identifies

the foreign words and phrases within the document, and also looks for neighboring

3



Bilingual 
Document

Bitext 
Sentences

Biform 
Tokens

Morphological 
Analysis

Document 
Collection

Bitext Extraction

Alignment & 
Enrichment

Morphological 
Inference

Galli+ “Gaul”.Noun
+a Sg.Subj
omn+ “all”.Adj
+is Sg.Subj

...
...

Gallia est omnis divisa in partes tres ...
All Gaul is divided into three parts ...

Gallia “Gaul” Noun Sg Subj ...
est “be” Verb Sg 3rd ...
omnis “all” Adj Sg Subj ...

...
...

... the famous opening line: Gallia est omnis
divisa in partes tres, “All Gaul is divided into
three parts.”

Figure 1.1: High-level system diagram.
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English text that provides a gloss of the foreign text. The output of this processing

is a collection of foreign sentences and their English translations. Chapter 3 discusses

a statistical method for identifying these translation pairs (bitexts).

Stage 3: Alignment & Enrichment

Input : A list of bitext sentences

Output : A list of word-level biform tokens

In chapter 4, I discuss a method for enriching a bitext corpus by using existing

NLP software. The English side of the bitext is analyzed with a syntactic parser

and morphological analyzer, creating richly-annotated word tokens. Statistical word-

alignment software, used to train machine translation systems, aligns English words

with their foreign equivalents, and the morphosyntactic features are transferred to

the foreign side of the bitext. The resulting output is a corpus of annotated biforms:

tokens consisting of foreign wordforms accompanied by an English translation and

morphosyntactic features.

Stage 4: Morphological Inference

Input : A list of word-level biform tokens

Output : A morphology of the language

Chapter 5 presents a novel algorithm I have designed for morphological inference

using a corpus of annotated biforms as its training data. The morphological inference

process segments each biform in the corpus into a prefix and a suffix, simultaneously

producing a morpheme lexicon and a paradigmatic model of the morphology of the

language.

This multi-stage model illustrates how automatic methods for language processing

can be used to transform an existing resource with limited utility into a machine-
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readable corpus of analyzed, richly-annotated, foreign text. In order for this to work

as an end-to-end process, it will be necessary to improve the quality of data sources

and limit the error rate of each individual stage of processing, something that will

need to be addressed in future work. While this broader picture should be kept in

mind, in the remainder of this dissertation I address each individual processing stage

separately. I do not attempt to carry a single data set through the entire process, as

this would result in an accumulation of noise and would not be suitable for assessing

the performance of each individual component. Instead, each component is evaluated

using whatever data sets were available to me that were most suitable for the given

task.

In the following chapter I discuss related work and provide additional background

and motivation for this research. The three chapters that follow each address a

different component of the system described above, describing how it is implemented

and evaluating its performance. The final chapter summarizes the results of this work

and provides directions for continued research on this topic. Details on the software

and data sets used in this dissertation can be found in the appendices.
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CHAPTER 2

Motivation and Prior Work

2.1 Motivation and Goals

The terms natural language processing and computational linguistics are often

used interchangeably, though the mere existence of the two different terms implies

that there is a distinction to be made. As Abney (2011) points out, judging solely

by its name, one would expect “computational linguistics” to denote a subfield of

linguistics, just as historical linguistics, socio-linguistics, or psycho-linguistics do, or

as computational biology or computational astrophysics denote subfields of biology

and astrophysics respectively. Such an interpretation may not match up well with the

common usage of the term—research published under the computational linguistics

label is often more focused on engineering solutions than linguistic analysis—but I

believe there is an important place for computational linguistics within linguistics.

Data-driven, computational research methods have the potential to lead to important

new discoveries relating to the fundamental linguistic question of how human language

works.

Doing linguistic research in a computational manner requires data, ideally a lot of

data, in an electronic format that is suitable for automated processing. While more

and more linguistic data is being produced in or converted to digital formats every

day, only a small portion of this data exists in machine-readable format. Chapter 3 of
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this dissertation addresses the question of how human-readable electronic documents,

such as the scanned pages of books describing foreign languages, can be converted to

a more usable, machine-friendly format.

For this data to be useful for answering the sorts of questions a linguist would

like to ask, it must be analyzed and annotated. While annotations produced by

trained specialists are ideal, they are expensive to produce. Therefore it is necessary

to look for automatic methods for generating analyses and annotations. Even if the

automatically-generated analyses are less than perfect, it is usually easier to manually

correct an imperfect annotation than to create a new one from scratch. Chapters 4

and 5 of this dissertation discuss my approach to using bitext and statistical word

alignment to generate richly annotated corpora, and for performing automatic mor-

phological analysis on the basis of annotated foreign wordforms.

In many ways, the work in this dissertation is unique, particularly in its use

of digitally scanned grammars as source material and in using bitext as training

material for morphology induction. However, this work is heavily indebted to a vast

body of work on statistical methods for NLP, and it is inspired by other work in the

emerging field of digital language documentation. In this chapter, I discuss some of

this related work, which comes from a variety of fields with different objectives, in

order to provide some context and background for the work discussed in the later

chapters of this dissertation.

2.2 Resource-poor Languages

As previously stated, the goal of the research described in this dissertation is to

enable computational linguistic research on resource-poor languages (RPLs). The

term refers only to these languages’ lack of digital resources; resource-poor languages

are not necessarily endangered, under-studied, or minority languages (although they

may be). In fact, there is little that RPLs have in common other than not being a
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member of the “linguistic 1%”: that handful of languages for which there do exist

substantial quantities of digital data and language-processing software.

Before the internet age, digital text of any language was hard to come by. Clas-

sicists rightly claim to have been pioneers of the electronic corpus frontier; the The-

saurus Linguae Graecae1 was launched in 1972, and at first it required its own hard-

ware, the Ibycus computer created by David Packard, to run (Berkowitz and Squitier,

1986). (Today, the TLG is an online corpus containing virtually every word of Greek

literature written prior to 1453.) However, modern statistical methods for NLP were

made possible by large annotated corpora of English, such as the tagged version of the

Brown Corpus (Francis and Kučera, 1979) released in 1979 (the original, untagged,

version was released in 1964), and then the Penn Treebank in 1993 (Marcus et al.,

1993). Early work on statistical machine translation used English and French as the

languages of study because the 30-million-word Canadian Hansards was the only large

bilingual corpus the researchers could obtain (Brown et al., 1988).

Thanks to the growth of the internet and interest in language technology, the

number of digital corpora available today is comparatively enormous. However, it is

enormous only when compared to the limited corpora of the past, not when compared

to the number of languages that exist on Earth. There is no precise way to define

which languages are “resource rich,” but the number is probably around a few dozen.

Abney and Bird (2010), citing Maxwell and Hughes (2006), put the figure at 20–30

languages. For comparison, the Ethnologue catalogs information for what it claims

are “all of the worlds 6,909 known living languages” (Lewis, 2009).

Figure 2.1 illustrates the number of languages that are supported by a sample

of modern tools and corpora. A treebank is a corpus of sentences accompanied by

syntactic parse trees: because the parse trees must be either manually created or

manually verified, treebanks (like other annotated corpora) are much less common

1http://www.tlg.uci.edu/
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Figure 2.1: Availability of language resources. The main plot shows the num-
ber of languages for which treebanks, parallel corpora (represented by
the Tatoeba database), MT systems (represented by Google Translate,
over the past seven years), and monolingual corpora (represented by
Wikipedia, over the past 12 years) exist. The sub-plot on the right shows
these same numbers as a fraction of all the 6,900 languages listed in the
Ethnologue.

than unannotated corpora. The number of treebanks given in fig 2.1 is an estimate

based on information available online2 and may overstate the truth, since most non-

English treebanks do not achieve the scale of the Penn Treebank. Tatoeba3 is an open,

community-driven database of sentences with translations in two or more languages.

The number of languages in Tatoeba represents something of an upper limit on the

number of languages for which machine translation should be possible: high-quality

MT systems require rather large parallel corpora, whereas Tatoeba includes a large

number of languages but may only have a handful of sentence pairs for some of them.

The Europarl Corpus4 (Koehn, 2005) provides millions of words of parallel text for

eleven European languages, and fairly large amounts of bitext can be found for a

number of other European languages as well as Chinese and Arabic. The number of

2http://en.wikipedia.org/w/index.php?title=Treebank&oldid=379424119
3http://www.tatoeba.org
4http://www.statmt.org/europarl/
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languages supported by Google Translate5 has grown from 4 to 65 over the past few

years, although the data they used to train their models is not necessarily available to

outside researchers. Finally, looking at Wikipedia provides one way of estimating the

number of languages for which monolingual text might be found; while the number of

foreign-language Wikipedias6 grew rapidly at first, it has leveled off at 284 languages,

a number which might with some caution be construed as representing the current

number of digitally-active language communities.

Even 280 languages only amounts to 4% of the 6,909 language estimate. And

while monolingual corpora like Wikipedia are extremely valuable, they are not suffi-

cient to support current methods for building NLP software tools. We can say with

confidence that 99% of the languages of the world count as resource poor. For these

languages, some resources may exist, but nowhere near the scale and availability of

those that exist for resource-rich languages. In order to facilitate computational lin-

guistic research on these languages, emphasis must be placed on exploiting all the

resources that do exist and on coming up with new language processing techniques

that are effective given limited data as input.

2.2.1 Digital Language Resources

It is not the case that resource-poor languages are neglected. Numerous projects

exist to collect, organize, distribute, and preserve data pertaining to these languages,

although only a few make data available in a format conducive to automated pro-

cessing. SIL’s Ethnologue7 (Lewis, 2009) contains basic statistics, information, and

references for 6,909 languages. The Open Language Archives Community8 (OLAC)

lists resources relating to 7,665 distinct languages, although for many languages those

resources amount to basic statistics about the language, and not any actual data from

5http://translate.google.com
6http://en.wikipedia.org/w/index.php?title=List_of_Wikipedias&oldid=485086077
7http://www.ethnologue.com/
8http://www.language-archives.org/metrics/
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the language. However, the primary goal of OLAC is to centralize information about

various data archives, which are generally isolated from one another and do not nec-

essarily make their data publicly available. Thus, while these databases are useful

resources, they do not directly provide the type of primary language data that is

necessary for computational linguistics.

Other projects, however, do contain this type of data. Kevin Scannell’s An

Crúbadán9 project (Scannell, 2007) crawls the web to discover pages written in dif-

ferent languages, and has collected textual data from 473 languages to date. Un-

fortunately, the data he has collected is not publicly available to download, due to

copyright restrictions. The Online Database of Interlinear Text10 (ODIN) has col-

lected 130k examples of interlinear glossed text (IGT) from 1,274 languages, thanks

to the large number of scholarly publications that are available electronically online.

Users of ODIN can find links to the online documents from which each instance of IGT

was obtained, and a subset of the IGT instances are available to view or download

directly through ODIN. The Rosetta Project11 contains documents and recordings

from over 2,500 languages, which are made publicly accessible through the Internet

Archive.12

The Internet Archive is also home to the Text Archive13 and Open Library,14 a

general collection of digitized versions of books in English and other languages. Sim-

ilar resources include Project Gutenberg,15 Google Books,16 the Hathi Trust digital

library,17 and a number of other library digitization projects including the Univer-

sity of Michigan’s own Digital General Collection.18 Although they are not focused

9http://borel.slu.edu/crubadan/
10http://odin.linguistlist.org/
11http://rosettaproject.org/
12http://archive.org/
13http://www.archive.org/details/texts
14http://openlibrary.org
15http://gutenberg.org
16http://books.google.com
17http://www.hathitrust.org/
18http://quod.lib.umich.edu/g/genpub/
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specifically on linguistics-oriented documents, these collections contain millions of

books, some of which (for instance, grammars or dictionaries of specific languages)

contain valuable linguistic data. Chapter 3 discusses in detail how the data from

these scanned books can be extracted for machine processing.

Additional examples of projects aimed at growing the amount of digital language

resources are not too hard to find. Spoken Language Technologies for Under-resourced

languages19 (SLTU) is a workshop for speech technology that focused on Asian lan-

guages in its first year and on African languages in its second year (2010). The

EMILLE project20 (Enabling Minority Language Engineering) extended the GATE

text engineering architecture to be Unicode-compliant and used it to create a 97-

million-word corpus of South Asian languages. More recently, Microsoft announced

its Translator Hub,21 a cloud-based platform where users can upload data for their own

language, then use Microsoft’s back-end to train a machine translation system. Ac-

cording to their website, Translator Hub “[helps] smaller languages thrive by putting

the power to build machine translation systems in the hands of local communities.”

Other projects provide language data, but not necessarily machine-readable data

that is most useful for NLP and CL. The Archive of Indigenous Languages of Latin

America (AILLA)22 includes field recordings with transcriptions and translations,

but no annotation of the foreign text. The data being collected by the Basic Oral

Language Documentation project23 includes recordings of indigenous languages of

Papua New Guinea; a subset of the recordings for each language will be transcribed

and translated as part of the documentation project. These are extremely valuable

sources of language documentation data, but they can only be maximally utilized if

they are made available in an machine-friendly interface and format.

19http://www.mica.edu.vn/sltu/
20http://www.emille.lancs.ac.uk/
21http://hub.microsofttranslator.com/
22http://www.ailla.utexas.org/
23http://www.boldpng.info/
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2.2.2 Cross-lingual, Data-Driven Research

While collecting and organizing digital data from all of these languages is itself

a significant task, the main motivation behind creating these digital resources is

to enable research. While any given corpus is useful for performing research on

one particular language, a large-scale, multi-lingual corpus is useful for performing

research on whole language families and language as a whole. One of the stated goals

of the RiPLes project24 (Information Engineering and Synthesis for Resource-poor

Languages, of which ODIN is a sub-project) is “to perform cross-lingual study on a

large number of languages to discover linguistic knowledge”. This seems to parallel

the sentiments of Abney and Bird (2010) and their vision of a “a new science of

empirical universal linguistics” based on a universal corpus of linguistics meant to

include data from all of the world’s languages.

Not waiting for a universal corpus, Daumé III and Campbell (2007) performed

a simpler type of cross-lingual investigation using the WALS25 (World Atlas of Lin-

guistic Structures) database. The authors used the database, which includes 141

typological features for 2,650 languages (although not every feature is represented

for every language), to perform automatic inference of the interrelationships between

typological features (things like, e.g., “if a language has Object-Verb word order,

then it also has postpositions”). Their induced list of typological implications largely

matched those previously identified by linguists. In a another study, Iwata et al.

(2010) used a non-parallel, multilingual text corpus to automatically infer common

syntactic structures across languages; this work has obvious implications for research

on the presence of universal grammar. These projects have not yet produced any

major new discoveries, but the inferences drawn by these automated approaches are

valid (they match traditional linguistic analyses), and this line of work shows the in-

24http://faculty.washington.edu/fxia/riples/
25http://wals.info/
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terest and the potential for cross-lingual statistical methods as an avenue for research

on linguistics.

From an engineering standpoint, multilingual resources (as opposed to monolin-

gual resources) can also improve performance of NLP systems. For example, Berg-

Kirkpatrick and Klein (2010) demonstrated that learning dependency parsers based

on multilingual (but not parallel) training data can improve performance over mono-

lingual data. The authors’ model assumed a prior distribution over the parameters

(in the probabilistic sense, not the Chomskyan sense) of grammars for eight languages

(English, Dutch, Danish, Swedish, Spanish, Portuguese, Slovene, and Chinese). When

training the grammar, the parameters of closely-related languages (as determined by

a pre-defined phyolgeny) are coupled with one another. By treating all the languages

as if they belonged to a single family (ignoring the fact that in reality these languages

range from closely-related to completely unrelated), the average performance of the

parsers for all languages improved by 10% over parsers trained on monolingual data.

By additionally incorporating phylogenetic information about the family relation-

ships between languages (e.g. English is closely related to Dutch, but is not related

to Chinese), the performance improved 21%. That is, by using more data from more

languages, it is possible to improve the performance of a parser for any single given

language.

These two studies are just a sample of some of the potential benefits that could be

gained, both in scientific research on the nature of language and in the development

of NLP technology, as a result of increased electronic resources from a broad base of

diverse languages. In a sign that the linguistics community recognizes the usefulness of

freely available data, at its 2010 Business Meeting the Linguistic Society of America

passed its Resolution on Cyberinfrastructure26 which encourages making linguistic

data (full, annotated data sets) public for research (to the fullest extent possible given

26http://lsadc.org/info/lsa-res-cyberinfrastructure.cfm
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the nature of the data). I consider this type of data accessibility a key component

to the future of linguistics research and through my dissertation research I hope to

improve both the quality of data that is available for research and the quality of

methods used to analyze such data.

2.3 Related Work in NLP and CL

The processing described in chapters 3 through 5 employs a combination of ex-

isting NLP tools and new techniques designed specifically for this dissertation. The

following sections summarize prior work that is related, either directly or indirectly,

to the present work.

2.3.1 Bitext Discovery

Chapter 3 of the dissertation addresses the problem of extracting bitext from

bilingual documents. This is a novel task, particularly in terms of the granularity

of the data: the task in this dissertation is to classify individual words or sentences

within a document, whereas prior work almost exclusively works on classifying whole,

monolingual documents. While there is no directly-comparable prior work, there are

some similar efforts that deserve mention.

ODIN is a similar project in that it detects instances of IGT within a text. How-

ever, IGT is easily identified by its format (three sequential lines of tabular text,

often containing characteristic abbreviations in the middle line), and the creators of

ODIN exploit this by using templates and other formatting features to automati-

cally identify instances of IGT (Lewis and Xia, 2010). Bitext, as opposed to IGT,

may appear embedded within a paragraph, with few formatting cues to distinguish

it from the surrounding text. Therefore the approach discussed in chapter 3 is based

on text content rather than formatting, identifying foreign-language text and possible

translations.
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ODIN researchers also address the problem of identifying the language of instances

of IGT within a document (Xia et al., 2009); their approach combines contextual

features within the document (such as the name of a language mentioned in the title or

near the IGT) with character and morph ngram features. Xia et al. (2009) also point

out the unseen language problem; standard approaches to language ID fail when the

target language is outside of the set of languages used to train the classifier. Statistical

learning approaches to language ID can achieve high classification accuracy even on

documents that are relatively small, for instance hundreds of words (Kruengkrai et al.,

2006), but they require a training set containing text from each language. No prior

work to my knowledge addresses the question of identifying the language of individual

words within a multilingual document.

Previous efforts to automatically discover parallel text on the web, summarized

well by Resnik and Smith (2003), are conceptually relevant. One approach works

by identifying documents from the same domain that closely resemble one another

in terms of HTML structure, ignoring the textual content of the pages. Another

approach uses a bilingual lexicon to look for documents from the same site that have

a similar textual content. These two approaches may be used separately or combined.

At a high level, the idea of looking for parallelism in structure and content apply to the

work described in chapter 3 of this dissertation. However, due to major differences

in the data (bilingual sentences within unstructured text documents, compared to

monolingual documents in structured HTML format) and different assumptions about

the existence of additional resources (I assume no bilingual or monolingual sources

exist other than the document being classified), the actual algorithms and procedures

described in this dissertation are unrelated to those used in prior web-as-corpus work.
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2.3.2 Structural Analysis using Bitext

The feature transfer process described in chapter 4 of this dissertation is based

on the “align and transfer” methodology initiated by Yarowsky et al. (2001). In

the align and transfer methodology, parallel bilingual text (bitext) is used, with the

assumption that one of the two languages involved is a reference language for which

language processing tools exist (for example, English). The English text can be parsed

and analyzed using existing tools, then the English words aligned with the foreign

words using standard alignment tools from machine translation like GIZA++ (Och

and Ney, 2003). Then, the linguistic features from the English side (e.g. part-of-

speech tags, grammatical roles, phrase structure) are transferred via the alignment to

the foreign words. This effectively produces labeled data which can be used to train

language processing tools for the foreign language.

In their work, Yarowsky et al. (2001) used the align and transfer methodology

to create a number of NLP tools for non-English languages, including noun-phrase-

bracketers, part-of-speech taggers, named-entity taggers, and lemmatizers for French,

Chinese, Czech, and Spanish. The performance of the French stemmer was extremely

high, but the Czech performance was significantly lower; the authors cited poor align-

ment between English and Czech (which is a highly-inflecting language) as one source

of error. This approach has also been shown to work for lemmatizing verbs, nouns,

and adjectives in German, using a combination of English glosses from aligned bitext

and edit distance measured between German word forms (Moon and Erk, 2008). One

major difference between this work and the present work is the scale of the corpus:

Yarowsky et al. (2001) used corpora of roughly 2 million words per language, whereas

the corpora used in this dissertation are on the scale of tens of thousands of words.

There is a chicken-and-egg problem in which word alignments with English text

can help train morphological analyzers for foreign languages, but at the same time

morphological segmentation of the foreign language can help improve word align-
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ments. This circularity can be side-stepped if segmentation and alignment are both

jointly learned in a single process. This is the approach taken by Snyder and Barzi-

lay (2008), who use sampling techniques to estimate the parameters of a Bayesian

model that generates parallel text by drawing from a set of “abstract morphemes”, i.e.

pairs of morphemes in more than one language that accomplish the same or similar

function. In their work, Snyder and Barzilay discovered that learning bilingual mor-

phological models in this way improved performance significantly over monolingual

models. Furthermore, their approach was effective even for unrelated language pairs

(e.g. English and Aramaic) although performance was better for related language

pairs (in their study, Heberew, Arabic, and Aramaic). Another interesting compo-

nent of their approach was their choice of data: starting with a statistical word-level

(actually, phrase-level) alignment, they selected pairs of recurring short phrases that

were always translated the same way, and which occurred more than four times in

the corpus. It seems likely that their careful selection of training data played a role

in the effectiveness of their learning algorithm, and that is something to be emulated.

In related work, ODIN researchers (Xia and Lewis, 2007; Lewis and Xia, 2009)

used an align-and-transfer methodology to enrich IGT by transferring parse informa-

tion from the English translation to the foreign text. Rather than using statistical

alignments, the interlinear layer itself provides a form of alignment. The enriched

IGT was then used to automatically discover typological features, like canonical word

order, of the languages in the database.

2.3.3 Morphological Inference

In chapter 5 of this dissertation, I investigate computational methods for morphol-

ogy induction, the automated learning of the morphological system of a language.

Morphological analysis has a rich history in computational linguistics research, as

morphology is an important component of the analysis of many languages (the ex-
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ceptions being isolating languages which exhibit little or no morphology). However,

current approaches to automated morphological analysis are not well suited to appli-

cations involving languages with limited resources. Furthermore, the goals of previous

work on morphological analysis do not necessarily align with the goals of digital lan-

guage documentation. Therefore, I address the question of how existing approaches

can be improved upon, making maximal use of available data, in order to facilitate

the rapid development of language processing tools for under-resourced languages.

There are two distinct ways in which automated morphological analysis can be

achieved. In the rule-based approach, morphological rules are manually composed

for a specific language, and these rules are applied to analyze textual input. In the

learning approach, data is analyzed by a learning algorithm to automatically produce

a grammar and an analyzer.

Systems based on language-specific rules or morphological descriptions can be

very effective and accurate, although they can require some time to develop, particu-

larly for morphologically complex languages. For example, the TreeTagger system27

consists of a generic algorithm for tagging text combined with a language-specific

parameter file specifying the part-of-speech tags and corresponding forms (Schmid,

1994). The TreeTagger website includes user-contributed, downloadable morpholog-

ical grammars for thirteen different languages: Bulgarian, Chinese, Dutch, English,

French, Old French, German, Greek, Italian, Portuguese and Galician, Russian, Span-

ish, and Swahili. Similarly, PC-KIMMO28 provides a morphological parser, and users

can specify their own language-specific lexicon and rules. Likewise, XFST and its

open-source counterpart, HFST29 (Helsinki Finite-State Transducer Technology), al-

low users to write rule-based morphologies and phonologies and compile them into

efficient finite-state automata.

27http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/
28http://www.sil.org/pckimmo/
29http://www.ling.helsinki.fi/kieliteknologia/tutkimus/hfst/
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If the morphology of a language is known, and the user is willing to spend the

time specifying the morphological rules in the format required by the program (which

requires not only adopting standard conventions for inputting the rules, but possibly

also theoretical requirements for the formulation of the rules), then these programs

can be very useful. Specifying a list of morphological rules is much easier than writing

an entire morphological analyzer, and these programs have been shown to achieve high

accuracy.

However, in some cases it may not be possible, practical, or desirable to use one

of these programs. If no expert in the language is available (or if the grammar of the

language is simply unknown), or if time and resources are limited, then it may not

be possible to create the necessary rule specifications that these programs require.

If other resources in the language exist, such as texts that have been scanned or

manually entered into an electronic format, then the learning approach can be used:

rather than manually specifying the morphological rules for a language, these rules

are learned automatically by a machine learning algorithm.

Machine learning algorithms are often classified by the degree of “supervision” that

they require. A supervised morphological analyzer would require a certain amount

of labeled data to train on: for example, a corpus in which inflected forms have been

manually broken into morphemes, and perhaps each morpheme has been labeled with

a grammatical tag. IGT is an example of this type of labeled data. Inflected forms

that have been organized into paradigms can also be viewed as labeled data suitable

as input for supervised learning algorithms. Unsupervised algorithms, on the other

hand, require no labeled data as input. Instead, they analyze unannotated text to

discover patterns that exist. Semi-supervised methods are designed to take advantage

of a combination of labeled and unlabeled data.

Unsupervised morphological induction can be viewed as a grammatical inference

problem, with implications for learnability theory as well as practical applications for
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language processing. It has been shown that infants can learn to segment an acoustic

speech stream into words (sequences of syllables) based purely on statistical patterns

in the data (i.e. word-internal vs. word-boundary syllable transition frequencies);

no additional acoustic cues or environmental cues (i.e. word-meaning) are required

(Saffran et al., 1996). This parallels the unsupervised learning scenario, where only

plain text, with no indication of the true morpheme boundaries or word meanings (or

even parts of speech) is available. Likewise, machine learning algorithms can use the

inherent structural patterns in language data to build theories about how the language

works. Although focused more on syntactic structure than morphology, the Ph.D.

theses of Carl de Marcken (de Marcken, 1996) and Dan Klein (Klein, 2005) provide

good descriptions of the unsupervised grammar induction problem and algorithmic

approaches to solving it.

The state of the art for unsupervised morphological inference is represented by two

publicly available software implementations. Linguistica30 (Goldsmith, 2001) uses a

minimum description length framework to discover stems and signatures. A signature

is the set of affixes that co-occur with a given stem: for example, in a given corpus

the English stem walk might have the signature (–s, –ed, –ing, –er). Goldsmith’s

algorithm segments a text by essentially finding the most compact encoding of the

corpus; a dictionary of stems and affixes is constructed, and each token in the corpus

is encoded with pointers to its stem and affixes in the dictionary. This approach

is effective, and Goldsmith claims that as little as 5,000 words of text from English

is sufficient to produce an acceptable analysis. Morfessor, maintained by the Mor-

pho project31 at the Helsinki University of Technology, is another software package

for unsupervised morphological analysis (Creutz and Lagus, 2005). Also based on

the minimum-description-length principle, current versions of the Morfessor software

incorporate improvements on the heuristic search that drives the learning process.

30http://linguistica.uchicago.edu/
31http://www.cis.hut.fi/projects/morpho/
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Morfessor is used as the baseline for evaluation of entries to the Morpho Challenge,32

a contest for unsupervised morphology induction systems held annually since 2005.

Although they are both interesting (showing to what extent language learning is

possible from distributional information alone) and practical (requiring only mono-

lingual text), purely unsupervised approaches to morphological analysis are unlikely

to be satisfactory for linguistic analysis. Even if the segmentation itself were perfect

(which is unlikely), other tasks such as glossing morphemes, disambiguating inflected

forms, or identifying allomorphs, are very difficult if not impossible in an unsuper-

vised, monolingual context. As a practical matter, improved performance can often

be obtained by semi-supervised learning, in which a relatively small amount of la-

beled data is combined with unlabeled data. Using semi-supervised methods, one can

avoid the high costs associated with fully-supervised learning (i.e. the costs of manu-

ally annotating a large corpus of data), while improving on the performance of fully

unsupervised learning. Much work exists in morphological analysis that fit into the

semi-supervised category (although variously referred to as “minimally supervised”

or “partially supervised”), and these differ both in the type of data they incorporate

and the manner in which that data is used.

Morphological analysis is rarely an end in itself. Stemming and part-of-speech

tagging, two common examples of shallow morphological analysis, may be used as

components in larger language processing tasks, such as machine translation or syn-

tactic parsing. Also, when building a corpus of linguistic data for further analysis

(either automatic or manual), labeling the morphemes of an inflected form can make

it much easier to later find relevant data items to support a certain analysis. In the

following sections, I discuss the applications of morphology in machine translation

and in language documentation.

32http://www.cis.hut.fi/morphochallenge2010/
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2.3.4 Morphology in Machine Translation

A significant drawback of traditional statistical machine translation systems is

that they are essentially lexical: fully-inflected words or phrases are translated into

other fully-inflected words or phrases. Machine translation into a morphologically rich

language from a morphologically poor language is generally harder than vice-versa,

in part due to the uncertainty introduced by pronoun coreference when generating

morphological agreement (Koehn, 2005; Minkov et al., 2007). Performance can be

improved by using syntactic features (e.g. word-order) from the morphologically

poor source language to generate morphological features for the rich target language

(Minkov et al., 2007). However, this required pre-existing morphological analyzers

for the languages (Russian and Arabic) involved.

Factored translation models (Koehn and Hoang, 2007) improve upon traditional

word-based or phrase-based translation by incorporating lexical factors, such as part

of speech tags or morphological analysis of word tokens. This improves translation

performance in part by reducing the data sparseness problem (since multiple inflected

forms of a single lemma can be pooled together). However, the factorization of the

source text must be performed before translation, and this requires a morphological

analyzer. If an effective analyzer could be induced, this would avoid the necessity

of hand-building a morphological analyzer or hand-tagging data to train a statistical

morphological analyzer.

However, in the general case of a resource-poor language, a pre-existing morpho-

logical analyzer is not likely to exist. Therefore it is important to have some way

of inducing a morphological analysis for the language. Sharif-Razavian and Vogel

(2010) used fixed-length suffixes, rather than inducing a full morphology, as features

in factored translation systems for three scenarios: a “small” (650,000 sentence pairs

in the training set) English to Iraqi Arabic system; a “medium” (1.2 million sentence

pairs) Spanish to English system; and a “large” (3.8 million sentence pairs) Arabic
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to English system. In all cases, the addition of fixed-length suffix factors improved

the translation quality. Sereewattana (2003), used a character n-gram frequency-

based method for unsupervised morphological segmentation for French-English and

German-English translation, which resulted in an improvement in the the word error

rate of translations over non-segmented translation. The training corpus involved

in this project was 40,000 sentences, which may suggest that morphological analysis

is most useful when training data is relatively limited. Virpioja et al. (2007) used

the Morfessor analyzer to perform unsupervised segmentation for statistical machine

translation between Finnish, Danish, and Swedish. Their morph-based system failed

to achieve higher BLEU scores (the standard measurement for machine translation

evaluation) than the word-based system, although it greatly reduced the number of

sentences that could not be fully translated due to out-of-vocabulary problems.

According to Virpioja et al., most other morphology-informed machine translation

aside from their work has looked at how to translate from a morphologically complex

language into English, a morphologically simple language. (They cite papers using

this paradigm to translate from German, Arabic, Czech, Finnish, Spanish, Catalan,

and Serbian.) A notable exception is the ongoing work of Kemal Oflazer looking at

translation from English into Turkish (Durgar-El-Kahlout and Oflazer, 2006; Yeniterzi

and Oflazer, 2010). It is important to emphasize that all of the work on morphology-

based MT (aside from the work mentioned in the previous paragraph) involves using

morphological analyzers that are specifically tailored to the languages involved: either

the morphological analyzer must be hand-built, or it must be trained on data that

has been manually annotated. Either one of these processes is time-consuming and

not extensible to languages that lack the appropriate annotated data.
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2.3.5 Morphology and Language Documentation

A very different application of morphology induction is language documentation.

When describing a language that has never been studied before, determining the mor-

phemes of the language is one of the first tasks a linguist must undertake, along with

phonemic analysis and collecting a lexicon of native vocabulary. The use of software

tools to organize and analyze data can certainly help a linguist with the painstaking

processes of documentation and description of the language, but these tools must also

meet the unique challenges of documentary data, which differs in significant ways from

the types of data sets typically used in machine learning experiments. Bird (2009)

points out the problem that, since the analysis is in a state of flux, the data itself may

change over time; for example a linguist may revise his or her transcription system,

or may re-analyze data that was previously analyzed. Furthermore, Bird observes

that language processing tools for language documentation must meet the potentially

opposed challenges of upscaling—that is, designing algorithms that work on a broad

range of typologically varied languages—and downscaling—designing algorithms that

can function with relatively small amounts of data. Previous work on morphology

induction, which often assumes that a language is exclusively prefixing or exclusively

suffixing, and ignores non-affixal morphology almost entirely, fails to meet the chal-

lenge of upscaling. The problem of quantity of data is also not often addressed in

previous work; most results are reported for data sets of tens of thousand words —

relatively little data by machine learning standards but still a sizable amount to be

collected in the field.

At the same time, the goals and assumptions of a morphological analyzer for

linguistic fieldwork differ from those generally assumed in morphological induction

experiments. Palmer et al. (2010) investigate how active learning can be used to

speed up the process of manual annotation of linguistic data. The authors design a

system that uses previously annotated examples to identify challenging unannotated
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Affix Type Number

Little affixation 141
Strongly suffixing 406
Weakly suffixing 124
Equal prefixing and suffixing 147
Weakly prefixing 94
Strong prefixing 59

Table 2.1: Number of languages with various prefixing vs. suffixing preferences for
inflectional morphology. Of the 971 languages considered, 530 (55%) are
strongly or weakly suffixing, compared to just 153 (16%) that are strongly
or weakly prefixing. From the World Atlas of Language Structures (Dryer,
2011).

examples to be manually annotated by a linguist. Their system helped increase the

rate at which two linguists (one expert and one non-expert) selected the appropriate

gloss tag for morphemes in an utterance from Uspanteko, a Mayan language. In

this view, the role of machine learning is not to replace human annotators, but to

maximize efficiency by handling the simple tasks and identifying the complex tasks

for human intervention. The annotation software they created for this project is

available as the OpenNLP IGT Editor33.

Hammarström (2009) takes a fully unsupervised approach to morphology induc-

tion for language documentation. From a smallish corpus of 60,000 words of text from

Mpielo, a Bantu language with about 29,000 speakers (Lewis, 2009), his morphology

induction approach is successful at identifying the morphemes and categorizing stems

based on the affixes they take. He observes although precision is high, recall is low;

many stems do not appear frequently enough in the corpus to be properly catego-

rized. Also, without access to semantics, his approach cannot identify allomorphs.

He briefly describes an attempt to cluster related words using latent semantic anal-

ysis, but based on the poor results concludes that the corpus is too small for this

type of analysis. His work points to two areas for improvement: generalizing about

33http://igt.sourceforge.net/
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sparse data (certainly there is a lower limit on how much text is necessary, but we

would like to minimize this as much as possible); and adding semantic information

(for example, using bitext). Hammarström rightly takes the view, like Palmer et al.,

that automated approaches like this are in no state to replace human analyses, but

their usefulness lies in reducing the amount of time and effort required to perform

the analysis.

It could be argued that one rarely encounters large amounts of completely unana-

lyzed data from an entirely unknown language. However, one can imagine scenarios in

which data which has previously been collected and somehow made available (either

in print or electronically), yet it is not possible to find an expert in that language

to help annotate the data. For example, given unannotated texts with translations

from grammars, field notes, or websites, it may be useful to perform an automated

analysis of their linguistic structure in order to identify phenomena of interest for

future, detailed linguistic study.

For example, the Perseus Project34 includes classical texts in Ancient Greek and

Latin, and also provides tools, including a morphological analyzer and Greek-English

and Latin-English dictionaries, to assist language learners in reading the texts. Their

morphological analyzer is very useful for what it does; it list all possible analyses of the

wordform, ranked according to the estimated probability of that analysis in the given

context; the estimate is based on unigram and bigram estimates of the likelihoods

of various morphological features (e.g. first-person, plural, accusative case) in the

whole corpus, as well as votes cast by other readers about which form is correct.

Still, the disambiguation in context is not always correct, and votes are not available

for most words in the corpus. However, English translations exist on Perseus for

many of these texts, and it may be possible that they could be used to disambiguate

ambiguous morphological parses.

34http://www.perseus.tufts.edu/
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This would in turn enable both learners and researchers to more efficiently search

the corpus for specific morphological forms and grammatical constructions. This

same approach could be used to enrich existing texts in any number of languages,

including under-resourced languages with even smaller text collections. For example,

among the many resources available in the Archive of Indigenous Languages of Latin

America (AILLA)35 are field recordings with transcriptions and translations, but no

annotation of the foreign text. The data being collected by the Basic Oral Language

Documentation project36 includes recordings of indigenous languages of Papua New

Guinea; a subset of the recordings for each language will be transcribed and trans-

lated as part of the documentation project. In all of these cases, assuming that the

transcriptions and translations are available in a suitable electronic format, then mor-

phological analysis could increase their usability to researchers and language learners.

As more and more older publications are being scanned into electronic formats, while

newly collected data is more likely to exist primarily in electronic form, the potential

for broad-scale, automated linguistic analysis is becoming ever more promising.

2.4 Summary

The work discussed in this chapter frames this dissertation within the emerging

field of digital language documentation, whose ultimate goal is to create digital re-

sources for all of the worlds languages in order to facilitate large-scale, cross-lingual

research. Each of the processing stages discussed in chapters 2 through 5 of this dis-

sertation extends on previous work in important ways designed to make them effective

when applied to RPLs; the aim of this work is to increase the number of languages

for which digital resources are available.

The bitext extraction task discussed in chapter 3 is a novel task, although it is

35http://www.ailla.utexas.org/
36http://www.boldpng.info/
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conceptually similar to prior work on language identification and automatic detec-

tion of parallel text on the web (Resnik and Smith, 2003), and it utilizes standard

approaches to word alignment of bitext (Och and Ney, 2003). The bitext extraction

task is unique in that it performs language identification for individual words and

short utterances (as opposed to larger texts), and in its innovative application of

translation models trained on noisy data to identify translations.

The method for enriching bitext described in chapter 4 is very much based on

previous work within the align-and-transfer paradigm (Yarowsky et al., 2001), and it

makes use of a number of off-the-shelf NLP software tools (Karttunen, 1983; Klein

and Manning, 2003b; Och and Ney, 2003). However, the morphological inference algo-

rithm described in chapter 5, which uses the enriched bitext as its input, is completely

new, extending previous work on unsupervised morphological inference (Goldsmith,

2001; Creutz and Lagus, 2005) to perform inference using labeled wordforms derived

from bitext. The algorithm’s performance is demonstrated on datasets that are much

smaller than previously used in bitext-based studies, showing its applicability for use

on RPLs for which limited data is available.

With the goals and background of this project established, the following three

chapters present in detail the major stages of collecting, enriching, and analyzing

bitext for resource-poor languages.
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CHAPTER 3

Extracting Bitext from Electronic Documents

3.1 Introduction

As language users and language researchers alike transition from the print era

to the digital era, the opportunities for finding linguistic data in digital formats are

continually increasing. New digital content, in a multitude of languages, is written

and published online every day, and large amounts of written text, once available

only in print, are being scanned into digital formats and distributed on the web.

Linguists today use a range of software programs to organize, analyze, and publish

newly-collected linguistic data. In this chapter, I discuss an approach to digital

linguistic data collection which targets this last type of digital language data: scanned

versions of books describing foreign languages, such as grammars and lexicons. From

a grammar, written in English, describing a foreign language, it is possible to extract

a small corpus of words and utterances from that foreign language, accompanied

by English translations. Figure 3.1 illustrates the high-level objective of the data

extraction process. It begins with an online electronic document, and ends with a

corpus of bitexts—foreign sentences with English translations.

While there is currently no shortage of digital texts to mine for data, the challenges

associated with extracting high-quality, machine-readable data are as numerous as the

texts themselves. The data is spread out across the web, and not all of it is easily
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Electronic Document Bitext Corpus

−−−−−−−−→
Processing

...
F-52 holako hechlen, onkodo

okaena?
E-52 they who came yesterday,

what has becomeo of them?
F-53 Hopon em ranade tae, oni jo-

haram lagit’e hechakana
E-53 whose son you gave medicine

to, he has come to thank you
F-54 Enbetarem ranade, oni do

phariaoena,
E-54 to whom you gave medicine

at that time, he has recov-
ered.

...

Figure 3.1: The high-level objective of bitext data collection.

accessible for researchers. Metadata, such as an identification of the language in which

the text is written, is often limited or lacking entirely. While some sources, such as

HTML web pages, may have been composed directly as digital text, in other cases the

data exists only as scanned images of print materials. While many scanned documents

are accompanied by text produced via optical character recognition software, this text

is often plagued with errors, particularly in the case of non-English text. Even when

the data is in a reasonable format, the quantity of data available for a given language

is generally far less than is required for many traditional NLP methods to perform

well.

Acknowledging these challenges, in this chapter I describe an approach to ex-

tracting linguistic data from scanned digital documents. This approach begins with

a collection of digital books that have been scanned into the University of Michi-

gan’s Digital General Collection and partially annotated by hand, as described in

section 3.3. The OCR text of these books is analyzed to detect foreign words within

the majority English text, using techniques for language identification discussed in
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section 3.4. Then, a probabilistic translation model is used to identify nearby En-

glish text that constitutes a translation of the foreign text: this process is described

in section 3.5, and its performance is evaluated in section 3.5.2. The result of this

process is a collection of English-foreign bitexts, which may be used as a stand-alone

corpus or passed on as input for additional language processing, such as the bitext

enrichment and morphology induction described in chapters 4 and 5.

The work discussed in this chapter was partially funded by a Digital Humanities

grant from Google; these grants aim to promote humanities research that utilizes

electronic text collections like Google Books. The project was a collaboration involv-

ing myself, Steven Abney, Ben King, and a small group undergraduate annotators.

Specifically, the corpus-building and annotation process discussed in section 3.3 was a

group effort in nearly every aspect; the language classification experiments discussed

in section 3.4 were mainly performed by Steven Abney; and the gloss detection process

covered in section 3.5 is my own work.

3.2 Rich Linguistic Bitext

Before getting into the details of the project, I want to first consider the goals

of the project and the types of textual data that we aim to exploit. Bitext is a

commonly used NLP resource, but linguistic documents like the ones described in

this chapter contain a very different variety of bitext. Traditional bitext corpora,

such as those used to train machine translation systems, consist of large quantities

(millions of words) of text, typically drawn from one or two genres, such as news

articles, government documents, or works of fiction. A descriptive grammar of a

language, on the other hand, typically contains a much smaller quantity of bitext,

but that bitext often contains much more information than a standard bitext. The

usual text+translation format may be accompanied by additional data (e.g. linguistic

terms or word-by-word glosses), and the utterances included in a grammar tend to
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be chosen to represent the full range of expression of a language, whereas a generic

corpus will tend to contain only a subset of lexical and grammatical elements that

are typical for that genre. In this way, corpora drawn from linguistic sources can at

least partially offset some of the problems associated with small sample sizes, because

they are not random samples but artificially constructed samples designed to capture

a lot of information.

In this section, I briefly mention several different styles of bitext that occur in

linguistic documents, and give an example of each style. The examples are illustrative,

but not representative of all the possible forms that bitext can take; while the general

styles discussed below can be found recurring in nearly any grammar, every author

presents the data in her own unique way. These examples show that within a given

document the presentation of a bitext follows a fairly rigid pattern, with typography,

punctuation, and layout used consistently to demarcate the foreign text, the gloss,

and other components of the bitext. However, these regularities do not hold across

different documents by different authors, and it is important that the extraction

procedure is adaptive and not simply based on pattern-matching.

Interlinear Glossed Text

Interlinear glossed text (IGT) is probably the most common way in which linguistic

data is presented in modern linguistics publications, although historically it is less

common, which means it is less frequent among the older, out-of-copyright, books

in our collection. IGT’s defining feature is the interlinear gloss line, which provides

detailed glosses of individual words in the foreign text and serves as an intermediary

between the foreign text and the free English translation. The way in which this

information is displayed on the page, however, can vary drastically across different

sources; Bow et al. (2003) give an informative catalog of what they call the different

presentational formats of IGT. Figure 3.2 gives an early example of interlinear glossed
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text from a grammar of Japanese: although it is not in the standard three-line format,

it still contains the basic elements of a foreign sentence, a free English translation,

and a more detailed word-by-word gloss.

Wordlists

Not every grammar includes a wordlist, but many do, and dictionaries are essen-

tially books consisting of nothing but one large wordlist. One challenge for extracting

text from wordlists is dealing with multi-column formatting; depending on the OCR

software used, columnar layouts can result in unpredictable output. Figure 3.3 illus-

trates a typical example of a wordlist.

Tables and Paradigms

Another source of rich bitext is paradigms, in which several morphologically-

related wordforms are presented as a list or in a table. Figure 3.4 gives an example of

a paradigm, in which various forms of a verb are listed in a single column, accompa-

nied by glosses and linguistic term labels. Figure 3.5 shows an example of a paradigm

in a complex tabular format. Key to properly recognizing these structures is proper

handling of the tabular format; if the table cells are not treated as such then the text

from different cells can get blended together and become unusable for extraction.

Facing Page Bitext

Facing-page bitext is a relatively common format for bilingual texts; alternating

pages of text and translation are displayed in such a way that the reader can freely

glance across from one to the other. Because each individual page is monolingual,

this format significantly simplifies the problem of language ID. If facing-page bitext

and inline bitext are both available for the same language (some documents combine

both), then an effective approach may be to train a language model on the facing-
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Figure 3.2: Example of interlinear glossed text, in a non-standard presentation format
(from H. Weintz Hossfeld’s Japanese grammar, 1904).

Figure 3.3: Example of a wordlist (From M. Sanderson, A Yao grammar, 1922.)

Figure 3.4: Example of a verbal paradigm (From M. Sanderson, A Yao grammar,
1922.)
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page bitext and use it to identify inline bitext. Figure 3.6 shows an example of what

facing-page bitext looks like.

Inline Bitext

Inline bitext occurs when an utterance in a foreign language is given, accompanied

by a translation of that utterance, within a larger text. This type of bitext uses the

fewest typographic cues; although the foreign text is often printed in a unique font

face (e.g. italic text), this information is generally not preserved in the OCR output.

However, its comparatively simple layout can be a benefit when dealing with imperfect

OCR; since there are no complex columnar or tabular layouts involved, inline bitext

is unproblematically recognized as contiguous text.

In our work, we focus mainly on this type of bitext, using statistical approaches

to first identify spans of text that appear to belong to the foreign language, then

using a translation model to determine which of the surrounding text constitutes the

gloss of that span of text. While this approach may also capture other types of bitext

mentioned here, we do not do any special processing to accommodate or exploit the

unique layouts of wordlists, paradigms, and tables, instead leaving that for future

work.

3.3 Building a Corpus of Digital Grammars

3.3.1 Collecting Online Documents

A critical first step in collecting language data from digital sources (for example,

the various digital repositories discussed in chapter 2) is to identify documents of

interest. For this project we utilized a hands-on approach, manually searching for

books with specific keywords. Our searches focused on texts in the University of

Michigan’s Digital General Collection, which includes books that have been scanned
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Figure 3.5: Example of a paradigm as a table (From L. O. Skrefsrud A grammar of
the Santhal language, 1873).

Figure 3.6: Example of facing-page bitext (from W. Jones, Kickapoo Tales, 1914).
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Figure 3.7: Example of inline bitext (from L. O. Skrefsrud A grammar of the Santhal
language, 1873).

for preservation and are available to download in their entirety, both as page image

and as OCR. Texts were identified using search queries, for example searching the

for the word “language” in the subject field (which matches subject code like “Thai

language – dictionaries” or “Czech language – Grammar”), as well as searches for

terms like “Grammar of” or “Dictionary of” in the title of the book. Although some

approaches to language collection, such as that of The Crúbadán Project (Scannell,

2007), crawl through documents searching for text that appears to be written in

a foreign language, we would unable to adopt this approach for our work without

downloading all of the texts in advance, which would be prohibitively expensive both

in time and storage space.

Our searches yielded more than enough results for initial work, and we created

a list of 110 relevant documents, mainly from Google Books and the U-M Digital

General Collection. Not all of these texts were suitable for automated processing: for

example, some used non-Roman orthography, which is not recognized by the OCR

software that was used for these collections. Ultimately, we selected a subset of 20

books for annotation and additional processing. The texts we chose and some basic

statistics about this corpus are given in table 3.1.

3.3.2 Annotating Foreign Text

We designed and created a custom annotation tool that allows users to select

portions of the text and label it as foreign text. The annotation software is written
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Bilingual Texts
11 (Caddoan, Fox, Haida, Kickapoo, Ko-
ryak, Kutenai, Maidu, Menomini, Ojibwa,
Passamaquoddy, Zuni)

Dictionaries 2 (Burmese, Hungarian)

Grammars
7 (Arapesh, Filipino, Italian, Navaho,
Malayan, Pangasinan, Santhal)

Annotated pages 304 (from 9 documents)
Total pages 7,479
Total words 780,000 (estimated)

Table 3.1: The make-up of our corpus of scanned linguistics documents.

in Javascript, using a Python back-end server, and this allows annotators to access

the tool from their web browser either locally or remotely. The annotation scheme

allows annotation of foreign text on its own, foreign text accompanied by an English

gloss, or foreign text (with or without an English gloss) accompanied by grammatical

category labels (e.g. terms like “singular”, “plural”, “noun”, or “past tense”).

The goal of annotation is not to mark up entire documents, but to create a set

of annotated pages which can be used for evaluating the performance of automated

annotation methods. In all, 131 pages of text sampled from nine documents were

annotated by five different annotators.

We chose a small subset of pages to be annotated by more than one annotator, in

order to get a measure of inter-annotator agreement. The annotator-pair agreement

rates are given in table 3.2. The agreement rate is simply the fraction of tokens that

the annotators assigned the same label to. The kappa statistic (Carletta, 1996) is a

measure of inter-annotator agreement that takes into account the expected rate of

accidental agreement between annotators. Kappa is defined as κ = Pa−Pe

1−Pe
where Pa is

the actual rate of inter-annotator agreement and Pe is the expected rate of accidental

agreement, based on the relative frequency of the different tagging categories. For this

data, the rates of two of the three categories (foreign text, gloss of foreign text) are

roughly similar, but the third category (unlabeled) is much more frequent, leading
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Annotators Agreement Rate Kappa

1,2 0.98 0.94
1,3 0.94 0.86
2,3 0.93 0.84

Overall 0.95 0.88

Table 3.2: Inter-annotator agreement rates, for three annotators on a subset of data
comprising 5 pages and 946 tokens.

to a relatively high number of expected chance agreements. Kappa values range

from zero (agreement equal to chance) to 1.0 (total agreement), and a kappa of 0.5 or

higher is generally considered a good level of agreement. The results given in the table

show that there is strong inter-annotator agreement, both by the raw agreement rate

and by the kappa statistic, which is encouraging for the possibility of high-accuracy

automated tagging.

3.3.3 OCR Challenges

OCR technology is better today that it ever has been, and OCR text is perfectly

acceptable for a variety of uses. However, for the research described in this chapter

OCR is a major issue which needs to be addressed. The first problem is that the

texts that we have collected are particularly prone to OCR errors. To avoid copyright

issues, many of the books we collected are around one hundred years old; the printing

is not as clear as modern books, and it may have faded over time; physical wear on

the pages results in specks in the scanned image, affecting the OCR. Several of the

dictionaries and grammars we originally identified use non-Latin scripts, which are

either skipped entirely by the OCR software or produce gibberish output; in both

cases the result is unusable for our purposes.

Even when the foreign-language text uses Latin-based orthography, it is often

embellished with various diacritic marks which produce errors in the OCR. Figure 3.8

illustrates a typically frustrating example: the grammar presents a paradigm of the
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Scanned Image OCR Text

Instr. Tasga-te, by, with, the

axe. Dat. Taiga-then, to the

axe. Acc. Tagga, the axe. Abl.

Tariga-khon, khoci, etc., from

the axe. Loc. Tatiga-re, in, on

the axe. Voc. e Talga! 0, axe

Figure 3.8: Comparison of a portion of a scanned page and its OCR output.

noun T
˙
aṅga. Although the stem is identical in all six forms of the noun, the OCR

software has rendered the same stem in six different ways: Tasga, Taiga, Tagga,

Tariga, Tatiga, and Talga. This type of error poses a serious impediment to our

hopes of using the OCR text for statistical inference (such as morphology induction

or statistical word alignment), since those processes rely on items recurring multiple

times in order to estimate model parameters. This example also illustrates how the

OCR text omits information that is present on the printed page which indicates how

the table is to be interpreted: by discarding line breaks and spaces, the original

tabular format is obscured; and by normalizing font variations (e.g. bold or italics),

an important indicator of foreign vs. English text is lost.

Many of these problems could be resolved by making different choices when gen-

erating the OCR text. When dealing with the typical prose documents that probably

constitute the majority of a library’s holdings, it makes sense to ignore line breaks.

And if the text mainly consists of long passages of running English text, then it may

be that OCR-detected “weird” characters (like a t with a dot under it) are more likely

to be the result of noise in the image than actual non-English writing. But these are

not the appropriate choices for multi-lingual texts of the sort I am interested in.

Fortunately, OCR software does exist that is capable of preserving this informa-

tion. Unfortunately it costs money and time to re-process the page images using this

software. After beginning work with the OCR provided with the online documents
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and realizing that it was problematic, we performed some initial trials using a com-

mercial OCR software product, ABBYY, to create our own OCR text, and the results

are encouraging. However, due to time constraints we were unable to utilize the new

OCR text in this stage of the project. As future work, we hope to produce new OCR

versions of the texts, and we will also need to update the software we have written

to accommodate the new OCR texts, since our software was designed to handle plain

text and the improved OCR is packaged in an HTML format.

3.4 Language Identification in Bilingual Texts

Linguistics documents are unique in that they are bi- or multi-lingual, combining

text from multiple languages in a single document. Outside of texts which are explic-

itly about language, such as grammars, dictionaries, language textbooks, or bilingual

readers, it is rare to find texts that combine significant amounts of material from

multiple languages. While it is not uncommon for a document to contain a foreign

phrase or quotation, these usages tend to be sporadic, whereas the language-switching

in linguistic texts is pervasive throughout the entire document.

Perhaps because true multilingual texts are rare, there is fairly little prior research

on automatic language identification of individual words within a text. While lan-

guage identification of entire documents is a well-studied problem, research on this

topic assumes that the material to be identified is a relatively large quantity of mono-

lingual text, and that the language belongs to a limited set of known languages. In

that scenario, the normal approach to language ID is to compare the text to samples

of known text from a variety of languages and identify the sample that best matches

the test data. While it is possible to achieve 99% identification accuracy using sam-

ples of just a few hundred sentences apiece (Kruengkrai et al., 2006), these approaches

still require a sample of monolingual text for training.

The creators of the ODIN corpus of interlinear glossed text faced a slightly different
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variation on the language ID problem; in their case the IGT instances are already

identified within the text, but each IGT needs to be associated with a language.

The texts to be identified (either a single IGT or a handful of IGTs from the same

document) are exceedingly small, and the number of languages to choose from is

large. The ODIN researchers overcame these challenges by using an approach that

combines contextual information (i.e. names of languages mentioned in nearby text)

with character information (Xia et al., 2009).

The language ID task for our project, however, is significantly different from both

previous forms of language ID. Our goal is generally not to identify the language from

a set of languages; most of the documents we are interested in reveal the identity of the

language in the title (e.g. the title “A Grammar of the Santhal Language” reveals

that the text is written in English, and that it contains additional text written in

Santhal). Rather, we aim to identify the language of individual words within a text

more or less independently of one another. Identifying the language of a single word

is a much more challenging task than identifying the language of a complete text, and

it is even more challenging when there is no external source of information about the

language in question.

Since the reference language is presumed to be known, and is often English, one

approach to language ID for bilingual documents is to simply classify each word as

English or non-English. Since monolingual English text is plentiful, and so are English

dictionaries, one can easily build a model of English to be used in a classifier. The

most significant hurdle to this approach is that errors due to the OCR process can

often make English words look very un-English-like.

Our group performed some initial experiments with several methods for word-

level language ID. These experiments can be broken into two categories: in the first

category the foreign language is unknown, in the sense that we have no monolingual

data available to train a model of that language. In the second case the foreign
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language is known, meaning that we have at least some monolingual text from that

language.

3.4.1 English vs. Unknown

When the foreign language is unknown (or it is known but we have no additional

data from that language), the classification problem is essentially one of distinguishing

English words from non-English words. The natural approach to this problem is to use

a dictionary. However, due to OCR errors many English words will not match their

dictionary entries, and so a statistically relaxed approach is necessary to accommodate

these errors.

One approach to this problem is to train an n-gram model of English orthography

and select a decision boundary to distinguish English from non-English text. Using

English (51k words), Dutch (113k words), and German (49k words) tokens from

the Celex database, I trained a letter-level trigram model of English and used it to

assign probability scores to all the words in the corpus. When the trigram model is

used to estimate the probability of a given word token, it generally assigns a lower

probability to Dutch and German words than it does to English words; therefore we

can use the probability score of each word as an estimate of which language produced

that word. For a given language pair, I calculate a decision boundary that optimizes

the classification rate. Any word with a probability above that boundary is classified

as English, and any word with a probability below that boundary is classified as

non-English.

First, I estimated the decision boundary for German and Dutch separately. In

all cases the same trigram model was used, trained on the English corpus. For the

English-Dutch classification task, the optimal decision boundary was −logp = 8.8

and yielded an 86.3% classification accuracy for distinguishing English words from

Dutch words. In the German-English case, the decision boundary was −logp = 10.1,
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Evaluate on Dutch Evaluate on German

Train on Dutch 86.3 86.4
Train on German 85.8 87.8

Table 3.3: N-gram-based language ID results on Celex data.

with a 87.8% accuracy.

In order to estimate the performance of the letter-trigram decision-boundary

method on unseen language, I applied the German-trained decision boundary to the

Dutch data, and the Dutch-trained decision boundary to the German data. This

resulted in classification accuracies of 84.8.% and 86.4% respectively. These results

are summarized in table 3.3.

As expected, training and evaluating the model on the same language yields better

results than using a decision boundary trained on a separate data set, but in these

experiments the difference is not particularly large. That is, even if we do not have

access to the non-English language in question, this classifier may still be effective

using a decision boundary that was trained on data from a different language. Since

German and Dutch are both linguistically fairly close relatives of English, it is not

unreasonable to expect that performance of this classifier would only improve when

evaluated on other non-English languages with even less-English-like spelling. Still,

the accuracy is still far less than perfect, even when training on these fairly large

corpora.

3.4.2 English vs. Known

When the foreign language is known and we have a sample of monolingual text

in the foreign language, then it is possible to train a discriminative model. In order

take advantage of our annotated data for evaluation purposes, we gathered a separate

monolingual sample of 39k Arapesh words. For English, we used a large dictionary

as well as a collection of English names. Using a combination of unigram, bigram,
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Classifier Accuracy

SVM 78%
Naive Bayes 72%

Table 3.4: English vs. Arapesh language ID results.

and trigram letter features, we trained a support vector machine and a naive Bayes

classifier. The results on our small test sample of Arapesh text is given in table 3.4.

In addition to these classifiers, a dictionary-based approach was employed based

on an English dictionary and a list of proper names. This approach achieved 79%

accuracy. Although the dictionary approach currently has the best performance,

it may be possible to improve the SVM performance adjusting the features or the

parameters in the model. There is also likely a difference between the data used to

train the model (taking from an HTML source) and the OCR text it is tested on.

In any case, the language ID problem remains open for additional improvement in

future work.

3.5 Gloss Identification

3.5.1 Gloss Selection Using a Statistical Translation Model

Once foreign text has been identified in a document, we would like to be able to

identify nearby English text that acts as a gloss of the foreign text. In the case of

inline bitext, the gloss is either immediately preceding or immediately following the

foreign text, but we do not know which. Using a statistical translation model could

help identify the gloss, but first we need to train the translation model.

In the absence of a separate corpus of bitext to train the translation model, we

are forced to somehow train a translation model without knowing in advance what

the bitexts are. A straightforward approach to this problem is to simply train a

translation model on all of the noisy data, including two candidate bitexts (one with
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Sentence and Candidate Translations Cost

“He abused our trust.”
a) Il a abusé de notre confiance. 18.5
b) Il éclata en larmes. 40.3

“The floor was covered with blood.”
a) Le sol était couvert de sang. 15.9
b) La machine était recouverte de poussière. 46.7

Table 3.5: Example alignment costs of true and false translation pairs. In both cases,
the cost of aligning the true translation is much less than the cost of
aligning the false translation.

the preceding text, and one with the following text) for each span of foreign text in

the document. Then, for each foreign sentence, we can compare the alignment costs

of the two candidate translations and choose the one with the better score. This

concept is illustrated in table 3.5, which shows a couple of English sentences, each

accompanied by a pair of French sentences. The first French sentence in each case is

the actual translation, while the second sentence is a non-translation. The alignment

costs for the true translations are much lower than the costs of aligning the English

sentence with the non-translation sentences.

To summarize, my proposed method for detecting the proper gloss is as follows:

1. Use language ID to detect regions of foreign text in the document.

2. For each foreign text, create two candidate bitexts, taking text from before and

after the foreign text.

3. Train a translation model on all of these bitexts, holding out a sample for

prediction.

4. Use the translation model to align the held-out sample. For each foreign text,

the candidate with the lower alignment cost is chosen as the true translation.

In the following sections, I describe two experiments that illustrate the effective-

ness of this approach on data sets of varying size and quality. Setting aside the issue
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of language identification, in the first experiment I focus on evaluating my method

for gloss selection from two candidate translations.1 The data set is a taken from

an online database of English-French translation pairs. The second experiment is

carried out on the noisy OCR data from one of the texts in our collection of scanned

grammars.

3.5.2 Experiment 1: French

In order to determine the efficacy of this approach, a first experiment was per-

formed using a corpus of true bitext, with noise artificially added. The data consist

of all the French-English sentence pairs from the Tatoeba database, an open, online

collection of user-submitted translations. (More information on the Tatoeba database

can be found in Appendix B.) In order to generate bitext pairs, each English sen-

tence was paired with its actual translation as well as another French non-translation.

Because a length mismatch will increase the score simply by increase the number of in-

dividual word alignments, the non-translation was chosen to closely match the length

of the original sentence.

This experiment is also an exploration of how well this approach can be expected

to work on various types of data. To explore the effect of corpus size, I created sub-

corpora of 500 and 5,000 sentence-pairs, in addition to the full corpus of 53k sentences.

To see how effective a translation model trained on noisy data is, I performed the

sentence-selection process for each corpus under two scenarios: in the first, “gold”

scenario, the translation model was trained only on the true translation pairs; in

the second, “both” scenario, the translation model was trained on both the true

and the false sentence pairs. Thus, the “both” scenario is trained on a corpus with

twice as many sentences, but half of those sentences are not in fact actual translation

pairs. This mimics the actual case encountered in bitext extraction, where the true

1The same experiments could be carried out with more than two candidate glosses, using essen-
tially the same procedure, but here I focus on the case in which there are only two candidates.
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Corpus size Accuracy Accuracy
(sentences) (train on gold) (train on both)

500 71.2% (4.7) 72.8% (5.2)
5,000 89.3% (.98) 87.9% (1.3)
53,129 95.4% (.15) 94.4% (.11)

Table 3.6: Accuracy of true bitext selection for experiments on different corpus sizes.
Accuracy is averaged over five folds of cross-validation, with standard de-
viation in parentheses.

translations are not known in advance. The gold scenario represents an upper bound

which is not achievable in practice.

Each experiment was carried out using five-fold cross-validation. So, for example,

in the 500-word case, five trials were carried out in which the translation model was

trained on 400 sentence-pairs, then used to produce and score alignments on the

remaining 100 sentence pairs. (Actually, it is trained on either 400 or 800 sentence-

pairs, depending on whether the false translations are included, and it is evaluated

on 200 sentence pairs: two French translations for each of 100 English sentences.)

Table 3.6 shows the accuracy achieved in each scenario, averaged over the five folds

with standard deviation given in parentheses. Accuracy is defined as the percentage

of test sentences for which the true translation received a better alignment score than

the false translation.

From these results, it is clear that the size of the corpus has a strong effect on the

prediction accuracy, which is expected. Also, training on only the true translation

pairs improves the prediction accuracy, but this effect is not that large, and for the

500-word corpus any advantage this may have offered is completely obscured by the

noise associated with training on a small data set.

Because the corpus size affects accuracy to a large degree, I performed a second

trial on the 500-word data set using 100-fold cross-validation: thus, instead of 400

sentences per fold, the model is trained on 495 sentences per fold. This trial achieved

a mean accuracy of 70.8% across the 100 folds (22.8% standard deviation). Thus,
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increasing the number of folds did not have a major effect on the performance, at

least for this particular data set.

It is important to keep in mind that for the smaller datasets, it is likely that corpus

effects are significant, and that a different 500-sentence subset of the full corpus would

have different characteristics than this one. Still, the overall trends are obvious, and

even for the smallest corpus, this approach to gloss selection gives a much better

performance (70%) compared to a random-choice baseline (50%), with significantly

better performance for larger corpora. Therefore it seems safe to conclude that it

is possible to effectively use a translation model, even one trained on noisy data, to

select true glosses from a candidate set containing both true and false glosses.

3.5.3 Experiment: Santhal

In this experiment, predicted bitexts are extracted from the OCR text of A gram-

mar of the Santhal language, which was downloaded from the U-M Digital General

Collection.

First, all word tokens in the text are classified as either English or Santhal using

the SVM classifier, trained on the portion of the text which was manually anno-

tated. Next, all spans of two or more sequential foreign words (ignoring non-word

tokens such as numerals or punctuation) are collected. Each span of foreign text is

associated with two candidate translations; one consists of the sequence of tokens im-

mediately preceding the foreign span, and the other consists of the sequence of tokens

immediately following the foreign span. The size of these candidate translations is

determined by adding tokens one a time until the length (in characters, excluding

punctuation and whitespace) of the candidate translation is equal to or greater than

the length in characters of the foreign span. Finally, the statistical gloss selection

procedure described in the experiment above is applied to select the best translation

for each bitext.
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Question Yes No Pct

Is the predicted foreign text actually foreign text? 99 1 99%
Is this actually an inline bitext? 69 31 69%
If this is an inline bitext, is the prediction approximately
correct?

19 50 38%

Table 3.7: Santhal bitext extraction evaluation questions.

This procedure produces 3,503 predicted Santhal bitexts. To evaluate the quality

of these predicted bitexts, I chose a random sample of 100 predicted bitexts for manual

inspection. None of the predicted bitexts is exactly perfect; even the most accurate

predictions fail to precisely identify the beginning and end of the foreign or English

spans. Therefore, in order to get a softer measure of performance, I asked three

yes/no questions of each predicted bitext: these questions and the overall responses

are given in table 3.7.

The first question is meant to assess how well the language ID component per-

formed. 99 out of the 100 bitexts I inspected were in fact centered on foreign text,

indicating that the precision of the SVM language classifier, when combined with the

two-or-more token restriction, is sufficiently high. (The recall is unknown; it could

be calculated given additional labeled data, but I used all the existing labeled data

to train the SVM classifier.)

The second question addresses the fact that not all instances of foreign text are in-

line bitexts. That is, some instances of foreign text do not have an English translation

immediately preceding or following the foreign text. In the sample of 100 predicted

bitexts, 69 were classified as inline bitext, meaning that an English translation was

present immediately before or after the span of foreign text, and therefore retrievable

in principle. The 31 remaining instances were mainly cases where the foreign text

occurred within a table: in the Santhal grammar, translations are typically given one

row above or below the foreign text within a table. This means that the translation

is not directly before or after the foreign text span within the OCR text, and thus it
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1.

==============================================================

  had struck him.     had struck him.     he had struck hitn.

  DUAL.               DUAL.                 DUAL.

  I D-al-a1,kat'-ti;4-ta- Dal-akat'-li.-tcth'- Paset'-e-dat-a~cat'-liti..

  lt-1can-a-e,  He    kan-A-han-e,   If   tcth~1oan,   Perhaps

  had   struck  us    he had struck us    he   had  struck us

FOR: -ta - Dal -akat ' -li . -tcth ' -

ENG: Paset ' -e -dat -a ~ cat ' -liti .. lt - 1 can -a -e

Foreign? Y   Bitext? N   Correct? N

==============================================================

  strike.

  INCHOATIVE PAST.

  Dal-Jko-dagido1l-kan-tahVkan,

  Tlhey whom they were about

  to strike.

  OPTATIVE.

----------------------------------------------------------------------

FOR: Dal -Jko -dagido 1 l -kan -tahVkan ,

ENG: Tlhey whom they were about to strike

Foreign? Y   Bitext? Y   Correct? Y

  The Santhallanguage leans towards putting the subordinate before the principal clauses, but this is by no means

  invariably done; as okoeko ko chalak'-a, onlko bare klo hec'hodok'-ma, those who will go let them come at once; okare-m,

  tahena, ona bare Igi-me, say, where you will stay; oni-m  dalakcad-e.te, adi-m ba.ricialcct'-a, you have done very wrong in

  having struck him  (or that thou hast struck him,)--but it is

  also allowable to say: Anjom-akat'-a-ri, heci aaanae, I have

----------------------------------------------------------------------

FOR: oni -m dalakcad -e .

ENG: te , adi -m ba . ricialcct

Foreign? Y   Bitext? Y   Correct? N

  oni hola-m del-led-e, what has become of him    whom   you

  saw yesterday? This is much more elegant and certainly more

  correct than to say: oni hola-m diel-ed-e-a, oni do okare,

  for the latter means literally: you saw him yesterday, what

  has become of him?

----------------------------------------------------------------------

FOR: oni hola -m diel -ed -e -a , oni

ENG:  certainly more correct than to say :

Foreign? Y   Bitext? N   Correct? N

  Joa,m I  Perha-,ps we.

  used to strike.

  Pae'P-al-e._thJoan, Perha~ps you

  used. to strike.

  kan,.Perhaps they.

----------------------------------------------------------------------

FOR: Pae ' P -al -e ._

ENG: thJoan , Perha ~ ps

Foreign? Y   Bitext? Y   Correct? N

2.

==============================================================

  had struck him.     had struck him.     he had struck hitn.

  DUAL.               DUAL.                 DUAL.

  I D-al-a1,kat'-ti;4-ta- Dal-akat'-li.-tcth'- Paset'-e-dat-a~cat'-liti..

  lt-1can-a-e,  He    kan-A-han-e,   If   tcth~1oan,   Perhaps

  had   struck  us    he had struck us    he   had  struck us

FOR: -ta - Dal -akat ' -li . -tcth ' -

ENG: Paset ' -e -dat -a ~ cat ' -liti .. lt - 1 can -a -e

Foreign? Y   Bitext? N   Correct? N

==============================================================

  strike.

  INCHOATIVE PAST.

  Dal-Jko-dagido1l-kan-tahVkan,

  Tlhey whom they were about

  to strike.

  OPTATIVE.

----------------------------------------------------------------------

FOR: Dal -Jko -dagido 1 l -kan -tahVkan ,

ENG: Tlhey whom they were about to strike

Foreign? Y   Bitext? Y   Correct? Y

  The Santhallanguage leans towards putting the subordinate before the principal clauses, but this is by no means

  invariably done; as okoeko ko chalak'-a, onlko bare klo hec'hodok'-ma, those who will go let them come at once; okare-m,

  tahena, ona bare Igi-me, say, where you will stay; oni-m  dalakcad-e.te, adi-m ba.ricialcct'-a, you have done very wrong in

  having struck him  (or that thou hast struck him,)--but it is

  also allowable to say: Anjom-akat'-a-ri, heci aaanae, I have

----------------------------------------------------------------------

FOR: oni -m dalakcad -e .

ENG: te , adi -m ba . ricialcct

Foreign? Y   Bitext? Y   Correct? N

  oni hola-m del-led-e, what has become of him    whom   you

  saw yesterday? This is much more elegant and certainly more

  correct than to say: oni hola-m diel-ed-e-a, oni do okare,

  for the latter means literally: you saw him yesterday, what

  has become of him?

----------------------------------------------------------------------

FOR: oni hola -m diel -ed -e -a , oni

ENG:  certainly more correct than to say :

Foreign? Y   Bitext? N   Correct? N

  Joa,m I  Perha-,ps we.

  used to strike.

  Pae'P-al-e._thJoan, Perha~ps you

  used. to strike.

  kan,.Perhaps they.

----------------------------------------------------------------------

FOR: Pae ' P -al -e ._

ENG: thJoan , Perha ~ ps

Foreign? Y   Bitext? Y   Correct? N

3.

==============================================================

  had struck him.     had struck him.     he had struck hitn.

  DUAL.               DUAL.                 DUAL.

  I D-al-a1,kat'-ti;4-ta- Dal-akat'-li.-tcth'- Paset'-e-dat-a~cat'-liti..

  lt-1can-a-e,  He    kan-A-han-e,   If   tcth~1oan,   Perhaps

  had   struck  us    he had struck us    he   had  struck us

FOR: -ta - Dal -akat ' -li . -tcth ' -

ENG: Paset ' -e -dat -a ~ cat ' -liti .. lt - 1 can -a -e

Foreign? Y   Bitext? N   Correct? N

==============================================================

  strike.

  INCHOATIVE PAST.

  Dal-Jko-dagido1l-kan-tahVkan,

  Tlhey whom they were about

  to strike.

  OPTATIVE.

----------------------------------------------------------------------

FOR: Dal -Jko -dagido 1 l -kan -tahVkan ,

ENG: Tlhey whom they were about to strike

Foreign? Y   Bitext? Y   Correct? Y

  The Santhallanguage leans towards putting the subordinate before the principal clauses, but this is by no means

  invariably done; as okoeko ko chalak'-a, onlko bare klo hec'hodok'-ma, those who will go let them come at once; okare-m,

  tahena, ona bare Igi-me, say, where you will stay; oni-m  dalakcad-e.te, adi-m ba.ricialcct'-a, you have done very wrong in

  having struck him  (or that thou hast struck him,)--but it is

  also allowable to say: Anjom-akat'-a-ri, heci aaanae, I have

----------------------------------------------------------------------

FOR: oni -m dalakcad -e .

ENG: te , adi -m ba . ricialcct

Foreign? Y   Bitext? Y   Correct? N

  oni hola-m del-led-e, what has become of him    whom   you

  saw yesterday? This is much more elegant and certainly more

  correct than to say: oni hola-m diel-ed-e-a, oni do okare,

  for the latter means literally: you saw him yesterday, what

  has become of him?

----------------------------------------------------------------------

FOR: oni hola -m diel -ed -e -a , oni

ENG:  certainly more correct than to say :

Foreign? Y   Bitext? N   Correct? N

  Joa,m I  Perha-,ps we.

  used to strike.

  Pae'P-al-e._thJoan, Perha~ps you

  used. to strike.

  kan,.Perhaps they.

----------------------------------------------------------------------

FOR: Pae ' P -al -e ._

ENG: thJoan , Perha ~ ps

Foreign? Y   Bitext? Y   Correct? N

Figure 3.9: Three examples of predicted bitexts from the Santhal grammar. The pre-
dicted foreign span is in bold, and the predicted translation is underlined.

is not retrievable without more sophisticated techniques for identifying tabular text.

As mentioned above, none of the predicted bitexts is perfect. Therefore, I adopted

a loose standard for determining if the predicted bitext is approximately correct.

The following criteria were employed: whether the predicted foreign span covers the

majority of utterance it belongs to; whether the predicted translation is in the correct

direction (right or left); and if so, whether the predicted translation roughly covers

the majority of the true translation.

Figure 3.9 gives three examples of the predictions made by this procedure. The

first example shows a three-column table, which are common in the Santhal grammar.

The fact that the foreign text is accurately identified is largely luck, since the text

preceding and following it (from the two neighboring columns) is also foreign text.

This example illustrates the need for a method to detect the table structure and deal

with it appropriately. The second example illustrates a case where the prediction is

correct; this comes from a single-column table, so adjacent columns do not pose an

issue. The third example shows foreign text within a paragraph; the foreign span is

cut short (by the presence of the word “do”), and the translation is misidentified.

In this particular case the translation is non-adjacent; although cases like this are
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relatively rare, they pose yet another challenge for bitext extraction.

The hit rate of 19 correct out of 100 predicted bitexts leaves something to be

desired. However, in 31 instances it would be impossible to identify the English

translation simply by looking at adjacent text. If we omit these cases, then the hit

rate increases to 38%. If the foreign text spans were detected perfectly, then a simple

baseline of always choosing the text to the left or the text to the right would be

expected to be correct 50% of the time overall. However, the most common reason

for a predicted bitext to be judged incorrect is that the foreign span is too short. If

the foreign span is predicted too short, then this will usually throw off the range of

the predicted English translation as well. A smaller number of predicted bitexts are

judged incorrect because the gloss selection was incorrect (e.g. choosing left instead

of right).

3.6 Conclusions and Future Work

The results of the French experiment shows that it is possible to use a statistical

translation model to select the correct translation of a sentence, even if the translation

model is trained on a corpus in which the true translations are not known before-

hand. This technique outperformed a baseline even for a very small test corpus of 500

sentences, suggesting that it is appropriate for use on the types of small datasets as-

sociated with resource-poor languages. While these results are promising, the results

of the Santhal experiment show that the same approach is much less effective when

applied to OCR data from the wild. Similarly, the experiments on language identifi-

cation within bilingual OCR documents are reasonably effective, but leave room for

improvement, particularly for accurately detecting longer spans of foreign text.

The errors caused by not detecting the full span of foreign text could be overcome

by using a sequential model, such as a Hidden Markov Model, to label sequences of

foreign words in a soft manner. This should help in cases where an English-looking
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word appears in the midst of a sequence of foreign words. For example, in Santhal the

tokens “an”, “a”, “do” and “than”, among others, could be either English or Santhal,

depending on the context. (In addition to truly shared words, noisy tokens also pose

a challenge.) When such words occur within a Santhal sentence, they incorrectly

cause a break in the predicted foreign span.

The gloss selection procedure is based on statistical word alignment, which relies

on recurring correspondences between foreign and English words in the training data.

However, errors in the OCR text can obscure these correspondences (see figure 3.8

above, which shows how a single Santhal word is mis-recognized by the OCR in several

different ways). Thus, while the gloss selection process was shown to be effective on

the noise-free French data set, it is less effective on the noisy Santhal data. Another

challenge for the alignment-based gloss selection process is that neighboring bitexts

within a grammar tend to be relatively similar. For example, one table in the Santhal

grammar contains text and translation of the phrases “they will strike him”, “they

will strike it”, “they will strike for him”, “they will strike at it”. The high number of

shared words among these English phrases makes it difficult for a statistical approach

to accurately select between them.

In one regard, however, the alignment-based approach to gloss selection is overkill

for this application. Within a given document, and especially within a given section

of a document (e.g. a paragraph or a table), the ordering of text and translation

is consistent. Thus, it may make more sense to use the statistical alignments to

determine the optimal direction to look for glosses, and then apply that direction

uniformly within a given document or section.

Other areas for future work include re-processing the text using different OCR

software and developing techniques to better handle data in tabular, rather than

paragraph, layout. The layout question may at least partially be answered by fix-

ing the OCR, since some OCR software will detect tables and represent them ap-
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propriately (e.g. using HTML markup rather than plain text). As mentioned, we

experimented with ABBYY, a commercial OCR product which claims to be able

to recognize text in roughly 150 languages, including several non-western scripts in-

cluding Arabic and Chinese. Our group’s initial experiments with ABBYY yielded

positive results; although we did not perform any direct comparisons, the OCR qual-

ity appeared better than the OCR provided with the texts. One drawback is that

while ABBYY supports characters with diacritic marks, ABBYY requires the user

to specify the language prior to recognition; there is no way to run the software in a

language-agnostic mode. Still, there is reason to be optimistic that the OCR quality

can be improved relative to the current state. Not only does ABBYY produce better

character recognition, it is capable of preserving typographic and layout information

(for example, font-face and tabular layouts) that is not present in the existing OCR

text. However, even ABBYY cannot produce perfect results, and any future work

will need to remain tolerant of noisy data.

I am particularly hopeful about the possibilities for utilizing typographic and

layout information to identify some of the more structured varieties of bitext, such as

wordlists and paradigms. One possible approach would be to use a Hidden Markov

Model in which emission probabilities are related not only to the language models

but also to the formatting information; thus a change from bold to normal font might

also indicate a change from a foreign-text-generating state to an English-generating

state. While belonging to an entirely different domain, this is conceptually related

to work using HMMs to extract structured information from classified ads (Grenager

et al., 2005), or using conditional random fields to convert plain text bibliographic

entries into a regular database format (Mansuri and Sarawagi, 2006).

Grammars contain a wealth of information about the language in addition to the

primary data (i.e. bitexts) that are considered here. While extracting an author’s

linguistic analysis from his prose is a natural-language understanding task that far
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exceeds the capability of existing NLP methods, there is a reasonable expectation

that some aspects of the linguistic analysis could be recovered automatically. For

example, in addition to housing wordforms, paradigms in a grammar often have row

and column headers that indicate how to analyze the forms within that paradigm.

Extracting this information is yet another area for future work.

Ultimately, the types of documents described in this chapter contain a wealth of

information, and they have much to offer to researchers in linguistics and computa-

tional linguistics. However, these documents are challenging to work with in their

current state, and there remains much additional research and work to be done before

their full utility is realized.

Despite the many challenges yet to be fully dealt with, one very important out-

come of this project is the corpus of texts we have collected and annotated, which

constitutes a unique and valuable resource for future work in this area. As the only

collection of its kind that I know of, this corpus will be essential for continued research

on improved language identification methods and techniques for identifying glosses of

foreign text within bilingual documents.

57



CHAPTER 4

Generating Biforms from Parallel Text

4.1 Introduction

Next to monolingual text, the most commonly-occurring type of language data

both in print and on the web is parallel text, in which a document in one language has

been translated into another language. While parallel text comes in many varieties,

the fundamental feature shared by all parallel text is that it represents the same

information in two (or more) languages, and this is what makes it so useful to language

researchers: modern statistical machine translation systems rely on large quantities

of parallel text to build translation models, and linguists may use a parallel text to

begin to analyze the structure of an unknown language (consider, for example, of the

role of the Rosetta Stone in deciphering ancient Egyptian hieroglyphics, or of using

a bilingual informant to collect data from an unknown language). The amount of

information contained in parallel text is vast, particularly if one of the two languages

is known to the researcher. However, none of this information is explicitly encoded,

and must be extracted through careful analysis.

For present purposes, I am only interested in bitext which fits this scenario, in

which one language is known and the other unknown: the side of the bitext in the

well-known language is referred to as the English side; and the other side of the bitext,

in an unknown language, is referred to as the foreign side. The “English” side does
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Parallel Text Foreign Biforms

English Foreign

“All Gaul is
divided into
three parts...”

Gallia est om-
nis divisa in
partes tres...

−−−−−−−−→
Processing

Form Meaning

Gallia “Gaul”.N.prop.sg.nom
est “be”.V.3.sg.pres
omnis “all”.Adj.sg.nom
divisa “divide”.V.ppt.sg.nom

...
...

Figure 4.1: The high-level objective of biform generation.

not necessarily need to actually be English; it could be any language for which there

exists software to performing parsing and morphological analysis. Also, the foreign

language is not strictly unknown; we probably know at least the name of the language

and perhaps much more. However, it is unknown in the sense that we do not have

the software tools to analyze the foreign text in the way that we do have tools to

analyze the English text.

In this chapter, I describe an automated technique for performing word analysis

(essentially, rich part-of-speech tagging) of a foreign language, starting with parallel

text written in that language and English. This process is illustrated at a high level

in figure 4.1. The English text is processed using existing software tools for analyzing

English sentence and word structure, then aligned at the word level to the foreign

text, again using existing software. In the final stage, features extracted from the

English text are assigned to wordforms in the foreign language, resulting in a output

of foreign word tokens tagged with morphological features, which I call biforms: two-

part word tokens that consist of both a string form and a feature-based representation

of the meaning and grammatical properties of the word. The various stages of this

process, and the sections of this chapter which discuss each of them, are listed below.
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Section 4.2

1.) Collect the parallel text data from its original source.

2.) Perform word and sentence tokenization on both English

and foreign text.

3.) If the data is not sentence-aligned, then perform sentence

alignment.

Section 4.3

4.) Parse the English sentences.

5.) Perform morphological analysis on the English tokens.

6.) Extract morphosyntactic features for each English token,

based on the output of steps 4 and 5.

7.) Perform foreign-side analysis, if desired.

Section 4.4

8.) Perform word-to-word alignment on the bitext.

9.) Transfer morphosyntactic features from English tokens

to foreign tokens via the alignment from step 8.

Much of the processing is performed by existing software that is freely available

for research use, and this software is discussed in detail in later sections and the

appendices. Use of such software is essential for the feasibility of a study like this,

and it has the added advantage of making this research open and easily repeatable.

Extensive scripting is used to convert data to and from the various formats required

by each piece of software: after the initial tokenization, data is maintained at all

times in a simple format of either one token per line, or one sentence per line, which

allows the output of various components to be conveniently stored in a stand-off

manner in separate but parallel files. Additional technical details about these software

packages and the scripts and data formats can be found in Appendix A and in the

code documentation.

In section 4.5 I give an analysis of this system’s performance on a test corpus of
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parallel English–Estonian text, and show how the system can be refined for improved

accuracy. In particular, I show that by incorporating unsupervised morphological

inference in order to stem the foreign text, it is possible to improve the alignment

quality. This is a novel use of unsupervised morphological inference which, to my

knowledge, has never been applied to the word-alignment problem.

The idea of using existing tools for analyzing one language to help build tools

for another language is not new. This technique, known as the “align and transfer”

approach, was introduced by Yarowsky et al. (2001), and used to induce various tools

for analyzing foreign text. The key to success in that project was not relying en-

tirely on direct alignments, but instead using noise-robust methods for training the

the resulting tools from inherently noisy data. Their experiments on English-French

bitext showed that although hand-generated alignments led to better performance

than statistically-induced alignments, even perfect alignments yielded only an 86%

accuracy of projected part-of-speech tags, despite the relative typological similarity

of English and French and the use of a two-million word corpus. I am aware of no

previous work applying the align-and-transfer procedure to small amounts of paral-

lel text to produce a richly-annotated corpus of text in an otherwise resource-poor

language.

4.2 Stage 1: Parallel Text to Bitext

It is necessary to make a distinction between text which is aligned at a high

level (e.g. a document and its translation), for which I use the term parallel text,

and text aligned at a more fine-grained level, for which I use the term bitext. An

individual bitext, as the term is used here, can range in size from a single word to one

or two sentences, but typically not more than that. By explicitly aligning individual

sentences from a parallel text across the two languages, it is possible to convert a

large parallel text into a corpus of smaller bitexts.
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Sentence alignment is an important, but oft-overlooked, stage in processing par-

allel text. Perhaps it is overlooked because some corpora are inherently aligned at

the sentence level, and therefore have no need for automated sentence alignment. For

example, corpora derived from parliamentary proceedings, such as the Hansards or

Europarl corpora, usually have the contents neatly organized into paragraphs and

subsections that are often as small as a single sentence. However, many other parallel

text corpora, particularly ones assembled from resources not initially intended for

machine-translation purposes, lack this type of structure. Often these corpora con-

sist of documents that are translations of one another at the document level, which

may range in size from a single news article to an entire novel. In these cases it is

necessary to determine which sentences are in fact translations of each other before

word-alignment tools like GIZA++ may be used.

The Gale-Church algorithm (Gale and Church, 1993) uses the length, in letters, of

the sentences in both languages to determine how sentences are to be paired up, and

allows for a sentence in one language to be aligned with zero, one, or more sentences in

the other language. Perhaps due to its simplicity, speed, and good results, this remains

the standard solution to the sentence alignment problem. However, more recent

approaches have been explored that take into account additional types of information,

such as HTML structure (Shi and Zhou, 2008), or bilingual dictionaries (Varga et al.,

2005; Ma, 2006; Li et al., 2010). Lexical translation-based approaches that do not

require dictionaries (Moore, 2002) have been described, but the statistical translation

models employed there require larger data sets than are available for resource-poor

languages.

For alignment, I choose to use the Hunalign1 software (Varga et al., 2005), because

it is freely available under a GPL license, and it combines the length-based approach

of the Gale-Church algorithm with lexical alignments from an optional translation

1http://mokk.bme.hu/resources/hunalign/
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dictionary. Although translation dictionaries are not generally available in the types

of scenarios I am interested in, it is often possible to quickly generate by hand a small

translation dictionary that covers a few high-frequency words as well as transparent

translations such as numerals and proper nouns that occur on both sides of the corpus.

For sentence tokenization both of English and foreign text, I use the Punkt sentence

tokenizer (Kiss and Strunk, 2006), which has the advantages of being unsupervised,

language-independent, and freely-available through the Natural Language Toolkit

(NLTK).2 The Punkt tokenizer uses unsupervised learning methods to identify ab-

breviations, numerals, and initials in the text before determining sentence boundaries.

The system is easy to use and has been shown to achieve very good results across a

number of different languages and text genres.

For word tokenization of the foreign text, a simple method is used that tokenizes

based on whitespace and non-alphabetic (e.g. punctuation) characters. For English,

word tokenization is performed during the parsing stage (see below).

At the end of the tokenization and sentence alignment stage, the result is a col-

lection of sentence-sized, tokenized bitexts. These tokenized bitexts are the basis for

all further processing and will not change; all later processing simply enriches the

existing bitexts by adding features (e.g. alignment information, part-of-speech tags,

or other morphosyntactic features) to the individual tokens.

4.3 Stage 2: English Text Enrichment

Because no two languages encode exactly the same linguistic features in morphol-

ogy, there is fundamentally a form mismatch between the two sides of any given

bitext. The ideal of a complete morph-to-morph alignment is hardly ever attainable.

In the case of English, the most common reference language in bitexts, a handful

of prominent linguistic features are encoded in morphology (e.g. number on nouns,

2http://nltk.org

63



some sparse verb-subject agreement) but a great amount of grammatical informa-

tion is found at the syntactic level. Much of the same information which is encoded

syntactically in English is encoded morphologically in highly-inflecting languages.

Therefore, to make such features explicit, a two-pronged approach is used: first the

sentence is parsed, to both a phrase-structure and a dependency tree representation;

then the individual word tokens are analyzed for morphological structure. Since the

morphological structure is often ambiguous (the inflectional suffix -s, for example,

has many functions in English), the part-of-speech tags from the phrase-structure

parse are used to select the best morphological analysis of a wordform in context.

The results of parsing and morphological analysis are then distilled down to a set of

salient features assigned to individual English word tokens.

4.3.1 Morphological Analysis of English Words

The English word tokens are analyzed morphologically by the PC-KIMMO (Kart-

tunen, 1983) software package, using the English morphology that is included in that

package. The morphological analyses are used to produce features for the English

tokens that cannot be derived from the parse structure. For pronouns this includes

number, person, and case features. For all other words, this means the stem and

inflectional suffix that comprise the wordform.

Using PC-KIMMO in this way fails to take advantage of its full power, particularly

its ability to analyze derivational morphology; however, these features are all that are

required for the present study, whose focus is on inflectional morphology. The detail of

analysis provided by PC-KIMMO can also be problematic for finding stems of words.

For example, the verb smelt as a past tense for smell is analyzed by PC-KIMMO

as monomorphemic, derived from the root smell. Thus, the stem of smelt is smelt,

but its root is smell. Relying on the root feature is problematic, however, for any

word analyzed as derivationally complex: for example, the verb present is analyzed as
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deriving from the root send. Thus, I use PC-KIMMO’s stem feature, stripping only

inflectional morphology, and accept that this will not always give the result that is

desired.

4.3.2 Syntactic Analysis of English Sentences

The English sentences are parsed using the Stanford Parser.3 The Stanford Parser

performs comparably to other benchmark parsers, namely the Charniak and Collins

parsers (Klein and Manning, 2003a), and it is well-suited to this project due to the

pre-trained English grammar included with the parser, as well as the output the

parser produces. English parsers typically use grammars trained on parse trees from

the Penn Treebank, which consists of newswire text from the Wall Street Journal;

however, the English text used in these experiments is generally unlike newswire text.

The Stanford Parser download includes a pre-trained probabilistic phrase-structure

grammar of English based on an augmented data set which the authors claim is better

suited for parsing non-news type sentences, including commands and questions (as

stated in the software’s documentation). Thus, the Stanford Parser may be applied

to this data set without any need for additional training. Furthermore, the Stanford

Parser produces both phrase-structure and dependency parses (de Marneffe et al.,

2006), which allows us to easily combine both types of syntactic information without

the need for a separate dependency parser. Illustrations of the phrase-structure and

dependency tree outputs are given in figures 4.2 and 4.3 respectively.

4.3.3 Morphological Analysis of Foreign Words

Prior to alignment, the foreign text is processed only for word and sentence tok-

enization. Additionally, in some experiments, the foreign wordforms undergo unsu-

pervised morpheme segmentation, removing affixes prior to alignment in an effort to

3http://nlp.stanford.edu/software/lex-parser.shtml
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S

NP VP

DT NNP VBZ VP

All Gaul is VBN PP

divided IN NP

into CD NNS

three parts

Second try:

S

NP VP .

DT NNP VBZ VP .

All Gaul is VBN PP

divided P NP

into CD NNS

three parts

1

(S

(NP (DT All) (NNP Gaul))

(VP (VBZ is)

(VP (VBN divided)

(PP (IN into)

(NP (CD three) (NNS parts)))))

(. .))

Figure 4.2: Phrase-structure parse of the English text, graphically and in bracket
notation.

All Gaul is divided into three parts .

det

nsubjpass

auxpass

ROOT

num

prep into

1

det(Gaul-2, All-1)

nsubjpass(divided-4, Gaul-2)

auxpass(divided-4, is-3)

root(ROOT-0, divided-4)

num(parts-7, three-6)

prep_into(divided-4, parts-7)

Figure 4.3: Dependency parse of the English text, graphically and in notation.
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improve alignment accuracy.

4.3.4 Summary

The morphological analysis and parse provide a large amount of detailed infor-

mation about the English text. For the purposes of this dissertation, however, only a

subset of this information is used. Each English token is enriched with the following

features:

1. The stem of the word, as determined by PC-KIMMO.

2. The label of the dependency arc leading into the wordform (if any).

3. The base part-of-speech, as determined by the part-of-speech tag.

4. Additional features determined by the part-of-speech tag. For nouns, this is

a number feature (singular or plural) and a proper-noun feature (proper or

common). Other features (such as degree of adjectives or tense of verbs) may

be extracted but do not play a role in the analyses presented in this dissertation.

4.4 Stage 3: Word Alignment and Feature Transfer

Once the English text has been analyzed and the English tokens have been anno-

tated with additional features, these features are transferred to the foreign wordforms

via statistical word alignment. Below I discuss the details of the process as used in

these experiments.

4.4.1 Word Alignment

The de-facto standard for bitext alignment is GIZA++, a software implementation

of IBM’s translation models. For my experiments, I use an off-the-shelf GIZA++

aligner, although it is worth noting that this is not the only option and does not
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necessarily represent the current state-of-the-art. Factored translation models provide

better alignment for morphologically-complex languages, but they are not appropriate

for widespread use because they require language-specific morphological analysis to

be performed prior to alignment.

The alignment approach used is fairly simple. First, each token in the English

text is replaced by its stem, discarding any inflectional morphology. If the foreign

text has been analyzed, it can also be stemmed at this point. The goal of stemming

is to reduce the low-frequency effects that result from using a small corpus: instead

of the aligner treating forms like “house”, “housed”, or “housing” separately, their

observations are lumped together. Then, the texts are aligned, and the inflectional

morphology, as well as all the additional features that were produced during the text

enrichment stage, are re-associated with the tokens.

4.4.2 Feature Transfer

After alignment is complete, the feature transfer process is straightforward; for

each token on the English side of the alignment, all of its relevant features (i.e. the

features that were discussed in section 4.3) are copied and assigned to each foreign

token that has been aligned to it. (The alignment is done in such a way that each

foreign word is aligned with at most one English word, although one English word

may align with more than one foreign word.) Any unaligned tokens are assigned an

“X” part-of-speech tag.

4.5 Performance & Evaluation

The align-and-transfer procedure described above results in a valuable product: a

morphologically tagged version of the foreign-language corpus used as input. Thus,

we are directly interested in procedure’s accuracy when performing this task. Further-

more, the output of the align-and-transfer procedure is used as the basis for further
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morphological processing: the segmentation and paradigm-building process discussed

in chapter 5. Any errors introduced during the alignment stage will affect the results

of that process, so clearly we would like to keep errors minimal.

The align-and-transfer process itself is the sum of various components, each of

which can introduce its own amount of noise into the overall result. The quality of

the data itself may contain errors or simply be ill-suited for the align-and-transfer

task. Major areas where noise may be injected include:

• Errors in the English-side features (i.e. incorrect English morphological and

syntactic analyses).

• Errors due to incorrect alignment of English and foreign words.

• Errors due to grammatical mismatch between English and the foreign language.

The first type of error is of least concern, as it lies outside the scope of this project.

The only likely errors arising from the morphological analysis of English words are

the results of ambiguous wordforms (e.g. the verb runs and the plural noun runs).

These ambiguities are resolved by the part-of-speech tags produced by the parser,

so any remaining errors are in fact parse errors, not morphological errors. English

parsing is one of the most widely-studied areas of Natural Language Processing,

and methods are continually being refined for better performance. While improving

parsing accuracy may be possible (for instance, by using a bleeding-edge parser tuned

specifically for the types of sentences found in this genre), the potential gains do not

outweigh the advantages of using the off-the-shelf version of the Stanford Parser, and

our time is better spent on other areas of the system that are the true focus of this

work.

In the absence of hand-aligned bitext to use as a gold standard, it is difficult to

evaluate the accuracy of the alignment process. However, if a bilingual dictionary

is available, then it is possible to evaluate individual word-to-word alignments on
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the basis of whether the dictionary considers those words to be translations of one

another. (Of course, if the dictionary was used in the alignment process, then this is

is less useful as an evaluation metric.)

In an effort to evaluate how well the align and transfer system described in this

chapter performs, the following sections describe two experiments on an English-

Estonian parallel corpus, using the transferred part of speech tags to estimate the

alignment accuracy.

4.5.1 Experiment 1: Direct Transfer

The Estonian morphologically-disambiguated corpus gives a nice opportunity to

evaluate the quality of the aligned features. Since each Estonian token has already

been manually annotated for morphological analysis, we can use those tags to evaluate

how well the transferred features match up with the true features.

The first experiment performs a standard GIZA++ alignment on the English

and Estonian wordforms, then uses this alignment to project a set of twelve basic

part-of-speech tags from English to Estonian. (The basic part-of-speech tags are

noun, verb, adjective, etc.; more details of the basic part-of-speech tagset are given in

Appendix E.) This is called the “direct transfer” approach by Yarowsky et al. (2001);

in that study, the authors reported a 76% accuracy for part-of-speech tags projected

from English to French on a corpus of 2 million words. Clearly, higher error rates

can be expected for smaller corpora, and for languages that are typologically more

dissimilar from English than French is.

This experiment was conducted using the parallel English-Estonian text of George

Orwell’s novel 1984, which consists of 94k Estonian tokens. (Details of this corpus

are given in Appendix D.) Overall, the direct transfer approach achieved a tag pre-

diction accuracy of 53.4%. If punctuation tokens are ignored, accuracy falls to 45.2%

Figure 4.4 shows the tag-prediction performance breakdown by tag.
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The direct-transfer tag prediction results are far from optimal, but for each of

the major word classes, the correct tag is still predicted more often than any other

tag. There are two ways to improve the accuracy of the predicted features: the first

is to improve the word alignment, and the second is to reduce noise in the foreign

tag predictions. Yarowsky et al. (2001) managed a 9-point performance increase

(from 76% to 85%) by using perfect alignments instead of statistically-induced align-

ments, demonstrating both that better alignments lead to better predictions, but also

that there is a limit to the direct transfer approach even given perfect alignments.

The remainder of this chapter deals with methods for improving alignment quality

to the extent possible, although we acknowledge that the projected morphological

features will inevitably contain a significant amount of noise, no matter how good

the alignments are, and this must be dealt with by any downstream processing (e.g.

morphological inference).

4.5.2 Experiment 2: Stemmed Alignment

Since I am using an off-the-shelf aligner, there is only so much that can be done to

improve alignment: it is not within the scope of this project to refine the alignment al-

gorithm itself. However, one possibility is to preprocess the bitext in a way that could

help mitigate the effects of the low sample size. To accomplish this, we perform stem-

ming on the wordforms in the corpus. In principle, this should encourage alignments

between inflected forms of the same word: for example, if the English words friend

and friends are both stemmed to friend, and if the Latin words amicum, amicus,

amicorum, etc. are all stemmed to amic, then this will result in a single friend:amic

alignment that occurs several times in the corpus, rather than several more specific

alignments (friend:amicum, friend:amicus, friends:amici) that each may only occur

once or twice in the corpus. Since a statistical alignment approach relies on recurring

alignments in the text, stemming should have the effect of improving the alignment
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accuracy.

Since English is not a highly-inflecting language, stemming of English is likely to

have a fairly limited effect on alignment, although it should help at least a little bit

if the corpus is small. When aligning English to a foreign language that uses a lot

of morphology, however, the potential benefits of stemming become more significant.

While research on machine translation in highly-inflecting languages often relies on

analyzing morphologically-complex words, this type of approach requires software

to perform the morphological analysis; see, for example, recent work on Greek and

Czech (Avramidis and Koehn, 2008) and Turkish (Durgar-El-Kahlout and Oflazer,

2006; Yeniterzi and Oflazer, 2010).

Furthermore, statistical machine-translation research generally relies on very large

corpora for which data sparseness is less of an issue. For example, Avramidis and

Koehn (2008) improve translation from English into Greek and Czech by adding more

morphological information to the English tokens; this is essentially the opposite of

the approach I am taking.

To see if stemming the wordforms could improve the alignment quality, I per-

formed experiments: in the first experiment, the English words were stemmed based

on the morphological analysis produced by PC-KIMMO. Since PC-KIMMO produces

very detailed morphological analyses, I only removed the ultimate inflectional mor-

pheme of a word, to produce the stem. (This avoids, for example, yielding organ

as the root of the verb organizing.) In the second experiment, English words are

stemmed the same way, but foreign words are also stemmed on the basis of an unsu-

pervised morphological analysis. The morphological analysis is produced by running

Morfessor (version 1.0) with its default settings on the foreign text, then taking the

first (leftmost) morpheme of each token as its stem. The stemmed forms of both

English and foreign text are used to produce the alignment, but the full forms of the

tokens are used in all other processing stages.
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Baseline 19.1%
No stemming 54.3%
English stemming only 54.5%
Both stemming 58.4%

Table 4.1: Part-of-speech prediction accuracy, measured as the percentage of foreign
tokens which were assigned the correct base POS tag from the universal
tag set.

The alignments produced in these two experiments, plus the direct-transfer ex-

periment from the previous section, yielded the overall base part-of-speech prediction

accuracy listed in table 4.1. The overall results for the three cases are given, as well

as a simple baseline for comparison. The baseline predicts that each token is a noun,

since noun is the most common POS tag in the English text; this is a slightly better

baseline than randomly choosing one of the twelve POS tags.

Figure 4.5 shows the detailed results from the first experiment, using only English

stemming. This has little overall effect on the accuracy of the predicted part-of-speech

labels (53.5%) compared to the non-stemmed, direct-transfer alignment (54.3%: see

figure 4.4). While most categories were predicted more accurately after stemming,

there was a drop in the accuracy of verbs that offset those improvements. It is inter-

esting that the verb alignment scores decreased after stemming the English tokens,

and I can think of no good explanation for why this occurs.

Figure 4.6 shows the detailed results of the second experiment, in which both the

English and the Estonian wordforms are stemmed. This results in a more significant

improvement, up to 58.4% overall accuracy. While this is still a fairly low level of

accuracy, it is clearly an improvement over the unstemmed alignments, demonstrat-

ing that it is possible to use unsupervised morphological inference to improve word

alignment when dealing with morphologically complex languages.
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True POS tags
ADJ ADP ADV CONJ DET NOUN NUM PRON PRT PUNCT VERB X

P
re

d
ic
te

d
P
O
S

ta
g
s

ADJ 2457 219 1239 216 0 2172 158 1113 3 93 1771 13
ADP 7 359 231 1468 0 47 4 118 0 46 98 0
ADV 187 122 2909 406 0 501 27 302 7 78 1347 0
CONJ 0 0 11 2592 0 2 0 1 0 1 4 0
DET 14 1 75 43 0 4 26 767 1 89 214 0
NOUN 1947 680 2489 490 0 12000 319 2753 22 402 4284 49
NUM 23 9 26 7 0 74 426 32 0 14 37 1
PRON 2 3 16 4 0 265 2 4748 0 610 15 0
PRT 0 6 128 165 0 0 0 1 0 72 16 0
PUNCT 0 1 15 251 0 4 0 26 0 16563 80 0
VERB 900 396 2253 408 0 3248 152 2220 9 386 9459 11
X 318 96 507 334 0 1002 51 511 8 1124 867 5

Precision 26.0 15.1 49.4 99.3 0.0 47.2 65.6 83.8 0.0 97.8 48.7 0.1
Recall 42.0 19.0 29.4 40.6 0.0 62.1 36.6 37.7 0.0 85.0 52.0 6.3
F1 32.1 16.8 36.9 57.6 0.0 53.6 47.0 52.0 0.0 91.0 50.3 0.2

54.3% overall accuracy (51518 / 94905)

Figure 4.4: Part-of-speech prediction performance on the Estonian corpus, using di-
rect transfer.

True POS tags
ADJ ADP ADV CONJ DET NOUN NUM PRON PRT PUNCT VERB X

P
re

d
ic
te

d
P
O
S

ta
g
s

ADJ 2606 249 1360 224 0 2615 174 1147 3 102 1952 15
ADP 11 382 252 1459 0 70 5 176 0 57 112 0
ADV 230 128 3169 417 0 638 39 361 7 62 1520 0
CONJ 1 0 12 2578 0 4 0 1 1 2 4 0
DET 21 3 98 52 0 10 32 870 1 88 253 0
NOUN 1952 704 2485 467 0 12171 313 2747 23 397 4449 49
NUM 25 11 50 9 0 84 445 52 0 18 58 1
PRON 2 7 38 5 0 284 2 5016 0 633 27 0
PRT 0 5 147 164 0 3 1 9 0 74 25 0
PUNCT 1 1 21 390 0 9 0 59 0 16636 190 0
VERB 687 306 1761 285 0 2433 103 1643 7 289 8738 9
X 319 96 506 334 0 998 51 511 8 1120 864 5

Precision 24.9 15.1 48.2 99.0 0.0 47.3 59.1 83.4 0.0 96.1 53.7 0.1
Recall 44.5 20.2 32.0 40.4 0.0 63.0 38.2 39.8 0.0 85.4 48.0 6.3
F1 32.0 17.3 38.5 57.4 0.0 54.0 46.4 53.9 0.0 90.4 50.7 0.2

54.5% overall accuracy (51746 / 94905)

Figure 4.5: POS-prediction performance, using stemmed English tokens.

True POS tags
ADJ ADP ADV CONJ DET NOUN NUM PRON PRT PUNCT VERB X

P
re

d
ic
te

d
P
O
S

ta
g
s

ADJ 3079 240 1302 182 0 1925 176 1016 3 90 1643 17
ADP 15 429 294 1522 0 76 6 195 0 46 138 0
ADV 203 139 3394 415 0 514 37 351 7 71 1483 0
CONJ 1 0 13 2613 0 7 0 1 1 4 9 0
DET 32 3 144 47 0 11 40 1120 1 91 252 0
NOUN 1607 669 2173 413 0 13505 286 2321 21 336 3756 49
NUM 25 11 43 6 0 77 497 57 0 7 37 1
PRON 9 8 79 7 0 326 2 5442 0 601 37 0
PRT 2 5 169 180 0 5 0 15 0 70 24 0
PUNCT 2 1 22 390 0 22 1 114 2 16797 259 0
VERB 561 291 1761 274 0 1849 69 1452 8 251 9685 7
X 319 96 505 335 0 1002 51 508 7 1114 869 5

Precision 31.8 15.8 51.3 98.6 0.0 53.7 65.3 83.6 0.0 95.4 59.8 0.1
Recall 52.6 22.7 34.3 40.9 0.0 69.9 42.7 43.2 0.0 86.2 53.2 6.3
F1 39.7 18.6 41.1 57.9 0.0 60.8 51.6 57.0 0.0 90.6 56.3 0.2

58.4% overall accuracy (55446 / 94905)

Figure 4.6: POS-prediction performance, using stemmed English and stemmed Esto-
nian.
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4.6 Conclusion

In this chapter I showed how various off-the-shelf NLP software packages can be

combined to produce a system to enrich standard bitext by transferring morphosyn-

tactic features from the English text to the foreign text. Although the align-and-

transfer methodology is an established one, and all of the components are readily

available NLP tools, constructing a system to automate this entire process is not

trivial and requires extensive scripting to connect the different components.

While the accuracy of the predicted part-of-speech labels is less than perfect,

it significantly outperforms a baseline classifier. The performance is improved by

stemming both the English text (using an English stemmer) and foreign text (using

unsupervised morphology induction) prior to alignment.

There are two ways to improve the accuracy of the predicted labels beyond the

figures achieved here. The first is to improve the word alignments, and the second is

to re-classify the foreign forms. Either of these tasks could potentially be aided by

the results of a morphological analysis, such as is described in chapter 5. It would

also be fairly easy to assign a confidence score to the predictions (for example, based

on the sentence alignment scores), and use this to extract a subset of the data that

is more likely to be correctly tagged. For some applications, the decrease in size of

the data set may be made up for by the increase in quality.

To my knowledge, no previous research has used unsupervised morphology for the

purpose of improving word alignments. Since the only difference in the three Estonian

experiments was the alignment itself, POS-prediction can be used as a proxy measure

of the alignment quality. The improvement gained by stemming the Estonian text

based on the Morfessor output suggests that this is a technique that could be useful in

the domain of machine translation, if the target language is one with rich morphology

but for which morphological software is unavailable.
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CHAPTER 5

Paradigmatic Morphology Induction

In this chapter I describe a paradigm-based approach to morphology induction

based on biform data. In its broadest sense, morphology induction is the process of

starting with observed data and inferring from it a morphological grammar—a repre-

sentation, of some type, of the underlying morphological processes that generate that

data. In my approach, the observed data consist of biform word tokens (tokens con-

sisting of both a form component and a meaning component, such as those produced

by the procedure described in the previous chapter), and the morphological grammar

consists of a set of suffixing paradigms (tables that pair prefix stems with appropriate

inflectional suffixes).

First, a note on terminology. Linguistic utterances, be they sentences, phrases, or

individual morphemes, are often conceptualized as having a form component and a

meaning component. In the present work, the fundamental data item is what I refer

to as a biform token: a token with distinct form and meaning components.1 I use the

word form, in its normal linguistic usage, to refer to the form component of a biform

token: this is a string of characters typically representing its orthographic form (its

spelling, in a given alphabet), but it could just as well be a phonological or phonetic

1This same concept is referred to as a “grammatical word” by Katamba and Stonham (2006),
but this term does not seem to be in wide use, and it is both unwieldy and ambiguous, being used
in other contexts as a synonym for “function word.” The term biform is meant to be succinct and
to evoke the term bitext, the ultimate source from which the biform tokens are produced.
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Bitext Tokens Suffix Paradigms

amicus friend.N.m.nom.sg
amici friend.N.m.gen.sg
filius son.N.m.nom.sg
filios friend.N.m.acc.pl

...

−−−−−−−−→
Processing

Suffixes

N.m
nom. gen.
sg. sg.
–us –i . . .

S
te

m
s

amic–
– – . . .

friend
fili–

– – . . .
son
loc–

– – . . .
place

Figure 5.1: The high-level objective of paradigm induction. The input is bitext word
tokens, and the output is a set of paradigms (only one is shown).

Biform

Form Features

amo

lemma:“love”
tense:present
voice:active
number:singular
person:first

Figure 5.2: Illustration of the components of a biform token representing the Latin
word amo.

form, depending on the source of the data.2 I use the term features to refer to the

meaning component of a biform, since it is composed of a set of features. Again, the

exact nature of the features will depend on the data source, but features are usually

represented as attribute-value pairs and will typically represent grammatical features

(e.g. tense, number, person, etc.) and include a gloss feature and/or a lemma feature

which can be used, with some level of accuracy, to identify biforms belonging to the

same lexeme. Figure 5.2 illustrates a typical biform token, showing the contents of

its form component and its feature component.

I begin this chapter by framing my work in the context of previous work on mor-

2This is simply a matter of utilizing existing resources. I am in no way claiming that morphological
processes truly operate on orthographic forms. The goal of the inference procedure is to produce
the best analysis given the data available. Thus, even if the data is less than ideal, we still hope to
arrive at an analysis that is useful and descriptive, even if it is not necessarily a “true” analysis in
the sense that it accurately models the underlying linguistic processes.
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phological induction, and I discuss the minimum description length (MDL) principle,

which has played a significant role in recent approaches to unsupervised morphological

induction. After describing an iterative clustering algorithm for paradigm induction,

I present the results of some experiments showing the effectiveness of that algorithm.

5.1 Minimum Description Length

Several current approaches to unsupervised morphology induction, including John

Goldsmith’s Linguistica system (Goldsmith, 2001) and the early versions of Morfes-

sor (Creutz and Lagus, 2005) are based on the principle of MDL (Rissanen, 1989;

Grünwald, 2005). MDL, which draws on concepts from information theory, is a mea-

sure of compression; in MDL the aim is to take a data set and represent it in a very

efficient, compact way. As it relates to morphological induction, this compression of

the data involves finding and exploiting regularities in the data (i.e. recurring mor-

phemes). Below, I briefly describe some of the underlying principles of MDL and give

a definition of MDL. I will proceed to introduce a MDL model of biform morphology,

and then show how this model can be used in a search algorithm to infer the the

morphological structure of a language, using bitext as its input.

5.1.1 Information Theory and Code Length

MDL comes from the field of information theory and has to do with codes and

code lengths. In information theory, a code is a system for representing a message

(say, a series of words) as a sequence of bits (ones and zeros). For example, consider

an alphabet consisting of three letters a, b, and c, and assume that the messages

we want to encode are sequences of these letters. (The letters used in this example

could just as easily be replaced by any other symbols, for example, whole words.)

If we adopt a code C such that C(a) = 0, C(b) = 10, and C(c) = 11, then we can

unambiguously encode and decode any sequence of the letters a, b, and c using this
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Code Message Encoding
a : 0
b : 10
c : 11

+ cabba → 11010100

Figure 5.3: Example of encoding and decoding a message with a prefix code.

code. For example, given the message “cabba”, the encoding of this message would

be “11010100”. In this example, given that same encoded bit string, “11010100”, we

can decode it back to the original message “cabba,” simply by looking at the inverse

code function, where C−1(11) = c, C−1(10) = b, and C−1(0) = a.

Note that this is a lossless code: the message is perfectly preserved after encoding

and decoding. Not all codes are lossless: imagine the same scenario, only using a

code where C(a) = 1, C(b) = 11, and C(c) = 111. In this case, the encoding is simple

enough; we can encode the same message “cabba”, resulting in the encoded bit string

“111111111”. However, when we try to decode that same string, we find that there

are many possible ways to decode it, and we are not guaranteed to get out the same

the message we put in. For any alphabet, it is always possible to design a type of

lossless code known as a prefix code. A prefix code is one in which no code word is

the prefix of any other code word. The first example given above is an example of a

prefix code.

In these two examples, we use code words of varying length (e.g. the code word

for the letter a has one bit, whereas the code word for b has two bits). While it is

always possible to design a code for an alphabet containing n letters where each code

word consists of log(n) bits, it is often advantageous to use code words of varying

length. For example, if a is a very frequent symbol, and b is an infrequent symbol,

then it makes sense to use fewer bits to encode a than to encode b. If we assume

a probability distribution over symbols, then it can be shown that the optimal code

length for a symbol x is the negative log probability of x (Rissanen, 1989, p. 25).
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λ∗(x) = − log2 p(x) (5.1)

I use λ to represent the function that gives the code length in bits of a symbol. While

the optimal code length is not always achievable in practice, if the messages being

encoded are arbitrarily long and that the probability distribution from which the let-

ters of the alphabet are sampled is known, then it is always possible to design a prefix

code that approaches this optimum (Grünwald, 2005). (This is partly accomplished

by assigning codes to sequences of symbols, resulting in an average code length that is

not an integer number of bits.) MDL traditionally assumes arbitrarily-long messages,

and thus uses the ideal code length function.

5.1.2 MDL Definition

While it is helpful to understand the basics of codes, MDL is only concerned with

the lengths of encoded messages, not the actual encodings themselves. Furthermore,

in an MDL scenario, the message is not encoded directly: instead, the message is

first described in terms of a model, and the resulting model description is encoded, for

example using prefix codes. For someone to be able to decode the message, we must

send them both the model M that was used as well as the message (also called the

data sequence) D, described in terms of the model. Thus the encoded length of the

data sequence is the sum of the length of the encoded model plus the encoded length

of the data sequence described using the model:

λ(D) = λ(M) + λ(D|M) (5.2)

In an MDL learning scenario, the goal is to minimize λ(D), the description length

of the data (hence the name, minimum description length). This is accomplished by

considering different models M ∈M, describing the data D using the model M , and
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evaluating the value for λ(D) under that model. The optimal model M∗ is the model

which yields the smallest description length:

M∗
MDL = argmin

M
λ(M) + λ(D|M) (5.3)

Below, I will discuss how the MDL criterion can be applied as an objective function

in a search over a set of competing morphological models.

5.1.3 Compression as Learning

MDL is a compression technique; it seeks to encode the given data using as few

bits as possible. Data compression is widely used in computing and is essential for

modern applications such as streaming music and video. However, compression is

also a way of thinking about the complexity of a data sequence. The Kolmogorov

complexity of a data sequence is defined as the shortest computer program that prints

that sequence. It has been shown that Kolmogorov complexity is independent of the

programming language used, but Kolmogorov complexity is also incomputable; there

is no programmatic way to calculate it for an arbitrary input sequence (Grünwald,

2005).

Random sequences will have a Kolmogorov complexity roughly equal to the length

of the sequence, while sequences containing repeated patterns or internal structure

will have shorter Kolmogorov complexity. Since language is a system with regular

patterns, we can expect that sequences representing natural language utterances will

have a lower complexity than random sequences. While Kolmogorov complexity is

incomputable, MDL provides a framework to find a model of the data that approxi-

mates the Kolmogorov program, capturing the regularities that are contained in the

data sequence. In the sections below, I describe a search procedure that generates

a series of candidate models in search of the MDL-optimal model. By evaluating

competing models of the data using the MDL minimization equation (5.3), we aim
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to discover the model that best captures the regularities within the data.

Still, it is important to keep in mind that we are not really interested in com-

pressing the data. Rather, we are interested in discovering the true morphological

structure of the language; i.e. the analysis that linguists would find most satisfactory.

We keep MDL in check by imposing restrictions on the structure of the encoding

algorithm. This structure may prevent us from finding the optimal compression of

the data, but it helps us find a better morphology of the language. MDL, or any

other objective function, is simply a useful metric for guiding our search.

5.2 An MDL Model of Biform Morphology

This model draws heavily from Goldsmith’s model, but with important modifica-

tions to accommodate biform morphemes; Goldsmith’s model, being an unsupervised

method, represents morphemes as strings, essentially the form half of the bitext to-

kens described here. In my model, the form is represented as a string of letters drawn

from an alphabet of letters L, and the meaning is represented as a set of features

drawn from an alphabet of features F . (A summary of the notation and the data

objects described in this section can be found in figure 5.4.)

The model is based on a data sequence D, which is a corpus of biform word tokens.

Every data item d in D consists of a string Ld consisting of letters drawn from the

letter alphabet L, and a set of features Fd drawn from the feature alphabet F . This is

the same structure used for individual stems si, and affixes ai, within the morphology.

The model of the morphology itself, M , consists of a list of paradigms. A given

paradigm p consists of a list of stems Sp, a list of affixes Ap, and a set of features

shared by all stems in that paradigm, Fp.

Given a complete model, every data item in the corpus can be represented as a

triple (i, j, k), where i is a pointer to a paradigm p ∈ M , j is a pointer to a stem

within the paradigm s ∈ Sp, and k is a pointer to an affix within the paradigm a ∈ Ap.
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Symbol Denotes

D = the data sequence (the corpus, aka the message), consist-
ing of a sequence of data items.

= [d1d2d3...]
M = the model (morphology), consisting of a list of paradigms

= [p1p2p3...]
p = a paradigm, consisting of a list of stems, a list of affixes,

and a set of features
= (Sp, Ap, Fp)

S = a list of stems [s1s2...]
A = a list of affixes [a1a2...]
F = a set of features (f1, f2, ...), fi ∈ F
L = a string of letters [l1l2...], li ∈ L
d = a biform data item, consisting of a string of letters and a

set of features.
= (Ld, Fd)

F = the alphabet of all features
L = the alphabet of all letters

Figure 5.4: Notation of data objects.

5.2.1 The MDL Objective Function

We use the MDL minimizing function λ(M) + λ(D|M) as the objective function

guiding our search. Recall equation 5.3:

M∗
MDL = argmin

M∈M
λ(M) + λ(D|M) (5.3)

Here M is the model space, which is the space we will need to search through to

find the optimal model. Since the objective function is a minimizing function, we do

not need to fully calculate the description length: we only need to calculate relative

differences in the description lengths of competing models. Thus, any quantity that

is shared in the lambda function for all models can be safely ignored.

Now, let us spell out the objective function in more detail, addressing the two

terms (the model length and the data length) separately. The notation λ is used

generically to reference the function that returns the description length of its argu-
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λX(x) = description length of a pointer to an item x in a list X
λN = description length of an arbitrary positive integer
λd = description length of a data item, stem, or affix
λf = description length of a feature in F
λl = description length of a single letter in L
λp = description length of a paradigm

Table 5.1: Definitions of description length functions.

ments, but we will introduce several specific λ functions for various data types: these

are summarized in table 5.1

Since the model M is simply a list of paradigms, the model description length is

the number of bits necessary to encode a list of |M | paradigms. To encode this list,

we first encode the length of the list, then encode each member of the list.

λ(M) = λN(|M |) +
∑
p∈M

λp(p) (5.4)

A paradigm consists of 1) a set of stems, 2) a set of affixes, and 3) a set of features:

λp(p) = λN(|Sp|) +
∑
s∈Sp

λd(s) + (5.5)

λN(|Ap|) +
∑
a∈Ap

λd(a) +

λN(|Fp|) +
∑
f∈Fp

λf (f)

Before continuing, let us spell out the definition of λd, the description length of a

data item, which is the same as the description length for a stem or affix. Any one

of these items consists of a set of letters (the string form) and a set of features. We

avoid the need to specify the length of the sequence or set by assuming that a stop

character is included in the alphabet. It would be possible to use frequency estimates

to produce an optimal code for each item in the alphabet.3 However, for simplicity
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I simply treat each letter and each feature as having a uniform cost c.

λd(d) = λl(Ld) + λf (Fd) (5.6)

= c (|Ld|+ |Fd|) (5.7)

Without using the ideal code length function, the code length of the encoding for

letter or feature would depend on the size of the alphabet, so that c = log2(|F| +

|L|). However, even this calculation is unnecessary in practice (since we are only

interested in the relative description lengths of competing hypotheses, not the absolute

description lengths). Therefore I arbitrarily set the alphabet item cost c = 1.

Having spelled out how to calculate λ(M), the next step for calculating the MDL

cost is to describe the data sequence given the model and calculate its length λ(D|M).

As stated, each data item d can be encoded by a specification of a paradigm pd, a

stem sd within that paradigm, and an affix ad within that paradigm, and this can

3In this case, the length function becomes:

λd(d) = λl(Ld) + λf (Fd)

=
∑
l∈Ld

− log2 p(l) +
∑
f∈Fd

− log2 p(f)

The description length function for a string of letters, λl, and the description length function for
a set of features, λf , would determined by the cost of encoding members of the respective alphabets
(L and F), and thus are given by the ideal code length equation (5.1).

λl(L) =
∑
l∈L

− log2 p(l)

λf (F ) =
∑
f∈F

− log2 p(f)

The probabilities should be interpreted as maximum-likelihood estimates based on the occurrences
of the letters and features in the corpus:

p(l) =
countD(l)∑

li∈D countD(li)

p(f) =
countD(f)∑

fi∈D countD(fi)
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be represented as a triple of pointers (i, j, k). While it is possible to spell out the

description length for the data sequence,4 at this point I question whether this is

actually necessary for the present purposes.

The MDL principle is based on minimizing the cost of encoding both the model

and the data, but for a linguistic analysis, the cost of encoding the corpus is not the

primary concern. Rather, the concern is finding the best model of the morphology

of the language. If we were to include the cost of encoding the corpus, this could

potentially place a high value on a model that accurately encodes high-frequency

wordforms at the cost of low-frequency forms, and high-frequency items (such as

the words for “be”, “do”, or “say”) often follow irregular patterns in a language.

Therefore, for this algorithm I only use the λ(M) term and ignore the λ(D|M) term

in the objective function. With this choice, I am focusing on the properties of the

morphology itself, and not the properties of the corpus.

At this point, the objective function cannot accurately be called an MDL function,

but it is an MDL-inspired cost function. Simplifying some of the formal aspects of

MDL, the cost function measures the total cost of all the paradigms defined in the

4Each pointer can be represented using a prefix code for the members of the relevant set, thus:

λ(i) = − log2 p(pd)

λ(j) = − log2 p(sd|pd)

λ(k) = − log2 p(ad|pd)

Then the length of encoding the entire corpus of pointers is:

λ(D|M) = − log2(|D|)
∑
d∈D

λd(d)

= − log2(|D|)
∑
d∈D

λ(id) + λ(jd) + λ(kd)

= − log2(|D|)
∑
d∈D

− log2 p(pd)− log2 p(sd|pd) +− log2 p(ad|pd)

Here, the probabilities should be thought of as the maximum-likelihood estimates based on the
corpus: p(p) is the relative frequency of tokens in the corpus analyzed as coming from paradigm p,
p(s|p) is the relative frequency of the stem s among tokens analyzed as coming from paradigm p,
and p(a|p) is the relative frequency of the affix a among tokens analyzed as coming from paradigm
p.
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model, where the cost of a paradigm is the cost of its paradigm features, stems, and

suffixes, using the data-item cost function from equation 5.6.

M∗ = argmin
M

λ(M)

= argmin
M

∑
P∈M

(
|Fp|+

∑
s∈Sp

(
|Ls|+ |Fs|

)
+
∑
a∈Ap

(
|La|+ |Fa|

))
(5.8)

This easy-to-calculate cost function forms the basis a search for the optimal model.

The search procedure is described in the following section.

5.3 Paradigm Induction via Search

The model described in the previous section only provides a way to compute the

cost of a hypothesis; it does not provide a method for finding the best hypothesis. In

order to arrive at a satisfactory hypothesis, it is necessary to perform a search through

the hypothesis space, considering several alternative hypotheses before ultimately

selecting the one that yields the minimum value for our cost function.

Here, I describe a rather straightforward, greedy approach that iteratively builds

clusters by merging groups of biforms, then infers a paradigm for each cluster. The

search is guided by evaluating the cost of the hypothesis at each stage. Certainly,

there are many other ways to search for hypotheses, and this method could be refined

and optimized, but for now I leave any refinements and optimizations for future work.

5.3.1 Iterative Clustering Procedure

In this clustering approach, each biform in the dataset is assigned to a cluster,

and for each cluster a paradigm is induced. The paradigm should include as many

biforms as possible from the cluster, but not necessarily all of them. The remaining

biforms are left unanalyzed; in this way the search accommodates some amount of
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P ← {Paradigm(f) : f ∈ F}
P∗ ← P
while True do

for all p1, p2 ∈ P × P do
P ′ ← P − p1− p2 +merge(p1, p2)
if cost(P ′) < cost(P ∗) then
P ∗ = P ′

end if
end for
if cost(P ∗) < cost(P ) then
P ← P ∗

continue
else

break
end if

end while

Figure 5.5: Pseudocode of the biform clustering algorithm

noise in the input data. This set of paradigms and unanalyzed forms yields a model

which can be scored according to the model given in section 5.2.

The search begins by assigning each form to a unique cluster, then proceeds by

considering all possible merges of clusters, choosing at each iteration the merge that

produces the largest decrease in the model cost. When no further merges yield a

cost decrease, the search halts. A pseudocode description of the search is given in

figure 5.5.

The clustering procedure forms the “outer loop” of the search process. Each

iteration of re-clustering, however, requires an “inner” process to be performed which

evaluates the relative cost benefits of re-clustering. This is accomplished by inferring

a new paradigm for the new cluster, via the procedure described in the following

section.

5.3.2 Inferring Paradigms from Clusters

As mentioned, a cluster is distinct from a paradigm, but clusters are built in such

a way that the majority of forms in a cluster should belong to a paradigm. Therefore,

88



when learning a paradigm for a given cluster, we make the assumption that all of the

forms belong together in one paradigm, and we can use deterministic methods that

would be inappropriate for a inference on a larger, more diverse, dataset.

A paradigm, as defined in section 5.1, consists of a set of stems, a set of affixes, and

a set of paradigmatic features. The cross-product of stems and affixes generates all

of the possible forms in the paradigm, although not all of these forms are necessarily

attested in the training data set. To infer a paradigm from a cluster of biforms, the

biforms are arranged into an array such that each row in the array contains all of the

forms associated with a given stem, and each column in the array contains all of the

forms associated with a given affix. Any features shared by all forms are removed and

assigned to the set of paradigm features. Then, each stem is inferred by removing all

features shared by all forms in a single row, and removing the longest shared prefix on

all forms in that row. Next, the affixes are inferred for each column as by removing

the largest set of features features and the longest suffix shared by all forms in that

column. The procedure by which a paradigm is inferred from a cluster of wordforms

is explained in more detail with an example in the following section.

5.3.3 A Latin Example

The induction procedure is best illustrated with an example. Consider the three

Latin first-declension nouns amicus “friend”, locus “place”, and filius “son”. To

simplify and save space, consider only a subset of the forms (the singular and plural

forms of the nominative and accusative cases) of these nouns. These forms can be

organized into a paradigm like so:

Sg. Pl.

Nom. amicus, locus, filius amici, loci, filii

Acc. amicum, locum, filium amicos, locos, filios
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Now, consider the biform tokens corresponding to these twelve wordforms, and

assume that they have all been clustered together into a single cluster c. Each biform

consists of the form itself and its meaning features, so the cluster would look like this:

c =



amicus GLOSS:“friend” POS:noun NUM:sg. CASE:nom. GENDER:m

amicum GLOSS:“friend” POS:noun NUM:sg. CASE:acc. GENDER:m

amici GLOSS:“friend” POS:noun NUM:pl. CASE:nom. GENDER:m

amicos GLOSS:“friend” POS:noun NUM:pl. CASE:acc. GENDER:m

filius GLOSS:“son” POS:noun NUM:sg. CASE:nom. GENDER:m

filios GLOSS:“son” POS:noun NUM:pl. CASE:acc. GENDER:m

...
...

...
...

...
...


Now, given this cluster the next step is to infer the appropriate paradigm for these

forms. We notice that all of the forms are masculine nouns; they share the features

POS:noun and GENDER:m. Thus, these two features are assigned as the paradigm

features. Each unique gloss is assumed to represent a different lexeme, so forms are

organized into rows according to their gloss.

fp =

 POS:noun

GENDER:m



[
GLOSS:“friend”

] amicus CASE:nom

NUM:sg


amici CASE:nom

NUM:pl


amicum CASE:acc

NUM:sg


amicos CASE:acc

NUM:pl


[

GLOSS:“place”
] locus CASE:nom

NUM:sg


loci CASE:nom

NUM:pl


locum CASE:acc

NUM:sg


locos CASE:acc

NUM:pl


[

GLOSS:“son”
] filius CASE:nom

NUM:sg


filii CASE:nom

NUM:pl


filium CASE:acc

NUM:sg


filios CASE:acc

NUM:pl



At this point, the forms are organized into rows, but the forms within a row have

not yet been organized into columns. After the paradigm features have been removed,
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and the row features have been removed, any remaining features are assumed to be

inflectional features and define an inflectional “slot” in the paradigm. These feature

sets are assembled and a column is created for each set. The features then belong to

the column, and can be removed from the individual cells. The result is a table with

features specified for the entire paradigm, for each row in the paradigm, and for each

column in the paradigm. The contents of the cells are the wordforms:

fp =

 POS:noun

GENDER:m

  CASE:nom

NUM:sg

  CASE:nom

NUM:pl

  CASE:acc

NUM:sg

  CASE:acc

NUM:pl


[

GLOSS:“friend”
] amicus amici amicum amicos

[
GLOSS:“place”

] locus loci locum locos

[
GLOSS:“son”

] filius filii filium filios

Arranged this way, it is evident that all the forms in a given column share a

common suffix, and all forms in a given row share a common prefix. The next step

in the paradigm inference procedure is to extract longest suffix shared by the forms

in each column and assign this material to the paradigm suffixes:

fp =

 POS:noun

GENDER:m

 us CASE:nom

NUM:sg


i CASE:nom

NUM:pl


um CASE:acc

NUM:sg


os CASE:acc

NUM:pl


[

GLOSS:“friend”
] amic amic amic amic

[
GLOSS:“place”

] loc loc loc loc

[
GLOSS:“son”

] fili fili fili fili

Then, the longest prefix shared by the forms in each row is stripped and assigned

to the paradigm stems:
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fp =

 POS:noun

GENDER:m

 us CASE:nom

NUM:sg


i CASE:nom

NUM:pl


um CASE:acc

NUM:sg


os CASE:acc

NUM:pl


amic

[
GLOSS:“friend”

] - - - -

loc

[
GLOSS:“place”

] - - - -

fili

[
GLOSS:“son”

] - - - -

5.3.4 Handling Noise in the Data

If there is no noise in the paradigm (i.e. the predicted forms perfectly match the

attested forms), then the cells at this point will be empty. However, if there is any

noise, it must be encoded in the paradigm so that the paradigm’s output for each

cell matches the attested form for that cell. Errors are encoded as a three-component

(M,S,N) tuple: M is an integer indicating the number of characters, if any, to delete

from the end of the stem. Similarly, N is an integer representing the number of

characters, if any, to delete from the beginning of the suffix. S is a string of characters

to be inserted between the stem and suffix. These errors are incorporated into the

cost function of the paradigm; the cost of an error code is defined as the number of

letters deleted plus the number of letters added. Encoding errors in this way allows

for easy handling of phonological changes occurring at the morpheme boundary, but

it is flexible enough to allow wholesale rewriting of the form if necessary.

For example, in Classical Latin, the nominative plural of filius is fili. However,

the paradigm, given the prefix stem fili, the inflectional suffix i, and an empty error

tuple (0,−, 0), predicts the form filii.

fili + (0,−, 0) + i → fili

This discrepancy between the attested form and the form predicted by the paradigm
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could be handled either by deleting the trailing i from the stem, or by omitting the

i of the suffix; both of these operations can be handled by (M,S,N) edit codes. To

remove the stem’s i, the code (1,−, 0) would be used. To remove the suffix i, the

code (0,−, 1) would be used.

fili + (1,−, 0) + i → fili

fili + (0,−, 1) + i → fili

The search function will naturally decide when to include a form with an error and

when to omit it from the paradigm, based on whether the cost of including the error

in the paradigm outweighs the cost of encoding the error-containing biform elsewhere

in the morphology. For example, the Latin noun comes “companion” could possibly

be translated as “friend”. Suppose that a form of comes was intermingled with the

forms of amicus. It is not allowed for any cell in the paradigm to contain more than

one form.5 However, it is possible that, say, the accusative form comitatem might be

included in the place of amicum. Assuming that paradigm inference arrived at the

optimal solution (which does not differ from the true solution), the result would be a

lot of noise coded in the comitatem cell.

fp =

 POS:noun

GENDER:m

 us CASE:nom

NUM:sg


i CASE:nom

NUM:pl


um CASE:acc

NUM:sg


os CASE:acc

NUM:pl


amic

[
GLOSS:“friend”

] - - (4,comitate,1) -

loc

[
GLOSS:“place”

] - - - -

fili

[
GLOSS:“son”

] - - - -

5This would defeat the purpose of the paradigm; in cases where a language legitimately has
alternate forms for the same inflection of a given word, these alternate forms must be handled by
alternate paradigms.

93



The error tuple correctly predicts the form for the cell by deleting all four char-

acters of the stem, as well as the first u in the suffix, and inserting the remainder of

the comitatem form:

amic + (4, comitate, 1) + um → comitatem

But the cost of the error tuple, when weighted against the cost of encoding the biform

for comitatem elsewhere in the morphology, would most likely prohibit any merge step

that grouped forms of comes with amicus. Thus, although the gloss feature is not a

perfect predictor of whether two forms belong to the same lexeme, the gloss feature

in combination with the inference method and the objective function works to group

together biforms that are related both by their features and by their forms.

This example can also illustrate the limitations of the procedural paradigm in-

ference method described here. In the table above, the paradigm analysis is in fact

exactly the same as the correct analysis (same paradigm features; same stems; same

suffixes), but differs only in the error contents. However, results of the inference

method as described here could very well be sub-optimal; the fact that comitatem

ends with -em, not -um, means that the longest shared suffix by the forms in its

column is -m, resulting in an incorrect analysis of that suffix. Likewise, the stem

inference for the amicus row would be impeded. In practice, a majority rule is used

for prefix and suffix inference: if a the prefix or suffix is shared by more than 50%

of the forms in its group, then it a net benefit cost-wise to encode it on the row or

column. This is true because the cost of encoding the error associated with deleting

the prefix or suffix, in less than half of the cells, should still be less than the cost of

encoding that same prefix or suffix in more than half of the cells. However, this is

only a heuristic, and if a sufficient number of noisy forms are present in the cluster,

a sub-optimal result will ensue.
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fp =

 POS:noun

GENDER:m

 us CASE:nom

NUM:sg


i CASE:nom

NUM:pl


m CASE:acc

NUM:sg


os CASE:acc

NUM:pl


-

[
GLOSS:“friend”

] (0,amic,0) (0,amic,0) (0,comitate,1) (0,amic,0)

loc

[
GLOSS:“place”

] - - (0,u,0) -

fili

[
GLOSS:“son”

] - - (0,u,0) -

This example calls attention to the fact that the paradigm inference method is

procedural and deterministic, though still effective in the context of the broader search

procedure. Finding the optimal paradigm analysis would be more costly in terms of

processing time, since it involves considering many possible prefixes, suffixes, and

feature assignments. The trade-off is worth making since the difference in results of

an optimal and sub-optimal search is most prominent when the data is noisy, and

the outer loop of the search procedure is designed to limit noise within the clusters.

Thus, any cluster which survives to the final analysis should be relatively noise-free,

minimizing the impact of the sub-optimal paradigm inference procedure. The fact

that the table above is filled with errors merely illustrates that it is a poor candidate

for a paradigm, and any merge that combined forms of comes and amicus would be

rejected by the search procedure.

5.3.5 Handling Sparse Data

This paradigm inference method works best when the paradigm table is well-

populated, but it is still effective with smaller subsets of the data, provided certain

conditions are met. For example, to infer that the biform {filium, GLOSS:“son”

POS:n GEN:m CASE:acc NUM:pl} contains the morpheme {um, CASE:acc NUM:pl},

it is necessary to have in the training corpus at minimum either an example of an-
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other instance of the um suffix or an example of another instance of the fili stem.

This is true regardless of the inference method and whether the analysis is performed

by hand or by computer.

The main consideration when dealing with small datasets is the cost-based metric

guiding the search. MDL is based on an assumption of arbitrary long message length,

which is clearly not the case when dealing with an actual corpus of language data.

When the data set becomes truly small, the relationship between the cost of the

paradigm and the cost of the data forms comes into play. In general, if the number

of stems in a paradigm is less than the number of suffixes, then extra material will

tend to be added to the stems, since this is cheaper than encoding the same material

on multiple affixes. However, if the number of stems is greater than the number of

suffixes, then the reverse will be true.

For example, if the corpus contained the same stems as the earlier examples, but

only the nominative singular forms, then it could become cheaper to encode the /c/

on the suffix, rather than twice on the stems:

fp =

 POS:noun

GENDER:m

 cus CASE:nom

NUM:sg



ami -

[
GLOSS:“friend”

] amicus

lo

[
GLOSS:“place”

] -

locus

fili

[
GLOSS:“son”

] (0,-,1)

filius

5.3.6 Search Limitations

For another limiting case, imagine a scenario where a certain inflection is only

attested by a single form, and that form’s stem does not appear elsewhere in the
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corpus. Even in the absence of these other forms for comparison, a linguist might

make a reasonable guess at what material belongs to the stem and what to the

suffix, based on the lengths of other suffixes in the language. However, from a cost

standpoint, there is no justification for choosing how to break up the form, or even

whether to break it up at all. In fact, from a cost standpoint there may be no

motivation to even include that form in the paradigm, but rather to leave it out as

an unanalyzable form.

The clustering procedure described here is a greedy, hill-climbing search and is

not guaranteed to yield the optimal analysis. However, by choosing the best merge

operation at each iteration, most missteps can be avoided. For example, in Latin

there are different noun classes with genitive plural suffixes -arum, -orum, and -um.

Merging an -um form with an -orum form could in principle yield a cost savings,

since the -um material of both suffixes is shared. If this choice was taken early in the

inference process, it would yield messy results with two separate noun classes merged

into a single paradigm. However, in practice this merge should not occur, since there

would be greater cost savings to be had by other merges (e.g. merging forms that

share a stem, or merging two -orum forms).

A misstep may occur in some unlikely circumstances. For example, if there exists

a very long suffix that is shared by two paradigms, then clustering together forms

that share this suffix could be the chosen as the best merge, if the length of the suffix

is longer than any of the stems. In order for this step to be incorrect, it must also

be the case that there are many other (shorter) suffixes in the two paradigms which

differ from one another, such that it would have been better not to make the initial

merge operation.

These are extreme cases, and certainly there is a lower limit on the size of the

corpus necessary to produce good linguistic results. While it is possible to imagine

artificial scenarios like this in which particular data sets will yield suboptimal analyses,
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for most real-world data sets this clustering approach will be effective.

To be truly representative of the language, a corpus should produce an analysis

that does not change with the addition of further data from the language (Harris,

1951). Furthermore, it is not a weakness, but a strength, of the algorithm that it does

not make predictions that are not supported by the evidence in the corpus, even if

those predictions produce reasonable analyses. The virtue of an algorithmic approach

to linguistic analysis is that it always provides consistent results when presented with

the same input. However, in many cases when dealing with electronic data sources, it

is not possible to collect additional data, and the objective must always be to produce

the best possible analysis with the data given.

The experiments described below illustrate the performance of this algorithm.

The first experiment, using tagged biforms from a Latin dictionary, explores effect

that corpus size has on the quality of the inferred morphological analysis. The second

experiment, using data derived from the parallel corpus of Estonian, explores how

this inference algorithm performs on a small, real-world corpus, and compares it to

existing methods for unsupervised morphological inference.

5.4 Performance & Evaluation

5.4.1 Experiment: Latin

To explore the performance of this induction algorithm on various types of data

sets, I created 6 small, targeted subsets of the Whitaker corpus of Latin wordforms.

The subsets were chosen to include many inflected forms of a small set of lemmas.

These sets are summarized in table 5.2. More information on the Whitaker data can

be found in Appendix C. Each set was used to train a paradigmatic morphology,

which was evaluated against the gold-standard analyses contained in the corpus.

Each data set was randomly divided into training and test sets, with the constraint
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Name Size Description

Set1 84 First-declension nouns (8 lemmas).
Set2 86 Second-declension nouns (8 lemmas).
Set3 317 First-conjugation verbs (4 lemmas).
Set4 404 Second-conjugation verbs (4 lemmas).
Set5 882 Set1 through Set4, combined.
Set6 170 Set1 and Set2, combined.

Table 5.2: Summary of the Latin data sets.

that each training set was required to include at least one form of each lemma. (This

seems justifiable, since no morphology can reasonably be expected to generate forms

of a previously-unseen stem.) For this experiment, I looked at training set sizes of

10%, 50%, and 90% of the original data set. Starting with the six original data sets,

this produced 18 paired training and test sets.

For each of the 18 training sets, a morphology was created using the inference

method described above, in which clusters of forms are iteratively merged in a greedy

search procedure. This morphology was then saved and used to predict forms for all

of the tokens in the appropriate test set. (The test set is different in each case, since

the assignment of test and training tokens is random. However, in every case the test

set consists of forms that were not seen in the training process.)

For evaluation, the learned paradigm is used to predict word forms for each pos-

sible inflection of each stem. A predicted form is judged as either correct or incorrect

based on whether it exactly matches the form in the original data set. The reported

accuracy is the probability that the predicted form is correct. (In the case that the

morphology predicts more than one form for a given input, its probability mass is

distributed among all the predicted forms, which may independently be either cor-

rect or incorrect.) Figure 5.6 plots the accuracy against the size of the training set,

illustrating how performance increases with more training data. Figure 5.7 plots the

accuracy for the six sets when training is performed using less than the full set. This

shows that there is a definite minimum level of data necessary to train an effective
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Training Set Size vs. Accuracy
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Figure 5.6: Illustration of the effect of training set size (measured by the number of
tokens) on generation accuracy for six different data sets.
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Figure 5.7: Illustration of the effect of training size (as a percentage of the entire data
set) on generation accuracy for six different data sets.
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model. While the accuracy of the induced morphology depends heavily on the size

of the training set, good results are still possible with relatively small sets (hundreds

of forms), provided that those data sets contain a good representation of the possible

types of wordforms.

5.4.2 Experiment 2: Bitext-Aligned Estonian

This experiment combines the morphology induction process with the biform gen-

eration process from chapter 4, using a morphologically-tagged parallel corpus of

Estonian and English text. Like Latin, Estonian is a suffixing language; however

as a non-Indo-European language (Estonian is a Baltic-Finnic language in the Uralic

language family), Estonian is a good complement to Latin. Estonian is not a resource-

poor language—it is the national language of Estonia, with over a million speakers

(Lewis, 2009)—but the existence of a morphologically-tagged corpus is essential to

make evaluation of this experiment possible, and the novel-length text used in this

experiment is a reasonable approximation of the amount of data available for many

RPLs.

Data

This experiment uses data from the morphologically-disambiguated corpus of Es-

tonian produced at the University of Tartu.6 The corpus consists of several texts

which have been manually tagged for rich morphological features (e.g. tense, num-

ber, person, case). This experiment uses only the portion of the corpus containing

George Orwell’s novel 1984. That text was paired with an English version of the same

novel to produce a parallel corpus.

The biforms used as input for the morphological inference algorithm were produced

according to the bitext alignment and enrichment procedure described in chapter 4.

6http://www.cl.ut.ee/korpused/morfkorpus/ For more information on this corpus see Ap-
pendix D.
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For this experiment, only those forms classified as nouns (i.e. Estonian word forms

that were aligned with English nouns) are used. The nouns are tagged with the

part-of-speech feature, a number feature, a proper/common noun feature, an English

gloss feature (the stem of the English word with which the token is aligned), and a

dependency feature from the English parse. One of the more interesting aspects of

this experiment is how the Estonian case features compare to the dependency features

from the parse of the English sentence.

Method

For comparison, I ran the monolingual text through two unsupervised monolingual

morphological inference programs, Linguistica (Goldsmith, 2001) and Morfessor 1.0

(Creutz and Lagus, 2005). Both programs were run on the full text of the novel,

using the default recommended parameters.

The clustering algorithm described earlier in this chapter is rather slow, and fu-

ture work will need to address speed optimizations. For this experiment, I ran the

algorithm only on the word forms that were predicted to be nouns by the word align-

ment. To further improve the running time of the algorithm, not all merges were

considered (merges were constrained to forms tagged with the same lemma feature),

and so the performance is impaired somewhat compared to the full algorithm.

Evaluation and Results

Unlike the Latin dataset, this is a true corpus: the tokens are whatever wordforms

happen to be contained in the text, and so it is not possible to directly assess whether

a form predicted by the analysis is or is not a valid Estonian word simply by checking

whether it exists in the corpus. Therefore, I used the evaluation procedure adopted by

the Morpho Challenge (Kurimo et al., 2010), which is designed to estimate precision

and recall given the restrictions that not all wordforms are attested in the data and
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Precision Recall

Morfessor 57.5% (167/290) 34.3% (116/337)
Linguistica 56.6% (176/311) 38.7% (130/337)
Biform (no glosses) 68.4% (266/389) 20.4% (69/337)
Biform (glosses) 74.7% (275/368) 16.3% (55/337)

Figure 5.8: Comparison of morphology induction systems on nouns in the Estonian
corpus.

that the predicted and gold morphemes may be labeled differently from one another.

To measure precision, shared-morpheme word pairs are drawn from the predicted

analyses; for each shared-morpheme pair there must be at least one morpheme that

appears in the analysis of both words. Each shared-morpheme pair is evaluated as

correct if the gold standard also analyzes these two wordforms as sharing a morpheme,

and is evaluated as incorrect otherwise. To measure recall, the shared-morpheme word

pairs are sampled from the gold-standard and compared against the predictions; each

pair is evaluated as correct if and only if the predicted analysis also shows the two

words as both containing a shared morpheme.

Figure 5.8 shows the evaluation results for Morfessor and Linguistica as well as

the biform inference method described here. The standard biform method results

are given in the row labeled “glosses”. The algorithm described in this dissertation

outputs morphemes consisting of both its form and its gloss, whereas the morphemes

produced by unsupervised, monolingual approaches are unglossed strings. Therefore,

I added a “no glosses” analysis that strips the gloss component from the morphemes

produced by my algorithm. While this greatly limits the usefulness of the inferred

morphemes, it is a better comparison to the monolingual methods, since a string that

represented a single morpheme in the monolingual, unsupervised case may actually

comprise many unique morphemes in the biform approach.

All evaluation was performed only on wordforms that were tagged as nouns in the

gold data. For each data set, 400 forms were sampled, but the actual number of pairs
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evaluated is slightly less due to the fact that for some wordforms (e.g. hapax forms),

there are no other forms in the corpus that share a morpheme.

One clear trend is that recall is low for all four systems. One likely cause is the

fact that noun stems in Estonian exhibit allomorphy, and a purely segmentation-

based approach to morphology will end up producing multiple different stems for the

same noun. While the error-correcting capability of the biform-based approach miti-

gates this problem somewhat, the recall is decreased even further because the biform

induction method only identifies a single suffix for each form, while many Estonian

wordforms exhibit stem-internal derivational morphology in addition to the inflec-

tional suffixing. Also, some forms were inevitably misidentified during the alignment;

any form that was not tagged as a noun during the bitext alignment stage will be

missing here, and this will have a negative impact on the recall.

Another trend is that the precision of the analyses produced by the algorithm

presented in this dissertation is higher than that of the other two systems. It would

be expected that precision is higher for the glossed morphemes; variation in the

glosses due to imperfect word alignments means that there are likely several forms of

each true morpheme, and this reduces the likelihood of any chance collisions between

morphemes. However, the precision is higher even for the unglossed version of the

output, suggesting that the segmentation accuracy of the biform approach is better

than that of the unsupervised methods.

Table 5.3 shows some examples of the Estonian word forms that were analyzed in

this experiment. This subset shows three different paradigms (separated by horizontal

lines). These examples illustrate some strengths and some weaknesses of this approach

to morphology induction. First, it is a good thing that the first paradigm (which

contains a form that is mislabeled due to a word-alignment error) is kept separate

from the other two even though it shares characteristics of both. The first form

and those in the third paradigm are labeled with the same lemma, but they are
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Form Stem Suffix

tunni tunni/lemma:pocket

tunni tunni/lemma:hour +∅/dep:DEP/num:SG
tunni tunni/lemma:hour +∅/dep:NSUBJ/num:PL
tunni tunni/lemma:hour +∅/dep:PREP IN/num:PL

taskus taskus/lemma:pocket +∅/dep:POBJ/num:SG
taskusse taskus/lemma:pocket +se/dep:PREP IN/num:SG
taskusse taskus/lemma:pocket +se/dep:PREP INTO/num:SG
taskust taskus/lemma:pocket +t/dep:PREP OUT OF/num:PL
taskust taskus/lemma:pocket +t/dep:PREP OUT OF/num:SG
taskusse taskus/lemma:pocket +se/dep:PREP TO/num:SG

Table 5.3: Example of the morphological analysis produced using Estonian-English
bitext as input.

not clustered together due to their differences in form. The first form and those in

the second paradigm share identical forms, but different features. In this way, the

algorithm handles an alignment error as expected. Furthermore, the algorithm rightly

strips the shared features (i.e. these are all common nouns) and uses the remaining

features (number and the dependency) to gloss the suffixes.

The actual Estonian suffixes represented in this data subset are the illative –sse,

inessive –s, and elative –st. While the morpheme boundary is not perfectly detected

(the stem-final -s should in fact belong to the suffixes), the algorithm is simply doing

its job by minimizing the cost of the paradigm. The dependencies used to gloss the

suffixes show how English syntactic features correspond to Estonian morphological

features: the inessive case marker appears with the labeled dependencies prep into,

prep to, and prep in, all of which accurately represent the semantic sense of ines-

sive. A further, non-trivial, improvement to this algorithm would be to recognize

that these morphemes, which all share the same form and similar, but not identical,

features, are in fact one morpheme. The English dependency features do not al-

ways align perfectly with the Estonian usage; for example, the prep in feature shows

up on one of the tunni forms which is not actually inessive case. However, even in
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its current form the analysis produced by this approach is linguistically meaningful

and is of much greater use from a linguistic standpoint than an unglossed, purely

segmentation-based, morphological analysis.

5.5 Conclusion

In this chapter I have presented my algorithm for paradigmatic morphology induc-

tion from an input of biform word tokens. The algorithm follows an iterative clustering

procedure to find the optimal analysis under an MDL-inspired cost-minimization ob-

jective function. The results of the two experiments show that the inference algorithm

effectively analyzes biforms into stem and suffix components, and that the paradigms

which are inferred are able to accurately analyze and predict unseen biforms. Addi-

tionally, the glosses produced by the morpheme induction process contain meaningful

representations of the function of the morphemes.

This is a novel form of morphology induction, as previous efforts are either unsu-

pervised methods based on monolingual, unlabeled input, or fully-supervised methods

in which the true segmentations are included in the training data. The algorithm de-

scribed here could be improved in several ways to make it more efficient or robust

to noisy data. The search procedure itself considers every possible merge at each

iteration; this is inefficient and could be sped up by heuristics that estimate cluster

similarity and only attempt to merge clusters that are estimated to have a compara-

tively high similarity. Speed improvements will be necessary in order to fully apply

this algorithm to modestly-sized data sets. However, even in its current state this is

an effective method that should prove useful for enriching bitext sources from RPLs

through morphological analysis.
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CHAPTER 6

Conclusion

The work and experiments described in this dissertation make it clear that elec-

tronic texts are rich sources of language data and that it is possible to use existing

NLP tools, with appropriate modifications, to leverage that data for grammar induc-

tion. In this dissertation, I explored the feasibility and the challenges of extracting

bitext from digitally-scanned documents, and I showed that a morphological inference

method based on bitext-derived input can be an effective tool for automated linguis-

tic analysis. Such methods to enrich existing electronic texts and produce databases

of richly-annotated linguistic data are necessary to enable the future forms of cross-

lingual computational linguistics research that will advance our understanding of the

nature of language.

However, there exist several obstacles to this ultimate goal, which will need to

be addressed by further research. Detailed discussions of directions for future work

are given in each of the chapters of this dissertation; here I mention two large-scale

areas for future work based on the topics in this dissertation: improving the data

collection process and improving grammatical inference as it applies to resource-poor

languages.

One obstacle to data collection is the current limitations in access to electronic

data. Copyrighted works, proprietary data collections, and non-public data of indi-
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vidual researchers, are problematic or impossible to obtain. A second, major obstacle

is the OCR quality of electronic data. The OCR text of online collections is error-

prone and omits non-Latin scripts entirely. While this can be improved somewhat

with commercial OCR software, it remains problematic, particularly since using such

software requires identifying the language beforehand and only works for a selection

of known languages.

There is also room for improvement in terms of the data that is extracted from

the documents. The bitext extraction method could be improved via better language

ID, both at the word level and at the phrase level. Bitext extraction would also

benefit from improved handling of structured text, although this partly is dependent

on better OCR methods. Error accumulation from processing stages is also an issue.

In the pipeline described at the beginning of this dissertation, bitext is extracted (via

a noisy process) from electronic text, then the words within the bitext are aligned

(via a noisy process), and features are transferred from English to non-English words,

despite a mismatch in the grammatical systems of the two languages. In order for

this pipeline to ultimately be successful, it will be necessary to incorporate intelligent

error-correcting and noise-reduction methods into the process.

Additionally, there remains the possibility of extracting more of the analysis con-

tained in the grammar by using deeper methods of information extraction. While

this dissertation focused on morphology, there are many other types of linguistic

knowledge contained within the typical grammar.

While the morphological analyses produced by the methods describe here are an

improvement over previous techniques, they still fall short of the quality which would

be desired for a linguistic analysis, as any linguist will be quick to recognize. The

world’s languages abound with any number of diverse morphological processes that

are much more fascinating and complex than simple suffixing. String concatenation is

a familiar principle to any computer scientist, and it acts well enough as an approx-
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imation for the morphological processes common in many languages. However, in

order to adequately handle the numerous, diverse, languages that comprise the realm

of RPLs, computational linguists need to delve beyond affixation and into the depths

of reduplication, templates, vowel harmony, and other morphological processes. Addi-

tionally, the paradigm-based inference method I describe only handles the case where

a form consists of a single stem and a single suffix. To be more useful, this model

will need to be extended to handle stem-internal derivational morphology, as well as

cases of multiple affixation.

For linguists, there is a need for usable tools: corpora and software that can

easily be obtained and used by researchers who are not necessarily computational

linguists. The types of automated processing described in this dissertation could

either be added as extensions to existing language documentation tools or could form

the basis of new software or web applications. Either way, these methods should

prove useful for linguists organizing their own, newly-collected, data, as well as for

linguists looking for evidence and examples relevant to their own work from among

the quantities of linguistic data that already exists in electronic form. In any case,

it is my hope that the work in this dissertation will help to facilitate new types of

linguistic research on a wide base of languages.
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APPENDIX A

Software

To complete the experiments described in this dissertation, I used a combination

of existing software packages and custom scripts and software I developed myself. The

code written specifically for this project consists of Python modules and bash shell

scripts, so to run this code, all one needs is a bash shell and Python 2.6+ interpreter.

The majority of processing was performed on machines running Apple OS X 10.5 and

Python version 2.6, although additional processing was run on Linux machines using

Python versions 2.6+. Links to download this software and its documentation can

be found on my personal web site.

However, several external software packages were used in conjunction with the

Python code, and these may need to be built separately. Below is an overview of the

external software used. Some of the software packages only require a Python, Java,

or Perl interpreter, while other packages must be compiled in order to run.
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Package Language Summary

NLTK Python Various NLP support libraries

Stanford Parser Java Phrase-structure and dependency parsing

PC-KIMMO C English morphological analysis

Morfessor Perl Unsupervised morphological segmentation

Hunalign C++ Sentence alignment

GIZA++ C++ Statistical word alignment
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APPENDIX B

The Tatoeba Corpus of Sentence Pairs

Tatoeba1 is a community-driven, open-source database, whose goal is to collect

example sentences from as many languages as possible. Because it is user-generated,

not all of the content is reliable; however, its growing size and broad coverage of

languages make Tatoeba an interesting resource for computational linguistic research.

The Latin dataset consists of 347 English-Latin sentence pairs downloaded from

the Tatoeba database, comprising around 2,100 English words and 1,500 Latin words.

The sentence pairs are typically fairly short and linguistically diverse, including ques-

tions and conversational phrases. In this regard, the data is qualitatively quite dif-

ferent than most corpora, which tend to be genre-focused, typically including large

amounts of fiction and news. A few examples of sentence pairs from the Tatoeba

dataset are given in table B.1

The French data set used for the statistical translation selection experiments con-

tains 51,129 sentence pairs. Because the database is continually growing, the number

of English-French translation pairs in the current version of the Tatoeba database is

much larger than that number.

1http://tatoeba.org
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English Latin

I love you. Te amo.
Where is the bathroom? Ubi est lātr̄ına?
Like father, like son. Qualis pater, talis filius.
What are you doing? Quid facis?
What are you doing? Quid vos facitis?
What do you do? Quid facis?
I believe you. Crēdō tibi.
I believe you. Vōb̄ıs crēdō.

Table B.1: Example sentence pairs from the Tatoeba database.
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APPENDIX C

The Whitaker Corpus of Analyzed Latin

Wordforms

The dataset referred to as the Whitaker data set is based on morphological anal-

yses produced by the words software, written and released for public use by William

Whitaker. The software has a public web interface at http://archives.nd.edu/

words.html, with additional documentation and source code available on Whitaker’s

website, http://users.erols.com/whitaker/words.htm.

The Whitaker dataset was generated by feeding a long list of Latin wordforms

into the words software for analysis. The wordforms were taken from the LISTALL

text file, which Whitaker describes as a list of all forms that can be generated from

his dictionary and inflections. The LISTALL file contains 1,034,157 inflected forms.

Because some forms can be analyzed in more than one way, this resulted in 1,623,818

fully-analyzed tokens, which constitute the Whitaker dataset used in these experi-

ments.

The output of the words program includes the segmentation of the wordform into

stem and suffix, as well as an specification of the word subclass (noun declension or

verb conjugation variety) to which the form belongs. The inflected features are also
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Form Segments Lemma POS Subclass Additional Features
abaci abac+i 7 N 2.1 GEN S M

abaci abac+i 7 N 2.1 NOM P M

abactae abact+ae 9 VPAR 3.1 GEN S F PERF PASSIVE PPL

abactia abacti+a 11 ADJ 1.1 NOM S F POS

abactum abact+um 9 SUPINE 3.1 ACC S N

abacturarum abact+urarum 9 VPAR 3.1 GEN P F FUT ACTIVE PPL

abarceamur abarc+eamur 28 V 2.1 PRES PASSIVE SUB 1 P

abarcet abarc+et 28 V 2.1 PRES ACTIVE IND 3 S

Table C.1: Example tokens from the Whitaker dataset.

given. Table C.1 illustrates the type of output produced by words by showing a few

different tokens and their features.

The words program gives a dictionary definition for each lemma; in my dataset

this is replaced by an integer key that uniquely identifies each lemma.

In all, there are 12 part-of-speech tags and 104 subclasses. Table C.2 lists the

complete range of part-of-speech subclasses in the dataset, along with a count of the

number of tokens belonging to each subclass.

POS Subclass Token Count
ADJ 0.0 688
ADJ 1.1 138226
ADJ 1.2 4663
ADJ 1.3 123
ADJ 1.4 176
ADJ 1.5 72
ADJ 1.6 220
ADJ 1.7 432
ADJ 2.1 11
ADJ 2.6 787
ADJ 2.7 195
ADJ 2.8 920
ADJ 3.1 9765
ADJ 3.2 19375
ADJ 3.3 283
ADJ 3.6 38
ADJ 9.8 23
ADJ 9.9 24
ADV COMP 339
ADV POS 6666
ADV SUPER 363
CONJ 103
INTERJ 104
N 1.1 53401
N 1.6 2074
N 1.7 2170
N 1.8 1036
N 2.1 29675
N 2.2 31337
N 2.3 1261
N 2.4 7839
N 2.5 669
N 2.6 3392
N 2.7 45
N 2.8 2876

POS Subclass Token Count
N 2.9 14
N 3.1 48765
N 3.2 4137
N 3.3 10422
N 3.4 3179
N 3.6 95
N 3.7 1297
N 3.9 738
N 4.1 8592
N 4.2 91
N 4.3 12
N 4.4 6
N 5.1 1498
N 9.8 63
N 9.9 142
NUM 1.1 66
NUM 1.2 95
NUM 1.3 150
NUM 1.4 1188
NUM 2.0 3083
PREP ABL 33
PREP ACC 55
PRON 1.0 134
PRON 3.1 50
PRON 4.1 608
PRON 4.2 609
PRON 5.1 11
PRON 5.2 6
PRON 5.3 12
PRON 5.4 6
PRON 6.1 80
PRON 6.2 97
SUPINE 1.1 5666
SUPINE 2.1 568
SUPINE 3.1 3078

POS Subclass Token Count
SUPINE 3.2 44
SUPINE 3.3 32
SUPINE 3.4 561
SUPINE 5.1 30
SUPINE 6.1 66
TACKON 25
V 1.1 307591
V 2.1 46291
V 3.1 213165
V 3.2 2455
V 3.3 628
V 4.1 42238
V 5.1 1179
V 5.2 65
V 6.1 4697
V 6.2 253
V 7.1 30
V 7.2 16
V 7.3 176
V 9.1 50
V 9.2 11
V 9.3 97
V 9.9 15
VPAR 1.1 276127
VPAR 2.0 42
VPAR 2.1 34565
VPAR 3.1 229513
VPAR 3.2 2729
VPAR 3.3 2040
VPAR 3.4 40475
VPAR 5.1 1010
VPAR 6.1 3527
VPAR 6.2 56
VPAR 7.2 2

Table C.2: List of all part-of-speech subclasses in the Whitaker dataset.

Since the analysis includes not only the segmentation of the form into stem and
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suffix, but also a fairly fine-grained classification of word classes, the Whitaker data is

particularly useful for evaluating the paradigm-classification subtask of morphology

induction.

Whitaker Development Set

The development set consists of the following sets of lemmas, which were chosen

to represent certain subclasses of nouns and verbs.

First-Declension Nouns

(All are of the first subclass variety)

Lemma ID gloss

abra 188 “maid”

bucca 6894 “jaw”

cartula 8196 “scrap of paper”

eminentia 17737 “eminence”

incola 20995 “inhabitant”

maxilla 23576 “jaw”

phantasia 26467 “imagination”

spira 30378 “coil”

Second-Declension Nouns

(All are of the first subclass variety)
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Lemma ID gloss

abacus 7 “abacus”

baetulus 5903 “sacred stone”

capillus 7856 “hair”

haedus 20020 “kid (young goat)”

ornus 25442 “ash tree”

pessulus 26422 “bolt”

spondeus 30406 “spondee”

vitricus 33036 “stepfather”

First-Conjugation Verbs

Lemma ID gloss

incolo 20998 “inhabit”

orno 25438 “equip”

scrutino 29492 “investigate”

vexo 32804 “shake”

Second-Conjugation Verbs

Lemma ID gloss

adluceo 1188 “shine upon”

fulgeo 19451 “gleam”

seneo 29713 “be old”

video 32864fg “see”
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APPENDIX D

The Estonian Morphologically Disambiguated

Corpus

The Morphologically Disambiguated Corpus, available for download at the Univer-

sity of Tartu website,1 consists of 513,000 words of Estonian text. Each wordform is

tagged with a number of morphologically features as well as a lemma+suffix segmen-

tation. The corpus includes the text George Orwell’s novel 1984, as well as a collection

of articles from mainly news and legal sources, which form a subset of the Corpus of

Written Estonian. The project originated as part of the Multext-East project,2 which

has produced a variety of NLP resources for Eastern European languages (Dimitrova

et al., 1998).

The website states that the corpus was manually tagged, suggesting that mor-

phological analysis software for Estonian either does not exist or was unavailable to

the researchers at the time when the corpus was created (2002–2003). This is a true

corpus and not a complete wordlist: although the attested forms only constitute a

small fraction of all wordforms possible in the Estonian language, each form is disam-

biguated and analyzed appropriately for the given context in the corpus. Figure D.1

1http://www.cl.ut.ee/korpused/morfkorpus/
2http://nl.ijs.si/ME/
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gives an example of a few lines from the corpus, showing how the forms, segmenta-

tions, and feature are presented.

<s>
Oli ole+i V main indic impf ps3 sg ps af
külm külm+0 A pos sg nom
selge selge+0 A pos sg nom
aprillipäev aprilli päev+0 S com sg nom
, , Z Com
kellad kell+d S com pl nom
lõid löö+id V main indic impf ps3 pl ps af
parajasti parajasti+0 D
kolmteist kolm teist+0 N card sg nom l
. . Z Fst
</s>

Figure D.1: Example file contents of the Estonian morphologically-disambiguated cor-
pus.

The documentation for the corpus lists 579 different rich POS tags. However,

as each tag is composed of individual features, this decomposes to a smaller set

of individual morphological features. Figure D.2 lists these features (omitting the

features for punctuation), organized by their grammatical function.

3This appears to be a compound class for genitive adjectives. Not knowing Estonian, I’m not
sure why this exists as a separate part-of-speech class.
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Abbreviation English Explanation
Parts of Speech

A Adjective
D Adverb
G Genitive Singular Positive

Adjective3

I Interjection
J Conjunction
K Adposition
N Numeral
P Pronoun
S Noun
T Foreign
V Verb
X Adverb
Y Abbreviation
Z Punctuation

Number
sg singular
pl plural

Case
abes abessive
abl ablative
ad adessive
adit aditive
all allative
el elative
es essive
gen genitive
ill illative
in inessive
kom comitative
nom nominative
part partitive
term terminative
tr translative

Person
ps1 first person
ps2 second person
ps3 third person

Noun Type
com common noun
prop proper noun

Abbreviation English Explanaiton
Adjective Degree

pos positive
comp comparative
super superlative

Verb Type
aux auxiliary
main main verb
mod modal

Verbal Forms
ger gerund
partic participle
inf infinitive
sup supine

Verb Mood
cond conditional
imper imperative
indic indicative
quot quotative

Verb Tense/Aspect
impf imperfect
past past
pres present

Verb Negation
af afirmative
neg negative

Verb Voice
imps passive
ps active

Adposition Types
post postposition
pre preposition

Conjunction Types
crd coordinating
sub subordinating

Numeral Features
card cardinal
digit digit
l letter
ord ordinal
roman roman

Abbreviation Types
adjectival adjectival
adverbial adverbial
nominal nominal
verbal verbal

Figure D.2: Features used in the Estonian morphologically-disambiguated corpus.
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APPENDIX E

Universal Part-Of-Speech Tag Set

This is a “universal” set of twelve part-of-speech tags as proposed by Petrov et al.

(2012). The motivation of this tagset is to provide a minimal, basic set of tags that

will be useful and applicable to a wide set of languages. Table E.1 below lists the

twelve tags in this set. Table E.2 lists how these tags map to the Penn Treebank

tagset, and table E.3 lists how these tags map to the Estonian tagset.

Tag Description
VERB verbs (all tenses and modes)
NOUN nouns (common and proper)
PRON pronouns
ADJ adjectives
ADV adverbs
ADP adpositions (prepositions and postpositions)
CONJ conjunctions
DET determiners
NUM cardinal numbers
PRT particles or other function words1

X other: foreign words, typos, abbreviations
. punctuation

Table E.1: The set of twelve universal part-of-speech tags
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WSJ Universal
! .

# .

$ .

’’ .

( .

) .

, .

-LRB- .

-RRB- .

. .

: .

? .

CC CONJ

CD NUM

CD|RB X

DT DET

EX DET

WSJ Universal
FW X

IN ADP

IN|RP ADP

JJ ADJ

JJR ADJ

JJRJR ADJ

JJS ADJ

JJ|RB ADJ

JJ|VBG ADJ

LS X

MD VERB

NN NOUN

NNP NOUN

NNPS NOUN

NNS NOUN

NN|NNS NOUN

NN|SYM NOUN

WSJ Universal
NN|VBG NOUN

NP NOUN

PDT DET

POS PRT

PRP PRON

PRP$ PRON

PRP|VBP PRON

PRT PRT

RB ADV

RBR ADV

RBS ADV

RB|RP ADV

RB|VBG ADV

RN X

RP PRT

SYM X

TO PRT

WSJ Universal
UH X

VB VERB

VBD VERB

VBD|VBN VERB

VBG VERB

VBG|NN VERB

VBN VERB

VBP VERB

VBP|TO VERB

VBZ VERB

VP VERB

WDT DET

WH X

WP PRON

WP$ PRON

WRB ADV

‘‘ .

Table E.2: Mapping of Penn Treebank tags to universal part-of-speech tags.

Tag Description Universal
A Adjective ADJ
D Adverb ADV
G GenitiveSingularPositiveAdjective X
I Interjection PRT
J Conjunction CONJ
K Adposition ADP
N Numeral NUM
P Pronoun PRON
S Noun NOUN
T Foreign X
V Verb VERB
X Adverb ADV
Y Abbreviation X
Z Punctuation PUNCT

Table E.3: Estonian corpus part-of-speech tags and mapping to universal tags.
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APPENDIX F

Skrefsrud’s Santhal Grammar

One of the texts downloaded and used extensively in our development is A gram-

mar of the Santhal language by L. O. Skrefsrud, published in 1873 and digitized

into the University of Michigan Digital General Collection in 2006 (available at:

http://name.umdl.umich.edu/AAU0434.0001.001). This text is a typical example

of a grammar in our collection.

From this text, pages 3, 30, 33, 34, and 35 were annotated by multiple annota-

tors, allowing us to measure inter-annotator agreement. From these annotations, we

created a gold set “best” annotations, which were used for training the language ID

models.
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